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Abstract

Lower semicontinuity results with respect to wealconvergence in the sense of measures and with respect to weak
convergence if.” are obtained for functionals

veLl(Q;Rm)r—)/f(x,v(x))dx,
2

where admissible sequencgs,} satisfy a first order system of PDE4v,, = 0. We suppose thafl has constant rankf is
A-quasiconvex and satisfies the non standard growth conditions

1
E(Ivlp -D<f)<CA+ D)

withg € [p, pN/(N =D) forp < N—-1,9 €[p, p+ 1) for p > N — 1. In particular, our results generalize earlier work where
Av =0 reduced tw = V¥u for somes € N.

© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé
Des résultats de semi-continuité inférieure pour la convergence faible des mesures sont obtenues pour des fonctionnelles

veLl(Q;Rm)H/f(x,v(x))dx,
2

ou les suites admissiblés, } satisfont un systéme d’EDP du ler ordredet, = 0. Nous supposons qué a un rang constant,
gue f est.A-quasiconvexe et satisfait les conditions de croissance non standards

1
E(Ivlp -D<f)<CA+ D)

oug €[p, pN/(N—=1) pourp<N—1,q €[p, p+1) pourp > N — 1. En particulier, nos résultats généralisent des résultats
antérieurs olv = 0 se réduit & = V¥u pours € N.
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1. Introduction

Itis well known that quasiconvexity is a necessary and sufficient condition for lower semicontinuity with respect
to strong convergence ib! of functionals of the form

uewht(2;R") > /f(Vu(x))dx, (1.1)
2

where the integrand = f(Vu) is nonnegative and has linear growth. More precisely, the following result holds:

Theorem 1.1. Let 2 ¢ RN be an open bounded set, and JetR”*"N — [0, co) be a quasiconvex function such
that

0< f(6) <C(L+ &) (1.2)

for all £ e R™*" and for some constait > 0. Then

/f(Vu(x)) dx < |inr2ior<1>f / f(Vu,,(x)) dx
2 2

for all sequencdu,} ¢ Wh1(£2; R™) strongly convergent i1 (£2; R™) to somex € BV(£2; R™) if and only if f
is quasiconvex.

The proof of the necessity is due to Morrey [36], while the sufficiency relies on De Giorgi's Slicing Lemma (see,
e.g., [6]; see also [23,24,32]). In the Appendix we present another argument based on Gagliardo’s Trace Theorem
for wl1(2; R™) (see [26]). It is interesting to observe that the idea behind the proofs using either De Giorgi's
Slicing Lemma or Gagliardo’s Trace Theorem is actually the same.

In the scalar case, that is when= 1, it has been proved by Serrin [40] that Theorem 1.1 continues to hold
without assuming the upper bound in (1.2). This is due to the fact that whenl quasiconvexity reduces to
convexity. Since any nonnegative convex function is the supremum of a sequence of piecewise linear functions,
trivially satisfying (1.2), lower semicontinuity results for this type of integrands do not require apriori growth
conditions. The situation is completely different in the vectorial ease 1, where Theorem 1.1 fails in general if
f has superlinear growth. Indeed, Acerbi, Buttazzo and Fusco [2] proved thatMken = 2 the functional

uewh?(2;R?) /|detVu|dx
2

is not lower semicontinuous with respect to strong convergenté i2; R?) for any 1< p < oo.
This striking difference in lower semicontinuity properties between functionals with integrands with linear
growth of the type (1.2) and integrands with superlinear growth such as

0< f(&) <C(1+€17), ¢>1,

maybe explained in part by the profound disparity in the characterization and properties of the trace space of
wla(2; R™) wheng =1 andg > 1. If 2 is a Lipschitz domain then the trace spaceWt1(2;R™) is
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L1(3£2; R™), and thus strong convergencelifi(£2; R™) implies (up to a subsequence) strong convergence of the
traces inL1(3£2,; R™) wheres2, is a smooth domain arbitrarily “close” d@ and hence there exists an extension
which converges iw1-1(£2; R™). On the other hand, when> 1 the trace space a¥19(£2; R™) is the fractional

1
Sobolev spacewl_?"’(a.(z,; R™), therefore strong convergence aloneLifi($2; R™) for any 1 < p < oo does

1
not necessarily entail strong convergence of the tracé@]iﬁa’q(aﬂ; R™). By virtue of Sobolev’s Imbedding
Theorem this is guaranteed, however, if the integrarsditisfies a coercivity condition of the form

1
fé) = E(ISI” - 1),
with

N
1<p< : 1.3
PSq<y—P (1.3)

As a consequence, the following result holds:

Theorem 1.2. Assume thap, ¢ satisfy(1.3). Let2 ¢ R" be an open bounded set, and JetR"™*" — [0, co) be
a quasiconvex function such that

1
E(Iél”—l) < fE) <C(L+g17) (1.4)

forall £ e R™*N Then

/f(Vu)dxglianioréf/f(Vun) dx
2 Q

for any sequencéu,} ¢ W14 (£2; R™) which converges te € BV($2; R™) strongly inL1($2; R™).

In this generality Theorem 1.2 was proved by Fonseca e Maly [21pferl, and by Kristensen [29] when
p =1 (see the bibliography therein for previous partial results). For the convenience of the reader we present a
proof of Theorem 1.2 in Appendix A.
Observe that we take admissible converging sequefaggsn the spaceév -4 (£2; R?), otherwise not only we
would be unable to guarantee finiteness of the energy, but also, giisoguasiconvex and (¢§) < C(1+ |€]9), f
is Wl4-quasiconvex but it may fail to b# -7 -quasiconvex (see [8]). In addition, note that by (1.4) it- 1 and
if liminf,—o [ f(Vu,) dx < oo then, necessarily, e W7 (2; R™).
The proof of Theorem 1.2 strongly hinges on the properties of a linear, compact, lifting operator

E:WhP(32; R™) — whi(2; R™)
vi—> E(v)

such thab is the trace ofE (v). The existence of such an operator follows from standard Sobolev trace and compact
embedding theorems when< %p. The exponent

N

“N-1?

is critical for the existence of the operatBr and, not surprisingly, also for lower semicontinuity of functionals of
the type (1.1). Indeed, Maly [30] proved that the functional

qc

ue Wl’N(.Q;RN)r—>/|detVu|dx
2

is not lower semicontinuous with respect to weak convergen®élifi ($2; RV) foranyp < N — 1.
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Lower semicontinuity of (1.1) in the borderline case where (1.4) holds;]f:e:r% p is still unknown (see
[22,29,31] for some partial results), except for the special case wherev and

f&) =N+ g(dett). (1.5)

Theorem 1.3. Let 2 c R" be an open bounded set, and [etR — [0, co] be a lower semicontinuos convex
function such thatg(0) < co. Let {u,} be a sequence of functions LY (£2; RY) which converges ta €
BV(£2; RN) in L1(£2; RY), and such that

sup/ Vi, N Ldx < c0.
n
2

Then

/g(detVu)dx gliminf/g(detVu,,)dx.
n—o0
2 Q

Theorem 1.3 was proved by Celada and Dal Maso [12] using cartesian currents (see also [20] for a new proof).
Functions of the form (1.5) may be viewed as prototypes of integrégndsf (x, u, Vu) satisfying a “limiting”
non standard growth condition (1.4) and whose importance stems from the study of cavitation and related issues in
nonlinear elasticity and continuum mechanics. For further results in related subjects we refer the reader to [1,3,7,
9,12,15,18,21,22,29-33,48,49].
The purpose of this paper is to extend Theorems 1.1 and 1.2 to the general sediggiagiconvexity, which
has been introduced by Dacorogna [13] and further developed by Fonseca and Miller in [25] (see also [10]). Here,
and following [37],

1

N
xX;
i=1

is a constant-rank (see (2.1)), first order linear partial differential operator, with.R? — R! linear
transformations;, =1, ..., N. We recall that a functiorf : R? — R is said to bed-quasiconvex

ﬂ@</f@+mwwy (1.6)
[¢)

for all £ € RY and allw € Coe(RY; R) such thatdw = 0 and [, w(y)dy = 0, whereQ denotes the unit cube

in RV, and the space‘ggr(RN; R?) is introduced in Section 2.

The relevance of this general framework, as emphasized by Tartar (see [42—-47]), lies on the fact that in
continuum mechanics and in electromagnetism PDEs other tham €u@ arise naturally and are physically
relevant, and this calls for a relaxation theory which encompasses PDE constraints of thévtyp@. Some
important examples included in this general setting are given by:

(a) [Unconstrained Fields]

Av=0.

Here, due to Jensen’s inequalisquasiconvexity reduces to convexity.
(b) [Divergence Free Fields]

Av=divv =0,

wherev: 2 c RN — RV (see [38]).
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(c) [Maxwell's Equations]

mY . (divim+h)\ _
A(h)'_< curlh )_0’
wherem : R® — R3 is themagnetizatiorand’ : R® — R3 is theinduced magnetic fieltsee [16,46]).
(d) [Gradients]

Av =curlv =0.

Note thatw € CS@,(RN;R”’) is such that curlw = 0 and fQ w(y)dy = 0 if and only if there existsp €

CS@,(RN; R™) such thatVe = v, where d=m x N. In this case, (1.6) reduces to the well-known notion of
quasiconvexityntroduced by Morrey [36].

(e) [Higher Order Gradients]

Replacing the target spad¥ by an appropriate finite dimensional vector sp&ceof m-tuples of symmetric
s-linear maps oY, it is possible to find a first order linear partial differential operat@much thav € L? (22; E™)
and.Av =0 if and only if there existy € W4 (£2; R™) such thatv = V¢ (see Theorem 1.8). In this case, (1.6)
reduces to the notion gfquasiconvexitintroduced by Meyers [35].

The first main result of the paper is given by the following theorem:

Theorem 1.4. Let

1<g< a.7)

N-1

Let£2 ¢ RN be an open bounded set, and fet2 x RY — [0, co) be a Borel measurable4-quasiconvex function
such that

|f(x, &) — f(x, 60| < C(L+ 6197+ [&2) 7Y |E — &l (1.8)

for all x € 2 and all ¢, £, € R?, and for someC > 0. Assume further that for altp € £2 and e > 0 there exists
8 > 0 such that

fx0,8) — f(x,8) <e(1+ f(x,8)) (1.9)

for all x € £2 with |x — xo| < 8 and for all& € R?. Then
dx e
/f(x, dE—N(x)) dx < Ilm)lorlf / f(x, Uy (x)) dx
2 2

for any sequencéu,} C L7(£2;R%) N ker.A weaklys converging in the sense of measures to s@fievalued
Radon measure € M(£2; RY).

Lower semicontinuity properties of the constrained functional

/f(x,v(x))dx with Av =0,
2

have been proved by Fonseca and Miiller in [25] with respect to weak convergeitb@2nR?). Note, however,
that for integrands with linear growth weakeonvergence in the sense of measures is more natural in view of the
lack of reflexivity of the spac&l(£2; R?).

Also, in the case (d) of gradients, that is, when

Av =curlv =0,
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Theorem 1.4 includes Theorem 1.1 for integrands which satisfy the additional coercivity assumption

1
fé) = EISI - C. (1.10)

Indeed, condition (1.10) implies that the sequef®e,} is uniformly bounded inL1($2; R"*V), and thus a
subsequence weaklyeonverges in the sense of measures.

We do not know if Theorem 1.4 continues to hold under a convergence weaker thar weakergence in the
sense of measures. On one hand, Theorem 1.1 certainly seems to point in that direction, but on the other hand, even
for higher order gradients (also contemplated within.thguasiconvexity framework; see example (e) above) the
situation is far from clear. Indeed, it is still an open problem to determine whether the functional

ueWz’l(Q;Rm)H/f(Vzu)dx,
2

wheref : Eg — [0, 00) is a 2-quasiconvex function satisfying
0< f(&) <C(1+ 1))

for all &€ € EZ, is lower semicontinuous with respect to strong convergenc®in'(s2; R™). Note that if
u € W21(£2; R™), then (see [11,17,34])

(3)
u, —
av

and strong convergence iw11(£2;R™) implies strong convergence of the normal derivath{éﬁﬂ} in
L1(382,; R™) where£2, is a smooth domain arbitrarily “close” d@. However, this does not necessarily guarantee
strong convergence of the traces in the Besov spadgd 2,; R™). This suggests that lower semicontinuity might
not hold under strong convergencei#i-1(§2; R™) and that a stronger notion of convergence is needed. We do not
know how to prove or disprove this.

Condition (1.9) is satisfied in the important special case where the integirand) is a decoupled product.
Indeed we have the following

e BM(32; R™) x LY(92; R™),
082

Corollary 1.5. Let1 < g < oo satisfy(1.7), let g : RY — [0, 0o) be an.4-quasiconvex function such that
|2(6) — g (&) < C(L+ 16177+ €0l 1E — &

forall £, £ € R?, and for some” > 0, and letk : 2 x R — [0, oo] be a lower semicontinuous function. Then
da .
/h(x)g(dE—N(x)> dx < |Inrglor<1>f/h(x)g(vn(x)) dx
2 2

for any sequencév,} ¢ L1(£2; R?) N ker.A weakly= converging in the sense of measures to s@fievalued
Radon measurge € M(£2; R9).

The second main result of the paper partially extends Theorem 1.2 to the redimudsiconvexity:
Theorem 1.6. Letl < p < g < oo, and assume that

N
_— if p<N-—-1,
q< N—lp P

p+1 if p>N—1.

(1.11)
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Let £2 c R" be an open bounded set, and Jet2 x R¢ — [0, oo) be an.A-quasiconvex function such that
|f(e,8) = fx, 80| < C(L+ (£ + 16277 — &1 (1.12)

forall x € 2 and all£, & € R, and for some&” > 0. Assume thaf satisfies conditiof1.9). Then

/ f(x, v(x)) dx < ILrEiorlf / f(x, U (x)) dx
2 Q

for any sequencéy,} C L7(£2; R?) Nker.A weakly converging i.” (Q; RY) to somev € L?(£2; RY).

Note that, unlike the case whepe= ¢ (see [4,14]), in genereal one may not takdo be a Carathéodory
function, and some kind of regularity is needed inthariable. Indeed, Gangbo [27] has proved that the functional
ueWwh(2;RV) /Xk(x)\detwoc)\dx,
2

whereK c RY is a compact set, is lower semicontinuous with respect to weak convergeh€e’ite2; RV) for
someN — 1 < p < N ifand only if

LN @GK)=0.

Here, again, one witnesss the intrinsic differences between the convex and the quasiconvex frameworks, as it has
been shown by Acerbi, Bouchitté and Fonseca [1] that Theorem 1.6 still holds for Carathéodory fuyiciioths
with Av = 0 if and only if curlv = 0, providedf (x, -) is convex, and without requiring condition (1.12).

The analog of Corollary 1.5 is now:

Corollary 1.7. Let1 < p < ¢ < oo satisfy(1.11) let g : RY — [0, oo) be an.A-quasiconvex function such that
g(&) — g(&D)| < C(L+ E177H + £ Y 1E — &1
forall £, £, € R?, and for som& > 0, and leth : 2 x R — [0, oo] be a lower semicontinuous function. Then

/h(x)g(v(x)) dx < |inr2iorlf/h(x)g(vn(x)) dx
2

2

for any sequencév,} C L1(£2; RY) nker.A weakly converging ii.? (Q; R?) to somev € L?(£2; RY).

In the case of first or higher order gradients (d) and (e), the Lipschitz condition (1.12) follows frosm the
quasiconvexity of the integranfi(x, &) together with the growth condition (1.13) below. For first order gradients,
this was shown by Marcellini [32]. The case= 2 was treated by Guidorzi and Poggiolini [28], while the general
case was studied by Santos and Zappale [39]. More generally, it can be shown that if the span of the characteristic
cone

A= U A(w),
weSN-1
whereA(w) := Zf"zl w; AD, has dimensiod then.4-quasiconvexity, together with (1.13) below, implies (1.12).
As a corollary of Theorem 1.6 we obtain the following result:

Theorem 1.8. Let 1 < p,q < oo satisfy(1.11) let s € N, and suppose thaf': 2 x E* — [0, c0) is a Borel
integrand satisfying1.9), and

0< f(x, &) < C(L+[£9) (1.13)
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fora.e.x € 2 and all¢ € EV", whereC > 0. Assume that for a.e. € §2 the functionf (x, -) is s-quasiconvex, that
isforall & € EV

fx, &)= inf{/f(x, £+ V“'w(y)) dy: we ngr(RN; Rm)}.
o

If {u,} c W59(£2; R™) converges weakly te in W*?(£2; R™) then

/f(x,vsu)dxg"yp_])ig’lf/f(x,vsun)dx.
2 2

Here E™ stands for the space ef-tuples of symmetrig-linear maps orR". Theorem 1.8 was proved by
Esposito and Mingione (see Theorem 4.1 in [19]) under the assumptions

N(s—1)
SNe-1-17

whens > 2.

q

2. Preliminaries

We start with some notation. Hege is an open, bounded subset®Y, £V is the N dimensional Lebesgue
measureSV—1:= {x e RN: |x| = 1} is the unit sphere, an@ := (—1/2,1/2)" the unit cube centered at the
origin. Forr > 0 andxg € R we setQ, :=rQ andQ(xo, r) :=xo + r Q. A functionw € L (RV; RY) is said to
be Q-periodic if w(x +¢;) = w(x) fora.e.x e RY and everyi = 1,..., N, where{ey, ..., ey} is the canonical
basis ofRY, and we writew € L%er(Q; R%). Also ngr(Q; R?) will stands for the space af-periodic functions
in C>(RN; R?). The Fourier coefficientsf a functionw € Lie( Q; R?) are defined by

wayzjﬁmwé””*mg rezV.
0

If 1 < g <oothenW—14(2; R!) is the dual ofW&"’/(Q; RY), whereg' is the Holder conjugate exponentgf
that is I/g + 1/¢’ = 1. Itis well known thatF € W—14(£2; R!) if and only if there exiskz, ..., gy € L7(£2; RY)
such that

mm:ifgggnmmweﬁﬂmw)
i=l_Q
Consider a collection of linear operatot§’ :RY — R/, i =1, ..., N, and define the differential operator
Ao L1 (.Q; Rd) — wba (.Q; Rl)
vi> Av
as follows:

N N

. 31) . 8w ’

. (@) — _ @) lq Y

(Agv, w) .—<'21A 3x,~’w>_ 'ElfA vax[ dx forallwe Wy? (2;R').
1= 1= Q
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Even though the operatot, so defined depends an, we will omit reference to the underlying domain whenever
it is clear from the context, and we will write simpl¢ in place of Ag;. In particular, ifv € L%e,(Q; R?) then we

will say thatv € kerA if Av=0in Wp_e%"’(Q; RY), i.e. we consider test functions e W&é‘?/(Q; RY.
In the sequel we will assume thdt satisfies theonstant-rankproperty (see [37]), precisely there exists N
such that

rankA(w) =r forallw e sV, (2.1)

where

N
Aw) = Zwi AD weRN,
i=1
For eachw € R" the operatoP(w) :RY — R is the orthogonal projection &“ onto kerA(w), andS(w) : R/ —
R? is defined byS(w)A(w)z := z — P(w)z for z e R andS = 0 on (rangéA(w)). It may be shown that
P:RM\{0} — Lin(R%; R?) is smooth and homogeneous of degree zeroSarif¥ \ {0} — Lin(R’; RY) is smooth
and homogeneous of degred (see [25]).
Forg > 1 we define the operator
Sy Lbed 0; RY) > Wpat (05 RY),
by
Sy =Y SR (2.2)
AeZN\{0}
whenevew € L%e,(Q; R?) can be written as
v(x) = Y BT, (2.3)
reZN
Using (2.2) and (2.3) we may write

Sgv(x) :=/K(x —y)v(y)dy,
Q
where the periodic kernél is given by the Fourier series

K(x):= Z S(h)ePT A
A€ZN\{0}

which converges in the sense of distributions.
For any functiorw defined orR" and for everyk = 1, ..., N and any positive integare N we define

@) w 9t [ 9% 9w
=5 G (- ()
s times
where the difference quotiefitw /dx; is given by
9w
0Xr

x):=wkx er) —wx).

Moreover for any multi-index = (a1, ..., anx) € NV, we use the notation

pye o (05 ((ai>“2 < - <(ai)“Nw(x)>>>
(%) we = ox \ x22 ox '
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Proposition 2.1. There exist€ > 0 such that
|K@)| < Clxt (2.4)
for all x e RV\{0}.
Proof. Although the result is well-known to experts, we include a proof for the convenience of the reader. It
suffices to prove that
VK@) < Clx|™ (2.5)
for all x e RV\{0}. Let/ € {1, ..., N} and let

~ 0K .
Kx)y=—@):= Y 2minSnem
dx;
A€ZN\{0}
— Z m(}»)eZm'x»)L: Z m(}»)eZm'x»)\
A€ZN\{0} reZN
with
m(L) :=2wiMS(L)

and where we have used the faot0) = 0.
We consider the following dyadic decomposition (cf. [41], p. 241). ket C°(B(0,2);[0,1]), ¢ = 1 in
B(0, 1), and definéd (x) := ¢(x) — ¢(2x). Observe that =0 if |x| < % and|x| > 2. It turns out that

o)

for all x e RV \{0}. Hence

Xn: K;j—> K (2.6)

j=—n
in the sense of distributions, where
Kj(x):= Y mj()e?*
reZN
andm (1) :=m(0)8(r/2/). Since
mj(x)#0 onlyif 2/~ <A <2/ (2.7)

it is clear thatK ; reduces to a finite sum. Note thatjit< —2 clearly no integer satisfied 2! < |1| < 2/*1 and so
mj;=0forall j <-2.
We claim that for every e N

1 v
|Kj(X)|§CM—|x|M2'I(N M) (2.8)

for all x e RV\{0}. This, together with (2.6), yields the result. Indeed xfix R\ {0}, and note first that (2.8) with
M = 0 reduces to

|K;(x)] < Co2/M. (2.9)
ChooseM > N. We have
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Yolkiml< Yo Ko+ Y K]

Jj=—00 2/ |xL 2/>|x|~1
< Co Z 2jN+CMW Z 2J(N=M) (2.10)
27 x|t 2/>|x|71

In the latter expression the first sum can be bounded above by

(2N)1+|ng x|~ _ 1 1 N

2N < < i
Z 2N _1 |x|N 2N _ 1
27 |xL

while the second term in (2.10) may be estimated by

Ly g, L1 1 1 1

Cy—— <Cuy .
| IM |X|M|X|N Ml 2N M2N M = I |N
-1
2/ >|x|

To conclude the proof, it remains to establish (2.8). By means of a summation by parts and by the Mean Value
Theorem, forank =1, ..., N, we have

(eZJTiXk _ 1)Kj(x) — Z mj()\’)(eZJ'[iX-()m-'rf,’k) _ GZJTiX-A)

reZN

= Z (mj (A —ep) —m; ()\))(_:‘2.71[,(.)L

reZN

= 3 Py gV )erin

for somee,il) € (0, 1). By replacingn ; with 9m /9, in the previous identity, we obtain respectively

) . 3%m (1) I6)) ix A
(0= g e s oS
€

if 1 £k,

2
@ - 17K = Y O

2
reZN 9

()»+ (9(1) 9,52))61{)92”["')‘
if I =k, where we have used the fact that partial derivatives and difference quotients commute, i.e.
9~ 8m] _ 0 (07 m;
an\ar ) am\ oan )
and, once again, we have invoked the Mean Value Theorem.
In turn, if o« is a multi-index withja| = M, we have

lalyyy
H(eZJ'nxk ) K](x)z Z aa)\aj< +Z 9(1) (le)) >e2mxk

k=1 rezZN
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wheree(l) . ..,9,50"‘) € (0, 1). By the Mean Value Theorem we derive

9l
oA (“FZ O+ +6)e )

k=1

@Kol < Y-

reZN
which, together with (2.7), yields

C
|Kj(x)|§W Z

2o A2 4

la“”] EN: @D (k)
9 + .. +9k )ek
(‘2—jM
<

_— 1
lx|M .
211 || <A <2/ e
2—jM+jN
|x|M
Note that here we have used the fact that
31%m ;(x)
OA%
which results directly from the homogeneity of degree zero of the funetioyielding

g CO(27]M7

31%lm(n)
ILY
and from the fact that

N G) [ (3 e

where we took into account the fact sujig;) C [2/-1 2/t o

< Cola|™

It is clear thatS, may be extended as an homogeneous operator of degtefgom Wp’elr’q(Q; RY) into
Lie( Q; RY). Indeed, as it is usual, using duality principlesLit Wp;alr"’(Q; R?) andifg € Lg;,(Q; R9) then

<SqL’ (P> = (L7S;;/(p>a (211)
where forf, g € Cpe,(Q; R?) the duality pair is defined by

fogdi= Y Fat) = / o0 200 d,

reZN

and where the operator

S Lper(Q Rd) - Wper (Q: Rl)
is defined by

Sqv)= Y Sy

AEZN\{0}

wheneven e L,%;,(Q; RY).
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In particular, consider

l<g<

N-1

Since the space of al-periodic R/-valued Radon measurestped Q; RY) is contained ian’e}’q(Q; RY), if

n € MpedQ; RY) then, in view of (2.11) S, is well defined, and using Fubini’s Theorem we may find the
representation

Sy (x) =/K(x — ) du(y). (2.12)
0

Indeed, ifp € C(Q; RY) we have

per

[ S o = (8,100 = 0. 550 = [ S0 day)
o

0
=[ X swemem o)
0 *€ZN\{0}
= f ( / > %ez’”'w“dﬂ(y))go(x)dx
0 0 AeZM\{0}
:/(/K(x—y)du(y))gﬂ(x)d)m
o 0

thus asserting (2.12).
We can now define the operator

Ty Lpe 0; RY) — Lper( 0; R)
as follows
Tov(x) :=v— S Av.
When there is no possibility of confusion we write simglyand7 in place ofS, andZ,, respectively.

The following proposition may be found in [25].

Proposition 2.2. 7:Lfed Q; RY) — LfedQ;RY) is a bounded linear operator aneB:W,{é"’(Q;R’) N
Lger(Q; RY) is a pseudo differential bounded operator of ordet such that

(i) if ve Lied Q; RY) thenT oTv =7 v and A(7 v) = 0;
(i) v — Tvllze < CyllAW)Ily-14 for all v e Lied @; RY) such thath vdx =0, for someC, > 0;
(i) v—Tv=SAv.

The next result is well-known to experts. We include a proof for the convenience of the reader.

Proposition 2.3. Let1 < p < oo, leth € LP (3 Q,; R?), wherer € (%, 1), and consider the measure

n=hH""s0,.
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Thenfors € (0,1),0<a <1, «a # NT‘l,We have

ISullri@oy < Cls —r|™*hliLr@o,)
where

1=

p(N=D i1
N—1—ap if P ﬁ >0,
00 if - — % <0.

Proof. Consider now

n=hH""150,.
We have
Su(x) = / K(x—y)du(y)= / K (x — y)h(y) dHN"1(y).
0 90,

For anyu € (0, 1] there exists a constaft> 0 such that
lx—y[V > Clr — s — /N
forallx =s& €9Q, andy =r&’ € 9Q,, wheret, &’ € 9Q (recall thatr € (;31, 1)). Thus forx = s& € 9 Q; we have

lhr ("]

W dHV L),
a0

S| <Clr =57

where
h (&) =rVIh(re",

and we used (2.4). The conclusion follows from the standard convolution inequality for fractional integrals applied

to the(N — 1)-dimensional Lipschitz manifoldlQ equipped with the distance inducedRY ; see [41], 188.21, for

a very general version of fractional integration. For the case at hand one can of course use the classical argument
on local charts (see also Hardy-Littlewood—Sobolev inequali®r! [41], p. 354). O

A function f :R¢ — R is said to bed-quasiconveif

f&) </f(§ + w(y)) dy
0

for all ¢ € R? and allw € Cog(R"; R?) such thatdw = 0 andf,, w(y)dy =0.
As it is usual, the regularity of the test functianmay be relaxed iff satisfies appropriate growth conditions.

Proposition 2.4. Let f :RY — R be an upper semicontinuoug;quasiconvex function, such that
fE <C(1+(€9) (2.13)

for all £ € R?, and for somd < ¢ < oo andC > 0. Then

IG) </f(§ +w(y))dy
0

forall € e R? and allw € Lie(RY; R?) such thatdw = 0 and Jow()dy=0.
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Proof. Fix £ € RY and letw € Lie(R"; RY) be such thafdw =0 ande w(y) dy = 0. Then the functions

wg:ng*w—/pg*wdy
Q

are in ngr(RN;Rd), Aw, = 0 and [Q we(y)dy = 0. In view of (2.13), Fatou’s Lemma and the upper
semicontinuity off imply

iminf [ [C(1+ i) = £& +woldy > [[C(L+ i) = 7€ +w]dy,
Q Q
Sincef is A-quasiconvex it follows that

e—0t

/ F(E+w)dy > limsup [ £ +wody > £&),
0

and the proof is complete.O

3. Proof of Theorem 1.4

In this section we prove Theorem 1.4 using the blow-up method. As it is usual, the main effort will target the
case where the limit function reduces to a constant.

Proposition 3.1. Let g : RY — [0, o) be an.A-quasiconvex function such that
lg(®) — gD < C(L+ 18197 + &)~ 1) IE — &l (3.1)

for all £, £ € R? and for someC > 0, wherel < g < oo satisfieg1.7). Then

g0 < ILrEiorlf / g(vn (x)) dx
o

for any sequencev,} c L1(Q; R?) nker.A converging weakly-to zero in the sense of measures.

Proof. By a simple mollification argument and by passing to a subsequence if necessary, without loss of generality
we may assume thét,} ¢ C®(0; RY) NkerA,

Co:= Sup/‘vn(x)‘ dx < oo, (3.2)
! 0
liminf / g(v,,(x)) dx = lim /g(vn (x)) dx, (3.3)
n—oo n—oo
Q Q
and there exists a nhonnegative Radon meagugach that
a0 LN L@ = (34)
asn — oo, weakly-« in the sense of measures. Bix- 0. By (3.2) there exist
)

E,C(1—251-9), LYE,) = >
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such that
nw@0,)=0 (3.5)
and
4C
/ lug | dHN L < C1(6) = TO (3.6)
90r

forallr € E,. Fixr € E, and let

Wp,r = XrUn — / v, dy.
Or
By the .4-quasiconvexity ok and asg > 0, we have

/g(vn)dx 2/8(T(wn,r)) dx‘f‘/g(vn)dx_/g(?—(wn,r)) dx

0 0 Or 0
> 2(0)[0] + / ¢(on) dx — / ¢(T(wn,)) dr
Or 0
— 500 + / [¢Gtrvm) — 2(T (wa))] dx, (3.7)
0

wherey, is the characteristic function of the s@t and where we have used Proposition 2.4. By (3.1) we have

/[g(XrUn) - g(T(wn,r))] dx

0
< C/(1+ |XrUn|q_l + |T(wn,r)‘q_l)‘)(rvn - T(wn,r)‘ dx
Q
< C/|ern - T(wn,r)|q dx + C/(1+ |ern|q71)|ern - T(wn,r)| dx.
Q Q

Hence from (3.7) we have

/g(vn)dx > g(0)|Q1-25] — C/\xrvn — T (wp,)|" dx — c/(1+ 100197 ) | X 00 — T (wp,)| dx.
0 0 0
Multiply the previous inequality by g, and integrate im to obtain

1-6

1) 1)
E/g(vn)dx28(0)|Ql—25|§ -C / XE,,/|ern — T (wn,r)|? dxdr
o 1-28 0
1-6
-C / XE, /(1+ |ern|q71)|xrvn —’T(wn,r)|dx dr, (3.8)
1-25 ]
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where we have used the fact th&l(E,) = §/2. By (1.7) we may choosg such that

q if g > 1,

= . 3.9
n {e(l,%) if g =1. (3:9)

We claim that

1-5

q1
lim / XE, /vn dy| dr=0. (3.10)
n—o0
1-25 0,

Indeed, fixr € (1 —25,1—6). If n(3Q,) > 0 then x, (r) =0 for all n by (3.5), while if u(3Q,) = 0 then

fQ Xxrvp dy — 0 by Theorem 1.62 in [5], and becau&v,ai 0 in the sense of measures. The claim now follows
from (3.2) by Lebesgue Dominated Convergence Theorem.
Next we show that

1-6
lim / XE, /‘ern —’T(w,“)‘q1 dxdr =0, (3.11)
n—0o0
1-25 ]

or, equivalently by (3.10),

1-6
lim / XE, /\wn,r — T (wp,)| ™ dxdr =0. (3.12)
n— oo
1-28 0

By Proposition 2.2(ii) we have
H wn,r - T(wn,r) || L1(Q) g C || A(Uan) || W’lv‘il(Q)’

and thus to prove (3.12) it suffices to show that
1-5

/ XEn

1-26

Fix ¢ € C°(Q; RY). Using (3.6), ifr € E, then we deduce that

N

. d
E /A(’)ern—l// dx
, 0x;
1=1Q

Avn xr) ”3;—1,ql(Q) dr — 0. (3.13)

|<A(ern)’ 1//>| =

:‘_/A(Vr)vnl//dHN_l

90,
<C / |Un|dHN71||I/f”L°°(Q;]R1) SClY L o:rY- (3.14)
20,
Hence
XE,, A(Xr”n) ||M(Q,R1) < C (315)

for all » andr € (1 — 25,1 — §). We now show that

xE, A(xrvn) — 0
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in the sense of measures. Rixe C°(Q; R andr e (1—25,1—6). If n(30,) >0 thenyg, (r) =0 for all n

by (3.5). Thus assume(d Q,) = 0. Sincev, € kerA, we have, by Theorem 1.62 in [5] and the fact tb,ati\ 0in
the sense of measures,

N
(AGevn), ¥) = Z/A(’) Un —'”dx—> 0. (3.16)
1=l Xi

Therefore{xg, A(x-v,)} is a bounded sequence®f-valued Radon measures converging wedk-zero. Since
M(Q; R, the space of alR!-valued Radon measures, is compactly embedd@d i1 (Q; R'), we deduce that

xE, A(t-vn) — 0 in W*l"“(Q; Rl) asn — oo
foralln andr € (1— 26,1 —6), with

XE, A(Uan) “ w—La1(0) <C

for all n andr € (1 — 25,1 — §). By Lebesgue Dominated Convergence Theorem, we obtain (3.13), and, in turn,

(3.12).
Finally, we prove that
1-5
Ilm / XE, / |Un|q_1|vn - T(wn,r)| dxdr =0. (317)

1 25 0,

If ¢ = 1then thisis a consequence of (3.11). Thus, without loss of generality, we may assuigne thatVe begin
by showing that

1-5
lim_ / m(/wm—ldx)‘ /vndy dx dr =0. (3.18)
- 0r 0r
Indeed, sincg < 2, by (3.2) we have
1-8 1-8
/ XE”(/IvnWldx) /vn dy|dxdr <C / XE, /vndy dx dr,
1-258 Or Or 1-25 Or

and thus (3.18) follows from (3.10). In view of (3.18), proving (3.17) is equivalent to showing that

1-§
lim / XEy, / |Un|q_1|wn,r - T(wn,r)| dxdr =0. (3.19)
n—00
1525 0,

Now, if ¢ € (0, 1) then we have
// Ivn|q71|wn,r - T(wn,r)| dx dr
E}‘l Qr
= // |vn|q_1|wn,r - T(wn,r)|l_8‘wn,r - T(wn,r)‘s dx dr

Ey Or

1-¢ 3
< (//|vn|({:el‘wn,r —’T(wn,r)‘dxdr) <//|wn,r —T(wn,r)|dxdr> , (3.20)

E, O En Or
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where we used Hélder’s inequality with exponentgéll— ¢) and 1/ ¢. By (3.12) the second factor on the right hand
side of the previous inequality converges to zera as oo, hence to prove (3.19), and thus (3.17), it remains to
show that

g—1
sup [ 101
n
En Or
In light of (3.14), and sinced(v,) = 0, we may identifyA(w, ,) = A(x,v,) with the measure

Krn = _A(Vr)UnHN_lLBQro
Hence by Proposition 2.2(iii)

W,y — ’T(wn,r)| dx dr < o0.

Wn,r — T(wn,r) =SA(xvn) = Sﬂr,no (3-21)
Note that O< (g — 1)(N — 1) < 1 and let
N-1
—1(N —-1),1), fi=— 3.22
OtE((q )( ) ) N_1l_a ( )
Then
N-1 1 1

4 _

= , t .
TN-1-@-DWN-1) 2-¢ Sy-1
Using Holder’s inequality, Proposition 2.3 wigh= 1, (3.6), and (3.21), we have

g=1 ’ g=1 n—1
//Ivn|1_5|wn,r_T(wn,r)‘dXer// / Ivnll_g‘wn,r_T(wn,r”dH ds dr

E, O, E, 0 905

,
<_/‘_/|||Un|({%51HLr/(aQS)

E, O
-
g1 _a
<C H |vp | 1=¢ ” L’/(BQS)(r —8) " vn ||L1(3Q,) ds dr
E, O

t

Wnr — T(U)n,r) H L1 (0Qy5) ds dr

7 g=1 _
< C/|||vn|1—s HL‘/(BQS) / (r—s)"%drds
0 E,N[s,1]

1
S C/” |”"|% HL’/(BQS) ds
0

1 1/t/ l/l‘/
g-1 t EI/
gc(/”“}n“g Lr/(aQs)ds> :C</|Un|1s dx) )
0 0

which remains bounded as— oo, since(q — 1)’ < 1 we may choose:=1— (¢ — 1)¢’. Hence (3.17) holds.
By (3.11) and (3.17), letting — oo in (3.8) yields

8. 8

Ellmlnf/g(v,,)dx>g(0)|Q1725|—,

n—00 2
o

and to conclude the proof it suffices to divide the previous inequality/Byand then les — 0*. O



228 I. Fonseca et al. / Ann. I. H. Poincaré — AN 21 (2004) 209-236

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Without loss of generality we may assume that

n—oo

liminf / f(x, U,,(x)) dx = nli_)moo / f(x, vn(x)) dx < o0.
2

Passing to a subsequence, if necessary, we find a nonnegative Radon measth¢hat

Flrv@)LV 2 = p
asn — oo, weaklyx in the sense of measures. We claim that

. n(Q(xo, 1))

dEN (r0) = Imc}+ N7

If (3.23) holds, then the conclusion of the theorem follows immediately. Indeeg, de€.(£2; R), 0 < ¢ < 1.
Since

> f(x0,v(x0)) for £V a.exg e 2. (3.23)

du
dcN
whereu; > 0, we have

==LV +pu

I|m /f(x vn)dx>||m|nf/<p(x)f(x v,,)dx_/fpdu

2

/ dL:N /wf(x v) dx.

By letting ¢ — 17, and using Lebesgue Dominated Convergence Theorem, we obtain the desired result. Thus, to
conclude the proof of the theorem, it suffices to show (3.23).
Let

dx
T A Y2, RY),

and fiXxo € 2 such that
u(Q(xo,r))

dﬁN (x )= 0+ rN =0

1
lim — / |v(x) — v(xo)‘ dx=0, Ilim
r—0tr r—0t r
0 (xo,r)
Choosingr N\ 0 such thage (8 Q (xo, 7£)) = 0, we have
u(Q(xo0,7k))

rk

|25 1(Q(x0, 1))

- —0. (3.24)

lim lim = )d
_keoon%OOr_N f(x,v,)dx

Q(x0,7%)

= lim Iim /f(x0+rky,U(XO)"'wn,k(y))dy’

k—o00t n—oot

Q

wherew,, i (y) := va(x0 + r¢y) — v(x0). Clearlyw, i € ker.A, and we claim thatv,, x gy weakly- in the sense
of measures if we first let — oo and therk — oc. Indeed, fixp € C.(Q; R?). After a change of variables, we get
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/cp(y) wa k(M dy = [ @) (va(x0+ rey) — v(xo)) dy
0

O~

X — X0

1
QO (xo0,7x)

)(vn (x) — v(xo)) dx.

If we now letn — oo, and use the facts thaj X weakly-« in the sense of measures and that
)“ = U‘CN LQ +)"Sv
we obtain that

. 1 — 1 _
lim _/90(”“’“(” dy=— _/ ¢<x xo)(v(x) —v(x0)) dx + = / <p(x xo) dis.
n—oo rk Tk r

k Tk
9] QO (xo0,7k) Q(x0,7k)

Hence
[As1(Q(x0, 7))
—

Tk

. 1
lim /fﬂ(y)wn,k(y)dy’ < llelleo)— / |v(x) — v(xo)| dx + [l@ll (o)
n— 00 e
QO (x0,7%)

The claim then follows by letting — oo and by using (3.24). Diagonalize to get € L1(Q; RY) N ker.A such
thatwy 2o weakly-« in the sense of measures, and

d .
dﬁ—u,\,(xo) = k&mm/ f(x0+ rey, v(xo) + wi(y)) dy,
o

wherer, — 0. Fixe > 0. By (1.9) and Proposition 3.1 we have

du

dch

> 1 lim d ¢
(x0) > 11s kLOO/ f(x0, v(x0) + wi(y)) dy — 1rs
0

1
> —— f(x0, v(x0)) —

1+ l1+¢’

It now suffices to lee — 0t. O

4. Proof of Theorem 1.6
In this section we prove Theorem 1.6. We begin with the following

Proposition 4.1. Let g : RY — [0, o) be an.A-quasiconvex function such that
|g(&) — g(ED)| < C(L+[E177H + [£2197Y) 15 — &l (4.1)

for all £, £ € RY, and for somél < g < oo andC > 0. If {v,} € L9(Q; R%) N ker.A converges weakly to zero in
LP(Q;R%), wherel < p < oo satisfieq1.11) then

g0 < ILrliorlf/g(vn(x)) dx.
o
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Proof. The proof of this proposition follows closely that of Proposition 3.1, therefore we indicate only the main
modifications. Condition (3.2) should be replaced by

Co:zsup/|vn(x)|pdx < 00,
" 0

and, correspondingly, (3.6) by

/ lun [P dHN =1 < C1(8) (4.2)
a0,

forall r € E,,. Conditions (3.4) and (3.5) are no longer needed, while the expgnéan(3.9) is set to be equal ip.
Equality (3.10) now follows immediately sincf% xrvp dy = 0asv, — 0in L?(Q; R?) foranyr € (1—25,1—35).

To prove (3.13), fixy € C°(Q; RY). Sincev, € kerA andv, — 0in L”(Q; R?), we have
N 81//
_ (i) L
(Ao, ¥) = Z/A Xrvn g - dx — 0O, (4.3)
i=1
9]
and ifr € E,, and by (4.2),
N
: d
Z/A(I)ern —1// dx
0x;

‘(-A(ern)v I/f>| = = ‘_ / Ar)vnyr dHV 1

i:lQ 90,
Nvo1 1/p
gc( / onl? P ) WLy oo, mny S CIV LY g, -
20,
Hence,
XE, A(ern)” LP(30,;Rl) <C (44)

forall n andr € (1—28,1—6).
We recall that Sobolev Compact Embedding Theorem we have

Wol (Q:R') = L* (60 RY),

where
N —-1)yq .
W =Dg if ¢ <N,
s < N-—-gq'
(9 if g >N.

Thus, (1.11) yields that the Sobolev spa/b’é’q/(Q; R’ is compactly embedded ib”' (3 Q,; R'), and by duality
we haveL? (3 Q,; R') compactly embedded i ~19(Q; R!), which, together with (4.3) and (4.4) implies that

xE, AGxrvn) = 0 inWL4(Q; R asn — oo
forallr € (1—25,1—96), with

XE;, A(Un Xr) || W*l,q(Q) g C

for all n andr € (1 — 25,1 — §). By Lebesgue Dominated Convergence Theorem we obtain (3.13), and, in turn,
(3.11).
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To prove (3.17), in place of (3.22) we take
_ -1 -1
ae((q PN )71)’ . p(N —1)

p T N-1l-ap’
where, without loss of generality, we are assuming p (see [25] for the casg = ¢). Then
i=—2 oy L
p—q+1 g—1

where we have used the fact that- ¢ + 1> 0 by (1.11).
We may now proceed exactly as before, with the only exception that now wedpavé):’ < p. Hence taking

we conclude. O
We are now ready to prove Theorem 1.6.
Proof of Theorem 1.6. We proceed as in the proof of Theorem 1.4, until (3.24) which should be replaced by

du . p(Q(xo,7)) 1 p
dE—N(xO) = rlera+ — N < 00, rlLrg+ N / ‘v(x) - v(xo)| dx =0. (4.5)
O (xo,r)

As in Theorem 1.4 we le, i (y) := v, (x0 + rry) — v(xp). We claim thatw, y — 0 in L”(Q; RY) if we first let
n — oo and thenk — oo. Indeed, fixp € L' (Q; RY), where p is the Holder conjugate exponent @f Using
Holder’s inequality and then making a change of variables, we get

‘ /fp(y)wn,k(y)dy’ < ’ /w(y)(vn(onrrky)—v(xo+rky))dy‘ + ’ /qo(y)(v(onrrky)—v(xo))dy
0 0 0

S % / (p<x :kxo)(vn(x) - U(X)) dx

QO (x0,7%)

1 » 1/p
+ ”gD”Lp/(Q)(r_N / ‘U(x) - U(x0)| dx)
* oo

If we now letn — oo the first integral tends to zero due to the fact that~ v in LP(Q(xo, rx); R%). The claim
then follows by lettingk — oo and by using (4.5). Diagonalize to ge} € L4 (Q; R?) Nnker.A such thatw; — 0
in L7(Q; R%) and

du

dﬁ—N(xO) = kimm/ f(x0+ iy, v(xo) + wi(y)) dy,
0

where r, — 0. We may now continue as in the proof of Theorem 1.4 using Proposition 4.1 in place of
Proposition 3.1. O

5. Proof of Theorem 1.8

Finally, we prove Theorem 1.8.
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Proof. For any functiorv € L?(£2; E7") consider the differential operatot

9 0
Av = Fy Vig..ip jipgoods — . Vig..ipiipg2..is :
Xi Xj 0<h<s—1, 1<i, ji1...is <N

Hereh =0 andh = s — 1 correspond to the multi-indexg% . . .is andiy ...is—1j. As shown in [25],

{w € Coa®RY: Ef): Aw =0, /wdx = o} ={V'¢: p e Coa(RV: R™)}. (5.1)

Since for a.ex € £2 and for allv € EV",

f(x,v) =inf /f(x, v+ V() dy: ¢ € CooRY: RN)},
0
it follows from (5.1) that

f(x,v) =inf /f(x,v—l—w(y))dy: weCSgr(RN;E;")ﬂkel’A,/w(y)dy=0}
0 0

and thusf is A-quasiconvex. Letu} C W*4(£2; R™) be any sequence such that— u in W*7(£2; R™). Again
by (5.1) AV*u; = 0, and so we may apply Theorem 1.6, where the target sRécs replaced by the finite
dimensional Euclidean vector spaE¢, to obtain

/f(x,VSu) dr < Iikminf f(x, Viug) dx. O
—00
Q Q

Appendix A

Proof of Theorem 1.1. Using the blow-up method as in Theorem 1.4, we may assume, without loss of generality,
that

N
=0:= (—%,%) and u(x)=0.

As u, — 0 in L1(Q;R%), by Egoroff's and Fubini’s Theorems for adye (0, 1) we may find a subsequence of
{u,} (notrelabelled) such that for aec (5, 1)
lim / lup| dHN "L =0.
n—oo
00,

SinceL1(3Q, U3 Q;RY) is the trace space a¥1-1(Q\ 0,; RY), we may find{v,} ¢ WH1(0Q\Q,; R?) such that
vy =u, 0ndQ, andv, =00nadQ (in the sense of traces) and

lonllwiio\g,:rt) S KrllunllLaog,;re)
for some constank, > 0. We have

/ f(Vuy)dx < / C(1+ |VUn|) dx <CcLN(0\0r) + CKrllunllzrso,:rd)-
O\Qr O\QOr
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If we definev, to beu, in Q, then{v,} C W&'l(Q; R?) and thus by the quasiconvexity gfwe have

fO< / f(Vu,)dx = / f (Vo) dx + / Jf(Vuy) dx
Q O\QO: Or
<CLY(Q\0r) + CKpllunll1a g, ey + / f(Vuy) dx
0
and lettingrn — oo we conclude that

fO<cLh(o\0,) +liminf f f(Vuy) dx.
0

It now suffices to les6 — 1~ (and hence). O

Proof of Theorem 1.2. We consider only the case<d p < co. As in the previous proof, we may assume, without
loss of generality, that

1 1\V
Q:QZ (—§,§> and M()C):O,
and

Iiminf/f(Vu,,)dxz lim /f(Vun)dx<oo,
n—oo n—oo
Q Q

so that by condition (1.4)

K = Sup/ [Vu,|” dx < oo.
n
0

Fix § € (0, 1). By Egoroff’'s and Fubini's Theorems, we may find a subsequence (not relabeled) such that for a.e.
re(0,1)

lim /lunldeN’le.
n—o0
00,
Define

2K
R;:{re(a, 1): lim /|un|PdHN1=o,|iminf/|wn|PdHN1<—}.
n— 00 n— 00 1-56
30, 90,
Note that by Fatou’'s Lemma

K > liminf / /|Vu,,|deN’ldr

n— oo

. D\RIQr

> / liminf | |Vu,|? dHY1dr

n—>00
6, D\R 00,
2K

> LG, D\R) T
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and soL(R) > (1—8)/2.
Fix r € R. Sincep > NT‘lq, standard Sobolev trace and compact embedding theorems guarantee the existence
of a lifting linear and compact operator
E:WhP (30, RY) — whi(Q; RY),
vi> E(v)
such thaw is the trace of£ (v). Define{v,} C W&”’(Q; R?) by
1y (x) if x € O,
P(x)E(up)(x) if x € O\OQr,
whereg € C1(Q; [0, 1)) is such thatp(x) = 1 in O, and|Vg| < 1. As E(u,) — 0 in WL9(Q\Q,; RY), by
condition (1.4) we have
lim / f(Vu,)dx = / f(O)dx.
n—o0
O\QOr O\Qr
Hence, using the quasiconvexity ifat 0 we obtain

v (x) = {

n—oo

liminf | f(Vu,)dx >Iiminf/f(an)dx
n—0o0
9] Or

= Iirlinf / f(Vu,)dx — ILm / f(Vuy) dx
. Q ' ooQ\Qr
> f(0) - LY(Q\ ) f(0)
=LY(0) £ (0),
and the proof is complete if we I6t— 1~ (and hence). O
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