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Abstract

This paper is part of a larger program, the investigation of the Chord Problem in three dimensional contact geom
main tool will be pseudoholomorphic strips in the symplectisation of a three dimensional contact manifold with two tota
submanifoldsL0,L1 as boundary conditions. The submanifoldsL0 andL1 do not intersect transversally. The subject of t
paper is to study the asymptotic behavior of such pseudoholomorphic strips.

Résumé

Cet article fait partie d’un programme de travail plus grand : la recherche sur le problème de Chord en géometrie de c
dimension trois. L’outil essentiel sont des bandes pseudo-holomorphes dans la symplectisation d’une variété contact à
trois avec la condition au bord suivante : les deux composantes de la frontière sont contenues dans deux sous-variétés
réellesL0,L1. Les variétésL0 etL1 ont des intersections non-transverses. Le sujet de cet article est l’étude du compo
asymptotique des solutions.

Keywords:Contact geometry; Pseudoholomorphic curves

1. Introduction

This paper is the first part of a larger program, the investigation of the chord problem in three dime
contact geometry [4–6]. Let(M,λ) be a(2n + 1)-dimensional contact manifold, i.e.λ is a 1-form onM such
thatλ ∧ (dλ)n is a volume form onM. The contact structure associated toλ is the 2n-dimensional vector bundl
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ξ = kerλ→M, which is a symplectic vector bundle with symplectic structuredλ|ξ⊕ξ . There is a distinguishe
vector field associated to a contact form, the Reeb vector fieldXλ, which is defined by the equations

iXλdλ≡ 0, iXλλ≡ 1.

We denote byπλ :TM → ξ the projection along the Reeb vector field. The Chord Problem is about the g
dynamics of the Reeb vector field. More precisely, the issue is the existence of so-called ‘characteristic
These are trajectoriesx of the Reeb vector field which hit a given Legendrian submanifoldLn ⊂ (M,λ) at two
different timest = 0, T > 0. We also ask forx(0) 	= x(T ), otherwise the chord would actually be a perio
orbit. Recall that a submanifoldL in a (2n+ 1)-dimensional contact manifold(M,λ) is called Legendrian if it
is everywhere tangent to the hyperplane fieldξ and if it has dimensionn. We are mostly interested in the thre
dimensional situation, the question is then whether a given Legendrian knot has a characteristic chord. Th
problem should be viewed as the relative version of the Weinstein conjecture which deals with the exist
periodic orbits of the Reeb vector field.

Characteristic chords occur naturally in classical mechanics. In this context they are referred to as ‘brake
and were investigated by Seifert in 1948 [20] and others since the 1970’s [7,9,21,22].

In 1986, V.I. Arnold conjectured the existence of characteristic chords on the three sphere for any conta
inducing the standard contact structure and for any Legendrian knot [8]. After a partial result by the author in
conjecture was finally confirmed by K. Mohnke in [17]. It is natural to ask the existence question for charac
chords not only forM = S3, but also for general contact manifolds. A new invariant for Legendrian knots
contact manifolds proposed by Y. Eliashberg, A. Givental and H. Hofer in [11] (‘Relative Contact Homolog
actually based on counting characteristic chords and periodic orbits of the Reeb vector field.

The subject of the paper [6] is an existence result for characteristic chords which goes beyond the specia
of contact three manifolds investigated so far. The purpose of this paper and [4,5] is to establish a filling
by pseudoholomorphic curves where we use a surfaceF ⊂M =M3 with boundary, and where we start fillin
from a tangency at the boundary. Pseudoholomorphic curves are maps from a Riemann surface into a
complex manifoldW satisfying a nonlinear Cauchy Riemann type equation. In our case, the manifoldW is the
symplectisation(R×M,d(etλ)) of the contact manifold(M,λ). We are going to consider a special type of alm
complex structures̃J onR×M. We pick a complex structureJ : ξ→ ξ such thatdλ ◦ (Id× J ) is a bundle metric
on ξ . We then define an almost complex structure onR ×M by demandingJ̃ ≡ J on ξ and sending∂/∂t (the
generator of theR-component) onto the Reeb vector field. ThenJ̃ (p) has to mapXλ(p) onto−∂/∂t .

If S is a Riemann surface with complex structurej then we define a map

ũ= (a,u) :S→R×M
to be a pseudoholomorphic curve if

Dũ(z) ◦ j (z)= J̃ (ũ(z)) ◦Dũ(z) for all z ∈ S.
If (s, t) are conformal coordinates onS then this becomes:

∂sũ+ J̃ (ũ)∂t ũ= 0.

We are interested only in pseudoholomorphic curves which have finite energy in the sense that

E(ũ) := sup
φ∈Σ

∫
S

ũ∗ d(φλ) <+∞,

whereΣ := {φ ∈ C∞(R, [0,1]) | φ′ � 0}. The Riemann surfaceS in this paper is an infinite stripS = R× [0,1],
and we will impose a mixed boundary condition as follows: LetL⊂M be a homologically trivial Legendrian kno
bounding an embedded surfaceD. A point p ∈ D is called singular ifTpD = kerλ(p). If the surface is oriente
(by a volume formσ ) and if j :D ↪→M is the inclusion, then we define a vector fieldZ on D by iZσ = j∗λ.
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This vector field vanishes precisely in the singular points. The flow lines ofZ determine a singular foliation of th
surfaceD which does not depend on the particular choice of the volume form or the contact form. This s
foliation is also called the characteristic foliation ofD (induced by kerλ). Letp ∈D be a singular point and deno
byZ′(p) :TpD→ TpD the linearization of the vector fieldZ in p. Let λ1, λ2 be the eigenvalues ofZ′(p). We say
thatp is non-degenerate if none of the eigenvalues lie on the imaginary axis. A non-degenerate singularp
is called elliptic ifλ1λ2 > 0 and hyperbolic ifλ1λ2 < 0. In the elliptic case the critical pointZ(p)= 0 is either a
source or a sink, and in the hyperbolic case it is a saddle point.

ChoosingD appropriately we may assume that there are only non-degenerate singular points, in particu
are only finitely many. We denote the surface without the singular points byD∗. We consider the boundary valu
problem

ũ= (a,u) :S→R×M,
∂sũ+ J̃ (ũ)∂t ũ= 0,

ũ(s,0)⊂R×L,
ũ(s,1)⊂ {0} ×D∗,
0<E(ũ) <+∞.

(1)

The subject of this paper is to investigate the behavior of solutionsũ for large|s|. The finiteness condition on th
energy actually forces the solutions to converge to pointsp̃± ∈ {0} × L at an exponential rate. We first introdu
suitable coordinates near the Legendrian knot, and we deformD near its boundary, keepingL= ∂D fixed, in order
to achieve a certain normal form forD near its boundary. We then derive exponential decay estimates forũ− p̃±
and all its derivatives in coordinates. In local coordinates nearp̃± the almost complex structurẽJ corresponds to
some real(4× 4)-matrix valued function which we denote byM. The main result of this paper is the followin
asymptotic formula

Theorem 1.1.For sufficiently larges0 and s � s0 we have the following asymptotic formula for nonconst
solutionsv of (1) having finite energy:

v(s, t)= e
∫ s
s0
α(τ) dτ(

e(t)+ r(s, t)), (2)

whereα : [s0,∞)→ R is a smooth function satisfyingα(s)→ λ < 0 ass→∞ with λ being an eigenvalue of th
selfadjoint operator

A∞ :L2([0,1],R4)⊃H 1,2
L

([0,1],R4)→L2([0,1],R4)
γ �→ −M∞γ̇ , M∞ := lim

s→∞M
(
v(s, t)

)
.

Moreover,e(t) is an eigenvector ofA∞ belonging to the eigenvalueλ with e(t) 	= 0 for all t ∈ [0,1], andr is a
smooth function so thatr and all its derivatives converge to zero uniformly int ass→∞.

We will prove more about the decay of|λ− α(s)|, r and their derivatives:

Theorem 1.2.Let r andα(s) be as in Theorem1.1. Then there is a constantδ > 0 such that for each integerl � 0
and each multi-indexβ ∈N2

sup
0�t�1

∣∣Dβr(s, t)∣∣, ∣∣∣∣ dldsl (α(s)− λ)
∣∣∣∣� cβ,l e

−δ|s|

with suitable constantscβ,l > 0.

The subscript ‘L’ in H
1,2
L ([0,1],R4) indicates the boundary condition (see (21) for a precise definition).

formula is an essential ingredient for the rest of the program [4–6].
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The asymptotic behavior of holomorphic strips with mixed boundary conditions similar to ours was inves
in [19], but only for non-degenerate ends. We are dealing with a degenerate situation, i.e. the manifoldsL0=R×L
andL1 = {0} × D do not intersect transversally. The degenerate situation is much more delicate: In th
degenerate case the intersectionL0∩L1 would consist of isolated points. Having shown that a pseudoholomo
strip ũ(s, t) with finite energy approachesL0 ∩ L1 as|s| →∞ one can fairly easily see that oscillations betwe
two points inL0 ∩ L1 would cost too much energy, i.e. it would contradictE(ũ) <∞. In our case we have t
show that the end of the solution cannot move along the 1–dimensional setL0 ∩L1 while |s| grows. Analytically,
degeneracy means that the operatorA∞ above has a nontrivial kernel. The strategy is to derive estimates fo
‘components’ ofũ orthogonal to the kernel ofA∞ (in a suitable sense). We will then show that they decay
enough to force the component along the kernel ofA∞ to zero as well.

Degenerate ends were investigated in the paper [14], but only for pseudoholomorphic cylindersS = R × S1

(periodic boundary condition int). Our problem requires a different approach. The paper [19] contains the
estimate of Theorem 1.2 for the caseβ = 0. Eduardo Mora proved Theorem 1.2 for pseudoholomorphic cylin
independently of the author in his Ph.D. thesis [18]. Because we are choosing specialJ̃ andD near{0}×L solutions
to the boundary value problem (1) can be constructed explicitly near elliptic singular points on the boundaD
(see [5]).

2. Simplifying the spanning surfaceD near the boundary

In this section we will simplify the surfaceD near its boundary to obtain a normal form in coordinates nea
knotL= ∂D. This is useful for the analysis later. In particular, we will be able to produce explicitly a fami
finite energy strips coming out from elliptic singular points on the boundary.

If (M,λ) is a three dimensional contact manifold andL a Legendrian knot inM then, by a well-known theorem
of A. Weinstein (see [23,24,1]), there are open neighborhoodsU ⊂M of the knotL, V ⊂ S1×R2 of S1×{(0,0)}
and a diffeomorphismΨ :U → V , so thatΨ ∗(dy + x dθ) = λ|U , whereθ denotes the coordinate onS1 ≈ R/Z
andx, y are coordinates onR2. We will refer to this result as the ‘Legendrian neighborhood theorem’. If we
working near the knotL we may assume that our contact manifold is(S1 × R2, λ = dy + x dθ) and the knot is
given byS1×{(0,0)}. We will denote the piece of the spanning surfaceD∩U again byD. ChoosingU sufficiently
small we may assume that all the singular points on the pieceD ∩U lie on the boundary, i.e.{

p ∈D ∩U | TpD= kerλ(p)
}= {(θk,0,0) ∈ S1×R2}

1�k�N, N ∈N.

We parameterizeD as follows:

D= {(θ, x(θ, r), y(θ, r))∈ S1×R2 | r, θ ∈ [0,1]},
wherex, y are suitable smooth functions which are 1-periodic inθ and satisfy

x(θ,0)≡ y(θ,0)≡ 0.

Moreover we orientD in such a way that the above parameterization([0,1] × [0,1], dθ ∧ dr)→D is orientation
preserving. We orientL by v = d/dθ , so that(v, ν) is positively oriented, whereν denotes the inward norma
vector. A point(θ0,0,0) is a singular point if and only if∂ry(θ0,0) = 0. Since also∂θy(θ0,0)= ∂θx(θ0,0) = 0
and D is embedded, we conclude that∂rx(θ0,0) 	= 0. The tangent spaceT(θ0,0,0)D is oriented by the basi
(∂/∂θ, ∂rx(θ0,0)∂/∂x). On the other hand, the contact structure kerλ(θ0,0,0) is oriented by(∂/∂θ,−∂/∂x). The
singular point(θ0,0,0) is called positive if these two orientations coincide, which is the case for∂rx(θ0,0) < 0,
otherwise(θ0,0,0) is called negative. Hence in the case of a positive (negative) singularity, the surfaceD lies on
the side of the negative (positive)x-axis. We would like to perturbD near its boundary, leaving the boundary fixe
so that the number and type of the singularities does not change and the new surface has some kind of no
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and 2.3 below.

Proposition 2.1.Let (M,λ) be a three-dimensional contact manifold. Further, letL be a Legendrian knot andD
an embedded surface with∂D= L so that all the singular points are non-degenerate. We denote the finitely
singular points on the boundary byek, 1� k �N (ordered by moving in the direction of the orientation ofL).

Then there is an embedded surfaceD′ having the same boundary asD which differs fromD only by aC0-small
perturbation supported nearL having the same singular points asD so that the following holds:

There is a neighborhoodU of L and a diffeomorphismΦ :U→ S1×R2 so that

• Φ∗(dy + x dθ)= λ|U , (θ, x, y) ∈ S1×R2,

• Φ(L)= S1× {(0,0)},
• Φ(ek)= (θk,0,0), 0 � θ1< · · ·< θN < 1,
• Φ(U ∩D′)= {(θ, a(θ)r, b(θ)r)∈ S1×R2 | θ, r ∈ [0,1]},

wherea, b are smooth1-periodic functions with:

• b(θk)= 0 andb(θ) is nonzero ifθ 	= θk,
• a(θk) < 0 if ek is a positive singular point,a(θk) > 0 if ek is a negative singular point,
• if ek is elliptic then−1< b′(θk)/a(θk) < 0,
• if ek is hyperbolic then the quotientb

′(θk)
a(θk)

is either strictly smaller than−1 or positive,
• a has exactly one zero in each of the intervals[θk, θk+1], k = 1, . . . ,N − 1 and[θN,1] ∪ [0, θ1],
• If ek is an elliptic singular point and if|θ − θk| is sufficiently small then we haveb(θ)=−1

2a(θ)(θ − θk).

We consider first the situation near boundary singular points.

2.1. A normal form for the spanning surface near boundary singularities

We first simplify the surfaceD near singular points on the boundary:

Proposition 2.2.Let L be a Legendrian knot in a three dimensional contact manifold(M,λ) and letD ⊂M
be an embedded surface with∂D = L. Assume that the singular points of the characteristic foliation onD are
nondegenerate. Denote by(θ, x, y) ∈ S1 × R the coordinates nearL provided by the Legendrian neighborho
theorem. IfD is parameterized by{(

θ, x(θ, r), y(θ, r)
)∈ S1×R | r ∈ [0,1]}

nearL then there is an embedded surfaceD′ with the following properties:

• D′ is obtained fromD by aC0-small perturbation supported near the boundary singular points leaving
boundary fixed, i.e.∂D′ = ∂D= L.

• D′ has the same singular points asD.
• If (θ0,0,0) is a boundary singularity and

D′ = {(θ, x ′(θ, r), y ′(θ, r)) ∈ S1×R | r ∈ [0,1]}
then

y ′(θ, r)= cx ′(θ, r)(θ − θ0)+ bx ′(θ, r)2,

2
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where
1. c=−1

2 andb= 0 if (θ0,0,0) is elliptic,
2. c ∈ (−∞,−1)∪ (0,+∞) if (θ0,0,0) is hyperbolic.

Proof. Let us first point out how to recognize the type of the singularity(θ0,0,0) in the above parameterizatio
Since the Jacobian of the mapΨ (θ, r)= (θ, x(θ, r)) at the point(θ0,0) has rank 2, there is a local inverse and
parameterizeD by

D= {(θ, x, (y ◦Ψ−1)(θ, r))},
where(θ, x) is sufficiently near to(θ0,0). Note that in the case of a positive (negative) singular point(θ0,0,0) the
mapΨ−1 is only defined for non-positive (non-negative)x. We write

f (θ, x) := (y ◦Ψ−1)(θ, x)
and note that

• f (θ,0)≡ 0,
• ∂xf (θ0,0)= 0 since(θ0,0,0) is a singular point.

We may extendf smoothly so that it is defined for small|x| regardless of the sign ofx. Write

f (θ, x)= a
2
(θ − θ0)

2+ b
2
x2+ c(θ − θ0)x + h(θ, x)

with a = ∂θθf (θ0,0), b = ∂xxf (θ0,0), c = ∂xθf (θ0,0), andh of order at least 3 in(θ − θ0, x). Note thata = 0
and alsoh(θ,0)= 0, hence

f (θ, x)= b
2
x2+ c(θ − θ0)x + h(θ, x).

Investigate now the admissible values for the constantsb andc. The surfaceD is given byH−1(0), where

H(θ, x, y) := y − f (θ, x).
Then the vector field̂VH , which is defined byiV̂H dλ= (iXλdH)dλ− dH andiV̂H λ= 0, is given by

V̂H (θ, x, y)=−∂xf (θ, x) ∂
∂θ
+ (x + ∂θf (θ, x)) ∂

∂x
+ x∂xf (θ, x) ∂

∂y
,

and it induces the characteristic foliation onD. Its linearization̂V ′H(θ, x, y) is given by−∂xθf (θ, x) −∂xxf (θ, x) 0

∂θθf (θ, x) 1+ ∂xθf (θ, x) 0

x∂xθf (θ, x) ∂xf (θ, x)+ x∂xxf (θ, x) 0

 .
The contact structure kerλ(θ0,0,0) is generated by the vectors(1,0,0) and(0,1,0). We represent̂V ′H(θ0,0,0) by
the matrix(−∂xθf (θ0,0) −∂xxf (θ0,0)

0 1+ ∂xθf (θ0,0)

)
=
(−c −b

0 1+ c
)
.

The singular point(θ0,0,0) is then hyperbolic ifc(c+ 1) > 0 and elliptic ifc(c+ 1) < 0. Let us translate this int
our original parameterization(θ, x(θ, r), y(θ, r)) of D. Usingf ◦Ψ = y, we compute

∂θry(θ0,0)= c ∂rx(θ0,0),
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so that we are in the following situation: A singular point(θ0,0,0) is

1. positive if∂rx(θ0,0) < 0,
2. negative if∂rx(θ0,0) > 0,
3. elliptic if (∂θry/∂rx)(θ0,0) ∈ (−1,0), and
4. hyperbolic if(∂θry/∂rx)(θ0,0) ∈ (−∞,−1)∪ (0,+∞).

We will remove now the higher order termh by a perturbation. Take a smooth functionβ : [0,∞)→ [0,1] with
β ≡ 0 on [0,1], β ≡ 1 on[2,∞) andβ ′ � 0. For smallδ > 0 we defineβδ := β((θ2+ x2)/δ2) and

fδ(θ, x) := b
2
x2+ cx(θ − θ0)+ βδ(θ − θ0, x)h(θ, x).

This perturbation takes place in a small neighborhood of the singular point(θ0,0,0). We have to show that th
new surface given by the graph offδ has the same singularities asD providedδ > 0 was chosen sufficiently sma
We proceed indirectly. Assume that for any sequenceδn↘ 0 there is a singular point(θn, xn, fδn(θn, xn)) on the
surfaceDδn given by the graph offδn which satisfies(θn − θ0)

2 + x2
n � 2δ2

n and is different from(θ0,0,0). If
(θn, xn, fδn(θn, xn)) is singular then

0= ∂θfδn(θn, xn)+ xn
= (c+ 1)xn + βδn(θn − θ0, xn)∂θh(θn, xn)+ 2(θn − θ0)

δ2
n

β ′
(
(θn − θ0)

2+ x2
n

δ2
n

)
h(θn, xn)

and

0= ∂xfδn(θn, xn)
= bxn+ c(θn− θ0)+ βδn(θn − θ0, xn)∂xh(θn, xn)+ 2xn

δ2
n

β ′
(
(θn − θ0)

2+ x2
n

δ2
n

)
h(θn, xn).

We write shortly

0= (c+ 1)xn + βδn∂θh+
2(θn− θ0)

δ2
n

β ′δnh, 0= bxn+ c(θn − θ0)+ βδn∂xh+
2xn
δ2
n

β ′δnh. (3)

Remark. The reader should be aware thatβ ′δn is not the derivative ofβδn , but the rescaled derivative ofβ

β ′δn := β ′
(
(θn − θ0)

2+ x2
n

δ2
n

)
.

Eq. (3) is the same as(
xn

θn − θ0

)
= 1

c(c+ 1)

(
c 0
−b c+ 1

)
H(θn, xn) (4)

with

H(θn, xn)=−
(
βδn∂θh+ 2(θn−θ0)

δ2
n

β ′δnh

βδn∂xh+ 2xn
δ2
n
β ′δnh

)
,

which satisfies
H(θn, xn)√

(θn − θ0)2+ x2
n

→ 0

asn→∞ sinceH is of order at least 2 in(θn − θ0, xn). Dividing Eq. (4) by
√
(θn − θ0)2+ x2

n and passing to th
limit n→∞ we obtain a contradiction.
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Hence we may assume thatD is given by the graph of

f (θ, x)= b
2
x2+ cx(θ − θ0)

for x2+ (θ − θ0)
2 sufficiently small. Consider now the case where(θ0,0,0) is an elliptic singularity. Take the sam

smooth functionβ as before and define forδ > 0

fδ(θ, x) := β
(
(θ − θ0)

2+ x2

δ2

)
b

2
x2+ cx(θ − θ0),

so thatfδ ≡ f if (θ − θ0)
2 + x2 � 2δ2 and fδ(θ, x) = cx(θ − θ0) if (θ − θ0)

2 + x2 � δ2. Writing βδ :=
β(((θ − θ0)

2+ x2)/δ2), β ′δ := β ′(((θ − θ0)
2+ x2)/δ2) as before, the condition of(θ, x, fδ(θ, x)) being a singular

point is

0=
(

c bβδ + bx2

δ2 β
′
δ

bx2

δ2 β
′
δ c+ 1

)(
θ − θ0
x

)
which implies

0= c(c+ 1)− b2
(
x2

δ2
βδβ

′
δ +

x4

δ4
(β ′δ)2

)
� c(c+ 1)

in contradiction to the fact that(θ0,0,0) is an elliptic singularity. Hence we may assume that

f (θ, x)= cx(θ − θ0)

near an elliptic singularity(θ0,0,0), wherec ∈ (−1,0). Now we will carry out a last modification to achiev
c=−1

2. We take a smooth function

β : R→ [
min{c,−1/2},max{c,−1/2}]⊂ (−1,0)

with β(s)=−1
2 for |s|� 1 and β(s)= c for |s|� 2. Define for smallδ > 0

fδ(θ, x) := β
(
(θ − θ0)

2+ x2

δ2

)
x(θ − θ0).

Again, we did not create any new singular points. This completes the proof of Proposition 2.2.✷
2.2. Perturbing the spanning surface near the Legendrian knot

We will now show the following:

Proposition 2.3.Let L be a Legendrian knot in a three dimensional contact manifold(M,λ) and letD be an
embedded surface with∂D= L. Assume that the singular points onD are non-degenerate.

Then there is an embedded surfaceD′ with ∂D′ = L which differs fromD by aC0-small perturbation supporte
nearL and leavingL fixed so thatD andD′ have the same singular points and the following holds:

There is a neighborhoodU of L and a diffeomorphismΦ :U→ S1×R2 so that

1. Φ∗(dy + x dθ)= λ|U , (θ, x, y) ∈ S1×R,
2. Φ(L)= S1× {(0,0)},
3. Φ(U ∩D′)= {(θ, a(θ)r, b(θ)r)∈ S1×R | θ ∈ S1≈R/Z, r ∈ [0,1]}, where

θ �→
(
a(θ)

)

b(θ)
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is a smooth closed curve inR2\{0} with the following properties:

(a) tb(L)= deg

[
θ �→

(
a(θ)

b(θ)

)]
,

wheretb denotes denotes the Thurston–Bennequin invariant of the Legendrian knot(see[10]).
(b) b(θ0)= 0 if and only ifΦ−1(θ0,0,0) is a singular point onL,
(c) a singular pointΦ−1(θ0,0,0) is

(i) positive(negative) if a(θ0) < 0 (a(θ0) > 0),
(ii) elliptic if c= b′(θ0)/a(θ0) ∈ (−1,0),
(iii) hyperbolic ifc= b′(θ0)/a(θ0) ∈ (−∞,−1)∪ (0,+∞),

(d) for θ nearθ0, whereΦ−1(θ0,0,0) is a singular point, we haveb(θ)= c(θ − θ0)a(θ),
(e) if Φ−1(θ0,0,0) andΦ−1(θ1,0,0) are singular points of opposite sign withθ0< θ1, so that all the points

(θ,0,0) are non-singular forθ ∈ (θ0, θ1), thena has exactly one zero in the interval(θ0, θ1).

Proof. We parameterizeD again by

D= {(θ, x(θ, r), y(θ, r))∈ S1×R2 | θ ∈ S1, r ∈ [0,1]}
and we expandx, y as follows:

x(θ, r)= ∂rx(θ,0)r + h(θ, r),
y(θ, r)= ∂ry(θ,0)r + k(θ, r),

whereh, k are of order at least 2 inr and 1-periodic inθ . For smallr and|θ − θ0|, where(θ0,0,0) is a boundary
singular point, we have

y(θ, r)= cx(θ, r)(θ − θ0)+ b
2
x2(θ, r) (5)

by Proposition 2.2. In the case of an elliptic singularity we may assume thatc = −1
2 and b = 0. We want to

perturbD near its boundary leaving∂D fixed, so that the higher order termsh and k disappear. We will only
indicate the necessary steps and leave the details to the reader. The verification that no new singula
created is completely straight forward using the normal form (5) near the singular points. Pick a smooth f
β : [0,∞)→[0,1] with β ≡ 0 on [0,1], β ≡ 1 on [2,∞) and 0� β ′(s)� 2 for all s � 0. We define

xδ(θ, r) := ∂rx(θ,0)r + β
(
r

δ

)
h(θ, r),

yδ(θ, r) := ∂ry(θ,0)r + β
(
r

δ

)
k(θ, r)

and

Dδ =
{(
θ, xδ(θ, r), yδ(θ, r)

) ∈ S1×R2 | θ ∈ S1 , r ∈ [0,1]}.
For r � 2δ the perturbed surfaceDδ coincides withD and we have∂Dδ = ∂D = L. The surfaceDδ has the same
singularities on the boundary asD and thatDδ has no singularities in the range 0< r < 2δ providedδ > 0 was
chosen sufficiently small. It remains to verify that the surfaceDδ is embedded for sufficiently smallδ. If it were
not then we could find sequencesδk↘ 0, 0� rk, r

′
k � 2δk andθk such that(

∂rxδk (θk, rk), ∂ryδk (θk, rk)
)= (0,0)

for all k (surface not immersed) or
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ary
xδk (θk, rk)= xδk (θk, r ′k),
yδk (θk, rk)= yδk (θk, r ′k)

for all k (surface has self-intersections). Both assertions contradict the fact that(∂rx(θ,0), ∂ry(θ,0)) 	= (0,0) for
all θ , and can therefore not occur.

Hence we may assume that nearL we have

D= {(θ, a(θ)r, b(θ)r)∈ S1×R2 | r ∈ [0,1]},
where the map

θ �→
(
a(θ)

b(θ)

)
is a closed curve inR2\{0}. A point (θ0,0,0) is a singular point if and only ifb(θ0)= 0 and it is

1. positive ifa(θ0) < 0,
2. negative ifa(θ0) > 0,
3. elliptic if b′(θ0)/a(θ0) ∈ (−1,0) and
4. hyperbolic ifb′(θ0)/a(θ0) ∈ (−∞,−1)∪ (0,+∞).

If r andθ−θ0 are sufficiently small, where(θ0,0,0) is a singular point, then we compute with the normal form (

b(θ)= ∂ry(θ,0)= c∂rx(θ,0)(θ − θ0)= ca(θ)(θ − θ0), (6)

so if we use the parameters(θ, ρ = a(θ)r) instead of(θ, r) thenD is given by

D= {(θ, ρ, cρ(θ − θ0))
}

near(θ0,0,0).

Hence the modification that we carried out onD in this section did not affect the normal form near bound
singularities that we have constructed in the previous section.

In this picture it is easy to understand the Thurston–Bennequin invariant of the knotL. Let us shiftL along the
Reeb vector field to get a knot

L′ := {(θ,0, δ) ∈ S1×R2 | θ ∈ [0,1]}
with some small constantδ. ThenL′ andD intersect if and only if

a(θ)= 0 and r = δ

b(θ)
.

The conditiona(θ)= 0 means that the Reeb vector fieldXλ is tangent toD at the point(θ,0, δ). Without affecting
the value of the intersection number int(L′,D) we may perturb the loop(a(θ), b(θ)) slightly so thata′(θ) 	= 0
whenevera(θ)= 0. Then we compute withλ= dy + x dθ and

S := {θ ∈ [0,1] | a(θ)= 0 and signb(θ)= signδ
} :

tb(L)=
∑
θ∈S

sign

(λ∧ dλ)(θ,0,δ)
 1

a′(θ)δ/b(θ)
b′(θ)δ/b(θ)

 ,( 0
0
b(θ)

)
,

(1
0
0

)
=
∑
θ∈S

sign
[−δa′(θ)]

= deg

[
θ �→

(
a(θ)

)]
. (7)
b(θ)
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Assume now that(θ0,0,0) and (θ1,0,0) are singularities of opposite sign withθ0 < θ1, so that all the points
(θ,0,0) with θ ∈ (θ0, θ1) are not singular. Let us assume that(θ0,0,0) is the negative singularity. Then

• b(θ0)= b(θ1)= 0 andb is nonzero on(θ, θ1).
• a(θ0) > 0, a(θ1) < 0.

We would like to perturbD nearL, leaving the boundary fixed, so thata has only one zero in the interval(θ0, θ1).
Let δ > 0 and pick a smooth functionβ so thatβ ≡ 0 on [0, δ] andβ ≡ 1 on[2δ,∞). Let â be a 1-periodic function
which coincides witha except on some interval[θ0+ ε, θ1− ε], and which has exactly one zero betweenθ0 and
θ1. We define

ã(θ, r) := (1− β(r))â(θ)+ β(r)a(θ)
and denote the new surface by

Dδ :=
{
(θ, ã(θ, r)r, b(θ)r)

}
,

which has the same number and type of singularities asD because we did not change the functionb and
becauseã coincides witha near θ0 and θ1. Moreover,Dδ is embedded since it is immersed and the m
(θ, r) �→ (θ, ã(θ, r), b(θ)) is also injective. This completes the proof of Proposition 2.3.✷
Remark. The negative singularities correspond to the points where the curveθ

γ�−→ a(θ)+ ib(θ) ∈C\{0} hits the
positive real axis. Similarly, positive singularities corresponds to the intersection ofγ with the negative real axis.

2.3. The non-Lagrangian part of the boundary condition

The submanifoldR × L is a Lagrangian submanifold of the symplectisation(R ×M,d(etλ)). However, the
submanifold{0}×D is only totally real with respect to anỹJ away from the singular points. These two submanif
serve as boundary conditions for our boundary value problem, and we have to find a way to deal with{0} ×D in
order to derive apriori estimates. The problem is the following: The fibers of the vector bundlesT (R× L) and
J̃ T (R × L) are orthogonal with respect to thẽJ -invariant metricg = d(etλ) ◦ (J̃ × Id) while T ({0} × D) and
J̃ T ({0} ×D) are only transverse, but not orthogonal. On the other hand, we will need this orthogonality to
asymptotic decay estimates later (without it certain operators would fail to be self-adjoint). The way ou
following: Instead of using the metricg above, we use a different one where we have orthogonality. We wi
able to control this metric if we do estimates later on. There is a 2-formω near the intersection set{0}×L of R×L
and{0} ×D which is nondegenerate away from the singular points so that both submanifolds become Lag
with respect toω, andω is compatible with the almost complex structureJ̃ . In general, we cannot expectω to be
closed, unless we weaken our requirements and replace compatibility by tameness (i.e.ω(v, J̃ v) > 0 for all v 	= 0).
It will turn out that we need the compatibility condition, but we do not needω to be closed. We construct suc
a 2-form explicitly in local coordinates. We will confine ourselves to a special almost complex structureJ̃ near
{0} ×L which will also be used in the subsequent papers [4–6].

From now on we pick an almost complex structureJ̃ on R×M, where the correspondingJ : ξ → ξ has the
following form in local coordinatesnear{0} ×L:

J (θ, x, y) · (1,0,−x) := (0,−1,0), J (θ, x, y) · (0,1,0) := (1,0,−x). (8)

Lemma 2.4. If Uk ⊂ M are disjoint open neighborhoods of the singular pointsek , k = 1, . . . ,N , on the
boundaryL = ∂D then there exist an open neighborhoodV ⊂M of L and a nondegenerate2-form ω defined
onW = R× (V \ ∪k Uk)⊂ R×M, so thatω|T ({0}×D) ≡ 0, ω|T (R×L) ≡ 0 and the formω is compatible withJ̃ ,
i.e.ω ◦ (Id× J̃ ) is a Riemannian metric.
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Proof. Use the coordinates(θ, x, y) ∈ R3 nearL which we derived in Section 2, where the contact form eq
dy + x dθ and{0} ×D is represented by{(

0, θ, a(θ)r, b(θ)r
)∈ {0} ×R3 | r, θ ∈ [0,1]}.

Denoting the standard Euclidean product onR4 by 〈· , ·〉, we have to find a function with values in the set
skew-symmetric 4× 4-matricesΩ(τ, θ, x, y) such that

1. 〈· ,ΩJ̃ .〉 is a metric,
2. 〈v,Ωw〉|(τ,θ,0,0) = 0 for all v,w ∈ T(τ,θ,0,0)(R×L),
3. 〈v,Ωw〉|(0,θ,q(θ)y,y)= 0 for all v,w ∈ T(0,θ,q(θ)y,y)({0} ×D), whereq(θ) := a(θ)/b(θ).

The matrix ofJ̃ is given by

J̃ (τ, θ, x, y)=


0 −x 0 −1
0 0 1 0
0 −1 0 0
1 0 −x 0

 .
We writeΩ = (ωkl)1�k,l�4 with ωkl =−ωlk . If we choose

ω(τ, θ, x, y)=−xC dτ ∧ dθ − q(θ)dτ ∧ dx +C dτ ∧ dy − dθ ∧ dx + q(θ) dθ ∧ dy
andω= 〈· ,Ω.〉, where

C >max
{
0,supq2(θ)

}
,

then the matrixΩJ̃ is positive definite ifx, y are sufficiently small. ✷

3. Asymptotic behavior at infinity

Assume we have a solution of:
ũ= (a,u) :S→R×M,
∂sũ+ J̃ (ũ)∂t ũ= 0,

ũ(s,0)⊂R×L,
ũ(s,1)⊂ {0} ×D∗∗,
E(ũ) <+∞,

(9)

whereS :=R×[0,1] andD∗∗ is the spanning surfaceD without some open neighborhoodU of the set of singula
pointsΓ . We will show that the condition of finite energy forces the solution to converge to points on the kL
for |s| →∞, more precisely

ũ(s, t)→ p̃± ∈ {0} ×L

as s→±∞ uniformly in t . We will also show that this convergence is of exponential nature. This fact w
crucial for the nonlinear Fredholm theory in [4].
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3.1. The solutions approach the Legendrian asymptotically

As a first step, we will show that the ends of a finite energy stripũ have to approach the knot{0} ×L⊂R×M
asymptotically. This actually works under the weaker assumptionũ(s,1) ∈ {0}×D. The main result of this sectio
is Proposition 3.4 below.

Lemma 3.1.Assumẽu :S→R×M satisfies Eq.(9) above. If in addition∫
S

u∗ dλ= 0

thenũ must be constant.

Proof. The mapũ= (a,u) satisfies the following system of equations:

πλ∂su+ J (u)πλ∂tu= 0,

∂sa − λ(u)∂tu= 0,

∂ta + λ(u)∂su= 0.

Since∫
S

u∗ dλ=
∫
S

dλ(πλ∂su,πλ∂tu) ds ∧ dt

= 1

2

∫
S

[|πλ∂su|2J + |πλ∂tu|2J ]ds ∧ dt
= 0,

where| · |2J = dλ(· , J.), we conclude thatπλ∂su= πλ∂tu≡ 0 and therefore

%a ds ∧ dt =−d(da ◦ i)= u∗ dλ= 0,

hencea :S→R is harmonic and satisfiesa(s,1)≡ 0. Because ofu(s,0) ∈ L we also have

∂ta(s,0)=−λ
(
u(s,0)

)
∂su(s,0)≡ 0.

Define nowf :S→R by

f (s, t) :=
t∫

0

∂sa(s, τ ) dτ

so that∂tf = ∂sa and

∂sf (s, t)=−
t∫

0

∂tta(s, τ ) dτ =−∂ta(s, t)+ ∂t a(s,0)=−∂t a(s, t).

ThenΦ := a + if :S→C is holomorphic and satisfies

Φ(s,0) ∈R, Φ(s,1) ∈ iR.
Case1. |∇Φ| is bounded.We define

Φ̂ : Ŝ :=R× [−1,+1]→C
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by

Φ̂(s, t) :=
{
Φ(s, t) if t � 0,

Φ(s,−t) if t < 0.

Note thatΦ̂ is holomorphic. Let

b̂ := ∂s(ReΦ̂ ) : Ŝ→R.

Thenb̂ is harmonic,C := sup̂S |b̂|<+∞ by assumption and̂b(s,±1)≡ 0. Defining

ĉ(s, t) :=
t∫

0

∂sb̂(s, τ ) dτ −
s∫

0

∂t b̂(σ,0) dσ,

we compute∂t ĉ = ∂s b̂ and∂s ĉ = −∂t b̂, henceδ := b̂ + iĉ : Ŝ→ C is holomorphic with bounded real part. Th
functiong := eδ is also holomorphic and satisfies

|g|� eC,
∣∣g(s,±1)

∣∣= 1.

Let ε > 0 and define a holomorphic function on̂S by

hε(z) := 1

1− iε(z+ i) .
We compute withz= s + it∣∣hε(z)∣∣2= 1

(1+ ε(1+ t))2+ ε2s2
� 1.

For s 	= 0 we have|hε(z)|2 � 1/(ε2s2), hence the holomorphic functionghε satisfies∣∣g(z)hε(z)∣∣� 1

wheneverz ∈ ∂Ω , where

Ω := [−ε−1eC, ε−1eC
]× [−1,+1].

Using the maximum principle, we conclude that|ghε|� 1 on all ofΩ , but outsideΩ we also have∣∣g(z)hε(z)∣∣� eC

ε|s| � 1.

Keepingz ∈ Ŝ fixed and passing to the limitε↘ 0 we conclude that|g(z)| = eb̂(z) � 1, hencêb(z)� 0. Repeating
the same argument with−δ instead ofδ, we also obtain−b̂(z) � 0, hence∂s(ReΦ̂ ) = b̂(z) ≡ 0. We know now
that ReΦ̂ is harmonic, does not depend ons and satisfies RêΦ(s,±1)≡ 0. This implies that RêΦ is identically
zero and therefore alsoa ≡ 0. In view of

∂su= πλ∂su+
(
λ(u)∂su

)
Xλ(u)

and

∂tu= πλ∂tu+
(
λ(u)∂tu

)
Xλ(u)

we conclude thatu must be constant.
Case2. |∇Φ| is unbounded.Pick sequencesz′k ∈ S, ε′k↘ 0 so that

ε′k
∣∣∇Φ(z′k)∣∣→+∞.

By a lemma of Hofer (see [15], Chapter 6.4, Lemma 5 and [1]) we find sequenceszk = sk + itk ∈ S, εk↘ 0 so that

• εkRk := εk|∇Φ(zk)| →+∞,
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• |zk − z′k|� ε′k ,• |∇Φ(z)|� 2Rk whenever|z− zk|� εk.

We may assume without loss of generality thattk→ t0 ∈ [0,1]. We consider the following cases after choosin
suitable subsequence:

1. −tkRk→−∞,
(a) Rk(1− tk)→ l ∈ [0,+∞),
(b) Rk(1− tk)→+∞,

2. −tkRk→−l ∈ (−∞,0], thenRk(1− tk)→+∞.

Let us begin with the case 1(b). We define

Ωk :=R× [−tkRk,Rk(1− tk)]
and the holomorphic mapsΦk :Ωk→C by

Φk(z) :=Φ
(
zk + zR−1

k

)−Φ(zk)
so that∣∣∇Φk(0)∣∣= 1, Φk(0)= 0

and ∣∣∇Φk(z)∣∣� 2

if z ∈BεkRk (0)∩Ωk. Using the Cauchy integral formula for higher derivatives we find for each compact subK
of C a numberk0 so thatK ⊂ BεkRk (0)∩Ωk for all k � k0 and all the mapsΦk are bounded inC∞(K) uniformly
in k � k0. By the Ascoli–Arzela theorem, some subsequence of(Φk) converges inC∞loc to an entire holomorphi
functionΨ satisfying∣∣∇Ψ (z)∣∣� 2,

∣∣∇Ψ (0)∣∣= 1 and Ψ (0)= 0.

By Liouville’s theoremΨ must be an affine function. Letφ ∈Σ and defineφk ∈Σ by

φk(s) := φ
(
s −ReΦ(zk)

)
and

τφ(s, t) := φ′(s) ds ∧ dt.
We estimate usingu∗dλ= 0:∫

Ωk

Φ∗k τφ =
∫
S

Φ∗τφk =
∫
S

φ′k(a)Φ∗(ds ∧ dt)

=
∫
S

φ′k(a) da ∧ u∗λ=
∫
S

ũ∗d(φkλ)�E(ũ).

For every compactK ⊂C we have∫
Φ∗k τφ

k→∞−→
∫
Ψ ∗τφ.
K K
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It follows for non constantφ ∈Σ :

+∞=
∫
C

φ′(s) ds ∧ dt =
∫
C

τφ =
∫
C

Ψ ∗τφ �E(ũ).

This contradiction toE(ũ) <+∞ shows that case 1(b). cannot occur. We will proceed similarly with the rema
cases 1(a). and 2. Let us continue with case 2. We define

Ωk :=R× [0,Rk]
and forz= s + it ∈Ωk, zk = sk + itk

Φk(z) :=Φ
(
sk + zR−1

k

)−Φk(sk),
so that∣∣∇Φk(iRktk)∣∣= 1, Φk(0)= 0

and ∣∣∇Φk(z)∣∣� 2

wheneverz ∈ BεkRk (iRktk) ∩Ωk. Reasoning as before we obtainC∞loc-convergence of some subsequence of(Φk)

to a holomorphic mapΨ :H+ →C, whereH+ denotes the upper half plane inC. Since we haveΦk(R)⊂ R for
all k, we also obtain

Ψ (∂H+)⊂R.

Moreover|∇ψ(z)| � 2, Ψ (0) = 0 andΨ is not constant. Using the Schwarz reflection principle we can ex
Ψ to an entire holomorphic function with bounded derivative, so thatΨ must be an affine function by Liouville’
theorem. In view ofΨ (0)= 0 and the real boundary values we have actuallyΨ (z)= αz with some nonzero rea
numberα. We compute as before with nonconstantφ ∈Σ :∫

Ωk

Φ∗k τφ =
∫
S

Φ∗τφk �E(ũ),

whereφk(s) := φ(s −ReΦ(sk)), which implies∫
H+

Ψ ∗τφ �E(ũ) <+∞.

But on the other hand∫
H+

Ψ ∗τφ = |α|
∫
H+

φ′(s) ds ∧ dt =+∞,

so that case 2. is impossible. We are left with case 1a. We defineΩk :=R× [0,Rk] and forz ∈Ωk
Φk(z) :=Φ

(
sk + i −R−1

k z
)−Φ(sk + i).

We have∣∣∇Φk(iRk(1− tk))∣∣= 1, Φk(0)= 0

and ∣∣∇Φk(z)∣∣� 2
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wheneverz ∈ BεkRk (iRk(1− tk))∩Ωk. Moreover

Φk(R)⊂ iR.
Again, a subsequence of(Φk) converges inC∞loc to a holomorphic map

Ψ :H+→C

with |∇Ψ(z)|� 2,Ψ (0)= 0 andΨ is not constant. Defining

Ψ̃ (z) :=
{
Ψ (z) if Im (z)� 0,

−Ψ (z) if Im (z) < 0,

we obtain an entire holomorphic function with bounded gradient which has to be affine. SinceΨ (∂H+)⊂ iR we
haveΨ (z)= iαz with some nonzero real numberα. Then

E(ũ)�
∫
H+

ũ∗d(φλ)=
∫
H+

φ′(a) da ∧ df

=
∫
H+

α2φ′(−αt) ds ∧ dt = |α| ·
∫
H+

φ′(t) ds ∧ dt,

but if we take aφ ∈Σ which is not constant on[0,+∞), then
∫
H+ φ

′(t) ds ∧ dt =+∞. This is a contradiction to
the finite energy condition. Hence we have shown that|∇Φ| must be bounded, and thereforeũ is constant. ✷
Remark. There are similar results for̃u defined on the whole planeC [12,1] and forũ defined onH+ with
boundary conditionR × L [2]. In the case of a finite energy strip̃u :S → R × M with boundary condition
ũ(∂S)⊂R×L we cannot conclude from

∫
S u
∗dλ= 0 thatũ is constant (see [2]).

We will omit the proof of the following lemma since it is similar to the proof of Lemma 3.1:

Lemma 3.2.Let ũ= (a,u) :H+→ R×M be a solution of∂sũ+ J̃ (ũ)∂t ũ= 0 satisfying the boundary conditio
ũ(∂H+)⊂ {0} ×D∗ and the finite energy conditionE(ũ) <+∞. If also

∫
H+ u

∗ dλ= 0 thenũ must be constant.

Lemma 3.3.Let ũ be as in Eq.(9) and assume thatu(S) is contained in a compact subset ofM. Then

sup
z∈S
∣∣∇ũ(z)∣∣<+∞.

Proof. We prove the lemma indirectly. Then using Hofer’s lemma we can find sequencesεk↘ 0, zk ∈ S so that

• εkRk := εk|∇ũ(zk)| →+∞,
• |∇ũ(z)|� 2Rk whenever|z− zk |� εk .

Writing zk = sk + itk, we have to consider the following situations:

1. −tkRk→−∞,
(a) Rk(1− tk)→ l ∈ [0,+∞),
(b) R− k(1− tk)→+∞,

2. −tkRk→−l ∈ (−∞,0], thenRk(1− tk)→+∞.

Rescaling in the same way as in the proof of Lemma 3.1, i.e.
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se 2
ũk(z)=
(
a(zk +R−1

k z)− a(zk), u(zk +R−1
k z)

)
for case 1(b),

ũk(z)=
(
a(sk +R−1

k z)− a(sk), u(sk +R−1
k z)

)
for case 2

and

ũk(z)=
(
a(sk + i −R−1

k z)− a(sk + i), u(sk + i −R−1
k z)

)
for case 1(a),

we obtainC∞loc-bounds uniform ink, where we have to use the usual elliptic regularity estimates forũ �→
∂s ũ + J̃ (ũ)∂t ũ to obtain bounds for the higher derivatives. Again by the Ascoli–Arzela theorem a subseq
of (ũk) converges to some nonconstant map

w̃= (β,w) :Ω→R×M,
whereΩ =C in case 1b andΩ =H+ in cases 1(a) and 2. In all these cases we have

∂sw̃+ J̃ (w̃)∂t w̃ = 0

and ∣∣∇w̃(z)∣∣� 2.

In case 2, we havẽw(∂H+)⊂R×L, while we havẽw(∂H+)⊂ {0}×D∗ in case 1(a). Denote byΩk the domains
of definition of the rescaled mapsũk , which are the same as in the proof of Lemma 3.1. We claim that

• E(w̃)�E(ũ),
• ∫Ω w∗ dλ= 0.

We then have derived a contradiction, becausew̃ would have to be constant (Lemma 3.2 for case 1(a), [2] for ca
and [12,1] for case 1(b)). So let us prove the claim above.

Considering case 1(b) first, we takeφ ∈Σ and defineφk ∈Σ by

φk(s) := φ
(
s − a(zk)

)
.

Then ∫
BRkεk (0)∩Ωk

ũ∗k d(φλ)=
∫

Bεk (zk)∩(R×[0,1])
ũ∗ d(φkλ)�

∫
R×[0,1]

ũ∗ d(φkλ)�E(ũ)

Now choose any compact subsetK ofΩ and findk0 ∈N so that for allk � k0

K ⊂ BRkεk (0)∩Ωk.
Then∫

K

ũ∗k d(φλ)�E(ũ) ∀k � k0

and therefore∫
K

w̃∗ d(φλ)�E(ũ).

Since this holds for all compact subsetsK of Ω we obtain∫
w̃∗d(φλ)�E(ũ)
Ω
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ions. We
and finally taking the supremum over allφ ∈Σ :

E(w̃)�E(ũ).

Now letK be any compact subset ofΩ . Then fork large enough we haveK ⊂ BRkεk (0)∩Ωk and∫
K

w∗dλ�
∣∣∣∣∫
K

w∗ dλ−
∫
K

u∗k dλ
∣∣∣∣+ ∫

BRkεk (0)∩Ωk
u∗k dλ

�
∣∣∣∣∫
K

w∗ dλ−
∫
K

v∗k dλ
∣∣∣∣+ ∫

Bεk (zk)∩(R×[0,1])
u∗ dλ.

The first term converges to zero fork→+∞, but the second one also does because of∫
R×[0,1]

u∗ dλ=
∫

R×[0,1]
ũ∗ d(φ0λ)�E(ũ) <+∞

whereφ0≡ 1∈Σ . This implies finally∫
Ω

w∗ dλ= 0

because the integral vanishes over any compact subset ofΩ .
In the cases 2 and 1(a) the proof of the claim above is essentially the same up to some minor modificat

have to define

φk(s)= φ
(
s − a(sk)

)
in case 2

and

Φk(s)= φ
(
s − a(sk + i)

)
in case 1(a).

Moreover we have to replaceBεkRk (0) by BεkRk (iRktk) in case 2 andBεkRk (iRk(1 − tk)) in case 1(a)
respectively. ✷
Proposition 3.4.Let ũ be a solution of Eq.(9). Then every sequence(s′k)k∈N ⊂R satisfyings′k→+∞ or s′k→−∞
has a subsequence(sk)k∈N, so that there is a pointp ∈ L with

ũ(sk, t)
k→∞−→ (0,p)

in C∞([0,1]).

Proof. Take any sequence(s′k) as above and define

ũk :S→R×M
by

ũk(s, t) :=
(
a(s + s′k, t)− a(s′k,0), u(s + s′k, t)

)
.

SinceJ̃ does not depend on theR-component ofR×M, we have

∂sũk + J̃ (ũk)∂t ũk = 0.

Moreover withũk = (ak, uk):
ak(0,0)= 0,
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ce
ũk(s,0) ∈R×L

and

ũk(s,1) ∈ {0} ×D∗.

Lemma 3.3 provides a gradient bound for the mapsũk which is uniform ink. By elliptic regularity we obtain
uniformC∞loc-bounds and a subsequence of(ũk) converges inC∞loc to some

w̃= (β,w) :S→R×M
satisfying

∂sw̃+ J̃ (w̃)∂t w̃ = 0,

w̃(s,0) ∈R×L,
w̃(s,1) ∈ {0} ×D∗,
β(0,0)= 0,

E(w̃) <+∞
and

sup
z∈S
∣∣∇w̃(z)∣∣<+∞.

We know that for eachR > 0∫
[−R,R]×[0,1]

u∗k dλ→
∫

[−R,R]×[0,1]
w∗ dλ

ask→∞. But∫
[−R,R]×[0,1]

u∗k dλ=
∫

[−R+sk,R+sk]×[0,1]
u∗ dλ k→∞−→ 0,

where(sk) is a suitable subsequence of(s′k). This holds becauseu∗dλ is a non-negative integrand and
∫
S
u∗ dλ�

E(ũ) <+∞. Hence∫
[−R,R]×[0,1]

w∗ dλ= 0

for everyR > 0 and therefore∫
S

w∗ dλ= 0.

Lemma 3.1 implies now that̃w must be constant, i.e.̃w = (0,w0), wherew0 ∈ L might depend on the sequen
s′k that we chose to definẽuk. Henceu(s + sk, t)→ w0 in C∞loc, in particularu(sk, t)→ w0 in C∞([0,1]).
Moreovera(s + sk, t) − a(sk,0)→ 0 in C∞loc. Choosingt = 1 we see from the boundary conditiona(s,1) ≡ 0
thata(sk,0)→ 0 and thereforea(sk, t)→ 0 in C∞([0,1]). ✷
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3.2. Existence of an asymptotic limit and exponential decay estimates

Proposition 3.4 implies that the ends of a finite energy stripũ approach the Legendrian knot{0} ×L⊂R×M.
We will go one step further and show that a solution of Eq. (9) has well-defined asymptotic limits. We wi
show that the convergence to these asymptotic limits is of exponential nature. The special coordinates d
Proposition 2.1 will be particularly helpful.

Proposition 3.5.Let ũ be a finite energy strip as in Eq.(9). Then there are pointsp+,p− ∈L so that

ũ(s, t)
s→±∞−→ (0,p±)

in C∞([0,1]).

Before we start with the proof of Proposition 3.5, let us choose convenient coordinates. We will also
ourselves to the ‘positive end’s→+∞ since the negative end is treated in the same way. By Proposition 3
can find a sequencesk→+∞, so thatũ(sk, t) converges to some point(0,p+) ∈ {0}×L in C∞([0,1]) ask→∞
and we may describẽu(s, t) by the coordinates provided by Proposition 2.1 if|s| is large enough. This is becau
ũ(s, t) remains near the set{0} × L for large|s|. Moreover, our assumptions imply that the ‘ends’ ofu stay away
from the singular points. We introduce the following change of coordinates away from the singular points:

R× S1×R2 ( (τ, θ, x, y) �→
(
τ, θ, x − a(θ)

b(θ)
y, y

)
. (10)

We recall (Proposition 2.1) that the spanning surfaceD near its boundary is parameterized by{
(θ, x, y) ∈ S1×R2

∣∣∣∣ (xy
)
= t ·

(
a(θ)

b(θ)

)
, t ∈ [0,1]

}
for suitable functionsa, b :S1→R, and the singular points correspond to the zeros ofb.

After this coordinate change we may replaceR × L by R2 × {0} × {0}, the set{0} × D∗∗ corresponds to
{0} ×R× {0} ×R± with ±= sign(b) and we may assume that the point(0,p+) corresponds to 0. Moreover, th
contact formλ= dy + x dθ changes to

λ̂= dy +
(
x + a(θ)

b(θ)
y

)
dθ, (11)

so that the contact structure at the point(θ, x, y) is generated by

∂

∂θ
−
(
x + a(θ)

b(θ)
y

)
∂

∂y
and

∂

∂x
(12)

and the Reeb vector field changes to

X
λ̂
= ∂

∂y
− a(θ)
b(θ)

∂

∂x
.

Our differential equation (9) has the following form:

v = (τ, θ, x, y) : [s0,∞)× [0,1]→R4,

∂sv +M(v)∂t v = 0, (13)

v(s,0) ∈L0=R2× {0} × {0},
v(s,1) ∈L1= {0} ×R× {0} ×R.
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The numbers0 is chosen in such a way thatũ(s, t) lies in the domain inR ×M where the above coordinate
exist. The mapM is smooth and bounded with values in GL(R4), so that all the derivatives are bounded too a
M2 = −Id. Because the almost complex structureJ̃ is compatible with the 2-formω constructed in Section 2.3
we have in addition

MTΩM =Ω and ΩM > 0,

whereΩ is a smooth bounded map with bounded derivatives and values in GL(R4) so thatΩT = −Ω . We also
note that〈

v,Ω(q)w
〉= 0 (14)

for q, v,w ∈ L0 or q, v,w ∈ L1 since the boundary conditionsR× L and{0} ×D∗∗ are Lagrangian with respe
to the 2-formω (here〈· , ·〉 denotes the standard Euclidean product onR4). Proposition 3.4 implies that

sup
[s,∞)×[0,1]

{|τ |, |x|, |y|}→ 0 (15)

ass→∞, while we only know that∣∣θ(sk, ·)∣∣C0([0,1])→ 0 (16)

ask→∞. Moreover,

sup
[s,∞)×[0,1]

∣∣∂αv∣∣→ 0 (17)

ass→∞ for all multi indicesα with |α|� 1. Our proof of Proposition 3.5 consists of showing that the compo
θ(s, t) converges to zero as well uniformly int , and it will lead also to the following exponential decay estimat

Theorem 3.6.There exist numbersρ, s′ > 0 so that we have the following estimate for each multi indexα ∈ N2,
|α|� 0 ands � s′:

sup
t∈[0,1]

∣∣∂αv(s, t)∣∣� cαe
−ρ(s−s ′),

wherecα are suitable positive constants.

Proof of Proposition 3.5. In the following we always assumes � s0 so that our boundary value problem (9) c
be written in coordinates as (13). While we proceed with the proof, it will be necessary to successively c
larger constants0. We will still denote this constant bys0.

We consider the following family of inner products onL2([0,1],R4):

(γ1, γ2)s :=
1∫

0

〈
γ1(t),Ω

(
v(s, t)

)
M
(
v(s, t)

)
γ2(t)

〉
dt, (18)

wheres � s0 and where〈· , ·〉 denotes the Euclidean product onR4. We will in future writeM(s, t) andΩ(s, t)
instead ofM(v(s, t)) andΩ(v(s, t)). In view of (17) we have for all multi indicesα ∈N2 with |α|� 1∣∣∂αΩ(s, t)∣∣, ∣∣∂αM(s, t)∣∣→ 0 (19)

uniformly in t as s tends to+∞. Then the norms‖ · ‖s on L2([0,1],R4) induced by the products (18) are a
uniformly equivalent to the usualL2 norm‖ · ‖, i.e. there are positive constantc0, c1 independent ofs so that

c0‖ · ‖� ‖ · ‖s � c1‖ · ‖. (20)
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Define the following dense subspace ofL2([0,1],R4):

H
1,2
L

([0,1],R4) := {γ ∈H 1,2([0,1],R4) | γ (0) ∈L0, γ (1) ∈L1
}
, (21)

where

L0 :=R2× {0} × {0} and L1 := {0} ×R× {0} ×R.

In view of the Sobolev embedding theorem this definition makes sense. We consider the following fa
unbounded linear operators onL2 with domain of definitionH 1,2

L :

L2([0,1],R4)⊃H 1,2
L

([0,1],R4)→L2([0,1],R4)(
A(s)γ

)
(t) := −M(s, t)γ̇ (t).

Since the proof of Proposition 3.5 requires some work, we break up the proof into several lemmas. The fo
straightforward lemma summarizes some properties of the operatorsA(s):

Lemma 3.7.The adjoint operatorA(s)∗ of A(s) with respect to theL2-product (18) has the same domain o
definition asA(s) and is given by(

A(s)∗γ
)
(t)= (A(s)γ )(t)− (Θ(s)γ )(t),

whereΘ(s) :L2([0,1],R4)→ L2([0,1],R4) is the following zero-order operator:(
Θ(s)γ

)
(t) :=M(s, t)Ω−1(s, t)∂tΩ(s, t)γ (t).

Moreover,Θ(s)(H 1,2)⊂H 1,2, Θ(s) is antisymmetric and∥∥∂ks Θ(s)∥∥L(L2,L2)
→ 0 ass→∞, (22)

wherek � 0.

Our differential equation (9) can then be written as

∂sv(s, t)=
(
A(s)v(s)

)
(t), (23)

with v(s) := v(s, ·). The kernelΛ of the operatorsA(s) consists of the constant paths with image inL0 ∩ L1,
which is a 1-dimensional set. Let

Ps :L2([0,1],R4)→Λ

be the orthogonal projection with respect to the inner product (18) and let

Qs := Id− Ps.
Since the kernels of the operatorsA(s) all agree, we have the following important property:

The operators∂sQs, ∂ssQs have image inΛ. (24)

The following estimate is crucial:

Lemma 3.8.There are constantss0, δ > 0 so that for alls � s0 andγ ∈H 1,2
L ([0,1],R4) the following inequality

holds:∥∥A(s)γ ∥∥
s
� δ‖Qsγ ‖s .
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timate.
Proof. Proceeding indirectly, we assume that there are sequencesδk ↘ 0, sk ↗∞ andγk ∈ H 1,2
L ([0,1],R4) so

that ∥∥A(sk)γk∥∥sk < δk‖Qskγk‖sk .
Consider now

αk = Qskγk

‖Qskγk‖sk
,

so that 0< c−1
1 � ‖αk‖L2 � c−1

0 and

‖α̇k‖L2 � c
∥∥A(sk)αk∥∥sk < δk.

Here we have used that the norms‖ · ‖L2 and‖ · ‖sk are equivalent (20) and that the norm‖ · ‖sk isM(sk)-invariant.
Because the embeddingH 1,2([0,1],R4) ↪→ L2([0,1],R4) is compact, a subsequence of(αk) converges inL2 to

someα. In view of α̇k
L2−→ 0 the convergence is actually of qualityH 1,2, thereforeα ∈H 1,2([0,1],R4) andα̇ = 0,

i.e.α ≡ const. NowH 1,2
L ⊂H 1,2 is closed andαk ∈H 1,2

L ([0,1],R4), henceα ∈Λ= L0 ∩L1.
On the other hand, we have(αk,α)sk = 0 which leads to the contradiction

0<
2

c1
� ‖αk‖2L2 + ‖α‖2L2 � 1

c2
0

(‖αk‖2sk + ‖α‖2sk )
= 1

c2
0

(‖αk − α‖2sk )� c2
1

c2
0

‖αk − α‖2L2→ 0. ✷
Let us introduce some notation which will also be useful for deriving the crucial exponential decay es

Fix some integerN � 1 and introduce the vector

V (s) := (v(s), ∂sv(s), . . . , ∂N−1
s v(s)

)
,

which is an element in theN -fold Cartesian product ofH 1,2
L ([0,1],R4), which we will denote by(H 1,2

L )N .
Applying the operatorA(s) to each component we obtain an operator

A(s) :
(
H

1,2
L

)N → (
L2)N

with

kerA(s)=ΛN.
The vectorV satisfies the following partial differential equation:

∂sV (s)=A(s)V (s)+ Ô(s)∂tV (s), (25)

where

Ô(s, t) :=


0 0 0 . . . . . . 0

O11(s, t) 0 0 . . . . . . 0

O22(s, t) O12(s, t) 0 . . . . . . 0
...

...
...

...

ON−1,N−1(s, t) ON−2,N−1(s, t) ON−3,N−1(s, t) . . . O1,N−1(s, t) 0


with

Olk(s, t) :=
(
k

l

)
∂ls
(−M(v(s, t))).
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.6. The
The following rather remarkable estimate is essential for the proofs of Proposition 3.5 and Theorem 3
choices of the inner products in (18) and Lemma 3.7 are crucial for the proof.

Lemma 3.9.There are numberss0, δ > 0 so that the function

g(s) := 1

2

∥∥QsV (s)∥∥2
s

satisfies

g′′(s)� 1

2
δ2g(s).

Proof. We have

g(s)= 1

2

1∫
0

〈
QsV (s)(t),Ω(s, t)M(s, t)QsV (s)(t)

〉
dt,

therefore, using(ΩM)T =ΩM,

g′(s)= (∂s[QsV (s)],QsV (s))s + 1

2

1∫
0

〈
QsV (s)(t), ∂s

[
Ω(s, t)M(s, t)

]
QsV (s)(t)

〉
dt

and

g′′(s) = ∥∥∂s[QsV (s)]∥∥2
s
+ (∂ss[QsV (s)],QsV (s))s

+ 2

1∫
0

〈
∂s
[
QsV (s)(t)

]
, ∂s
[
Ω(s, t)M(s, t)

]
QsV (s)(t)

〉
dt

+ 1

2

1∫
0

〈
QsV (s)(t), ∂ss

[
Ω(s, t)M(s, t)

]
QsV (s)(t)

〉
dt

=: T1+ · · · + T4

� T2+ T3+ T4.

We can estimate

|T4|� ε(s)
∥∥QsV (s)∥∥2

s
, (26)

where 0< ε(s)
s→∞−→ 0 is a suitable function. From now on, we will writeε(s) for any positive function which

decays to zero ass→∞.
Now let us estimateT3. We have to consider∂sPs first. If e ∈ L0 ∩L1 thenPsγ is given by

Psγ = (γ, e)s‖e‖2s
· e (27)

and ∣∣(∂sPs)γ ∣∣= ∣∣∣∣ ∂∂s (γ, e)s2 − 2
(γ, e)s

3

∂ ‖e‖s · e
∣∣∣∣� ε(s)‖γ ‖s , (28)
‖e‖s ‖e‖s ∂s
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since there are positive constantsc0, c1 so thatc0 � ‖e‖s � c1 for all s. Moreover,∣∣∂s[Ω(s)M(s)]γ ∣∣= ∣∣[DΩ(v(s))∂sv(s)]M(s)γ +Ω(v(s))DM(v(s))[∂sv(s), γ ]∣∣� c
∣∣∂sv(s)∣∣|γ |, (29)

wherec > 0 is some constant. Using (28), (29),

• ‖Qs∂sV (s)‖C0([0,1])
s→∞−→ 0, which follows from (17),

• ‖V (s)‖L2 is bounded uniformly ins and
• ∂sQs + ∂sPs = 0,

we obtain

|T3| =
∣∣∣∣∣

1∫
0

〈
Qs∂sV (s)(t)− [∂sPs]V (s)(t), ∂s

[
Ω(s, t)M(s, t)

]
QsV (s)(t)

〉
dt

∣∣∣∣∣
� c
∥∥Qs∂sV (s)− [∂sPs ]V (s)∥∥C0([0,1])

∥∥∂sv(s)∥∥L2

∥∥QsV (s)∥∥L2

= ε(s)∥∥A(s)v(s)∥∥
L2

∥∥QsV (s)∥∥L2

� ε(s)
∥∥A(s)V (s)∥∥

L2

∥∥QsV (s)∥∥L2. (30)

We are now left withT2. Shortening the notation, we write∂sQsγ instead of(∂sQs)γ andQsÔ(s)∂tV (s) instead
of Qs(Ô(s)∂tV (s)) etc. We calculate

∂s(QsV (s))= ∂sQsV (s)+QsA(s)V (s)+QsÔ(s)∂tV (s)
= ∂sQsV (s)+A(s)QsV (s)− PsA(s)V (s)+QsÔ(s)∂tV (s)

and

∂ss(QsV (s))= ∂ssQsV (s)+ ∂sQs∂sV (s)+A(s)∂sV (s)− ∂sM(s)∂tV (s)
+ ∂sQsÔ(s)∂tV (s)+Qs∂sÔ(s)∂tV (s)+QsÔ(s)∂stV (s)
− ∂sPsA(s)V (s)+ Ps∂sM(s)∂tV (s)− PsA(s)∂sV (s).

We write the termÔ(s)∂stV (s) asÕ(s)∂tV (s), where

Õ(s, t) :=


0 0 0 . . . 0
0 O11(s, t) 0 . . . 0
0 O22(s, t) O12(s, t) . . . 0
...

...
...

. . .
...

0 ON−1,N−1(s, t) ON−2,N−1(s, t) . . . O1,N−1(s, t)

 .
Inserting this intoT2 we obtain with (24)

T2 =
(
A(s)∂sV (s),QsV (s)

)
s
− (∂sM(s) ∂tV (s),QsV (s))s

+ (Qs∂sÔ(s)∂tV (s),QsV (s))s + (QsÕ(s)∂tV (s),QsV (s))s
=: T21+ T22+ T23+ T24.

We estimate

|T22| =
∣∣(∂sM(s)M(s)A(s)QsV (s),QsV (s))s ∣∣� ε(s)

∥∥A(s)QsV (s)∥∥s∥∥QsV (s)∥∥s .
The expressionsT23, T24 are estimated similarly, so that

|T22|, |T23|, |T24|� ε(s)
∥∥A(s)QsV (s)∥∥ ∥∥QsV (s)∥∥ . (31)
s s
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Using∂tV (s)=M(s)A(s)QsV (s), Eq. (25) and Lemma 3.7, we continue withT21:

T21=
(
∂sV (s),A(s)QsV (s)

)
s
− (∂sV (s),Θ(s)QsV (s))s

= ∥∥A(s)QsV (s)∥∥2
s
+ (Ô(s)∂tV (s),A(s)QsV (s))s

− (A(s)QsV (s),Θ(s)QsV (s))s − (Ô(s)∂tV (s),Θ(s)QsV (s))s
�
∥∥A(s)QsV (s)∥∥2

s
− ε(s)∥∥A(s)QsV (s)∥∥2

s
− ε(s)∥∥A(s)QsV (s)∥∥s∥∥QsV (s)∥∥s

� 1

2

∥∥A(s)QsV (s)∥∥2
s
− ε(s)∥∥A(s)QsV (s)∥∥s∥∥QsV (s)∥∥s for larges.

Using Lemma 3.8, inequalities (26), (30), (31) and the above estimate forT21, we obtain

g′′(s)� T21− |T22| − |T23| − |T24| − |T3| − |T4|
� 1

2

∥∥A(s)QsV (s)∥∥2
s
− ε(s)∥∥A(s)QsV (s)∥∥s∥∥QsV (s)∥∥s − ε(s)∥∥QsV (s)∥∥2

s

= ∥∥A(s)QsV (s)∥∥s(1

2

∥∥A(s)QsV (s)∥∥s − ε(s)∥∥QsV (s)∥∥s)− ε(s)∥∥QsV (s)∥∥2
s

�
∥∥A(s)QsV (s)∥∥s∥∥QsV (s)∥∥s( δ2 − ε(s)

)
− ε(s)∥∥QsV (s)∥∥2

s

�
(
δ2

3
− ε(s)

)∥∥QsV (s)∥∥2
s

wheres is so large that
δ

2
− ε(s)� δ

3

� δ2

4

∥∥QsV (s)∥∥2
s
s so large that

δ2

3
− ε(s)� δ2

4

= δ
2

2
g(s).

This completes the proof of Lemma 3.9.✷
Lemma 3.10.Let s0, δ be as in Lemma3.9. Then we have for alls � s1 � s0

g(s)� g(s1)e
− δ√

2
(s−s1)

.

Proof. Defining h(s) := g(s) − g(s1)e−
δ√
2
(s−s1), we observe thath(s1) = 0 and h′′(s) � δ2

2 h(s) in view of
Lemma 3.9, henceh cannot have a local maximum withh > 0. On the other hand, we also haveh(s)→ 0 as
s→∞ in view of g′′(s)→ 0 and Lemma 3.9. We concludeh� 0 which proves the lemma.✷

We now have to estimate|Psv(s)| and|Ps∂sv(s)|, the components ofv(s) and∂sv(s) alongΛ= kerA(s).

Lemma 3.11.If s � s0 then∣∣Ps∂sv(s)∣∣� ε(s)
∥∥Qsv(s)∥∥s,

where0< ε(s)→ 0 ass→∞.

Proof. We compute using (20), (23), (27) and Lemma 3.7∣∣Ps∂sv(s)∣∣� c
∣∣(∂sv(s), e)s ∣∣= c∣∣(A(s)v(s), e)s ∣∣= c∣∣(A(s)Qsv(s), e)s ∣∣

= c∣∣(Qsv(s),−Θ(s)e) ∣∣� ε(s)
∥∥Qsv(s)∥∥ . ✷
s s
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f

Proof of Proposition 3.5(continued). We will show now that∣∣Psv(s)∣∣→ 0

ass→∞. Then we are done because∥∥v(s)∥∥
L2 �

∣∣Psv(s)∣∣+ ∥∥Qsv(s)∥∥L2
s→∞−→ 0

and ∥∥∂sv(s)∥∥L2
s→∞−→ 0,

i.e.v(s) converges to zero inH 1,2([0,1]) and therefore also inC0([0,1]) by the Sobolev embedding theorem.
In view of Eqs. (20), (27) we have to show that∣∣(v(s), e)s ∣∣→ 0

ass→∞. We know already that∣∣(v(sk), e)sk ∣∣� ∥∥v(sk)∥∥sk‖e‖sk � c
∥∥v(sk)∥∥L2

k→∞−→ 0.

We estimate fors � sk , combining Lemma 3.10 and Lemma 3.11, withc being a generic constant independent ok
ands

∣∣(v(s), e)
s
− (v(sk), e)sk ∣∣=

∣∣∣∣∣
s∫

sk

d

dσ

(
v(σ ), e

)
σ
dσ

∣∣∣∣∣
� c

s∫
sk

∥∥∂σ v(σ )∥∥σ dσ +
s∫

sk

1∫
0

∣∣〈v(σ, t), ∂σ [Ω(v(σ, t))M(v(σ, t))] · e〉∣∣dt dσ
� c
∥∥∂sv(sk)∥∥sk

s∫
sk

e
− δ

2
√

2
(σ−sk)

dσ + c
s∫

sk

∥∥v(σ )∥∥
L2([0,1])

∥∥∂σ v(σ )∥∥L2([0,1]) dσ

� c
∥∥∂sv(sk)∥∥sk(1− e− δ

2
√

2
(s−sk))

� c
∥∥∂sv(sk)∥∥sk ,

which converges to zero ifk→∞. This completes the proof of Proposition 3.5.✷
Proof of Theorem 3.6. We saw earlier that Lemmas 3.10 and 3.11 imply∥∥∂sv(s)∥∥L2 � ce

− δ

2
√

2
(s−s0)

for all s � s0, wherec, s0> 0 are suitable constants. In view of∂sv(s, t)+M(v(s, t))∂t v(s, t)= 0 we also have∥∥∂tv(s)∥∥L2 � ce−
δ

2
√

2
(s−s0)

for a suitable positive constantc. Note thatv(s)=− ∫ +∞
s

∂sv(σ ) dσ so that

∥∥v(s)∥∥
L2 �

+∞∫ ∥∥∂sv(σ )∥∥L2 dσ � c

+∞∫
e
− δ

2
√

2
(σ−s0)

dσ = 2c
√

2

δ
e
− δ

2
√

2
(s−s0)

.

s s
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ate in

ant

e

o

Hence we know already that‖∂αv(s)‖L2 decays exponentially fast with rate at leastρ =− δ

2
√

2
whenever|α|� 1.

Because of the Sobolev embedding theorem we obtain exponential decay for sup0�t�1 |v(s)| as well. We have to
use induction to obtain the same decay behavior for the higher derivatives ofv. Recalling that we defined

V (s)= (v(s), ∂sv(s), . . . , ∂N−1
s v(s)

)
, N � 1,

we know that‖Qs∂ks v(s)‖L2 exhibits the desired exponential decay for any integerk. Assume that‖V (s)‖L2

decays exponentially with rateρ as above (we know that this is true forN = 2). We claim that then‖∂sV (s)‖L2

and‖∂tV (s)‖L2 have to decay exponentially with the same rate as well. ApplyingQs to Eq. (25) and multiplying
with M(s) we obtain

∂tV (s)=M(s)Qs∂sV (s)+M(s)PsA(s)V (s)−M(s)QsÔ(s)∂tV (s),
which implies∥∥∂tV (s)∥∥L2 � c

∥∥Qs∂sV (s)∥∥L2 + c
∣∣PsA(s)V (s)∣∣+ ε(s)∥∥∂tV (s)∥∥L2,

i.e. for s so large thatε(s)� 1/2∥∥∂tV (s)∥∥L2 � 2c
∥∥Qs∂sV (s)∥∥L2 + 2c

∣∣PsA(s)V (s)∣∣. (32)

The expression‖Qs∂sV (s)‖L2 decays exponentially by Lemma 3.10 and the other also does because of∣∣PsA(s)V (s)∣∣� c
∣∣(A(s)V (s), e)

s

∣∣� c
∣∣(V (s),Θ(s)e)

s

∣∣� ε(s)∥∥V (s)∥∥
L2,

wheree ∈ΛN . This proves our claim, i.e. we have now shown exponential decay for‖∂kt ∂lsv(s)‖L2, wherek ∈ {0,1}
andl � 0 is an arbitrary integer.

Eq. (25) yields

∂tV (s)=
(
Id+M(s)Ô(s))−1

M(s)∂sV (s)

(the inverse makes sense ifs is sufficiently large), and differentiating the above identity successively byt shows by
induction that‖∂kt V (s)‖L2 decays exponentially for arbitrary integersk. The desired decay for theC0 norm then
follows from the Sobolev embedding theorem.✷
3.3. An asymptotic formula

We need to know more about the asymptotic behavior of the solutions than merely the apriori estim
Theorem 3.6. The aim is to prove the asymptotic formula (Theorem 1.1):

Theorem 3.12.For sufficiently larges0 and s � s0 we have the following asymptotic formula for non const
solutionsv of (13)having finite energy:

v(s, t)= e
∫ s
s0
α(τ) dτ(

e(t)+ r(s, t)), (33)

whereα : [s0,∞)→ R is a smooth function satisfyingα(s)→ λ < 0 ass→∞ with λ being an eigenvalue of th
selfadjoint operator

A∞ :L2([0,1],R4)⊃H 1,2
L

([0,1],R4)→L2([0,1],R4)
γ �→ −M∞γ̇ , M∞ := lim

s→∞M
(
v(s, t)

)
(see(21) for the definition of the domain ofA∞). Moreover,e(t) is an eigenvector ofA∞ belonging to the
eigenvalueλ with e(t) 	= 0 for all t ∈ [0,1], andr is a smooth function so thatr and all its derivatives converge t
zero uniformly int ass→∞.
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x
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the
Remark. The above theorem is of course also valid for the negative end,s→−∞, of a solution. We have the sam
formula as in (33), but the functionα(s) will converge to a positive eigenvalue of the operatorA∞ = −M∞ d

dt
,

whereM∞ = lims→−∞M(v(s, t)).

The first step in the proof is the following proposition. The steps from Proposition 3.13 below to Theore
are very similarly to the corresponding results in [2] or [13].

Proposition 3.13.There is a numbers0> 0 so that∥∥v(s)∥∥
s
= e

∫ s
s0
α(τ) dτ∥∥v(s0)∥∥s0

for all s � s0, whereα has the properties stated above in Theorem1.1.

Before we can continue with the proof, we need some information about the spectra of the selfadjoint o
A(s)− 1

2Θ(s).

Theorem 3.14.For eachL> 0 there are numbersd, s1> 0 and a sequencern ∈ [nL, (n+ 1)L], n ∈ Z so that

[rn − d, rn + d] ∩ σ
(
A(s)− 1

2
Θ(s)

)
= ∅

for all s � s1.

Proof. Let us review the strategy of the proof: We want to viewA(s)− 1
2Θ(s) as a perturbation ofA∞, the operator

obtained fors→∞. There are theorems about the spectrum of selfadjoint operators in a Hilbert space pe
by bounded symmetric operators. The trouble here is thatA∞ −A(s)+ 1

2Θ(s) is not a bounded operator. We fi
this by introducing operatorsB∞ andB(s), all having the same first order term, and which are unitary equiva
to the operatorsA∞ andA(s) so that it suffices to study the spectra ofB∞ andB(s).

We would like to find a smooth map

T : [s0,∞)× [0,1]→GL
(
R4)

so thatT (s, .) converges inC∞([0,1]) to someT∞ ∈GL(R4) satisfying the following conditions:

• T tT =ΩM,
• TM = J0T ,
• T tJ0T =−Ω ,

with corresponding conditions forT∞ as s→∞. HereT t denotes the transpose ofT andJ0 is multiplication
by i on C2 if we identify R4 with C2. Actually two of the above conditions imply the third one. We may view
mapT as a unitary trivialization of the hermitian vector bundle(([s0,∞)× [0,1])×R4,Ω,M

) →̃ (([s0,∞)× [0,1])×R4,−J0, J0
)
.

The construction ofT is Gram–Schmidt orthogonalization with respect to the hermitian bundle metric

h= 〈· ,ΩM.〉 + i〈· ,Ω.〉.
We defineT (s, t) by mapping the generator

σ(s, t) := ∂ −
(
x(s, t)+ a(θ(s, t))y(s, t)

)
∂

∂θ b(θ(s, t)) ∂y
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rs
of the contact structure (12) inu(s, t) onto(0,1) ∈C2. Consequently, the maps

Φs :
(
L2([0,1],R4), (· , ·)s)→ (

L2([0,1],R4), (· , ·)L2

)
,

γ �→ T (s, ·)γ,
Φ∞ :

(
L2([0,1],R4), (· , ·)s |s→∞)→ (

L2([0,1],R4), (· , ·)L2

)
,

γ �→ T∞γ

are isometries. They mapH 1,2
L ([0,1],R4) onto

H
1,2
Ls

([0,1],R4) := {γ ∈H 1,2([0,1],R4) ∣∣∣∣ γ (0) ∈ T (s,0) ·L0

γ (1) ∈ T (s,1) ·L1

}
and

H
1,2
L∞
([0,1],R4) := {γ ∈H 1,2([0,1],R4) ∣∣∣∣ γ (0) ∈ T∞ ·L0

γ (1) ∈ T∞ ·L1

}
respectively. We consider the following operators

B̃(s) :L2([0,1],R4)⊃H 1,2
Ls

([0,1],R4)→ L2([0,1],R4),
B̃(s) :=Φs ◦

(
A(s)− 1

2
Θ(s)

)
◦Φ−1

s ,

B∞ :L2([0,1],R4)⊃H 1,2
L∞
([0,1],R4)→ L2([0,1],R4),

B∞ :=Φ∞ ◦A∞ ◦Φ−1∞ ,

where we equipL2([0,1],R4) with the ordinaryL2-inner product(· , ·)L2. Unitary equivalent selfadjoint operato
have the same spectrum, hence

σ
(
B̃(s)

)= σ(A(s)− 1

2
Θ(s)

)
and

σ(B∞)= σ(A∞).
It remains to investigate the spectra ofB̃(s) andB∞. First we note that the operators̃B(s) andB∞ are selfadjoint
with respect to the standardL2-product. Let us compute them. We obtain

B̃(s)=−J0
∂

∂t
+ J0

∂T (s)

∂t
T (s)−1− 1

2
T (s)Θ(s)T (s)−1, (34)

where the operator−J0
∂
∂t

is selfadjoint and the operator

S(s) :L2([0,1],R4)→L2([0,1],R4)
γ �→ J0

∂T (s)

∂t
T (s)−1γ − 1

2
T (s)Θ(s)T (s)−1γ

is symmetric. We note thatS(s) converges to zero ass→∞ in the operator norm. The operatorB∞ is simply
given by−J0

∂
∂t

.
Summarizing, we have introduced coordinates so that the operatorsA(s) − 1

2Θ(s) andA∞ correspond to
operators with the same first order term on the same Hilbert space(L2([0,1],Rn), (· , ·)L2), but they all have
different domains of definition. We have to fix this without changing anything that we have achieved so far.
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ing
llows:

])
We can find a smooth map

C : [s0,∞)× [0,1]→ Sp(4)∩O(4)=U(2)

having the following properties:

• C(s, .)→ Id in C∞([0,1]) ass→∞,
• C(s,0)T (s,0)L0= T∞L0,
• C(s,1)T (s,1)L1= T∞L1.

The operators

B(s) :L2([0,1],R4)⊃H 1,2
L∞
([0,1],R4)→L2([0,1],R4)(

B(s)γ
)
(t) := C(s, t)−1(B̃(s)C(s)γ )(t)

have the form

B(s)= B∞ +O(s, t),
whereγ �→ O(s)γ is a symmetric zero order perturbation with‖O(s)‖ → 0 ass →∞ in the operator norm
They are unitary equivalent tõB(s) hence the spectra are the same. The spectrum of the operatorB∞, which has
domain of definitionH 1,2

L∞([0,1],R4) consists of all integer multiples ofπ/2. Moreover, the spectrum consists
eigenvalues only since the resolvent ofB∞ is a compact operator. Every eigenvalue has multiplicity one. Verify
this is a straight forward computation which we leave to the reader. Let us summarize our discussion as fo

Proposition 3.15.The spectrum of the operator

A∞ :L2([0,1],R4)⊃H 1,2
L

([0,1],R4)→L2([0,1],R4),
γ �→ −M∞γ̇ , M∞ := lim

s→∞M
(
v(s, t)

)
consists of all integer multiples ofπ2 . The resolvent of the operatorA∞ is a compact operator onL2([0,1],R4).
All the points in the spectrum are eigenvalues of multiplicity one.

In order to control the spectra of the perturbationsB(s) we will need the following perturbation result (see [2
which follows from a result of T. Kato (see [16]):

Theorem 3.16.Let T :H ⊃D(T )→H be a selfadjoint operator in a Hilbert spaceH and letA0 :H →H be a
linear, bounded and symmetric operator. Then the following holds:

•
dist
(
σ(T ), σ (T +A0)

) :=max
{

sup
λ∈σ(T )

dist
(
λ,σ(T +A0)

)
, sup
λ∈σ(T+A0)

dist
(
λ,σ(T )

)}
� ‖A0‖L(H).

• Assume further that the resolvent(T − λ0)
−1 of T exists and is compact for someλ0 /∈ σ(T ).

Then(T − λ)−1 is compact for everyλ /∈ σ(T ) andσ(T ) consists of isolated eigenvalues{µk}k∈Z with finite
multiplicities{mk}k∈Z .
If we assume thatsupk∈Z mk �M <∞ and that for eachL > 0 there is a numbermT (L) ∈ N so that every
interval I ⊂ R of lengthL contains at mostmT (L) points ofσ(T ) (counted with multiplicity) then for each
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t

ferent
L > 0 there is also a numbermT+A0(L) ∈ N so that every intervalI ⊂ R of lengthL contains at mos
mT+A0(L) points ofσ(T +A0).

We find for allL > 0 somem ∈ N so that every intervalI ⊆ R of lengthL contains at mostm points of the
spectrum ofB∞.

Moreover by Theorem 3.16,

dist
(
σ(B∞), σ (B(s))

)→ 0 (35)

ass→∞.
Define now the intervals

In :=
[
nL, (n+ 1)L

]; n ∈ Z.

Then eachIn contains at mostm points ofσ(B∞), so there is a closed subintervalJn ⊂ In of length L
m+1 that does

not contain any point ofσ(B∞). Because of (35) there is a closed intervalJ ′n ⊆ Jn ⊆ In of length L
2(m+1) which

does not contain any point ofσ(B(s)) whenevers � s1 wheres1 is sufficiently large (thiss1 does not depend onn).
So we found a sequencern ∈ In and a positive constantd , so that

[rn − d, rn + d] ∩ σ
(
B(s)

)= ∅
for all larges. This completes the proof of Theorem 3.14.✷
Proof of Proposition 3.13. This result has an analogue in [2] and [13,14]. However, there are some dif
features due to the boundary condition and the degeneracy of the problem. We assume first that‖v(s, .)‖C0([0,1]) 	= 0
if s is sufficiently large. As in the references cited above, it is very easy to state the correct functionα so that we
have the proposed formula for‖v(s)‖s . Indeed, we have to take

α(s) :=
d
ds
‖v(s)‖2s

2‖v(s)‖2s
.

We define now

ξ(s, t) := v(s, t)

‖v(s)‖s
and note that

∂sξ(s, t)+M(s, t)∂t ξ(s, t)+ α(s)ξ(s, t) = 0. (36)

We define

Γ1(s, t) := −1

2
M(s, t)Ω−1(s, t)∂s(ΩM)(s, t)

and the covariant derivative

∇sξ(s) := ∂sξ(s)+ Γ1(s)ξ(s)

so that for all smoothu1, u2 : R→ L2([0,1],R4)

d

ds

(
u1(s), u2(s)

)
s
= (∇su1(s), u2(s)

)
s
+ (u1(s),∇su2(s)

)
s
,

hence

0= (∇sξ(s), ξ(s)) . (37)

s
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The partial differential equation forξ can be written in the form

A(s)ξ(s)=∇sξ(s)+ α(s)ξ(s)− Γ1(s)ξ(s) (38)

which implies

α(s)= (ξ(s),Γ1(s)ξ(s)
)
s
+ (ξ(s),A(s)ξ(s))

s
. (39)

We define

Γ2(s, t) := −M(s, t)Ω−1(s, t)∂sΩ(s, t)M(s, t).

and

Γ3(s, t) :=Ω−1(s, t)∂sΩ(s, t).

Computing the adjoint operatorsΓ ∗1 andΓ ∗2 with respect to the inner product (18) yields

Γ ∗1 = Γ1 and Γ ∗2 = Γ3.

Introducing the operator

Γ4(s)ξ(s) :=
(∇sM(s))M(s)ξ(s) := −M(s)∇s(M(s)ξ(s))−∇sξ(s)= 1

2
(Γ3− Γ2),

we find that

Γ ∗4 (s)=
1

2
(Γ ∗3 − Γ ∗2 )=−Γ4.

A simple calculation shows also that

∂t∇s −∇s∂t = ∂tΓ1. (40)

Using now the partial differential equation (38), Lemma 3.7, Eqs. (22), (37), (40) and the fact that‖Γk(s)ξ(s)‖2s →
0, k = 1, . . . ,4, ass→∞ we estimate the derivative ofα as follows:

α′(s) = (∇s (A(s)ξ(s)), ξ(s))s + (A(s)ξ(s),∇sξ(s))s
+ (∇s(Γ1(s)ξ(s)

)
, ξ(s)

)
s
+ (Γ1(s)ξ(s),∇sξ(s)

)
s

=: T1+ T2+ T3+ T4.

We have

|T4|� ε(s)
∥∥∇sξ(s)∥∥s

and

|T3|�
∣∣((∇sΓ1(s)

)
ξ(s), ξ(s)

)
s

∣∣+ ∣∣(Γ1(s)∇sξ(s), ξ(s)
)
s

∣∣� ε(s)+ ε(s)∥∥∇sξ(s)∥∥s .
Inserting (38) and using (37), we obtain

T2=
∥∥∇sξ(s)∥∥2

s
− (Γ1(s)ξ(s),∇sξ(s)

)
s

�
∥∥∇sξ(s)∥∥2

s
− ε(s)]∥∥∇sξ(s)∥∥s .

We now take care of the termT1:
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n we
r

ck

ers
T1 = −
(
M(s)∇s

(
M(s)A(s)ξ(s)

)
, ξ(s)

)
s
− (Γ4(s)A(s)ξ(s), ξ(s)

)
s

= (−M(s)∇s∂t ξ(s), ξ(s))s + (A(s)ξ(s),Γ4(s)ξ(s)
)
s

= (A(s)∇sξ(s), ξ(s))s + (M(s)∂tΓ1(s)ξ(s), ξ(s)
)
s
+ (A(s)ξ(s),Γ4(s)ξ(s)

)
s

= (∇sξ(s),A(s)ξ(s))s − (∇sξ(s),Θ(s)ξ(s))s
+ (M(s)∂tΓ1(s)ξ(s), ξ(s)

)
s
+ (∇sξ(s),Γ4(s)ξ(s)

)
s

+ α(s)(ξ(s),Γ4(s)ξ(s)
)
s
− (Γ1(s)ξ(s),Γ4(s)ξ(s)

)
s

=: T11+ · · · + T16.

The termT11 is identical withT2 which we estimated above. The expressions|T12|, |T14| can be estimated from
above byε(s)‖∇s ξ(s)‖s while |T13| and |T16| tend to zero ass→∞. The termT15 vanishes sinceΓ4 is skew-
adjoint. Summarizing, we got the following inequality for the derivative ofα:

α′(s)� T1+ T2− |T3| − |T4|
� 2
∥∥∇sξ(s)∥∥2

s
− ε(s)∥∥∇sξ(s)∥∥s − ε(s). (41)

We assume now that the functionα is not bounded from above and we wish to derive a contradiction. The
can find a sequencesk→∞ so thatα(sk)→∞. If we hadα(s)� η > 0 for all larges and some positive numbe
η then we would obtain∥∥v(s)∥∥

L2 � c
∥∥v(s)∥∥

s
� eη(s−s0)

∥∥v(s0)∥∥s0→∞
in contradiction to the fact that|v(s, ·)| → 0 uniformly in t ass→∞. Because of Theorem 3.14 we may pi
η > 0 in such a way that there is a positive numberd so thatη− d > 0 and

[η− d,η+ d] ∩ σ
(
A(s)− 1

2
Θ(s)

)
= ∅.

Then we can find a sequences′k→∞ so thatα(s′k) < η. We may also assume thats′k < sk+1< s
′
k+1 andα(sk) > η.

Hence, ifα is not bounded from above then it must oscillate. Letŝk be the smallest number witĥsk > sk and
α(ŝk)= η. Since the operatorsA(s)− 1

2Θ(s) are selfadjoint we have for everyθ in the resolvent set∥∥∥∥(A(s)− 1

2
Θ(s)− θ Id

)−1∥∥∥∥
s

= 1

dist(θ, σ (A(s)− 1
2Θ(s)))

. (42)

Recalling the differential equation (38) forξ , we obtain (εk being a suitable sequence of positive numb
converging to zero)

1= ∥∥ξ(ŝk)∥∥ŝk
�
∥∥∥∥(A(ŝk)− 1

2
Θ(ŝk)− η Id

)−1∥∥∥∥
ŝk

∥∥∥∥∇sξ(ŝk)− Γ1(ŝk)ξ(ŝk)− 1

2
Θ(ŝk)ξ(ŝk)

∥∥∥∥
ŝk

� 1

d

∥∥∥∥∇sξ(ŝk)− Γ1(ŝk)ξ(ŝk)− 1

2
Θ(ŝk)ξ(ŝk)

∥∥∥∥
ŝk

� 1

d

∥∥∇sξ(ŝk)∥∥ŝk + εk,
i.e. for sufficiently largek

0<
d �

∥∥∇sξ(ŝk)∥∥ŝ . (43)

2 k



174 C. Abbas / Ann. I. H. Poincaré – AN 21 (2004) 139–185

.

icts
We now insert this into inequality (41) and obtain that for sufficiently largek

α′(ŝk) > 0,

which would implyα(s) < η for s < ŝk close toŝk in contradiction to the definition of̂sk . Henceαmust be bounded
from above.

Let us show now thatα cannot be unbounded from below either. Pick a sequencern as in Theorem 3.14
Assuming in the contrary thatα is not bounded from below we can findsn so thatα(sn)= rn andα′(sn) < 0. In
the same way as we derived (43), we also obtain here

0<
d

2
�
∥∥∇sξ(sn)∥∥sn

for all largen and

α′(sn) > 0

which is a contradiction. Thereforeα must also be bounded from below.
There exists a sequencesk→∞ so that‖∇sξ(sk)‖sk → 0. Otherwise we had‖∇sξ(s)‖s � η > 0 for a suitable

η and all larges which would implyα′(s)� 1
2η

2 for all larges andα(s)→∞ ass→∞ which is not true.
Becauseα is bounded, we can find a subsequence (which we also denote by(sk)k∈N) so that

lim
k→∞α(sk)= λ

exists. We claim thatλ ∈ σ(A∞). If we hadλ /∈ σ(A∞) thenε := infµ∈σ(A∞) |λ−µ|> 0 becauseσ(A∞) is closed
and therefore

|µ′ − λ|� ε− |µ−µ′| ∀µ ∈ σ(A∞), µ′ ∈ σ
(
A(s)− 1

2
Θ(s)

)
which implies

dist

(
λ,σ

(
A(s)− 1

2
Θ(s)

))
� ε− sup

µ′∈σ(A(s)− 1
2Θ(s))

dist
(
µ′, σ (A∞)

)
> ε/2

if s is sufficiently large, by Theorem 3.14, i.e.

α(sk) /∈ σ
(
A(sk)− 1

2
Θ(sk)

)
for k sufficiently large.

Then

1= ∥∥ξ(sk)∥∥sk
=
∥∥∥∥(A(sk)− 1

2
Θ(sk)− α(sk) Id

)−1(
∇sξ(sk)− 1

2
Θ(sk)− Γ1(sk)ξ(sk)

)∥∥∥∥
sk

� 4

ε

∥∥∇sξ(sk)∥∥sk + εk,
where k is chosen so large that|λ− α(sk)| < ε/4 and εk ↘ 0 is a suitable sequence. But this contrad
‖∇sξ(sk)‖sk→ 0, henceλ ∈ σ(A∞).

Let us show that indeed

lim α(s)= λ.

s→∞
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ur

n very
proof of
Take now a sequencesk→∞ and assume that there are subsequences(s′k), (s′′k ) which converge to different limits
λ′ andλ′′. By our previous discussion we have

λ′, λ′′ ∈ σ(A∞)
and we assume thatλ′ < λ′′. We may also assume thats′k < s′′k < s′k+1. It is a consequence of Theorem 3.14 t
there ared > 0 and ν∈ (λ′, λ′′) so that

dist

(
ν,σ

(
A(s)− 1

2
Θ(s)

))
� d

whenevers is sufficiently large. Let nows be any number withα(s)= ν. Then we estimate as before:

1= ∥∥ξ(s)∥∥
s

=
∥∥∥∥(A(s)− 1

2
Θ(s)− ν Id

)−1(
∇sξ(s)− 1

2
Θ(s)− Γ1(s)ξ(s)

)∥∥∥∥
s

� 1

d

∥∥∇sξ(s)∥∥s + ε(s),
whereε(s) is a suitable positive function tending to zero ass→∞. Using inequality (41), we obtainα′(s) > 0 for
all large enoughs with α(s)= ν, but this is a contradiction since it prohibitsα from oscillating betweenλ′ andλ′′.
Hence the limit

λ= lim
s→∞α(s) ∈ σ(A∞)

exists and it is indeed an eigenvalue because the operatorA∞ has compact resolvent so that the spectrum con
of eigenvalues only. Moreover,λ� 0 since otherwise‖v(s)‖L2→∞. Let us show thatλ < 0

We know that there areρ, s0> 0 so that for alls � s0:∥∥v(s)∥∥
s
� ce−ρ(s−s0)

which follows from Theorem 3.6. Using Proposition 3.13, we see that the function

eρ(s−s0)
∥∥v(s)∥∥

s
= ∥∥v(s0)∥∥s0eρ(s−s0)+∫ ss0 α(τ) dτ

remains bounded for alls � s0. This means that the function

f (s) := ρ(s − s0)+
s∫

s0

α(τ) dτ

has to be bounded as well. Now

f ′(s)= ρ + α(s)→ ρ + λ
ass→∞. Boundedness off implies thenρ + λ� 0.

It remains to take care of the case for which‖v(s)‖s = 0 for somes. Thenv(s, t) = 0 for all t ∈ [0,1] and
a simple application of the similarity principle implies thatv is constant (see [2,15]) in contradiction to o
assumptions. This completes the proof of Proposition 3.13.✷

The following three lemmas are versions of lemmas in [2] and [13]. The proof of Theorem 1.1 is the
similar to the corresponding version in [2]. For the convenience of the reader, we sketch the path until the
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we will

re are
Theorem 1.1. The proofs of the corresponding results in [2] and [13] can almost be carried over verbatim;
indicate the necessary modifications.

Lemma 3.17.For everyβ = (β1, β2) ∈N2 andj ∈N we have

sup
(s,t)∈[s0,∞)×[0,1]

∣∣∂βξ(s, t)∣∣<∞,
sup

s0�s<∞

∣∣∣∣djαdsj (s)
∣∣∣∣<∞,

whereξ(s, t)= v(s, t)/‖v(s)‖s andα(s)= (A(s) ·ξ(s)+Γ1(s) ·ξ(s), ξ(s))s (here, we adopt the convention0∈N).

Proof. This is actually a version of Lemma 3.10. from [2]. The proof remains essentially the same. The
two minor modifications: The operatorT∞(t) in [2] should be replaced by thet-independent operatorT∞ that we
introduced in the proof of Theorem 3.14. Moreover, the estimate for|α′(s)| in [2] has to be replaced by∣∣α′(s)∣∣� c′

∥∥∂sξ(s)∥∥2
L2([0,1])+ c′′

∥∥∂sξ(s)∥∥L2([0,1])+ c′′′,
which follows from the estimates that lead us to inequality (41). We then get forp > 2 andδ2> 0

‖α′‖pLp([s∗−δ2,s∗+δ2]) � 4p−1(c′)p
s∗+δ2∫
s∗−δ2

( 1∫
0

∣∣∂sξ(s, t)∣∣2dt)p ds
+ 4p−1(c′′)p

s∗+δ2∫
s∗−δ2

( 1∫
0

∣∣∂sξ(s, t)∣∣2)p/2ds + 2 · 4p−1(c′′′)pδ2

� 4p−1(c′)p‖∂sξ‖2pL2p(Qδ2)
+ 4p−1(c′′)p‖∂sξ‖pL2p(Qδ2)

+ 2 · 4p−1(c′′′)pδ2,

whereQδ2 := [s∗ − δ2, s∗ + δ2] × [0,1]; but this estimate works as well as the original one in [2].✷
Lemma 3.18.Let

E ⊆H 1,2
L

([0,1],R4)⊆ L2([0,1],R4)
be the eigenspace ofA∞ belonging toλ ∈ σ(A∞).

Then

inf
e∈E
∥∥ξ(s)− e∥∥

H1,2([0,1],R4)
→ 0

ass→∞.

Proof. This is a modification of Lemma 3.6. in [13]. The proof is very similar to [13], replace∂sξ in the estimates
by the covariant derivative∇sξ . ✷
Lemma 3.19.There existse ∈E such thatξ(s)→ e in H 1,2([0,1],R4) ass→∞.

Proof. This is essentially Lemma 3.12. in [2]. Using theL2-product

(u1, u2) :=
1∫

0

〈
u1(t),Ω∞M∞u2(t)

〉
dt

instead, the proof in [2] can be carried over.✷
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ic

(39):

.

Proof of Theorem 1.1. By Proposition 3.13 we have

v(s, t)= ∥∥v(s)∥∥
s
ξ(s, t)

= e
∫ s
s0
α(τ) dτ‖v(s0)‖s0ξ(s, t)

= e
∫ s
s0
α(τ) dτ[

ẽ(t)+ r(s, t)]
with

r(s, t) := ∥∥v(s0)∥∥s0(ξ(s, t)− e(t)),
ẽ(t) := ∥∥v(s0)∥∥s0e(t) ∈E,

wheree(t) is the eigenvector given by Lemma 3.19. Recall from the proof of Theorem 3.14 that the op
A∞ is unitary equivalent to the operatorB∞ = −i ddt acting on a suitable closed subspace ofH 1,2([0,1],R4).
Eigenvectors ofB∞ are of the formê(t)= eiλt ê(0), hence they are nowhere zero and so are eigenvectors ofA∞.
The proof thatr converges to zero inC∞ is the same as in [2], so we omit the details.✷
3.4. Proof of Theorem 1.2

We will need later the following simple observation concerning the functionα which appears in the asymptot
formula, Theorem 1.1:

Proposition 3.20.All derivatives of the functionα as in(13)converge to zero as|s| →∞.

Proof. We have‖∂ks ξ(s)‖L2([0,1])→ 0 for k � 1 and s→∞ because∂ks ξ(s, t) equals up to multiplication with a
constant the derivative∂ks r(s, t), wherer is the remainder in the asymptotic formula, Theorem 1.1. Recall Eq.

α(s)= (ξ(s),Γ1(s)ξ(s)
)
s
+ (ξ(s),A(s)ξ(s))

s
.

Differentiating with respect tos, we obtain the assertion of the proposition.✷
We denote byE the eigenspace of the asymptotic operatorA∞ belonging to the eigenvalueλ. Let e be the

generator ofE such thatξ(s)→ e ass→∞ (see Lemma 3.19). Let

πs :
(
L2([0,1],R4), (· , ·)s)→E,

πsv := (v, e)s‖e‖2s
· e

be the orthogonal projection onto the spaceE and letQs := Id−πs . The following lemma is similar to Lemma 3.8

Lemma 3.21.There are constantss0, δ > 0 so that for alls � s0 andγ ∈H 1,2
L ([0,1],R4) the following inequality

holds:∥∥(A(s)− α(s))Qsγ ∥∥s � δ‖Qsγ ‖s .

Proof. Proceeding indirectly, we assume that there are sequencesδk ↘ 0, sk ↗∞ andγk ∈ H 1,2
L ([0,1],R4) so

that

‖(A(sk)− α(sk))Qskγk‖sk < δk.
‖Qskγk‖sk



178 C. Abbas / Ann. I. H. Poincaré – AN 21 (2004) 139–185

d

With

ηk := Qskγk

‖Qskγk‖sk
we getδ1 � ‖ηk‖L2([0,1]) � δ0> 0 for someδ0, δ1 and∥∥(A(sk)− α(sk))ηk∥∥sk < δk→ 0 (44)

We estimate

‖∂tηk‖L2([0,1]) � c
∥∥A(sk)ηk∥∥sk < c(δk + ∣∣α(sk)∣∣)� 2c|λ|,

for sufficiently largek. The sequenceηk is therefore bounded inH 1,2([0,1],R4) which is compactly embedde
intoL2([0,1],R4). Hence we may assume that after passing to a suitable subsequenceηk→ η in L2. We estimate∥∥(A∞ − λ)ηk∥∥sk �

∥∥(A(sk)− α(sk))ηk∥∥sk + ∥∥(A∞ −A(sk))ηk∥∥sk + c∥∥(α(sk)− λ)ηk∥∥sk
� δk +

∥∥M∞ −M(sk)∥∥L∞([0,1])‖∂tηk‖sk + c∣∣α(sk)− λ∣∣
→ 0

and

‖−M∞∂tηk − λη‖L2([0,1]) � c
∥∥(A∞ − λ)ηk∥∥sk + |λ|‖η− ηk‖L2([0,1]),

which converges to zero, hence∂tηk converges inL2 to λM∞η which is then the weak derivative∂tη of η. We
concludeA∞η= λη, i.e.Qskη= 0 for all k. This leads to the contradiction

1= (ηk, ηk)sk �
∣∣(ηk, ηk − η)sk ∣∣+ ∣∣(ηk, η)sk ∣∣� const‖ηk − η‖L2([0,1])→ 0

and completes the proof of the lemma.✷
Our aim is now to estimateξ(s, t)− e(t), α(s)−λ and all its derivatives in absolute value from above byce−δ s .

For an integerN � 1 we introduce the vector

V (s, t) := (∂ks (ξ(s, t)− e(t)))0�k�N−1

and we want derive a PDE satisfied byV . Using Eq. (36), which is

∂sξ(s)=A(s)ξ(s)− α(s)ξ(s),
andA∞e= λe we obtain

∂s
(
ξ(s)− e)= (A(s)−A∞)(ξ(s)− e)+ (A(s)−A∞)e+ (λ− α(s))e.

Differentiating successively with respect tos and viewingπs ,Qs ,A(s)−α(s) as operators onN -tuples in(H 1,2
L )N

we obtain the following differential equation forV :

∂sV (s)=
(
A(s)− α(s))V (s)− α̃(s)V (s)+H(s)+E(s), (45)

whereH and its derivatives decay likee−|λ|s , the vectorE(s) is given by

E(s)= (∂ks (α(s)− λ) · e)0�k�N−1

and

α̃(s)=


0 0 0 · · · 0
α11 0 0 · · · 0
α22 α12 0 · · · 0
...

...
...

...



αN−1,N−1 αN−2,N−1 αN−3,N−1 · · · 0
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are
t the
of
with

αlk =
(
k

l

)
dlα

dsl
, 1 � l, k �N − 1.

We also note that

πsE(s)=E(s).
We define now the function

g(s) := 1

2

∥∥πsV (s)− V (s)∥∥2
s

and we denote byΓ (s) a matrix whose entries are zero order operators such that‖DαΓ (s)‖ � ce−|λ|s in the
operator norm. We will always use this notation if we are not concerned with the explicit structure ofΓ (s). We
compute

g′(s)= (∂s(QsV (s)),QsV (s))s + (QsV (s),Γ (s)QsV (s))s .
We continue with the second derivative

g′′(s) = (∂ss(QsV (s)),QsV (s))s + ∥∥QsV (s)∥∥2
s

+ (QsV (s),Γ (s)QsV (s))s + (∂s(QsV (s)),Γ (s)QsV (s))s
�
(
Qs
(
∂ssV (s)

)
,QsV (s)

)
s
+ (∂s(QsV (s)),Γ (s)QsV (s))s + (QsV (s),Γ (s)QsV (s))s

=: T1+ T2+ T3,

and we note that

|T2|, |T3|� c e−|λ|s
∥∥QsV (s)∥∥s . (46)

We note thatΓ (s) here is different than in the equation forg′(s), but we use the same symbol since we only c
about the exponential decay. We have also used thatV and its derivatives are bounded by Lemma 3.17 and tha
operators∂sQs , ∂ssQs have range inEN , hence the ranges of these operators are orthogonal to the rangeQs .
We will also use the facts that∂sQs −Qs∂s has range inEN and thatα̃(s)Qs −Qsα̃(s)= 0. Differentiating (45)
yields

∂ssV (s)=−∂s
(
M(v)

)
M(v)A(s)V (s)− α′(s)V (s)+ (A(s)− α(s))∂sV (s)

− α̃′(s)V (s)− α̃(s)∂sV (s)+H ′(s)+E′(s).
We evaluate

T1=
(−∂s(M(v))M(v)A(s)V (s),QsV (s))s + ((A(s)− α(s))∂sV (s),QsV (s))s
− (α′(s)QsV (s),QsV (s))s − (α̃′(s)QsV (s),QsV (s))s + (H ′(s),QsV (s))s

= T11+ · · · + T15.

If ε(s) denotes a function which converges to zero with all derivatives ass→∞ then we can estimate

|T13|, |T14|� ε(s)
∥∥QsV (s)∥∥2

s

and

|T11|, |T15|� c e−|λ|s
∥∥QsV (s)∥∥s .

We continue with the termT12:

T12=
((
A(s)− α(s))πs(∂sV (s)),QsV (s)) + ((A(s)− α(s))Qs(∂sV (s)),QsV (s)) . (47)
s s
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3.20:

e

We compute(
A(s)− α(s))πs(∂sV (s))= [−M(v)∂t − α(s)] (∂sV (s), e)s‖e‖2s

· e

= (∂sV (s), e)s‖e‖2s
(
A(s)− α(s))e

= (∂sV (s), e)s‖e‖2s
((
A(s)−A∞

)
e+ (λ− α(s))e),

so that∣∣((A(s)− α(s))πs(∂sV (s)),QsV (s))s∣∣
=
∣∣∣∣ (∂sV (s), e)s‖e‖2s

((
A(s)−A∞

)
e,QsV (s)

)
s

∣∣∣∣
� ce−|λ|s

∥∥QsV (s)∥∥s . (48)

In a similar fashion, we obtain∣∣((A(s)− α(s))πsV (s),QsV (s))s ∣∣� ce−|λ|s
∥∥QsV (s)∥∥s . (49)

We evaluate now the second term in Eq. (47) using the differential equation (45), Eq. (49) and Proposition((
A(s)− α(s))Qs(∂sV (s)),QsV (s))s
= (Qs(∂sV (s)), (A(s)− α(s))QsV (s))s + (Qs(∂sV (s)),Θ(s)QsV (s))s
= (Qs(A(s)− α(s))V (s), (A(s)− α(s))QsV (s))s − (α̃(s)QsV (s), (A(s)− α(s))QsV (s))s
+ (H(s), (A(s)− α(s))QsV (s))s + (Qs(∂sV (s)),Θ(s)QsV (s))s

= ∥∥(A(s)− α(s))QsV (s)∥∥2
s
+ (Qs(A(s)− α(s))πsV (s), (A(s)− α(s))QsV (s))s

− (α̃(s)QsV (s), (A(s)− α(s))QsV (s))s + (H(s), (A(s)− α(s))QsV (s))s
+ (Qs(∂sV (s)),Θ(s),QsV (s))s

�
∥∥(A(s)− α(s))QsV (s)∥∥2

s
− ce−|λ|s∥∥(A(s)− α(s))QsV (s)∥∥s

− ε(s)∥∥QsV (s)∥∥s∥∥(A(s)− α(s))QsV (s)∥∥s − ce−|λ|s∥∥QsV (s)∥∥s .
Using Lemma 3.21 we obtain now for larges:

g′′(s)�
∥∥(A(s)− α(s))QsV (s)∥∥2

s
− ce−|λ|s∥∥(A(s)− α(s))QsV (s)∥∥s

− ε(s)∥∥QsV (s)∥∥s∥∥(A(s)− α(s))QsV (s)∥∥s − ce−|λ|s∥∥QsV (s)∥∥s − ε(s)∥∥QsV (s)∥∥2
s

= ∥∥(A(s)− α(s))QsV (s)∥∥s(∥∥(A(s)− α(s))QsV (s)∥∥s − ε(s)∥∥QsV (s)∥∥s)
− ce−|λ|s∥∥(A(s)− α(s))QsV (s)∥∥s − ce−|λ|s∥∥QsV (s)∥∥s − ε(s)∥∥QsV (s)∥∥2

s

�
(
δ − ε(s))∥∥(A(s)− α(s))QsV (s)∥∥s∥∥QsV (s)∥∥s − ce−|λ|s(1+ δ)∥∥QsV (s)∥∥s − ε(s)∥∥QsV (s)∥∥2

s

� δ̃2g(s)− ce−|λ|s
for a suitable positive number̃δ. We remark thatg(s) converges to zero ass→∞ since the remainder in th
asymptotic formula and all its derivatives do. We introduce now the function

β(s) := g(s)+ ce−|λ|s
2 ˜2 ,
|λ| − δ
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f
g

ly
which also tends to zero ass→∞. We have

β ′′(s)� δ̃2β(s).

Definingγ (s) := β(s)− β(s0)e−δ̃(s−s0) we getγ ′′(s)� δ̃2γ (s), γ (s)→ 0 ass→∞ andγ (s0)= 0 which implies
thatγ is a non positive function. Therefore,

g(s)� β(s0)e
−δ̃(s−s0) + ce−|λ|s

||λ|2− δ̃2| � ce−δ̂s (50)

for suitable positive constantsc, δ̂. We now have to show exponential decay for|πsV (s)| and all the derivatives o
α(s)− λ. The proof will be by induction with respect toN , the length of the vectorV (s). We start by establishin
the desired estimates for the caseN = 1. We claim that∣∣(∂sξ(s), ξ(s))s∣∣� ce−|λ|s,
which follows easily from‖ξ(s)‖s = 1 since

0= (∂sξ(s), ξ(s))s + (ξ(s),Γ1(s)ξ(s)
)
s
,

where‖Γ1(s)‖ has the above exponential decay. We conclude that|(∂sξ(s),πsξ(s))s | also decays exponential
since|(∂sξ(s),Qsξ(s))s | does. We calculate(

∂sξ(s),πsξ(s)
)
s
= (e, ξ(s))s‖e‖2s

(
∂sξ(s), e

)
s

= (e, ξ(s))s‖e‖2s
(
A(s)ξ(s), e

)
s
− α(s) (e, ξ(s))

2
s

‖e‖2s
= (e, ξ(s))s‖e‖2s

((
ξ(s),Θ(s)e

)
s
+ (ξ(s), (A(s)−A∞)e)s + (ξ(s), λe)s − α(s)(ξ(s), e)s)

and (
λ− α(s))= ‖e‖2s

(e, ξ(s))2s

(
∂sξ(s),πsξ(s)

)
s
+ 1

(ξ(s), e)s

(
ξ(s),

(
A∞ −A(s)

)
e−Θ(s)e)

s
.

Recalling that infs(ξ(s), e)s > 0 we conclude that for suitable constantsc, δ̂ > 0∣∣λ− α(s)∣∣� ce−δ̂s . (51)

We compute

πs∂sξ(s)= πs
(
A(s)− α(s))ξ(s)

= 1

‖e‖2s
(
(A(s)− α(s))ξ(s), e)

s
· e

=−α(s) (ξ(s), e)s‖e‖2s
· e+ 1

‖e‖2s
(
ξ(s),A(s)e

)
s
· e+ 1

‖e‖2s
(
ξ(s),Θ(s)e

)
s
· e

=−α(s) (ξ(s), e)s‖e‖2s
· e+ 1

‖e‖2s
(
ξ(s),

(
A(s)−A∞

)
e
)
s
· e

+ 1

‖e‖2s
(
ξ(s), λe

)
s
· e+ 1

‖e‖2s
(
ξ(s),Θ(s)e

)
s
· e

so that with (51) and (50)

‖∂sξ(s)‖L2([0,1]) �
∥∥Qs(∂sξ(s))∥∥ 2 + ∥∥πs(∂sξ(s))∥∥ 2 � ce−δ̂s . (52)
L ([0,1]) L ([0,1])
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ting

do

e

f

ay

f the

tes on
Now

πs
(
ξ(s)− e)= (ξ(s), e)s‖e‖2s

· e− e=−
∞∫
s

d

dσ

(ξ(σ ), e)σ

‖e‖2σ
· e dσ,

and the integrand has exponential decay by our previous estimates. Since we have already shown that‖Qsξ(s)‖s
decays exponentially, we obtain∥∥ξ(s)− e∥∥

L2([0,1]) � ce−δ̂s (53)

for suitable constantsc, δ̂ > 0. We can now complete the proof by induction as follows: Differentia
equation (39) forα(s) we obtain

α′(s)= (∂sξ(s),Γ1(s)ξ(s)
)
s
+ (ξ(s),Γ1(s)∂sξ(s)

)
s
+ (ξ(s),Γ 2

1 (s)ξ(s)
)
s

+ (ξ(s), ∂sΓ1(s)ξ(s)
)
s
+ 2
(
∂sξ(s),A(s)ξ(s)

)
s
+ (∂sξ(s),Θ(s)ξ(s))s

+ (ξ(s), ∂sM(v) ·M(v)A(s)ξ(s))s .
All the terms containingΓ1,Θ or derivatives ofM(v) already decay at an exponential rate and will continue to
so if differentiated. We will summarize all those byH(s). SubstitutingA(s)ξ(s) = ∂sξ(s)+ α(s)ξ(s) and using
(∇sξ(s), ξ(s))s = 0, we then obtain

α′(s)= 2
∥∥∂sξ(s)∥∥2

s
+ 2α(s)

(
∂sξ(s), ξ(s)

)
s
+H(s)

= 2
∥∥∂sξ(s)∥∥2+H(s).

Hence exponential decay of all derivatives‖∂lsξ(s)‖L2([0,1]) up to orderk � 1, implies exponential decay of th
derivativeα(k+1)(s). Denoting exponentially decaying expressions byH(s), the PDE forV (s) yields

πs
(
∂sV (s)

)= πs(A(s)− α(s))V (s)− α̃(s)πsV (s)+H(s)+E(s)
= 1

‖e‖2s
[(
λ− α(s))(V (s), e)

s
e+ (V (s), (A(s)−A∞)e)se]− α̃(s)πsV (s)+H(s)+E(s),

i.e. exponential decay of(‖∂ks ξ(s)‖L2([0,1]))0�k�N−1 and( d
k

dsk
(λ− α(s)))0�k�N−1 implies exponential decay o

‖πs∂Ns ξ(s)‖L2([0,1]) and therefore of‖∂Ns ξ(s)‖L2([0,1]) in view of (50). By iteration we obtain exponential dec
for all derivatives ofα and theL2-norms of all s-derivatives ofξ(s, t). Using the PDE forV , (45), we also obtain
exponential decay of‖∂ks ∂lt ξ(s)‖L2([0,1]), and the Sobolev embedding theorem finally implies the assertion o
theorem.

3.5. The asymptotic formula in local coordinates

We will express the asymptotic formula in Theorem 1.1 in coordinates near{0} ×L for later reference.
Recall that we have used Proposition 2.1 and the modification (10) to derive the following coordina

suitable neighborhoodsV± of the pointsp± ∈L:

ψ± : R4⊃ Bε(0) →̃ V± ⊂R×M, (54)

ψ±(0)= p±,
ψ±
(
R2× {0} × {0})= (R×L) ∩ V±,

ψ±
({0} ×R× {0} ×R±

)= ({0} ×D) ∩ V±.
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symptotic
Using the coordinates(τ, θ, x, y) for R4, the contact form on{0} ×R3 is then given by

λ̂± =ψ∗±λ= dy +
(
x + q(θ)y)dθ, q(θ) := a(θ)

b(θ)

with Reeb vector field

X
λ̂± =

∂

∂y
− q(θ) ∂

∂x

(recall that the functionsa, b determine how the surfaceD is wrapping itself around the knotL, see
Proposition 2.1). Thenv±(s, t) := (ψ−1± ◦ ũ0)(s, t) is the representative of the pseudoholomorphic curveũ0 in
the above coordinates near the ends and the results of this Section 3 (exponential decay estimates, a
formula etc.) all refer to the mapsv±. We will now compute the eigenvectore(t) in Theorem 1.1 explicitly in the
above coordinates.

The vectors

ê1(θ, x, y) :=
(
0,1,−q ′(θ)y + q(θ)(x + q(θ)y),−(x + q(θ)y))

and

ê2(θ, x, y) := (0,0,1,0)
generate the contact structure kerλ̂(θ, x, y) so that the almost complex structureĴ induced byJ̃ is given by

Ĵ (τ, θ, x, y)ê1(θ, x, y)=−ê2(θ, x, y), Ĵ (τ, θ, x, y)ê2(θ, x, y)= ê1(θ, x, y), (55)

Ĵ (τ, θ, x, y)(1,0,0,0)= (0,0,−q(θ),1), Ĵ (τ, θ, x, y)
(
0,0,−q(θ),1)= (−1,0,0,0)

or

Ĵ (τ, θ, x, y)=


0 −(x + q(θ)y)
0 yq ′(θ)

−q(θ) −1+ yq ′(θ)((x + q(θ)y)q(θ)− yq ′(θ))
1 −(x + q(θ)y)yq ′(θ)

0 −1

1 q(θ)

(x + q(θ)y)q(θ)− yq ′(θ) q(θ)((x+ q(θ)y)q(θ)− yq ′(θ))
−(x + q(θ)y) −(x + q(θ)y)q(θ)

 .
Theorem 1.1 then provides the following formula for the mapv±(s, t) if |s| is large:

v±(s, t)= e
∫ s
s0
α±(τ ) dτ[

e±(t)+ r±(s, t)
]
,

wheree±(t) is an eigenvector of the operator

A±∞ :L2([0,1],R4)⊃H 1,2
L

([0,1],R4)→ L2([0,1],R4)
(A±∞γ )(t)=−Ĵ (0,0,0,0)γ̇ (t)

corresponding to some eigenvalueλ±, and we saw earlier in Proposition 3.15 thatλ± are integer multiples ofπ/2.
In fact, we will mostly be concerned with the case whereλ+ = −π2 andλ− = π

2 . The subscript ‘L’ refers to the

boundary conditionsγ (0) ∈R2× {0} × {0} andγ (1) ∈ {0} ×R× {0} ×R. The matrixĴ (0,0,0,0) is given by

Ĵ (0,0,0,0)=


0 0 0 −1
0 0 1 q(0)

−q(0) −1 0 0



1 0 0 0
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its
lify
las

s ‘flat’
so that we have to solve the following system of differential equations fore± = (e1, . . . , e4) : [0,1]→R4

ė1(t)=−λ±e4(t),

ė2(t)= λ±
(
e3(t)+ q(0)e4(t)

)
,

ė3(t)=−λ±
(
q(0)e1(t)+ e2(t)

)
,

ė4(t)= λ±e1(t),

with the boundary condition

e3(0)= e4(0)= 0, e1(1)= e3(1)= 0.

If λ is an integer multiple ofπ , we have

e(t)= κ(0,cos(λt),−sin(λt),0
)
, κ 	= 0 (56)

Otherwise, ifλ± is an odd integer multiple ofπ/2 then

e±(t)=−κ±
(
cos(λ±t),−q±(0)cos(λ±t),0,sin(λ±t)

)
(57)

for some constantsκ± 	= 0. The asymptotic formula of Theorem 1.1 then looks as follows:

v±(s, t)=−κ±e
∫ s
s0
α±(τ ) dτ(cos(λ±t),−q±(0)cos(λ±t),0,sin(λ±t)

)+ e∫ ss0 α±(τ ) dτε±(s, t). (58)

In the following we will denote byε(s, t) any R4– or real–valued function which converges to zero with all
derivatives uniformly int as s →±∞ if we are not interested in the particular function. In order to simp
notation we will often drop the subscript±. Using Proposition 3.20 we obtain the following asymptotic formu
for the derivatives ofv(s, t)

∂sv(s, t)= e
∫ s
s0
α(τ) dτ[−κ(λcos(λt),−λq(0)cos(λt),0, λsin(λt)

)+ ε(s, t)], (59)

∂tv(s, t)= e
∫ s
s0
α(τ) dτ[−κ(−λsin(λt), λq(0)sin(λt),0, λcos(λt)

)+ ε(s, t)]. (60)

We will sometimes use the coordinates given by Proposition 2.1 without making the boundary condition
as in (10). In this case the appropriate versions of (58) and (59) are the following. Ifλ± is an odd integer multiple
of π/2 we have:

v±(s, t)=−κ±e
∫ s
s0
α±(τ ) dτ(cos(λ±t),−q±(0)cos(λ±t), q±(0)sin(λ±t),sin(λ±t)

)
+ e

∫ s
s0
α±(τ ) dτ

ε±(s, t) (61)

and

∂sv±(s, t)= e
∫ s
s0
α±(τ ) dτ · [−κ±(λ± cos(λ±t),−λ±q±(0)cos(λ±t),

λ±q±(0)sin(λ±t), λ± sin(λ±t)
)+ ε±(s, t)]. (62)

Forλ± ∈ Zπ we have

v±(s, t)= κ±e
∫ s
s0
α±(τ ) dτ(0,cos(λ±t),−sin(λ±t),0

)+ e∫ ss0 α±(τ ) dτε±(s, t) (63)

and

∂sv±(s, t)= e
∫ s
s0
α±(τ ) dτ[

κ±
(
0, λ± cos(λ±t),−λ± sin(λ±t),0

)+ ε±(s, t)]. (64)
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