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Abstract

We provide a rather complete description of the sharp regularity theory to a family of heterogeneous, two-phase free boundary
problems, Jγ → min, ruled by nonlinear, p-degenerate elliptic operators. Included in such family are heterogeneous cavitation
problems of Prandtl–Batchelor type, singular degenerate elliptic equations; and obstacle type systems. The Euler–Lagrange equa-
tion associated to Jγ becomes singular along the free interface {u = 0}. The degree of singularity is, in turn, dimmed by the
parameter γ ∈ [0,1]. For 0 < γ < 1 we show that local minima are locally of class C1,α for a sharp α that depends on dimension,
p and γ . For γ = 0 we obtain a quantitative, asymptotically optimal result, which assures that local minima are Log-Lipschitz
continuous. The results proven in this article are new even in the classical context of linear, nondegenerate equations.
© 2014
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1. Introduction

Let Ω ⊂ R
n be a bounded domain, 2 � p < +∞, f ∈ Lq(Ω) for q � n and ϕ ∈ W 1,p(Ω) ∩ L∞(Ω), with, say,

ϕ+ �= 0. The objective of the present manuscript is to derive optimal interior regularity estimates for the archetypal
class of heterogeneous non-differentiable functionals

Jγ (v) :=
ˆ

Ω

(|∇v|p + Fγ (v) + f (X) · v)
dX → min, (1.1)

among competing functions v ∈ W
1,p

0 (Ω)+ϕ. The parameter γ in (1.1) varies continuously from 0 to 1, i.e., γ ∈ [0,1]
and the non-differentiable potential Fγ is given by
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Fγ (v) := λ+
(
v+)γ + λ−

(
v−)γ

, (1.2)

for scalars 0 � λ− < λ+ < ∞. As usual, v± := max{±v,0}, and, by convention,

F0(v) := λ+χ{v>0} + λ−χ{v�0}. (1.3)

The non-differentiability of the potential Fγ impels the Euler–Lagrange equation associated to Jγ to be singular
along the a priori unknown interface

Fγ := (
∂{uγ > 0} ∪ ∂{uγ < 0}) ∩ Ω,

between the positive and negative phases of a minimum. In fact, a minimizer satisfies, in some weak sense, the
following p-degenerate and singular PDE

	pu = γ

p

(
λ+

(
u+)γ−1

χ{u>0} − λ−
(
u−)γ−1

χ{u<0}
) + 1

p
f (X) in Ω, (1.4)

where 	pu denotes the classical p-Laplacian operator,

	pu := div
(|∇u|p−2∇u

)
.

The potential F0 is actually discontinuous and that further enforces the flux balance∣∣∇u+
0

∣∣p − ∣∣∇u−
0

∣∣p = 1

p − 1
(λ+ − λ−), (1.5)

along the free boundary of the problem, which breaks down the continuity of the gradient through F0.
A number of important mathematical problems, coming from several different contexts, are modeled by opti-

mization setups, for which Eq. (1.1) serves as an emblematic, leading prototype. This fact has fostered massive
investigations, and linear versions, p = 2, of the minimization problem (1.1) have indeed received overwhelming at-
tention in the past four decades. The upper case γ = 1 is related to obstacle type problems. The linear, homogeneous,
one phase obstacle problem, i.e., p = 2, f (X) ≡ 0 and ϕ � 0 was fully studied in the 70s by a number of leading
mathematicians: Frehse, Stampacchia, Kinderlehrer, Brezis, Caffarelli, among others. It has been established that the
minimum is locally of class C1,1 and this is the optimal regularity for solution. The two-phase version of the problem,
i.e., with no sign restriction on the boundary datum ϕ, challenged the community for over three decades. C1,1 estimate
for two-phase obstacle problems was established in [19] with the aid of the powerful almost monotonicity formula
obtained in [5].

The lower limiting case, γ = 0, relates to jets flow and cavities problems. The linear, homogeneous, one phase
version of the problem was studied in [1], where it is proven that minima are Lipschitz continuous. The two-phase
version of this problem brings major new difficulties and C0,1 local regularity of minima was proven in [2], with
the aid of the revolutionary Alt–Caffarelli–Friedman monotonicity formula, developed in that very same article. Gra-
dient estimates for two-phase cavitation type problem with bounded non-homogeneity, i.e., p = 2, f ∈ L∞, γ = 0
in (1.1), were established by Caffarelli, Jerison and Kenig with the aid of their powerful almost monotonicity for-
mula, [5].

The intermediary problem 0 < γ < 1 has also received great attention in the past decades. The related free boundary
problem can be used, for example, to model the density of certain chemical specie, in reaction with a porous catalyst
pellet. The linear, p = 2, one-phase, ϕ � 0, homogeneous, f ≡ 0, version of the problem (1.1) is the theme of a
successful program developed in the 80s by Phillips and Alt–Phillips, [18,17,3], among others. In similar setting,
Hölder continuity of the gradient of minimizers was proven by Giaquinta and Giusti [9]. Further investigations on the
linear, two-phase version of this problem also require powerful monotonicity formulae in their studies, see [27].

In the mathematical analysis of variational free boundary problems as (1.1), the first major key issue to be ad-
dressed concerns the optimal regularity estimate available for a given minimum. A simple inference on the weak
Euler–Lagrange equation satisfied by a minimum, Eq. (1.4) and also the flux balance (1.5) for γ = 0, revel that 	pu

blows up along the free boundary of the problem, Fγ := ∂{uγ > 0} ∪ ∂{uγ < 0}. Therefore, it becomes a fundamental
question to understand precisely how this phenomenon affects the (lack of) smoothness properties of minima. Un-
der such perspective, and to some extent, the theory of two-phase free boundary problems governed by non-linear,
degenerate elliptic operators had hitherto been unaccessible through current literature, mainly due to the lack of mono-
tonicity formulae in this context.
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In the study of sharp smoothness properties of minima to the functional Jγ , further difficulties also arise from the
very complexity of the regularity theory for the governing operator 	p . We recall that p-harmonic functions, i.e.,
solutions to the homogeneous equation

	ph = 0 in B1,

are locally of class C1,αp for an exponent 0 < αp < 1 that depends only upon dimension and p. The precise value
of αp is in general unknown – see [13] for the planar case n = 2, and [22] for sharp Hölder estimates for inhomoge-
neous problems. This fact indicates that interior estimates available for p-harmonic functions, that in turn are below
quadratic, C1,1, will compete with optimal growth along the free interface Fγ . The regularity theory for heterogeneous
equations 	pξ = f (X) is even further involved and, up to our knowledge, the understanding on this class of problems
is not yet fully complete.

From the mathematical point of view, the exponent γ appearing in (1.1) should be comprehended as the parameter
that measures the singularity of the absorption term of the related equation. For non-differentiable but continuous
functionals, Jγ with 0 < γ � 1, it has been conjectured that the gradient of a minimum is locally continuous, even
through the singular free interface Fγ . The first result we present in this paper gives an affirmative answer to such
question. Furthermore, it provides the asymptotically optimal C1,α interior regularity theory available for minima of
such functionals.

Theorem 1.1 (C1,α regularity estimates). Let u be a minimizer of the problem (1.1). Assume 0 < γ � 1 and
f ∈ Lq(Ω), for some q > n. Then u ∈ C

1,α
loc , for

α := min

{
α−

p ,
γ

p − γ
,

(q − n)

(p − 1)q

}
, (1.6)

where the estimate indicated in (1.6) should be read as∣∣∣∣∣∣∣∣∣
If min

{
γ

p − γ
,

(q − n)

(p − 1)q

}
< αp, then u ∈ C

1,min{ γ
p−γ

,
(q−n)
(p−1)q

}
.

If min

{
γ

p − γ
,

(q − n)

(p − 1)q

}
� αp, then u ∈ C1,σ , for any 0 < σ < αp.

(1.7)

Furthermore, for any Ω ′ � Ω , there exists a constant C > 0 depending only on Ω ′, n, p, q , ‖ϕ‖L∞(Ω), ‖f ‖Lq(Ω),
λ+, λ−, γ and (αp − α), such that

‖u‖C1,α(Ω ′) � C.

Before continuing, let us make few comments on Theorem 1.1 and its implications. The key ingredient of the
regularity estimate established in Theorem 1.1 reveals how the competing forces involved in the lack of smoothness
for minima of (1.1), namely

(regularity theory for 	p) × (
singular absorption term ∼ uγ−1) × (roughness of the source f )

get adjusted, via the sharp relation (1.6). Regarding the exponent αp , one easily verifies that the function X �→ |X| p
p−1

has bounded p-Laplacian, thus αp is appearing in (1.6) is below the critical value 1
p−1 . However, nonnegative func-

tions with bounded p-Laplacian, v, do grow as dist
p

p−1 (X,F) away from F = ∂{v > 0}, see [10]. In this particular

setting, it is possible to replace αp by 1
p−1 in (1.6). Thus, at least if f ∈ L∞, Theorem 1.1 revels u ∈ C

γ
p−γ , which is

the precise generalization of the optimal regularity estimate obtained for the one-phase linear setting p = 2, see for
instance [17,18].

Confronting the effect of the singular absorption term ∼ uγ−1 and the influence of integrability properties of the

source f , we conclude that solutions to (1.1) are locally in C
1,min{α−

p ,
γ

p−γ
}, provided f ∈ Lq for any

q � n · (p − γ ) =: q(p,n, γ ). (1.8)

p(1 − γ )
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Interestingly enough, one verifies that

q
(
p,n,1−) = ∞ and lim

γ→1

(q(p,n, γ ) − n)p

(p − 1)q(p,n, γ )
= 1

p − 1
. (1.9)

Also it is revealing to compute the limit

lim
γ→0

q(p,n, γ ) = n, (1.10)

which leads us to the discussion of the delicate limiting case, γ = 0 in the minimization problem (1.1). As mentioned
earlier in this Introduction, for homogeneous, f ≡ 0, linear, p = 2, jets and cavities problems, Lipschitz regularity
estimates have been established in the one-phase and two-phase case, respectively in [1] and [2]. Heterogeneous,
two-phase versions of the problem require the use of almost monotonicity formula, [5]. However, the Caffarelli–
Jerison–Kenig monotonicity formula only holds if f (X) � −C. Thus, even for linear problems, p = 2, Lipschitz
estimates for minimizers of (1.1), γ = 0, are only known if f ∈ L∞(Ω). We further point out that the integrability
exponent obtained in (1.10) is a borderline condition, as it divides the regularity theory for (non-singular) Poisson
equations, Lu = f , between continuity estimates when f ∈ Ln−ε and differentiability properties when f ∈ Ln+ε . The
optimal regularity theory for the conformal case f ∈ Ln is rather delicate. It has been recently established by the third
author, [21], that solutions to nonlinear equations F(X,D2u) = f (X) ∈ Ln have a universal Log-Lipschitz modulus
of continuity, i.e.,∣∣u(X) − u(Y )

∣∣ � |X − Y | · log|X − Y |.
Such regularity is optimal in the context of heterogeneous equations with Ln right-hand sides. After some heuristic
inferences, it becomes reasonable to inquire whether minimizers of problem (1.1), with γ = 0, also have a universal
Log-Lipschitz modulus of continuity. The second main result we establish in this paper states that indeed minimizers
of J0 with sources f ∈ Ln also enjoy such an optimal universal modulus of continuity.

Theorem 1.2 (Log-Lipschitz regularity for γ = 0). Let u be a minimizer of the problem (1.1), with γ = 0 and
f ∈ Ln(Ω). Then u is Log-Lipschitz continuous and for any Ω ′ � Ω , there exists a constant C that depends only
on Ω ′, n, p, |ϕ‖L∞(Ω), ‖f ‖Ln(Ω), λ+ and λ−, such that∣∣u(X) − u(Y )

∣∣ � C|X − Y | log|X − Y |.

In particular, Theorem 1.2 assures that u ∈ C
0,τ
loc (Ω) for any τ < 1. We further mention that Theorem 1.2 is sharp

due to the borderline integrability condition on the source f . We leave open the key question on whether functional J0
has a locally Lipschitz minimizer, provided f ∈ Lq(Ω) for q > n. We highlight that this question remains open even
for the linear case p = 2. A critical analysis on the machinery employed in the proof of Log-Lipschitz estimates,
Theorem 1.2, reveals that it should not be possible to access the C0,1 regularity theory for minima of J0 through pure
energy considerations, even if the source f ∈ L∞.

We further mention that Theorem 1.1 and Theorem 1.2 can be established, with minor modifications, to further
involved energy functionals of the type

G̃γ (v) =
ˆ

Ω

G(X,∇v) + Gγ (v) + g(X,v)dX,

where G is a p-degenerate kernel with C1 coefficients, |Gγ | � Fγ and |g(X,v)| � g̃(X)|v|m, where 0 � m < p and
g̃ ∈ Lq̃ , for q̃ � max{ p

p−m
,n}. We have chosen to present our results in a simpler setting as to further emphasize the

new ideas designed in this work.
The paper is organized as follows. In Section 2 we gather few tools that we shall use in the proofs of Theorem 1.1

and Theorem 1.2. In Section 3 we comment on existence and establish universal L∞ bounds for minima of prob-
lem (1.1). Section 4 is devoted to the proof of Theorem 1.1 and in Section 5 we establish Log-Lip estimates for
cavitation problems, proving therefore Theorem 1.2. Under the condition f ∈ Lq , q > n, in Section 6 we show sharp
linear growth and strong nondegeneracy properties for solutions to the cavitation problem γ = 0. In Section 7 we
investigate stability properties for the family of free problems Jγ in terms of the singular parameter 0 � γ � 1. More
precisely we show that local minima of functional Jγ converges to a local minima of the functional J0, as γ → 0.
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2. Preliminaries and some known tools

In this section we gather some preliminaries results that we will systematically use along the article. Initially, as
mentioned within the Introduction, clearly one should not expect solutions to the minimization problem (1.1) to be
smoother than p-harmonic functions. Therefore, the regularity theory for degenerate elliptic operators is a first key
ingredient in understanding sharp estimates for minima of Jγ .

There are several different strategies to establish the C1,αp regularity theory for p-harmonic functions, see for
instance [6,7,14,23,25,26]. We state such result for future references.

Theorem 2.1 (C1,α estimates for p-harmonic functions). Let h ∈ W 1,p(B1) satisfy 	ph = 0 in B1 in the distributional
sense. Then, there exist constants C > 0 and 0 < αp < 1, both depending only on dimension and p, such that

‖h‖C1,αp (B1/2)
� C‖h‖Lp(B1).

A particularly interesting approach was suggested by Lieberman in [15], where the regularity theory for
p-harmonic functions is accessed through the following leading integral oscillation decay lemma:

Lemma 2.2. (See Lieberman [15, Lemma 5.1].) Let h be a p-harmonic function in BR ⊂R
n. Then, for some positive

constant 0 < αp < 1, there holds

ˆ

Br

∣∣∇h(X) − (∇h)r
∣∣p dX � C

(
r

R

)n+pαp
ˆ

BR

∣∣∇h(X) − (∇h)R
∣∣p dX,

where C = C(n,p) > 0 is a positive constant.

In Lemma 2.2 and throughout this article we use the classical average notation

(ψ)r := −
ˆ

Br(X0)

ψ dX := 1

|Br(X0)|
ˆ

Br(X0)

ψ dX.

Local Hölder continuity for heterogeneous equations 	pξ = f can be delivered by means of Harnack inequality,
which will be another fundamental tool in our analysis.

Theorem 2.3 (Harnack inequality). (E.g. [20].) Let ξ ∈ W 1,p(BR), ξ � 0 a.e., satisfy 	pξ = f in BR in the distribu-
tional sense, with f ∈ Lq(BR) and q > n

p
. Then, there exists a constant Cr > 0 depending only on n, q , p and R − r

such that

sup
Br

ξ � Cr

{
inf
Br

ξ + (
r
p− n

q ‖f ‖Lq(BR)

) 1
p−1

}
for all 0 < r � R.

In the sequel, let us discuss some further inequalities that will be used in the proofs of our main results. The esti-
mates presented herein have elementary character and are mostly known. We include them for completeness purposes
and courtesy to the readers.

Lemma 2.4. Let ψ ∈ W 1,p(B1), with 2 � p and h ∈ W
1,p
ψ (B1) be solution to 	ph = 0 in B1. Then, for a constant

c = c(n,p) > 0, there holds
ˆ

B1

[|∇ψ |p − |∇h|p]
dX � c

ˆ

B1

∣∣∇(ψ − h)
∣∣p dX.
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Proof. For each 0 � τ � 1, let φτ denote the linear interpolation between ψ and h, i.e., ψτ := τψ + (1 − τ)h. From
Fundamental Theorem of Calculus we have

ˆ

B1

(|∇ψ |p − |∇h|p)
dX =

1ˆ

0

d

dτ

(ˆ

B1

|∇ψτ |p dX

)
dτ. (2.1)

Passing the derivative through and using the fact that div(|∇h|p−2∇h) · (ψ − h) = 0 in B1, we find

1ˆ

0

d

dτ

(ˆ

B1

|∇ψτ |p dX

)
dτ = p

1ˆ

0

dτ

ˆ

B1

(|∇ψτ |p−2∇ψτ − |∇h|p−2∇h
) · ∇(ψ − h)dX

= p

1ˆ

0

1

τ
dτ

ˆ

B1

(|∇ψτ |p−2∇ψτ − |∇h|p−2∇h
) · ∇(ψτ − h)dX, (2.2)

because ψτ − h = τ(ψ − h). The lemma now follows easily from the well known classical monotonicity〈|ξ1|p−2ξ1 − |ξ2|p−2ξ2, ξ1 − ξ2
〉
> c(n,p)|ξ1 − ξ2|p, (2.3)

for any pair of vectors ξ1, ξ2 ∈R
n. In fact, combining (2.1), (2.2) and (2.3) we reach

ˆ

B1

(|∇ψ |p − |∇h|p)
� c(n,p)

1ˆ

0

τ−1 dτ

ˆ

B1

∣∣∇(ψτ − h)
∣∣p = c(n,p)

1ˆ

0

τp−1 dτ

ˆ

B1

∣∣∇(ψ − h)
∣∣p,

and the lemma follows. �
Lemma 2.5. Let γ ∈ (0,1). For any positive scalars a > 0, b > 0 there holds

(a + b)γ <
(
aγ + bγ

)
. (2.4)

Proof. In fact, just notice that, since γ − 1 is negative, we have

tγ−1 > (t + a)γ−1, ∀t ∈ (0,∞). (2.5)

Then, integrate (2.5) from 0 to b to obtain the desired inequality. �
Next we prove two useful asymptotic inequalities.

Lemma 2.6. Let 0 � μ < 1 and suppose a real function φ verifies

φ(r) � A
(
re1φ(r)μ + re2

)
,

for r small enough. Then φ(r) = O(r
min(e2,

e1
1−μ

)
) as r approaches zero.

Proof. In fact, if φ(r) � re1φ(r)μ + re2 , then for β := min(e2,
e1

1−μ
), there holds

φ(r)

rβ
� re1−βφ(r)α + re2−β

�
(

φ(r)

r
β−e1

μ

)μ

+ 1

�
(

φ(r)

rβ

)μ

+ 1,

since β−e1
α

� β . The above readily implies φ(r) = O(rβ) as claimed. �
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Lemma 2.7. Let φ(s) be a non-negative and non-decreasing function. Suppose that

φ(r) � C1

[(
r

R

)α

+ μ

]
φ(R) + C2R

β (2.6)

for all r � R � R0, with C1, α, β positive constants and C2, μ non-negative constants, β < α. Then, for any σ < β ,
there exists a constant μ0 = μ0(C1, α,β,σ ) such that if μ < μ0, then for all r �R � R0 we have

φ(r) � C3

(
r

R

)σ [
φ(R) + C2R

σ
]

(2.7)

where C3 = C3(C1, σ − β) is a positive constant. In turn,

φ(r) � C4r
σ , (2.8)

where C4 = C4(C2,C3,R0, φ,σ ) is a positive constant.

Proof. It suffices to show the estimate for σ = β . For 0 < θ < 1 and R � R0 we have

φ(θR) � C1

[(
θR

R

)α

+ μ

]
φ(R) + C2R

β

= θαC1
[
1 + μθ−α

]
φ(R) + C2R

β. (2.9)

We choose 0 < θ < 1 such that 2C1θ
α = θδ with β < δ < α. Now we take μ0 > 0 satisfying μ0θ

−α < 1. Thus we
obtain for all R � R0

φ(θR) � θδφ(R) + C2R
β. (2.10)

Inductively we get

φ
(
θk+1R

)
� θδφ

(
θkR

) + C2θ
kβRβ

� θ(k+1)δφ
(
θkR

) + C2θ
kβRβ

k∑
i=1

θi(δ−β)

� C3θ
(k+1)δ

[
φ(R) + C2R

β
]

(2.11)

for all k ∈N. Hence, taking k such that θk+1R � r � θkR we obtain (2.7).
Finally, we have

φ(r) � C3

(
r

R0

)σ [
φ(R0) + C2R

σ
0

]
=

[
C3

Rσ
0

(
φ(R0) + C2R

σ
0

)]
rσ (2.12)

which proves inequality (2.8). �
3. Existence and L∞ bounds of minimizers

In this section we establish existence and pointwise bounds for a minimum of the functional Jγ . The arguments
presented herein work indistinctly for the cases 0 < γ � 1 and γ = 0.

Theorem 3.1 (Existence and L∞ bounds). Let Ω ⊂ R
n be a bounded domain, f ∈ Lq(Ω), q � n, ϕ ∈ W 1,p(Ω) ∩

L∞(Ω) and 0 < λ+ �= λ− < ∞ be fixed. For each 0 � γ � 1, there exists a minimizer uγ to the energy func-
tional

Jγ (v) :=
ˆ (|∇v|p + Fγ (v) + f (X) · v)

dX,
Ω
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over W
1,p

0 + ϕ, where Fγ (v) := λ+(v+)γ + λ−(v−)γ and by convention, F0(v) := λ+χ{v>0} + λ−χ{v�0}. Further-
more, uγ is bounded. More precisely,

‖uγ ‖L∞(Ω) � C
(
n,p,λ+, λ−,‖ϕ‖L∞(∂Ω),‖f ‖Lq(Ω)

)
.

Proof. Let us label

I0 := min
{
Jγ (v): v ∈ W

1,p

0 + ϕ
}
.

Initially we show that I0 > −∞. Indeed, for any v ∈ W
1,p

0 + ϕ, by Poincaré inequality there exists a positive constant
c = c(n,p,Ω,‖f ‖Lq ) > 0 such that

c‖v‖p
Lp − c‖φ‖p

Lp − ‖∇φ‖p
Lp � ‖∇v‖p

Lp . (3.1)

By Hölder inequality, since

q � n >
p

p − 1
, (3.2)

we have∣∣∣∣ˆ
Ω

f (X)v dX

∣∣∣∣� ‖f ‖
L

p
p−1

‖v‖Lp � C1(n,p,Ω)‖f ‖Lq ‖v‖Lp,

which combined with (3.1) gives

−C − c‖φ‖p
Lp − ‖∇φ‖p

Lp � ‖∇v‖p
Lp − C1(n,p,Ω)‖f ‖Lq ‖v‖Lp .

Finally, we reach

−C − c‖φ‖p
Lp − ‖∇φ‖p

Lp � ‖∇v‖p
Lp − C1(n,p,Ω)‖f ‖Lq ‖v‖Lp � Jγ (v). (3.3)

Let us now show existence of a minimum. Let vj ∈ W
1,p
φ (Ω) be a minimizing sequence. For j � 1,

Jγ (vj ) � I0 + 1.

From (3.3) and Hölder inequality we obtain
ˆ

Ω

|∇vj |p dX � C‖vj‖Lp + I0 + 1. (3.4)

By Poincaré inequality we estimate

C‖vj‖Lp � C
(‖∇vj‖Lp + ‖∇φ‖Lp + ‖φ‖Lp

)
. (3.5)

Also we have

C‖∇vj‖Lp � C + 1

2
‖∇vj‖p

Lp . (3.6)

Combining (3.4), (3.5) and (3.6) we reach
ˆ

Ω

|∇vj |p dX � C
(‖∇φ‖Lp + ‖φ‖Lp

) + I0 + 1. (3.7)

Thus, using Poincaré inequality once more, we conclude that {vj − φ} is a bounded sequence in W
1,p

0 (Ω). By reflex-

ivity, there is a function u ∈ W
1,p
φ (Ω) such that, up to a subsequence,

vj → u weakly in W 1,p(Ω), vj → u in Lp(Ω), vj → u a.e. in Ω.
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From lower semicontinuity of norms, we readily obtainˆ

Ω

|∇u|p dX � lim inf
j→∞

ˆ

Ω

|∇vj |p dX.

By pointwise convergence we have, in the case 0 < γ � 1,ˆ

Ω

Fγ (u) + f (X)udX � lim inf
j→∞

ˆ

Ω

Fγ (vj ) + f (X)vj dX.

For γ = 0, recalling that we are working under the regime λ+ > λ−, we haveˆ

Ω

λ−χ{u�0} dX =
ˆ

{u�0}
λ−χ{vj >0} dX +

ˆ

{u�0}
λ−χ{vj�0} dX

�
ˆ

{u�0}
λ+χ{vj >0} dX +

ˆ

Ω

λ−χ{vj�0} dX.

Thus,
ˆ

Ω

λ−χ{u�0} dX � lim inf
j→∞

( ˆ

{u�0}
λ+χ{vj >0} dX +

ˆ

Ω

λ−χ{vj�0} dX

)
.

On the other hand, since vj → u a.e. in Ω , we have
ˆ

Ω

λ+χ{u>0} dX =
ˆ

{u>0}
λ+

(
lim

j→∞χ{vj >0}
)

dX

= lim
j→∞

ˆ

{u>0}
λ+χ{vj >0} dX.

Hence,ˆ

Ω

F0(u) dX � lim inf
j→∞

ˆ

Ω

F0(vj ) dX.

In conclusion,

Jγ (u) � lim inf
j→∞ Jγ (vj ) = I0,

for 0 � γ � 1, which proves the existence of a minimizer.
Let us now turn our attention to L∞ bounds of uγ , which hereafter in this proof we will only refer as u. Let us

label

j0 :=
⌈

sup
∂Ω

φ
⌉
,

that is, the smallest natural number above sup∂Ω φ. For each j � j0 we define the truncated function uj : Ω → R by

uj =
{

j · sing(u) if |u| > j

u if |u| � j,
(3.8)

where sing(u) = 1 if u � 0 and sing(u) = −1 else. If we denote Aj := {|u| > j}, we have, for each j > j0

u = uj in Ac
j and uj = j · sing(u) in Aj . (3.9)

Thus, by minimality of u, there holds, for 0 < γ � 1,
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ˆ

Aj

|∇u|p dX =
ˆ

Ω

|∇u|p − |∇uj |p dX

�
ˆ

Aj

f (uj − u)dX +
ˆ

Aj

λ+
((

u+
j

)γ − (
u+)γ )

dX +
ˆ

Aj

λ−
((

u−
j

)γ − (
u−)γ )

dX. (3.10)

Notice thatˆ

Aj

f (uj − u)dX =
ˆ

Aj ∩{u>0}
f (j − u)dX +

ˆ

Aj ∩{u�0}
f (u − j) dX

� 2
ˆ

Aj

|f |(|u| − j
)
dX.

Moreover, we have

λ+
ˆ

Aj

((
u+

j

)γ − (
u+)γ )

dX = λ+
ˆ

Aj ∩{u>0}

(
jγ − |u|γ )

dX + λ+
ˆ

Aj ∩{u�0}

(
(−j)+

)γ − (
u+)γ

dX

� 0

and

λ−
ˆ

Aj

((
u−

j

)γ − (
u−)γ )

dX = λ−
ˆ

Aj ∩{u>0}

(
(j)−

)γ − (
u−)γ

dX + λ−
ˆ

Aj ∩{u�0}

(
jγ − |u|γ )

dX

� 0.

Then, we findˆ

Aj

Fγ (uj ) − Fγ (u) � 0. (3.11)

For γ = 0 it suffices to notice that uj > 0 and u have the same sign. From the range of truncation we consider,

it follows that (|u| − j)+ ∈ W
1,p

0 (Ω). Hence, applying Hölder inequality and Gagliardo–Nirenberg inequality, we
find ˆ

Aj

|f |(|u| − j
)+

dX � ‖f ‖
L

p
p−1

∥∥(|u| − j
)+∥∥

Lp(Aj )

� ‖f ‖Lq |Aj |1− 1
p∗ − 1

q ‖∇u‖Lp(Aj ),

where p∗ := np
n−p

. Young inequality gives

‖f ‖Lq |Aj |1− 1
p∗ − 1

q ‖∇u‖Lp(Aj ) � C|Aj |
p

p−1 − p
q(p−1)

− p
p∗(p−1) + 1

2
‖∇u‖p

Lp(Aj ). (3.12)

Combining (3.10) and (3.12) we obtainˆ

Aj

|∇u|p dX � C|Aj |1− p
n
+ε, (3.13)

where ε = p(pq−n)
nq(p−1)

and (see (3.1) and (3.7) substituting I0 by Jγ (ϕ))

‖u‖L1(Aj0 ) � |Aj0 |
p−1
p ‖u‖Lp(Aj0 ) � C. (3.14)

Boundedness of u now follows from a general machinery, see for instance [24, Chap. 2, Lemma 5.2, p. 71]. �
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Remark 3.2. A consequence of L∞ estimates for a minimum u to the functional Jγ is the universal control of u

in W 1,p . In fact, we haveˆ

Ω

|∇u|pdx � Jγ (ϕ) −
ˆ

Ω

Fγ (u)dX +
ˆ

Ω

∣∣f (X)
∣∣|u|dX

� Jγ (ϕ) + C
(
n,p,Ω,‖f ‖Lq

)
� C, (3.15)

where C = C(n,p,Ω,ϕ,‖f ‖Lq ) > 0 is a positive constant. Here we used the elementary inequality tγ � max{1, t},
for t > 0 and 0 � γ � 1. In conclusion,

‖u‖W 1,p � C. (3.16)

We close up this section by stating the Euler–Lagrange equation associated to the functional Jγ , 0 � γ � 1 as well
as the flux balance – also known as the free boundary condition – satisfied by a minimum u0 to J0, through the free
boundary. The proofs of these facts are rather standard and we omit them here.

Proposition 3.3. Let uγ be a minimum to the functional Jγ , 0 � γ � 1. Then uγ solves

	pu = γ

p

(
λ+

(
u+)γ−1

χ{u>0} − λ−
(
u−)γ−1

χ{u�0}
) + 1

p
f (X) in Ω, (3.17)

in the distributional sense. Also, if u0 is a minimum of J0, with |{u0 = 0}| = 0, f ∈ Lq(Ω), q > n, X0 ∈ F+(u0) ∪
F−(u0) a generic free boundary point and B a ball centered at X0, then for any Φ ∈ C1

0(B,Rn), there holds

lim
ε1↘0

ˆ

B∩{u0=ε1}

〈(
(p − 1)|∇u0|p − λ+

)
ν1,Φ

〉
dHn−1 + lim

ε2↗0

ˆ

B∩{u0=ε2}

〈(
(p − 1)|∇u0|p − λ−

)
ν2,Φ

〉
dHn−1 = 0,

where ν1 and ν2 denote the outward normal vectors on B ∩ {u0 = ε1} and B ∩ {u0 = ε2} respectively. In particular,
the flux balance∣∣∇u+

0

∣∣p − ∣∣∇u−
0

∣∣p = 1

p − 1
(λ+ − λ−)

holds along any C1,α piece of the free boundary.

4. Sharp C1,α estimates for minima

This section is devoted to the proof of Theorem 1.1, which assures optimal Hölder continuity estimates for the
gradient of minima of the energy functional Jγ , for 0 < γ � 1 and q > n. The borderline situation γ = 0 and f ∈ Ln

will be addressed in the next section.
Hereafter in this section, u = uγ denotes a minimizer of the functional Jγ , with 0 < γ � 1. Theorem 1.1 concerns

an optimal interior regularity result; therefore, in order to prove such interior estimate, we fix an arbitrary point X0 ∈ Ω

and R > 0 such that R < dist(X0, ∂Ω). We will show that u ∈ C1,α at X0, for α as in (1.6).
In the sequel we show the first main step in our strategy to obtain sharp regularity theory for minima of the

energy Jγ .

Lemma 4.1 (Comparison with p-harmonic functions). Let u ∈ W 1,p(BR) and h ∈ W 1,p(BR) satisfy 	ph = 0 in BR

in the distributional sense. Then, there exists a positive constant C = C(n,p) > 0 depending on dimension and p

such that for each 0 < r �R, there holdsˆ

Br

∣∣∇u(X) − (∇u)r
∣∣p dX � C

(
r

R

)n+pαp
ˆ

BR

∣∣∇u(X) − (∇u)R
∣∣p dX + C

ˆ

BR

∣∣∇u(X) − ∇h(X)
∣∣p dX, (4.1)

where 0 < αp < 1 is the optimal exponent in Lemma 2.2, which, in turn, reveals the sharp C1,α estimate stated in
Theorem 2.1.
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Proof. For each r ∈ (0,R] we estimateˆ

Br

∣∣∇u(X) − (∇u)r
∣∣p dX � Cp

ˆ

Br

∣∣∇u(X) − (∇h)r
∣∣p dX + Cp

ˆ

Br

∣∣(∇u)r − (∇h)r
∣∣p dX, (4.2)

for a constant Cp that depends only on p. Analogously, we obtainˆ

Br

∣∣∇u(X) − (∇h)r
∣∣p dX � Cp

ˆ

Br

∣∣∇u(X) − ∇h(X)
∣∣p dX + Cp

ˆ

Br

∣∣∇h(X) − (∇h)r
∣∣p dX. (4.3)

In the sequel, we apply Hölder inequality and estimateˆ

Br

∣∣(∇u)r − (∇h)r
∣∣p dX = 1

|Br |p−1

∣∣∣∣ˆ
Br

(∇u(X) − ∇h(X)
)
dX

∣∣∣∣p

� 1

|Br |p−1

(ˆ

Br

∣∣∇u(X) − ∇h(X)
∣∣dX

)p

� 1

|Br |p−1

{
|Br |1− 1

p

(ˆ

Br

∣∣∇u(X) − ∇h(X)
∣∣p dX

) 1
p
}p

=
ˆ

Br

∣∣∇u(X) − ∇h(X)
∣∣p dX. (4.4)

Combining (4.2), (4.3) and (4.4) we obtainˆ

Br

∣∣∇u(X) − (∇u)r
∣∣p dX � Cp

ˆ

Br

∣∣∇h(X) − (∇h)r
∣∣p dX + Cp

ˆ

Br

∣∣∇u(X) − ∇h(X)
∣∣p dX. (4.5)

Interplaying the roles of u and h in (4.5) and arguing in the bigger ball BR , we findˆ

BR

∣∣∇h(X) − (∇h)R
∣∣p dX � Cp

ˆ

BR

∣∣∇u(X) − (∇u)R
∣∣p dX + Cp

ˆ

BR

∣∣∇u(X) − ∇h(X)
∣∣p dX. (4.6)

Now, in view of Lemma 2.2 and (4.5) we can further estimateˆ

Br

∣∣∇u(X) − (∇u)r
∣∣p dX � C(n,p)

(
r

R

)n+pαp
ˆ

BR

∣∣∇h(X) − (∇h)R
∣∣p dX

+ C(n,p)

ˆ

BR

∣∣∇u(X) − ∇h(X)
∣∣p dX. (4.7)

Hence, combining (4.6) and (4.7) we readily obtainˆ

Br

∣∣∇u(X) − (∇u)r
∣∣p dX � C(n,p)

(
r

R

)n+pαp
ˆ

BR

∣∣∇u(X) − (∇u)R
∣∣p dX

+ C(n,p)

[
1 +

(
r

R

)n+pαp
]ˆ
BR

∣∣∇u(X) − ∇h(X)
∣∣p dX, (4.8)

which finally impliesˆ

BR

∣∣∇u(X) − (∇u)r
∣∣p dX � C

(
r

R

)n+pαp
ˆ

BR

∣∣∇u(X) − (∇u)R
∣∣p dX + C

ˆ

BR

∣∣∇u(X) − ∇h(X)
∣∣p dX, (4.9)

and the proof of Lemma 4.1 is concluded. �
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We have now gathered all the tools and ingredients we need to establish local Hölder continuity of the gradient of
a minimum of the energy functional Jγ , 0 < γ � 1.

Proof of Theorem 1.1. We start off the proof by denoting, for writing convenience, BR := BR(X0) and u = uγ

a given minimum of the functional Jγ , 0 < γ � 1. Let h be the p-harmonic function in BR that agrees with u on the
boundary, i.e.,

	ph = 0 in BR and h − u ∈ W
1,p

0 (BR).

By Lemma 4.1 we have
ˆ

Br

∣∣∇u(X) − (∇u)r
∣∣p dX � C

(
r

R

)n+pαp
ˆ

BR

∣∣∇u(X) − (∇u)R
∣∣p dX + C

ˆ

BR

∣∣∇u(X) − ∇h(X)
∣∣p dX. (4.10)

On the other hand, by the minimality of u we have
ˆ

BR

(|∇u|p − |∇h|p)
dX �

ˆ

BR

(
Fγ (h) − Fγ (u)

)
dX +

ˆ

BR

f (X)(h − u)dX. (4.11)

Invoking Lemma 2.4, there exists a constant C3 = C3(p,n) > 0 such that

C3

ˆ

BR

(|∇u|p − |∇h|p)
dX �

ˆ

BR

∣∣∇(u − h)
∣∣p dX. (4.12)

Moreover, we haveˆ

BR

Fγ (h) − Fγ (u)dX = λ+
ˆ

BR

[(
h+)γ − (

u+)γ ]
dX + λ−

ˆ

BR

[(
h−)γ − (

u−)γ ]
dX

with ˆ

BR

[(
h+)γ − (

u+)γ ]
dX �

ˆ

{h+>u+}

[(
h+)γ − (

u+)γ ]
dX

=
ˆ

{h+>u+}∩{u+>0}

[(
h+)γ − (

u+)γ ]
dX +

ˆ

{h+>u+}∩{u+=0}

(
h+ − u+)γ

dX. (4.13)

Notice furthermore thatˆ

{h+>u+}∩{u+=0}

(
h+ − u+)γ

dX �
ˆ

{h+>u+}∩{u+=0}
(h − u)γ dX. (4.14)

By Lemma 2.5 there holds
ˆ

{h+>u+}∩{u+>0}

[(
h+)γ − (

u+)γ ]
dX �

ˆ

{h+>u+}∩{u+>0}

(
h+ − u+)γ

dX

=
ˆ

{h+>u+}∩{u+>0}
(h − u)γ dX

�
ˆ

BR

|h − u|γ dX. (4.15)

Analogously, we obtain



754 R. Leitão et al. / Ann. I. H. Poincaré – AN 32 (2015) 741–762
ˆ

BR

[(
h−)γ − (

u−)γ ]
dX �

ˆ

{h−>u−}∩{u−>0}

[(
h−)γ − (

u−)γ ]
dX +

ˆ

{h−>u−}∩{u−=0}
(u − h)γ dX, (4.16)

with ˆ

{h−>u−}∩{u−>0}

[(
h−)γ − (

u−)γ ]
dX �

ˆ

{h−>u−}∩{u−>0}

(
h− − u−)γ

dX

=
ˆ

{h−>u−}∩{u−>0}
(u − h)γ dX

�
ˆ

BR

|h − u|γ dX. (4.17)

Hence, we findˆ

BR

Fγ (h) − Fγ (u)dX � C

ˆ

BR

|h − u|γ dX, (4.18)

where C = C(λ+, λ−) is a positive constant.
Combining (4.12), (4.11) and employing Hölder inequality followed by Poincaré inequality and (4.18) we obtainˆ

BR

∣∣∇(u − h)
∣∣p dX � C3

ˆ

BR

Fγ (h) − Fγ (u)dX

� C4

ˆ

BR

|u − h|γ dX

� C5

(ˆ

BR

∣∣∇(u − h)
∣∣p dX

)γ /p

|BR|1+γ /n−γ /p,

where C4 and C5 depend on p, n, λ+ and λ−. Thus, by Young inequality we reach the following estimate
ˆ

BR

Fγ (h) − Fγ (u)dX � C(p,γ )
[
C(p,n,λ+, λ−)

]p/(p−γ )|BR|1+1/n(pγ/(p−γ )) + 1

4

∥∥∇(u − h)
∥∥p

Lp

� C(p)
[
C(p,n,λ+, λ−)

]p/(p−1)|BR|1+1/n(pγ/(p−γ )) + 1

4

∥∥∇(u − h)
∥∥p

Lp , (4.19)

where C(p,γ ) = (
4γ
p

)
γ

p−γ (
p−γ

p
) and C(p) = ( 4

p
)

1
p−1 . Hölder inequality and Poincaré inequality yield

ˆ

BR

f (X)(h − u)dX � ‖f ‖Lq |BR| p−1
p

− 1
q ‖u − h‖Lp

� ‖f ‖Lq |BR| p−1
p

− 1
q
+ 1

n
∥∥∇(u − h)

∥∥
Lp . (4.20)

Thus, applying Young inequality once more, we reach
ˆ

BR

f (X)(h − u) � C(p)
(‖f ‖Lq

) p
p−1 |BR| p

p−1 (
p−1
p

− 1
q
+ 1

n
)
∥∥∇(u − h)

∥∥p

Lp + 1

4

∥∥∇(u − h)
∥∥

Lp

= C(p)
(‖f ‖Lq

) p
p−1 |BR|1+ 1

n
[ (q−n)p
(p−1)q

] + 1

4

∥∥∇(u − h)
∥∥

Lp . (4.21)

Replacing (4.19) and (4.21) in (4.10) we easily obtain
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ˆ

Br

∣∣∇u − (∇u)r
∣∣p dX � C(n,p,αp)

(
r

R

)n+pαp
ˆ

BR

∣∣∇u(X) − (∇u)R
∣∣p dX

+ C(n,p,αp)C(n,p,λ+, λ−)|BR|1+1/n(pγ/(p−γ ))

+ C(n,p,αp)
(‖f ‖Lq

) p
p−1 |BR|1+ 1

n
[ (q−n)p
(p−1)q

]

� C

(
r

R

)n+pαp
ˆ

BR

∣∣∇u(X) − (∇u)R
∣∣p dX + CRn+pγ/(p−γ ) + CR

n+p
(q−n)
(p−1)q ,

where C = C(n,p,λ+, λ−, αp,‖f ‖Lq ) is a positive constant. In view of Lemma 2.7 and W 1,p bounds of u we
conclude

−
ˆ

Br(X0)

∣∣∇u − (∇u)r
∣∣p dX � C

(
n,p,λ+, λ−,‖f ‖Lq(Ω),dist(X0, ∂Ω)

) · rα, (4.22)

for α entitled in (1.6). Finally, Campanato’s Embedding Theorem (see for instance [16]) gives the desired Hölder
continuity of the gradient of u. The proof of Theorem 1.1 is complete. �
Remark 4.2. It is important to notice that the estimates from Campanato’s Embedding Theorem are not uniform as
γ goes to zero. In fact, an inspection of the proof of such theorem (see for instance [16, Theorem 1.54]) reveals that
estimate (4.22) implies∣∣∇u(X) − ∇u(Y )

∣∣ � 2n · C(n,p,λ+, λ−,‖f ‖Lq(Ω),dist(X0, ∂Ω))

2α − 1
|X − Y |α.

This is the reason why the constant in Theorem 1.1 does depend upon γ , even though the universal constant appearing
in (4.22) does not depend upon γ .

5. Log-Lipschitz estimates

In this section we address sharp regularity for jets and cavities type problems, i.e., γ = 0, with sources in the
conformal threshold case f ∈ Ln(Ω), where n is the dimension of the ambient. Hereafter u = u0 denotes a minimizer
of the energy functional

J0(v) :=
ˆ

Ω

(|∇v|p + λ+χ{v>0} + λ−χ{v�0} + f (X) · v)
dX, (5.1)

for scalars 0 � λ− < λ+ < ∞. Existence and pointwise bounds for u0 has been assured by Theorem 3.1.

Proof of Theorem 1.2. We start off by fixing an arbitrary point X0 ∈ Ω and R > 0 such that R < dist(X0, ∂Ω). As
before, we denote BR := BR(X0). We follow the initial steps of the proof of Theorem 1.1. Let h be the p-harmonic
function in BR that agrees with u on the boundary, i.e.,

	ph = 0 in BR and h − u ∈ W
1,p

0 (BR).

By Lemma 4.1 we have
ˆ

Br

∣∣∇u(X) − (∇u)r
∣∣p dX � C

(
r

R

)n+pαp
ˆ

BR

∣∣∇u(X) − (∇u)R
∣∣p dX + C

ˆ

BR

∣∣∇u(X) − ∇h(X)
∣∣p dX. (5.2)

On the other hand, by the minimality of u we haveˆ (|∇u|p − |∇h|p)
dX �

ˆ (
F0(h) − F0(u)

)
dX +

ˆ
f (X)(h − u)dX. (5.3)
BR BR BR
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Readily one verifies that
ˆ

BR

(
F0(h) − F0(u)

)
dX � C(λ+, λ−)|BR|. (5.4)

As before, applying Hölder inequality and afterwards Poincaré inequality we obtain
ˆ

BR

f (X)(h − u)dX � ‖f ‖Ln |BR| p−1
p

− 1
n ‖u − h‖Lp

� ‖f ‖Ln |BR| p−1
p

− 1
n
+ 1

n
∥∥∇(u − h)

∥∥
Lp . (5.5)

Therefore, with the aid of Young inequality we estimate
ˆ

BR

f (X)(h − u)dX � C(p)
(‖f ‖Ln

) p
p−1 |BR| p

p−1 (
p−1
p

)
∥∥∇(u − h)

∥∥p

Lp + 1

4

∥∥∇(u − h)
∥∥

Lp

= C(p)
(‖f ‖Ln

) p
p−1 |BR| + 1

4

∥∥∇(u − h)
∥∥

Lp . (5.6)

Taking into account (5.2) and replacing (5.4) and (5.6) into (5.3) we reach

ˆ

Br

∣∣∇u − (∇u)r
∣∣p dX � C(n,p)

(
r

R

)n+pαp
ˆ

BR

∣∣∇u(X) − (∇u)R
∣∣p dX

+ C(n,p)
[
C(λ+, λ−)

]|BR| + C(n,p)C
(
n,p,λ+, λ−,‖f ‖Ln

)|BR|

� C

(
r

R

)n+pαp
ˆ

BR

∣∣∇u(X) − (∇u)R
∣∣p dX + CRn,

where C = C(n,p,λ+, λ−,‖f ‖Ln) is a positive constant. In view of Lemma 2.7 we obtain
ˆ

Br(X0)

∣∣∇u − (∇u)r
∣∣p dX � Crn, (5.7)

which shows that the gradient of u lies in BMO space and for any fixed subdomain Ω ′ � Ω , there holds

‖∇u‖BMO(Ω ′) � C
(
Ω ′, n,p,λ+, λ−,‖f ‖Ln

)
.

From Fefferman–Stein BMO Characterization Theorem, see [8], there exist vector fields Γ0,Γ1, . . . ,Γn ∈ L∞(Ω ′),
such that

∇u(X) = Γ0(X) +
n∑

i=1

Rj (Γj ),

where Rj denotes the classical Riesz transform,

Rj (f ) := f ∗ Kj for Kj(Xj ) := cnXj

|X|n+1
.

It now follows by a similar reasoning employed in the Appendix of [11] that∣∣∇u(X)
∣∣� −log|X − X0|, for X ∈ Bρ(X0), ρ � 1.

Finally, by Morrey’s type estimate, we obtain, for s > n,
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∣∣u(X) − u(X0)
∣∣ � C|X − X0|1− n

r ·
( ˆ

Br(X0)

∣∣∇u(Z)
∣∣sdZ

)1/p

� C|X − X0|1− n
s

( |X−X0|ˆ

0

|logZ|s · |Z|n−1dZ

)1/s

� C|X − X0| ·
∣∣log|X − X0|

∣∣,
and the proof of Theorem 1.2 is concluded. �
6. Lower gradient bounds

From this section on, we aim towards gradient estimates to minimizers of heterogeneous p-jet flow functional (5.1).
We remark once more that even for equations with no free boundaries, say λ− = λ+, it is not possible to obtain point-
wise control of the gradient of u0, under the borderline condition f ∈ Ln. In this case, as proven in Theorem 1.2, the
best control available is of logarithm order. Therefore, from this section on, we shall assume the source function f (X),
appearing in functional (5.1) is q-integrable, for q > n. Under such natural hypothesis, our next theorem shows that
u+

0 grows linearly away from the free boundary F+ := ∂{u > 0} ∩ Ω .

Theorem 6.1. Let u0 be a local minimizer to J0, with f ∈ Lq(Ω), q > n, Ω ′ � Ω and X0 ∈ {u0 > 0} ∩ Ω ′. There
exists a constant c0 > 0 depending only on n, p, λ+ and ‖f ‖Lq(Ω) such that

u(X0) � c0 dist
(
X0,F

+)
.

Proof. Let us fix X0 ∈ {u0 > 0} ∩ Ω ′. It suffices to show such estimate for points X0 ∈ {u0 > 0} ∩ Ω ′ such that

0 < dist
(
X0,F

+) � δ
(
n,p,λ+,‖f ‖Lq(Ω)

)
,

for δ(n,p,λ+,‖f ‖Lq(Ω)) to be regulated a posteriori. Let us denote d := dist(X0,F
+) and if we define

v(X) := 1

d
u0(X0 + dX),

one easily verifies that v is a local minimizer to

J d
0 (ξ) :=

ˆ

B1

(|∇ξ |p + λ+χ{ξ>0} + d · f (X0 + d · X) · ξ(X)
)
dX,

in W
1,p

0 (B1)+ v. The thesis of Theorem 6.1 is equivalent to proving that v(0) is universally bounded away from zero.
Clearly v � 0 in B1. By Harnack inequality (see Theorem 2.3), we have

v(X)� C(n,p)
{
v(0) + ∥∥d · f (X0 + d · X)

∥∥ 1
p−1
Lq(B1)

}
� C(n,p)

{
v(0) + (

d
1− n

q · ‖f ‖q

) 1
p−1

}
, ∀X ∈ B3/5. (6.1)

In the sequel, we choose a nonnegative, smooth radially symmetric cut-off function ψ satisfying

φ ≡ 0 in B1/10 and φ ≡ 1 in B1 \ B1/2

and define the test function g in B1 by

g(X) := min
{
v,C(n,p)

{
v(0) + (

d
1− n

q · ‖f ‖q

) 1
p−1

} · ψ(X)
}
.

Notice that g ∈ W 1,p and from Harnack inequality, estimate (6.1), g agrees with v in B1 \ B1/2. Let us label the set

B1/2 ⊃ Π := {
Y ∈ B1/2: C(n,p)

{
v(0) + (

d
1− n

q · ‖f ‖q

) 1
p−1

} · ψ(Y ) < v(Y )
} ⊃ B1/10.
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From the minimality of v, we estimateˆ

Π

λ+(1 − χ{g>0}) + d · f (X0 + d · X) · [v(X) − g(X)
]
dX �

ˆ

Π

(|∇g|p − |∇v|p)
dX. (6.2)

The right-hand side of (6.2) is readily estimated asˆ

Π

(|∇g|p − |∇v|p)
dX �

[
C(n,p)

{
v(0) + (

d
1− n

q · ‖f ‖q

) 1
p−1

} · ‖ψ‖∞
]p

� Cv(0)p + C
[
d

1− n
q · ‖f ‖q

] p
p−1 . (6.3)

We now turn our efforts towards estimating the left-hand side of (6.2) by below. Readily we obtainˆ

Π

λ+(1 − χ{g>0}) dX =
ˆ

Π

λ+χ{g=0} dX

� λ+|B1/10|. (6.4)

Invoking once more Harnack inequality (6.1) and the fact that Π ⊂ B1/2, we estimateˆ

Π

d · f (X0 + d · X) · [v(X) − g(X)
]
dX � C

(
d

1− n
q · ‖f ‖q

) · {v(0) + (
d

1− n
q · ‖f ‖q

) 1
p−1

}
. (6.5)

Combining (6.3), (6.4) and (6.5) we reach

C
{
v(0)p + (

d
1− n

q · ‖f ‖q

)
v(0)

}
� λ+|B1/10| − C

[
d

1− n
q · ‖f ‖q

] p
p−1 . (6.6)

Therefore, choosing 0 < d � δ(n,p,λ+,‖f ‖Lq(Ω)) � 1, appropriately, we conclude

v(0) � c
(
n,p,λ+,‖f ‖q

)
> 0,

and the proof of Theorem 6.1 follows. �
Next we iterate linear growth established in Theorem 6.1 as we obtain a stronger non-degeneracy property for u0

near the free boundary.

Theorem 6.2. Let u0 be a local minimizer to J0, with f ∈ Lq(Ω), q > n, Ω ′ � Ω and X0 ∈ {u0 � 0} ∩ Ω ′. There
exists a constant c > 0 depending on n, p, λ+ and ‖f ‖Lq(Ω), such that

sup
Br(X0)

u+
0 � c · r,

for any 0 < r � dist(∂Ω ′, ∂Ω).

Proof. By continuity, it suffices to show u0 is strongly non-degenerated, i.e., the thesis of Theorem 6.2 holds within
the positivity set

Ω+
0 := {u0 > 0} ∩ Ω ′.

We will obtain such a result by iterating linear growth estimate. More precisely we will initially show that there exists
a δ0 > 0 that depends only on n, Ω ′, p, λ+ and ‖f ‖q such that if X ∈ {u0 > 0} ∩ Ω ′, there holds

sup
Bd(X)(X0)

u0 � (1 + δ0)u0(X0), (6.7)

where d(X) := dist(X,F+). In order to verify (6.7), let us assume, for the purpose of contradiction, that no such a δ0
exists. If so, it would be possible to find sequences δj = o(1) and Xj ∈ {u0 > 0} ∩ Ω ′ satisfying

sup
Bd (Xj )

u0 � (1 + δj )u0(Xj ), for dj := dist
(
Xj ,F

+) = o(1). (6.8)

j
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Let us consider the following normalized sequence of functions �j : B1 → R defined by

�j (Z) := u0(Xj + djZ)

u0(Xj )
.

Clearly, �j (0) = 1, and from (6.8),

0 � �j � 1 + δj in B1. (6.9)

In addition, �j satisfies

	p�j = d
p
j

u0(Xj )p−1
· f (Xj + djZ), (6.10)

in the distributional sense in B1. Taking into account the linear growth established in Theorem 6.1 and Eq. (6.10), we
reach

|	p�j | � Cdj · f (Xj + djZ), in B1. (6.11)

From Harnack inequality, we deduce the sequence {�j }j∈N is locally equicontinuous in B1; thus, up to a subsequence,
�j → � locally uniformly in B1. Harnack inequality further reveals that for any |X|� r < 1, there holds

0 � [1 + δj ] − �j (X)� Cr

([1 + δj ] − �j (0) + d
1− n

q

j · ‖f ‖q

) = Cr · o(1). (6.12)

Letting j → ∞ in the above estimate, we deduce the limiting blow-up function � ≡ 1 in B1.
We now show that such a conclusion drives us to an inconsistency. To this end, let Yj ∈ F+ be such that dj =

|Xj − Yj |. Up to subsequence, there would hold

1 + o(1) = �j

(
Yj − Xj

dj

)
= 0,

which clearly gives a contradiction for j � 1. We have shown the validity of estimate (6.7).
To finish up the proof of Theorem 6.2, we employ a Caffarelli’s polygonal type of argument. That is, we construct

a polygonal along which u0 grows linearly. Starting from X0 = X, we find a sequence of points {Xn}n�0 such that:

1. u0(Xn) � (1 + δ0)
nu0(X0);

2. |Xn − Xn−1| = dist(Xn−1,F
+);

3. u0(Xn) − u0(Xn−1) � c|Xn − Xn−1|. In particular, u0(Xn) − u0(X0) � c|Xn − X0|.

Since u(xn) → ∞ as n → ∞ this process must be finite, that is, there exists a last Xn0 in the ball Br(X0). For such
a last point,

|Xn0 − X0| � cpr.

Finally,

sup
Br(X)

u0 � u0(Xn0) � u0(X0) + c|Xn − X0|� c · r,

and the proof is concluded. �
7. Stability for free boundary problems

In this section we show the stability of the family of free boundary problems obtained by the minimization of the
non-differentiable functionals

Jγ (v) :=
ˆ (|∇v|p + λ+

(
v+)γ + λ−

(
v−)γ + f (X) · v)

dX → min, (7.1)
Ω
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as γ = o(1). The ultimate goal of this section is to show that any limit point u0 of {uγ }γ=o(1) is a minimizer to the
p-degenerate cavitation functional

J0(v) :=
ˆ

Ω

(|∇v|p + λ+χ{v>0} + λ−χ{v�0} + f (X) · v)
dX. (7.2)

Initially we show compactness of {uγ }0<γ�1 in the W 1,p topology.

Proposition 7.1. Let uγj
be a sequence of minima to the functional Jγj

, f ∈ Ln and assume uγj
→ v a.e., γj → γ0.

Then for any 0 < E < ∞, uγj
→ v in the W

1,E
loc (Ω) topology.

Proof. It follows from Proposition 3.3 and a.e. convergence that 	puγj
⇀ 	pv in the sense of measures. Thus, from

truncation arguments, see for instance [4],

∇uγj
→ ∇v a.e. in Ω. (7.3)

From Theorem 1.2, for any Ω ′ � Ω , there exists a constant C(n,p,λ+, λ−,Ω ′,‖f ‖n), independent of γj , such that,

‖∇uγj
‖BMO(Ω ′) � C

(
n,p,λ+, λ−,Ω ′,‖f ‖n

)
. (7.4)

Thus, from John–Nirenberg’s Theorem, for 1 � E < ∞ fixed,

‖∇uγj
‖LE+1(Ω ′) � C

(
n,p,λ+, λ−,Ω ′,‖f ‖n

)
. (7.5)

Finally, combining (7.3), (7.5) and classical arguments, see for instance [12], we deduce

∇uγj
→ ∇v in LE

(
Ω ′),

and the proposition follows. �
Theorem 7.2. Let u0 := limγj

uγj
as γj → 0. Then u0 is a local minimizer of J0.

Proof. Let Br be a ball in Ω . Given an arbitrary W 1,p function ψ that agrees with u0 on ∂Br , we have to show
that

J0(Br , u0) � J0(Br,ψ).

By density we may further assume that ψ is bounded. Let us define the interpolated function

ψγj ,h :=
{

u0 + |X|−r
h

(uγj
− u0) in Br+h \ Br

ψ in Br.

One simply verifies that

|∇ψγj ,h|p � Cp

{
|∇u0|p + 1

hp
|uγj

− u0|p + |∇uγj
− ∇u0|p

}
in Br+h \ Br. (7.6)

In the above estimate, we have used the classical facts:

∇(|X|) = X

|X| and

( |X| − r

h

)p

� 1 in Br+h \ Br. (7.7)

By L∞ bounds, Theorem 3.1, there exists a constant C1 > 0, independent of γj , such that ‖uγj
‖∞ < C1. Thus, if we

denote

H±
γj

(t) := (
t±

)γj ,

we have

H±
γ (ψγj ,h) � (3C1)

γj in Br+h \ Br, (7.8)

j



R. Leitão et al. / Ann. I. H. Poincaré – AN 32 (2015) 741–762 761
and

H±
γj

(ψγj ,h) �
(‖ψ‖L∞(Br )

)γj χ{uγj
≷0} in Br. (7.9)

We can estimate

Jγj
(Br+h,ψγj ,h) =

ˆ

Br+h\Br

|∇ψγj ,h|p + λ+H+
γj

(ψγj ,h) + λ−H−
γj

(ψγj ,h) dX

+
ˆ

Br+h\Br

f (X)

[
u0 + |X| − r

h
(uγj

− u0)

]
dX +Jγj

(Br ,ψ)

� Cp

ˆ

Br+h\Br

|∇u0|p dX + Cp

ˆ

Br+h\Br

|∇uγj
− ∇u0|p dX

+ [
2λ+(3C1)

γj + 3C1
]
Cp|Br+h \ Br | + Cp

hp

ˆ

Br+h\Br

|uγj
− u0|p dX

+J0(Br ,ψ) + (‖ψ‖γj

L∞(Br )
− 1

)ˆ
Br

λ+χ{ψ>0} + λ−χ{ψ�0} dX

+ |Br+h \ Br |1− 1
q ‖f ‖Lq(Ω). (7.10)

By pointwise convergence uγj
→ u0 we have

lim
j→∞

ˆ

Br+h\Br

|uγj
− u0|pdx = 0 (7.11)

and by Proposition 7.1

lim
j→∞

ˆ

Br+h\Br

|∇uγj
− ∇u0|pdx = 0. (7.12)

From the minimality property of uγj
,

Jγj
(Br+h,ψγj ,h) � Jγj

(Br+h,uγj
) � Jγj

(Br , uγj
) +

ˆ

Br+h\Br

f (X)uγj
dX. (7.13)

Furthermore, it follows from Proposition 7.1
ˆ

Br

|∇u0|p dX = lim
j→∞

ˆ

Br

|∇uγj
|p dX. (7.14)

By the pointwise convergence uγj
→ u0 and Fatou’s Lemma (see the proof of Theorem 3.1), we conclude

ˆ

Br

λ+χ{u0>0} + λ−χ{u0�0} dX � lim inf
j→∞

ˆ

Br

λ+(uγj
)γj χ{uγj

>0} + λ−(uγj
)γj χ{uγj

�0} dX, (7.15)

and

lim
j→∞

ˆ

Br

f (X)uγj
dX = lim

j→∞

ˆ

Br

f (X)u0 dX. (7.16)

Finally, combining (7.10)–(7.16) we reach
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J0(Br , u0) � lim inf
j→∞ Jγj

(Br+h,uγj
)

� J0(Br,ψ) + Cp

ˆ

Br+h\Br

|∇u0|p dX

+ (2λ+ + 3C1)Cp|Br+h \ Br | + |Br+h \ Br |1− 1
q ‖f ‖Lq(Ω). (7.17)

Letting h → 0, we finish the proof of Theorem 7.2. �
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