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Abstract

We introduce a method to compare solutions of different equations in different domains. As a consequence, we define a new
kind of rearrangement which applies to solution of fully nonlinear equations F(x,u,Du,D2u) = 0, not necessarily in divergence
form, in convex domains and we obtain Talenti’s type results for this kind of rearrangement.
© 2014
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1. Introduction

Rearrangements are among the most powerful tools in analysis. Roughly speaking they manipulate the shape of
an object while preserving some of its relevant geometric properties. Typically, a rearrangement of a function is
performed by acting separately on each of its level sets. Probably the most famous one is the radially symmetric
decreasing rearrangement, or Schwarz symmetrization: the Schwarz symmetrand of a continuous function w � 0 is
the function w� whose superlevel sets are concentric balls (usually centered at the origin) with the same measure
as the corresponding superlevel sets of w. Notice that w�, by definition, is equidistributed with w. When applied to
the study of solutions of partial differential equations with a divergence structure, this usually leads to a comparison
between the solution in a generic domain and the solution of (a possibly “rearranged” version of) the same equation
in a ball with the same measure of the original domain. An archetypal result of this type is the following (see [39]):
let u� be the Schwarz symmetrand of the solution u of{

�u + f (x) = 0 in Ω,

u = 0 on ∂Ω
(1)

and let v be the solution of{
�v + f �(x) = 0 in Ω�,

v = 0 on ∂Ω�,
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where Ω� is the ball (centered at the origin) with the same measure as Ω , f is a non-negative function and f � is the
Schwarz symmetrand of f . Then, under suitable summability assumptions on f , it holds

u� � v in Ω�, (2)

whence

‖u‖Lp(Ω) � ‖v‖Lp(Ω�) (3)

for every p > 0, including p = +∞.
Actually Talenti’s comparison principle (2)–(3) applies to more general situations and the Laplace operator in (1)

can be substituted by operators like

div
(
aij (x)uj

) + c(x)u

or even more general ones (see for instance [2–4,39–41]), but always in divergence form.
Here we introduce a new kind of rearrangement, which allows us to obtain comparison results similar to (2)–(3)

for very general equations, not necessarily in divergence form, between a classical solution in a convex domain Ω

and the solution in the ball Ω� with the same mean width as Ω . Recall that the mean width w(Ω) of Ω is defined as
follows:

w(Ω) = 1

nωn

∫
Sn−1

(
h(Ω, ξ) + h(Ω,−ξ)

)
dξ = 2

nωn

∫
Sn−1

h(Ω, ξ) dξ,

where h(Ω, ·) is the support function of Ω (then w(Ω,ξ) = w(Ω,−ξ) = h(Ω, ξ) + h(Ω,−ξ) is the width of Ω in
direction ξ or −ξ ) and ωn is the measure of the unit ball in R

n. When Ω is a ball, w(Ω) simply coincides with its
diameter; in the plane w(Ω) coincides with the perimeter of Ω , up to a factor π−1. See Section 2 for more details,
notation and definitions.

Precisely, we will deal with problems of the following type⎧⎪⎨
⎪⎩

F
(
x,u,Du,D2u

) = 0 in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(4)

where F(x, t, ξ,A) is a continuous proper elliptic operator acting on R
n × R × R

n × Sn and Ω is an open bounded
convex subset of Rn. Here Du and D2u are the gradient and the Hessian matrix of the function u respectively, Sn is
the set of the n × n real symmetric matrices.

We will see how, given a solution u of problem (4) and a parameter p > 0, it is possible to associate to u a
symmetrand u

�
p which is defined in a ball Ω� having the same mean width as Ω . Under suitable assumptions on

the operator F (see Theorem 6.6) we obtain a pointwise comparison analogous to (2) between u
�
p and the solution v

in Ω�, that is

u�
p � v in Ω�, (5)

where v is the solution of⎧⎪⎨
⎪⎩

F
(
x, v,Dv,D2v

) = 0 in Ω�,

v = 0 on ∂Ω�,

v > 0 in Ω�.

(6)

Then from (5) we get

‖u‖Lq(Ω) � ‖v‖Lq(Ω�) for every q ∈ (0,+∞]. (7)

The precise definition of u
�
p is actually quite involved and it will be given in Section 5. Here we just say that u

�
p is not

equidistributed with u, in contrast with Schwarz symmetrization; indeed the measure of the super level sets of u
�
p is

greater than the measure of the corresponding super level sets of u.
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The results of this paper are based on the refinement of a technique developed in [5,14,19] (and inspired by [1]) to
study concavity properties of solutions of elliptic and parabolic equations in convex rings and in convex domains. It
is shown here that this refinement permits to compare solutions of different equations in different domains and this is
in fact the main result of the paper, see Theorem 4.1. More explicitly, consider two convex sets Ω0 and Ω1 and a real
number μ ∈ (0,1), and denote by Ωμ the Minkowski convex combination (with coefficient μ) of Ω0 and Ω1, that is

Ωμ = (1 − μ)Ω0 + μΩ1 = {
(1 − μ)x0 + μx1 : x0 ∈ Ω0, x1 ∈ Ω1

}
.

Correspondingly, let u0, u1 and uμ be the solutions of

(Pi)

⎧⎪⎨
⎪⎩

Fi

(
x,ui,Dui,D

2ui

) = 0 in Ωi,

ui = 0 on ∂Ωi,

ui > 0 in Ωi,

i = 0,1,μ.

Roughly speaking (the precise statement will be given in Section 4) Theorem 4.1 states that, under suitable assump-
tions on the operators F0, F1 and Fμ, it is possible to compare uμ with a suitable convolution of u0 and u1. Such a
result has obviously its own interest and it has several interesting consequences, among which there is the rearrange-
ment technique sketched above.

The paper is organized as follows. In Section 2 we introduce notation and recall some useful notions and known
results. Section 3 is dedicated to the so-called (p,μ)-convolution of a non-negative function. In Section 4 we state
Theorem 4.1, the main theorem of the paper, and in Section 5 we prove it. Section 6 is devoted to rearrangements: it
contains the definition of u

�
p and Theorem 6.6. In Section 7 some examples and applications are presented.

2. Notation and preliminaries

For A ⊆R
n, we denote by A, ∂A and |A| its closure, its boundary and its measure.

Let n� 2, x ∈ R
n and r > 0: B(x, r) is the euclidean ball of radius r centered at x, i.e.

B(x, r) = {
z ∈R

n : |z − x| < r
}
.

In particular we set B = B(0,1), Sn−1 = ∂B and ωn = |B|.
We denote by Sn the space of n × n real symmetric matrices and by S+

n and S++
n the cones of nonnegative and

positive definite symmetric matrices. If A,B ∈ Sn, by A � 0(> 0) we mean that A ∈ S+
n (S++

n ) and A � B means
A − B � 0.

SO(n) is the special orthogonal group of Rn, that is the space of rotations in R
n, i.e. n × n orthogonal matrices

with determinant 1.
With the symbol ⊗ we denote the direct product between vectors in R

n, that is, for x = (x1, . . . , xn) and y =
(y1, . . . , yn), x ⊗ y is the n × n matrix with entries (xiyj ) for i, j = 1, . . . , n.

2.1. Viscosity solutions

We will make use of basic viscosity techniques; here we recall only few notions and we refer to the User’s
Guide [13] and to the books [9,24] for more details.

The continuous operator F : Rn ×R×R
n × Sn → R is called proper if

F(x, r, ξ,A) � F(x, s, ξ,A) whenever r � s.

Let Γ be a convex cone in Sn, with vertex at the origin and containing the cone of nonnegative definite symmetric
matrices S+

n . We say that F is degenerate elliptic in Γ if

F(x,u, ξ,A) � F(x,u, ξ,B) whenever A� B, A,B ∈ Γ.

We set ΓF = ⋃
Γ , where the union is extended to every cone Γ such that F is degenerate elliptic in Γ . When we

say that F is degenerate elliptic, we mean that F is degenerate elliptic in ΓF �= ∅. A function u ∈ C2(Ω) is called
admissible for F in Ω if D2u(x) ∈ ΓF for every x ∈ Ω . In general, unless otherwise specified, we will consider for
simplicity only operators such that ΓF = Sn throughout (then every regular function is admissible).
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Given two functions u and φ defined in an open set Ω , we say that φ touches u by above at x0 ∈ Ω if

φ(x0) = u(x0) and φ(x) � u(x) in a neighborhood of x0.

Analogously, we say that φ touches u by below at x0 ∈ Ω if

φ(x0) = u(x0) and φ(x) � u(x) in a neighborhood of x0.

An upper semicontinuous function u is a viscosity subsolution of the equation F = 0 in Ω if, for every C2 function φ

touching u by above at any point x ∈ Ω , it holds

F
(
x,u(x),Dφ(x),D2φ(x)

)
� 0. (8)

A lower semicontinuous function u is a viscosity supersolution of F = 0 in Ω if, for every admissible C2 function φ

touching u by below at any point x ∈ Ω , it holds

F
(
x,u(x),Dφ(x),D2φ(x)

)
� 0.

A viscosity solution is a continuous function which is both a viscosity sub- and supersolution of F = 0 at the same
time.

The technique proposed in this paper requires the use of the comparison principle for viscosity solutions. Since we
will have to compare a viscosity subsolution only with a classical solution, we will need only a weak version of the
comparison principle. To be precise, we say that the operator F satisfies the Comparison Principle if the following
statement holds:

(CP) Let u ∈ C(Ω) ∩ C2(Ω) and v ∈ C(Ω) be a classical supersolution and a viscosity subsolution of F = 0 such
that u� v on ∂Ω . Then u� v in Ω .

Comparison Principles for viscosity solutions are an actual and deep field of investigation and we do not intend to give
here an updated picture of the state of the art, we just refer to [9,13,24]. However, when one of the involved functions
is regular, the situation is much easier and (CP) is for instance satisfied if F is strictly proper, in other words if it is
strictly monotone with respect to u.

2.2. Minkowski addition and support functions of convex sets

The Minkowski sum of two subsets A0 and A1 of Rn is simply defined as follows

A0 + A1 = {x + y : x ∈ A0, y ∈ A1}.
Let μ ∈ (0,1); the Minkowski convex combination of A0 and A1 (with coefficient μ) is given by

Aμ = (1 − μ)A0 + μA1 = {
(1 − μ)x0 + μx1 : x0 ∈ A0, x1 ∈ A1

}
.

The famous Brunn–Minkowski inequality states

|Aμ|1/n � (1 − μ)|A0|1/n + μ|A1|1/n (9)

for every couple A0, A1 of measurable sets such that Aμ is also measurable. In other words, (9) states that the
n-dimensional volume (i.e. Lebesgue measure) raised to power 1/n is concave with respect to Minkowski addition
(see the beautiful paper by Gardner [16] for a survey on this and related inequalities).

When the involved sets are convex, Minkowski addition can be conveniently expressed in terms of support functions
(see property (ii) below).

The support function hΩ :Rn → R of a bounded convex set Ω is defined as follows

hΩ(X) = max
y∈Ω

〈X,y〉, X ∈ R
n.

Every support function is convex and positively homogeneous of degree 1, that is

hΩ(X + Y) � hΩ(X) + hΩ(Y ) for every X,Y ∈R
n
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and

hΩ(tX) = thΩ(X) for every X ∈ R
n and t � 0.

Vice versa, every convex and positively 1-homogeneous function is the support function of a convex body (i.e. a closed
bounded convex set). This establishes a one to one correspondence between support functions and convex bodies.

Moreover the following properties hold:

(i) htΩ = thΩ for t � 0;
(ii) hΩ1+Ω2 = hΩ1 + hΩ2 .

The latter simply reads that the Minkowski addition of convex sets corresponds to the sum of support functions.
As already said in the introduction, we denote the mean width of Ω by w(Ω), that is

w(Ω) = 1

nωn

∫
Sn−1

(
h(Ω, ξ) + h(Ω,−ξ)

)
dξ = 2

nωn

∫
Sn−1

h(Ω, ξ) dξ.

When Ω is a ball, w(Ω) coincides with its diameter. In the plane w(Ω) coincides with the perimeter of Ω , up to a
factor π−1.

Given a convex set Ω and a point x ∈ ∂Ω , we denote by νΩ(x) the exterior normal cone of Ω at x, that is

νΩ(x) = {
p ∈R

n : 〈y − x,p〉� 0 for every y ∈ Ω
}
.

The normal cone of a convex set is a non-empty convex cone for every boundary point and in fact Ω is convex if and
only if νΩ(x) �= ∅ for every x ∈ ∂Ω . The following elementary lemma about Minkowski addition will be useful in the
sequel.

Lemma 2.1. Let Ω0,Ω1 ⊆R
n be open bounded convex sets and μ ∈ (0,1).

Then Ωμ = (1 − μ)Ω0 + μΩ1 is an open bounded convex set; moreover if x0 ∈ Ω0 and x1 ∈ Ω1 are such that
x = (1 − μ)x0 + μx1 ∈ ∂Ω , then x0 ∈ ∂Ω0, x1 ∈ ∂Ω1 and νΩμ(x) = νΩ0(x0) ∩ νΩ1(x1) �= ∅.

The properties stated in the lemma can be considered folklore in the theory of convex bodies and the proof is
straightforward.

For further details on convex sets, Minkowski addition and support functions, we refer to [37].

2.3. Power concave functions

Let p ∈ [−∞,+∞] and μ ∈ (0,1). Given two real numbers a > 0 and b > 0, the quantity

Mp(a, b;μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max{a, b} p = +∞,

[(1 − μ)ap + μbp]1/p for p �= −∞,0,+∞,

a1−μbμ p = 0,

min{a, b} p = −∞

(10)

is the (μ-weighted) p-mean of a and b. For a, b � 0, we define Mp(a, b;μ) as above if p � 0 and we set
Mp(a, b;μ) = 0 if p < 0 and ab = 0. Notice that Mp is continuous with respect to (a, b) ∈ [0,∞) × [0,∞) for
every p. See [17] for more details.

A simple consequence of Jensen’s inequality is that

Mp(a, b;μ)� Mq(a, b;μ) if p � q. (11)

Moreover for every μ ∈ (0,1) it holds

lim
p→+∞Mp(a, b;μ) = max{a, b} and lim

p→−∞Mp(a, b;μ) = min{a, b}.
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Definition 2.2. Let Ω be an open convex set in R
n and p ∈ [−∞,∞]. A function v : Ω → [0,+∞) is said p-concave

if

v
(
(1 − μ)x + μy

)
�Mp

(
v(x), v(y);μ)

for all x, y ∈ Ω and μ ∈ (0,1).
In the cases p = 0 and p = −∞, v is also called log-concave and quasi-concave in Ω .

In other words, a non-negative function u, with convex support Ω , is p-concave if:

– it is a non-negative constant in Ω , for p = +∞;
– up is concave in Ω , for p > 0;
– logu is concave in Ω , for p = 0;
– up is convex in Ω , for p < 0;
– it is quasi-concave, i.e. all of its superlevel sets are convex, for p = −∞.

Notice that p = 1 corresponds to usual concavity.
It follows from (11) that if v is p-concave, then v is q-concave for any q ≤ p. Hence quasi-concavity is the weakest

conceivable concavity property.
It is well known that solutions of elliptic Dirichlet problems in convex domains are often power concave. For

instance, a famous result by Brascamp and Lieb [8] says that the first positive eigenfunction of the Laplace operator
in a convex domain is log-concave; another classical result states that the square root of the solution to the torsion
problem in a convex domain is concave, see [20,23,30]. These results about Laplacian were both extended to the
case of p-Laplacian by Sakaguchi in [34]. Power concave solutions have been also studied in [21,22,25] and more
recent developments are for instance in [1,26–29,36,44]; furthermore see [14] and [5], which are strongly related to
the present paper.

2.4. The Borell–Brascamp–Lieb inequality

The Borell–Brascamp–Lieb inequality (see [6,8]) is a generalization of the Prékopa–Leindler inequality. I recall it
here in the form taken from [16, Theorem 10.1].

Proposition 2.3. Let μ ∈ (0,1), f,g,h be nonnegative functions in L1(Rn), and −1/n � s � ∞. Assume that

h
(
(1 − μ)x + μy

)
� Ms

(
f (x), g(y);μ)

(12)

for all x ∈ sprt(f ), y ∈ sprt(g). Then∫
Rn

hdx ≥ Mq

( ∫
Rn

f dx,

∫
Rn

g dx;μ
)

,

where

q =

⎧⎪⎨
⎪⎩

1/n if s = +∞,

s/(ns + 1) if s ∈ (−1/n,+∞),

−∞ if s = −1/n.

(13)

The Prékopa–Leindler inequality corresponds to the case s = 0 and it is a functional version of the Brunn–
Minkowski inequality.

3. The (p,μ)-convolution of non-negative functions

From now on, throughout the paper, we consider two open bounded convex sets Ω0,Ω1 ⊂ R
n and a fixed real

number μ ∈ (0,1), and denote by Ωμ the Minkowski convex combination (with coefficient μ) of Ω0 and Ω1, i.e.
Ωμ = (1 − μ)Ω0 + μΩ1.
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Definition 3.1. Let p ∈ R, μ ∈ (0,1), u0 ∈ C(Ω0) and u1 ∈ C(Ω1) such that ui � 0 in Ωi , i = 0,1. The
(p,μ)-convolution of u0 and u1 is the function up,μ : Ωμ → R defined as follows:

up,μ(x) = sup
{
Mp

(
u0(x0), u1(x1);μ

) : x = (1 − μ)x0 + μx1, xi ∈ Ωi, i = 0,1
}
. (14)

The above definition can be extended to the case p = ±∞, but we do not need here. Let me recall however that the
case p = −∞ has been useful in [7,11] to prove the Brunn–Minkowski inequality for p-capacity of convex sets.

Let p �= 0; then, roughly speaking, the graph of u
p
p,μ is obtained as the Minkowski convex combination (with

coefficient μ) of the graphs of u
p

0 and u
p

1 ; precisely we have

K(p)
μ = (1 − μ)K

(p)

0 + μK
(p)

1 ,

where

K(p)
μ = {

(x, t) ∈R
n+1 : x ∈ Ωμ, 0 � t � up,μ(x)p

}
,

K
(p)
i = {

(x, t) ∈R
n+1 : x ∈ Ωi, 0 � t � ui(x)p

}
, i = 0,1.

In other words, the (p,μ)-convolution of u0 and u1 corresponds to the (1/p)-power of the supremal convolution
(with coefficient μ) of u

p

0 and u
p

1 . When p = 0, the above geometric considerations continue to hold with logarithm
in place of power p and exponential in place of power 1/p. When p = 1, u1,μ is just the usual supremal convolution
of u0 and u1. For more details on infimal/supremal convolutions of convex/concave functions, see [33,38] (and also
[12,35]).

From Definition 3.1 and (11), we get

u� up,μ � uq,μ for −∞� p � q � +∞. (15)

Lemma 3.2. Let p ∈ [−∞,+∞), μ ∈ (0,1). For i = 0,1 let ui ∈ C(Ωi) such that ui = 0 on ∂Ωi and ui > 0 in Ωi .
Then up,μ ∈ C(Ωμ) and

up,μ > 0 in Ωμ, up,μ = 0 on ∂Ωμ. (16)

Proof. The proof of this lemma is almost straightforward and completely analogous to the proof of Lemma 1 [5]. We
just notice that up,μ > 0 in Ω by the very definition of up,μ while up,μ = 0 on ∂Ω by Lemma 2.1. �

Notice that, as Ωi is compact for i = 0,1 and Mp , u0 and u1 are continuous, then the supremum in (14) is in fact
a maximum. Hence for every x̄ ∈ Ωμ there exist x0 ∈ Ω0 and x1 ∈ Ω1 such that

x̄ = (1 − μ)x0 + μx1, up,μ(x̄) = Mp

(
u0(x0), u1(x1);μ

)
. (17)

The next lemma is fundamental to this paper.

Lemma 3.3. Let p ∈ [0,1), μ ∈ (0,1), ui ∈ C1(Ωi) ∩ C(Ωi) such that ui = 0 on ∂Ωi , ui > 0 in Ωi for i = 0,1.
In case p > 0 assume furthermore that for i = 0,1 it holds

lim inf
y→x

∂ui(y)

∂ν
> 0 (18)

for every x ∈ ∂Ωi , where ν is any inward direction of Ωi at x.
If x̄ lies in the interior of Ωμ, then the points x0 and x1 defined by (17) belong to the interior of Ω0 and Ω1 and

u0(x0)
p−1Du0(x0) = u1(x1)

p−1Du1(x1). (19)

Proof. First we prove that xi ∈ Ωi for i = 0,1.
The case p = 0 easily follows from (16) and the definition of M0, since up,μ(x̄) > 0 while u0(x0)

1−μu1(x1)
μ = 0

if x0 ∈ ∂Ω0 or x1 ∈ ∂Ω1.
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Then let p > 0. By contradiction, assume that (up to a relabeling) x0 ∈ ∂Ω0. Then u0(x0) = 0 and x1 must lie in
the interior of Ω1, otherwise up,μ(x̄) = 0, contradicting (16). Notice that in this case

up,μ(x̄) = μ1/pu1(x1).

Set v0 = u
p

0 , v1 = u
p

1 and

a = ∣∣Dv1(x1)
∣∣ = pu1(x1)

p−1
∣∣Du1(x1)

∣∣.
By the regularity of u1, we have

|Dv1| < a + 1 in B(x1, r1) ⊂ Ω1 (20)

for r1 > 0 small enough.
Now take any direction ν pointing inwards into Ω0 at x0; by assumption (18) we get

lim inf
x→x0

∂v0(x)

∂ν
= +∞, (21)

whence

∂v0

∂ν
> a + 1 in Ω0 ∩ B(x0, r0) (22)

for r0 > 0 small enough.
Next we take ρ < min{(1 − μ)r0,μr1} and we consider the points

x̃0 = x0 + ρ

(1 − μ)
ν,

x̃1 = x1 − ρ

μ
ν.

We have

x̃0 ∈ B(x0, r0) ∩ Ω0, x̃1 ∈ B(x1, r1)

and

x̄ = (1 − μ)x̃0 + μx̃1. (23)

Then from (20) and (22) we get

u0(x̃0)
p = v0(x̃0) > v0(x0) + (a + 1)

ρ

(1 − μ)
= (a + 1)

ρ

(1 − μ)
,

u1(x̃1)
p = v1(x̃1) � v1(x1)

p − (a + 1)
ρ

μ
= u1(x1)

p − (a + 1)
ρ

μ
,

whence

[
(1 − μ)u0(x̃0)

p + μu1(x̃1)
p
]1/p

>

[
(1 − μ)(a + 1)

ρ

(1 − μ)
+ μu1(x1)

p − μ(a + 1)
ρ

μ

]1/p

= up,μ(x̄)

which contradicts the definition of up,μ, due to (23).
So far, we have proved that xi must stay in the interior of Ωi for i = 0,1. Then by the Lagrange Multipliers

Theorem we easily get (19) (in fact, it is easily seen that the latter holds if just one of x0 and x1 lies in the interior of
the corresponding Ωi and the involved functions are differentiable up to the boundary: indeed, if x0 ∈ Ω0, then it is
an interior maximum point for the function

f (x) = Mp

(
u0(x), u1

(
x̄ − (1 − μ)x

μ

)
;μ

)
and ∇f (x0) = 0 gives (19)).

The proof of the lemma is complete. �
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3.1. The (p,μ)-convolution of more than two functions

The definition of the (p,μ)-convolution of two functions is easily extended to an arbitrary number of functions.
Let 3 �m ∈N and set Γ +

m = {(x1, . . . , xm) ∈R
m : xi � 0, i = 1, . . . ,m} and

Γ 1
m =

{
(μ1, . . . ,μm) ∈ Γ +

m : μi > 0 for i = 1, . . . ,m and
m∑

i=1

μi = 1

}
.

Let p ∈ [−∞,+∞], μ ∈ Γ 1
m and a = (a1, . . . , am) ∈ Γ +

m . If
∏m

i=1 ai > 0, the p-mean of a1, . . . , am with coefficient
μ is defined as follows:

Mp(a1, . . . , am;μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max{a1, . . . , am} p = +∞,

[∑m
i=1 μia

p
i ]1/p p �= −∞,0,+∞,∏m

i=1 a
μi

i p = 0,

min{a1, . . . , am} p = −∞.

If
∏m

i=1 ai = 0, we define Mp(a,μ) as above if p � 0 and we set Mp(a,μ) = 0 if p < 0.
If we now consider m non-negative functions u1, u2, . . . , um supported in the sets Ω1,Ω2, . . . ,Ωm, we can define

up,μ(x) = sup

{
Mp

(
u0(x0), . . . , um(xm);μ) : xi ∈ Ωi, i = 1, . . . ,m, x =

m∑
i=1

μixi

}
. (24)

Clearly all the properties and lemmas stated and proved before for the case m = 2 continue to hold in the case m� 3,
with the obvious modifications. In particular we explicitly write the following.

Lemma 3.4. Let p ∈ [−∞,+∞), μ ∈ Γ 1
m. Let ui ∈ C(Ωi) such that ui = 0 on ∂Ωi and ui > 0 in Ωi , for i = 1, . . . ,m.

Then up,μ ∈ C(Ωμ) and

up,μ > 0 in Ωμ, up,μ = 0 on ∂Ωμ. (25)

As before, since Ωi is compact for i = 1, . . . ,m and Mp , u1, . . . , um are continuous, the supremum in (24) is in
fact a maximum. Hence for every x̄ ∈ Ωμ there exist x0 ∈ Ω0, . . . , xm ∈ Ωm such that

x̄ =
m∑

i=1

μixi, up,μ(x̄) = Mp

(
u1(x1), . . . , um(xm);μ)

. (26)

Lemma 3.5. Let p ∈ [0,1), μ ∈ (0,1), ui ∈ C1(Ωi) ∩ C(Ωi) such that ui = 0 on ∂Ωi , ui > 0 in Ωi for i = 1, . . . ,m.
In case p > 0 assume furthermore that for (18) holds for i = 1, . . . ,m.

If x̄ lies in the interior of Ωμ, then the points x1, . . . , xm defined by (17) belong to the interior of Ω1, . . . ,Ωm and

u1(x1)
p−1Du1(x1) = . . . = um(xm)p−1Dum(xm). (27)

4. The main theorem

As before and throughout, Ω0 and Ω1 are open bounded convex sets in R
n, μ ∈ (0,1) and Ωμ = (1−μ)Ω0 +μΩ1.

For i = 0,1,μ, we denote by ui a solution of the following problem

(Pi)

⎧⎪⎨
⎪⎩

Fi

(
x,ui,Dui,D

2ui

) = 0 in Ωi,

ui = 0 on ∂Ωi,

ui > 0 in Ωi,

where Fi : Ωi × [0,+∞) ×R
n × Sn is a proper elliptic operator.
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If not otherwise specified, we will consider classical solutions for i = 0,1 (that is: u0 ∈ C2(Ω0) ∩ C(Ω0) and
u1 ∈ C2(Ω1) ∩ C(Ω1) and they satisfy pointwise everywhere all the equations in (P0) and (P1)), while uμ ∈ C(Ωμ)

may be a viscosity solution of the corresponding problem (Pμ).

For i = 0,1,μ and for every fixed (θ,p) ∈ R
n × [0,∞) we define G

(θ)
i,p : Ωi × (0,+∞) × Sn →R as

G
(θ)
i,p(x, t,A) = Fi

(
x, t

1
p , t

1
p

−1
θ, t

1
p

−3
A

)
for p > 0, (28)

and

G
(θ)
i,0 (x, t,A) = Fi

(
x, et , et θ, etA

)
. (29)

Assumption (Aμ,p). Let μ ∈ (0,1) and p � 0. We say that F0,F1,Fμ satisfy the assumption (Aμ,p) if, for every
fixed θ ∈ R

n, the following holds

G(θ)
μ,p

(
(1 − μ)x0 + μx1, (1 − μ)t0 + μt1, (1 − μ)A0 + μA1

)
� min

{
G

(θ)
0,p(x0, t0,A0);G(θ)

1,p(x1, t1,A1)
}

for every x0 ∈ Ω0, x1 ∈ Ω1, t0, t1 > 0 and A0,A1 ∈ Sn.

Now we are ready to state the main result of the paper.

Theorem 4.1. Let μ ∈ (0,1) and Ωi and ui , i = 0,1,μ, be as above described. Assume that the operator Fμ satisfies
the comparison principle (CP) and that F0,F1,Fμ satisfy the assumption (Aμ,p) for some p ∈ [0,1). If p > 0, assume
furthermore that (18) holds true for i = 0,1.

Then

uμ

(
(1 − μ)x0 + μx1

)
� Mp

(
u0(x0), u1(x1);μ

)
(30)

for every x0 ∈ Ω0, x1 ∈ Ω1.

We remark that assumption (18) is not needed for p = 0, while for p > 0 it is in general provided by a suitable
version of Hopf’s Lemma. Notice also that, for p < 1, (18) implies (21). In fact, we could also apply our argument to
the case p � 1; in such a case however we would need to assume directly (21) instead of (18).

Coupling (30) with the Borell–Brascamp–Lieb inequality (i.e. Proposition 2.3) leads to a comparison of the Lr

norms of uμ with suitable combinations of the Lr norms of u0 and u1. To be precise, we have the following corollary.

Corollary 4.2. With the same assumptions and notation of Theorem 4.1, for every r > 0 we have

‖uμ‖Lr(Ωμ) � Mq

(‖u0‖Lr(Ω0),‖u1‖Lr(Ω1);μ
)
, (31)

where

q =
{ pr

np+r
for r ∈ (0,+∞),

p for r = +∞.

Proof. The inequality for the L∞ norms is a straightforward consequence of (30), obtained by taking x0 and x1 as
points which realize the maximum of u0 and u1, respectively (in fact, in this case equality holds in 31). The proof of
the inequality for a generic r ∈ (0 + ∞) follows from Proposition 2.3, applied to the functions h = ur

μ, f = ur
0 and

g = ur
1 with s = p/r , assumption (12) being satisfied thanks to (30). �

Notice that in some special cases, involving particular operators, results similar to those we could obtain by apply-
ing Theorem 4.1 and Corollary 4.2 to the situations at hands, have already been obtained (even though not explicitly
stated) and used to prove Brunn–Minkowski type inequalities for variational functionals, see for instance [10,12,28,
36,43]. Indeed, Theorem 4.1 could be regarded as a general Brunn–Minkowski inequality for solutions of PDE’s (and
then applied to obtain Brunn–Minkowski type inequalities for possibly related functionals).
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5. Proof of Theorem 4.1

The proof of Theorem 4.1 essentially consists of the following lemma.

Lemma 5.1. With the same assumptions and notation of Theorem 4.1, it follows that up,μ is a viscosity subsolution of
problem (Pμ).

Proof. The proof follows somehow the steps of [5,14,19], and the strategy is the following: for every x̄ ∈ Ωμ we
construct a function ϕp,μ ∈ C2(Ωμ) which touches up,μ by below at x̄ and such that

F
(
x̄, ϕp,μ(x̄),Dϕp,μ(x̄),D2ϕp,μ(x̄)

)
� 0. (32)

Clearly this implies that up,μ is a viscosity subsolution of (Pμ): indeed every test function φ touching up,μ at x̄ by
above must also touch ϕp,μ at x̄ by above, then

φ(x̄) = ϕp,μ(x̄), Dφ(x̄) = Dϕp,μ(x̄) and D2φ(x̄) � D2ϕp,μ(x̄)

and (8) follows from the ellipticity of F .
Then consider x̄ ∈ Ω . By Lemma 3.3, there exist x0 ∈ Ω0 and x1 ∈ Ω1 satisfying (17) and such that (19) holds.
First we treat the case p > 0 and, for a small enough r > 0, we introduce the function ϕp,μ : B(x̄, r) → R defined

as follows

ϕp,μ(x) = [
(1 − μ)u0

(
x0 + a0(x − x̄)

)p + μu1
(
x1 + a1(x − x̄)

)p]1/p (33)

where

ai = ui(xi)
p

up,μ(x̄)p
, for i = 0,1. (34)

The following facts trivially hold:

(A) (1 − μ)a0 + μa1 = 1 by (17);
(B) x = (1 − μ)(x0 + a0(x − x̄)) + μ(x1 + a1(x − x̄)) for every x ∈ B(x̄, r), thanks to (A) and the first equation

in (17);
(C) ϕp,μ(x̄) = up,μ(x̄);
(D) ϕp,μ(x) � up,μ(x) in B(x̄, r) (this follows from (B) and the definition of up,μ).

In particular, (C) and (D) say that ϕp,μ touches up,μ from below at x̄.
A straightforward calculation yields

Dϕp,μ(x̄) = ϕp,μ(x̄)1−p
[
(1 − μ)u0(x0)

p−1a0Du0(x0) + μu1(x1)
p−1a1Du1(x1)

]
.

Then, by (19), (34) and the definition of ϕp,μ, we get

Dϕp,μ(x̄) = ϕp,μ(x̄)1−pui(xi,p)p−1Dui(xi,p) for i = 0,1. (35)

Thanks to another straightforward calculation and using (19), (34), (35) and the definition of ϕp,μ, we also obtain

D2ϕp,μ(x̄) = (1 − μ)
u0(x0)

3p−1

ϕp,μ(x̄)3p−1
D2u0(x0) + μ

u1(x1)
3p−1

ϕp,μ(x̄)3p−1
D2u1(x1)

+ (1 − p)ϕp,μ(x̄)−1ADϕp,μ(x̄) ⊗ Dϕp,μ(x̄),

where

A = 1 − ϕp,μ(x̄)−p
[
(1 − μ)u0(x0)

p + μu1(x1)
p
]
.

Now notice that (C) and (17) give

A = 0.
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Then

D2ϕp,μ(x̄) = (1 − μ)
u0(x0)

3p−1

ϕp,μ(x̄)3p−1
D2u0(x0) + μ

u1(x1)
3p−1

ϕp,μ(x̄)3p−1
D2u1(x1). (36)

Since u0 and u1 are classical solutions of (P0) and (P1), it follows that for i = 0,1

G
(θ)
i,p

(
xi, ui(xi)

p, ui(xi)
3p−1D2ui(xi)

) = Fi

(
xi, ui(xi),Dui(xi),D

2ui(xi)
) = 0,

where

θ = ϕp,μ(x̄)p−1Dϕp,μ(x̄).

Then, by setting μ0 = (1 − μ) and μ1 = μ, assumption (Aμ,p) entails

G(θ)
μ,p

(
1∑

i=0

μixi,

1∑
i=0

μiui(xi)
p,

1∑
i=0

μiui(xi)
3p−1D2ui(xi)

)
� 0,

and thanks to (C) and (36) this precisely coincides with

G(θ)
μ,p

(
x̄, ϕp,μ(x̄)p,ϕp,μ(x̄)3p−1D2ϕp,μ(x̄)

)
� 0.

The latter implies (32) by the definition of G
(θ)
μ,p and this concludes the proof for p > 0.

The case p = 0 is similar, the only difference consisting in that we set

ϕ0,μ := exp
(
(1 − λ) logu0(x1,0 + x − x̄) + μ logu1(xn+1,0 + x − x̄)

)
,

which means ai,0 = 1 for i = 0,1. �
The proof of Theorem 4.1 is now very easy.

Proof of Theorem 4.1. Under the assumptions of the theorem, we can apply the previous lemma to obtain that up,μ

is a viscosity subsolution of (Pμ). Then by the Comparison Principle we get the claim. �
5.1. A generalization

Looking at the proof of Lemma 5.1, it is easily understood that assumption (Aμ,p) can be in fact substituted by a
slightly weaker one: precisely what really matters is that the inequality in (Aμ,p) holds only for (xi, ti ,Ai) such that
Gp,θ (xi, ti ,Ai) = 0, i = 0,1.

Moreover, it is clear that, when considering the combination of more than two Dirichlet problems, a generalized
version of Theorem 4.1 continues to hold.

Exactly, let m ∈ N, m � 2, and μ = (μ1,μ2, . . . ,μm) ∈ Γ 1
m; let Ωi , Fi and ui be a convex set, a proper elliptic

operator and the solution of problem (Pi) for i = 1, . . . ,m and i = μ, where

Ωμ =
m∑

i=1

μiΩi.

Now define G
(θ)
i,p as in (28) and (29) and set

Z
(θ)
i,p = {

(x, t,A) : G(θ)
i,p(x, t,A) = 0

}
for i = 1, . . . ,m.

Then we say that the operators Fμ,F1, . . . ,Fm satisfies the Assumption Weak (Aμ,p) if

(WAμ,p) S(θ)
μ,p = {

(x, t,A) : G(θ)
μ,p(x, t,A) � 0

} ⊇
m∑

i=1

μiZ
θ
i,p

for every θ ∈R
n.



P. Salani / Ann. I. H. Poincaré – AN 32 (2015) 763–783 775
Theorem 5.2. Assume that the operator Fμ satisfies the comparison principle (CP) and that F1, . . . ,Fm,Fμ satisfy
the assumption (WAμ,p) for some p ∈ [0,1).

If p > 0, assume furthermore that for i = 1, . . . ,m it holds

lim inf
y→x

∂ui(y)

∂ν
> 0 (37)

for every x ∈ ∂Ωi , where ν is any inward direction of Ωi at x.
Then

uμ

(∑
μixi

)
� Mp

(
u1(x1), . . . , um(xm);μ)

(38)

for every x1 ∈ Ω1, x2 ∈ Ω2, . . . , xm ∈ Ωm.

Obviously the key point is that there is an appropriate version of Lemma 5.1, that is the following.

Lemma 5.3. With the same assumptions and notation of Theorem 5.2, it follows that up,μ, defined by (24), is a
viscosity subsolution of (4) in Ωμ.

The proof of this lemma is just a straightforward adaptation of the proof of Lemma 5.1 and we omit it.

6. Rearrangements

Throughout this section p will be a real positive number and Ω ⊂R
n an open bounded convex set.

We say that Ω
�
m is a rotation mean of Ω if there exist a number m ∈N and ρ1, . . . , ρm ∈ SO(n) such that

Ω�
m = 1

m
(ρ1Ω + . . . + ρmΩ).

The following theorem is due to Hadwiger.

Theorem 6.1. (See [37, Theorem 3.3.2].) Given an open bounded convex set Ω , there exists a sequence of rotation
means of Ω converging in Hausdorff metric to a ball Ω� with diameter equal to the mean width w(Ω) of Ω .

Let u ∈ C(Ω) be a non-negative function, positive in Ω and vanishing on ∂Ω , and let ρ ∈ SO(n); we set

uρ(x) = u
(
ρ−1x

)
for x ∈ ρΩ. (39)

Now let {ρi}∞i=1 ⊂ SO(n) be the sequence of rotations associated to Ω by Theorem 6.1, such that Ω
�
m converges to Ω�,

and set

Ωi = ρiΩ, ui = uρi
in Ωi, for i ∈N.

Then for every m ∈N, we take

μm = (1/m, . . . ,1/m) ∈ Γ 1
m

and define the function

u�
p,m : Ω�

m → [0,+∞)

as the (p,μm)-mean up,μm of the functions u1, . . . , um, according to (24).

Lemma 6.2. With the assumptions and notation given above, for p > 0 the sequence {u�
p,m}∞m=1 is uniformly conver-

gent (up to a subsequence) in Ω� to a function u
�
p ∈ C(Ω�) vanishing on ∂Ω�.
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Proof. First we notice that, by Lemma 3.4, it follows u
�
p,m ∈ C(Ω

�
m), u

�
p,m(x) > 0 for x ∈ Ω

�
m and u

�
p,m(x) = 0 for

x ∈ ∂Ω
�
m.

Since up is continuous in the compact set Ω , we have that up is uniformly continuous in Ω and we denote by
ωp its modulus of continuity. Obviously u

p
i is also uniformly continuous in Ωi with the same modulus of continuity

ωp for every i ∈ N. Then, as supremal convolution of functions with the same modulus of continuity, also (u
�
p,m)p

is uniformly continuous in Ω
�
m with modulus of continuity ωp for every m ∈ N (see [38] for instance). Now let R =

max{dist(x,0) : x ∈ Ω} and let B = B(0,2R) the ball centered at the origin with radius 2R. Then ρΩ ⊂ B for every
ρ ∈ SO(n), so that Ω

�
m ⊂ B for every m ∈ N and consequently Ω� ⊂ B . We set u(x) = 0 for x ∈ B \Ω , ui(x) = 0 for

x ∈ B \Ωi for every i and u
�
p,m(x) = 0 for x ∈ B \Ω

�
m for every m. So extended, up,u

p
i and (u

�
p,m)p obviously remain

uniformly continuous, with the same modulus of continuity ωp , in B . Moreover, since 0 � ui(x) � M for x ∈ ρiB ,

where M = maxΩ u, it follows 0 � u
�
p,m(x)p � Mp for x ∈ B for every m. Finally {(u�

p,m)p}∞m=1 is a sequence of
equibounded and equicontinuous functions in B and it is possible to extract a uniformly convergent subsequence, say
(u

�
p,mk

)p . We set

u�
p(x) =

(
lim

k→+∞u�
p,mk

(x)p
)1/p

, x ∈ B. (40)

We have just to prove that u
�
p(x) = 0 for x ∈ ∂Ω�. Since u

�
p ∈ C(B) (as uniform limit of a sequence of continuous

functions), we can just prove that u
�
p vanishes in B \ Ω�. Then consider a point x ∈ B \ Ω�, that is a point x such

that dist(x,Ω�) = d > 0: since Ω
�
m converges to Ω� in Hausdorff metric as m → ∞, there exists Mx such that

d(x,Ω
�
m) > d/2 for every m� Mx . Then x ∈ B \ Ω

�
m and u

�
p,m(x) = 0 for m� Mx , whence u

�
p(x) = 0. �

The previous lemma contains the definition (40) of u
�
p , which may look quite involved, as already said in the

Introduction. To give a geometric insight, let me say that it is somewhat reminiscent of a rearrangement technique
introduced by Tso in [42] to treat the case of Monge–Ampère equation, where every sublevel set of a convex function
is substituted by a ball with the same mean width; here, instead, the level sets of u

�
p are not necessarily balls, apart

from Ω� = {u�
p � 0}, and their mean width is in general greater than the mean width of the corresponding level sets

of u, apart again from the ground domain (indeed, we are not acting separately on each level sets, but globally on the
function). Notice also that (40) may be considered not completely satisfying as a definition of a rearrangement, since
it seems to depend on the chosen subsequence u

�
p,mk

. Nevertheless it suffices to prove a priori estimates similar to
(2)–(3) of the solution u of (4) in terms of the solution v in Ω� when F is a rotationally invariant operator, i.e. when

F
(
ρx,u,ρθ,ρAρT

) = F(x,u, θ,A) (41)

for every (x,u, θ,A) ∈ R
n ×R×R

n × Sn and every ρ ∈ SO(n).
Examples of rotationally invariant operators are the Laplacian, the q-Laplacian, the mean curvature operator, the

Hessian operators, etc. Moreover notice that F is rotationally invariant when it depends on x, θ and A only in terms
of |x|, |θ | and the eigenvalues of A, respectively.

Remark 6.3. If F is rotationally invariant and u solves (4) in Ω , then uρ (defined in (39)) solves (4) in ρΩ . This is
the reason why we consider rotationally invariant operators.

In view of (28), given an operator F , a real number p > 0 and a vector θ ∈ R
n, we set

G(θ)
p (x, t,A) = F

(
x, t

1
p , t

1
p

−1
θ, t

1
p

−3
A

)
, (x, t,A) ∈ R

n × [0,∞) × Sn. (42)

Lemma 6.4. Let Ω be a bounded open convex set in R
n and u a classical solution of (4) in Ω , where F is a rotationally

invariant proper elliptic operator and u satisfies assumption (18) for every x ∈ ∂Ω .
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Let p ∈ (0,1) and assume that

the set
{
(x, t,A) ∈ [0,∞) × Sn : G(θ)

p (x, t,A) � 0
}

is convex (43)

for every fixed θ ∈ R
n.

Then u
�
p is a viscosity subsolution of problem (4) in Ω�.

Proof. Set μ = (1/m, . . . ,1/m), Fμ = F and Fi = F for i = 1, . . . ,m. Then assumption (43) implies that (WCμ,p)

holds for the operators Fμ and F1, . . . ,Fm. Hence u
�
p,m is a viscosity subsolution in Ωm for every m ∈ N by

Lemma 5.3. The conclusion follows thanks to the stability of viscosity subsolutions with respect to uniform con-
vergence. �
Remark 6.5. Notice that assumption (43) is satisfied if the function G

(θ)
p is quasi-concave for every θ ∈ R

n, hence if
it is q-concave for some q ∈ R.

Theorem 6.6. With the same assumptions of the previous lemma, if F satisfies the comparison principle (CP), then
(5) and (7) hold for the solutions u and v of problems (4) and (6).

Proof. First notice that (5) follows from Lemma 6.4 using the comparison principle.
Then, (5) yields∥∥u�

p

∥∥
Lq(Ω�)

� ‖v‖Lq(Ω�) for every q ∈ (0,∞]. (44)

Next we prove that for every q ∈ (0,∞]
‖u‖Lq(Ω) �

∥∥u�
p,m

∥∥
Lq(Ωm)

for every m ∈N. (45)

The case q = +∞ is almost trivial, since we obviously have M = maxΩ u = maxΩi
ui for every i, then max

Ω
�
m

u
�
p,m =

M for every m. Now let q ∈ (0,∞). By the layer cake formula, it holds

‖u‖Lq(Ω) =
M∫

0

∣∣Ω(t)
∣∣dt, (46)

where

Ω(t) = {
x ∈ Ω : u(x) � t

}
,

and

∥∥u�
p,m

∥∥
Lq(Ωm)

=
M∫

0

∣∣Ωm(t)
∣∣dt, (47)

where

Ωm(t) = {
x ∈ Ωm : u�

p,m(x) � t
}
.

On the other hand, the definition of u
�
p,m implies

Ωm(t) ⊇ 1

m

m∑
i=1

ρiΩ(t),

then ∣∣Ωm(t)
∣∣ � ∣∣Ω(t)

∣∣ for every t ∈ [0,M] (48)

by the Brunn–Minkowski inequality (9). In view of (46) and (47), (48) yields (45).
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Finally, since∥∥u�
p

∥∥
Lq(Ω�)

= lim
m→∞

∥∥u�
p,m

∥∥
Lq(Ωm)

by uniform convergence, then by coupling (44) and (45) we get (7) and the proof is complete. �
As a final remark on u

�
p , let me notice that it is not equidistributed with u (in contrast with Schwarz symmetriza-

tion), but in fact each one of its level sets has greater measure than the corresponding level set of u by (48).

7. Examples

We first give examples of applications of Theorem 4.1, then we consider the mean width rearrangement and give
examples of applications of Theorem 6.6. Throughout the section, f and fi , i = 0,1,μ are non-negative smooth
functions.

7.1. Applications of Theorem 4.1

The first example is the Laplacian. Let

Fi

(
x,u,Du,D2u

) = �u + fi(x,u,Du), i = 0,1,μ

and

g
(θ)
i,p(x, t) =

{
t
3− 1

p f (x, t
1
p , t

1
p

−1
θ) p > 0,

e−t f (x, et , et θ) p = 0,
i = 0,1,μ. (49)

In this case condition (WAμ,p) is satisfied if

g(θ)
μ,p

(
(1 − μ)x0 + μx1, (1 − λ)t0 + λt1

)
� (1 − λ)g

(θ)
0,p(x0, t0) + λg

(θ)
1,p(x1, t1) (50)

for every x0 ∈ Ω0, x1 ∈ Ω1, t0, t1 � 0 and for every fixed θ ∈ R
n.

For instance, let u0 and u1 be the solutions of the following problems{
�u0 + f0(x) = 0 in Q = [−1,1] × [−1,1],
u0 = 0 on ∂Q

and {
�u1 + f1(x) = 0 in B(0,1),

u1 = 0 when |x| = 1.

Then take μ = 1/2 and set

Ω = 1

2
Q + 1

2
B(0,1),

see Fig. 1. Now let uμ be the solution of{
�uμ + fμ(x) = 0 in Ω,

uμ = 0 on ∂Ω.

Then (50) for p = 1/3 reads

fμ

(
x0 + x1

2

)
� 1

2
f0(x0) + 1

2
f1(x1) (51)

(please, compare with (12)) and Theorem 4.1 tells that we can estimate uμ in terms of u0 and u1; precisely it holds

uμ

(
x0 + x1

)
�

[
1 3
√

u0(x0) + 1 3
√

u1(x1)

]3

for every x0 ∈ Q, x1 ∈ B(0,1)

2 2 2
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Fig. 1. The Minkowski combination of a square and a circle: Ω = 1
2 Q + 1

2 B(0,1).

and Corollary 4.2 yields

‖uμ‖Lr(Ωμ) � Mq

(‖u0‖Lr(Q),‖u1‖Lr(B(0,1));μ
)

for every r ∈ (0,+∞], where

q =
{ r

n+3r
, r ∈ (0,+∞),

1/3, r = +∞.

Notice in particular that, if

f0 = f1 = fμ = f : Rn → [0,+∞),

condition (51) simply means f is concave. More generally, in this particular case, we can write the following result.

Proposition 7.1. Let f be a smooth nonnegative function defined in R
n. Let μ ∈ (0,1) and Ω0 and Ω1 be convex

subsets of Rn and denote by u0, u1 and uμ the solutions of{
�ui + f (x) = 0 in Ωi,

ui = 0 on ∂Ωi

for i = 0,1,μ respectively, where Ωμ = (1 − μ)Ω0 + μΩ1, as usual.
Assume f is β-concave for some β � 1, that is f β is concave.
Then (30) holds with

p = β

1 + 2β

and consequently (31) holds with

q =
⎧⎨
⎩

βr
nβ+r(1+2β)

for r ∈ (0,∞),

β
1+2β

for r = +∞.

In case f is a positive constant (β = +∞), the same conclusions follow with p = 1/2 and

q =
{

r/(n + 2r) for r ∈ (0,∞),

1/2 for r = +∞.
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Proof. The proof is a direct application of Theorem 5.2, in view of Lemma A.1 of [18]. �
Notice that the assumptions of the above proposition imply that the involved solutions u0, u1 and uμ are all

p-concave in their own domains, see [5,23,25].
The example of the Laplace operator can be generalized by considering the q-Laplacian for q > 1:

F
(
x,u,Du,D2u

) = �qu + f (x,u,Du),

where �qu = div(|Du|q−2Du), as usual. In this case we set

g
(θ)
i,p(x, t) =

{
t
q+1− q−1

p fi(x, t
1
p , t

1
p
−1

θ) if p �= 0,

et (1−q)fi(x, et , et θ) if p = 0,
i = 0,1,μ (52)

and we can apply Theorem 5.2 again if (50) holds. Notice however that our method works for C2 solutions, but in the
case of the p-Laplacian (with p �= 2) in general we have C1,α solutions (see for instance [34, Theorem A.1]); in this
case our results can be applied to a sequence of regularized problems and then we take the limit.

Another generalization of the Laplacian is the Finsler Laplacian �H u, which for a regular function u is defined as
follows

�H u = div
(
H(Du)∇ξH(Du)

)
,

where H(ξ) is a given norm in R
n, that is a nonnegative centrally symmetric 1-homogeneous convex function (or, if

you prefer, the support function of a centrally symmetric convex body), and ∇ξ denotes the gradient with respect to
the variable ξ ∈R

n. For more detail, please refer for instance to [15] and references therein. Our results can be applied
to the operator

F
(
x,u,Du,D2u

) = �H u + f (x,u,Du)

exactly in the same assumptions as for the Laplacian, that is when (50) holds, where g
(θ)
i,p is given by (49).

The Laplacian and the q-Laplacian are however classical matters of investigation and the results above stated could
to some extent be considered as not completely new. Indeed results similar to the ones we could obtain by applying
Theorem 5.2 to some suitable particular situation, have been already used to prove Brunn–Minkowski type inequalities
for some variational functionals: see for instance [10,12] for the Laplacian and q-Laplacian, while in the case on the
Finsler Laplacian related results can be found in [43].

Completely new applications are instead obtained when considering for instance Dirichlet problems for Pucci’s
Extremal Operator M−

λ,Λu.
Pucci’s Extremal Operators were introduced by C. Pucci in [32] and they are perturbations of the usual Laplacian.

Precisely, given two numbers 0 < λ � Λ and a real symmetric n × n matrix M , whose eigenvalues are ei = ei(M),
for i = 1, . . . , n, Pucci’s extremal operators are

M+
λ,Λ(M) = Λ

∑
ei>0

ei + λ
∑
ei<0

ei (53)

and

M−
λ,Λ(M) = λ

∑
ei>0

ei + Λ
∑
ei<0

ei . (54)

We recall that M+
λ,Λ and M−

λ,Λ are uniformly elliptic and positively homogeneous of degree 1; moreover M+
λ,Λ is

convex, while M−
λ,Λ is concave over Sn (see [9] for instance).

Again Theorem 5.2 can be applied to

F
(
x,u,Du,D2u

) =M−
λ,Λ

(
D2u

) + f (x,u,Du)

with the same assumptions as for the Laplacian and the Finsler Laplacian, that is when (50) holds, where g
(θ)
i,p is given

by (49).
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In fact the same conclusion holds for every elliptic equation of the type

F
(
D2u

) + f (x,u,Du) = 0,

where F : Sn →R is concave and positively 1-homogeneous, as it is easily seen.

7.2. Applications of Theorem 6.6

Next we discuss applications of the rearrangement technique introduced in Section 6 to the examples given in the
previous subsection. Also in light of the above discussion, it is easily seen that Theorem 6.6 can be applied to the
Laplacian and in particular to the problem{

�u + f
(|x|, u, |Du|) = 0 in Ω,

u = 0 on ∂Ω,

when the function

gp(s, t) = t
3− 1

p f
(
s, t

1
p , t

1
p

−1
r
)

is not increasing with respect to s ∈ [0,+∞) and concave with respect to (s, t) ∈ [0,∞)2, for every r � 0, for some
p ∈ (0,1). In this case we can compare the mean width rearrangement of u with the solution v of the same problem
in the ball Ω� with the same mean width of Ω and finally get (7).

For instance, when f ≡ 1, we can express the result so obtained in a striking way in terms of torsional rigidity:
among convex sets of given mean width, the torsional rigidity is maximized by the ball. When we denote by τ(A) the
torsional rigidity of the set A, we can translate the latter sentence in the following Urysohn type inequality (see [36]
for instance).

τ(Ω) � τ
(
Ω�

)
for every convex set Ω.

On the other hand this is weaker than the well known inequality (see [31]) τ(Ω) � τ(Ω�), since τ is increasing with
respect to inclusion and

Ω� ⊆ Ω�

by classical Urysohn inequality between mean width and volume. The latter in fact implies that in general we cannot
expect to find interesting new inequalities by applying Theorem 6.6 to equations involving the Laplacian or some
other divergence type operator, which better fits to Schwarz symmetrization. Similar considerations obviously hold
for the p-Laplacian. On the other hand in the case of Finsler Laplacian Theorem 6.6 cannot be applied either because
�H is not invariant under rotations.

When instead considering Pucci’s extremal operators, Schwarz (or any other kind of) symmetrization has not been
successfully applied until now, at least to our knowledge. In this case Theorem 6.6 can be applied to the operator

F
(
x,u,Du,D2u

) =M−
λ,Λ

(
D2u

) + f
(|x|, u, |Du|)

precisely under the same assumptions as for the Laplacian, and in this case it yields completely new results.
As a paradigmatic explicit example, let me write the following proposition.

Proposition 7.2. Let Ω be an open bounded convex set in R
n and Ω� a ball with the same mean width of Ω . Let u

and v solve the following problems{
M−

λ,Λ

(
D2u

) + 1 = 0 in Ω,

u = 0 on ∂Ω,

and {
M−

λ,Λ

(
D2v

) + 1 = 0 in Ω�,

�
v = 0 on ∂Ω .
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Then

‖u‖Lp(Ω) � ‖v‖Lp(Ω�)

for every p > 0, including p = +∞.

Similarly to what we observed at the end of the previous subsection, the results obtained for the Pucci opera-
tor M−

λ,Λ hold in fact for every elliptic equation of the type

F
(
D2u

) + f
(|x|, u, |Du|) = 0,

where F : Sn →R is concave, rotationally invariant and positively 1-homogeneous, as it is easily seen.
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