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Abstract

In this paper, we consider the global wellposedness of 3-D incompressible inhomogeneous Navier—Stokes equations with initial
data slowly varying in the vertical variable, that is, initial data of the form (1 + €% ag(xy, £x3), (8ug (xp, €x3), ug(xh, ex3))) for
some o > 0 and ¢ being sufficiently small. We remark that initial data of this type does not satisfy the smallness conditions in
[11,18] no matter how small ¢ is.
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MSC: 35Q30; 76D03

Keywords: Inhomogeneous Navier—Stokes equations; Littlewood—Paley theory; Wellposedness

1. Introduction

In this paper, we investigate the existence of some large global solutions to the following 3-D incompressible
inhomogeneous Navier—Stokes equations with initial data slowly varying in one space variable:
dpo+diviou) =0, (1,x) eR" xR,
0y (pu) +div(pu @u) — Au+ VII =0,
divu =0,
Pli=0 = po,  puli=0 = mo,

(1.1)

where p,u = (uy, us, u3) stand for the density and velocity of the fluid respectively, I7 is a scalar pressure function.
Such a system describes a fluid which is obtained by mixing two immiscible fluids that are incompressible and that
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have different densities. It may also describe a fluid containing a melted substance. One may check [20] for more
background of this system.

When the initial density has a positive lower bound, LadyZenskaja and Solonnikov [19] first established the unique
resolvability of (1.1) in bounded domain £2 with homogeneous Dirichlet boundary condition for «. Similar results
were obtained by Danchin [14] in R with initial data in the almost critical Sobolev spaces. Simon [24] proved the
global existence of weak solutions of (1.1) with finite energy (see also the book by Lions [20] and the references
therein). Abidi, Gui and Zhang [3] investigated the large time decay and stability to any given global smooth solutions
of (1.1).

When the initial density is away from zero, we denote a def % — 1, and then (1.1) can be equivalently reformulated
as

da+u-Va=0, (t,x)eR" XR3,
oru+u-Vu+ (1 +a)(VIT — Au) =0,
divu =0,

(a, u)|i=0 = (ao, uo).

(1.2)

Notice that just as the classical Navier—Stokes system (which corresponds to the case when a = 0 in (1.2)), the
inhomogeneous Navier—Stokes system (1.2) also has a scaling. Indeed if (a, ) solves (1.2) with initial data (ag, up),
then for V¢ > 0,

def def
(a,u)¢ = (a(€*,€), eu(€*, £)) and (ag,uo)e = (ao(€), Lug(L-)) (1.3)
(a, u), is also a solution of (1.2) with initial data (ag, ug)¢.

In [13], Danchin studied in general space dimension d the unique solvability of the system (1.2) with initial data
being small in the scaling invariant (or critical) homogeneous Besov spaces. This result was extended to more general
Besov spaces by Abidi in [1], and by Abidi, Paicu in [2]. The smallness assumption on the initial density was removed
in [4,5].

Very recently, Danchin and Mucha [16] noticed that it was possible to establish existence and uniqueness of a
solution to (1.1) in the case of a small discontinuity for the initial density and in a critical functional framework. More
precisely, the global existence and uniqueness was established for any data (pp, uo) such that for some p € [1, 2d)
and small enough constant ¢, we have

loo—11  _j,a +lluoll _a  =c. (1.4)
M(B, , P (R B, ?

( p.1 p,1 Rd)

—14+ 4 —1+ d
Above, M (B o ” (R%)) denotes the multiplier space of B ol ”(R), which is the set of distributions @ such that ya
d

—1+4 —-1+4
isin B o ” (R4) whenever v is in B o ”(R?), and the norm of which is determined by

def
lall ~ _pe = sup  lYall ..
MBIl a= B,

p.1
On the other hand, motivated by results concerning the global wellposedness of 3-D incompressible anisotropic
Navier—Stokes system with the third component of the initial velocity field being large (see for instance [22]), we [23]
relaxed the smallness condition in [2] so that (1.2) still has a unique global solution provided that

(laol 3 + b _v.3)exslColid] .3) =eo s
. B B

3
B, Pl P

for some ¢y sufficiently small and p € (1, 6). This smallness condition (1.5) was improved by Huang and the authors
of this paper [18] to

(laolioe + | g exo(C i |-1.g) <o 16

p.r p.r

for some p € ]1,d[, r € ]1, oo[ and in general d space dimension.
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Before going further, we recall the functional space framework we are going to use in what follows. As in [8,12,
21], the definitions of the spaces we are going to work with requires anisotropic dyadic decomposition of the Fourier
variables. Let us recall from [6] that

Ala=F o2 E)a),  Ala=F (o2 " 15))a).

Sta=F ' (x(27%&nl)a), Sta=F'(x(27"&l)a) and
Aja=F Yp(27/|E])a), Sia=F"'(x(2771&l)a), (1.7)

where &, = (&1, &), Fa and a denote the Fourier transform of the distribution a, x (t) and ¢(z) are smooth functions
such that

3 8 ,
Suppp C {teR/><|t|<=¢ and Vr>0, Z(p(Z*fr)zl,
4 3 =

4 .
Suppxc{reR/Mfg} and X(r)+Z¢(2_Jr)=1.
j=0

Definition 1.1. Let (p, r) € [1, +00]?, s € Rand u € S}, (R?), which means that u € S'(R?) and lim_, o [|Sjull 1 =
0, we set

1

def i r

luell s, = (Zz"'ﬂm,»mlzp) :
JEZ

e Fors < % (ors = % if r = 1), we define B;’,(R3) déf{u € SA(R3) | ”””B‘;,r < oo}.

o If £k € N and %+k§s < %+k+1 (0rs=%+k+1 if r = 1), then B‘I‘,‘,(R3) is defined as the subset of
distributions u € S, (R3) such that 9Pu e B‘f,frk (R3) whenever |8| = k.

Notations. In all that follows, we shall denote
¢ def ¢ 3
B, = B;J(IR{ )-

2

Definition 1.2. Let p be in [1, +00], 51 < 5052 < - and u in S}/, (R3), we set

1
p
def ks1 ALs h
lullgsyss = 3 21252 AgAjuf .
k,teZ?

The case when s; > % or 5o > % can be similarly modified as that in Definition 1.1.

Motivated by the study to the global wellposedness of 3-D classical Navier—Stokes system by Chemin, Gal-
lagher [9] and by Chemin, Gallagher and the first author of this paper [ 10] with some large initial data slowly varying
in one direction, Chemin and the authors of this paper [1 1] proved the same type of global wellposedness result as that
in [23] but with the smallness condition being formulated in critical anisotropic Besov spaces for the initial velocity
field and initial density in the usual isotropic Besov spaces. We should point out that there is tremendous difficulty in
propagating anisotropic regularity for the transport equation.

More precisely, the following theorems were proved in [11]:

Theorem 1.1. (See Theorem 1.2 of [11].) Let p be in 13,4[ and r in [p, 6[. Let us consider an initial data (ag, ug) in

3 2 1 3
7 —+5.5 —14= . .. .
the space By x (B, " " NB. 7). Then there exist positive constants co and Cq such that if

def 2
n= (||a0||B§, + [lug ||%;1+%,%)8XP(C0 g ||%;1+%,%) < co, (1.8)
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the system (1.2) has a unique global solution

3 3
0 €Cy([0.00): B] (BY)) and u e Cy(10,00): B, 7 () N L (&Y BT (BY)). (1.9)

Moreover, there hold

h
u ||LM(R+%) %,%)—Hlalle(WBls’ +,JZ1”88 u ||Ll(]R+ %%)gcn,
3 3
| HZOO(W%, +3. JFUZIH88 ju +’%;1+%,%)52””0” g e (1.10)

3 143
Theorem 1.2. (See Theorem 1.3 of [11].) Let o be a real number greater than 1/4 and ag a function of B N B,

for some p in 13,4[ and q in ]%, 2[. Let vé’ = (vé, yé) be a horizontal, smooth divergence free vector field on R?,
belonging, as well as all its derivatives, to LZ(RX3; H~Y(R?)). Furthermore, we assume that for any o in N3, 9% 93 v(})'

-1,3 . . . L
belongs to B, '* (R3). Then there exists a positive o such that if € < eo, the initial data

ay(x) = €%ap(xp, €x3), ug(x) = (vg(xh, £x3), 0) (1.11)

generates a unique global solution (a®, u®) of (1.2).

Let us remark that Theorem 1.1 implies the global wellposedness of (1.2) with initial data of the form:

(ao(xn. x3), (e (xn, £x3), u(xp, €x3)))

for any smooth divergence free vector field ug = (ug, u(3)) and with ¢, |lag|| 3, for some p in ]3, 4[, being sufficiently
B P

P
small.
We also mention that Gui, Huang and the second author of this paper [17] proved that: given ag € W7 N H?
for some p € (1,2) and o > l, vg as in Theorem 1.2 and some smooth divergence free vector field wog = (wg, wg),

(1.2) has a unique global solution with initial data

ag(x) =€%ap(xp, ex3) and wuy(x) = (vg + ewg, wS)(xh, £X3) (1.12)

provided that ¢ is sufficiently small.

The purpose of this paper is to decrease the value of o in (1.11) and (1.12) when the initial velocity is a sort of
well-prepared data with one slow variable.

Our main result in this paper can be stated as follows:

1
Theorem 1.3. Let ag € H? and ug € %g’ 2N H? with divug = 0. Then for any o € 10, 1/2[, there exist some positive
constants Cqy and co > 0 so that if

eexp(Colluoll® | 1) +e2llaoll 3 exp(Coexp(Colluol® , 1)) < co. (1.13)
%2’2 822 %2’2
(1.2) with initial data
a§(x) = e%ao(xn, £x3), u(x) = (suf (xp, £x3), uj (xn, £x3)) (1.14)
has a unique global solution
aeC([0,00); H*(R?))  ueCpy([0,00); H*(R?)) N L*(RY; B (RY)). (1.15)

Moreover, there hold
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3
h a..,h 2

[ ||ZO°(R+ ) ;) —i—i]Z::] |9:0;u ||L1(R+;‘Bg'%) < Csexp(CHuoH%gv%),
3

| ||LOO(R+ %2£)+ Z||aa u ||L1(R+% 0y =4(e +lluol 21) (1.16)

i,j=1
Let us point out that as

||u0(xh, SX3)|| 143 > Ca_% and &7 “ao(xh, SX3)H 3 > ng_ql ,
By, T’ B

initial data like (1.14) does not satisfy either the smallness condition (1.6) nor that in (1.8).

We also mention that by combining the method in this paper with that in [4], we can improve the regularity of the
initial data in Theorem 1.3 to be the critical one. For simplicity, we shall not pursue this direction here.

The organization of this paper is as follows:

In the second section, we first prove the estimate for the free transport equation with convection velocity in some
anisotropic Besov type space, we then prove the related estimates for the pressure term.

In the third section, we prove Theorem 1.3.

In Appendix A, we collect some basic facts on Littlewood—Paley theory which has been used throughout this paper.

1.1. Scheme of the proof and organization of the paper

Again due to the difficulty of propagating anisotropic regularity for the transport equation as we mentioned before,
motivated by [10], we re-scale the unknowns as
a(t,x) défs"b(t,xh,em), uh(t,x)défevh(t,xh,sm), u3(t,x) défv3(t,xh,sx3). (1.17)
Let us denote
S (Vheds) and A, = A + 202,
Then (b, v) verifies
db+ev-Vb=0, (r,x)eRt xR>,
"+ ev - VU + (1 +&7b) (VAIT — A0") =
d v +ev- Voo + (14 e7b) (%9317 — Agv3) 0, (1.18)
divv =0,
(b, v)|¢=0 = (ao, uo).

The advantage of this formulation is that there is no slow variable for ag. However, the estimate to the pressure
function turns out to be a big difficulty. As a matter of fact, by taking space divergence to (1.18) and using divv =0,
we get

VeIl = 7 Vo (=Ap) " (divy (bVIT) + £d3(bed3IT)) + Ve (—A) " divy divy (v ® v")
+eVe(=A) N divy 33 (v ") — 26 Ve (—AL) 103 (v? divy, v")
— &7V (—Ap) " divy (bAV") — 7 Ve (= Ap) T 33 (bAV?). (1.19)

Notice that the last term above is of order £ ~!, which looks like the problem of the classical Navier—Stokes system
with ill-prepared data slowly varying in one direction, where the authors [11] require the analyticity assumption for
the third variable of uq in order to prove the global wellposedness result. Our new observation here is to write

e7Ve(=A) ' 03(bAY) = 7 Vo (= A) T (3368 0%) — 7V (—A) T (b A, divy o),

which together with the law of product forces us to consider the propagation of regularity for the transport equation
of (1.18) in Bf{ for some s > 1. To overcome this difficulty, we will use a completely different argument than that used
in the proof of Theorem 1.1 in [11], where we only need to propagate B; with s € ]0, 1[ for the transport equation.
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Considering the strong anisotropic property of the system (1.18), we shall first estimate v in some critical
anisotropic Besov spaces. Then by carefully choosing the norm for the convection velocity in the transport equa-

3
tion of (1.18), we succeed in propagating the isentropic regularity in 827 for b.

Let us complete this section by the notations of the paper: Let A, B be two operators, we denote [A; B] =
AB — BA, the commutator between A and B. For a < b, we mean that there is a uniform constant C, which may be
different on different lines, such that a < Cb, LrT(LZ(Lg)) stands for the space L ([0, T']; L? (Ry, x Ry,; LY(Ry;))).
We denote by (a|b) the L%(R3) inner product of a and b, (d;) ez (resp. (dj k) /,keZZ) will be a generic element
of £1(Z) (resp. £ (Z?)) so that Yjendj=1@esp. Y djx=1).

For X a Banach space and I an interval of R, we denote by C(/; X) the set of continuous functions on I with
values in X, and L9(I; X) stands for the set of measurable functions on / with values in X, such that t — || f ()| x
belongs to L9 (1).

2. Preliminary estimates

In this section, we shall first present a result concerning the propagating of isentropic regularity for the transport
equation with the convection velocity in some appropriate anisotropic space. We shall also provide the estimates for
the pressure function in (1.18).

3
Lemma 2.1. Let by € B2, v satisfy fOT IVv(@)||L, dt < o0 with v =vq + vy and

| Vo) ”L = Z 24 (2 Vava(® HL%(L;O) + |8V @) Lo T (INEIOY L%(LZO))' 2.1
JEZ
Then the following transport equation

{atb+v~Vb=0, (t,x) e R x R3,

2.2
bli—o = bo (2.2)

3
has a unique solution b € C([0, T1; B22 ), which satisfies for 0 <t <T

7By

t
21l R IIbollgzg exp(CO/IIVv(t’) HLdt’), 2.3)

where the norm || - || _ is given by Definition A.1 in Appendix A.

3
Le(B3)

3
Remark 2.1. It is easy to observe from (2.1) and Lemma A.1 that for all f € 822 (R3), one has
IVfilLe SUVFIL S IIVfIIB%-
2

Since the diffusion terms in (1.18) is A, which is anisotropic in the horizontal and vertical variables, we shall derive
the a priori estimate of the convection velocity v in (2.2) in the anisotropic Besov spaces, which prevents us from

3
getting the L' (R™; B; (R3)) estimate for the gradient of the velocity v. That is the main reason why we choose to
work with the more complicated norm || - ||, given by (2.1).

Proof. For simplicity, we just prove the a priori Estimate (2.3) for smooth enough solutions of (2.2). The existence
part of Lemma 2.1 follows from constructing appropriate approximate solutions and then performing the uniform
estimate of the type (2.3) for such approximate solutions. The uniqueness part of Lemma 2.1 is a direct consequence
of (2.3).

We first get by taking 9;,i = 1,2, 3, to (2.2) that

0,0;b+v-Vo;b+0;v-Vb=0 fori=1,2,3.
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Applying A; to the above equation and then taking the L? inner product of the resulting equation with A j0ib, we
obtain

1d 2
5E]|Ajaib(t)|\L2 + (Aj(v-Vd;b) | Ajib) + (A;(dv- Vb) | Ajaib) =0. (2.4)
Using Bony’s decomposition (A.1) for v - V9;b gives
v-Vo;b=T(v,Vdb)+R(v, Vo;b).
It follows from a standard commutator’s argument that
(A (T. Vo)) | Ajaib)= Y ((1A): Sy—1v]- VAdb | Ajdb)
lj'—jl=4
+ ((Sj—1v—Sj_1v) - VA;Aj13;b | Ajd;b))
—%ij_ldivlejaib|2dx.
R3
So that we deduce from (2.4) that
t
[aj000] 2 S48 0012+ Y [ (145 S—1v]- VA3 5
lj'—il<4{
+ [ (Sj—1v = Sj—1v) - VA;A ;3| ) (¢) dt’
1

+/(||Sj,1 divvllzo[|A;9;bll 2 + | AR, VOb) |

0
+ |2 @v- VD) o) (') dr'. (2.5)
Applying classical commutator’s estimate (see [6] for instance) and Lemma A.1 yields
1 t
> /“ (83 8101 VA aib(1) | pdr’ 277 30 27 [ISy V()| o | A jaib (1) 2’
lJ'=jl=4% lj'=jl<4

t
Szt Vo) | vp(e) |y v
0 2

The same estimate holds for the second line of (2.5) and fé I1Sj—1divo(@)llL=llA;d;b(t")|l 2 dt’.
On the other hand, we deduce from Lemma A.1 that

[ajR@. Va2 S 30 (870 | SiaVaib ()] 2

J'=j—No
S > dj/mz—%||Vv(t’)||LooHVb(r’)HB%
J'=j—No _ 2
24 [Vo() | = [0 ()] -
2
Hence by virtue of (2.5), we obtain
t
140l o2y S 27 M1Ajboll 2 + f(djz—%||vU||Loo||a,-b||B% + |2 @ - VD) 2) (') dr'. (2.6)

0 2

To deal with the last term in (2.6), we get, by applying again Bony’s decomposition (A.1) to dv - Vb, that
0jv-Vb="Ty,Vb+ R(9;v, Vb).
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Applying Lemma A.1 gives

_I
ATV | S D 1Sj—18ivlleell Ay Vbl 2 Sdj(1)2 FIVUle VB .

[J'=Jjl=<5 2
and
L
18742Vl o2y + 18420l 208y S D 221A¢Vb 2 S V6l 3
£<j'+1 2

so that

[2; (RO VD)2 S D (18 Vavall 2 1842 Vb oo 12,

J'=j—No

+ ”Aj’vhvb||L2(Lgo)||Sj/+2Vb||L%(L2))

<d;i (027 2| VllLIIVb 1,
62

2

the same estimate holds for ||A ;(R(d3v, Vb))|| 2. As a consequence, we obtain

t
INCIR D Ry 2"/(||VU||L«>0+||Vv||L)||Vb||BZ; dar'
0

which along with the fact: ||Vv||L (L) S ||Vv||L L) and (2.6) implies that
bl <lboll 3+ [[9o)] [ 3 ar
ety =Wl € (1900 0]
Applying Gronwall’s inequality to the above inequality yields (2.3). This completes the proof of the lemma. O

To estimate the pressure function I7 in (1.18), we get, by taking space divergence to the momentum equation
of (1.18), that

—ApIT = & divy, (bV,IT) + 277 83(bd3 IT) + e divy, div, (v @ v")

+ edivy, 93 (USUh) + 8332 (v3)2 — &% divy, (bAgvh) — %03 (bA5v3). 2.7
Proposition 2.1. Let (b, v, IT) be a smooth enough solution of (1.18) on [0, T] and g(t) & ||v3(t)||2 1 We denote
B, 2
t t
def 12 ’ def / /
IT, —Hexp< /g(t)dt) and v = vexp(—k/g(t)dt). (2.8)
0 0
Thenfort [0, T]and ||b||_. 3 < x% one has
LF®B;5)
Vel o = g 1 gt P et # A AL
L (B, 7) L°°(Bi) o8, ?) L} (B, Ll (B, %) LI(B;?)
+eTbI_ 3 Al o) 2.9)
Ie?) L}eB) 1)

where the norm || - ||L} is given by Definition A.2 in Appendix A.
.8
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Proof. Thanks to (2.7) and divv =0, one has (1.19), from which, we infer

VeI o1 SelbVellill o1 +e|v" @) 3 +v]
LB, %) Li8,?%) Ll(B,? L(B,2)
+p¥diva ol | o1 e (—AD)TIV(VE - A vk)” 0l - (2.10)
LB, ?) LB, )

Next we estimate term by term above.

Notice that the operator (8|D3|) (— Ah)2 4( A1V, is a Fourier multiplier with symbol (s|§3|)2 X
|§h|1_7(|§h|2 + 82§32) L(i&,, ie&3), which is bounded by 1. Therefore, by virtue of Definition 1.2, the operator

o o ) 0,1 0,1 .
(e|D3))2 (—Ah)%_Z (—A¢)~ 'V, maps uniformly bounded from B, to B, 7, we write

e%||(=A) Ve (Vb - Am)u 1

=% | (e1Dal) 2 (=AW T (= A)TIV(= AN TIFE(IDs) (Vb A o)
Li(B, %)
<e?||Vb- Amn

—1 l—o ,

2%

3
2
which together with the law of product of Lemma A.2 and Proposition A.l ensures that

&7 (=2e)7' Ve (Vb Am)u SeIVhl | g IAeul

1 a
02) 5
2 t 2

wo
B —

LB, %)

Sez|vbl 1 [1Agvll
0062) 1

t ) t

N o
Bl

Whereas applying the law of product of Lemma A.2 to v ® v" gives

Iy g S 1 ] oy
which together (2.8) ensures
h
o @utl, ot S, o I et

Along the same line, applying the law of product of Lemma A.2 to the remaining terms in (2.10), we readily get

VI, <C|&%|b V. IT + h h
Ve xllLt] 0} = (8 I IIZ?O(%;,%)H I || e elv HLSO(%S’%)HU’\||L}(%§'%)
3 dt' +e%||Vb A , 2.11
/ Il bty 450080 isent, ) o

which together with the fact that

/||v3|| AT (/||v3|| nea d) 1 S L

2 2 2

implies (2.9). This completes the proof of the proposition. O
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Taking A =0 in (2.11) leads to the following corollary:

Corollary 2.1. Under the assumption of Proposition 2.1, one has
Cc

IV 1 < (T N [ !
EERATOSES 1‘“"”””5?0(32%) O NS LA TO S
+ " 3 +e7|b 3 A ,
O L FORET L O N LS NS
whenever |bl| . 3 < 2C18(,.

L®(By)
3. The proof of Theorem 1.3

The purpose of this section is to present the proof of Theorem 1.3.

2.12)

Proof of Theorem 1.3. Given initial data (ag, ug) by (1.14), Theorem 0.2 of [14] ensures that the system (1.2) has a

unique solution on ]0, 7*[ so that

aeC([0,T*[; H*(R%))  ueC(l0, T*[; H*(RY)) e L*([0, T*[; H*(R?)).

We may assume that 7* is the lifespan to this solution (a, u). Then to complete the proof of Theorem 1.3, it amounts

to prove that 7* = oo and there holds (1.16).

In order to do so, we denote (b, v) to be given by (1.17). Then (b, v) verifies the system (1.18) with initial data
(ap, up). We shall first investigate the LIT([O, T*[; Lip(R3)) estimate of v, and then use the relation (1.17) to derive

the LlT([O, T*[; Lip(R3)) of u, finally we establish the L>°([0, T*[; H*(R?)) estimate for (a, u).

In fact, motivated by [23,22], we shall deal with the L? type energy estimate for each dyadic block of v” and v?

separately.
3.1. The anisotropic estimate of v"

Let g, v;, I1) be given by (2.8). Then by virtue of (1.18), we have

8tvff + )\g(t)vi’ - Asvi’ =—cv- Vvi‘ - (1 + aob)VhHA + sgbAgvff.

Applying the operator A?AZ to the above equation and then taking the L? inner production of the resulting equation

with A? AZvi‘, we obtain
1d hav, h 2 hav, h 2 hav,h hav,h
EEHAjAkuk(t)HLZ—i—)xg(t)HAjAkv)L(t)HLz— A ATALVY - ATA Y dx
R3
:—fAhAv(ev-Vvh—i—(l—i—s“b)V IT, —e°bA vh) CAPAVY dx
j 5k N AL eUy jRkU) GX-
]R3

However by using integration by parts and Lemma A.1, we get

~ [ eniapd - ahapda= [Dal AL+ @ alapd s = (Y + 2% atapd

R3

whence a similar argument as that in [11,15,23] gives rise to

d .
SATARL O] 2+ 2 AT A O] 2+ (22 + 2% [ AT AL O] 12

sefajap(e- Vi)l .+ [ATAY((L+e7B) VilL) | 2 + 67 [ AT AL (bA:")

[z
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Integrating the above inequality over [0, #] and using Definition A.2, we write

41 @ +Auil 04, A 82||vi’||Lt,(%g,g))
5”“0”82,%+C( HU'V”A”L[, ') +”( +e U”)thk”Lt1 %gi)JrS [oacvy| [(%22))-
Notice that
1 1
h N PN
0] o3 =01 Il
applying Lemma A.2 and then Definition A.2 yields
eloasit] /nv )]sl oy
1
2
(fuv Ll O o) L s )
and
SHU-VU)LH 0l <8”U Vh”x” 01 +8”v agvk” 01
Li(B,?) LI(B, %)
€2 h h
- C .
=5, 2s)+ 1] ot 41 s+, o)

While we get, by applying again the law of product of Lemma A.2 and Proposition A.1, that

IbVRILA 51 Sl Ly IVRITL - o1 S 1IBl 3 ||Vh17A||
Lrl(;B 2 [} 2) Ll 2 L>® 2

04>
2 (B, +(By %) B;) 2

LI(B,?)

and

2

bA b A
Ioacitl, or SI s 18kl oy

As a consequence, we obtain

[l
t

s LA ' (”A” 21+82”U/\” 03)

0,1 )
©(8,?) L} ,(B,2 Li(B8,%)

< +C(efv" +
] o1+ CCell"| Wo;)nvxnu z% 481, o,
+ 1+ b VIl +&%b Agv! . 3.1
(1+¢°] ”z;w(s;))” A ot Fe “I ||Z?O(B§)|| SUAHL}(%(;%)) (3.1)

Now for some c; sufficiently small, we denote Ty to be determined by

To = suplr € [0.T*. b 5 <ci/e?}. (32)
L®(B})

2

Then by plugging Estimate (2.9) into (3.1), we get for ¢ < Ty that

2
I oty FHEL, s #5002 s + €I, o)
h
= lebl oy + 51021 1(%?)

O] ot L et + 12, on +eF00 iad )

t ;32 2 [vg 2 L ( 2) Lf(%Z
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Then taking A > C and ¢ being small enough in (3.2) results in

A AI 24, el | o03)
LB LB, ?)
h
< ||uo||%g.% reel] %O;)nvkn Pl ) 63
fort < Tp.

3.2. The anisotropic estimate of v3

By virtue of the v equation of (1.18), we get, by a similar argument of Subsection 3.1, that

[ A7 AP ey T (2 +2%)| A? A’ Lj(L?)

= [ajakug] o+ C (e AT AL Vo) e,

+ 8” A]}Az((l + g"b)53317) ”L,1 ay T &’ ” A?AZ(Z’A€U3) “L,‘(LZ))’
from which, we infer
3 3 2.3
+ + 5
191 gty U0 oy #2103
3
<Hu0|| (2)1 +C( ||v Vv ” 1(% 1)+8||( +80b)83317” g1)+g(7||bA8v ”L (%0;)).
As divv = 0, applying the law of product of Lemma A.2 yields
-V < Y + di
o9l o ST oy It oy
I 3 3 h
ST e L T L TS
Then thanks to (2.12), we deduce that
3 3 21,3
1 oty + 500 o #2170 )

<1l oy +C(eth!|~?o(%g,%)(8!|v”ﬂ ety 17 get)

+<f3||v3H~ oy [0 Ly &bl |aco"| o) (3.4)

I, ?) LI, Z?(BZ% L) (%2 2)
for t < Ty determined by (3.2).
3.3. The closure of the anisotropic estimate
Let T be determined by
Tmaxle 0T gy w8y L ) sCletluol o)) 69

>(B, %) LI(B, %) L{(B, %) B,
for some sufficiently large constant C1, which should be chosen later on. We shall prove that T = Ty = co whenever
there holds (1.13). Otherwise, taking
c
S 9
8CCr(e+ lluoll o 1)
B, 2

we deduce from (2.8) and (3.3) that fort <%
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h Cri.h 2.}
(1 gty + 50 ey +, 0;))exp( /nv

h ol 2.,k
usMW +1<uvkn s PO 0z

i
N
~—

+Ccy||A )
=2(Jub] oy + Cerl o], o)

which leads to

h €l h 21,k
1, g, * 5  got +E7l0 ||Ll(%o,;)>
et 1+ Calan], oy Joo(e [ PO ar) 56
Let us take ¢ is so small that eCCjic < c¢. Then for t < ¥, one has
1+2 eCCicy
e 2||b”z;>0(z;§ A" ]|L(%22) - (& + lluoll 22)<8+Iluoll%g‘%

Hence if we take ¢ so small that

c 2 2
CC1£(8+|Iuo|I%0_%)§Z and CC18(8+IIuOII%O,%) <c

=0¢,
2 2

we deduce from (3.4) that fort <%

Pl or 5000, g #2IPg) <4l luol o). (3.7

) 0,1
s, 7) "2 Ll %) Lles,?) B, 2

Therefore combining (3.6) with (3.7), we conclude that there exits a small enough positive constant 79 so that if

2 -2
e <noC; (e + ||MO||%0_%)

2

one has
h f h &2yt
"L ot S0 o 21, o)
32C 2
54(8+|Iu0|| O1)exp(7(s+lluoll 01;)) fort <%. (3.8)
B

2 2

On the other hand, it is easy to observe that when k > £, the support to the Fourier transform of AQ Ajv is included
in 2%C for some annulus C in R3, so that the operator A j AZ A} is identically zero if |j — k| > No for some fixed

integer No. Along the same line, when k < £, the operator A ; Az Az is identically zero if j > £ + Ny. Hence it follows
from Lemma A.1 that

8||Aja3v||L}(Lg(L;°))5 Z 82k2€||AZAzU”L}(L2)+ Z 82k||A'/§A233vHL,1<L2>

k>t k<t
[k—jI<No =j—No
Selvl 510 D0 dee2” 2+8||33v|| o Z die2 2,
Li(B;* ) k>¢ B, =
|k—j1=No £>] No

for some (dk o)y ¢cz2 € ¢1(Z?). This yields

ellA; 83U||L1(L2(L00))<d 2" 2(||v|| %21%)+s||33v|| 1 )- (3.9

2 t

N
[
—
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Applying Lemma A.1 again gives

3k L
Z ” AjAZszhv||L}(L2(L3°)) S Z 22 22 ” AQA’évUL}(m
k>¢ k>¢

lk—jl1<No lk—jl<No
_J
Sl Z die2™T A7l
R Li(B, )
Ik J1=No

and

Z H Aj AQ AyViv ” L2y S Z 2% ” AZ Ajv ” LIL?)

k<t k<t
£>j—No {=j—No
_i
Sl [Py Z 2t ARl
2 k<t Lt(%z )
E>] No

Let us denote
Va d:efZAZAZU and vb = ZAhA(v
k<t k>t
We thus obtain
> 24 (18 Vivall 2y + 1A Thvs g gt aey) < Clvl |, o3 -
JEZ (%2 )
This together with (2.1), (3.7), (3.8) and (3.9) ensures that

8||VU||L1§(L) < CCXP(CHMOH2 0%)
%2

for some large enough positive constant C.
By virtue of (3.10), we get, by applying Lemma 2.1 to the first equation of (1.18), that

2
181, 3, = ol 3 exp(CelVoll ) = laol 3 exp(Cexp(Cluoll , )

L3 (By) 2 p) 5

(3.10)

@3.11)

Then taking C1 < 8 exp(22S (e + uoll 1)) in (3.5), (3.2) together with (3.5) and (3.11) ensures that ¥ = Ty = T*
)

2
whenever there holds (1.13).

3.4. The H? estimate of (a,u)

Thanks to (1.17), (3.7) and (3.8), we get by applying Lemma A.1 that

IVully (Loo)<||ull 21+ lull 03
Ll.(B57) LB, 2)
21 a2
<|lvl 1 +e2|odv 01 SCexp(Cllugl® ;). and
L'T*(%f) 7 (By %) B, 2

1
loell 2 (Loo)Nllvll2 0.1 ||v||2 21 < Cexp(Clluol® 01):
F(By P Ly (B,%) B,

ol

(3.12)

Moreover, u satisfies Estimate (1.16) on [0, T*[. Therefore, it suffices to prove that 7* = oo in order to complete the

proof of Theorem 1.3.

With (3.12), we now turn to the propagating of H? regularity for (1.2) with data given by (1.14). The main difficulty

~ 3
in solving this problem is due to the fact that a(t, x;, x3) = e b(t, xp,, £x3) is not small in L>®(R™, B; (R3)) even if &
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is very small. That is the reason why we are going to use energy method as that in [3.4]. For this, we denote p &ef 1-+a

def 1
and '00>8(x) = 1+e%ap(xp,ex3)
solve (p, u) via
dp+u-Vp=0, (t,x)eR" xR,
poiu + pu-Vu — Au+ VII =0,

and ug ¢ (x) = (sug(xh, £x3), ug(xh, £x3)), then to solve (1.2) for (a, u) is equivalent to

divu =0, ©-13)
Plt=0= P06,  Uli=0 =U0,c-
Notice that
me < m <|p®| < m M, fort<T*.
And it follows by a standard energy estimate that for any r < T*
1 2 2 1 2
S INVBUI o2y + 190l 2 ) = 5 ll/Pooe 2 < Ce. (3.14)

Taking the L? inner product of the momentum equation of (3.13) with 9, leads to

1d 1
5 7 IVl ge + VP, < |Gou - Vue | 9i) 2| < S1/p3el 72 + Cllplluslull Lo I Vel Z2,
from which and (3.12), we deduce that for any t < T*
IVilZ o 2y + IW/PO T o) < 20Vu0.ell 2 exp(Cellull o o)) < Co. (3.15)
Note that we can also write the momentum equation of (3.13) as

Au — VII = po;u + pu - Vu,
{divu—O e (3.16)
Then by virtue of (3.12) and (3.15), we get, by using classical estimates on linear Stokes operator, that for r < T*
” V2’/‘||Lt2(L2) + ||VH||L,2(L2) = ||P8tu||Lt2(L2) + llou - V””LIZ(]})
< Ce(IV/Parull 22y + Nl 2 ooy IVELll 1321 2)) < Cee. (3.17)

To estimate || V2u/| LO(L2)> following [3,4], we get, by first acting d; to the momentum equation of (3.13) and then
taking the L? inner product of the resulting equation with d;u, that

1d
5 7 VAo 3+ | Va2

3
= —f<8,p8,u -(u-Vu) + pou - (;u - Vu) — 3 diV(,ou)|8,u|2) dx, (3.18)
R3
where we used the transport equation d;p = — div(pu). Next we estimate term by term above. Using once again the

transport equation d; 0 = — div(pu) and integration by parts, one has

fatpa,u -(u-Vu)dx
R3

3
:Z(/pujajatu(u-Vu)dx+/puj8,u(8ju-Vu)dx+/puj8,u(u-Vaju)dx>.

1

J R3 R3 R3

Notice that

1 1
lullL < CIIVullZ, | V2u| 2,
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we get, by applying Holder inequality, that
3
pul 8 0yu(u - Vi) dx| < [l pll oo ) o | Ve 12|V Bpul] 2

j=1
< CllplleeelVull?, | V2u| 21 Vol 2

1
< CellVull}2 | V272 + 1Vl

Along the same line, we have

3
)
j=1

/pujazu(f?ju-w)dx < lplzeellullzoelldeull oI Vull L3l Vull g2
R3

< 2 2

<lolliLellVuly. | Vul IV oull 2

1
< CollVull 2 | V272 + 1Vl

and
3 1
> /puf'azu(wva,»u)dx < ol 7o lulgoolly/pouel 2 | V2] -
J=1'p3
< ColIVull2, || V2u 3, + | V2u| 7 /Bl
This yields

< | V2u| 7. 11/Pdul?,

‘ /3“03,14 -(u-Vu)
R3

1
+ Co(1+ Va2 ) 1Vl | V2u| 7 + Vol

Similar to the derivation of (3.19), we get

/pafu-(atu-vmdx SN AN S

R3

and

=2

/div(pu)|8,u|2dx /,ou - (0su - Voru) dx
R3 R3

1
< llpl oo llullzoe llv/Pdull 2 Vopull 2
1
< Cellulloe I/pBiull gz + 71Vl 2.

Plugging Estimates (3.19)—(3.21) into (3.18), we obtain

d
Va2 + [ Vau® |2 < Co( 4+ [ Vu@ | 2) Va1 | VP2

+ Ce([u® ] + [ Va0 + [P 1) VP30 -

(3.19)

(3.20)

(3.21)

(3.22)

Notice that by taking L? inner product of the momentum equation of (3.13) at time ¢ = 0 with 9,u(0, x), we get

2
| /P03 (0) |7 + / (pouo - Vit — Aug) - u(0) dx =0,
R3
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which gives rise to
[vPau©] 2 = C([lpu- Vu@] 2 + [Au©)] 12)
< C(llpo.ellz=lluoellLellVuoellz2 + 1Augellz2) < Ce.
Hence by virtue of (3.12), (3.15) and (3.17), we get, by applying Gronwall Lemma to (3.22) that
Vo0l Lo r2) + 1V Ol 1212
< Ce([| VPO 2 + (1 + ”V“”i,w(LZ))”V””iw(lﬁ) ” Viu ”imz))
x exp(el}5 ) + 192y 1)+ [ V20| 22)) < Ce (3.23)

fort < T*.
On the other hand, we deduce from (3.16) that

H Viu ”LfO(U) + ||VH||L[°°(L2) < C(”Pat““L;v‘O(LZ) + |lou - Vl4||14§>0(142))

1
2 2
=< C8(||ﬁ81u||L?O(L2) + ”Vu”L[oO(LZ)) + E “V MHLI?Q(LZ)’
which along with (3.15) and (3.23) implies that
|v?

uHLmz) + IV || poo(r2) < Ce fort <T*. (3.24)

It follows the same line that
IAull 21y + IV 251y < |V (0d:u) ||L,2(L2) +[[V(ou- V“)”L,Z(LZ)
< Cllplegas) + 190l oqs) (19l 2y + [V - V)| 12,)),
from which, we infer that for r < T*

I8ulziny + 19 Mgz < Co(L+ 1813 )l
t

2

1 1
2 2.2 2
+ (”VM“I%%(LZ)”V u”z%(LZ) + ”M”L,Z(Loo))”V u”L[oo(Lz)) =G, (3.25)
where we used (1.17) so that
IVollpee 3y < Cell Vbl poo 3y = Cellbl 3.
(L) € 72 (L) € LB

Summing up (3.14), (3.15), (3.17) and (3.23)—(3.25), we arrive at
||M||LIOO(H2) + ||v“||L,2(H2) + ||8,u||L3(H1) + ”VH”L,Z(Hl) <C, fort<T* (3.26)

Finally thanks to (1.17) and (3.26), to derive the LI?O(HZ) bounds for p — 1, we only need to estimate ||V2,O||L?O(L2).

Indeed taking V2 to continuous equation of (3.13), and then taking the L? inner product of the resulting equation
with Vz,o, we obtain

t
||p||L?o(H2) < llpoll g2 exp(C/ IVl 42 d;’) fort <T*. (3.27)
0

(3.26) together with (3.27) ensures that 7* = oo. The uniqueness of this class of solution for (1.2) is classical
(see [4,14] for instance), and we omit the details here. This completes the proof of Theorem 1.3. O
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Appendix A. Littlewood-Paley analysis

In this section, we collect some basic facts on Littlewood—Paley theory, which we used throughout the paper. For
the convenience of the readers, we first recall the following Bernstein type lemma from [12,21]:

Lemma A.1. Let By, (resp. By) a ball ofR% (resp. R,), and Cy, (resp. Cy) a ring ofRi (resp. Ry); let 1 < pr < p; <00
and 1 < g3 < gy < o0. Then there hold:
If the support of @ is included in 2By, then

K255 = 50)

||8)?ha”L}fl(Lzl)~ ”a”LL’Z(LZl)'

If the support of @ is included in 2B, then

BH(E—L))
||3f3a|\Lgl @m S2 2 “a”L,’,"(LZz)’

If the support of @ is included in 2€Cy, then

) <27V qup HB“

lall g s lal=N bl

If the support of @ is included in 2¢C,, then

lall o 1y < 2V 8;\3/““L§'(L‘Z,‘)'

To consider the product of a distribution in the isentropic Besov space with a distribution in the anisotropic Besov
space, we need the following result which allows to embed isotropic Besov spaces into the anisotropic ones.

Proposition A.1. (See Lemma 2.2 of [11].) Let s and t be positive real numbers. Then for any p € [1, 00], one has
S < s
I s S W F N

In order to obtain a better description of the regularizing effect of the transport-diffusion equation, we will use
Chemin—Lerner type spaces LAT(BIS,J(H@)) (see [6] for instance).

Definition A.1. Let (r, 1, p) € [1, +00]’ and T € 10, +00]. We define ZAT (B;,) as the completion of C([0, T']; S) by
the norm

r N
def .
1/ 13 s, = (Zz"”</||ﬁqf(f)||2pdt) ) < o0,
0

q€’

with the usual change if » = oo.

We also need the following form of functional framework, which corresponds to the weighted Chemin—Lerner type
norm introduced in [22,23] for r = 1.
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Definition A.2. Let f(r) € L} (R*), f(¢) > 0 and X be a Banach space. We define

loc

def

T
oy o0 & [ FOJuo)] .
0

To study product laws between distributions, we need para-differential decomposition of Bony [7]: leta, b € S'(R?),

ab=T(a,b)+R(a,b), or ab=T(a,b)+T(a,b)+ R(a,b), where
T(a,b)=Y_Sj1aA;b, T(a.b)=T(b.a), R(a.b)=)» AjaSjjb, and

J€EZ JEZ
Jj+1
R(a,b)=) AjaA;b, with Ajb= )" Aa. (A.1)
jez t=j—1

Finally we recall the following law of product from [11]:

Lemma A.2. (See Lemma 2.3 of [11].) Let p > g > 1 with % + ql <1, and s; < %, sy < Z with s1 4+ 52 > 0. Let

P
. si+s2—2,014+03—1
o] < %, 0y < % with 61 + 03 > 0. Then for a € By R}, be %i,z’gz(ﬁ@), one has ab € B, 7 7(R3),
and
||ab||%sl+s27%,al+oz—% N ||a||%;1"’1 ||b||%xpz»”z-
14
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