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Abstract

We prove the occurrence of a waiting time phenomenon in space dimensionsN < 4 for the thin film equation subjected t
Navier’s slip condition or even weaker slip conditions. We state a sufficient criterion on the smoothness of initial dat
guarantees a local delay of the onset of spreading wherever the support of initial data locally satisfies an exterior cone
Our method combines a Hardy-type inequality valid on infinite cones with recently established weighted energy estima
novel iteration technique developed in [R. Dal Passo, L. Giacomelli, G. Grün, Ann. Scuola Norm. Sup. Pisa 30 (2001) 43
On account of formal considerations, we conjecture our criterion to be optimal.

Résumé

Dans cet article nous nous intéressons au comportement qualitatif de la frontière libre des solutions de l’équation
minces soumise aux conditions de glissement de type Navier ou aux conditions de glissement plus faibles. Nous
l’apparition d’un phénomène de temps d’attente dans les dimensions d’espaceN < 4. Nous formulons un critère suffisant po
la régularité des données initiales, qui garantit un délai local pour le début de la propagation, où que soit satisfaite locale
condition cônique extérieure par le support des données initiales. Notre méthode combine une inégalité de type Ha
sur un cône infini avec des estimations récentes pondérées d’énergie, et avec une nouvelle technique d’itération d
dans [R. Dal Passo, L. Giacomelli, G. Grün, Ann. Scuola Norm. Sup. Pisa 30 (2001) 437–463]. En raison de consid
formelles, nous formons la conjecture que notre critère est optimal.

Keywords:Fourth order degenerate parabolic equations; Waiting time phenomenon; Thin films

1. Introduction

In this paper, we derive a criterion on the smoothness of initial data which guarantees the occurrence of a
time phenomenon for strong solutions to the Cauchy problem associated with the fourth order degenerate
equation

ut + div
(|u|n∇�u)= 0 in R

N ×R
+ (1.1)
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in space dimensionsN < 4 for parametersn ∈ [2,3). Equipped with non-negative, integrable initial data hav
H 1-regularity, Eq. (1.1) is a model problem for a class of fourth order degenerate parabolic equations th
in materials sciences and fluid dynamics (cf. [5,8,19] and the references therein). In the version given
u describes the thickness of a thin film of viscous liquid that spreads on a horizontal surface under the in
of surface tension. In generaln is chosen to be a positive number. The particular valuesn = 2 and n= 3 are
distinguished from a physical point of view. With a grain of salt, the exponentn= 2 corresponds to the assumpti
of Navier’s slip condition at the liquid–solid-interface.1 In the physical literature, also weaker slip conditions
suggested (cf. [2] and the references therein) which entail exponents 2< n < 3. The parametern= 3, however, is
associated with a no slip condition and plays the role of a borderline value in the theory of Eq. (1.1). Forn � 3,
formal calculations (and rigorous results established forn > 4 in one space dimension by Beretta, Bertsch
Dal Passo [1]) suggest that the solution’s support is constant in time. For 0< n < 3, in contrast, solutions exis
which spread and which have the property of finite speed of propagation. In a series of publications (se
[3], Hulshof and Shishkov [16], Bertsch, Dal Passo, Garcke, Grün [4] and Grün [13]), it was possible to es
in all space dimensionsN < 4 and forn ∈ (0,3) optimal estimates on the spreading rate.

Even more refined results on the behaviour of the free boundary, i.e. the boundary of supp(u(· , t)), can be
obtained provided appropriate smoothness conditions on initial data are imposed. Dal Passo, Giacomell
author formulated in [6] in one space dimension (and forn ∈ (0,2) also in space dimensionsN < 4) a sufficient
criterion to guarantee the occurrence of a waiting time phenomenon. This means that for sufficiently sma
the support locally does not increase. Surprisingly, both result and technique to be applied differ depen
whethern ∈ (0,2) or n ∈ [2,3). To put it briefly, in the former range a waiting time phenomenon occurs at a
x0 ∈ ∂[supp(u0)] providedu0(x) grows at most like|x − x0|4/n in a neighborhood ofx0. In contrast, forn ∈ [2,3)
a slightly stronger condition has to be imposed which requires the derivative of initial data to satisfy locally∣∣u′0(x)− u′0(x0)

∣∣� C|x − x0|4/n−1.

On a merely technical level, this may be explained by the fact that forn ∈ (0,2) the reasoning is based on the
calledα-entropy estimate

1

α(α + 1)

∫
RN

uα+1(· , T )+C−1

T∫
0

∫
RN

{∣∣∇u(α+n+1)/4
∣∣4 + ∣∣D2u(α+n+1)/2

∣∣2}� 1

α(α + 1)

∫
RN

uα+1
0 . (1.2)

In the case of non-negative, not strictly positive initial data this estimate does only hold for

α ∈
(

max

{
−1,

1

2
− n

}
,2− n

)∖
{0}. (1.3)

Note that condition (1.3) does not permit to choose the parameterα positive for values ofn ∈ [2,3). Therefore, it
is not possible to control the entropyuα+1 at timesT > 0 in terms of the initial entropy, and the entropy estim
seems to be inappropriate to yield results on the qualitative behaviour of the free boundary. Hence, in the p
regimen ∈ [2,3) the argumentation has to be based upon other tools. As comparison principles do not h
fourth order parabolic equations, the remedy seems to be to exploit the only remaining integral estimate
the energy estimate

1

2

∫
Ω

∣∣∇u(· , T )∣∣2 + ∫
ΩT

un|∇�u|2 � 1

2

∫
Ω

|∇u0|2. (1.4)

1 More precisely, Navier’s slip condition entails a nonlinearitym(u) := u3+βu2, where the positive parameterβ is the slip length (cf. [19]).
However, the qualitative behavior of solutions is governed by the smoothness ofm(·) in its point of degeneracy. Therefore, we may confi
ourselves to the casem(u)= u2.



G. Grün / Ann. I. H. Poincaré – AN 21 (2004) 255–269 257

o the
ate for
enon in
the case
ic [17]
ake the
rg-type

ry
was the
ce
mate
agation
ol to

as

weaker

equality
e and on
rize the
of of the
stimate
result of
ulated in
ketch
ality for
upport.
otation,

ose
Apparently, it provides estimates only in terms of the gradient of initial data.
In contrast to the parameter regimen ∈ (0,2) where the one-dimensional techniques were generalized t

multi-dimensional case with at most small a time delay, the situation turned out to be much more intric
n ∈ [2,3). Indeed, questions about finite speed of propagation or occurrence of a waiting time phenom
higher space dimensions remained open for quite a while. This was particularly unsatisfactory since
n = 2 corresponds to the assumption of Navier’s slip condition which is – according to Jäger and Mikel
– the effective boundary condition for laminar flow over rough surfaces. The main obstacle was to m
term

∫
un|∇�u|2, which physically represents the dissipated energy, accessible to Gagliardo–Nirenbe

interpolation arguments. This hurdle was overcome by virtue of the interpolation inequality∫
Ω

∣∣∇u(n+2)/6
∣∣6+ ∫

Ω

∣∣∇�u(n+2)/2
∣∣2 � C(n,N)

∫
Ω

un|∇�u|2 (1.5)

which holds on convex domainsΩ for positive functions of classH 2 having zero normal derivative on the bounda
and which was proven in Grün [12] (see also the recently published paper Grün [11]). This estimate
key ingredient to establish in [12] the existence ofstrong solutionsto the Cauchy problem in multiple spa
dimensions which satisfy besides theα-entropy estimate in particular a weighted version of the energy esti
(1.4). Moreover, it was the starting point to prove qualitative and quantitative results on finite speed of prop
for the solution to the Cauchy problem constructed in [12]. And implicitly, it will also serve as a main to
formulate a sufficient criterion for the occurrence of a waiting time phenomenon in this paper.

A simplified version of our result reads as follows. Assume the existence of an infinite coneC(x0,2θ) with
vertexx0 ∈ ∂[supp(u0)] and with opening angle 2θ such that

C(x0,2θ)∩ supp(u0)= ∅.
There is a finite timeT∗ > 0 such that the solution stays zero on a coneC(x0, θ) having the same symmetry axis
C(x0,2θ) provided∇u0 satisfies an estimate of the form∣∣∇u0(x)−∇u0(x0)

∣∣� C|x − x0|4/n−1 (1.6)

within a neighborhood ofx0.
On account of formal considerations, partially already presented in [6], we believe the exponentγ = 4/n to be

optimal. However, it remains open whether the condition on the derivative can be replaced by the slightly
condition∣∣u0(x)− u0(x0)

∣∣� C|x − x0|4/n (1.7)

which involves values of the functionu0 only.
Let us describe our method and the outline of the paper. The result is based on a new Hardy-type in

valid on infinite cones, it is based on the recently established, aforementioned weighted energy estimat
the novel technique developed together with Dal Passo and Giacomelli in [6]. In Section 2, we will summa
properties of the strong solutions to the Cauchy problem established in [12]. Section 3 is devoted to the pro
announced new Hardy-type inequality valid on cones. Combining that inequality with the weighted energy e
of Section 2, the first ingredient for our method is readily prepared. In Section 4 we state and prove the main
this paper. Hereby, we take advantage of a number of auxiliary results, for instance an iteration lemma form
[6] reminiscent of Stampacchia’s lemma. All these auxiliary tools will be listed in the appendix. Finally, we s
a refined qualitative result on finite speed of propagation in Section 5 which uses the new Hardy-type inequ
cones and which hence permits to provide local results also in the case of initial data having non-convex s

Throughout the paper, we will use the standard notation for Sobolev spaces. With a slight misuse of n
we write ‖u‖p for (

∫ |u|p)1/p also in the case 0< p < 1. {e1, . . . , eN } denotes the canonical basis ofR
N , xi ,

i = 1, . . . ,N , are the coordinates of an elementx ∈R
N with respect to that basis. Sometimes, we will decomp

x = xN · eN + x̄N . BothB(x,R) andBR(x) denote the ball with radiusR aroundx. Finally, we will write [u > 0]T
for {(x, t) ∈R

N × (0, T ) | u(x, t) > 0}.
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2. Definition and properties of strong solutions

Eq. (1.1) together with non-negative, compactly supported initial data of classH 1 implicitly defines a free
boundary problem where the free boundary is given by∂[supp(u(· , t))]. Since the governing equation is four
order, we cannot expect solutions to be unique unless three conditions are prescribed at the free b
Therefore, the natural conditions

u|∂[supp(u(· ,t ))] = 0, (2.8)

un
∂

∂ν
�u

∣∣∣∣
∂[supp(u(· ,t ))]

= 0 (conservation of mass) (2.9

(ν the outer normal to supp(u(· , t))) have to be supplemented by a third one. A possible choice might be a con
on the normal derivative – or to put it in physical terms – a condition on the contact angle. With the exceptio
work of Otto [20] on fixed-nonzero-contact-angle-solutions in one space dimension for the Hele–Shaw p
(n= 1), the analytic work concentrated so far on so calledstrong solutions, i.e. solutions for which a zero-conta
angle has implicitly been imposed via the entropy estimate (1.2). In [12], we proved the following existenc
for strong solutions to the Cauchy problem in the multi-dimensional case.

Theorem 2.1.Let n ∈ (2 − √
1−N/(8+N),3), N < 4, and assumeu0 ∈ H 1(RN) to be non-negative with

compact support in the sense thatu0(x)= 0 almost everywhere onRN \BR0(0) for a positive numberR0. Then, a
non-negative functionu exists that has the following properties:

(i) Regularity:

ut ∈ L2(
R
+; (W1,p(Ω)

)′)
for p >

4N

2N + n(2−N) and anyΩ � R
N, (2.10)

u ∈L∞(R+;H 1(
R
N
))
, (2.11)

∇�u(n+2)/2 ∈ L2(
R
N ×R

+), (2.12)

∇u(n+2)/6 ∈ L6(
R
N ×R

+), (2.13)

D2u(α+n+1)/2 ∈L2(
R
N ×R

+) for anyα ∈ (max{−1,1/2− n},2− n), (2.14)

∇u(α+n+1)/4 ∈ L4(
R
N ×R

+) for anyα ∈ (max{−1,1/2− n},2− n), (2.15)

J =
{
un∇�u on [u > 0]T
0 on [u= 0]T ∈L2(

R
+;Lq(RN )) (2.16)

for any1< q <
4N

2N + n(N − 2)
.

(ii) u is a solution to the Cauchy problem in the sense that

T∫
0

〈ut ,φ〉(W1,p(B(0)))′×W1,p(B(0))−
∫

[u>0]T
un∇�u∇φ = 0 (2.17)

for p > 4N
2N+n(2−N) , arbitrary T > 0 and for all test functionsφ contained inL2((0, T );W1,∞(RN)) such that⋃

t∈(0,T ) supp(φ(· , t)) ⊂ B(0), whereB(0) is an arbitrary ball centered in the origin0∈ R
N . In particular,

initial data u0 are attained continuously in time with respect to theLβ -norm for all 1 � β < 2N
N−2 .

Remark. (1) The condition onn is a consequence of the validity range of inequality (1.5).
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(2) The reason for the restriction of the spatial dimension to valuesN < 4 is rather subtle. It is connected wi
results on compactness in time of solutions to approximating auxiliary problems. For more details, we r
reader to [12] (or to [5] where similar restrictions can be found).

In addition, the following quantitative result on finite speed of propagation holds which was established

Theorem 2.2.Letu be a solution to the Cauchy problem associated with Eq.(1.1)as constructed in Theorem2.1.
Then a positive constantC exists which only depends onn,N and the mass of initial data such that

suppu(· , t)⊂ B(0,R0 +C · t1/(4+nN)) (2.18)

for all t > 0.

Remark. This result is optimal in the sense that the exponentσ = 1
4+nN is identical with the exponent tha

determines the radial growth rate of the support of self-similar solutions which were studied by Ferre
Bernis [9].

For the purposes of this paper, we need the following corollary.

Corollary 2.3. Suppose in addition to the assumptions of Theorem2.1thatψ is a non-negative function inC2(RN).
Then, a positive constantC2 = C2(n,N) exists such that the following weighted energy estimate is satisfied b
solutionu constructed in Theorem2.1.∫

RN

ψ6
∣∣∇u(· , T )∣∣2 +C−1

2

{ T∫
0

∫
RN

ψ6
∣∣∇u(n+2)/6

∣∣6 + T∫
0

∫
RN

ψ6
∣∣∇�u(n+2)/2

∣∣2}

�
∫

RN

ψ6|∇u0|2 +C2

T∫
0

∫
RN

un+2{|∇ψ|6 + ∣∣D2ψ
∣∣2|∇ψ|2ψ2 + ∣∣D2ψ

∣∣3ψ3} (2.19)

for arbitrary T > 0.

Proof. In [12], Theorem 6.1.1, a similar result was established on bounded convex domainsΩ provided the
tangential component of∇ψ vanishes on∂Ω . In the case of interest here – i.e.Ω =R

N and no requirements to b
imposed on the tangential component of∇ψ on the boundary of bounded domains – we may use an approxim
argument based on the finite speed of propagation property ofu as established in Theorem 2.2. For givenT > 0,
we choose the radius�R(T ) > 0 such large that⋃

t∈(0,T )
supp

(
u(· , t))⊂ B(�R(T )). (2.20)

Taking a smooth non-negative localization functionϕT with the properties

ϕT ≡ 1 onB
(�R(T )),

ϕT ≡ 0 onB
(
2�R(T ))

and choosing the test-functionψ(x) · ϕT (x) – which is admissible – a predecessor of (2.19) with right-hand
given by

T∫ ∫
N

un+2{∣∣∇(ψϕT )∣∣6 + ∣∣D2(ψϕT )
∣∣2∣∣∇(ψϕT )∣∣2|ψϕT |2 + ∣∣D2(ψϕT )

∣∣3|ψϕT |3}

0 R
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can easily be established along the lines of proof of Theorem 6.2.1 in [12]. By virtue of the finite-spe
propagation ofu, the assertion follows. ✷

3. A Hardy-type inequality valid on infinite cones

In this section, we present a new Hardy-type inequality valid on infinite cones which will be an essent
for the results to follow. Before stating and proving it, let us recall the classical Hardy inequality (for a pro
[14,15] and the monograph [18]):

Lemma 3.1.Let−∞� a < b �∞ be real numbers and assume that1 � p � q �∞. For weight functionsv,w
which are non-negative and measurable on(a, b), consider the quantities

FR̃(x) := FR̃(x;a, b,w,v, q,p)=
∥∥w1/q

∥∥
q,(a,x)

· ∥∥v−1/p
∥∥
p′,(x,b)

and

AR̃ :=AR̃(a, b,w,v, q,p)= sup
a<x<b

FR̃(x).

Then for every

u ∈ACR̃(a, b) :=
{
u ∈W1,1

loc (a, b): lim
x↗bu(x)= 0

}
,

the Hardy-inequality∥∥u ·w1/q
∥∥
q,(a,b)

� CR̃
∥∥ux · v1/p

∥∥
p,(a,b)

(3.1)

holds, if and only ifAR̃ <∞.
Moreover, the best possible constantCR̃ in (3.1)satisfies the estimate

AR̃ � CR̃ � k(q,p) ·AR̃ (3.2)

where

k(q,p) :=
(

1+ q

p′

)1/q(
1+ p

′

q

)1/p′

. (3.3)

Our result reads as follows. To avoid unnecessary technicalities, we formulate it for a cone with symme
given by thexN -axis.

Lemma 3.2.Consider the coneC(y, θ) := {x ∈R
N : |x̄N − ȳN |< (xN−yN) tanθ}with opening angleθ ∈ (0,π/2)

and vertexy ∈R
N . Let ζ̄y :C(y, θ)→R

+
0 be defined as

ζ̄y(x̄N , xN) := (xN − yN)
(

tan2 θ − |x̄N − ȳN |2
(xN − yN)2

)
. (3.4)

Then a constantK =K(θ) exists such that∫
C(y,θ)

ζ̄ 4
y · u2 �K(θ) ·

∫
C(y,θ)

ζ̄ 6
y

∣∣∣∣ ∂u∂xN
∣∣∣∣2 (3.5)

for arbitrary u ∈H 1(C(y, θ)).
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Proof. W.l.o.g. we may assumey = 0, and we abbreviateβ := tanθ . Let us apply the one-dimensional Hard
inequality (3.1) along half-lines parallel to thexN -axis. AbbreviatingC(θ) := C(0, θ), we have by virtue of Fubini’s
theorem that∫

C(θ)

v(x)dx =
∫

RN−1

( ∞∫
|x̄N |·β−1

v(x̄N , xN)dxN

)
dx̄N . (3.6)

Let us consider the quantities

FR̃(z; x̄N) :=
( z∫

|x̄N |·β−1

ζ̄ 4(x̄N, xN)dxN

)1/2

·
( ∞∫
z

ζ̄−6(x̄N, xN)dxN

)1/2

(3.7)

and

AR̃(x̄N ) := sup
y∈(|x̄N |/β,∞)

FR̃(y; x̄N). (3.8)

In (3.7), we shortly wrotēζ (x̄N, xN) for ζ̄0(x̄N, xN).
Assuming for the moment that

K(θ) := ess sup
x̄N∈RN−1

AR̃(x̄N) <∞, (3.9)

we conclude by virtue of (3.1) as follows:∫
C(θ)

ζ̄ 4u2 =
∫

RN−1

( ∫
|x̄N |·β−1

ζ̄ 4(x̄N , xN) · u2(x̄N, xN)dxN

)
dx̄N

�K(θ)
∫

RN−1

( ∫
|x̄N |·β−1

ζ̄ 6(x̄N , xN) ·
∣∣∣∣ ∂u∂xN (x̄N , xN)

∣∣∣∣2 dxN

)
dx̄N

=K(θ)
∫

C(θ)

ζ̄ 6 ·
∣∣∣∣ ∂u∂xN

∣∣∣∣2.
It remains to prove (3.9). Writing

ζ̄ (x̄N , xN)= x
2
Nβ

2 − |x̄N |2
xN

= β2(xN − |x̄N | · β−1) · xN + |x̄N |β−1

xN
(3.10)

and recalling that

xN >
|x̄N |
β

onC(θ), we estimate easily

β2
(
xN − |x̄N |

β

)
� ζ̄ (x̄N , xN)� 2β2

(
xN − |x̄N |

β

)
(3.11)

onC(θ).
Hence,

FR̃(z; x̄N)2 � 16· β8

z∫
−1

(
xN − |x̄N |

β

)4

dxN · β−12

∞∫
z

(
xN − |x̄N |

β

)−6

dxN = 16β−4

25
.

|x̄N |β
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This proves the assertion of the lemma.✷
For further purposes, we will need the following

Lemma 3.3.Consider forr ∈R the functionζr :RN → R
+
0 defined by

ζr(x̄N , xN) :=
{
(xN − r)[tan2 θ − |x̄N |2

(xN−r)2
]

onC(r · eN, θ),
0 onR

N \ C(r · eN , θ).
There exists a positive constantC = C(θ) such that

|∇ζr |� C (3.12)

and ∣∣D2ζr
∣∣ · ζr �C (3.13)

on the whole ofRN .

Proof. We use again the abbreviationβ := tanθ and obtain

∇ζr(x)=
( −2x̄N

xN−r
β2+ |x̄N |2

(xN−r)2

)
onC(r · eN, θ),

D2ζr (x)=
(− 2

xN−r IdN−1
2x̄N

(xN−r)2
2x̄N

(xN−r)2 − 2|x̄N |2
(xN−r)3

)
onC(r · eN , θ).

Hence,

∣∣∇ζr(x)∣∣� C( |x̄N |2
(xN − r)2 +

(
β2+ |x̄N |2

(xN − r)2
)2)1/2

onC(r · eN, θ)

and

|∇ζr | = 0 onR
N \ C(r · eN , θ).

On the other hand,

|x̄N |2
(xN − r)2 < β

2

for x ∈ C(r · eN , θ) by construction and therefore

|∇ζr |� C(β).
Estimate (3.13) follows in a similar fashion.✷
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4. A sufficient criterion for the occurrence of a waiting time phenomenon

In this section, we state and prove the main result of this paper. It reads as follows.

Theorem 4.1.Letu be a solution of(1.1) to compactly supported, non-negative initial data havingH 1-regularity
as constructed in Theorem2.1. Assume thaty is a boundary point ofsupp(u0) and that the following propertie
hold:

• for a number0< θ < π/4, there is a coneC(y,2θ) := {x ∈R
N : |ȳN − x̄N |< (xN −yN) · tan2θ} with opening

angle2θ and vertexy such thatsupp(u0)∩ C(y,2θ)= ∅,
• initial data satisfy

lim sup
r→0

r2−2γ −
∫

B(y,r)

|∇u0|2 dx <∞. (4.1)

Then the following is true: if γ � 4/n, then the solutionu exhibits a waiting time phenomenon locally iny in the
following sense: there exists a positive timeT ∗ = T ∗(n,N,u0, γ, θ) such that

supp
(
u(· , t))∩ C(y, θ)= ∅ (4.2)

for t ∈ [0, T ∗).

Remark. (1) For notational simplicity, we only consider cones with symmetry axis given by thexN -axis. The
general case can easily be dealt with by an appropriate rotation argument.

(2) It is surprising that the result can be proven without using theL2-bound on∇�u(n+2)/2. Instead, we take
advantage of theL6-integrability of ∇u(n+2)/6. This way, further technical difficulties related to interpolati
arguments can be avoided. Moreover, note that formal calculations performed withD3u(n+2)/2 yield the same
result as presented in the theorem. This seems to be due to the fact that both bounds imply the same sm
result foru at the free boundary.

Proof. W.l.o.g. we assumey = 0. Let us first fix a positive numberR1. Consider for 0<R < R1 the cones

C(−R) := C(−ReN, θ).

Fig. 1. Provided initial data are sufficiently smooth in a neighborhood ofy, the solutionu stays zero for finite time within the inner cone.
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tion
By virtue of elementary geometric reasoning, it becomes evident that

C(−R)\C(0,2θ)⊂ B(0,R) (4.3)

for all 0 < R < R1. Combining Corollary 2.3 with (3.12), (3.13) and with a straightforward approxima
argument, the following key estimate can be obtained.

sup
t∈(0,T )

∫
C(−R)

ζ 6−R
∣∣∇u(· , t)∣∣2 +C−1

2

T∫
0

∫
C(−R)

ζ 6−R
∣∣∇u(n+2)/6

∣∣6 �
∫

C(−R)
ζ 6−R|∇u0|2 +C2

T∫
0

∫
C(−R)

un+2 (4.4)

for 0<R < R1 and arbitraryT > 0.
By virtue of Hardy’s inequality (3.5), we see that∫

C(−R)
ζ 6
−R|∇u|2 �

∫
C(−R)

ζ 6
−R
∣∣∣∣ ∂u∂xN

∣∣∣∣2 � C(θ)
∫

C(−R)
ζ 4−Ru2,

hence,

sup
t∈(0,T )

∫
C(−R)

ζ 4−Ru2 +C−1
2

T∫
0

∫
C(−R)

ζ 6−R
∣∣∇u(n+2)/6

∣∣6 �
∫

C(−R)
ζ 6−R|∇u0|2 +C2

T∫
0

∫
C(−R)

un+2.

On the other hand, we find for 0< ρ <R that

ζ−R(x)� (R − ρ) tan2 θ for all x ∈ C(−ρ).
Hence,

sup
t∈(0,T )

∫
C(−ρ)

u2(· , t)+ (R − ρ)2
T∫

0

∫
C(−ρ)

∣∣∇u(n+2)/6
∣∣6

� C

(R− ρ)4
{ ∫
C(−R)

ζ 6−R|∇u0|2 +
T∫

0

∫
C(−R)

un+2

}
. (4.5)

By virtue of an appropriate version of Gagliardo–Nirenberg’s inequality (see Lemma A.3), we infer that

T∫
0

∫
C(−R)

un+2 �K1

( T∫
0

∫
C(−R)

∣∣∇u(n+2)/6
∣∣6)nN/(nN+12)( T∫

0

( ∫
C(−R)

u2
)(n+2)/2

)12/(nN+12)

.

Young’s inequality entails that

1

(R− ρ)4
T∫

0

∫
C(−R)

un+2 � ε(R− ρ)2
T∫

0

∫
C(−R)

∣∣∇u(n+2)/6
∣∣6 +Cε(R− ρ)−(4+nN/2)

T∫
0

( ∫
C(−R)

u2
)(n+2)/2

,

altogether:

sup
t∈(0,T )

∫
u2(· , t)+ (R − ρ)2

T∫ ∫ ∣∣∇u(n+2)/6
∣∣6
C(−ρ) 0 C(−ρ)
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� ε(R− ρ)2
T∫

0

∫
C(−R)

∣∣∇u(n+2)/6
∣∣6 +Cε(R− ρ)−(4+nN/2)

T∫
0

( ∫
C(−R)

u2
)(n+2)/2

+ C

(R− ρ)4
∫

C(−R)
ζ 6−R|∇u|2. (4.6)

Introducing

V (ρ) := sup
t∈(0,T )

∫
C(−ρ)

u2(· , t),

U(ρ) :=
T∫

0

∫
C(−ρ)

∣∣∇u(n+2)/6
∣∣6,

Fε(ρ,R) := Cε

(R− ρ)4+nN/2
T∫

0

( ∫
C(−R)

u2
)(n+2)/2

+ C

(R − ρ)4
∫

C(−R)
ζ 6−R|∇u0|2,

we rewrite (4.6) as

V (ρ)+ (R− ρ)2 ·U(ρ)� ε(R− ρ)2 ·U(R)+ Fε(ρ,R)
valid for 0� ρ < R �R1.

An appeal to the iteration method presented in [16] entails the following estimate which holds forε > 0
sufficiently small with a new constantKε dependent only onε:

V (ρ)+ (R− ρ)2
4

U(ρ)�KεFε(ρ,R) ∀0 � ρ < R �R1.

Rewriting in terms ofu and takingε > 0 sufficiently small, but fixed, we obtain

sup
t∈(0,T )

∫
C(−ρ)

u2(· , t)+ (R − ρ)2
T∫

0

∫
C(−ρ)

∣∣∇u(n+2)/6
∣∣6

� C

(R− ρ)4+nN/2
[ T∫

0

( ∫
C(−R)

u2
)(n+2)/2

+ (R− ρ)nN/2
∫

C(−R)
ζ 6
−R|∇u0|2

]
.

By virtue of the estimate

T∫
0

( ∫
C(−ρ)

u2
)(n+2)/2

� T · sup
t∈(0,T )

( ∫
C(−ρ)

u2
)(n+2)/2

,

we end up with

T∫
0

( ∫
C(−ρ)

u2
) n+2

2

� C · T
(R− ρ)(4+ nN2 ) n+2

2

[ T∫
0

( ∫
C(−R)

u2
) n+2

2 + (R − ρ) nN2
∫

C(−R)
ζ 6
−R|∇u0|2

] n+2
2

. (4.7)

Combining (4.3) with (4.1) and with (3.11), we estimate
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eed of
onvex,
ntially
ric to the
(R− ρ)nN/2
∫

C(−R)
ζ 6−R|∇u0|2 � (R− ρ)nN/2

∫
B(0,R)

ζ 6−R|∇u0|2

�K(θ) ·R6+nN/2
∫

B(0,R)

|∇u0|2.

This implies that

limsup
R→0

(R − ρ)nN/2
∫

C(−R)
ζ 6
−R|∇u0|2 �K(θ) ·R4+N+2γ+nN/2. (4.8)

With new coordinatesξ =R1 − ρ andη=R1 −R and with the function

G(ξ) :=
T∫

0

( ∫
C(ξ−R1)

u2
)(n+2)/2

,

(4.7) finally assumes the form

G(ξ)� C · T
(ξ − η)(4+nN/2)(n+2)/2

[
G(η)+K(θ) · (R1 − η)4+N+2γ+nN/2](n+2)/2

which holds for all 0� η < ξ �R1. Applying the iteration Lemma A.2, we see that

T∫
0

( ∫
C(0)

u2
)(n+2)/2

=G(R1)= 0,

provided (i)T is such small that

Rα1 � C · T ·
( T∫

0

( ∫
C(−R1)

u2
)(n+2)/2

+R4+N+2γ+nN/2
1

)n/2
with α =

(
4+ nN

2

)
n+ 2

2
(4.9)

and (ii)

4+N + 2γ + nN
2

� (4+ nN/2)(1+ n/2)
n/2

. (4.10)

By the absolute continuity of Lebesgue’s integral, (4.9) can be satisfied for 0< T < T ∗ with T ∗ =
T ∗(n,N,γ,u0, θ) sufficiently small.

Condition (4.10) is equivalent to the conditionγ � 4/n. This proves the theorem.✷

5. A refined result on finite speed of propagation

In this section, we use the Hardy-type inequality (3.5) to provide local qualitative results on finite sp
propagation forn ∈ [2,3) in higher space dimensions also in the case that the support of initial data is not c
but satisfies locally an exterior cone condition. In this way, previous results of [12] and [10] are esse
improved. For the ease of presentation, we confine ourselves again to the case of cones axial-symmet
xN -axis. The general case follows easily by an rotation argument.

Theorem 5.1.Letu be a solution of(1.1) to compactly supported non-negative initial data havingH 1-regularity
as constructed in Theorem2.1. Assume thaty0 is a boundary point ofsupp(u0). LetC(y0, θ) := {x ∈ R

N : |x̄N −
ȳ0N |< (xN−y0N) ·tanθ}, 0< θ < π/2, be an infinite cone with opening angleθ such thatsupp(u0)∩C(y0, θ)= ∅.
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finite

em, for
n of a
e
s
mit this
Consider forR � 0 cones

C(y0+R · eN , θ) :=
{
x ∈R

N : |x̄N − ȳ0N |<
(
xN − (y0N +R)) tanθ

}
.

Then a continuous, increasing functionR : [0,∞)→ R
+
0 , R(0)= 0, exists such that

supp
(
u(· , t))∩ C

(
y0 +R(t) · eN , θ

)= ∅
for all t ∈ R

+
0 .

In particular:

R(T )� C(n,N, θ)T 1/α

( T∫
0

( ∫
C(y0,θ)

u2
)(n+2)/2

)n/(2α)
(5.1)

with α = (8+ nN)(n+ 2)/4.

Remark. (1) Note that – via Corollary 2.3 – the proof of Theorem 5.1 makes use of the weaker result on
speed of propagation presented in [12] and [10].

(2) There exist still rather simple geometric settings which are not completely covered by the theor
instance supp(u0) given by an annulus. To prove a corresponding result also in that case, a new versio
weighted energy estimate would be needed which replaces the terms inu in estimate (2.19) by terms involving th
productφu whereφ is an appropriate spatial localization function. In space dimensionN = 1, such an estimate i
available (see [16]), in the multi-dimensional case its justification would be rather tedious. Therefore, we o
here.

Proof. W.l.o.g. we may assumey0 = 0. Choosing

ζR(x) :=
{
(xN −R)[tan2 θ − |x̄N |2

(R−xN)2 ] x ∈ C(R),

0 x ∈R
N \ C(R)

we infer by virtue of a similar reasoning as in the proof of Theorem 4.1 that

sup
t∈(0,T )

∫
C(R)

ζ 4
Ru(· , t)2 +

T∫
0

∫
C(R)

ζ 6
R

∣∣∇u(n+2)/6
∣∣6 � C ·

T∫
0

∫
C(R)

un+2 (5.2)

for all R � 0. As before, we estimate

ζR(x)� (R− ρ) tan2 θ (5.3)

for all x ∈ C(ρ), ρ > R > 0, and we obtain by a similar iteration method as in the proof of Theorem 4.1

T∫
0

( ∫
C(ρ)

u2
)(n+2)/2

� C · T
(ρ −R)(4+nN/2)(n+2)/2

( T∫
0

( ∫
C(R)

u2
)(n+2)/2

)(n+2)/2

for all ρ > R > 0.
Writing

G(ρ) :=
T∫ ( ∫

u2
)(n+2)/2
0 C(ρ)
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eration

tion
and using the classical iteration lemma of Stampacchia (see Lemma A.1), we find thatG(ρ)= 0 provided

ρα � C · T
( T∫

0

( ∫
C(0)

u2
)(n+2)/2

)n/2
with α = (8+ nN)(n+ 2)/4. Hence, (5.1) holds true.✷
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Appendix A

In this section, we collect a couple of auxiliary results which were used in the paper. We begin with an it
result by Stampacchia [21].

Lemma A.1 (Stampacchia’s iteration lemma).Assume that a given non-negative, non-increasing func
G : (0, ρ0)→R satisfies

G(ξ)� c0

(ξ − η)α G(η)
β

for 0 � η < ξ � ρ0 and positive numbersc0, α,β with β > 1. Assume further that

ρα0 � 2αβ/(β−1) · c0 ·G(0)β−1.

Then,G has a root inρ0.

The following modification was proposed by Dal Passo, Giacomelli and the author in [6].

Lemma A.2.Assume that a given non-negative, non-increasing functionG : (0, ρ0)→R satisfies:

G(ξ)� c0

(ξ − η)α
(
G(η)+ (ρ0 − η)σ

)β (A.1)

for 0 � η < ξ � ρ0 and positive numbersc0, α,β,σ such that

β > 1 and σ � α

β − 1
. (A.2)

Assume further that

ρα0 � 2αβ/(β−1)(1+ 2α/(β−1)−σ )β · c0 · (G(0)+ ρσ0 )β−1
. (A.3)

Then

G(ρ0)= 0.

Finally, we need Gagliardo–Nirenberg’s inequality in the following form (for a proof, we refer to [7]).

Lemma A.3.Let 1� r �∞, 0< q < p, m ∈N+ such that

1 − m < 1
.

r N p



G. Grün / Ann. I. H. Poincaré – AN 21 (2004) 255–269 269

. Rational

Herrero,
vol. 323,

(1996)

ations 3

haviour of

(2001)

(2001)

507–524.
92–1006.

aces Free

ferential

tions 23

réal, 1966.
If Ω ⊂ R
N is bounded with piecewise smooth boundary, then positive constantsc1 and c2 depending only on

Ω,r,p,m andq exist such that for anyu ∈Lq(Ω) satisfyingDmu ∈Lr(Ω), the following inequality holds:

‖u‖p � c1
∥∥Dmu∥∥a

r
‖u‖1−a

q + c2‖u‖q (A.4)

wherea = ( 1
q
− 1
p
)/( 1

q
+ m
N
− 1
r
).

Especially, ifΩ is an infinite cone, i.e. for given pointsx0, y0 ∈R
N , x0 /∈B1(y0) a set

Cx0,y0 :=
{
z ∈R

N | z= x0+ λ(y − x0), y ∈ B1(y0), λ > 0
}
,

then(A.4) holds with constantsc1 = c(‖x0− y0‖, r,p,m,q) andc2 = 0.
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