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Abstract

This paper is part of a larger program, the investigation of the Chord Problem in three dimensional contact geometry. The
main tool will be pseudoholomorphic strips in the symplectisation of a three dimensional contact manifold with two totally real
submanifoldsLg, L1 as boundary conditions. The submanifoldg and L1 do not intersect transversally. The subject of this
paper is to study the asymptotic behavior of such pseudoholomorphic strips.
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Résumé

Cet article fait partie d’un programme de travail plus grand : la recherche sur le probléme de Chord en géometrie de contact en
dimension trois. L'outil essentiel sont des bandes pseudo-holomorphes dans la symplectisation d’'une variété contact a dimension
trois avec la condition au bord suivante : les deux composantes de la frontieére sont contenues dans deux sous-variétés totalement
réellesLg, L. Les variétéd g et L1 ont des intersections non-transverses. Le sujet de cet article est I'étude du comportement
asymptotique des solutions.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

This paper is the first part of a larger program, the investigation of the chord problem in three dimensional
contact geometry [4—6]. LetM, 1) be a(2n + 1)-dimensional contact manifold, i.e.is a 1-form onM such
thati A (d))" is a volume form onM/. The contact structure associatedits the 2:-dimensional vector bundle
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& = kerr — M, which is a symplectic vector bundle with symplectic structiii:¢¢. There is a distinguished
vector field associated to a contact form, the Reeb vector fig]dvhich is defined by the equations

ix,dr=0, ix, =1

We denote byr, : TM — & the projection along the Reeb vector field. The Chord Problem is about the global
dynamics of the Reeb vector field. More precisely, the issue is the existence of so-called ‘characteristic chords’.
These are trajectories of the Reeb vector field which hit a given Legendrian submaniffld- (M, 1) at two

different timest = 0, T > 0. We also ask for (0) # x(T'), otherwise the chord would actually be a periodic

orbit. Recall that a submanifoll in a (2n + 1)-dimensional contact manifol@, 1) is called Legendrian if it

is everywhere tangent to the hyperplane figldnd if it has dimension. We are mostly interested in the three-
dimensional situation, the question is then whether a given Legendrian knot has a characteristic chord. The Chord
problem should be viewed as the relative version of the Weinstein conjecture which deals with the existence of
periodic orbits of the Reeb vector field.

Characteristic chords occur naturally in classical mechanics. In this context they are referred to as ‘brake—orbits’,
and were investigated by Seifert in 1948 [20] and others since the 1970’s [7,9,21,22].

In 1986, V.I. Arnold conjectured the existence of characteristic chords on the three sphere for any contact form
inducing the standard contact structure and for any Legendrian knot [8]. After a partial result by the author in [3] this
conjecture was finally confirmed by K. Mohnke in [17]. It is natural to ask the existence question for characteristic
chords not only forM = $3, but also for general contact manifolds. A new invariant for Legendrian knots and
contact manifolds proposed by Y. Eliashberg, A. Givental and H. Hofer in [11] (‘Relative Contact Homology’) is
actually based on counting characteristic chords and periodic orbits of the Reeb vector field.

The subject of the paper [6] is an existence result for characteristic chords which goes beyond the special classes
of contact three manifolds investigated so far. The purpose of this paper and [4,5] is to establish a filling method
by pseudoholomorphic curves where we use a surface M = M3 with boundary, and where we start filling
from a tangency at the boundary. Pseudoholomorphic curves are maps from a Riemann surface into an almost
complex manifoldW satisfying a nonlinear Cauchy Riemann type equation. In our case, the mawif@dhe
symplectisationR x M, d(e' 1)) of the contact manifoldM, 1). We are going to consider a special type of almost
complex structureg onR x M. We pick a complex structuré: & — & such that/ o (Id x J) is a bundle metric
on £. We then define an almost complex structureFosx M by demanding/ = J on ¢ and sending)/d: (the
generator of th&®-component) onto the Reeb vector field. Th&mp) has to mapX, (p) onto—3/dz.

If S is a Riemann surface with complex structiyirthen we define a map

u=(a,u):S—>RxM

to be a pseudoholomorphic curve if
Dii(z) 0 j(z) = J(ii(z)) o Dii(z) forallzesS.

If (s,t) are conformal coordinates dghthen this becomes:
dyii + J (i0) 3,1 = 0.

We are interested only in pseudoholomorphic curves which have finite energy in the sense that

E(@@) :=sup [ a*d(¢pxr) < +o0,
peX 4

whereX ;= {¢ € C*°(R, [0, 1]) | ¢’ > 0}. The Riemann surfac& in this paper is an infinite stri§ = R x [0, 1],
and we will impose a mixed boundary condition as follows: Let M be a homologically trivial Legendrian knot
bounding an embedded surfaPe A point p € D is called singular ifl,D = keri(p). If the surface is oriented
(by a volume forme) and if j: D < M is the inclusion, then we define a vector fieddon D by izo = j*A.
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This vector field vanishes precisely in the singular points. The flow linesaétermine a singular foliation of the
surfaceD which does not depend on the particular choice of the volume form or the contact form. This singular
foliation is also called the characteristic foliation®f(induced by kek). Let p € D be a singular point and denote
by Z'(p):T,D — T,D the linearization of the vector field in p. Leti1, Ao be the eigenvalues &' (p). We say
that p is non-degenerate if none of the eigenvalues lie on the imaginary axis. A non-degenerate singujar point
is called elliptic ifA112 > 0 and hyperbolic ifk112 < 0. In the elliptic case the critical poit#(p) = 0 is either a
source or a sink, and in the hyperbolic case it is a saddle point.

ChoosingD appropriately we may assume that there are only non-degenerate singular points, in particular there
are only finitely many. We denote the surface without the singular poinf3*hyVe consider the boundary value
problem

u=(a,u):S—>RxM,

a5l + J (1) 3,11 =0,

u(s,00) CR x L, (1)
u(s,1) C {0} x D*,

0< E(u) < +o0.

The subject of this paper is to investigate the behavior of solufidies large|s|. The finiteness condition on the
energy actually forces the solutions to converge to pgits {0} x £ at an exponential rate. We first introduce
suitable coordinates near the Legendrian knot, and we defonmar its boundary, keeping= D fixed, in order
to achieve a certain normal form f@r near its boundary. We then derive exponential decay estimatésfqr.
and all its derivatives in coordinates. In local coordinates fieathe almost complex structutg corresponds to
some real4 x 4)-matrix valued function which we denote B¥. The main result of this paper is the following
asymptotic formula

Theorem 1.1.For sufficiently largesop and s > so we have the following asymptotic formula for nonconstant
solutionsv of (1) having finite energy

Lo @4 (o(1) 4 r(s. 1), @)

wherea : [so, 0c0) — R is a smooth function satisfying(s) — A < 0 ass — oo with A being an eigenvalue of the
selfadjoint operator

Aco:L3(10,11, R 2 H;2([0, 11, R*) — L2([0, 11, R%)
Yy —Msy, Moo :=S|LmooM(v(s, t)).

v(s, 1) =e

Moreover,e(z) is an eigenvector ofi,, belonging to the eigenvaluewith e() £ 0 for all € [0, 1], andr is a
smooth function so thatand all its derivatives converge to zero uniformlyiass — co.

We will prove more about the decay pf — «(s)|, » and their derivatives:

Theorem 1.2.Letr anda(s) be as in Theorerh.1. Then there is a constadt> 0 such that for each integér> 0
and each multi-indeg € N2

sup |DPr(s, 1)
0<r<1

with suitable constantsg ; > 0.

bl

d’ -
W(a(s) — k)‘ <cpre

The subscriptL’ in HLl’Z([O, 1], R% indicates the boundary condition (see (21) for a precise definition). This
formula is an essential ingredient for the rest of the program [4—6].
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The asymptotic behavior of holomorphic strips with mixed boundary conditions similar to ours was investigated
in [19], but only for non-degenerate ends. We are dealing with a degenerate situation, i.e. the magifoRsx £
and L1 = {0} x D do not intersect transversally. The degenerate situation is much more delicate: In the non-
degenerate case the intersectigyn L1 would consist of isolated points. Having shown that a pseudoholomorphic
strip uu(s, t) with finite energy approachdsy N L1 as|s| — oo one can fairly easily see that oscillations between
two points inLo N L1 would cost too much energy, i.e. it would contraditiz) < oco. In our case we have to
show that the end of the solution cannot move along the 1-dimensioniad set.1 while |s| grows. Analytically,
degeneracy means that the operatgy above has a nontrivial kernel. The strategy is to derive estimates for the
‘components’ ofz orthogonal to the kernel ol (in a suitable sense). We will then show that they decay fast
enough to force the component along the kernel gf to zero as well.

Degenerate ends were investigated in the paper [14], but only for pseudoholomorphic cyfird@s< St
(periodic boundary condition ir). Our problem requires a different approach. The paper [19] contains the decay
estimate of Theorem 1.2 for the cg8e- 0. Eduardo Mora proved Theorem 1.2 for pseudoholomorphic cylinders
independently of the author in his Ph.D. thesis [18]. Because we are choosing dpauitid near{0} x £ solutions
to the boundary value problem (1) can be constructed explicitly near elliptic singular points on the bouridary of
(see [5]).

2. Simplifying the spanning surfaceD near the boundary

In this section we will simplify the surfac® near its boundary to obtain a normal form in coordinates near the
knot £ = 9D. This is useful for the analysis later. In particular, we will be able to produce explicitly a family of
finite energy strips coming out from elliptic singular points on the boundary.

If (M, 1) is a three dimensional contact manifold ahd Legendrian knot i/ then, by a well-known theorem
of A. Weinstein (see [23,24,1]), there are open neighborhébdsM of the knotZ, V c ST x R? of §1 x {(0, 0)}
and a diffeomorphisn¥ : U — V, so that¥*(dy + x df) = A|y, whered denotes the coordinate &t ~ R/Z
andx, y are coordinates oR2. We will refer to this result as the ‘Legendrian neighborhood theorem’. If we are
working near the knot we may assume that our contact manifold$$ x R?, A = dy + x d6) and the knot is
given byS? x {(0, 0)}. We will denote the piece of the spanning surf@&e U again byD. ChoosingU sufficiently
small we may assume that all the singular points on the @iecd/ lie on the boundary, i.e.

{[peDnU|T,D=kerr(p)} ={(6:.0.00 e S* xR?},_, ., NeN.

We parameteriz® as follows:
D={(6,x0.r),y0.r) e St xR?|r,0 €[0,1]},

wherex, y are suitable smooth functions which are 1-periodié sind satisfy
x(0,00=y(0,0)=0.

Moreover we orienD in such a way that the above parameterizati@l] x [0, 1], d6 A dr) — D is orientation
preserving. We orient by v = d/df, so that(v, v) is positively oriented, where denotes the inward normal

vector. A point(6p, 0, 0) is a singular point if and only i, y(6g, 0) = 0. Since alsdy y (0o, 0) = dyx(6p,0) =0

and D is embedded, we conclude thatx (6o, 0) # 0. The tangent spacgg, 00D is oriented by the basis

(8/00, 0,x(6g, 0)3/0x). On the other hand, the contact structure@g, 0, 0) is oriented byd/06, —d/dx). The

singular point(6p, 0, 0) is called positive if these two orientations coincide, which is the casé,fafg, 0) < 0,
otherwise(6p, 0, 0) is called negative. Hence in the case of a positive (negative) singularity, the strféezon

the side of the negative (positivejaxis. We would like to perturty near its boundary, leaving the boundary fixed,

so that the number and type of the singularities does not change and the new surface has some kind of normal form
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near its boundary. the following is the main result of this section. It is an immediate consequence of Propositions 2.2
and 2.3 below.

Proposition 2.1.Let (M, 1) be a three-dimensional contact manifold. Further,4ebe a Legendrian knot ant
an embedded surface witD = £ so that all the singular points are non-degenerate. We denote the finitely many
singular points on the boundary lay, 1 < k < N (ordered by moving in the direction of the orientation®f

Then there is an embedded surfd2ehaving the same boundary @which differs fronD only by ac%-small
perturbation supported neaf having the same singular points @sso that the following holds

There is a neighborhootl of £ and a diffeomorphisn® : U — $* x R? so that

@*(dy +xdb)=Aly, (0,x,y) e St xR2,

(L) =S x {(0,0)},

D(er) =(0r,0,0),0<01<--- <Oy <1,
dWUND)={B,a®)r,b®)r) e St xR2|6,r [0,1]},

wherea, b are smootHl-periodic functions with

b(6r) =0andb(0) is nonzero i) # 6y,

a(0r) < 0if e is a positive singular pointy (6;) > 0 if ¢; is a hegative singular point,

if ex is elliptic then—1 < b’ (6x)/a(6x) <O,

if e is hyperbolic then the quotie@i((g—kk)) is either strictly smaller than-1 or positive,

a has exactly one zero in each of the intervi#ls 6,11, k =1,..., N —1and[6y, 1] U [0, 61],

If ¢, is an elliptic singular point and ifé — 6| is sufficiently small then we hawgd) = —%a(@)(e —6r).

We consider first the situation near boundary singular points.
2.1. A normal form for the spanning surface near boundary singularities
We first simplify the surfac® near singular points on the boundary:

Proposition 2.2.Let £ be a Legendrian knot in a three dimensional contact maniféd ) and letD c M
be an embedded surface willb = £. Assume that the singular points of the characteristic foliatiorZoare
nondegenerate. Denote 18§, x, y) € ST x R the coordinates neaf, provided by the Legendrian neighborhood
theorem. IfD is parameterized by

[(0,x(6,7r),y(0,r) e S xR |re[0,1]}

near £ then there is an embedded surfa@ewith the following properties

e D' is obtained fromD by a C°-small perturbation supported near the boundary singular points leaving the
boundary fixed, i.ed0D’ = 0D = L.

e D’ has the same singular points @s

e If (6p, 0, 0) is a boundary singularity and

D' ={(0.x'6.r),y6.r) e S xR|re[0,1]}

then

b
Y'0,7)=cx'(0,r)(0 = b0) + 5x'(0, r?,
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where
1. ¢ =—1 andb = 0if (6o,0,0) is elliptic,
2. ce(—o0,—1) U (0, +00) if (6p, 0, 0) is hyperbolic.

Proof. Let us first point out how to recognize the type of the singulaity 0, 0) in the above parameterization.
Since the Jacobian of the map@, r) = (6, x (0, r)) at the point(6p, 0) has rank 2, there is a local inverse and we
parameterizé® by

D={(6.x. (yo¥ 1) ©.m)}.

where(9, x) is sufficiently near tq6p, 0). Note that in the case of a positive (negative) singular p@#to, 0) the
map¥ ~1 is only defined for non-positive (non-negative)We write

f@,x):=(yow )6, x)

and note that

e f(6,00=0,
e 9, f (60, 0) = 0 since(bp, 0, 0) is a singular point.

We may extendf smoothly so that it is defined for small| regardless of the sign af. Write

a 2, b
f(@,x):i(e—eo) +5x +c(@ —Bg)x + h(9, x)

with a = 9gg f (60, 0), b = 3, f (60, 0), ¢ = g f (60, 0), andh of order at least 3 iff6 — 6p, x). Note thata =0
and alsa: (9, 0) =0, hence

FO,x)= gxz +¢(0 — 60)x + h(B, x).

Investigate now the admissible values for the consthuatsdc. The surfaceD is given byH ~1(0), where

H@,x,y):=y— f(6,x).
Then the vector field;, which is defined byp, di = (ix,dH)d* — dH andip, A =0, is given by

~ 9 B 9
Va0, x,y) = —Bxf(G,x)£ + (x+ agf(e,x))a +x8xf(9,x)5,

and it induces the characteristic foliation tn Its IinearizationVI; @, x, y) is given by

—dxg (6, x) —0xx f (6, x) 0
( 9o f (6, x) 1+ 09x0 f(6,x) 0)
x0xg f(0,x)  0xf(0,x)+x0xx f(0,x) O

The contact structure k&(6p, 0, 0) is generated by the vectogs, 0, 0) and(0, 1, 0). We represenﬂ, (6o, 0, 0) by
the matrix

<—8xef(90, 0 —0xx f (60, 0) )_ <—c —b )

0 1430 f(60,00) \ 0 1+c)°
The singular pointég, 0, 0) is then hyperbolicit(c + 1) > 0 and elliptic ifc(c + 1) < 0. Let us translate this into
our original parameterizatio®, x (6, r), y(0, r)) of D. Using f o ¥ = y, we compute

aery(GOa 0) =c 8rx (907 0)7
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so that we are in the following situation: A singular poiég, 0, 0) is

positive ifd,x (6p, 0) < O,

negative ifd, x (6o, 0) > 0,

elliptic if (3, y/9,x)(00, 0) € (—1, 0), and

hyperbolic if(3g,y /8,x) (0o, 0) € (—oo, —1) U (0, +00).

PobhE

We will remove now the higher order terinby a perturbation. Take a smooth functign[0, co) — [0, 1] with
B=00n[0,1], 8=1o0n[2 c0) ands’ > 0. For small > 0 we define8s := B((62 + x2)/§%) and

£35(0,x) = gxz +cx(6 — 60) + Bs(0 — O, x)h (B, x).

This perturbation takes place in a small neighborhood of the singular (#irQ, 0). We have to show that the
new surface given by the graph gf has the same singularitiesBgrovideds > 0 was chosen sufficiently small.
We proceed indirectly. Assume that for any sequefics, 0 there is a singular poir®,, x,, fs, (0., x,)) on the
surfaceD;, given by the graph offs, which satisfies, — 6p)? + x2 < 282 and is different from(ép, 0, 0). If
(s xn, f5,(04, xn)) is singular then

0= 89f5n(9n7 Xn) + X

— (e 4 Lxn + B, (B — 8o, x) O B, ) + 2n 20 ,((n 0)% + 17

2 P 52

n

>h(9n’xn)
and
0= 8xf8n (On, xn)

2x (6 — 60)% + x2
= bxy + ¢y — 60) + Bs, (On — 60, Xn) 0 h (6, Xn) + 52”;8’(% h(Bn, Xn).
n n
We write shortly
2(6, — 6 2x
0= (c+ L)xn + Bs, d6h + ("Tf’)ﬁgnh, 0= b, + (6 — 00) + P, dch + 565, . 3)
n n

Remark. The reader should be aware tifgt is not the derivative ofs,, but the rescaled derivative gf

, (6, — 00)% + x2
IB(Sn:::B( 803 u )

Eq. (3) is the same as
wm o\ 1 c 0
(en_eo)_—c(c“) (_b c+1) H (0. 20) (4)

B, doh + 2050 B
Bs, dxh + ix—gﬁénh ;

with
H 0y, xp) = — (

which satisfies
H 6y, xn)
— 50
V(O — 60)% + x2
asn — oo sinceH is of order at least 2 i, — 6o, x,,). Dividing Eq. (4) by,/ (6, — 60)% + x2 and passing to the
limit » — oo we obtain a contradiction.
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Hence we may assume tHatis given by the graph of
b
f@,x)= Exz +cx(0 — 6o)
for x2+ (9 — Hp)? sufficiently small. Consider now the case whéig 0, 0) is an elliptic singularity. Take the same
smooth functiorg as before and define fér> 0

0 —600)%+ x2\ b
%)y%m(@-@o),

so that fs = f if (0 — 6p)2 + x2 > 252 and f5(8,x) = cx(6 — ) if (O — )2 + x2 < §2. Writing Bs :=
B(((6 — 60)% + x2)/82), B} := B'(((8 — B0)? + x2)/8?) as before, the condition @b, x, f5(6, x)) being a singular
point is

2
0_( c bﬂa+%ﬁ§)<9_eo)
g o+l g

which implies

fs(0, x) :=ﬁ<

2 x2 / x4 N2
O=clc+1D—b ﬁﬁéﬁa-i-y(ﬁg) <cele+1)
in contradiction to the fact thabp, 0, 0) is an elliptic singularity. Hence we may assume that

f@,x)=cx( —06p)

near an elliptic singularity6p, 0, 0), wherec € (—1,0). Now we will carry out a last modification to achieve
c= —%. We take a smooth function

B:R— [min{c, —1/2}, maXc, —1/2}] C (-1, 0)
with B(s) = —% for |s| < 1 and B(s)=c for |s| > 2. Define for smalf > 0

(0 — )% + x?
52
Again, we did not create any new singular points. This completes the proof of Proposition2.2.

f5(0,x) 1=,3< )x(@—@o).

2.2. Perturbing the spanning surface near the Legendrian knot
We will now show the following:

Proposition 2.3.Let £ be a Legendrian knot in a three dimensional contact manifé#d ) and letD be an
embedded surface withD = £. Assume that the singular points &hare non-degenerate.

Then there is an embedded surfa®ewith 9D’ = £ which differs fromD by aC%-small perturbation supported
near £ and leavingl fixed so tha® andD’ have the same singular points and the following holds

There is a neighborhoot! of £ and a diffeomorphisnd : U — ST x R? so that

1. @*(dy +xdo)=Aly, 0,x,y) € ST xR,
2. &(L£) =S x {(0,0)},
3. 6(UND)={®B,a@)r,b@)r)e St xR|0eS1~R/Z, r €0, 1]}, where

0> (a(Q))
b(6)
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is a smooth closed curve R?\ {0} with the following properties

a(d)
@) th(£) = de{@ > (b(e) ﬂ

wheretb denotes denotes the Thurston—Bennequin invariant of the Legendria(skefi0]).
(b) b(hp) = 0if and only if®@~1(6g, 0, 0) is a singular point or_,
(c) asingular point® ~1(6p, 0, 0) is
(i) positive(negative if a(6g) < 0 (a(6p) > 0),
(i) elliptic if ¢ =b'(6p)/a(60) € (—1,0),
(i) hyperbolic ifc = b’ (09) /a(6p) € (—o0, —1) U (0, +00),
(d) for 6 near6p, where® ~1(6g, 0, 0) is a singular point, we have®) = c¢(6 — 6p)a(6),
(e) if @~1(6,0,0) and®~1(61, 0, 0) are singular points of opposite sign witlg < 61, so that all the points
(8,0, 0) are non-singular fol € (0o, 1), thena has exactly one zero in the interv@h, 61).

Proof. We parameteriz® again by
D={(0,x06,r),y06,r) et xR?|6 S, re[0,1]}
and we expand, y as follows:
x(0,r)=0,x0,0r+h@®,r),
y(0,r)=0,y0,0r +k(,r),
whereh, k are of order at least 2 inand 1-periodic ir6. For smallr and|6 — 6g|, where(6p, 0, 0) is a boundary
singular point, we have

y(©,r)=cx(®,r)(©6 — 6) + gxz(e,r) (5)

by Proposition 2.2. In the case of an elliptic singularity we may assumecthat—% andb = 0. We want to
perturbD near its boundary leavingD fixed, so that the higher order termisand k disappear. We will only

indicate the necessary steps and leave the details to the reader. The verification that no new singularities are
created is completely straight forward using the normal form (5) near the singular points. Pick a smooth function
B:[0,00) — [0,1]with B=00n[0,1], B=10n 2, c0) and 0< B/(s) < 2 for all s > 0. We define

x5(0.7) := 8,x(6. O)r +ﬂ<g)h(9, ),

v5(0, 1) = 8, y(0, 0)r +,3<§)k(0, -

and
D5 ={(6,x5(6,1), y5(6,r)) € S* x R* |6 € S*, r € [0, 1]}.

Forr > 26§ the perturbed surfacB;s coincides withD and we havéDs; = aD = L. The surfacéD; has the same
singularities on the boundary &% and thatDs has no singularities in the range<Or < 2§ provideds > 0 was
chosen sufficiently small. It remains to verify that the surfages embedded for sufficiently smail If it were
not then we could find sequencis\, 0, 0< 7y, r;, < 26, andé; such that

(9,x5, Ok 1) 8- ys, Bk, 1)) = (0, 0)

for all k¥ (surface not immersed) or
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x5 (O, 1) = x5, Ok, 1)
Vo Ok, %) = yo, Ok, 1)
for all k (surface has self-intersections). Both assertions contradict the facbthé&t, 0), 9, y(6, 0)) # (0, 0) for
all 9, and can therefore not occur.
Hence we may assume that n&€awe have
D=1{0,a@)r,b@)r) e St xR?|r e[0,11},

where the map

0> <a(9))
b(0)
is a closed curve iR?\{0}. A point (6p, 0, 0) is a singular point if and only ib(6p) = 0 and it is

positive ifa(6p) < 0,

negative ifa (6g) > 0,

elliptic if b’'(6p)/a(6p) € (—1,0) and

hyperbolic ifb’ (6p) /a (8g) € (—o0, —1) U (0, +00).

PR

If r andd — 6g are sufficiently small, wher@o, 0, 0) is a singular point, then we compute with the normal form (5):
b(0)=109,y(0,0)=cdx(0,0)(0 — 6p) =ca(8)(@ — bp), (6)

so if we use the parameteis p = a(9)r) instead of(9, r) thenD is given by
D={(0,p,cp(0 —60))} near(6o,0,0).

Hence the modification that we carried out Pnin this section did not affect the normal form near boundary
singularities that we have constructed in the previous section.

In this picture it is easy to understand the Thurston—Bennequin invariant of th&€khet us shiftL along the
Reeb vector field to get a knot

£ :=1{6,0,8) e s* x R?| 0 [0, 1]}
with some small constaidt Then£’ andD intersect if and only if
8
a@)=0 and r=——.
b(6)

The conditiorz(9) = 0 means that the Reeb vector fidg is tangent tdD at the point(, 0, §). Without affecting
the value of the intersection number(ift, D) we may perturb the loofu (), b(9)) slightly so thata’(§) # 0
whenever (6) = 0. Then we compute with = dy + x d6 and

S:={0€[0,1]|a(¥) =0 and sigb(8) = signs} :

1 0 1
tb(c)zZsign{(mczx)wm((a/(e)a/b(e)),< 0 )(o))}
0eS b ()8 /b(0) b(9) 0

=Y sign—sa'(9)]

0eS

o (23]
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Assume now that6p, 0, 0) and (61, 0, 0) are singularities of opposite sign witly < 61, so that all the points
(0, 0,0) with 6 € (69, 61) are not singular. Let us assume tk@, 0, 0) is the negative singularity. Then

e b(6p) = b(61) =0 andb is nonzero on#, 61).
e a(fp) >0, a(6r) <O.

We would like to perturtD nearL, leaving the boundary fixed, so thatas only one zero in the intervély, 61).
Lets > 0 and pick a smooth functiohiso thats = 0 on [0, §] andB = 1 on[28, c0). Leta be a 1-periodic function
which coincides withu except on some intervéy + ¢, 61 — €], and which has exactly one zero betw@grand
61. We define

a@.,r):=(1-B(r))a®) + pra®)
and denote the new surface by
Ds:={(0,a®,r)r,b®)r)},

which has the same number and type of singularitie®abecause we did not change the functibrand
becausez coincides witha near 6y and 61. Moreover,Ds is embedded since it is immersed and the map
@,r)— (8,a(0,r), b(0)) is also injective. This completes the proof of Proposition 2.3.

Remark. The negative singularities correspond to the points where the durlre a(®) +ib(0) € C\{0} hits the
positive real axis. Similarly, positive singularities corresponds to the intersectipmith the negative real axis.

2.3. The non-Lagrangian part of the boundary condition

The submanifoldR x £ is a Lagrangian submanifold of the symplectisati®x M, d(e’1)). However, the
submanifold0} x D is only totally real with respect to anyaway from the singular points. These two submanifold
serve as boundary conditions for our boundary value problem, and we have to find a way to d¢@} wifh in
order to derive apriori estimates. The problem is the following: The fibers of the vector bundtes £) and
JT (R x L) are orthogonal with respect to thieinvariant metricg = d(e'A) o (J x Id) while T ({0} x D) and
JT ({0} x D) are only transverse, but not orthogonal. On the other hand, we will need this orthogonality to prove
asymptotic decay estimates later (without it certain operators would fail to be self-adjoint). The way out is the
following: Instead of using the metrig above, we use a different one where we have orthogonality. We will be
able to control this metric if we do estimates later on. There is a 2-formaar the intersection sfd} x L of R x £
and{0} x D which is hondegenerate away from the singular points so that both submanifolds become Lagrangian
with respect taw, andw is compatible with the almost complex structureln general, we cannot expestto be
closed, unless we weaken our requirements and replace compatibility by tameness (i/e) > 0 for all v # 0).

It will turn out that we need the compatibility condition, but we do not neetb be closed. We construct such
a 2-form explicitly in local coordinates. We will confine ourselves to a special almost complex struchear
{0} x £ which will also be used in the subsequent papers [4-6].

From now on we pick an almost complex structdren R x M, where the corresponding: & — ¢ has the

following form in local coordinatesear{0} x L:

J(@,x,y)-(1,0,—x):=(0,-1,0), J(@,x,y)-(0,1,0):= (1,0, —x). (8)

Lemma 2.4.1f U, ¢ M are disjoint open neighborhoods of the singular poiats k = 1,..., N, on the
boundaryL = dD then there exist an open neighborhoddc M of £ and a nondegenerat2form « defined
onW =R x (V\ Uy Uy) CR x M, so thatw|roxp) =0, w|rrxc) = 0 and the formw is compatible with/,
i.e.wo (Id x J) is a Riemannian metric.
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Proof. Use the coordinate®, x, y) € R3 near£ which we derived in Section 2, where the contact form equals
dy + x d6 and{0} x D is represented by
{(0,0,a(0)r,b(®)r) € {0} x R® | ,0 € [0, 1]}.

Denoting the standard Euclidean productRh by (-, -), we have to find a function with values in the set of

skew-symmetric 4« 4-matrices2(z, 6, x, y) such that

1. (-, 2J.) is a metric,
2. (v, 2w)|(z,0,00 =0forallv,w € T(r,9.0,0/(R x £),
3. (v, Qw)|(0)9)q(9)y,y) =0forallv,we T(o’g’q(g)y)y)({O} x D), Whereq(e) =a(0)/b(6).

The matrix ofJ is given by

0O x 0 -1
~ 0O O 1 0
J(t,0,x,y)= 0 -1 0 0
1 0 —«x O
We write 2 = (Wr1)1<k,1<4 with wi; = —wyi. If we choose

w(1,0,x,y)=—xCdt AdO —q@)dt Adx +Cdt Ady —dO Adx +q(0)dO ANdy

andw = (-, £2.), where
C > max{0, supg®(9)},

then the matrix2 J is positive definite ifc, y are sufficiently small. o

3. Asymptotic behavior at infinity

Assume we have a solution of:
u=1(a,u).:S—RxM,
st + J (1) 0,01 = 0,
u(s, 00 cRx L,
(s, 1) C {0} x D**,

E(@) < 400,
whereS := R x [0, 1] andD** is the spanning surfad without some open neighborhoédof the set of singular

pointsI”. We will show that the condition of finite energy forces the solution to converge to points on th&€ knot

9)

for |s| — oo, more precisely

u(s,t) > pL {0} x L
ass — +oo uniformly in r. We will also show that this convergence is of exponential nature. This fact will be

crucial for the nonlinear Fredholm theory in [4].
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3.1. The solutions approach the Legendrian asymptotically

As a first step, we will show that the ends of a finite energy giffifave to approach the kn@} x LC R x M
asymptotically. This actually works under the weaker assumptionl) € {0} x D. The main result of this section
is Proposition 3.4 below.

Lemma 3.1.Assumei: S — R x M satisfies Eq(9) above. If in addition

/u*dk:O

S
thenz must be constant.

Proof. The mapi = (a, u) satisfies the following system of equations:
7 05u + J ()7 0;u = 0,
0sa — A(u)o,u =0,
ora + A(u)osu = 0.

Since

/u*dk:/d)»(masu,ma,u)ds/\dt
s s

1
~5 /['”Aasuﬁ + |7TA3tu|3]ds Adt
s

=0,
where| - |§ =dM\(-, J.), we conclude that; d;u = 7, 0,u = 0 and therefore
Aads Adt = —d(daoi)=u*dr=0,
henceu: S — R is harmonic and satisfieds, 1) = 0. Because of (s, 0) € £ we also have
dra(s,0) = —A(u(s, 0))8.yu(s, 0)=0.
Define nowf : S — R by

t

fis,0) 2=/8sa(s, 7)dt
0
so thatd, f = d;a and

t
05 f(s, 1) =— / dyra(s, 7)dt = —da(s, t) + d;a(s, 0) = —d,a(s, 1).
0
Then® :=a +if:S — Cis holomorphic and satisfies

D(s,0) eR, d(s, D eiR.
Casel. |[V@| is boundedWe define
@:5:=Rx [-1,+1]—>C
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by
D(s,1) if t >0,
&(s,—1) ift<DO.
Note that® is holomorphic. Let
b:=d;(Red):S — R.
Thenb is harmonicC := supg |b| < +oo by assumption anfi(s, +1) = 0. Defining

D(s,t) = {

t N
8(s, 1) 1= / asb(s, v)dt — / &b(c,0)do,
0 0
we computed, é = d;b and d;¢ = —d;b, hences := b + i¢: S — C is holomorphic with bounded real part. The
functiong := ¢° is also holomorphic and satisfies
lgl <e©,  |g(s,£D|=1
Lete > 0 and define a holomorphic function @rby
1
We compute withy = s + it

he(z) =

2 1
h = <1
[re @) (14 e(1+1)? + €252

Fors # 0 we haveh, (2)|2 < 1/(¢252), hence the holomorphic functigh, satisfies
|g(2)he(2)| <1
whenever, € 352, where
2= [—8_1€C, 8_1ec] x [—1, +1].
Using the maximum principle, we conclude thgk.| < 1 on all of £2, but outsides2 we also have
e
lg@h:(2)| < — < 1.
els|

Keepingz € S fixed and passing to the limit\, 0 we conclude thafiz(z)| = ¢’@ < 1, henceéb(z) < 0. Repeating
the same argument with$ instead ofs, we also obtain-b(z) < 0, henced; (Red ) = h(z) = 0. We know now
that Red is harmonic, does not depend prand satisfies R@ (s, 1) = 0. This implies that R is identically
zero and therefore algo= 0. In view of

Oglt = 77, 05U + ()\(u)85u)XA(u)
and
du = 710u + (A(u)dyu) X (u)

we conclude thak must be constant.
Case2. |V@| is unboundedPick sequenceg € S, &, \ 0 so that

e |[VP ()| — +oo.
By a lemma of Hofer (see [15], Chapter 6.4, Lemma 5 and [1]) we find sequenees; + if; € S, g\ 0 so that

o &Ry :=¢ex|VD(zi)| = +o00,
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o |z — | <&,
o |V@(7)| < 2R, whenevellz — zi| < &k.

We may assume without loss of generality that> o € [0, 1]. We consider the following cases after choosing a
suitable subsequence:

1. -t Ry — —o0,
(@) Re(1—1) — [ €[0,+00),
(b) Ri(1—1tx) — +o0,
2. —tx Ry — —l € (=00, 0], thenR; (1 — ;) — +oo.
Let us begin with the case 1(b). We define
2 =R x [—thk, R, (1— tk)]
and the holomorphic maps; : 2, — C by
Di(2) = D (2 +2RY) — D (z)
so that
|Vor(0)| =1, @ (0)=0
and
|Vor(z)| <2

if z € B, g, (0) N £2;. Using the Cauchy integral formula for higher derivatives we find for each compact stibset
of C a numberkg so thatk C B, r, (0) N §2; for all k > kg and all the map@; are bounded ilC°°(K) uniformly

in k > ko. By the Ascoli—Arzela theorem, some subsequenc@bgf converges irC>. to an entire holomorphic
function¥ satisfying

loc
Vo ()| <2, |[Vw(©0)|=1 and ¥0)=0.

By Liouville’s theoremy must be an affine function. Léte X and definep;, € ' by
Pr(s) :=p(s — Red(z))

and
Te(s, 1) :=¢'(s)ds A dt.

We estimate using*d\ = 0:

/@Z‘w:/@*wk :/qb,’c(a)@*(ds/\dt)
S

(973 S

=/¢,Q(a)daAu*A:/zZ*d(¢kx) < E®@).
S S
For every compack c C we have

/@D;:t(p ki;o/lp*t(p.
K

K
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It follows for non constany € X

+00=/¢/(S)dSAdt=/r¢=/lI/*t¢,<E(zl).
C C C

This contradiction t& (1) < o0 shows that case 1(b). cannot occur. We will proceed similarly with the remaining
cases 1(a). and 2. Let us continue with case 2. We define

2 =R x [0, R]
andforz=s+4it € 2k, zk = sk + ity

Pi(2) 1= D (s + 2R ) — Prelsp),
so that

|VOr(iRit)| =1, ®x(0)=0
and

|Vor(z)| <2

whenever; € B, g, (i Reti) N 2. Reasoning as before we obtaiif.-convergence of some subsequencedy)
to a holomorphic maw : H+ — C, whereH* denotes the upper half plane@ Since we have, (R) C R for
all k, we also obtain

wOH) CR.

Moreover|Vy (z)| < 2, ¥ (0) = 0 and¥ is not constant. Using the Schwarz reflection principle we can extend
¥ to an entire holomorphic function with bounded derivative, so thaihust be an affine function by Liouville’s
theorem. In view o (0) = 0 and the real boundary values we have actuélly) = «z with some nonzero real
numbera. We compute as before with nonconstant X':

/qam =/¢*r¢k < Ei),
2 K
wheregy (s) := ¢ (s — Red (s¢)), which implies
/ Uty < E(l) < +o00.
o+
But on the other hand
/ Uty = |af / @' (s)ds Adt =400,
H+ H*
so that case 2. is impossible. We are left with case 1a. We d&fine- R x [0, R;] and forz € £2;
i(2) =P (s +i — R 'z) — D(se +1).
We have
|Vor(iRk(1—1))| =1, P(0)=0
and

V()| <2



C. Abbas / Ann. I. H. Poincaré — AN 21 (2004) 139-185 155

whenever € B, g, (i Rk (1 — 1)) N $2¢. Moreover
@1 (R) CiR.

Again, a subsequence 0p;) converges irC2:. to a holomorphic map
w:H" - C

with [V¥ (2)| < 2, ¥ (0) = 0 and¥ is not constant. Defining

v (z) ifIm(z) >0,

V@ ::{—uTz) if Im (2) < O,

we obtain an entire holomorphic function with bounded gradient which has to be affine . ys{a¢E™) C iR we
have¥ (z) = iaz with some nonzero real number Then

£ > [aden = [ ¢@dands
H+ H+
= / o?¢ (—at)ds Adt = || - /qb'(t) ds Adt,
H* H+
but if we take ap € X which is not constant of0, +o0), thean+ ¢’ (t)ds A dt = +oo. This is a contradiction to
the finite energy condition. Hence we have shown {Wa®| must be bounded, and therefarés constant. O

Remark. There are similar results fai defined on the whole plan€ [12,1] and fori defined onH* with
boundary conditiorR x £ [2]. In the case of a finite energy strip: S — R x M with boundary condition
i(3S) C R x £ we cannot conclude frorfi, u*d = 0 that is constant (see [2]).

We will omit the proof of the following lemma since it is similar to the proof of Lemma 3.1.:

Lemma 3.2.Letii = (a,u): HT — R x M be a solution ob,i + J (i1)9,ii = 0 satisfying the boundary condition
#(dH ') C {0} x D* and the finite energy conditioB(ii) < 4-o0. If aIsofH+ u*di = 0thena must be constant.

Lemma 3.3.Leta be as in Eq(9) and assume that(S) is contained in a compact subsetMf Then

sup Vii(z)| < +oo.
zeS

Proof. We prove the lemma indirectly. Then using Hofer's lemma we can find sequence®, z; € S so that

o g Ry :=¢r|Viu(zy)| — +00,
o |Vii(z)| < 2R; whenevelz — zi| < &k.

Writing zx = sx + itx, we have to consider the following situations:
1. — 4Ry —> —o0,
(@) Ri(1—1n) — 1 €[0, +00),
(b) R—k(1—1;) = +o0,
2. —tx Ry — —l € (=00, 0], thenR; (1 — ;) — +oo0.

Rescaling in the same way as in the proof of Lemma 3.1, i.e.
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ik (z) = (a(zx + R 2) — a(ze), u(zk + Ry 'z)) - for case 1(b),
it (2) = (a(s + Ry '2) — alse), u(se + Ry '2)) - for case 2
and
ik (z) = (a(sk +i — R '2) —alsk +i), u(sk +i — R 'z))  for case 1(a)

we obtain 7> -bounds uniform ink, where we have to use the usual elliptic regularity estimatesi fes

dsil 4+ J (i1)d,ii to obtain bounds for the higher derivatives. Again by the Ascoli-Arzela theorem a subsequence
of (iix) converges to some nonconstant map

w=B,w):2—>RxM,
wheres2 = C in case 1b an®2 = HT in cases 1(a) and 2. In all these cases we have
AW+ J (W) w =0
and
V()| <2
In case 2, we hav@(d HT) C R x £, while we haven (d HT) C {0} x D* in case 1(a). Denote b, the domains
of definition of the rescaled magg, which are the same as in the proof of Lemma 3.1. We claim that

o E(w) < E(in),
° fg w*dAr =0,

We then have derived a contradiction, becatiseould have to be constant (Lemma 3.2 for case 1(a), [2] for case 2
and [12,1] for case 1(b)). So let us prove the claim above.
Considering case 1(b) first, we tae= > and definep, € X by

D (s) = p(s —a(z)).
Then
i} d(gh) = / 7 d(d) < / & d(dyh) < E(@)
Bkak 0)N$2y, Bsk(zk)ﬂ(Rx[O,l]) Rx[0,1]
Now choose any compact subgétof £2 and findkg € N so that for allk > kg
K C BRre, (0) N $2%.
Then
/ﬁ;d(ﬁ) <E@m) Vk>kg
K
and therefore

/@*d(qﬁk) < E(u).
K
Since this holds for all compact subsétsof 2 we obtain

/ Td(¢1) < E (@)

2
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and finally taking the supremum over allc X:
E(W) < E(@).
Now let K be any compact subset 6f. Then fork large enough we hav€ C Bg,, (0) N £2; and
/w*dkgy'/w*dk—/uzdk’—i— / uipdx
K K K Brye, (0N
<‘/w*dk—/vzdk’+ / udx.
K K B, (z)N(Rx[0,1])
The first term converges to zero fbr~ +o0, but the second one also does because of
/ u*dr= / i* d(¢or) < E(i) < +00
Rx[0,1] Rx[0,1]
wheregg = 1 € X. This implies finally

/w*dk:O

2

because the integral vanishes over any compact subsat of
In the cases 2 and 1(a) the proof of the claim above is essentially the same up to some minor modifications. We
have to define

Pr(s) = (s —a(sy)) incase2
and

Pr(s) =¢(s —a(sk +i)) incase 1(a)
Moreover we have to replacd. g, (0) by Bgr, (iRitx) in case 2 andBg.g, (iRx(1 — #)) in case 1(a)
respectively. O

Proposition 3.4.Leti be a solution of Eq9). Then every sequentg )ren C R satisfyings; — 400 ors; — —oo
has a subsequence;)ren, SO that there is a poing € £ with

ii(s. 1) =3 (0, p)

in C*([0, 1]).

Proof. Take any sequendg;) as above and define
Uy S—RxM
by
ik (s, 1) == (a(s + sp, 1) —a(sy, 0), u(s + s;.,1)).
SinceJ does not depend on tfie-component oR x M, we have
dsiix + J (i1g) 3ty = O.
Moreover withiiy = (ar, ux):
ar(0,0) =0,
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ur(s,00eRx L
and
ik (s, 1) € {0} x D*.

Lemma 3.3 provides a gradient bound for the mapswvhich is uniform ink. By elliptic regularity we obtain

uniform C7 -bounds and a subsequence@f) converges irC7. to some

w=(B,w):S—>RxM
satisfying

3 + J ()3 =0,
w(s,0)eR x L,
w(s, 1) € {0} x D*,
B(0,0)=0,
E(w) < +oo

and

sufgvVin(z)| < +oo.
zeS

We know that for eacl® > 0
updr — / w*di
[—R,RIx[0,1] [—R,RIx[0,1]
ask — oco. But

k— o0

updi= / u*dr— 0,

[—R,R1x[0,1] [—R+sk, R+sk]x[0,1]

where(sy) is a suitable subsequence(®f). This holds because‘da is a non-negative integrand agfgu* dir <
E () < +o00. Hence

w*dr=0
[—R,R]x[0,1]

for everyR > 0 and therefore

/w*dk:O.

N

Lemma 3.1 implies now thal must be constant, i.ér = (0, wg), Wherewg € £ might depend on the sequence
s,/( that we chose to defing.. Henceu(s + sk, t) — wo in C\, in particularu(sg, t) — wo in C*([0, 1]).
Moreovera(s + sk, t) — a(sx,0) — 0 in C2%.. Choosingt = 1 we see from the boundary conditiaits, 1) = 0
thata(si, 0) — 0 and therefore(si, 1) — 0in C*°([0,1]). O
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3.2. Existence of an asymptotic limit and exponential decay estimates

Proposition 3.4 implies that the ends of a finite energy strgpproach the Legendrian knf@l} x £L C R x M.
We will go one step further and show that a solution of Eq. (9) has well-defined asymptotic limits. We will also
show that the convergence to these asymptotic limits is of exponential nature. The special coordinates derived in
Proposition 2.1 will be particularly helpful.

Proposition 3.5.Let# be a finite energy strip as in E(R). Then there are pointg., p_ € £ so that
(s, )" =57 0. pe)

in C*°([0, 1]).

Before we start with the proof of Proposition 3.5, let us choose convenient coordinates. We will also confine
ourselves to the ‘positive end’— +oo since the negative end is treated in the same way. By Proposition 3.4 we
can find a sequeneg — +00, SO thati(sx, t) converges to some poifld, p+) € {0} x £in C*°([0, 1]) ask — oo
and we may describg(s, t) by the coordinates provided by Proposition 2.]s|fis large enough. This is because
(s, t) remains near the s¢d} x L for large|s|. Moreover, our assumptions imply that the ‘endsuctay away
from the singular points. We introduce the following change of coordinates away from the singular points:

0
RxSlsza(t,O,x,y)»—)(t,@,x—&)y,y). (10)

We recall (Proposition 2.1) that the spanning surfRoeear its boundary is parameterized by

x\ _ a(®)
<y>_t'(b(9>>’ ’E[O’”}

for suitable functiong, b: S — R, and the singular points correspond to the zerds of

After this coordinate change we may replaRex £ by R? x {0} x {0}, the set{0} x D** corresponds to
{0} x R x {0} x R* with + = sign(b) and we may assume that the pai@f p. ) corresponds to 0. Moreover, the
contact formh = dy + x d6 changes to

{(Q,x,y)eSl x R?2

N a(9)
r=d ——vy)do, 11
y+<X+b(9)y) (11)
so that the contact structure at the pdiitx, y) is generated by
d 0 ad d
— — x+&y — and — (12)
a0 b@®)" ) ay 9x
and the Reeb vector field changes to
X, =l _a®© 2
dy b(9) ox

Our differential equation (9) has the following form:
v=(1,0,x,y):[s0,00) x [0,1] - R,
dsv + M(v)d;v =0, (13)
v(s,0) € Lo = R? x {0} x {0},
v(s,1) € L1 ={0} xR x {0} x R.
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The numbersg is chosen in such a way thats, ) lies in the domain irR x M where the above coordinates
exist. The mapV/ is smooth and bounded with values in GI%Rso that all the derivatives are bounded too and
M? = —Id. Because the almost complex structurés compatible with the 2-form constructed in Section 2.3,
we have in addition

MTQM= and QM >0,

where£2 is a smooth bounded map with bounded derivatives and values {(RBlso that2” = —2. We also
note that

(v, 2(q)w)=0 (14)

for g, v, w € Lo or ¢, v, w € L1 since the boundary conditios x £ and{0} x D** are Lagrangian with respect
to the 2-formw (here(-, -) denotes the standard Euclidean producR8h Proposition 3.4 implies that

sup {Irl,Ixl. ly|}—=0 (15)
[s,00) x[0,1]

ass — oo, while we only know that

|9(Sk, ')|C0([0,1]) -0 (16)
ask — oo. Moreover,
sup |0%v| =0 (17)
[s,00) x[0,1]

ass — oo for all multi indicesa with |«| > 1. Our proof of Proposition 3.5 consists of showing that the component
0 (s, t) converges to zero as well uniformly inand it will lead also to the following exponential decay estimates:

Theorem 3.6.There exist numbers, s’ > 0 so that we have the following estimate for each multi indlexN2,
|| >0ands > s’:

sup |9%u(s, 1)| < cae P,
t€[0,1]

wherec, are suitable positive constants.

Proof of Proposition 3.5. In the following we always assume> sg so that our boundary value problem (9) can
be written in coordinates as (13). While we proceed with the proof, it will be necessary to successively choose a
larger constantg. We will still denote this constant byy.

We consider the following family of inner products @3([0, 1], R%):

1
(y1, v2)s := /(Vl(t), 2(v(s, )M (v(s, 1)) y2(n))dt, (18)
0

wheres > so and where(-, -) denotes the Euclidean product BA. We will in future write M (s, 1) and £2(s, 1)
instead ofM (v(s, 1)) and$2 (v(s, t)). In view of (17) we have for all multi indices € N with || > 1

|0%82(s, 1)

I*M(s,t)| - 0 19)

9

uniformly in ¢ ass tends to+oc. Then the normg - ||, on L2([0, 1], R%) induced by the products (18) are all
uniformly equivalent to the usudl® norm|| - ||, i.e. there are positive constamnyt ¢1 independent of so that

coll - I < I-lls < call -l (20)
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Define the following dense subspaceldf([0, 1], R%):

H}?(10,1,R%) := [y € HY?(10,1],R*) | y(0) € Lo, y(1) € L1}, (21)
where

Lo:=R?x {0} x {0} and Li:={0} xR x {0} x R.

In view of the Sobolev embedding theorem this definition makes sense. We consider the following family of
unbounded linear operators @3 with domain of definitiont-*:

L?(10,1],R%) > H;-%([0, 1], R*) — L2([0, 1], R%)

(A®)y) () == =M (s, 07 (1).

Since the proof of Proposition 3.5 requires some work, we break up the proof into several lemmas. The following
straightforward lemma summarizes some properties of the operétors

Lemma 3.7.The adjoint operatorA(s)* of A(s) with respect to the.?-product (18) has the same domain of
definition asA(s) and is given by
(A )0 = (A®)y) @) = (B@6)y) @),
where® (s): L3([0, 1], R*) — L?([0, 1], R% is the following zero-order operator
(O©)) @) :=M(s,02 (5,03 2(s, Dy ().
Moreover,® (s)(H12) c HY2, ©(s) is antisymmetric and
Hask@(s)Hﬁ(Lz,Lz) —0 ass— oo, (22)

wherek > 0.

Our differential equation (9) can then be written as
(s, 1) = (A()v(s)) (1), (23)

with v(s) := v(s, -). The kernelA of the operatorsA(s) consists of the constant paths with imageLinn L1,
which is a 1-dimensional set. Let

Py:L?([0,1],R*) — A
be the orthogonal projection with respect to the inner product (18) and let

Qs :=Id— Ps.
Since the kernels of the operatotss) all agree, we have the following important property:

The operators; Q;, 955 Qs have image im. (24)
The following estimate is crucial:

Lemma 3.8.There are constantg), § > 0 so that for alls > sg andy € HLl’z([O, 1], R%) the following inequality
holds

lAG)y ], = 8105 lls.
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Proof. Proceeding indirectly, we assume that there are sequépced, s 7 oo andy, € HLl’Z([O, 1]1,R% so
that

HA(Sk)J/k Hsk < Okl Qs Viell s -
Consider now

st Vk
o = ————,
1 Qs VIl sy
-1 -1
sothat O< ¢y~ < |laxll 2 < ¢y~ and
llkll 2 < || Ask)o ||Sk < 8.

Here we have used that the noriing|,; > and|| - ||, are equivalent (20) and that the nofiml|, is M (sx)-invariant.
Because the embeddirg™2([0, 1], R* — L?([0, 1], R%) is compact, a subsequence(af) converges in.? to

2
someu. In view of@; —=> 0 the convergence is actually of qualiti’-2, thereforax € H1-2([0, 1], R* anda = 0,
i.e.a = const. NowHLl’2 c HY?is closed andy HLl’z([O, 1], R%), hencex € A = LgN L1.
On the other hand, we havey, «);, = 0 which leads to the contradiction

2 1
2 2 2 2
0< o <7z + llallzz < ?(Ilkallsk + llells,)
0

1 2 C% 2
27(|lak_a||sk)<ZHOlk—OlHLZ—)O, O
CO ('0

Let us introduce some notation which will also be useful for deriving the crucial exponential decay estimate.
Fix some integeV > 1 and introduce the vector

V(s) := (v(s), Js0(s), ..., 3N T (s)),

which is an element in the&v-fold Cartesian product oHLl’Z([O, 1], R%), which we will denote by(HLl’Z)N.
Applying the operatoH (s) to each component we obtain an operator

As): (HMY > (LAY

with
kerA(s) = AV.
The vectorV satisfies the following partial differential equation:
AV () = AV () + A3V (s), (25)
where
0 0 0 0
A11(s,t) 0 0 0
A(s, 1) := A22(s, 1) A12(s, 1) 0 0
An-1n-1(s,1) An-2n-1(s,1) An-3n-1(s,1) ... Ain-i(s,1) O
with

Au(s, 1) == <Il‘) (=M (v(s,1)).
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The following rather remarkable estimate is essential for the proofs of Proposition 3.5 and Theorem 3.6. The
choices of the inner products in (18) and Lemma 3.7 are crucial for the proof.

Lemma 3.9.There are numbers, § > 0 so that the function

1
g() =3[0V

satisfies
1
g"(s) > Eazg(s).

Proof. We have
1

1
g =5 / (OsV()(1), 2(s, )M (5, 1) Qs V (5)(1)) dt,
0

therefore, using2 M)’ =M,

/ 1 l
) =(0[0:V©)]. 0V ®), + 3 / (0, V($)(0), 3, [2(s, DM (5, )] Qs V (5) (1)) dt
0

and

g"() = |82 V]2 + (05 [Qs V(©)]. OV (),

1

+ 2/(3S[QSV(S)(t)], A [2(s, )M (s, )] Qs V(s)(1))dt
0

1
1
+3 f (05 V(5)(0), 355 [2 (s, DM (5, 0] Qs V () (D) it
0

=Ti+-+T4
= To+ T3+ 1a.

We can estimate

T2l )] Qs V)|,

(26)

where 0< &(s) =3 0 is a suitable function. From now on, we will writés) for any positive function which
decays to zero as— .
Now let us estimat@s. We have to considel; P first. If e € Lo N Ly then Py is given by

_es
lle]|2

(27)

N

and

0
5= (¥,€)s (y,e)s 0
Js ) K
-2 —llells - e| < e@®llylls, (28)
llel2 lel3 as™ '

‘(35P5)7/| =
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since there are positive constangscy so thatcg < |le||s < ¢ for all s. Moreover,
|0s[2()M )]y | = |[DR2(v(s)dsv(s)[M(s)y + 2 (v(s)) DM (v(s)) [05v(s), v ]| < c|osv(s)|Iy ], (29)
wherec > 0 is some constant. Using (28), (29),

o 1053 V(5)llcoqo1y —> 0, which follows from (17),
e ||V (s)|l;2 is bounded uniformly i and
e 3,0y + 0, P =0,

we obtain
1

/(QsasV(s)(t) — [0 P 1V (s)(1), 05[22 (s, VM (5, )] Qs V (5) (1)) dt
0

<] Q85 V() = [8s PAV(S) | o017 [3:s0) | 2 Qs V)| 2

= ()| AV ,2] Qs V()] 2

<e®[AGVES)] 2] Qs V)| 2 (30)
We are now left withT». Shortening the notation, we writg O,y instead of(d; Q,)y and 0sA ()8, V(s) instead
of 0,(A(s)3,;V (s)) etc. We calculate

9 (QsV(5) = 8,05V (5) + Qs A()V (5) + Qs A(5)3, V (s)

=3,0,V(s) + AS) Qs V(s) — PAG)V(s) + Qs A(5)3 V (s)

|T3| =

and
055 (Q5V (5)) =055 Qs V() + 05 Q505 V (s) + A(s)ds V (s) — ds M (5)0; V (s)
+ 8505 A()3, V(5) + Q505 A(5)8, V (5) + Qs A(5)ds V (5)
— 05 PsA(S)V(s) + PsosM(s5)0:V(s) — PsA(s)ds V (s).
We write the termA (s)ds; V (s) asA(s)d; V (s), where

0 0 0 0

0 A11(s, 1) 0 0
AG,0):=]0 A22(s, 1) A12(s, 1) 0

0 An—in-1(s,t) An—on-1(s,1) ... Arn-i(s,t)

Inserting this into7> we obtain with (24)

To = (A($)dV (5), Qs V(5)), — (3 M(5) 3V (5), Qs V (9)),

+ (s A() V(5), Qs V (), + (QsA®)3 V (5), Qs V()
=:T21+ To2 + To3+ T24.

We estimate

| T22| = [ (3 M ()M (s)A(s) Qs V (), Qs V(9)),| <) |[A) Qs V() |, | Qs V(9] -
The expression®,s, T»4 are estimated similarly, so that

|T22], | T2al, | T24l < ()| AG) Qs V) [ [ Qs V() - (31)
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Usingd; V(s) = M(s)A(s) Qs V (s), EQ. (25) and Lemma 3.7, we continue withy:
To1=(3:V(5), A®) O, V(5)), — (8, V (5), O(5) Qs V (5)),
= [A® V| + (A)3V(5), A) Qs V(5),
— (A Qs V(5), O() Qs V(5)), — (A®)d V(5), O) Qs V()
> [A® VS |2 — @) A 0V ()| — e [ A O V)|, 0 V(s
> %HA(S)QSV(S)Hf —e) A Qs V)| [OsV ()|, forlarges.
Using Lemma 3.8, inequalities (26), (30), (31) and the above estima®{owe obtain
" (s) = To1 — | Ta2l — | T23| — | T2al — |T3| — | T4l

1 2 2
>3[4 v o)l - A0 o vl [ evel, e eV e

1
~ 4027031402V O, -ew ]2V o,) -0 eV o)

iy 2
> A0V |, QSV(s)||S<E - 8(s)> —e)]| 0V )|
82 ) _ 5 5
> (3 — s(s)) [Qsv@);  wheres is so large thaf — (s) > 3
8 2 52 2
> ZH sV sso Iargethatg —e() >
2
= Eg(s)'

This completes the proof of Lemma 3.90

Lemma 3.10.Let s, 8§ be as in Lemm&.9. Then we have for all > s1 > so

_ 8 (e
g(s) < glspe V2O,

8 e

Proof. Defining /(s) := g(s) — g(s1)e 2" Y, we observe thati(s1) = 0 and A" (s) > %h(s) in view of
Lemma 3.9, hencé cannot have a local maximum with> 0. On the other hand, we also hav&) — 0 as
s — oo in view of g’ (s) — 0 and Lemma 3.9. We conclude< 0 which proves the lemma.o

We now have to estimaté; v(s)| and| P;d;v(s)|, the components af(s) andd;v(s) alongA = kerA(s).

Lemma 3.11.If s > sg then

| Psdsv(s)| < e(s)| Qsuls)

where0 < ¢(s) — 0ass — oo.

s’

Proof. We compute using (20), (23), (27) and Lemma 3.7

| Po(s)] < c|@(s). €)s| = | (As)u(s). )| = e[ (A() Qs0(s5). )]
=c|(Qsv(s). —O()e) | <e®) | Q). D
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Proof of Proposition 3.5(continued. We will show now that
| Psv(s)| — 0

ass — oo. Then we are done because

§—>00

[v@)] 2 <[P + [ Qev()] 2 =50
and

Hasv(s)HLz —0,

i.e.v(s) converges to zero i? 1-2([0, 1]) and therefore also i6°([0, 1]) by the Sobolev embedding theorem.
In view of Egs. (20), (27) we have to show that

|(v(s),e)s| = O

ass — oo. We know already that

|(v6s0€), | < ot llells, < o] .2 = 0.

We estimate fos > s, combining Lemma 3.10 and Lemma 3.11, witheing a generic constant independenk of
ands
N
/ i(v(a), e) do
do o

Sk

|(U(S)’ e)s - (U(Sk), e)sk| =

N

s 1
< c/Ha(rv(cr)H(r do + //|<v(o, 1), 0y [.Q(v(cr, t))M(v(a, t))] 'e>|dtdo
Sk sk 0

N
s
<C”8.9U(Sk)||5k/e 22 Sk)da+c/}‘v(a)}‘LZ([O,l])||8<7U(O')||L2([0,l])do'
Sk J
< C” 95 v(sk) ||5k (]_ _ eiz%/i(sfsk))
<< 8‘Yv(sk)“sk7

which converges to zero i — oo. This completes the proof of Proposition 3.51

Proof of Theorem 3.6. We saw earlier that Lemmas 3.10 and 3.11 imply
Hasv(s) HL2 < Ce_ziﬂ(s—fo)

for all s > so, wherec, so > 0 are suitable constants. In view&fv(s, 1) + M (v(s, 1))d;v(s, t) = 0 we also have
Harv(s) || 12 < Cefz%/i(“'*lﬂ‘o)

for a suitable positive constant Note thatv(s) = — fs+°° dsv(0)do so that

o o s 2c+/2 s
HU(S)Hng/||asU(U)||L2da§c/e_Tﬂ(U_SO)dache_rﬁ(s_SO).
s

N
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Hence we know already th#gg“ v(s)||; 2 decays exponentially fast with rate at lepst _2%/2 whenevelta| < 1.

Because of the Sobolev embedding theorem we obtain exponential decaydforsuip(s)| as well. We have to
use induction to obtain the same decay behavior for the higher derivativeRetalling that we defined

V(s) = (v(s), 35v(s), ..., 0N tu(s)), N>1,

we know that||Qs85kv(s)||L2 exhibits the desired exponential decay for any integeAssume thaf|V (s)||, 2
decays exponentially with raie as above (we know that this is true for= 2). We claim that therjd, V (s)|| ;2
and||d,; V (s)| ;.2 have to decay exponentially with the same rate as well. Applgingo Eq. (25) and multiplying
with M (s) we obtain

V(s) = M(s)Qd,V(5) + M(s)PyA(S)V (s) — M(5) Qs A(s)3, V (s),
which implies

[0: V()| ;2 <c|Qsds V()| 2 +¢|PsAG V()| + () [0 V()] ;2.
i.e. fors so large that (s) <1/2

[0:V ()] ,2 < 2| QsdsV(9)| ;2 + 2¢| P A(s)V (s)]. (32)
The expressiofj O3, V (s)|| ;2 decays exponentially by Lemma 3.10 and the other also does because of

|PiA(s)V ()| <c|(A)V(s).e) | <c|(V(9), Os)e) | <e@®] V()] 2
wheree € AV . This proves our claim, i.e. we have now shown exponential deca\lﬁf@ﬁv(s) |2, wherek € {0, 1}
and/ > 0 is an arbitrary integer.

Eqg. (25) yields
3V (s) = (Id+ M(s)A(s)) "M (5)d,V (s)

(the inverse makes sensaiis sufficiently large), and differentiating the above identity successivelydmpws by
induction that||8,kV(s)||Lz decays exponentially for arbitrary integdrsThe desired decay for th€® norm then
follows from the Sobolev embedding theorenta

3.3. An asymptotic formula

We need to know more about the asymptotic behavior of the solutions than merely the apriori estimate in
Theorem 3.6. The aim is to prove the asymptotic formula (Theorem 1.1):

Theorem 3.12.For sufficiently largesg ands > so we have the following asymptotic formula for non constant
solutionsv of (13) having finite energy

o(s, 1) = R0 DU (o) 4+ (s, 1)), (33)
wherea : [sg, 00) — R is a smooth function satisfying(s) — A < 0 ass — oo with A being an eigenvalue of the
selfadjoint operator

Aco: L2([0, 11, R*) D H?(10, 11, R*) — L2(10, 11, R%)

yi> =Mooy, My := lim M(v(s, t))

§—>00

(see(21) for the definition of the domain of,). Moreover,e(t) is an eigenvector ofA,, belonging to the

eigenvalue. with e(r) £ 0 for all ¢ € [0, 1], andr is a smooth function so thatand all its derivatives converge to
zero uniformly it ass — oo.
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Remark. The above theorem is of course also valid for the negativesened —oo, of a solution. We have the same

formula as in (33), but the functiosa(s) will converge to a positive eigenvalue of the operatqs = —Moo%,

whereMqy =lim;_, oo M(v(s, 1)).

The first step in the proof is the following proposition. The steps from Proposition 3.13 below to Theorem 1.1
are very similarly to the corresponding results in [2] or [13].

Proposition 3.13.There is a numbesy > 0 so that

a(t)dt H

Jv)], =ebo

v(s0) ||S0
for all s > so, wherea has the properties stated above in Theotkm

Before we can continue with the proof, we need some information about the spectra of the selfadjoint operators
A(s) — 30(5).

Theorem 3.14.For eachL > 0 there are numbers, s; > 0 and a sequence, € [nL, (n +1)L], n € Z so that

1
[r, —d,r, +d] ma<A(s) — EQ(S)) =0
forall s > s1.

Proof. Letus review the strategy of the proof: We want to vidy) — %@(s) as a perturbation oA, the operator
obtained fors — oo. There are theorems about the spectrum of selfadjoint operators in a Hilbert space perturbed
by bounded symmetric operators. The trouble here isARat- A(s) + %@(s) is not a bounded operator. We fix
this by introducing operatorBs, and B(s), all having the same first order term, and which are unitary equivalent
to the operatord . andA(s) so that it suffices to study the spectraif and B(s).

We would like to find a smooth map

T :[s0, 00) x [0, 1] — GL(R?)

so that7 (s, .) converges irC> ([0, 1]) to someT,, € GL(R*) satisfying the following conditions:

e T'T=02M,
o TM = JoT,
o T'JoT = —%2,

with corresponding conditions fdf,, ass — oco. Here T' denotes the transpose 6fand Jo is multiplication
by i onC? if we identify R* with C2. Actually two of the above conditions imply the third one. We may view the
map7 as a unitary trivialization of the hermitian vector bundle

(([s0, 00) x [0, 1]) x R*, 2, M) = (([s0, 00) x [0, 1]) x R*, —Jo, Jo).

The construction of is Gram—Schmidt orthogonalization with respect to the hermitian bundle metric
h=(,2M)+i(-,$.).

We defineT (s, t) by mapping the generator

. i B a(9(s,1)) i
o(s,t):= PY: (x(s, 1)+ 7}7(9(& ) (s, t)) R
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of the contact structure (12) (s, r) onto (0, 1) € C2. Consequently, the maps
@, (L3([0,11,RY), (-, -)5) — (L2(10, 11, R*), (-, ) 2),
y=T(s, )y,
®oo  (LA([0, 11, RY), (-, )sls—o0) = (LZ(10, 11, RY). (-, ) 2),
y = Ty
are isometries. They maIﬁLl’z([O, 1], R%) onto

Hp?(10.11,R%) = {y e HY2([0,1],R%)

(e T(S,O)-Lo}
Yy eT(s,1)- Ly

and

H;2([0,1],RY) := {y e H%([0,1],R%)

V(O)EToo-Lo}
y(DeTwx- L1

respectively. We consider the following operators

B(s):L%(10.11.R%) > H"*((0,1]. R*) — L?([0, 1], R),
Bori=0se (40 3000 oo
B(s) =& 0 A(s)—i@(s) o,

Boo: L([0,11,R* > H}"2([0, 11, R*) — L2([0,1]. R%),
Boo := Pog 0 Ao 0 DL,

where we equif.([0, 1], R*) with the ordinaryZ?-inner product., -); 2. Unitary equivalent selfadjoint operators
have the same spectrum, hence

~ 1
o(B(s)) =0 <A(s) - E(~)(s))
and
0 (Bxo) =0 (Aco).
It remains to investigate the spectra®fs) and B. First we note that the operataBss) and B, are selfadjoint
with respect to the standaid-product. Let us compute them. We obtain
~ d aT(s) . 4 1 1
B(s) = —Jo— —T —ZT($)O$)T 4
(®) =—Jog + Jo——=T(s) ST OOEOTE ™, (34)
where the operator Jo% is selfadjoint and the operator

S(s): L?(10, 11, RY) — L2([0, 1], R?Y)

oT (s)
at
is symmetric. We note thaf(s) converges to zero as— oo in the operator norm. The operatBg, is simply
given by —Jo-2.
Summarizing, we have introduced coordinates so that the operatoys— %@(s) and A, correspond to
operators with the same first order term on the same Hilbert sgzg0, 1], R"), (-, -)12), but they all have
different domains of definition. We have to fix this without changing anything that we have achieved so far.

1
Yy Jo T(s)ty — 5T(s>@(s)T(s>*ly
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We can find a smooth map
C :[s0,00) x [0,1] = Sp(4) N O(4) =U(2)
having the following properties:
e C(s,.) — Idin C*([0, 1]) ass — oo,

e C(s,00T(s,0)Lo=TooLo,
o C(s,DT(s,1)L1 =TooL1.

The operators

B(s): L3(10, 11, R*) > H;-2(10, 1], R%) — L?([0, 1], R

(B(s)y) (1) := C(s,1) "1 (B(s)C(s)y) (1)
have the form
B(s) = Boo + A(s, 1),

wherey — A(s)y is a symmetric zero order perturbation wifiA(s)|| — 0 ass — oo in the operator norm.
They are unitary equivalent tB(s) hence the spectra are the same. The spectrum of the opBratarhich has
domain of definitionHLl;f([O, 1], R*) consists of all integer multiples af/2. Moreover, the spectrum consists of
eigenvalues only since the resolventRyf, is a compact operator. Every eigenvalue has multiplicity one. Verifying
this is a straight forward computation which we leave to the reader. Let us summarize our discussion as follows:

Proposition 3.15.The spectrum of the operator
Aco: L2([0,1],R%) D Hy2(10, 11, R — L2(]0, 11, R%),
Yy —Msy, Moo :=S|LmooM(v(s, t))

consists of all integer multiples &. The resolvent of the operater., is a compact operator ol2([0, 1], RY).
All the points in the spectrum are eigenvalues of multiplicity one.

In order to control the spectra of the perturbatid@(s) we will need the following perturbation result (see [2])
which follows from a result of T. Kato (see [16]):

Theorem 3.16.LetT: H D D(T) — H be a selfadjoint operator in a Hilbert spadé and letAg: H — H be a
linear, bounded and symmetric operator. Then the following holds

dist(o(T), o (T + Ag)) :=max sup dist(x,o (T + Ag)), sup dist(x,o(T))}
rea(T) reo(T+Ap)

< Aol gy -

e Assume further that the resolveit — 19) 1 of T exists and is compact for some ¢ o (T).
Then(T — )~ is compact for every ¢ o (T) ando (T) consists of isolated eigenvalugs; }r<z with finite
multiplicities {my }rez .
If we assume thadup,.., my < M < oo and that for eachL > O there is a numbem:7 (L) € N so that every
interval I C R of lengthL contains at most:7 (L) points ofo (7)) (counted with multiplicity then for each
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L > 0 there is also a number 7, 4,(L) € N so that every interval C R of length L contains at most
mr+4,(L) points ofo (T + Ao).

We find for all L > 0 somem € N so that every interval C R of length L contains at most: points of the
spectrum ofB.
Moreover by Theorem 3.16,
dist(c' (Boo), 0 (B(s))) — 0 (35)

ass — oQ.
Define now the intervals

I, := [nL, (n+ 1)L]; nel.

Then eachl,, contains at mosk points ofo (B ), SO there is a closed subintervglc I, of IengtthH that does

not contain any point of (B ). Because of (35) there is a closed intervalc J, < I, of Iengthm which

does not contain any point ef( B(s)) wheneves > s1 wheres; is sufficiently large (this; does not depend o).
So we found a sequeneg e I,, and a positive constaat so that

lrn—d,ra+dlNo(B(s)) =0
for all larges. This completes the proof of Theorem 3.143
Proof of Proposition 3.13. This result has an analogue in [2] and [13,14]. However, there are some different
features due to the boundary condition and the degeneracy of the problem. We assumelfirét,théto o 1) # 0

if s is sufficiently large. As in the references cited above, it is very easy to state the correct funsbcthat we
have the proposed formula fgpv(s)||;. Indeed, we have to take

d 2
a(s) =52 ||v(s)||25 .

2[v(s)Ig
We define now

. v(s, 1)
S50 = 0o,

and note that
0sE(s, 1) + M(s,1)0:&£(s, 1) +a(s)é(s, 1) =0. (36)
We define

(s, 1) = —%M(s, 271, )3, (2M) (s, 1)
and the covariant derivative
V&(s) := 05&(s) + I'L(s)E(s)

so that for all smooth1, u2: R — L2([0, 1], R%)

d
%( 1(8), u2()), = (Vsu1(s), uz(s)), + (u1(s), Vsua(s)). .,

hence

0= (V,£(5).£(9)),. (37)



172 C. Abbas / Ann. I. H. Poincaré — AN 21 (2004) 139-185

The partial differential equation fdr can be written in the form

A($)E(s) = V& (s) + a(s)8(s) — I1(s)E(s) (38)
which implies

a(s) = (§(s), N1()E(s)), + (£(5), A()E(s)),. (39)
We define

Io(s, 1) i= —M(s, )27 (s, )8, 2 (s, 1) M (s, 1).

and
(s, 1) := 27 X(s, )02 (s, 1).

Computing the adjoint operator§* and /) with respect to the inner product (18) yields
= and Iy =TIx.

Introducing the operator

T4(5)E(s) := (Vs M (5)) M (5)E(s) := =M (s) Vs (M ($)€(5)) — Vs&(s) = %(Fs —I2),
we find that

Ii(s)= %(rg‘ — ) =—TIu.
A simple calculation shows also that

&Vy — Vsd = 3, I (40)
Using now the patrtial differential equation (38), Lemma 3.7, Egs. (22), (37), (40) and the fajmhe)tg(s)nf —
0, k=1,...,4, ass — oo we estimate the derivative afas follows:

o' (s) = (Vs(A()E(5)), £(5)), + (A()E(s), ViE(s)),

+ (Vs (I1(9)&(s)). (), + (N(5)E(s), VE(s)),
=T1+To+ T3+ Ta.

We have

1Tal <e(5)|| Vs ()|,
and

T3] < |((VsT1(5))(), §(9)) | + [(T1(s) VsE (), §(9)) | < £(s) +2(s) | VsE() |
Inserting (38) and using (37), we obtain

IS

To= || V,&() |2 = (M()8(s), Vs&(s)),
> [ Vi) = )] Vs£() -

We now take care of the terffi :
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T1 = —(M(s)Vy(M(s)A(9)E(5)), §(5)), — (Ta(s) A()E(s), §(5)),
= (=M (5)V50,£(5), §(5)), + (A©)E(s), Ta(9)E(s)),
= (A()V5(9). 6(9)), + (M ()9, T1()E(5), £(5)) , + (A()E (), Tu($)E(s)),
= (Vs(9), A®)E()), — (VsE(s), O(5)E(s))
+ (M ()3, T1(5)§(5). £(5)), + (Vs&(9), Tu($)&(5)),
+a(s)(5(s), Ta()E(s)), — (IM()E(s), Ta(s)E(s)),
=:Ti1+---+Te

The termT1; is identical with7> which we estimated above. The expressiifis|, |T14| can be estimated from
above bye(s)|| V& (s)|ls while |T13] and|T1e| tend to zero as — oo. The termT15 vanishes sincdy is skew-
adjoint. Summarizing, we got the following inequality for the derivativerof
o' () > T1+ T2 — |T3| — | T4l
2
> 2| V& ()| — ()| VsE@)]|, — (). (41)

We assume now that the functians not bounded from above and we wish to derive a contradiction. Then we
can find a sequencg — oo so thatw (sx) — oo. If we hada(s) > n > 0 for all larges and some positive number
n then we would obtain

[v®) 2 2 o], = "= o], > o0
in contradiction to the fact thgu(s, -)] — 0 uniformly inz ass — oo. Because of Theorem 3.14 we may pick
n > 0 in such a way that there is a positive numiieso thaty) — d > 0 and

[n—d,n+d] ﬂa(A(s) — %@(s)) =.

Then we can find a sequenge— oo so thatu(s;) < 1. We may also assume thgt< si11 < s34 ande(sg) > 7.

Hence, ifa is not bounded from above then it must oscillate. Eebe the smallest number with > s; and

a(Sx) = n. Since the operators(s) — %@(s) are selfadjoint we have for eve#yin the resolvent set
_ 1

s dist, 0 (A(s) = 36(s)

Recalling the differential equation (38) fd@r, we obtain ¢, being a suitable sequence of positive numbers

converging to zero)

1= &G0l

1 -1
H <A(s) — EQ(S) -0 Id)

(42)

1
V& (Gr) — I(51)EGk) — 5@(3%)5(31()

Sk

Sk

1 _l
< H (A(fk) 260G -1 ld)

<

1
<7 V& Gr) — IMGEGK) — 5@(3%)5(31()

Sk
< — ||V %‘ s +
X ’H N (sk)HS‘\/\ 81{7

i.e. for sufficiently largek

d
0<3< [ Vs GO, (43)
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We now insert this into inequality (41) and obtain that for sufficiently large
o' (5;) > 0,

which would implya(s) < n for s < § close tasg in contradiction to the definition 6. Hencew must be bounded
from above.

Let us show now tha& cannot be unbounded from below either. Pick a sequepnaes in Theorem 3.14.
Assuming in the contrary that is not bounded from below we can fing so thata(s,,) = r, anda/(s,) < 0. In
the same way as we derived (43), we also obtain here

d
0< 5 < H V& (sn) ”Sn
for all largen and

o' (s,) >0

which is a contradiction. Thereforemust also be bounded from below.
There exists a sequenge— oo so that|| V& (sx) s, — 0. Otherwise we ha@lVi&(s)|ls > n > O for a suitable
n and all larges which would implyo/(s) > %nz for all larges anda(s) — oo ass — oo which is not true.
Becausex is bounded, we can find a subsequence (which we also dendtg)byn) so that

lim a(sy) = A
k—o00

exists. We claim that € 0 (Ax). Ifwe hadi ¢ o (As) thenes :=inf e 4.) 1A — 1| > 0 because (A«) is closed
and therefore

, 1
' —rlze—lu—p| Yueo(Ax), 1 EU(A(S)—E@(S)>
which implies

dist(k, o (A(s) - %@@))) >e— sup dist(n’, 0 (Axo)) > &/2

Weo(A()=36(s)

if s is sufficiently large, by Theorem 3.14, i.e.

1
alsy) ¢o <A(Sk) - E@(Sk)>

for k sufficiently large.
Then

1=[s6ol,

1 -1 1
= H (A(Sk) - E@(Sk) — a(sg) |d) <Vs§(5k) - 5@(51() - F1(Sk)€(8k))

Sk
_ 4
X B H ;SE(Sk)”Sk Ek,

where k is chosen so large thak — a(sy)| < ¢/4 ande; N\, O is a suitable sequence. But this contradicts
Vs&(si)lls, — O, hence € 0 (Ax).
Let us show that indeed

lim a(s) =A.
§—>00
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Take now a sequencg — oo and assume that there are subseque@¢es(s;) which converge to different limits
A’ and\”. By our previous discussion we have
M. A eo(As)

and we assume that < A”. We may also assume thgt < s; < s, . Itis a consequence of Theorem 3.14 that
there arel > 0 and ve (1/, 1”) so that

. 1
dlSt(v, J<A(s) — EQ(S))) >d

wheneves is sufficiently large. Let now be any number witlx (s) = v. Then we estimate as before:
1=,

1 -1 1
= H (A(S) - E@(s) -V |d> (VSS(S) - E@(S) - Fl(S)é(S))

1
< IV, + 0.

wheree(s) is a suitable positive function tending to zerasas- co. Using inequality (41), we obtaiw’ (s) > O for
all large enough with a(s) = v, but this is a contradiction since it prohibitsfrom oscillating betweei’ andi”.
Hence the limit

A= SILmOOa(s) €0 (Aso)

exists and it is indeed an eigenvalue because the opetatdras compact resolvent so that the spectrum consists
of eigenvalues only. Moreover,< 0 since otherwis@v(s)||;2 — oo. Let us show that <0
We know that there arg, so > 0 so that for alls > so:

[v@ < et
which follows from Theorem 3.6. Using Proposition 3.13, we see that the function
0 futs) |, = o) e

remains bounded for afl > sg. This means that the function
f(s):=p(s —s0) +/0t(t)df
50

has to be bounded as well. Now
&) =p+als)—p+ir

ass — oco. Boundedness of implies thenp + 1 < 0.

It remains to take care of the case for whith(s)||; = O for somes. Thenuv(s,t) =0 for all € [0, 1] and
a simple application of the similarity principle implies thatis constant (see [2,15]) in contradiction to our
assumptions. This completes the proof of Proposition 3.13.

The following three lemmas are versions of lemmas in [2] and [13]. The proof of Theorem 1.1 is then very
similar to the corresponding version in [2]. For the convenience of the reader, we sketch the path until the proof of
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Theorem 1.1. The proofs of the corresponding results in [2] and [13] can almost be carried over verbatim; we will
indicate the necessary modifications.

Lemma 3.17.For everyB = (81, B2) € N and j € N we have

sup |0P&(s, 1)| < o0,
(5.1)€ls0,00) x[0,1]
dia
sup |—(s)

SO <00 dsJ

whereg (s, 1) = v(s, 1) /|v(s) s anda(s) = (A(s)-E(s) + I'1(s) - £(s), E(s))s (here, we adopt the conventiOre N).

< 00,

Proof. This is actually a version of Lemma 3.10. from [2]. The proof remains essentially the same. There are
two minor modifications: The operat@k, (¢) in [2] should be replaced by theindependent operatdt,, that we
introduced in the proof of Theorem 3.14. Moreover, the estimataf@r)| in [2] has to be replaced by
2
‘0‘/(5)‘ < H 958 (s) ” 2oyt C” H 958 (s) ” 2oyt c”,
which follows from the estimates that lead us to inequality (41). We then get foR ands; > 0
1

s* 482 P
P < 4P~ 1(yp |8 t |2dt d
1N sy 5o 15,y < 472N EGs. 1) s

s*—82 0

s*+8p, 1 p/2
+ 4P P / ( / |0 (s, z)|2) ds+2- 471" sy
s*¥*—82 0

— 2 — —
< 4P 1(c/)p ||asr§ ”le’p(Qaz) + 47 1(c//)l7||8sé- ||IZZP(Q52) +2.4° l(CW)p(SZs

whereQs, 1= [s* — 82, s™ + 82] x [0, 1]; but this estimate works as well as the original one in [2]1
Lemma 3.18.Let

E € H}%(10,1],R%) < L?([0, 1], R?)

be the eigenspace df,, belongingtor € 6 (Ax).
Then

jg};”f(s) — el yr2go1.R = O
ass — oQ.

Proof. This is a modification of Lemma 3.6. in [13]. The proof is very similar to [13], repkaédn the estimates
by the covariant derivative;§. O

Lemma 3.19.There existg € E such that(s) — ¢ in H12([0, 1], R*) ass — oo.

Proof. This is essentially Lemma 3.12. in [2]. Using thé-product
1
(u1,u2) == /(ul(t), RooMoou2(1))dt
0
instead, the proof in [2] can be carried overa
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Proof of Theorem 1.1. By Proposition 3.13 we have
u(s, 1) = [lu()] &G, 1)
= P Oy (50 o (5, 1)
= e D50 4 1 (5. 1)
with
r(s,0):=|vGso) |, (5. 1) —e®),
é(t) == |v(so) ||S0€(t) €k,

wheree(r) is the eigenvector given by Lemma 3.19. Recall from the proof of Theorem 3.14 that the operator
Ao IS UNitary equivalent to the operat®, = —i% acting on a suitable closed subspacert#2([0, 1], R%).
Eigenvectors 0By, are of the formé(r) = ¢!*¢(0), hence they are nowhere zero and so are eigenvecters of

The proof that converges to zero i@*° is the same as in [2], so we omit the detailss

3.4. Proof of Theorem 1.2

We will need later the following simple observation concerning the functierhich appears in the asymptotic
formula, Theorem 1.1:

Proposition 3.20.All derivatives of the functioa as in(13) converge to zero ag| — oo.

Proof. We have||8;‘§(s)||Lz([0,l]) —0fork>1and s— o becaus@ské(s, t) equals up to multiplication with a

constant the derivati\@‘r(s, t), wherer is the remainder in the asymptotic formula, Theorem 1.1. Recall Eq. (39):
a(s) = (§(s), N()E(s)), + (E(5), A()E(s)),.

Differentiating with respect te, we obtain the assertion of the propositiorm

We denote byE the eigenspace of the asymptotic operatgs belonging to the eigenvalue Let ¢ be the
generator off such that(s) — e ass — oo (see Lemma 3.19). Let
s (L3([0, 11, R%), -, -)5) — E,

S (v, e)s
b= .
llel|2

be the orthogonal projection onto the sp&cand letQ; := Id — r;. The following lemma is similar to Lemma 3.8.

Lemma 3.21.There are constants, § > 0 so that for alls > sg andy € HLl’z([O, 1], R%) the following inequality
holds

[(A@s) —a() sy [, = 810svlls-

Proof. Proceeding indirectly, we assume that there are sequépced, sy ' co andy, € HLl’z([O, 1],R% so
that

Il (A (st) — (k) sy Vil s
I Qsi Villsi

< 8.
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With
. st)/k
M= o= —
| Osy Vicllsi

we getd1 = [Inkll 20,17 = S0 > 0 for somesy, 81 and

I(ACse) = ae(si0)me|, <8 — O (44)
We estimate

19kl 20,17 < | AGIIm ], < e (e + Jerse)]) < 2clAl,

for sufficiently largek. The sequencey is therefore bounded iff1-2([0, 1], R* which is compactly embedded
into L2([0, 1], R%). Hence we may assume that after passing to a suitable subseguencgin L2. We estimate

[ = 2mel, < (A0 — atsme], + (Ao — A0, + el ets) — 2,
< 5/{ + ” MOO - M(sk)HL()O([O’]_])”atnk”Sk +C|O{(Sk) - )"|

—-0
and
| — Moo0rnk — )‘77||L2([0,1]) < C” (Aco — M1k ”Sk + Allln — 77k||L2([0,1]),

which converges to zero, henégy, converges inL? to A M..n which is then the weak derivativin of 5. We
concludeAs.n = An, i.e. Oy n = 0 for all k. This leads to the contradiction

1=k, m)s, < |(le7 Nk — 7])sk| + |(le7 7])sk| < consfing — 77||L2([0,1]) -0
and completes the proof of the lemmat

Our aim is now to estimaté(s, 1) — e(r), a(s) — A and all its derivatives in absolute value from above:by’*.
For an integetv > 1 we introduce the vector
Vs, 1) = (35 (&(s, 1) — (")) ocran—1
and we want derive a PDE satisfied By Using Eq. (36), which is
05§ (s) = A($)E(s) — a(s)&(s),
andA..e = Ae we obtain
J (é(s) — e) = (A(s) — Aoo)(é(s) — e) + (A(s) — Aoo)e + ()» — a(s))e.

Differentiating successively with respectstand viewingr, O, A(s) —a(s) as operators oV -tuples in(H Ll'Z)N
we obtain the following differential equation faf:

dV(s) = (A(s) —a(9))V(s) —a(s) V(s) + H(s) + E(s), (45)
whereH and its derivatives decay like !*!*, the vectorE (s) is given by

E(s) = (8% (ce(s) — 1) 'e)ogngfl

and
0 0 0 0
011 0 0 0
a(s) = w22 012 0 0

aN-1,N-1 aN-2N-1 aN-3N-1 --- O
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with
k da
ok (l>dsl’ 1<LkELSN-1
We also note that
s E(s) = E(s).

We define now the function
1 2
g(s):= §||7TSV(S) - V(S)Hs

and we denote by (s) a matrix whose entries are zero order operators such|th&t™ (s)|| < ce”* in the
operator norm. We will always use this notation if we are not concerned with the explicit structiivg ofWe
compute

g =(0:(QsV(5)), Qs V(9)), + (QsV(5). T (5) Qs V(5)), .
We continue with the second derivative
g'(5) = (3s(QsV (), O, V), + | 2V
+ (QsV(S), F(S)QSV(S))S + (SS(QSV(S)), F(S)QSV(S))S
> (Q5(855V(5)), Qs V(9)), + (3:(Qs V(). () Qs V(5)), + (s V(5). T (s) Qs V (s)),

=T+ T+ T3,
and we note that
| Tol, 1 T3] < ce” || 0V (9)]),. (46)

We note thatl"(s) here is different than in the equation f@i(s), but we use the same symbol since we only care
about the exponential decay. We have also useditteaid its derivatives are bounded by Lemma 3.17 and that the
operators); Q;, 955 Q5 have range inE", hence the ranges of these operators are orthogonal to the ragge of
We will also use the facts that O, — 0,9, has range irE" and thaii(s) Q; — Qsa(s) = 0. Differentiating (45)
yields

dss V() = =0 (M) M)AV (s) —a'(5)V(s) + (A(s) — a(s)) 9V (5)
— &' ($)V(s) —a(s)oV(s)+ H'(s) + E'(s).
We evaluate
T1= (=3, (M@)M@)A)V(s), Qs V(s)), + ((A(s) — ()35 V (s), Qs V (s)),
— (') QsV(5), Qs V(9)), — (@' () Qs V(5), Qs V(9)), + (H'(5), Qs V (),
=Ti1+---+Ts
If £(s) denotes a function which converges to zero with all derivativas-asoo then we can estimate
|T1al, 1 T1al < ()| Qs V () |2
and
|T11l., 1 Tas| < ce” ]| Qv (9) ],
We continue with the terriy,:
T12=((A(s) — ()75 (3 V(5)). Qs V(5)), + ((A(s) — a(9)) Qs (8, V(9)), Qs V (9)).. (47)
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We compute

05V (s), e)s e
llel|2

(A(s) — a ()5 (3, V() = [-M ()3 — au(s)]

aSV ’ N
= B (4w~ ato)e
aS‘V k] S
B %((A(s) — As)e+ (A —a())e),

so that
[((A(s) — ()75 (85 V (9)). Qs V(9)) |

aSV ) s
= %((A(s) — Ax)e, Qs V(5)),

<ce MoV, (48)
In a similar fashion, we obtain
[((AG®) = a(®))mV(5), Qs V(5)),| < ce |0,V (9], (49)
We evaluate now the second term in Eq. (47) using the differential equation (45), Eq. (49) and Proposition 3.20:

((A(s) = () Qs (3:V (5)), Qs V (5)),

=(0s(3:V(9), (A(s) —a(5)) Qs V(9)), + (Os (35 V (5)), O(5) Q5 V (5))

= (0s(A(s) —a(®))V(s), (As) — () Qs V(9)), — (@() Qs V (5), (A(s) — () Qs V (5)),
+ (H (). (A(s) —a(9)) Qs V(9)), + (05 (8:V (5)), O () Qs V ()

=[(A(s) — a(s)) Qs V (s5) Hf + (O (A(s) = a(9)) sV (5), (A(s) — () Qs V ()
— (@) 05V (9), (A(s) —a(s)) Qs V(9)), + (H (), (A(s) —a(s)) Qs V (5)),
+ (05 (3:V(5)), Os), sV (5)),

> [ (AG) = () Qe V(5| F = ce ™ (As) — () Qs V (5)
— @] Qs V|, [ (Al) —a®) Qs V)|, — ce ™[ Qs V (),

Using Lemma 3.21 we obtain now for large

g"(5) = [ (AGs) — () Qs V(©)|? = ce H | (AGs) — a(s)) Qs V ()],
— ()| Qs VO | [ (A) — () Qs V() |, — ce [ 0, V() |, — e(s)]| Qs V(o) |2
=[(A) — () O V)|, (| (Als) —a(®) Qs V() |, — )| Qs V(9)],)
—ce ™[ (A@s) — () Qs V() |, — ce M| Qs V)|, — ()| Qs V (5) ||f
> (5 — )] (A6) — () Qs VS || Qs V$) |, — ce ™ @+ 8)| 0, Vs) |, — e()]| sV (9|
> Szg(s) —ce s

for a suitable positive number. We remark thag(s) converges to zero as— oo since the remainder in the
asymptotic formula and all its derivatives do. We introduce now the function

—2ls

C
B(s) :=g(s) + m’
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which also tends to zero as— oo. We have
B (s) = 82B(s).

Definingy (s) := B(s) — B(s0)e "2~ we gety” (s) = 82y (s), ¥ (s) — 0 ass — oo andy (so) = O which implies
thaty is a non positive function. Therefore,

—|Ms N
—8(s—s0) . ¢ —8s
g(s) < B(soe + IIAIZ 3] <ce (50)

for suitable positive constantss. We now have to show exponential decay ffeyV (s)| and all the derivatives of
a(s) — A. The proof will be by induction with respect 18, the length of the vectov (s). We start by establishing
the desired estimates for the cage= 1. We claim that

(98 (5), (5)) | < ce™ I,
which follows easily from|&(s)||s = 1 since
0= (3,5(5). £(s)), + (5(s), I'(9)E(s)),»

where || I'1(s)|| has the above exponential decay. We conclude|tdgt (s), ws&(s))s| also decays exponentially
since|(9;&(s), Os&(s))s| does. We calculate

(0.E(5), Tk (s)), = (6”5 (”SZ)) (3.E().e).
(e, E(5))s (e.£(s))?
= ez AWEW:€), —a) =g
= I (€60, 00)0), + (66). (A6) = Ax)e), + (£6). ), ~ ) EO).€),)
and
(o) = —E 56, 76)). - —E— (56), (Aoe — A®)e — OG)e).
(e,£(5))2 T (E (), o)y
Recalling that inf(£(s), e); > 0 we conclude that for suitable constants > 0
‘)\ — oz(s)‘ < ce™ds. (51)
We compute

505 (s) = 75 (A(s) — a(s))E(s)
1
= ((A6) — g, ) e

0 )(é(ns )u:)s e ||2(§(” AW et g ||2(§(” Oe), -
= @Tf )||2€)S' e ||2($(s) (A05) = Acc)e), -
1
_— NG .
e ||2(é() et P E@: OWe), e

so that with (51) and (50)

”asg(s) “Lz([O,l]) g ” QS (85‘5:(3)) ” LZ([O,l]) + Hns (855(5)) ||L2([0,l]) g Ce_gs~ (52)
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Now

e¢]

_(E6). o) .e_ez_/i@(")’e)a

ws(E(s) —e) = -edo,
o ) llel|2 do lell2

N

and the integrand has exponential decay by our previous estimates. Since we have already shigWyg theit
decays exponentially, we obtain

HORY] L20,1)) S ce™ (53)

for suitable constants,3 > 0. We can now complete the proof by induction as follows: Differentiating
equation (39) for(s) we obtain
o (5) = (8 (5), TL(9)E(®)), + (5(). Th()AE()), + (£(5), I (9)E()),
+ (6(9), 05 TL()E(s)), + 2(35E(5), A($)E(s)), + (55(5), O(5)E(5)),
+ (£(5), M (v) - M (1) A(9)§(5)) -

All the terms containindg™, ® or derivatives ofM (v) already decay at an exponential rate and will continue to do
so if differentiated. We will summarize all those (s). SubstitutingA (s)&(s) = 3;&(s) + a(s)&(s) and using
(Vs&(s), £(s))s = 0, we then obtain

o' (s) = 2] 8,8 () |2 + 20(5) (35E (5). §(s)), + H (s)
=2]a:&()]* + H ().
Hence exponential decay of all derivati\/p%g(sﬂhz([o,l]) up to orderk > 1, implies exponential decay of the
derivativea 1 (5). Denoting exponentially decaying expressionsthis), the PDE forV (s) yields
75 (95 V (9)) = w5 (A(s) —a(s)) V(s) —a(s)mgV(s) + H(s) + E(s)

1
= W[(k —a())(V (), e)se + (V(s), (A(s) — Aoo)e)se] — &)V (s) + H(s) + E(s),

i.e. exponential decay df af,‘é(s) | L2([0.17)) o<k <N -1 and(%(k — a(s)))ogkgn—1 implies exponential decay of
(B asNé(s)HLz([o)l]) and therefore of a;"g(s)an([o,lD in view of (50). By iteration we obtain exponential decay

for all derivatives ofx and theL2-norms of all s-derivatives df(s, r). Using the PDE foi, (45), we also obtain
exponential decay qfa{?a,lg(s)||Lz([0,1]), and the Sobolev embedding theorem finally implies the assertion of the
theorem.

3.5. The asymptotic formula in local coordinates

We will express the asymptotic formula in Theorem 1.1 in coordinates{@¢ar £ for later reference.
Recall that we have used Proposition 2.1 and the modification (10) to derive the following coordinates on
suitable neighborhoodg; of the pointspy € L:

Yi:R*DB(0) S VoaCRx M, (54)
Y+ (0) = ps,

¥4 (R% x {0} x {0}) = (R x £) N Vg,

¥+ ({0} x R x {0} x R*) = ({0} x D) N V4.
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Using the coordinateg, 6, x, y) for R4, the contact form o0} x R? is then given by

. . a(®)
A =VYir=dy+ (x+q©)y)do, q0):= 56)
with Reeb vector field
Y. — 0 ) d
A gy 1 ax

(recall that the functions:, b determine how the surfac® is wrapping itself around the knof, see
Proposition 2.1). Thewy (s, 1) := (1/f£1 o iip)(s, 1) is the representative of the pseudoholomorphic cuiyén
the above coordinates near the ends and the results of this Section 3 (exponential decay estimates, asymptotic
formula etc.) all refer to the maps.. We will now compute the eigenvecte(r) in Theorem 1.1 explicitly in the
above coordinates.
The vectors
e10.x,y):=(0, 1, —¢'®)y + q(O)(x + g (©)y). —(x + q(0)y))
and
e200,x,y):=(0,0,1,0)
generate the contact structure ké#, x, y) so that the almost complex structufénduced byJ is given by
J(x,0,x,y)8100,x,y) =—e200,x,y),  J(r,0,x,)é20,x,y) =é1(0, x, y), (55)
J(t,6,x,)(1,0,0,0)= (0,0, —¢(0), 1), J(1,60,x,)(0,0,—q(8),1) = (-1,0,0,0)
or
0 —(x+4q@©)y)
0 yq'(6)
—q©0) =14y (O)((x +q0)y)q®)—yq'(0))
1 —(x+q(0)y)yq'(0)
0 -1
1 q(©)
(x +q(@)y)q©®) —yq'(0) qO)((x+q(0)y)q©®) —yq'(©))
—(x+4g©)y) —(x+q©@)y)q(©)
Theorem 1.1 then provides the following formula for the mas, ) if |s| is large:

fsso at(r)dr

f(t,@,x,y):

[ex () +r+(s, )],
wheree (1) is an eigenvector of the operator

Atoo: L2(10,11,R%) D H;-2([0, 11, RY) — L([0, 1], R?)

(Axooy) (1) = —J(0,0,0,0)7 (1)

corresponding to some eigenvalug, and we saw earlier in Proposition 3.15 thatare integer multiples of /2.
In fact, we will mostly be concerned with the case whege= —7% andi_ = %. The subscriptL’ refers to the
boundary conditiong (0) € RZ x {0} x {0} andy (1) € {0} x R x {0} x R. The matrixJ (0, 0, 0, 0) is given by

0 0 0 -1

0 0 1 ¢
—-q©0 -1 0 O

1 0O 0 O

v(s, 1) =e

J(0,0,0,0) =



184 C. Abbas / Ann. I. H. Poincaré — AN 21 (2004) 139-185

so that we have to solve the following system of differential equationsifes (e1, . . ., es) : [0, 1] = R*

e1(t) = —Axrey(t),

é2(t) = A+ (e3(t) + q(0)ea(d)),

é3(t) = —rx(q(Oer() +e2(1)),

eq(t) = rxei(t),
with the boundary condition

e3(0) = e4(0) =0, e1(1) =e3(1) =0.
If A is an integer multiple ofr, we have

e(t) =k (0, cogAr), —sin(rr), 0), « #0 (56)
Otherwise, ifA1 is an odd integer multiple of /2 then

e+ (t) = —k+(COLA+1), —g+(0) cOA+1), 0, SiN(A11)) (57)
for some constants;. # 0. The asymptotic formula of Theorem 1.1 then looks as follows:

S ag(t)dt

fo 4 (Cogr 1), g (0) cOSr1). O, SiN(ALD)) + o

v (s, 1) = —Kkte ex(s,1). (58)

In the following we will denote by (s, r) any R*— or real-valued function which converges to zero with all its
derivatives uniformly int ass — oo if we are not interested in the particular function. In order to simplify
notation we will often drop the subscrigt. Using Proposition 3.20 we obtain the following asymptotic formulas
for the derivatives of (s, t)

8,v(s. 1) = 0 @[ (3. costir), —1q(0) CostAr)., 0, A sin(un)) + e (s, 1)) (59)
(s, 1) = @@ [~ (=2 sin(Ar), Aq(0) sin(At), 0, A cosAr)) + &(s, 1)]. (60)

We will sometimes use the coordinates given by Proposition 2.1 without making the boundary conditions ‘flat’
as in (10). In this case the appropriate versions of (58) and (59) are the followingidfan odd integer multiple
of 7 /2 we have:

ai(r)dr(

V4 (s, 1) = —Kief;o cogA+1), —q+(0) coA+1), g+ (0) Sin(A+1), SiN(A+1))

4 el @t (5 (61)
and
00 (5, 1) = 0™ VT [ ey (As COStt), —Aiqe (0) COSAL1),
A+q+(0) SiN(A+1), A+ SIN(A+1)) + e+ (s, 1)]. (62)

Foriy € Z7 we have

vi(s, 1) = Kiefk{oai(r)dr (O, COSit), —SIN(hit), 0) + efgoai(r)drgi(s’ 0 (63)

and

jfo at(r)dr

dyvi(s, 1) =e [+(0, A+ COSA 1), —Ax SIN(A+1), 0) + £+ (s, 1)]. (64)



C. Abbas / Ann. I. H. Poincaré — AN 21 (2004) 139-185 185

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 0196122 and
by a New York University Research Challenge Fund Grant.

References

[1] C. Abbas, H. Hofer, Holomorphic curves and global questions in contact geometry, Birkhduser, submitted for publication.
[2] C. Abbas, Finite energy surfaces and the chord problem, Duke. Math. J. 96 (2) (1999) 241-316.
[3] C. Abbas, A note on VI Arnold’s chord conjecture, Int. Math. Res. Notices 4 (1999) 217-222.
[4] C. Abbas, Pseudoholomorphic strips in symplectisations II: Fredholm theory and transversality, Comm. Pure Appl. Math. (2003), in press.
[5] C. Abbas, Pseudoholomorphic strips in symplectisations Ill: Embedding properties and compactness, Preprint, 2003.
[6] C. Abbas, The chord problem and a new method of filling by pseudoholomorphic curves, Preprint, 2003.
[7] Ambrosetti, Benci, Long, A note on the existence of multiple brake orbits, Nonlin. Anal. 21 (1993) 643-649.
[8] V.I. Arnold, First steps in symplectic topology, Russian Math. Surveys 41 (1986) 1-21.
[9] Bolotin, Kozlov, Libration in systems with many degrees of fredoom, J. Appl. Math. Mech. 42 (1978) 256-261.
[10] Y. Eliashberg, Legendrian and transversal knots in tight contact three manifolds, in: Topological Methods in Modern Mathematics, Stony
Brook, NY, 1991, Publish or Perish, Houston, TX, 1993, pp. 171-193.
[11] V. Eliashberg, A. Givental, H. Hofer, An introduction to symplectic field theory, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. (Special
Volume, Part Il) (2000) 560-673.
[12] H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent.
Math. 114 (3) (1993) 515-563.
[13] H. Hofer, K. Wysocki, E. Zehnder, Properties of pseudoholomorphic curves in symplectisations I: Asymptotics, Ann. Inst. H. Poincare
Anal. Nonlin. 13 (1996) 337-379.
[14] H. Hofer, K. Wysocki, E. Zehnder, Properties of pseudoholomorphic curves in symplectisations IV: Asymptotics with degeneracies, in:
C. Thomas (Ed.), Contact and Symplectic Geometry, in: Publications of the Newton Institute, vol. 8, Cambridge University Press, 1996,
pp. 78-117.
[15] H. Hofer, E. Zehnder, Hamiltonian Dynamics and Symplectic Invariants, Birkhduser, 1994.
[16] T. Kato, Perturbation of linear operators, Springer.
[17] K. Mohnke, Holomorphic disks and the chord conjecture, Ann. Math. 154 (2001) 219-222.
[18] E. Mora Donato, Pseudoholomorphic cylinders in symplectisations, PhD Thesis, Courant Institute of Mathematical Sciences, 2003.
[19] J. Robbin, D. Salamon, Asymptotic behavior of holomorphic strips, Ann. Inst. H. Poincare Anal. Nonlin. (2000).
[20] Seifert, Periodische Bewegungen mechanischer systeme, Math. Z. 51 (1948) 197-216.
[21] Van Groesen, Existence of multiple normal mode trajectories on convex energy surfaces of even classical Hamiltonian systems,
J. Differential Equations 57 (1985) 70-89.
[22] A. Weinstein, Normal modes for non-linear Hamiltonian systems, Invent. Math. 20 (1973) 47-57.
[23] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Adv. Math. 6 (1971) 329-346.
[24] A. Weinstein, Lectures on Symplectic Manifolds, in: CBMS Conference Series, vol. 29, AMS, Providence, RI, 1977.



