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Abstract

By perturbation techniques, we obtain a new class of selfdual Electroweak vortiti#s whose asymptotic behavior we
control in an “optimal” way to yield a sort of “quantization” property for the corresponding flux.

Our class of vortex-solutions complements that constructed by Spruck and Yang [Comm. Math. Phys. 144 (1992) 215-234].
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé

En utilisant des techniques de perturbation, nous obtenons une nouvelle classe de vortex Electrofaibles autodRAux dans
dont nous pouvons contrdler de fagon «optimale » le comportement asymptotique en donnant une propriété de « quantisation »
pour le flot correspondant.

Notre classe de solutions complete celles construites par Spruck et Yang [Comm. Math. Phys. 144 (1992) 215-234].

© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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Introduction

We shall be concerned with planar vortex-type (self-dual) solutions for the celeb§atés) x U(1)-
Electroweak theory of Glashow, Salam and Weinberg [10]. As observed by Ambjorn and Olesen [2—4], if the
physical parameters satisfy a suitable critical condition, it is possible to determine Bogomol'nyi type equations
(also known as self-dual equations) to be satisfied by Electroweak-vortices when expressed in terms of the unitary
gauge variables. The selfdual equations include a gauge invariant version of the Cauchy—Riemann equation,
which makes it reasonable to assume thatWhdoson field admits a finite numbeéF of zeroes (counted with
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multiplicity). Such an integeW is called the vortex number, and the corresponding vanishing points of W are
called the vortex points.

Moreover, by means of an approach introduced by Taubes [15,16] in the context of Ginzburg—Landau vortices,
it is possible to reduce the analysis of self-dual Electroweak vortices to the study of the following elliptic system:

m

—Aug=4g%e" + %2 — 4 Y " mid(z — z),
(P) k=1
_ g2 euz 2 2 Zdt]_
- 200@9( —%0) +2
where ¢p is a given positive parameteg, is the SU(2)-coupling constant, and € (0, /2) is the so called
“Weinberg-angle”, related with th& (1)-coupling constang.. via the relation,
__ &
(8% +g2)l/%
We refer to the recent monograph of Y. Yang [17] and [5] for details, and, in particular, on how to recover the full
vortex configuration out of solutions ¢P). We only mention that, by virtue of the vortex ansatz and accordingly
to the unitary gauge variables, the vortex solution is specified by the (complex valued) massivig tieéd(scalar)
field ¢ and the real valued 2-vector fields= (P,),=12 andZ = (Z,),=1,2. So that, 4 andu, determine the
magnitude ofW and¢ respectively, as follows:

pP=e2, WP =¢" (0.1)
Thus,z; corresponds to a vortex point, the integere N to its multiplicity k =1,...,m, andN = >";" ; ny is the
vortex number.

Furthermore, while the 2-vector field® and Z are defined only up to gauge transformations, their gauge
invariant curls,

Pio=01P,—3P1 and Zi2=01Z2 — 9271
are determined by the relations:

Auo

cosd =

8 2 : 2
Pio=— 2gsin0|W |4,
12 25m6¢0+ g (W] 02)
Zio= —2 (0% — ¢2) + 2¢ coH| W |?
12 2cos9(¢ o) +2¢ (W]

(see [17]). Following the numerical evidence provided by Ambjorn and Olesen, the first rigorous results concerning
Electroweak-vortices have been obtained by Spruck and Yang in [13,14]. In [13], the authors aim to obtain
configurations of the type described in physics literature as the “Abrikosov’'s mixed states” (see [1]), so they
consider the selfdual equations subject to 't Hooft boundary conditions [9]. In turn, this amounts to78plve (
under periodic boundary conditions, and Spruck and Yang in [13] obtain necessary and sufficient conditions on
the given physical parameters, in order to ensure the presence of pé&viadidices in the theory. Their results
are sharp fotv = 1, 2 and recently have been improved by Bartolucci and Tarantello in [5] to a wider range of
parameters.

In this paper, we shall be concerned with planar vortex-type configurations, and caijdmrer R? subject
to appropriate decay assumptions at infinity. This situation has been considered in [14], where it has been observed
that necessarily, the corresponding vortex-solutions must carry infinite energy. As a consequence, soldions of (
overR?2 appear in abundance, and are distinguished according to their rate of decay at infinity.

In view of (0.1), also the flux of the fieldB andZ is infinite, while this may not be necessarily the case for the
field: (sin®) P + (cos9)Z, which bares informations about the gauge potential in the original variables. We shall
be concerned with such “finite-flux” selfdual solutions, by solvif) (inder the condition:

é'1,e'? e LY(R?). (0.3)



D. Chae, G. Tarantello / Ann. |. H. Poincaré — AN 21 (2004) 187-207 189

In fact, by setting:

2 2 2
o1 = i/em, g = g_/euz (0.4)
b4 2
R2 R2

in view of (0.1), (0.2) we see that the flux of the field(sind) P + (cos9) Z is given hy,

o= /(Sine P12+ Cc0s9Z12) = z((71 + 02). (0.5)
R? ¢
As a first fact, we show that necessarily
o1+o02>2(N+1) (0.6)

aso1 andos determine the rate of decay at infinity of andu2 (see Theorem 1.1).
The existence results fofP(—(0.3) derived by Spruck and Yang in [14] imply that the lower bound (0.6) is
“sharp”, as they construct solutions satisfying:

o2 >2N; o1+o02 anyassigned value if2(N + 1), +00).

Notice that, in contrast to the periodic case, this class of solutions lacks any sort of “quantization” property for the
corresponding flux (0.5). A first goal of this paper is to show that, actually, this is no longer the case, if we consider
solutions of P)—(0.3) withoy < 2N.

In this case, and when all vortex points coincide, we show that the walalso controls from above the valug.
This implies that, in certain regime, (e.g small) the lower bound@v + 1) in (0.6) is no longer sharp, as + o>
is now forced to remain close to the value 4¢M\), and any other value is ruled out. See Lemma 1.6.

Thus, foroz small, a sort of “quantization” property is restoredsas'approximately” equals to 4(M- 1).

Our second goal, is to show that, in fact, such situation does occur. So, in Section 2, we shall focus our attention
in constructing several families of solutions @)-(0.3) so that

op=0(1) and o1=4(N+1)+o0(1). (0.7)

To this end, we provide a priori estimates (see Theorem 1.1), so thattherm of &2 uniformly estimates its
L*°-norm. Thus, requiring a smadb, implies that we must havé'®also small inL°>°-norm. Therefore, the first
equation in ) may be viewed as a “perturbation” of the following singular Liouville equation:

m
—Au=14g%" —4x ané(z —z) InR?,

k=1
/e“ < 400,
R2

whose solutions may be classified according to Liouville formula (e.g., see [12]). When all vortex points coincide,
we are able to adapt a perturbation approach introduced by Chae and Imanuvilov in [7] to construct “non-
topological” Chern—Simons vortices, and obtain solutionsRy, (‘bifurcating” out of solutions of the singular
Liouville equation mentioned above. In this way, we are able to provide rather accurate pointwise estimates on
our solutions to ensure (0.7), together with a sharp control on their decay rate at infinity. We refer to Theorem
2.1 and 2.2 for the precise statements. Clearly, our result furnishes a new class of soluti@is-(0r3) which
complements those constructed in [14].



190 D. Chae, G. Tarantello / Ann. |. H. Poincaré — AN 21 (2004) 187-207

1. Asymptotic behavior

Consider the problem,
m
—Auy=4g%" + g% — A7y " mid(z — ),
k=1
2

~ 2cog6
/e“1<+oo, /e“2<+oo,
R2 R2

where{z1, ..., zn} C R? are given points{n1, ...,n,} C N are given integers, ank{z — p) denotes the Dirac
measure with pole gt € R?. Let

m 2,2

89

N = E ng, co 0
k=1

(P) | Auz (e2 — ¢8) + 2g%€" InR?,

~ 8cogd
with g, ¢o given positive constants amde (0, 7/2). Set

2 2 2
Gl:%/eul, 0'2:;,—7_[/6”2. (11)
R2 R2

We devote this section to obtain the asymptotic behavidr jas- +oo, of a solution pait(u1, u2) for (P) in terms
of o1 andoy, and to establish some interesting relation for such values. We have:

Theorem 1.1. Let (u1, u2) be a solution pair forf P), then

(i) uf € L®R?),

ui(x) > (2N — (01 +02)) Injx] - C, as|x|— +oo (1.2
for suitableC > 0,

T:ﬁ) — 2N — (01+02), as|x|— +oo, (1.3)

X

and so necessarily

o1+o02>2(N+1). (1.4)

(ii) u; € L (R?) and for suitableCq > 0 (depending org only)

e HLOO(RZ) < Cole" HLl(RZ)' (1.5)

In addition, if

u2(x) + colx — xol?
1+ |x|l+a/2

for somexg € RZ andw € (0, 1), then

€ L%(R?) (1.6)

ui(x) = (2N —(o1+ 02)) In|x| 4+ O(1), a.7)
1
uz(x) = —colx — )C()|2 + > <0’1 + Cgﬁ) In|x| + O(1) (1.8)

as|x| — +oo.
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In order to derive Theorem 1.1 we are going to recall some basically well known facts about the function:

1
wix) = 5/('” x =yl = In@+ [yD) £ () dy (1.9)
RZ

with f e L1(R?).

Lemmal.l. Let

1
f((ln|f|)++1)eLl(R2) and ﬂ:Z/f(y)dy (1.10)

R2

(i) if £ >0, then

wx) < BIn(lx|+1)+C (1.11)
for suitableC > 0;
(ii) W) L g asix|— oo (1.12)
In|x|
(iii) if
In(1+ |x|) f € LY(R?), (1.13)
then
wx)=p4In|x|+0(1), as|x|— +oo. (1.14)

We notice that properties (1.11), (1.12) and (1.14) remain valid for any other solutibthe equation:

Av=f (1.15)
provided it admits a “slow” growth at infinity as expressed by one of the following conditions:
LA L (R2) (1.16)
Injx|+1 ’ '
or
v 2(@2
W eL (]R ), for somea € (0, 1) (117)

Corollary 1.1. Assumg1.10) and letv € LY (R?) be a solution of(1.15)which satisfieg1.16)or (1.17) Then,
properties(i), (i) and(iii) of Lemmal.2hold forv.

Proof of Corollary 1.1. Notice that the functiom = v — w is harmonic oveiR? and, in view of Lemma 1.2,
satisfies (1.16) or (1.17). In either casenust be constant. Indeed, this is a well known fact in case (1.16) holds
(e.g., see Lemma 4.6.1in [17]), while it is a consequence of Proposition 1.1 in [7] im caisfies (1.17). O
Proof of Lemma 1.1. Let us start by observing that

Infx —yl—In(1+[yl) <In(lx| +1), Vx,yeR?

Consequently, foy > 0, property (i) can be easily derived. To obtain (i), let > 1 and consider,

1
o(x) = i /(In lx =yl = In(1+|y]) = In|x|) £ (») dy. (1.18)
R2
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Thus, we must show that(x) — 0 as|x| — +oco. For this purpose, write
o (x) =01(x) + 02(x) + 03(x),

whereo1, 02 andos are defined by taking the integral in (1.18) over the regibnas= {y € R% |x — y| < 1},
Dy ={yeR% |x—y|>1and y| < p} andD3 = {y € RZ |x — y| > 1 and | > p} respectively, witho > 1 a
fixed constant. We estimate,

1
10| < f [ x =yl = In(L+ Iyl) — Infxl]| £ )| dy

{lx—yl<1}
1 1 In(lx| +2)+In|x
<o [ om()lroley+ T [ role
nix| [x — v In x|
{lx—yI<1} {lx—yI<1}
; =R o)
< + M|(In|fm|)"d
In|x|( / =l FOlnlroI)™dy
{lx—yl<1} {lx—yl<1}
1
+2<1+m> / | f(»)|dy
{lyl>lx|-1}
< ) ) +2( 14 / 7| dy
nlx| LYRS Inx]| ’
{lyl>lx|-1}
where we have used the well known inequality:
e“—i—b(lnb 1) <& +b(Inb)", VaeR, b>0
Wltha—|n andb_|f(y)| Consequentlyy1(x) — 0 as|x| — +oo. Furthermore, for € R?|x| > 2p, we
have
1 lx — ¥
Iaz(x)|<|— / <‘In( Y )‘+|n(p+1)>|f(y)|dy
njx| x|
{lx=yl>1,1yl<p}
1
m In(2(p + D)1l fll;12) = 0. @s|x| — +oo.
Finally,
o3| < (Infx = yl+In(2+1y[) +Inlx])| £ ()| dy

{lx=yI>1, p<lyl<2x[}

1
ta (ot [ ol

{lx=y[>1, M>ZIXI} {lyl>p}
3in
<4 / |f()|dy + nix |||f||L1(R2) -4 / | £ () |dy
{Iy>p} {Iy>p}

as|x| — +oo, for any fixedp > 1. Thus, lettingo — 400, we obtain the desired conclusion. Now, suppose that
(1.13) holds, then to establish (iii) it remains to show that

‘ [(nix=51-mn le)f(y)dy‘ —ow (1.19)
R2
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as|x| — +oo. As above, we are going to estimate the integral (1.19) over various regions. Firstly, note that for
|x] > 1 we have:

‘ / (lnlx—yl—lnlxl)f(y)dy‘é / In(lx_y|)|f<y)|dy+ / In|x|[ f ()| dy

{lx—yl<1} {lx—yI<1} {lx—yI<1}

<wr/|f(y)|(ln|f(y)‘)+°'Y+/'”(1+Iy|)|f(y)\dy = C1.
R2 R2

On the other hand,

(Infx =yl —1In le)f(y)dy‘
{lx—yI>1}

<

In(|x|;|y|>‘|f(y)|dy+ / (Infx =yl +Inixl)[ £ ()]dy

{lx—yI>1, lyl<|x]/2} {lx=yI>1, lyl>Ix]/2}

<c2(||f||L1+/ln(1+|y|)|f(y)\dy>
RZ

for suitableC> > 0, and (1.19) follows. O
Proof of Theorem 1.1. We start with the following:
Claim 1.
supio< 9 + In(% e ||L1>. (1.20)

Note that (1.20) immediately implies (1.5). To obtain (1.20), let us use the second equat®jridgigé€ther with
Green's representation formula, to derive that,

uz(x)éﬂ / |n< : >0|y+i / uz(y) do
2T [x —y| 2mr

{lx—yl<r} {lx—yl=r}
1
=cor?+ — / u2(y) do, (1.22)
2mr
{lx—yl=r}

Vr > 0. Multiply both sides of (1.21) by2and integrate ovdl, 1] to obtain:
1

+ [ wmay,
b

Bi(x)
At this point, we can use Jensen’s inequality to estimate,

l / uz(y)dy < |I’]<1 / g2() dy) < In(EHe“Z HLl)’
big big T

B1(x) B1(x)
and conclude (1.20).

(4]

uz(x) < >

Claim 2.
ui e L™(R?). (1.22)
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To establish (1.22) note that;(x) > —oc0 asx — zx, k = 1,...,m. So, we need to show that; is
bounded above outside a large ball which contains all paipts k£ = 1,...,m. To this end note that, if
x: |x| > maX=1 . mlzkl+ 2, then

/ uf </e“1 (1.23)

B1(x) R2

and
—Aup = 4gze“l + gze“2 in B1(x)

with €2 e LY(R?) N L>®(R?). So the argument given by Brezis and Merle [6] in the proof of Theorem 2 applies
word by word and yields to the estimate:

max uy < C
Bi/4(x)

with a suitable constan® > 0 independent af.
To proceed further, let
2

wa(x) = 5— /(In lx = y| = In(1+ |y[))e2™ dy. (1.24)
T
R2

Hence, by Lemma 1.1, we have

wa(x) <ozIn(|x|+1), VxR (1.25)
and

w2(x) S 0y as|x| - +oo. (1.26)

In|x]|
Define,

m
uo(x) =Y _In|x — zx |2, (1.27)
k=1

and note that

u1 — uo € L, (R?). (1.28)
Decompose:

u1(x) = uo(x) — wa(x) + vi(x) (1.29)
so thatvy(x) satisfies:

m
vi € Lig(R?):  —Avi(x) =4g%€1 ™) = 4g? [ T Ix — zx[* e 2We, (1.30)
k=1
and
+
V1 (x) o0 (12
—=——— ¢ L*(R).
In(|x| + 1) ( )

Therefore, we may use Corollary 1.1 to derive that
—v1(x) < ol(ln(lxl + 1)) +C (1.31)
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for suitableC > 0, and

— —o1, as|x| — +oo. (1.32)

In virtue of (1.25), (1.26) and (1.27), we conclude:
ui(x) > (2N — (al—i-crz)) In|jx| - C, as|x|]— 400
and

u1(x)
In|x|

— 2N — (01 +02) as|x| — +o0.
So, (1.2) and (1.3) are established. Consequently, we must havg that, > 2(N + 1) and

/|n(1+ Iy1)e1) dy < +o0. (1.33)
RZ

Thus, we can use part (iii) of Lemma 1.1 together with Corollary 1.1 to conclude that,
1
v1(x) =o01ln ﬁ +0(1), as|x|— +oo. (1.34)
X

Finally, suppose that (1.6) holds, then we are in position to apply Corollary 1.1 to the fungtion= u2(x) +

colx — xo|2 with f(x) = %eﬂ +2g%e, and conclude that

up(x) +colx —xol> 1 02
- —— | as .
In|x| ~ 2 CrlJrco§9 el = oo

In particular, this implies thai, admits exponential decay at infinity. Thus,. In(1 + lyhe2®) dy < 400, and
taking into account (1.33), we derive:

w2(x) =o2In|x| +0O(), as|x|— +oo, (1.35)
and
() = —colx —x02+ = (o1 4+ —2— ) In x| + O(1)
U2(xX) = —Cco|xX — X —\| O — X
2 0 0 2\t co2o

as|x| — +o0o. Moreover, from (1.29), (1.34) and (1.35) we conclude

m
ur(x) =Y _Injz—z[* — (61 +02)In|x| + O(1) as|x| — oo,
k=1

and Theorem 1.1 is establisheda

Remark 1.1. We point out that, as in Lemma 1.3 of [8], it is possible to sharpen the asymptotic behavior (1.7) and
(1.8) and prove that

duy dul
I 2N— ) A Os
o (01+02) 50
0 1 0
rg(u2+CO|X—XO|2)—> E(Gl—i_cgﬁ)’ ﬁ(u2+colx—xo|2)—>0

uniformly, asr = |x| — 400, with (r, 8) polar coordinates ifR?.
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In the framework of Theorem 1.1, Spruck and Yang in [14] have constructed two families of solutions satisfying
the asymptotic behavior (1.7), (1.8) (witlh = 0) and corresponding values, o> free to vary as follows:

1. for the first family:o1 € (0, 4) ando1 + 02 € (2(N + 2), +00);
2. for the second familyr € (0, 2) and &1 + 02 € (2(N + 1), +00).

In particular, Spruck—Yang'’s construction allows one to obtain a solution paiPfow(th o1 + o2 equals to any
prescribed value in the intervé(N + 1), +00). So, (1.4) is sharp. On the other hand, their construction always
gives,o2 > 2N, while o1 can take values as small as wanted. For instance, according to Spruck—Yang’s result,
it is possible to exhibit a family of solutions foP) such thatoy = o(1), while o> can take any fixed value in
(2(N + 1), +00). Clearly, those solutions deny any sort of “quantization” property to the corresponding flux (0.5).

The aim of this paper is to show that the situation is quite different in case we consider solutighstioaf
admit the asymptotic behavior (1.7), (1.8) with small. We see that in this case may not be free to take any
value in the interva(2(N + 1), +00), as (1.4) would imply. In fact, in case all vortex points coincide, we see that
o1 must remain close to the valué¢M + 1) and no other value is allowed. Thus solution &) (with o2 small
are very interesting, as they seem to restore a sort of “quantization” property for the flux in (0.5). We are going to
construct such class of solutions. To this purpose, we consider the following function spaces introduced by Chae
and Imanuvilov in [7].

For givena > 0, let

Xo= {u e L2 (R?): /(1+ 1 2) u ()| P e < oo},
R2

which defines a Hilbert space equipped with the scalar product

(u,v) =/(1+ %127 uv.
R2
Denote with|| - || x, the corresponding norm aXi, . Also let
_ 2,2(m2). u 2 (2
Ya—{MGVVIOC(R ) AMGXO(, WGL (R )}
It defines a Hilbert space with corresponding natural scalar product and norm:
2

u(x)

2 _ 2
lully, = lAully, + H Tt [x[irer2

LZ(RZ).

We refer to [7] for the relevant properties of those spaces. In particular, from [7] we recall,

Proposition 1.1. (a) Xo < L(R?) continuouslyY, < C2.(R?).
(b) If ¢ € (0, 1) andu € Y, is harmonic, then is constant.
(c) There exists a constany > 0 such that for allx € Y,

lu()| < Callully, (In1x)" +1), vxeRZ
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Notice that assumption (1.6) is motivated by considering solution® dfr{ the space’,, x Y,. In fact, as an
easy consequence of Theorem 1.1, it follows:

Corollary 1.2. Under the assumptions of Theordmi we have
() Ur:=u1—ug€Yy,Up:=us+ colx — )C()|2 €Y, and

¢ eX, foreverya e (0,2(01+4 02— 2(N+1))) (1.36)
(i) $U1+ Uz €Y, ande?2 € X,, Yo > 0.

To complement the situation analyzed by Spruck and Yang in [14], we consider solutiaPswitli oo < 2N.
In this case, the following interesting estimate holds, when all vortex points coincide.

Lemma 1.2. Let (u1, u2) be solutions of P) with z; = zo = --- = z,;, and such that*2 € X, with « > 2 and
o2 < 2N. For anyg € (2, %‘) there exists a constadl, = C(q, co, ) > 0 such that

|01+ 202 — 4(N +1)| < Cop’ ™24 ez |77, (1.37)

Remark 1.2. Clearly, estimate (1.37) bears interesting consequences in€&de, (and hence?) is small, as it
forcesoy to remain close to the valug ¥ + 1). Such a situation can actually occur, as we are going to construct
family of solutions(u1 ., u2¢) for (P) (when all vortex points coincide) such that,eas> 0, ||€'2¢| x, = 0(1), so

P
026 = 5 / g2¢ =0(1), (1.38)
R2
2g2
o1,=— [ €L =4N + 1) +0o(1). (1.39)
4
R2
Proof. Without loss of generality suppose that= - - - = z,, = 0. Thus, by (1.30) we have:
vy € L%)C(RZ), —Avy = 4g2|x|2Nefw2(x)ev1

with wo as defined in (1.24). Sincé%e X,, then we also havg, In(1 + |x])e2®) dx < +oo, and in view of
Lemma 1.2, we derive

wa(x) = o2In(|x| + 1) + O(D).

Consequently, setting (x) = 4g2|x|2Ne %2 we see that

R(x) = O(|x[?N~92), (1.40)
and, by assumption,®2 — o2 > 0. Furthermore,

/ R(x)e"1® dy = 442 / &1 =201 (1.41)

R2 R2

and, from (1.40), we gefRz(l + |x|?N=92)e"1 < 400. Thus, we are in position to apply Theorem 1 (when
2N = 07), or Theorem 2 (whenX > o) of Chen and Li [8], to conclude:
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7TO'1(01 — 4) = /_x . VR(x)evl(x) dx

R2

=4g2(2N/R(x)ev1—/x.sz(x)R(x)evl)

R2 R2

=4n No1 — 2noo01 — 4g2/(x -Vwa(x) — O’z)R(x)evl.
R2
Thatis,

4 2
|01+ 202 — AN + 1) < —o— / |x - Vwa(x) — 02| R(x)€"™) dx. (1.42)
To1
R2

On the other hand, by (1.24) we have:

2 2 14 |y]) 55 @)
q
|x-Vw2(x)—02|gg—/ieuz(y)dygzg_/ A+1yD i
T PR

R2
2 1 d g-1
(oo ([t )’
2 e p—
R2 g2 =yl @+ |y ot
2 -2 q-1
& a 2/q dy dy q
§ZHGMZHL20(R2)H8“2HXD, j-’_ 7%111) ]
{lx—yl<1} lx =yl {(lx—y|>1) @A+yD «

At this point, the desired estimate (1.37) follows, by means of (1.5), and the observation that, by the choice of
q € (2,%%%) we have 1< <2< Zte—4 Thys,

q—1
q-2 2
[ Vwa(x) — 02| < Cug €] 1 e €%, (1.43)

with a suitable constanfy , > 0 independent of e R2. Hence, we can use (1.43) in (1.42), and by (1.41),
obtain (1.37). O

2. Existenceresult
We devote this section to the construction of a four-parameter family of solution®join(case all vortex
points coincide, such that (1.38) and (1.39) hold. Without loss of generality we take all vortex points to coincide

with the origin and obtain,

Theorem 2.1. Letz1 = zp = --- =z, = 0, there existgg > 0 sufficiently small such that proble(®) admits a
five-parameters family of solutioms‘ia, ug,a) with & € (-0, €0), @ € R* and |a| < g satisfying

2g2 P
=0(1) Va=>0, % / dle =4(N +1)+0(1) ase — 0,
b4

R2

. 1, e
O e,
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(i)
1 1)!
U o (x) = —[Z(N +2)+ 8(;_0 <% - 1) + ﬂiaﬂ In|x|+O(1),
)

1 o (x) = —colx|?+ (2(N +1) + B5,) In|x| +Ine + O(1) as|x|— oo,
whereﬂia — 0, /35,« — 0ase — 0, || — 0, andO(1) denotes a quantity bounded uniformly(i o).

In order to obtain Theorem 2.1, we shall establish a more general existence result concerning the problem:
m
—Aui= 4gze“l + gze“2 — 4 ané(z — &z,
k=1

Pg — 8 2 42 21
(Pe) Aur 2c0§9(eu ¢0)+2ge“,

/e“1<oo, /e“2<oo
R2 R2

with z1, ..., z, arbitrarily given points inR? and smalle € R. For this purpose, it is convenient to introduce
complex notation and identify the pair= (x1, x2) € R? with the complex number= x +iy € C. Let

k=1

FO=WHD[]e-e™, and Fe)= [ fi@d (2.1)
0

For anya € C, define,
8l f: ()|

= , 2.2
ne,a(Z) (1+ |FS(Z) + a|2)2 ( )
and consider the radial functign= p(r) so that,
. 8(N + 1)2|z|2N
p(1z]) == ns=0,a=0(z) = (1_,_|Z|—2N+2)2 (2.3)
As well known (e.g., [12])¥e > 0 andVa € C we have
—Aln Ne,a = Ne,a — A anS(z —ezr), In RZ,
k=1 (2.4)
/nw =8x(N +1).
R2
We shall look for solutions of (B with a specific structure. Namely, we set
u1(z) =INne q(2) + e(w1(z) +v1(z)) —2In2g, 2.5)

u2(z) = —colz|? + wa(z) + Ine — 2Ing + v2(2),
wherew; is the radial function given by

wa(r) = In(1+ r2V+2), (2.6)
and so, it satisfies

o
Awor = —,
273
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while wy is the radial solution irY,,, @ € (0, %) of the equation:

Aw + pw + e (14 222 =0 inR?, 2.7)
as constructed in Lemma 2.1 of [7]. Consequently, relative to the unkn@wns), problem(P,) becomes:
(v1twy) _
—Avy = e—00|2\2+w2+v2 + Nea ) — pwi — e—CoIz\2+w2
’ 8 ’

)

&

Avo

~ 2cog6 2’

as it follows by direct computations. Notice that, by continuity problefr) (Ray be considered also at= 0, and

fora =0, (P._,) admits the (trivial) solutiom; = vz = 0. Fore small we aim to construct solutions for;(Rvhich
“bifurcate” from such trivial solution. To this purpose, we start by collecting some useful properties of the function
w1, which will be established in Appendix A.

e—Co\Z|2+w2+v2 + }Us aeﬁ(v1+w1) _p
2 £

Lemma 2.1. Problem(2.7)admits a radial solutionv; such that

0] wi€Y,, Vae <0, %),
(if)

1 N +1)!

wi(r) = 2_60(1— %) Inr+0(1), asr— +oo;
c
0

rdwy 1 ( (N+1)!)
————=), asr— +oo;

dr - 2_C0 c(])v+l
o F2AN+1) e—cor? 2(N+1) 1
(iii) / —2p(r)w1(r) + rdr=—.
(L4 r2IN+D)2 7 1 4 ,2(N+D) 2co
0

From now on, the functiow; in (2.5) is chosen according to Lemma 2.1.
For fixeda > 0 define the operator

P:Yazx(CxR—> Xo[2
by settingP = (P1, P2) with

e (ef(vrtwy) _ 1) 2
P1(v1, v2,a, &) = Avy 4 eI Fwatve oy ——————pu-e colzP4wz

2 1 0
g colzlTrvatwa _ —p  eelvitwy) 2
2co36 2 2

and extended by continuity at= 0. Thus, P (0, 0, 0, 0) = (0, 0), and finding a solution for problert¥,) is now
reduced to finding a smadh > 0 and an implicit function

Po(v1,v2,a,e) = Avp —

&= (Ul,sv U2,€7 aé‘) : (_801 80) - Yaz X (C
satisfyingP (v1,¢, v2.¢, az, &) =0, Ve € (—e&g, o). To this end, let = a1 + ia2 and observe that,

0n¢,a(2) 0Me.q(2)
g,a — —4pg,, e,a — —dpg_, (2.8)
3(11 a=0,e=0 3(12 a=0,e=0
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where, in polar coordinates,

rNtlcog N + 1) rNFLsin(N + 1)6
@4(r,0) = 13,282 ¢-(r,0) = 2N+2
+r 1+r
Therefore, the linearized operatB(fv1 vpt) = (P (v1.v2.0)" P, (v.v2 a)) of P at(0, 0, 0, 0) may be easily computed

as given by,

_ 2
Pl (11 vp.a) (0. 0.0, 0)[Y1, Y2, b] = Ay + pyr1 + € O H 2y, — Apwig by — dpwig_bo,
Py (11.09.0)(0: 0,0, 0)[Yr1, Y2, b] = A2 + 2094 b1 + 2pp-_ba.
SetP/ )(O, 0,0,0) = A, we have:

(v1,v2,a
Proposition 2.1. Leta € (0, 3), then the operatort : ¥2 x C — X2 is onto, and

KerA = Spar{ (9+,0), (¢—,0), (90, 0), (w1, 1)} x {0},
wheregyg is the radial function
1 — 2N+

1320 =Rk

wo(r) =

Proof. In order to prove Proposition 2.1, we recall the following result established in [7] for the operator
L=A+p:Yy— Xq.
Namely, ifa € (0, 3), then
Ker L = Sparig., ¢, o}, (2.9)
(see Lemma 2.4 in [7]) and

|mL={f€XaZ/f§0d:=0} (2.10)
R2

(see Proposition 2.2 in [7]). Now, l€f1, f2) € X2, we seeky1, 2, b) € Y2 x C, b = by + iby such that

Ayt + pir1 + € P02y _ 4pui0. by — dpwig_by = f1, (2.11)
and

AY2+ 2p9+b1+ 2pp-_b2 = fo. (2.12)
We start by considering (2.12). Decompose

V2 =2+ 2d1¢ + 2drp, (2.13)
where the constants, d» will be specified later, ang; € Y,:

/ A¢ops =0. (2.14)

R2

Therefore, recalling thahp+ + pp+ =0, (2.12) holds if and only if
A = 2(d1 — b1) pe+ + 2(d2 — b2) pe— + f2. (2.15)
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In order to meet the orthogonality condition (2.14), necessarily:

f Fags +2(dy — b1) / pp? =0 / Fao + 2(dz - by) / pp? =0,
R2 R2 R2 R2

By elementary calculations, we see that

2 2
pYL = én(N +1).
R2
So (2.16) requires the choise:

3 3
di=by— — >  domby——— .
1= 4;1(N+1)/f“0+ 2=02 4n(N+1)/f2‘p
R2 R2

Hence, inserting (2.17) into (2.15), and letting

3 3
f=f- (m/fzfﬂJr)P(PJr— <m/f2¢)ﬂ¢€xa,
RZ RZ

it suffices to take

1
P2(x) = —— / Infx —y|f(y)dy,
JT
R2
in order to obtain a solution for (2.14)—(2.15)¥q.

Thusy; in (2.13) is determined by (2.17) and (2.18). Now, insert sgiglnto (2.11) to obtain:

2
A1+ py1 = g1 — 2(€7 Y2 — 2pw1) (bag + bop-)
with

) 3
g1=f1— 97C°|Z‘2+w2 [¢2 — m (‘P+ / foo+ + - / f2¢):|»
R2 R2

(2.16)

(2.17)

(2.18)

(2.19)

and¢; given in (2.18). Next, we are going to chodseandb; in order to insure that the right hand side of (2.19)

satisfies to the orthogonality conditions required by (2.10). Namely, we impose:

/g1<ﬂ+ - 2l71/(ef“°|z‘2+w2 —2pw1)p2 =0,

R2 R2
/gl(p7 . ZbZ/(efcolz\Zerz _ prl)(pg —=0.
R2 R2

Recalling (2.6), we can use part (iii) of Lemma 2.1 to obtain:

+00
/(ef""lz‘erw2 — prl)wi dx=m / (efcor2 (1 + rZ(NJrl)) - 2,0(r)w1(r))
R2 0

Consequently, we may choose:

[&0] [&0]

b1=— | g1+, by=— | g10-,

g g
R2 R2

2(N+1)

(2.20)

(2.21)

T
(1+r2(N+1))2rdr = 200"
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and obtain that the right-hand side of (2.19) belongs to the image of the opératoA + p when defined
over Y, (see (2.10)). Thus we derivg; and the desired conclusion follows. Next, to determine Ketake
f1 = f2=0inthe above computations. We find immediately, that b1 = 0, d> = b» = 0, andA¢, = 0. Hence,
by Proposition 1.1(b)> must be a constant. i, = 0, theng; = 0 and we must také € kerL. If ¢o # 0, say
¢2 = 1, thengy = —e~0l*+e2 andy,y must satisfy Ay + pyry + e <0 +92 = 0. Thus, i1 € w1 +kerL and we
conclude that keA = W x {0} with W Y2 given by

W = Spar{kerL x {0}, (w1,1)} (2.22)
as claimed. O
Denote byV, C Y,? the space orthogonal t& defined in (2.22) with respect to the scalar productis.
Hence, we may write:
Yol =V, ®W.
Furthermore, for given > 0 denote by:
Or={(c,a) € R ¢ € (—r,r) anda = (s, @, a1, a2) € R?, || < r}.

By a direct application of the Implicit Function Theorem (see Theorem 2.7.5 in [11]) we may conclude:

Theorem 2.2. Leta € (0, 1/2) there existgg > 0 sufficiently small and continuous functions

a(e,a): Qg — C, v(e, ) = ((va(e, @), va(e, @) 1 Qe = Vi,
all vanishing att = 0 ande = 0, such thate € (—&o, go) problem(P,) admits a four-parameter family of solutions
(uia, u;’“), o = (s, g, o1, a2) € R?, || < 9, which decompose as follows

U3 4 =INNea(e. +&((1+ w1 + aopo + @191 + a2p_ + vi(e, @) — 2In 2,

Up g = —colzl?+ wa(z) +Ine — 2Ing + s + vo(e, ).

At this point, if we takezy =z = --- = z,, = 0, then problem (P) an@;) are one and the same, and in view
of (2.2), (2.4), (2.6), Lemma 2.1(ii), and Proposition 1.1(c), we easily derive Theorem 2.1.

Final remark. It would be interesting to know whether or not a result similar to Theorem 2.1 remains valid even
when the vortex points do not coincide.
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Appendix A

In order to establish Lemma 2.1, let us consider the operator

@ 1d
+-—+p (A1)

Li=—
! dr2 = rdr
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given by the restriction of the operatbr= A + p over the radial functions. Thus, we wish to solve
Liw=f (A.2)

with f(r) = —ecor+w2() — _g—cor?(1 4 20V+D) Chae and Imanuvilov in [7] have obtained an integral
representation for solutions of (A.2) in case

feC*®HNX, and ace (o, %) (A.3)

LemmaA.l (see Lemma 2.1 in [7]AssuméA.3), then(A.2) admits a solutionw € Y,, given by the formula

[6r6)=9rD) | oD
w(r):(po(r){ A=5)? ds + 1_r} (A.4)
0
with
o(l— 2 " 1— 2(N+1)
b7 = (o) 2 r’) f wo1f (O d. 90(r) = Ty
0

where¢ (1) andw(r) are extended by continuity at= 1.

In order to obtain the solutiow; as claimed in Lemma 2.1, we shall use such a representation formula with
£(r) = —e~<0? (1 + r2N+1)) To this purpose, for given € N, let
r
L(r) = /(1 - t2”)te‘”°’2 dr, (A.5)
0
and notice that

¢r(r)=—(¢o(r) "

1— 2
2! rr) INt1(r). (A.6)

Lemma A.2. The following identity holds

1 n! 2 nLp2m=k) gy
L=—|1-2—ew@*(1-S"—— = )| A7
u(r) 2c0[ CS ( kgcj] T (A7)

Proof. We shall proceed by induction. Far=1,

r

I,—1(r) = /(1 — tz)[e—vot2 dr

0
1=r 1 cor?
— —C0r*42 oy
2 /
0

r

21 (1 e‘COr2 + rze‘cor2 — 2/ te‘”o’2 dt>
co

0

_ efcotz

T 2¢0
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1 |:1 e—cor2 + r2e—cor2 + i(e—corz _ 1)j|
200 €0

Lol ew?fp_,2_1
200 co co/]

and (A.7) is established far= 1. Now assume that (A.7) holds fer> 1, and we proceed to prove it far+- 1. To
this end, notice that

.
Liy1(r) = /(1 - tz(’“fl))te‘co’2 dt
0

1

(1 gor? 4 2+ gcor? _ 2(n+1)/t 2 g=cor? dt)
200

1 ‘ ‘ ,
=5 (1 —e o 4 2+ Decor? 4 oy 4 1] () — 200 + 1) / recot? dt)
co

1 , ,
= = |1 e g 20 e oy 1 1y () +
2co | co

e 1)}.

Thus, if we apply the inductive assumption (A.7), substituting above, we find

In+1(l’) =—|1- e*c‘orz + rz(n+l)e*c0r2 + M (1 _ }’l_ri
C0 2C0 c
eo?(1 i F20=k) 4" + 1efcor2 n+1
k=0 C]E) (n—k)! co co
= 1 1_ (n+D! a1 20D i 201—k) (n+D)!
2c0 g™ k=0 CSH (n —k)!
I n+l 9 _
_1 1t D! nr o o—cor? (1— 20+1) Z PAAFD=K gy 1)1 )}
N Tl - =
20 - 8 k=1 o n+1-k)!
1 _1 (n+1)! oo 1 'il PA+DK (1))
= 2C0 CS-’t‘l pord Clé (n + 1 — k)'

and the desired identity is establisheda

An immediate consequence of Lemma 3.2 gives

(N +1)!

1
INy1(r) > o— (1 -~
‘o

) ‘=90 asr— +o0.
2co

Furthermore, for > 2, inserting (A.7) into (A.4), we find

1+ [2(N+l)
wy(r) = _(PO(”) —2(N+D)

) Ina®) dr + O(1)

(A.8)
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1—|—t2(N+1) 0
= —go(r) / < IZ(N+1)> 4 + o)

= —yogoo(r) Inr +O().
Consequently,
wi(r) =y lnr +0(1), asr— +oo. (A.9)
On the other hand, for - +o0,

rdw1

_ - 1
(r) = —rgb)(go(r) " wrr) — (po() Lns1(r) + o(;)
- 4(N + 1r2N+D 1
_(900(”)) l|:IN+l(”) + le(i’) + O<;)i|
So, taking into account (A.9), we immediately conclude that

rdwq

(r)— yo asr — +oo (A.10)
and, part (ii) of Lemma 2.1 follows by (3.9) and (3.10). In order to establish (iii), notice that, by direct computation,
we find

1 L 1 BN+ DFNHZ  p(r)r2VHD
27N @5 20VHD)2 ) T (1 2NAD)E T (14 208D 2]

while, by definition, Lyw1 = —e=*(1 + r2¥+D)_ Therefore, in view of the asymptotic behaviors (A.9) and
(A.10) of wy asr — +o00, we can use integration by parts, to obtain:

+00

F2AN+1)
/P(V)mwl(")rdr
0
+o00
1 1 d
:E L1 7(1+r2(N+1))2 w1(r)rdr
0
1 d/ d 1 17 1
=3 / a(ra(l_i_rz(zvﬂ))z)wl(r)dr+ 2 / p(r)wl(r)(1+r2(N+1))2rdr
0 0
1 s d d 1 1 i 1
=3 / a(rawl(r)> (1+ r2N+D))2 dr+ 3 / p(r)wl(r)(1+r2(N+1))2rdr
0 0
+00 o0
Y 1 . et
=3 J Wy YT T J 15 20+ o
Consequently,
+00 2 +0o0
g cor p2(N+1) 2p(r)w1(r)r2(N+1) 4 — —cor? 4 — 1
/ 14 720D Aqp2nibyz )= e rar=o. o

0
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