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Abstract

In this paper we consider a steady state phase transition problem with given convection v. We prove, among other things, that
the weak solution is locally Lipschitz continuous provided that v = Dξ and ξ is a harmonic function. Moreover, for continuous
casting problem, i.e. when v is constant vector, we show that Lipschitz free boundaries are C1 regular surfaces.
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1. Introduction

In this paper we study a stationary phase transition problem where the liquid phase is in motion. For given convec-
tion v, the problem is of determining the temperature T from the equation

�T = div
[
vβ(T − TS)

] + f. (1.1)

Here β(s) = as +�H(s) is the enthalpy, a is the specific heat constant, � is the latent heat constant, H is the Heaviside
function, TS is the solidification temperature and f is a given function that accounts for heat sources or sinks. As one
can see, (1.1) is the heat balance equation written for the enthalpy β [21]. (1.1) is also known as Stefan problem with
convection.

It is well known that (1.1) portrays various phase transition models. For instance, if v is constant then we have
the so-called continuous casting problem, which is a practical example of a free boundary problem appearing in
industry [1,6,13,22]. It models a metal fabrication technique whereby molten metal is poured into an open mold and
subsequently cooled by a stream of water and extracted at continuous velocity. This method is used most frequently to
cast steel, aluminum and copper, because it allows low cost production of metal sections of good quality [25]. Another
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example of this sort is phase change in saturated porous media. For more details concerning the physical background
of this equation, see [1,6] and references therein.

If we suppose that TS = 0 then (1.1) transforms into

�T = div
[
vβ(T )

] + f.

Notice that β has abrupt behavior at s = 0. Typically β(T ) = � + ´ T

TS
a(τ ) dτ for T > TS and β(T ) = ´ T

TS
a(τ ) dτ

if T < TS . Here a is the specific heat which in this paper is assumed to be constant. Hence the solid region is char-
acterized by T < TS and the liquid region by T > TS . Any region where T = TS and 0 < β(T ) < � is called mushy
region [1,19]. The presence of mushy region means that we do not have sharp separation of phases. There are several
boundary conditions guaranteeing that the mushy region is empty, see [13,19]. However, our primary interest here
is the boundary of the sets T > TS or T < TS . To fix the ideas we consider Γ = ∂{T < TS} which we call the free
boundary and study its properties. Our methods can be equally applied to the set ∂{T > TS}.

The objective of this paper is to prove that weak solutions of (1.1) are locally Lipschitz continuous. Moreover the
Lipschitz free boundary must be C1 smooth, see Theorems A, B and C below.

The phase transition problem with convections has been studied by several authors, see [21] and references therein.
The existence of W 1,2 weak solutions to various boundary value problems for (1.1) can be established by penalization
method [13,16,21]. In this way one obtains a bounded Hölder continuous solution for a suitable boundary data. Our
first result, Theorem A, strengthens this result up to log-Lipschitz continuity under some weak conditions on the
boundary of the domain and the boundary data. However the optimal regularity of the solutions is Lipschitz as the
free boundary condition (7.5) indicates. One of our main results in this paper is the local Lipschitz continuity of weak
solutions for one phase and two phase problems, see Theorem B. It should be noted that Theorem B does not follow
from Theorem A in [5], since we do not assume that the free boundary is given by the graph of a Lipschitz continuous
function.

Having proven the optimal regularity of weak solution, we address the free boundary regularity which is a very
delicate problem. To tackle it, we apply the free boundary regularity theory for viscosity solutions. The latter is yet
another notion of generalized solution, which utilizes the maximum principle at the regular (in some weak sense) free
boundary points via a Hopf type lemma. This method was developed by L. Caffarelli for the pure Laplace operator
in the series of papers [7,8]. Extension to more general class of operators is proven by M. Feldman in [15]. In view
of these results the regularity problem reduces to the equivalence of weak solution to the viscosity solution which is
contained in Theorem C.

2. Outline

The paper is organized as follows. In Section 3 we introduce some notations used throughout the paper. In Section 4
we state the phase change problem with convection and give its weak formulation. It is worthwhile to point out that
one phase problem is linked to obstacle problem as the computation (4.4) shows. In particular we get that the positive
part of weak solutions to continuous casting problem, i.e. when v = eN , are locally non-degenerate, see Proposition 2.

The main results of this paper, Theorems A, B and C, are formulated in Section 5. First we show that the weak
solution is locally log-Lipschitz continuous. This improves the known result that u = TS − T is α-Hölder continuous
for any α < 1. Under further assumption that the lateral boundary Σ = ∂Ω × (0,L) is Liapunov–Dini surface and the
Dirichlet data prescribed on Σ is C0,1 we show that the log-Lipschitz estimate holds in CL = Ω × (0,L). As a result
one obtains that the free boundary is a log-Lipschitz graph over Ω ⊂ R

N−1. This is contained in Theorem A and the
proof is given in Section 6.

If we have sharp separation of solid and liquid phases, i.e. the interface does not have thickness, then one can
deduce the free boundary condition for smooth solutions directly from Eq. (4.5). This is carried out in Section 7.

In Section 8, we prove that the weak solutions to one phase problem are Lipschitz continuous on any subdomain
of CL = Ω × (0,L). According to the free boundary condition (7.5) the Lipschitz regularity of free boundary is
optimal. The rest of Section 8 deals with the one phase continuous casting problem, i.e. when u � 0. Using a strong
connection with the obstacle problem we show that u is non-degenerate at free boundary points. This implies that
the free boundary ∂{u > 0} is locally a set of finite perimeter. Moreover, it is N − 1 rectifiable. In Section 9 by
employing Alt–Caffarelli–Friedman monotonicity theorem we prove optimal regularity for the solutions of the two
phase problem. Note that the proofs of Lipschitz continuity for one and two phase problems differ considerably.
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Measure theoretic properties of ∂{u > 0} for two phase continuous casting problem are discussed in Section 10
where we extend the results from Section 8 under some assumption on the Lebesgue density of positivity set near
X0 ∈ ∂{u > 0}. We point out that the same argument works for ∂{u < 0}.

Finally in Section 11 we prove Theorem C stating that the weak solution is also viscosity solution. The proof
utilizes Lemmas 2.2 and 2.3 from [11] and a careful analysis of blow-up limits. As a result we obtain that Lipschitz
free boundaries are C1 from Theorem 1 of [15] and conclude the proof of Theorem C.

3. Notations

C0,C1,CD, . . . generic constants
χD the characteristic function of a set D ⊂R

N , N � 2
Ω the closure of Ω

∂Ω the boundary of Ω

ν outer unit normal
X = (x, z) ∈R

N x = (x1, . . . , xN−1,0)

Du the gradient of u, Du = (∂x1u, ∂x2u, . . . , ∂zu), ∂Xi
= ∂

∂Xi
, i = 1, . . . ,N − 1, ∂z = ∂

∂z

CL the cylinder CL = Ω × (0,L), L > 0 for some Ω ⊂R
N−1

Br(X) {Y ∈R
N : |Y − X| < r}

Br Br(0)

Γ,Γ (u) ∂{u > 0} – the free boundary of u

Ω+(u) Ω+(u) = {x: u(x) > 0}
Ω−(u) Ω−(u) = {x: u(x) � 0}◦
v+ max(v,0) = −min(−v,0) � 0
v− max(−v,0) = −min(v,0) � 0

4. Statement of problem

Given a bounded domain Ω ⊂ R
N−1. For fixed L > 0 we denote CL = Ω × (0,L). Let X ∈ CL ⊂ R

N , then the
notation X = (x, z) is used throughout the paper, where x ∈ Ω , z ∈ (0,L). Our starting point is to rewrite Eq. (1.1)
for u = TS − T . Notice that various but equivalent forms of Eq. (1.1) are considered in [13,21,22].

4.1. Consistent mathematical model

In this section we will slightly transform (1.1). Let T (X) be the temperature at a point X ∈ CL and TS be the
solidification temperature. Thus the liquid phase is characterized by T (X) > TS . Introduce the normalized temperature
T̃ (X) = T (X) − TS and put

u(X) = −T̃ (X) = TS − T (X).

As T solves the heat balance equation (1.1), it follows that the normalized T̃ solves the equation

�T̃ = div
[
vβ(T̃ )

] + f.

If we take u = −T̃ then from the previous equation we get

�u = div
[−vβ(−u)

] − f

= div
[
v
{
au + β0(u)

}] − f − �div v, (4.1)

where

β0(s) =
{

0 if s < 0,

∈ [0, �] if s = 0,

� if s > 0.

(4.2)

Redefining f = −f + �div v and β = as + β0 we infer that u solves the following equation

�u = div
[
vβ(u)

] + f. (4.3)
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For the one phase problem, i.e. when u � 0 in CL, Eq. (4.3) can be linked to the obstacle problem [9]. To see this
we suppose that u vanishes in the strip Ω × [0, δ] for some positive δ. We assume that f is a function of X and u. Let
us take β0(t) = �χ{t > 0} and v = eN , i.e. the unit direction of z-axis. Then, under these assertions, u is the solution
of �u(X) = ∂zβ(u(X)) + f (X,u(X)).

Next we introduce the Baiocchi transformation w(x, z) = ´ z

0 u(x, s) ds and compute

�w(X) =
zˆ

0

[
N−1∑
i=1

∂xixi
u(x, s)

]
ds + ∂zu(X)

=
zˆ

0

[
∂zβ

(
u(x, s)

) + f
(
x, s, u(x, s)

) − ∂2
z u(x, s)

]
ds + ∂zu(X)

= β
(
u(X)

) − β
(
u(x,0)

) +
zˆ

0

f
(
x, s, u(x.s)

)
ds + ∂zu(x,0).

By assumption u = 0 in Ω × [0, δ], thus u(x,0) = ∂zu(x,0) = 0, therefore from the definition of β(t) = at +
�χ{t > 0} we get

�w(X) = β
(
u(X)

) +
zˆ

0

f
(
x, s, u(x.s)

)
ds

= au(X) + �χ
{
u(X) > 0

} + f (X). (4.4)

Here f (X) = ´ z

0 f (x, s, u(x.s)) ds.
This observation accounts for a strong link between the one-phase continuous casting problem and the inhomoge-

neous obstacle problem �w(X) = awz(X) + �χ{w(X) > 0} + f (X). In particular for the Stefan problem with f = 0
and a = 0, (4.4) is the classical obstacle problem provided that χ{u > 0} = χ{w > 0}. In Section 8 we will utilize
(4.4) to prove the non-degeneracy of u for the one phase continuous casting problem.

4.2. Weak formulation

The main objective of this paper is to study the optimal regularity of weak solutions to the equation

�u(X) = div
[
v(X)β

(
u(X)

)] + f
(
X,u(X)

)
(4.5)

and the smoothness of the free boundary ∂{u > 0}. Here f = f (X,u) is a given function of variables X ∈ R
N and

u ∈R, measurable in X for any u ∈R, and v is a given vector field defined in CL.
In order to formulate this equation in weak sense we shall require that v ∈ L∞(CL,RN) and v is weakly divergence

free, i.e.ˆ

CL

v · Dϕ = 0, ∀ϕ ∈ H 1
0 (CL). (4.6)

Furthermore, we shall assume that

f (X,u) is continuous in u and there is f � ∈ L2(CL) such that sup
u∈R

∣∣f (X,u)
∣∣ � f �(X), a.e. X ∈ CL, (4.7)

see [21, p. 189].
As in Section 4.1 we interpret u(X) as the normalized temperature at a point X ∈ CL whereas f accounts for

sources and v(X) is the velocity of convection. Recall that (4.5) manifests the heat conservation of thermodynamical
system with enthalpy β = β(u) defined as follows

β(s) =
{

as if s < 0,

∈ [0, �] if s = 0, (4.8)

as + � if s > 0.
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Here a > 0 is a constant. An equivalent definition β(s) = as + β0(s), with β0 given by (4.2), will be used as well.
First we formulate the Dirichlet problem for (4.5) in CL. For ϕ ∈ C∞(CL) we multiply Eq. (4.5) by ϕ and integrate

by parts. This yields the identityˆ

∂CL

ϕDu · ν −
ˆ

CL

DuDϕ =
ˆ

∂CL

ϕβ(u)v · ν −
ˆ

CL

β(u)v · Dϕ +
ˆ

CL

f ϕ. (4.9)

Upon taking ϕ ∈ H 1
0 (CL) in the last identity, the boundary integrals vanish. Thereby we get the first integral identity,

used in the weak formulation of (4.5):ˆ

CL

β(u)v · Dϕ −
ˆ

CL

DuDϕ =
ˆ

CL

f ϕ, ∀ϕ ∈ H 1
0 (CL). (4.10)

Definition 1. Let v ∈ L∞(CL,RN) and (4.6)–(4.7) hold. Then u ∈ H 1(CL) is said to be a weak solution of (4.5) if
(4.10) is satisfied. Here β is the maximal monotone graph given by (4.8).

For a function g̃ ∈ C(∂CL) ∩ H 1(CL) it is convenient to introduce the functions

h0(x) = g̃(x,0), hL(x) = g̃(x,L), and g(X) = g̃(X) if X ∈ ∂Ω × (0,L). (4.11)

In other words h0(x) (resp. hL(x)) is the restriction of the trace of g̃ ∈ C(CL)∩H 1(CL) on Ω ×{0} (resp. on Ω ×{L}).
Now consider the weak solutions to Dirichlet’s problem⎧⎪⎨⎪⎩

�u = div[vβ(u)] + f in CL,

u(x,0) = h0(x), x ∈ Ω,

u(x,L) = hL(x), x ∈ Ω,

u = g(X) on Σ = ∂Ω × (0,L).

(DP)

Definition 2. Let v ∈ L∞(CL,RN) and (4.6) and (4.7) hold with f � ∈ L∞(CL). A pair (u, η) is said to be a weak
solution to (DP) if u ∈ H 1(CL), η ∈ β(u), u = g on Σ = ∂Ω × (0,L), u(x,0) = h0(x), u(x,L) = hL(x), x ∈ Ω and
for any ϕ ∈ H 1

0 (CL)ˆ

CL

ηv · Dϕ −
ˆ

CL

DuDϕ =
ˆ

CL

f ϕ. (4.12)

Remark 1. It is well known that if v and f satisfy the conditions in Definition 2 then a weak solution (u, η) of (DP)
exists (see [21, Theorem 4.14]). Moreover u ∈ Cα(CL) provided that g̃ ∈ Cα(∂CL) ∩ H 1(CL), see [22].

The theorem to follow is a simple comparison principle for the weak solutions of (DP) (see [21, Proposition 4.17]):

Proposition 1. Let v be Lipschitz continuous in CL. Assume that f (X,u) is monotone decreasing in u, continuous
in X and Lipschitz continuous in u. Let (u, η) be a weak solution to (DP) and (u∗, η∗) be a supersolution to (DP):
that is (u∗, η∗) satisfies u∗ ∈ H 1(CL), u∗ � g̃ on ∂CL, η∗ ∈ β(u∗)ˆ

CL

η∗v · Dϕ −
ˆ

CL

Du∗Dϕ �
ˆ

CL

f ϕ, ϕ ∈ H 1
0 (CL), ϕ � 0.

If |u| + |u∗|� ρ, in Sρ = Ω × (L − ρ,L), for some positive small ρ > 0, then

u� u∗, η � η∗.

Remark 2. If g̃ ∈ H 1(CL) and for some constant ρ > 0, g̃ � ρ (or g � −ρ) in Sρ ∩ ∂CL then there exists a unique
weak solution to (DP), see [22, Remarks 3–4]. The assumption |u| + |u∗| � ρ, in the strip Sρ = Ω × (L − ρ,L),
is called “sufficient condition for stability”. It is not known if the Comparison Principle holds without assuming it.
However for a suitable data g̃, large on Ω × L (or respectively small on Ω × {0}) this assumption holds, see [22,
p. 265].
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5. Main results

Definition 3. Let K ⊂R
N be a compact set.

• The class of log-Lipschitz continuous functions defined on K is denoted by LC0,1(K). Thus u ∈ LC0,1(K) if and
only if

sup
X1,X2∈K

|u(X1) − u(X2)|
|X1 − X2| log 1

|X1−X2|
< ∞.

• We say that u is locally log-Lipschitz continuous in the domain D ⊂ R
N if u ∈ LC0,1(K) for any K � D. The

class of locally log-Lipschitz continuous functions in D is denoted by LC0,1
loc (D).

• The class of Lipschitz (resp. locally Lipschitz) continuous functions is denoted by C0,1(D) (resp. (C
0,1
loc (D))).

Theorem A. Let v ∈ L∞(CL,RN), f (X,u) be bounded on CL × I for any finite interval I ⊂ R and (u, η) be a weak
solution to (DP) in the sense of Definition 2. Suppose that g̃ ∈ C0,1(CL) and h0(X) = −m− < 0 and hL(X) = m+ > 0
are constants, see (4.11). Then

1◦ u is log-Lipschitz continuous in CL, i.e.

sup
X1,X2∈CL

|u(X1) − u(X2)|
|X1 − X2| log 1

|X1−X2|
< ∞; (5.1)

2◦ If, in addition, v = eN , f = 0 and there exists a positive constant c0 > 0 such that

lim inf
z→z0

g(x, z) − g(x, z0)

z − z0
� c0 > 0, ∀x ∈ ∂Ω, (5.2)

then the free boundary is a graph of a log-Lipschitz continuous function over Ω . Here g is the restriction of
boundary data g̃ on the lateral boundary Σ = Ω × (0,L), see (4.11).

Remark 3. The LC0,1(CL) estimate for u, under the assumption g̃ ∈ C0,1 (as in Theorem A) and Σ = ∂Ω × (0,L)

being a Liapunov–Dini surface, cannot be improved. Indeed, it is known that if w is harmonic in a domain D with
C2 smooth boundary, w = ϕ on ∂D with ϕ ∈ C0,1(D), then near ∂D we have |Dw(x)| = O(log 1

dist(x,∂D)
), see [17].

Clearly, if one takes a = 0, f = 0 then u will be harmonic away from the free boundary, so the gradient Du may not
be bounded.

Next we would like to analyze the local regularity of the weak solution to (DP). The conditions imposed on v for
the one phase case are weaker than those for two phase problem, namely we assume that v is a gradient of a harmonic
function, whereas for nonnegative solutions u, v can be any Lipschitz vector field.

Theorem B. Let u be a bounded weak solution of (4.5) (see Definition 1) with f (X,u) being bounded on CL × I for
any finite interval I ⊂R.

1◦ If u � 0 in CL and v ∈ C0,1(CL,RN) then u ∈ C
0,1
loc (CL). Moreover, if v = en and f (X,u) � σ0 for some σ0 < �

2L

then u is locally non-degenerate.
2◦ Let u be a weak solution, v = Dξ and ξ is harmonic. Then any continuous weak solution of (4.5) is locally

Lipschitz continuous.
3◦ Under assumptions above the free boundary ∂{u > 0} is countably N − 1 rectifiable provided that u+ is non-

degenerate.

Remark 4. The last statement of Theorem B can be extended to ∂{u < 0} under the assumption that u− is non-
degenerate.
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It is worthwhile to point out that C0,1 is the best regularity for continuous weak solutions. This can be seen from
the free boundary condition (see (7.5)). Notice that the linearly scaled solutions

urj (X) = u(X0 + rjX)

rj
, X0 ∈ ∂{u > 0}, rj > 0, rj ↓ 0

are Lipschitz continuous by Theorem A, because D(rj
−1u(X0 + rjX)) = (Du)(X0 + rjX). Furthermore, employing

a customary compactness argument we can see that urj → u0, at least for a subsequence, locally uniformly and weakly
in H 1 so that �u0 = div[v(X0)β0(u0)], where β0 is given by (4.2). The function u0 is called a blow-up limit of u

at X0. This observation allows us to study the regularity of free boundary for the weak solutions by showing that, in
fact, u is also a viscosity solution, see Definition 5.

Theorem C. Let u be a weak solution of two phase continuous casting problem and suppose that f = 0.

1◦ Then u is a viscosity solution in the sense of Definition 5.
2◦ If the free boundary is Lipschitz then it is smooth.

Theorem C allows us to utilize the free boundary regularity theory of L. Caffarelli [7,8,12], developed for the
viscosity solutions. In particular the second part of Theorem C follows from Theorem 1 in [15].

6. Log-Lipschitz estimates

The proof of Theorem A is tailored from two lemmas below. The first one deals with the interior LC0,1(CL)

estimate.

Lemma 1. Let u be as in Theorem A, then for any compact set K � CL there exists a positive constant C =
C(N,a, �, supCL

|u|, supX∈CL,|τ |�supCL
|u| |f (X, τ)|,dist(K, ∂CL)) such that the following estimate holds

sup
X1,X2∈K

|u(X1) − u(X2)|
|X1 − X2| log 1

|X1−X2|
� C. (6.1)

Proof. To fix the ideas we assume that B = B1(X0) is an open ball and B � CL. By Green’s representation formula

u(X) = v(X) +
ˆ

B

�u(Y )G(X,Y )dY,

where G(X,Y ) is the Green function of B with pole X and v is the harmonic lifting of u in B , i.e. �v = 0 in B and
u = v on ∂B . Since �u = div[vη] + f then after partial integration Green’s representation transforms into

u(X) = v(X) −
ˆ

B

ηv · DY G(X,Y )dY +
ˆ

B

f
(
Y,u(Y )

)
G(X,Y )dY. (6.2)

By definition of weak solutions η ∈ β(u) hence |η| � C0, for |u| � M is bounded by Remark 1, and |β| � aM +
� := C0. In particular it follows that |v| � M and it is smooth in half ball B 1

2
whereas the log-Lipschitz estimate in

1
2B for the first integral follows from [20, Theorem 2.5.1]. As for the Green potential of f , it is enough to recall that
|u| �M , so by assumption f (X,u(X)) is bounded. Thus the second integral is C1 smooth function of Y ∈ 1

2B . �
Next we estimate u near the lateral boundary ∂Ω × (0,L) = Σ .

Lemma 2. Assume that X0 = (x0, z0) ∈ ∂Ω × (0,L) and R0 < min(z0,L − z0). Then there exists a positive con-
stant C = C(N,a, �, supCL

|u|, supX∈CL,|τ |�supCL
|u| |f (X, τ)|,R0,‖g‖C0,1) such that for any X0 ∈ ∂Ω × (0,L) the

following estimate holds∣∣u(X1) − u(X2)
∣∣� C|X1 − X2| log

1

|X1 − X2| , ∀X1,X2 ∈ BR0(X0) ∩ CL.
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Proof. We first flatten out a piece of the lateral boundary Σ = ∂Ω × (0,L) by a Liapunov–Dini map Y = T(X). Then
X = S(Y ),S = T−1 and in Y -coordinates T(Bρ(X0) ∩ Σ) ⊂ {Y1 = 0}. Then this change of variables preserves the
structure of the equation because for ũ = u(S(Y )), ϕ(X) ∈ C∞

0 (CL), ϕ̃(Y ) = ϕ(S(Y )) we have
ˆ

BR0 (X0)∩CL

DXi
u(X)DXi

ϕ(X)dX =
ˆ

T(BR0 (X0)∩CL)

DYmũ(Y )Sm
Xi

(X)DYk
ϕ̃(Y )Sk

Xi
(X)dY.

Notice that the matrix Amk(Y ) = Sm
Xi

(S(Y ))Sk
Xi

(S(Y )) is a uniformly elliptic with Dini-continuous entries.
As for the first integral on the left hand side of (4.10), it transforms intoˆ

D∩CL

ṽSm
Xn

(
S(Y )

)
β
(̃
u(Y )

)
DYmϕ̃(Y ),

where ṽ(Y ) = v(S(Y )). Therefore ũ satisfies the equation Lũ = div[̃v(DS)tβ(̃u)]+ f̃ with f̃ (Y ) = f (S(Y ),u(S(Y ))),
ũ = g1 ≡ g(S(Y )) on Y1 = 0 and

Lũ ≡ divADũ.

In particular ũ ∈ W 1,2(T(BR0(X0) ∩ CL)).
Put D = T(BR0(X0) ∩ CL). Without loss of generality we may assume that the upper half ball B+

1 = {Y, |Y | < 1,

y1 > 0} ⊂ D, 0 = T(X0). We want to use a reflection method and put v = ũ − g1. Clearly v satisfies the equation

Lv = div F + f̃ (6.3)

with F = [̃v(DS)tβ(̃u) −ADg1]. Notice that v = 0 on {y1 = 0} ∩ D.
Let v∗ be the odd reflection of v, that is

v∗ =
{

v(y1, y2, . . . , yN), y1 > 0,

−v(−y1, y2, . . . , yN), y1 < 0,

then v∗ solves the equation

Lv∗ = div F∗ + f ∗, in B1

where

f ∗(Y ) =
{

f̃ (y1, y2, . . . , yn), y1 > 0,

−f̃ (−y1, y2, . . . , yn), y1 < 0,
F∗ =

{
F(y1, y2, . . . , yN), y1 > 0,

−F(−y1, y2, . . . , yN), y1 < 0.

Now we take w to be the solution of Lw = 0 in B1 and v∗ − w = 0 on ∂B1. Then using Green’s representation
formula with Green function GA(Y0, Y ) of operator Lu = div(ADu) with pole Y0 (see [24, Theorem 1.1]) and after
integration by parts, we obtain

v∗(Y0) − w(Y0) =
ˆ

B1

[
f ∗(Y ) + div F∗]GA(Y0, Y ) dY

=
ˆ

B1

f ∗(Y )GA(Y0, Y ) dY −
ˆ

B1

F · DGA(Y0, Y ) dY

= J1(Y0) + J2(Y0)

where we set

J1(Y0) =
ˆ

B1

f ∗(Y )GA(Y0, Y ) dY,

J2(Y0) = −
ˆ

F · DGA(Y0, Y ) dY.
B1
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It follows from [24, Theorem 3.3] that J1(Y0) ∈ C1,γ (B 1
2
), for any γ ∈ (0,1), because f ∗ is bounded.

To deal with J2, we take small ρ < 1
2 and set J2,ρ(Y ′) = ´

B1\Bρ(Y ′) F · DGA(Y ′, Y ) dY . Notice that∣∣J2
(
Y ′) − J2,ρ

(
Y ′)∣∣� C sup |β|ρ,

again by [24, Theorem 3.3].
Differentiating J2,ρ(Y ′) we get

DJ2,ρ

(
Y ′) =

ˆ

∂Bρ(Y ′)

F(Y ) · DG
(
Y ′, Y

)
dY −

ˆ

B1\Bρ(Y ′)

F(Y )D2G
(
Y ′, Y

)
dY

and using the estimates of [24, Theorem 3.3] (by definitions the entries Aij are Dini continuous) we conclude∣∣DJ2,ρ

(
Y ′)∣∣ � C

[
1 + log

(
1 + 1

ρ

)]
,

with some tame constant C.
Now the above estimates and∣∣J2

(
Y ′) − J2

(
Y ′′)∣∣� ∣∣J2

(
Y ′) − J2,ρ

(
Y ′′)∣∣ + ∣∣J2

(
Y ′′) − J2,ρ

(
Y ′′)∣∣ + ∣∣J2,ρ

(
Y ′) − J2,ρ

(
Y ′′)∣∣,

with ρ = |Y ′ − Y ′′| yield∣∣v∗(Y ′) − v∗(Y ′′)∣∣� ∣∣w(
Y ′) − w

(
Y ′′)∣∣ + C

∣∣Y ′ − Y ′′∣∣[1 + log

(
1 + 1

|Y ′ − Y ′′|
)]

.

Finally we recall that the standard elliptic theory [24] yields that w is C1 regular in 1
4B . Hence for ρ � 1

4 we get
that v∗ has modulus of continuity σ̃ ∗(t) = t log 1

t
. Returning to X variable the result follows. �

Lemma 3. Let u be as in Theorem A. Then u ∈ LC0,1(Ω × (0, δ) ∪ Ω × (L − δ,L)).

Recall (4.11) and that h0(X) = −m− < 0 and hL(X) = m+ > 0. For small δ > 0, u solves the equation �u =
div[(au + �)v] + f in Ω × (L − δ,L). Then for v = m+ − u we have �v = div[(av + �)v] − f (X,m+ − v(X))

and v = 0 on Ω × {L}. Thus the odd reflection of v solves the same equation in Ω × (L − δ,L + δ) with a C0,1

continuous data on the lateral boundary. Thus we can apply Lemma 2. Analogously w = u + m− � 0 can be reflected
across Ω × {0}, hence from Lemma 1 and 2 we infer that u ∈ LC0,1(CL). �

Next we want to prove the second statement of Theorem A. The first step is to show that u is monotone in z variable.

Lemma 4. Let u be as in Theorem A 2◦. Let Xi = (xi, zi) ∈ CL, i = 1,2 such that z2 − z1 � C
c0

|x1 − x2| log 1
|x1−x2|

then

u(x1, z1) � u(x2, z2).

Here c0 is the constant from (5.2).

Proof. We use the domain shift argument discussed in [13]. Let us consider the cylinder

Ca,b = {
(x, z) ∈ CL: (x + a, z + b) ∈ CL, a ∈R

N−1, b ∈ (0,L)
}
.

In other words Ca,b = (CL + (−a,−b)) ∩ CL, where (CL − (a, b)) is the translation of CL by vector (−a,−b) ∈ R
N .

Let us compare u(x, z) and u(x + a, z + b) on the boundary of Ca,b . If X = (x, z) is on the top portion of ∂Ca,b

then (x + a, z + b) ∈ Ω × {L}, which yields

u(x, z) � m+ = u(x + a, z + b)

since by comparison principle maxCL
u = m+ and minCL

u = −m−.
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On the bottom of ∂Ca,b we have

−m− = u(x, z) � u(X)|Ω×{b}
thus u(x, z) � u(x + a, z + b) on the top and bottom of ∂Ca,b .

Next we compare u(x, z) and u(x + a, z + b) on the lateral boundary. If x ∈ ∂Ω

u(x + a, z + b) − u(x, z) = [
u(x + a, z + b) − u(x, z + b)

] + u(x, z + b) − u(x, z)

= [
u(x + a, z + b) − u(x, z + b)

] + g(x, z + b) − g(x, z)

� −σ
(|a|) + c0b.

Here σ(t) = Ct log 1
t
. If x + a ∈ ∂Ω then

u(x + a, z + b) − u(x, z) = [
u(x + a, z + b) − u(x + a, z)

] + u(x + a, z) − u(x, z)

= [
g(x + a, z + b) − g(x + a, z)

] + u(x + a, z) − u(x, z)

� c0b − σ
(|a|).

Thus choosing b � σ(|a|)
c0

the proof follows from Proposition 1. �
As a simple consequence from Lemma 4 we have the following

Corollary 1. Let u be as in Lemma 4, then ∂zu� 0.

The monotonicity in z variable allows us to define two semicontinuous functions

h+(x) = inf
{
z,u(x, z) > 0

}
, (6.4)

h−(x) = sup
{
z,u(x, z) < 0

}
. (6.5)

Clearly h± are the height functions of respectively ∂Ω+(u) and ∂Ω−(u) measured from hyperplane z = 0.
Now we shall prove the log-Lipschitz continuity of h±.

Lemma 5. Let h+ and h− be defined by (6.4) and (6.5), then∥∥h±∥∥
LC0,1(Ω)

� C < ∞. (6.6)

Moreover h+ = h−.

Proof. We shall prove the lemma for h+. Let ε > 0 and take

z2 = h+(x1) + ε + σ(|x1 − x2|)
c0

.

Then u(x2, z2)� u(x1, h
+(x1) + ε) > 0, implying that

h+(x2) < z2 = h+(x1) + ε + σ(|x1 − x2|)
c0

.

Sending ε to zero and swapping x1 with x2 the first result follows.
It remains to check that h+ = h−. Indeed if there exists a point x0 ∈ Ω such that h−(x0) < h+(x0) then, by (6.6)

there is r > 0 such that

h−(x) < z0 < h+(x), |x − x0| < r, x ∈ Ω (6.7)

where z0 = 1
2 (h+(x0) + h−(x0)).

Let w be the harmonic lifting of u in the cylinder Qr(z0) = {x ∈ Ω : |x − x0| < r}× (0, z0). From (6.7) we see that
w � 0 on ∂Qr(z0). Notice that on the bottom of Qr(x0), {x ∈ Ω : |x − x0| < r} × {0}, we have w = −m− < 0 hence
w cannot be identically zero. Hence by maximum principle w is strictly negative in Qr(z0).
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Next we claim that �w−∂zβ(w) � 0 in Qr(z0). Notice that on the lateral boundary {x ∈ Ω : |x −x0| = r}×(0, z0)

of Qr(x0) the inequality ∂zu � 0 holds by Corollary 1. This translates to w. Clearly ∂zw � 0 on the top and bottom
of ∂Qr(z0). Hence applying minimum principle to harmonic function ∂zw in Qr(z0) we conclude that ∂zw � 0 in
Qr(z0).

Therefore we can compute
ˆ

Qr(z0)

β(w)∂zϕ −
ˆ

Qr(z0)

DwDϕ =
ˆ

Qr(z0)

β(w)∂zϕ, ∀ϕ ∈ H 1
0

(
Qr(z0)

)
, ϕ � 0 (6.8)

where we used �w = 0 in Qr(z0). On the other hand w < 0 in Qr(z0). Thus β(w) = aw, see (4.8). Returning to (6.8)
we get

ˆ

Qr(z0)

β(w)∂zϕ −
ˆ

Qr(z0)

DwDϕ =
ˆ

Qr(z0)

aw∂zϕ

= −
ˆ

Qr(z0)

a∂zwϕ � 0, ∀ϕ ∈ H 1
0

(
Qr(z0)

)
, ϕ � 0

where the last line follows from ∂zw � 0 in Qr(z0).
Therefore w is a supersolution in Qr(z0) of the free boundary problem and hence we may now apply the compari-

son principle (see Proposition 1) to the functions w and u to infer that 0 > w � u in Qr(z0) which contradicts the first
inequality in (6.7). �
7. Free boundary condition

For fixed, small ε > 0 and ζ ∈ C∞
0 (CL), we use the equation for u+ to obtain

ˆ

{u>ε}

(
Du+ − vβ

(
u+))

Dζ =
ˆ

∂{u>ε}

(
Dν+u+ − v · ν+β

(
u+))

ζ. (7.1)

Now take a small δ > 0 and use the equation for u− satisfied in Ω−(u) to obtain
ˆ

{u<−δ}

(
Du− − vβ

(
u−))

Dζ =
ˆ

∂{u<−δ}

(
Dν−u− − v · ν−β

(
u−))

ζ. (7.2)

Substracing off the second integral from the first one, and after having sent ε ↓ 0, δ ↓ 0 we infer

lim
ε↓0

ˆ

∂{u>ε}

(
Dν+u+ − v · ν+β

(
u+))

ζ = lim
δ↓0

ˆ

∂{u<−δ}

(
Dν−u− − v · ν−β

(
u−))

ζ. (7.3)

From the definition of β we know that β(0−) = 0, β(0+) = � hence

lim
ε↓0

ˆ

∂{u>ε}

(
Dν+u+ − v · ν+�

)
ζ = lim

δ↓0

ˆ

∂{u<−δ}
Dν−u−ζ. (7.4)

Therefore the formal free boundary condition follows

Dν+u+ − v · ν+� = Dν−u−. (7.5)

Remark 5. As (7.5) suggests the best regularity of u is the Lipschitz continuity.
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8. Proof of Theorem B, for u � 0

8.1. Linear growth

In this section we deal with the one-phase continuous casting problem i.e. when u � 0 in CL and v = eN . Our first
goal here is to prove that for any compact K � CL

sup
X1,X2∈K

|u(X1) − u(X2)|
|X1 − X2| < ∞.

Thereby from Remark 5 we will obtain the best local regularity of u.

Remark 6. It is enough to show that if v is Lipschitz continuous and f (X,u) is bounded then u(X) � C|X − X0| in
K for some positive constant C and X0 ∈ ∂{u > 0} ∩ K .

Next theorem is quite general and can be applied to one-phase problems with convection v ∈ C0,1(CL).

Theorem 7. Let 0 � u� M be a bounded weak solution of (4.5). Then u is locally Lipschitz continuous provided that
v ∈ C0,1(CL,RN) and f (X,u) is bounded on CL × [0,M].

Proof. Take a compact set K � CL. There exists a tame constant C such that

sup
B2−k−1 (X)

u� max

(
C2−k,

1

2
sup

B2−k (X)

u

)
, ∀X ∈ K ∩ Γ. (8.1)

Clearly (8.1) implies the linear growth of u as indicated in Remark 6.
Suppose that (8.1) fails, then there exist kj ∈ N, kj ↑ ∞, Xj ∈ K ∩ Γj and weak solution uj to (4.5) with free

boundary Γj = ∂{uj > 0}, such that 0 � uj � M and

sup
B

2
−kj −1 (X)

uj � max

(
j2−kj ,

1

2
sup

B
2
−kj

(Xj )

uj

)
. (8.2)

Put

vj (X) = uj (Xj + 2−kj X)

Sj

with Sj = sup
B

2
−kj −1 (Xj )

u.

It follows from (8.2) that

vj (0) = 0, sup
B 1

2

vj �
1

2
, 0 � vj (X) � 2, X ∈ B1. (8.3)

Since the functions uj are bounded it follows from (8.2) that M > j2−kj implying that kj → ∞.
By scale invariance of Eq. (4.5) we get

�vj = 2−2kj

Sj

(�uj )
(
Xj + 2−kj X

)
= 2−kj

Sj

div
[(

aSjvj + �H(vj )
)
v
(
Xj + 2−kj X

)] + 2−2kj

Sj

f
(
Xj + 2−kj X

)
≡ div Fj + 2−2kj

Sj

f
(
Xj + 2−kj X

)
, (8.4)

where H is the Heaviside function and

Fj = 2−kj

S

[(
aSjvj + �H(vj )

)
v
(
Xj + 2−kj X

)]
.

j
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Since by assumption v ∈ C0,1(CL,RN) we get from (8.2) and (4.8), the decay estimate

|Fj | � 2−kj

Sj

β(2) sup |v| � M

j
β(2) sup |v| → 0. (8.5)

Similarly 2−2kj

Sj
|f (Xj + 2−kj X)| � 2−kj

Sj
sup |f | � 1

j
sup |f | where the last inequality follows from (8.2) and the defi-

nition of Sj .
Let η ∈ C∞

0 (B1) such that η ≡ 1 in B 3
4

and ϕ = vjη
2 ∈ H 1

0 (B1). From the weak formulation of the equation we
have ˆ

B1

|Dvj |2η2 = −
ˆ

B1

2ηvjDηDvj +
ˆ

B1

Fj

(
Dvjη

2 + 2ηvjDη
) −

ˆ

B1

fjvjη
2.

Employing Cauchy–Schwarz inequality and estimating the left hand side we get
´
B 3

4

|Dvj |2 � C
´
B1

[v2
j + |Fj |2 +

|fj |] with some dimensional constant C independent of j . Utilizing (8.3) we obtain from DeGiorgi’s theorem that
vj ’s are uniformly γ -Hölder continuous in B3/4 for some γ ∈ (0,1). Then using a customary compactness argument
and the decay estimate (8.5) for Fj we have, at least for a subsequence j (m), vj (m) → v0 uniformly in B 3

4
and weakly

in H 1(B 3
4
) and

ˆ
Dv0Dϕ ←

ˆ
Dvj(m)Dϕ =

ˆ
Fj (m) · Dϕ −

ˆ
fjϕ → 0, ∀ϕ ∈ C∞

0 (B 3
4
).

Thus v0 is a nonnegative continuous harmonic function in B 3
4

such that v0(0) = 0 and supB 1
2

v0 = 1
2 in view of

(8.3). However this contradicts the strong maximum principle and the proof follows. �
8.2. Non-degeneracy

Let w be the Baiocchi transformation of u given by

w(X) =
zˆ

0

u(x, s) ds.

Note that if ∂zu � 0 then Ω+(w) = Ω+(u) otherwise the inclusion

Ω+(u) ⊆ Ω+(w) (8.6)

always holds.

Proposition 2. Let w � 0 be a bounded solution of (4.4) in CL and f ≡ 0. Then for any compact set K � CL and any
X0 ∈ Ω+(w) ∩ K we have

sup
∂Br (X0)

w � r2 �/2 − Mr

2N

with M = ‖Du‖L∞(K). In particular for any X0 ∈ Ω+(u) ∩ K,Br(X0) ⊂ K we infer

sup
Br(X0)

u� r
�/2 − Mr

2N
. (8.7)

Proof. We use an argument from [9]. Notice that it is enough to consider the case X0 ∈ Ω+(u) since by continuity of
u it extends to X0 ∈ ∂{u > 0}. Let X0 ∈ Ω+(w). Put wr(X) = w(X0+rX)

r2 , then by (4.4) we have

�wr = (�w)(X0 + rX) = au(X0 + rX) + �χ
{
u(X0 + rX) > 0

}
.

If Proposition 2 fails then sup∂B1
wr <

�/2−Mr
2N

for some r > 0. Let q(X) = wr(X) − �/2−Mr
2N

|X − X0|2. Then
taking into account (8.6), in B1 ∩ Ω+(wr) we have
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�q = � + au(X0 + rX) − �/2 − Mr

2N
�|X − X0|2 � � − Mr − 2N

�/2 − Mr

2N
= �/2 > 0.

This in conjuncture with the boundary conditions gives⎧⎨⎩
�q(x) > 0 x ∈ B1,

q|∂B1∩Ω+(w) < 0,

q|B1∩∂Ω+(w) < 0.

(8.8)

Thus by maximum principle q < 0 in B1 ∩ Ω+(w) implying that w(X0) < 0 which contradicts X0 ∈ Ω+(w).
Recalling the definition of w(X) = ´ z

0 u(x, s) ds and (8.6) we conclude that

sup
∂Br (X0)

w � r sup
Br(X0)

u. �

Remark 8. If f (X,u) < �
2L

near the free boundary then Proposition 2 still holds. Indeed, take q(X) = wr(X) −
�/2−Mr

2N
|X − X0|2 and argue as above. The boundary conditions in (8.8) still hold. Notice that f (X) = ´ z

0 f (x, s,

u(x, s)) ds < z�
2L

. As for the Laplacian we recall (4.4) and compute �q = �
2 − f > �

2 (1 − z
L
) � 0 if r < r0 for a

sufficiently small r0. Then applying the strong maximum principle we arrive at the desired result.

8.3. Rectifiability of the free boundary

We now study the measure theoretic properties of the free boundary for continuous casting problem, i.e. when
v = eN . First we let w(X) = e− az

2 u(X) and consider the measure �w. Here a is the constant appearing in the defini-
tion of enthalpy β (4.8). Notice that

∂{w > 0} = ∂{u > 0}. (8.9)

Next by product rule we have

�w = �
[
e− az

2 u
] =

[
a2

4
u − a∂zu + �u

]
e− az

2 . (8.10)

Observe that

�u+ = a∂zu
+ + f, in Ω+(u). (8.11)

Combining (8.10) and (8.11) we obtain

�w± = a2

4
w± + f e− az

2 in Ω±(u). (8.12)

Lemma 6. Let u be the weak solution of (DP) and v = eN . Then

1◦ If f = 0 then μ = �w is a nonnegative Radon measure. If f �= 0 and C � ‖f ‖∞
2N

then u + C|X|2 is subharmonic
in each D � CL and dμ + C dX is a nonnegative Radon measure.

2◦ If f = 0, D � CL then there exist positive constants cD,CD such that

cDrN−1 �
ˆ

Br (X0)

dμ� CDrN−1, ∀Br(X0) ⊂ D, X0 ∈ ∂{u > 0}.

3◦ If f = 0, D � CL then HN−1(∂{u > 0} ∩ D) < ∞ and hence the free boundary is a set of locally finite perimeter
in CL. Moreover

HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

Proof. The first assertion follows from (8.11), see also the proof of Lemma 9. Notice that w is Lipschitz contin-
uous in D since so is u. By divergence theorem

´
�w = ´

Du · ν � CDrN−1 which proves the second

Br (X0) ∂Br (X0)
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inequality in 2◦. The proof of the first one is by contradiction. Suppose that there are Xk ∈ ∂{u > 0}∩D and 0 < rk ↓ 0
such that

´
Brk

(Xk)
dμ� 1

k
rN−1
k . Put wk(X) = w(Xk+rkX)

rk
and recall that by Theorem A and Proposition 2 wk’s are Lip-

schitz continuous and non-degenerate in the unit ball B1. Moreover

0 � 1

rN−1
k

ˆ

Brk
(Xk)

dμ =
ˆ

B1

dμk �
1

k
, μk = �wk.

Using a customary compactness argument we can extract a subsequence j = j (k) such that wj(k) converge uni-
formly in C0,1(B1) and weakly in H 1(B1) to a non-zero (by non-degeneracy of wk’s), harmonic function w0 � 0
defined in B1 since μk ⇀ 0 as measures. By uniform convergence w0(0) = 0 and this contradicts the strong maxi-
mum principle for w0 is non-zero.

It remains to prove 3◦. Fix a δ > 0. Let Bri (Xi) be a ball a covering of E ⊂ D ∩ ∂{u > 0} such that ri � δ. Let
Yi ∈ E ∩ Bri (Xi) and for each i consider the Besicovitch type covering B2ri (Yi) of E. Note that⋃

i

Bri (Xi) ⊂
⋃
i

B2ri (Yi).

From Besicovitch’s covering lemma we can extract a subcovering F = ⋃m(N)
k=1 Gk of balls Bi = B2ri (Yi) such that∑

i χBi
� C for some dimensional constant C and

E ⊂
m(N)⋃
k=1

⋃
Bi∈Gk

Bi,

where the balls Bi in each Gk are disjoint and Gk are countable. Hence

cD

∑
Bi∈F

rN−1
i �

∑
Bi∈F

ˆ

Bi

dμ

=
m(N)∑
k=1

∑
Bi∈Gk

ˆ

Bi

dμ

� m(N)

ˆ

B8δ(E)

dμ. (8.13)

Thus for the δ-premeasure we get

HN−1
δ (E)� m(N)

cD

ˆ

B8δ(E)

dμ < ∞

and letting δ → 0 we arrive at the desired result.
Let K = (∂{u > 0} \ ∂red{u > 0}) ∩ D. By [14, Theorem 4.5.6(3)], there exists K0 ⊂ K such that HN−1(K) =

HN−1(K0) and for each X0 ∈ K0

μ
(
Br(X0)

) = o
(
rN−1).

Take 0 < rk → 0 and consider the sequence uk(X) = u(X0+rkX)
rk

. Clearly uk’s are non-degenerate and Lipschitz. As
in the proof of part 2◦, by a customary compactness argument we can extract a subsequence j = j (k) such that uj(k)

converges uniformly in C0,1(B1) and weakly in H 1(B1) to a non-zero, harmonic function u0 � 0, u0(0) = 0. This
contradicts the strong maximum principle. Therefore K0 = ∅ and HN−1(K) = 0. �
Corollary 2. The free boundary ∂{u > 0} is countably N − 1 rectifiable, i.e. for any D � CL

∂{u > 0} ∩ D ⊂ M0

⋃( ∞⋃
j=1

Mj

)

such that HN−1(M0) = 0 and Mj, j � 1 is an N − 1 dimensional embedded C1 submanifold of RN .
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Proof. By Lemma 6, 3◦ the free boundary ∂{u > 0} is a set of locally finite perimeter and HN−1(∂{u > 0} \
∂red{u > 0}) = 0. The rest follows from Lemma 11.1 and Theorem 14.3 of [23]. �
9. Local Lipschitz estimate for two phase problem

In this section we prove the optimal local regularity of the solution for two phase problem.

9.1. Technicalities

We begin with the following useful observation. If w = e− aξ(X)
2 u(X) then

�w = e− aξ
2

{
�u − aDu · Dξ + u

[
a2|Dξ |2

4
− a�ξ

2

]}
= e− aξ

2

{
div

(
β(u)Dξ

) + f − aDu · Dξ + u

[
a2|Dξ |2

4
− a�ξ

2

]}
. (9.1)

Thus, taking into account that �ξ = 0, it follows that the positive and negative parts of w = w+ − w− satisfy the
equations

�w+ = e− aξ
2

{(
au+ + �

)
�ξ + f + u+

[
a2|Dξ |2

4
− a�ξ

2

]}
= f e− aξ

2 + w+ a2|Dξ |2
4

,

�w− = e− aξ
2

{
au−�ξ − f + u−

[
a2|Dξ |2

4
− a�ξ

2

]}
= −f e− aξ

2 + w− a2|Dξ |2
4

. (9.2)

Therefore w+,w− are continuous, nonnegative functions in CL and

�w± � −
[

sup
CL

|f | + sup
CL

|u|a
2‖ξ‖2

C1

4

]
e− a‖ξ‖∞

2 ≡ −γ0, in {u > 0} ∪ {u < 0}. (9.3)

This observation together with Lemma 8 and 9 will allow us to employ the monotonicity formula of [10] and show
that u is locally Lipschitz continuous in CL.

Lemma 7. For any compact set K � CL there exists a positive tame constant C = C(K) such that for any
Bρ(X0) ⊂ K , X0 ∈ Γ (u) ∩ K the following estimate holds∣∣∣∣ ˆ

Bρ(X0)

�w

∣∣∣∣� CρN−1. (9.4)

Proof. We employ the identity (9.1) and use Green’s formula to obtain
ˆ

Bρ(X0)

�w =
ˆ

Bρ(X0)

e− aξ
2

{
div

(
β(u)Dξ

) + f − aDu · Dξ + u

[
a2|Dξ |2

4
− a�ξ

2

]}

=
ˆ

Bρ(X0)

e− aξ
2

{
f + u

a2|Dξ |2
4

}
+

ˆ

∂Bρ(X0)

(Dξ · ν)e− aξ
2
{
β(u) − au

}
−

ˆ

Bρ(X0)

{
β(u) − au

}
Dξ · De− aξ

2 (9.5)

which yields∣∣∣∣ ˆ

Bρ(X0)

�w

∣∣∣∣� CρN−1. �
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Lemma 8. For any compact set K � CL there exists a positive number ρ0 depending only on dist(K, ∂CL),N and a
positive tame constant C = C(K) such that for any Bρ(X0) ⊂ K,X0 ∈ Γ (u) ∩ K the following estimate holds∣∣∣∣  

∂Bρ(X0)

w

∣∣∣∣� Cρ, ρ < ρ0. (9.6)

Proof. From Green’s representation formula

w(X0) =
ˆ

∂Bρ(X0)

w(Y )P (Y,X0) dHN−1 −
ˆ

Bρ(X0)

G(X,X0)�w(X)dX, (9.7)

where P(Y,X0) is the kernel of Poisson and G(X,X0) is Green’s function of Bρ(X0) with pole at X0. At X0 ∈ Γ (u),
w(X0) = 0 implying that

 

∂Bρ(X0)

w(Y )dHN−1 =
ˆ

Bρ(X0)

G(X,X0)�w(X)dX

=
ρ̂

0

G(s)
d

ds

( sˆ

0

tN−1
ˆ

∂B1

�w(tξ) dHN−1(ξ) dt

)
ds

= G(s)

ˆ

Bs(X0)

�w

∣∣∣∣ρ
0

−
ρ̂

0

G′(s)
ˆ

Bs(X0)

�w. (9.8)

Now the result follows from (9.5) and the estimate G(s) � Cs2−N . �
Next crucial step in our approach is to employ Alt–Caffarelli–Friedman type monotonicity theorem, see [11, Lem-

mas 2.2 and 2.3].

Theorem 9. Let w+,w− be two continuous, nonnegative subharmonic functions in B1(X0), w−w+ = 0,w+(X0) =
w−(X0) = 0. Then

Φ(R,X0,w1,w2) = 1

R4

ˆ

BR(X0)

|∇w1(X)|2
|X − X0|N−2

dX

ˆ

BR(X0)

|∇w2(X)|2
|X − X0|N−2

dX

is monotone increasing function of R < 1.
Moreover if Φ(R) = γ > 0,∀R ∈ (0,1) then suppw+ ∩ ∂BR(X0) and suppw− ∩ ∂BR(X0) are half spheres.

We will also need the “almost monotonicity” result from [10, Theorem 1.3 and Remark 1.5].

Theorem 10. Let w+,w− be nonnegative, continuous functions on B2(X0). Suppose that �w± > −1 in the sense of
distributions and w+(X0) = w−(X0) = 0, w+(X)w−(X) = 0 for all X ∈ B1. Then there is a dimensional constant C

such that

Φ(R) � C

(
1 +

ˆ

B2(X0)

(
w+)2 +

ˆ

B2(X0)

(
w−)2

)
, R < 1.

Lemma 9. Let w(X) = u(X)e− aξ(X)
2 and γ0 be defined by (9.3). Then for C >

γ0
2N

, w±(X) + C|X|2 are subharmonic
in CL.

Moreover w+ and w− satisfy the assumptions of Theorem 10.
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Proof. As it is pointed out in [18, Chapter 1.5, p. 54] the subharmonicity has local nature, thus it is enough to show
that for each X ∈ CL there exists r(X) > 0 such that

v(X)�
 

Br (X)

v, r < r(X),

where v = w+ + C|X|2. Since in Ω+(u), �v � 0 by (9.2), and we may take r(X) = dist(X,Γ ). If X ∈ {u � 0} then
we use the subharmonicity of C|X|2 to get

v(X) = C|X|2 �
 

Br (X)

C|Y |2 dY �
 

Br (X)

(
w+(Y ) + C|Y |2)dY =

 

Br (X)

v(Y )dY.

Similarly we can prove that v = w− + C|X|2 is subharmonic. Hence we conclude that �w+ � −C (�w− � −C)

in CL in the sense of distributions. �
Remark 11. In view of Lemma 9 and Hölder continuity of u, see Remark 1, the pair w+,w− satisfies the requirements
of Theorem 10

9.2. Proof of Theorem B

We will show that w is Lipschitz continuous. This is clearly enough to conclude that u ∈ C0,1(CL) since Dw =
De− aξ(X)

2 w + e− aξ(X)
2 Du. For X ∈ CL let X0 ∈ Γ = ∂{u > 0} be the closest point to X and let ρ = |X − X0| =

dist(X,Γ ). To fix the ideas we assume that B1(X0) ⊂ CL.
Now suppose that w(X)� Mρ > 0 for some large M > 0. We have w(X)� Mρ = M

ρ
ρ2 � Mρ2 and |�w+| � C0

for some tame constant C0 > 0, see (9.2). Then it follows from [10, Lemma 4.6] that there is a tame constant C > 0
such that

max
B ρ

2
(X)

w � C min
B ρ

2
(X)

w.

Thus we obtain the inequality

inf
B ρ

2
(X)

w+ � Mρ

C
� Mρ

2

provided that M is large enough and ρ is small. Therefore 

∂Bρ(X0)

w+ � c1

 

Sρ

w+ � c1
Mρ

2
,

where Sρ = ∂Bρ(X0) ∩ Bρ
2
(X) and c1 depends only on the dimension N . By Lemma 8

 

∂Bρ(X)

w− �
 

∂Bρ(X)

w+ − Cρ �
(

c1M

2
− C

)
ρ >

Mc1

4
ρ

if M is sufficiently large.
Let Y ∈ −−−−→

XX0 ∩ Bρ
2
(X0). We use polar coordinates (r,ω) about Y . Let E be the set of ω ∈ ∂B1(Y ) such that if

(r,ω) ∈ ∂Bρ(X0) then w(r,ω) < 0. Applying the estimate (5.16) from [4, p. 443] we get

Mc1

4
ρ � 1

ρ

 

∂Bρ(X0)

w− � |E| 1
2

1

ρ

[ ˆ

Bρ(X0)

|Dw−|2
|Z − X0|n−2

dZ

] 1
2

,

and integrating ∂rw
+(r,ω) on the set (r,ω) ∈ Bρ(X0) \ Bρ (Y ),ω ∈ E we get (see inequality (5.17) in [4, p. 443])
4
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c1
M

2
|E|ρn �

¨

(r,ω)∈Bρ(X0)\B ρ
4
(Y ),ω∈E

∂rw
+(r,ω) � |E| 1

2 ρn−1
[ ˆ

Bρ(X0)

|Dw+|2
|Z − X0|n−2

dZ

] 1
2

.

Thus by Theorem 10 and Remark 11 it follows that

M2 � 8

c2
1

[
Φ(ρ)

] 1
2 � 8

c2
1

C

(
1 +

ˆ

B1(X0)

(
w+)2 +

ˆ

B1(X0)

(
w−)2

) 1
2

with some tame constant c1 > 0 and the proof follows. �
Lemma 10. Let u be a weak solution of (DP). Put um(x) = u(X0+rmX)

rm
, where rm ↓ 0, rm > 0 and X0 ∈ ∂{u > 0}.

um is called blow-up sequence at X0 ∈ ∂{u > 0}. There exists a subsequence rmj
↓ 0 and a limit u0 ∈ W

1,∞
loc (Rn),

called a blow-up limit of u at x0 ∈ ∂{u > 0}, such that for each compact set K ⊂R
N

Dumj
⇀ Du0 weakly-star in K, (9.9)

Dumj
−→ Du0 a.e. in K, (9.10)

umj
−→ u0 strongly in H 1

loc

(
R

N
)

and Cα
loc

(
R

N
)
, ∀α ∈ (0,1) as mj −→ ∞, (9.11)

∂{umj
> 0} −→ ∂{u0 > 0} in Hausdorff distance in K, (9.12)

χ{umj
>0} −→ χ{u0>0} in L1(K). (9.13)

Furthermore the limit u0 solves the equation

�u0 = div
(
v(X0)β0(u0)

)
.

Here β0(t) = � is the Heaviside function given by (4.2).

Proof. The proof is quite standard and we refer to Section 4.7 of [2] and pages 19–20 of [3]. �
10. Non-degeneracy of u and rectifiability of ∂{u > 0}

The goal of this section is to discuss the measure theoretic properties of free boundary for two-phase continuous
casting problem. As we have seen, the non-degeneracy of u+ is crucial in the proof of countably (N − 1)-rectifiability
of ∂{u > 0}. For the one phase case this follows from the corresponding result for obstacle problem and Baiocchi
transformation, see Proposition 2. However the Baiocchi transformation does not work for two phase case since (8.6)
fails.

10.1. Non-degeneracy of u+

Definition 4. Let u be a solution to (DP). Then u+ is said to be non-degenerate at X0 ∈ ∂{u > 0} if there exists a
constant c0 > 0 such that

1

rN−1

ˆ

∂Br (X0)

u+ � c0r

for small r > 0. If D � CL then u+ is said to be non-degenerate on D if u+ is non-degenerate at each point X ∈ D

with the same constant c0 > 0.

By means of (4.4) we were able to link the one-phase continuous casting problem to the obstacle problem for w

and retrieve the non-degeneracy from the corresponding result for w.
Unfortunately this technique does not apply to the two-phase problem. Although the non-degeneracy property

of u+ is not vital for the remaining 2 sections, however for the completeness we would like to indicate how the
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measure theoretic properties of the free boundary follow, similar to Lemma 6, for the two-phase problem once u+ is
non-degenerate. There are various conditions, imposed on the boundary data, guaranteeing that u+ is non-degenerate
(see [19] and references therein). Below we give one in terms of the Lebesgue density of free boundary, which
states that if at X0 ∈ ∂{u > 0} the free boundary is not tangent to eN , in some measure theoretic sense, then u+ is
non-degenerate.

Lemma 11. Let u be a weak solution to (DP), v = eN and f = 0. Let

A (u) = {
X ∈ Ω+(u), (X − X0) · eN > 0

}
, B(u) = {

X ∈ Ω+(u), (X − X0) · eN < 0
}
,

B̃(u) = {
X = (x, z) ∈ CL, (x,−z) ∈ B(u)

}
.

If lim infρ↓0
|(B̃\A )∩Bρ(X0)|

|Bρ | > 0 then u+ is non-degenerate at X0.

Proof. For ρ > 0,Bρ(X0) ⊂ CL we set uρ(X) = u(X0+ρX)
ρ

. Then �u+
ρ (X) = ρ(�u+)(X0 + ρX) = ρaDzu

+
ρ → 0 as

ρ → 0, because u is Lipschitz continuous and in view of Lemma 10.
Moreover �uρ = div(vβρ(uρ)) in B1, where

βρ(s) =
{

asρ if s < 0,

∈ [0, �] if s = 0,

asρ + � if s > 0,

(10.1)

and βρ → β0 ∈ �H(s), where H is the Heaviside function given by (4.2).
Suppose that there exists ρk ↓ 0 such that

1

ρk

 

∂Bρk
(X0)

u+ =
ˆ

∂B1

u+
ρk

→ 0.

Without loss of generality we may assume that ρk is a subsequence for which uρk
converges to u0 as stated in

Lemma 10. It follows from Green’s representationˆ

∂B1

uρk
=
ˆ

B1

div
[
βρk

(uρk
)v

]
G(X,0)

= − 1

NωN

ˆ

B1

βρk
(uρk

)
z

|X|n

= 1

NωN

ˆ

B̃(uρk
)

�z

|X|n − 1

NωN

ˆ

A (uρk
)

�z

|X|n + o(ρk) −→ lim
k→∞

ˆ

B̃(uρk
)\A (uρk

)

�z

|X|n ≡ c0 > 0.

Here ωN = |B1|. On the other hand limk→0
´
∂B1

uρk
= −´

∂B1
u−

0 � 0 implying that c0 � 0 which is a contradiction.
This completes the proof. �
10.2. Measure theoretic properties of free boundary

Let w = e− aξ
2 u. Since by Theorem A and Lemma 9 w+ and w− are continuous and �w± � −C, then dμ+ = �w+

and dμ− = �w− are Radon measures supported on Ω+(u) and Ω−(u), respectively. Lemma to follow summarizes
some properties of ∂{u > 0} under assumption that u+ is non-degenerate.

Lemma 12. Let u be an weak solution of (4.5). Then if

1◦ For any D � CL, there exists a positive tame constant C depending on data such that for any BR(X0) ⊂ D,X0 ∈
∂{u > 0}

−CRN �
ˆ

dμ± � CRN−1.
BR(X0)
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2◦ If in addition u+ is non degenerate in D then there exist tame constants cD,CD such that

cDRN−1 �
ˆ

BR(X0)

dμ+ � CDRN−1.

3◦ Let u+ be non-degenerate. Then for any D � CL we have

HN−1(∂{u > 0} ∩ D
)
< ∞.

Furthermore ∂{u > 0} is a set of locally finite perimeter and

HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

In particular ∂{u > 0} is countably N − 1 rectifiable.

The proofs are the same as that of Lemma 6 and Corollary 2.

11. Viscosity solutions

Viscosity solution is yet another notion of generalized solution for the free boundary problems. We begin with the
definition of viscosity subsolutions [7,8,12] and [15]. Notice that the free boundary condition (7.5) can be rewritten as

∂eu
+ − ∂−eu

− = �
〈
v(X), e

〉
.

In what follows e denotes the interior normal.

Remark 12. It is convenient to write the free boundary condition by means of the relation

S = G(T, e,X), (11.1)

where G(T, e,X) = T+�〈v(X), e〉. Note that G(S,T, e,X) = S−G(T, e,X) = S−T−�〈v(X), e〉 is increasing in S,
decreasing in T and continuous in e and X and hence is an elliptic free boundary relation (see [12, p. 6]).

Now we give the definition of viscosity solutions.

Definition 5. Let u be a continuous function in D ⊂ CL. Then u is said to be a viscosity solution of the free boundary
problem (DP), if one of the following is true

1◦ u solves the equation �u = a∂zu in Ω+(u) ∪ Ω−(u), a > 0.
2◦ Along Γ = ∂{u > 0}, u satisfies the free boundary condition in the following sense

2◦a If X0 ∈ Γ = ∂{u > 0} is a regular point from the right, with touching ball B ⊂ Ω+(u),
in B

u+ � S〈X − X0, ν〉+ + o
(|X − X0|

)
, S > 0,

in �B
u− � T〈X − X0, ν〉− + o

(|X − X0|
)
, T� 0,

with equality in every non-tangential domain in both cases, then

G(S,T, e,X) � 0.

2◦b If X0 ∈ Γ = ∂{u > 0} is a regular point from the left, with touching ball B ⊂ Ω−(u),
in B

u− � T〈X − X0, ν〉+ + o
(|X − X0|

)
, b > 0,

in �B
u+ � S〈X − X0, ν〉− + o

(|X − X0|
)
, S� 0,

with equality in every non-tangential domain in both cases, then

G(S,T, e,X) � 0.
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The regularity theory of the free boundary for viscosity solutions with a = 0 (i.e. when �u = 0 in Ω+(u)∪Ω−(u))
can be found in [7,8] and [12]. Subsequently, these results have been extended to more general class of elliptic
operators (see [15] and references therein). In [15] it is shown that the Lipschitz free boundaries are smooth. In order
to apply this result to our problem we need to prove that continuous weak solutions to (DP) are also viscosity solutions.
To do so we will need an asymptotic development estimate for the solutions of �u = a∂zu.

Definition 6. For X0 ∈ ∂D, we say that X0 is a regular point from the right (left) if there exists a ball B ⊂ D (B ⊂ �D)
and X0 ∈ B ∩ ∂D.

Lemma 13. Let u > 0 be a continuous solution of �u = a∂zu in a domain Ω with touching ball B at X0 ∈ ∂Ω .
Assume that u vanishes on B1(X0) ∩ ∂Ω . Then the following is true.

1◦a If X0 is regular from the right, with touching ball B , either near X0, in B , u grows more than any linear function
or it has the asymptotic development

u(x) � S〈X − X0, e〉 + o
(|X − X0|

)
(11.2)

with S > 0, where e is the unit normal to ∂B at X0, inward to Ω .
1◦b Moreover, if u is Lipschitz continuous in B1(X0) then the equality holds in every non-tangential region.

2◦a If X0 is regular from the left, near X0, then

u(x) � T〈X − X0, e〉+ + o
(|X − X0|

)
(11.3)

with T� 0.
2◦b Moreover, equality holds in every non-tangential region.

For the proof see Appendix A.
The proof of part 2◦ of Theorem C follows from part 1◦ and Theorem 1 in [15]. Thus it is enough to prove the

following theorem.

Theorem 13. If u is a continuous weak solution of (4.5) with v = eN,f = 0 then u is also a viscosity solution in the
sense of Definition 5.

Proof. We need to verify the free boundary condition at the points regular either from the right or from the left. Let
X0 be a free boundary point and B ⊂ Ω+(u) a touching ball at X0. By Lemma 13, S > 0.

First we suppose that u− is non-degenerate, then the blow-up sequence of u at X0, uk(x) = u(X0+rkX)
rk

, for any
sequence rk ↓ 0, has a subsequence j = j (k), that converges to a function u0. Moreover, �u0 = div[v(X0)β0(u0)],
by Lemma 10. In particular it follows that the blow-up limit u0 is harmonic in {u0 > 0} ∪ {u0 < 0}.

Since B ⊂ Ω+(u), it follows {X ∈ R
N, 〈e,X〉� 0} ⊂ Ω+(u0). On the other hand X0 is regular from the right and

S > 0, thus it follows that u+, u− are non-degenerate. Then, by (9.2) with ξ(X) = z, we infer that w± = u±e− az
2 are

subharmonic functions. Furthermore in view of Lemma 10 wk(X) = e− a(z0+rkz)

2 uk(X) converges to w0(X) = e− az0
2 u0.

Thus by Theorem in [11] and Remark 11 the following limit exists

lim
r→0

Φ
(
X0, rk,w

+,w−) = γ > 0.

Since u± (and hence w±) are non-degenerate we get γ > 0.
Because of the scale invariance of Φ we have

Φ
(
srk,X0,w

+,w−) = Φ
(
s,0,w+

k ,w−
k

)
.

Letting rk → 0 we infer that Φ(s,0,w+
0 ,w−

0 ) = γ , for any s > 0. Thus by Theorem 9, supp(w±) ∩ Br are spherical
caps. Since {X ∈ R

N, 〈e,X〉 � 0} ⊂ Ω+(u0) it follows that the spherical caps are fixed half spheres modulo scaling
and that the free boundary of w0 is the hyperplane Π = {X ∈ R

N, 〈e,X〉 = 0}. Clearly the free boundary of u0 is the

same hyperplane Π , because w0 = u0e
− az0

2 . Finally recalling that u0 solves the equation �u0 = div[v(X0)β0(u0)]
we conclude that the free boundary condition (7.5) is satisfied in the classical sense.
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Now suppose that u− is degenerate. Let u0 � 0 be a blow-up at X0. Since by Lemma 13 the equality u+ =
S〈X − X0, e〉+ + o(|X − X0|) holds in any non-tangential region, then in B√

2
2

(e), we have u0 = S〈X,e〉 and u0 is

harmonic in {u0 > 0}. Let U(X) = u0(X) − S〈X,e〉 then U = 0 in B√
2

2
(e) and U is harmonic in the half space {X ∈

R
N, 〈X,e〉� 0}. This implies that U ≡ 0 in {X ∈R

N, 〈X,e〉 � 0} and hence u0 = S〈X,e〉 in {X ∈R
N, 〈X,e〉� 0}.

If ∂{u0 > 0} = Π then we are done. Otherwise let Y0 ∈ Π = {X ∈ RN, 〈X,e〉 = 0} and Y0 �= 0. Choose r > 0 so
that Br(Y0) ∩ ∂{u0 > 0} ⊂ Π . Then writing the equation �u0 = div[eNβ0(u0)] in weak form we getˆ

Br (Y0)

Du0 · Dϕ =
ˆ

Br (Y0)

β0(u0)∂zϕ

=
ˆ

Br (Y0)∩{X∈RN ,〈X,e〉>0}
�∂zϕ +

ˆ

Br(Y0)∩{X∈RN ,〈X,e〉<0}
�∂zϕ

=
ˆ

Br (Y0)∩Π

�ϕ〈e, eN 〉 −
ˆ

Br(Y0)∩Π

�ϕ〈e, eN 〉

= 0, (11.4)

for all ϕ ∈ C∞
0 (Br(Y0)). Therefore u0 is harmonic in Br(Y0) and the strong maximum principle gives u0 = 0 in

Br(Y0). We see that ∂{u0 > 0} must be the hyperplane Π and hence the free boundary condition (7.5) for u0 holds in
the classical sense. In other words the blow-up limit at X0 is unique and it is S〈Y, e〉+ −T〈Y, e〉− with S,T satisfying
the free boundary condition (11.1). In fact we get that ∂{u > 0} is flat at X0.

Returning to u, we conclude that u(X) = S〈(X − X0), e〉+ −T〈(X − X0), e〉− + o(|X − X0|) near X0. �
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Appendix A

Here we prove Lemma 13 which is a mild generalization of Lemma 11.17 in [12]. We decided to provide it for the
sake of completeness.

First we establish the inequality (11.2). Without loss of generality we assume that X0 = 0 and e = eN . Let 0 ∈
∂{u > 0} and BR(Y0) ⊂ Ω be a touching ball at 0. For C,τ > 0 we define

h(X) = C
[
exp

(−τ |X|2) − exp
(−τR2)] = C exp

(−τR2)[exp
(
τ
(
R2 − |X|2)) − 1

]
.

Suppose that

τ > max

(
4N

R2
,

4a

R

)
, C <

u(Re)

c0[exp(− τR2

4 ) − exp(−τR2)]
(A.1)

where c0 > 0 is the constant from Harnack’s inequality (A.2). Then h(X) can be used as a barrier to control u from
above in BR(Y0) \ BR

2
(Y0). Indeed, we have

�h − a∂zh = 2τC exp
(−τ |X|2)[2τ |X|2 − N + az

]
� 2τC exp

(−τ |X|2)[τR2

2
− N − aR

]
= 2τC exp

(−τ |X|2)[τR2

4
− N + R

(
τR

4
− a

)]
> 0

provided that the first inequality in (A.1) holds.
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On the other hand h(X) = 0 � u(X) if X ∈ ∂BR(Y0). From Harnack’s inequality we have that

u(Re) � max
B R

2
(Y0)

u � c0 min
B R

2
(Y0)

u. (A.2)

In particular u(Re) � c0u(X) for any X ∈ BR
2
(Y0). Thus for X ∈ ∂BR

2
we have h(X) = C exp(− τR2

4 )−exp(−τR2) <

u(x) if the second inequality in (A.1) is satisfied. Therefore we infer from comparison principle that u(X) � h(X) in
BR(Y0) \ BR

2
(Y0). Notice that near the origin

h(X) = C(R)z + o
(|X|) with C(R) > 0. (A.3)

Let k0 be the smallest positive integer such that 1
2k0

� R
2 and introduce

α0 = sup
{
m: u(X) � mh(X) in B2−k0 ∩ BR(Y0)

}
.

For k = 1,2,3, . . . we let

αk = sup
{
m: u(X)� mh(X) in B2−(k0+k) ∩ BR(Y0)

}
.

Note that {αk} increases and put α = supαk . From u(X) � h(X),X ∈ BR(Y0) \ BR
2
(Y0) it follows that α0 > 0 hence

α > 0. If supαk = ∞ then u grows faster than any linear function. Otherwise taking α̃ = αC(R) and recalling (A.3)
we get (11.2) with S= α̃.

Now we prove part 1◦b of Lemma 13. Clearly if u is Lipschitz continuous then α < ∞. To show the equality in
non-tangential domains we argue towards a contradiction. Suppose that there is a sequence Xk ∈ BR(Y0) and δ0 > 0
such that

u
(
Xk

)
> α̃zk + δ0

∣∣Xk
∣∣, ∣∣Xk

∣∣ = rk ∼ dist
(
Xk, ∂BR(Y0)

)
. (A.4)

From Harnack’s inequality we have that u(X) − α̃z � c0δ0 on some fixed portion of ∂Brk ⊂ BR(Y0) since Xk

approaches ∂BR(Y0) in non-tangential fashion.
Consider the scaled function uk(X) = u(rkX)

rk
. Since u is Lipschitz continuous it follows that, for a subsequence kj ,

ukj
→ u0 (A.5)

uniformly to some non-negative harmonic function u0 � 0 defined in the half space {X ∈ R
N : e · X = z � 0}. By

construction we have

u0(X) − α̃z � 0, in 〈X,e〉 � 0. (A.6)

Furthermore, from (A.4) we conclude that there is X = (x, z) ∈ ∂B1 such that z > 0 and u0(X)− α̃z � c0δ0
2 . This in

conjunction with (A.6) and Harnack’s inequality implies that there is a small s > 0 such that Bs(e) ⊂ {X ∈ R
N : z > 0}

and

u0(X) − α̃z � c0δ0

100
in Bs(e). (A.7)

Let w be the solution of{
�w = 0 in B1(e) \ Bs(e),

h = c0δ0
200 on ∂Bs(e),

h = 0 on ∂B1(e).

(A.8)

and {
�wk = rka‖Du‖∞ in B1(e) \ Bs(e),

wk = −(uk − α̃z)− + w on ∂(B1(e) \ Bs(e)).
(A.9)

It is easy to check that uk − α̃z � wk on ∂(B1(e) \ Bs(e)) for sufficiently large k. To see this it is enough to show that
(uk − α̃z)+ �w on ∂(B1(e) \ Bs(e)). From (A.7) and the uniform convergence uk → u0 we infer that uk(X) − α̃z �
c0δ0
200 in Bs(e) for any sufficiently large k. Hence on ∂Bs(e) we have that (uk − α̃z)+ = (uk − α̃z) � c0δ0

200 = w. As for
∂B1(e) we see that there (uk − α̃z)+ � 0 = w. Now we can apply the comparison principle to conclude uk − α̃z � wk

in B1(e) \ Bs(e).
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From the regularity theory of elliptic PDEs we know that w,wk ∈ C3(B1(e) \ Bs(e)). Furthermore, by strong
maximum principle 0 � w � c0δ0

200 . Note that because w is C3 smooth near 0 we have

w(X) = C1z + o
(|X|)� C1

2
z (A.10)

where C1 is a tame constant. Notice that C1 > 0 which follows from Hopf’s lemma.
Finally we show that on B1(e) \ Bs(e), w(X) − wk(X) converges to zero uniformly in the Lipschitz norm. Com-

bining (A.5), (A.6), (A.8) and (A.9) we conclude that wk → w uniformly in B1(e) \ Bs(e). Recalling that BR(Y0) is
a touching ball at X0 = 0 and (A.6), it follows that there is a small t > 0 such that wk = w = 0 on ∂B1(e) ∩ Bt for
sufficiently large k. Thereby we conclude that

Dwk → Dw, uniformly in Bt ∩ B1(e).

On the other hand from (A.10) we obtain

uk(X) − α̃z � wk = w + (wk − w)� C1

4
z

if k is large. This is in contradiction with the definition of α since returning to u we get u(Y ) � (̃α + C1
4 )z in Brk . This

finishes the proof of part 1◦ of Lemma 13.
Now we turn to part 2◦, i.e. when BR(Y0) touches X0 from outside. Let η(X) be the solution of the Dirichlet

problem �η(X) = a∂zη(X) in B2R(Y0) \ BR(Y0) such that η = 0 on ∂BR(Y0) and η = max∂B2R(y0) u on ∂B2R(Y0).
From comparison principle we have that u(X) � η(X) in B2R(Y0) ∩ Ω . Since η ∈ C3(B2R(Y0) \ BR(Y0)) it follows
from Hopf’s principle that η(X) = C(R)z + o(|X|) near the origin with C(R) > 0.

If k0 is the smallest positive integer such that 1
2k0

< R
2 we can define

γ0 = inf
{
m: mη(X) � u(X) in �BR(Y0) ∩ B2−k0

}
.

Now for k = 1,2,3, . . . we define

γk = inf
{
m: mη(X)� u(X) in �BR(Y0) ∩ B2−(k0+k)

}
.

Clearly {γk} decreases. Let γ = infγk . Then γ � 0 and if T = γC(R) we have near 0,

u(X) � Tz+ + o
(|X|). (A.11)

For the proof that equality holds in (A.11) inside every non-tangential region one can proceed as for the equality
(11.2). �
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