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Abstract

We prove the following variant of Marstrand’s theorem about projections of cartesian products of sets:
Let K1, . . . ,Kn be Borel subsets of Rm1 , . . . ,Rmn respectively, and π : Rm1 × . . . ×Rmn →Rk be a surjective linear map. We

set

m := min

{∑
i∈I

dimH (Ki) + dimπ

( ⊕
i∈I c

R
mi

)
, I ⊂ {1, . . . , n}, I �= ∅

}
.

Consider the space Λm = {(t,O), t ∈ R, O ∈ SO(m)} with the natural measure and set Λ = Λm1 × . . . × Λmn . For every
λ = (t1,O1, . . . , tn,On) ∈ Λ and every x = (x1, . . . , xn) ∈ Rm1 × . . . × Rmn we define πλ(x) = π(t1O1x1, . . . , tnOnxn). Then
we have

Theorem.

(i) If m > k, then πλ(K1 × . . . × Kn) has positive k-dimensional Lebesgue measure for almost every λ ∈ Λ.
(ii) If m � k and dimH (K1 × . . . × Kn) = dimH (K1) + . . . + dimH (Kn), then dimH (πλ(K1 × . . . × Kn)) = m for almost every

λ ∈ Λ.
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1. Introduction

Let us denote by dimH (X) the Hausdorff dimension of the set X. For n and k integers with 0 < k < n, Πn.k denotes
the space of orthogonal projections from Rn to k-dimensional subspaces of Rn, with natural measure. A fundamental
result in dimensions of projections is the following theorem:

Theorem (Marstrand–Kaufman–Mattila). Let E ⊂Rn a Borel set. Then:

(i) If dimH (E) > k, then π(E) has positive k-dimensional Lebesgue measure for almost every π ∈ Πn.k .
(ii) If dimH (E) � k, then dimH (π(E)) = dimH (E) for almost every π ∈ Πn.k .

This theorem was first proven for planar sets by Marstrand [3]. Marstrand’s proof used geometric methods. Later,
Kaufman [2] gave an alternative proof of the same result applying potential-theoretic methods. Finally, Mattila [4]
generalized it to higher dimensions; his proof combines Marstrand and Kaufman methods.

There are other variants of Marstrand–Mattila’s theorem that were unified in a more general result due to Peres
and Schlag [7]. These authors studied general smooth families of projections, using some methods from harmonic
analysis. The crucial characteristic that is common to all families of projections considered in Peres–Schlag’s result is
a transversality property (see [7, Definition 7.2]).

We are interested in Marstrand’s projection result that actually is outside of Peres–Schlag’s scheme (the families of
projections considered here, in general, are not transversal). This result was motivated by the problem of understanding
the behavior of projections of cartesian products of sets, by a fixed projection map.

Let K1, . . . ,Kn be Borel subsets of Rm1, . . . ,Rmn respectively, and π : Rm1 × . . . × Rmn → Rk be a linear map.
Then

dimH

(
π(K1 × . . . × Kn)

)
� min

{∑
i∈I

dimH (Ki) + dimπ

(⊕
i∈I c

R
mi

)
, I ⊂ {1, . . . , n}

}
, (1.1)

with the conventions
∑

i∈∅ dimH (Ki) = 0, dim∅ = 0.
Consider the space Λm = {(t,O), t ∈ R, O ∈ SO(m)} with the natural measure and set Λ = Λm1 × . . . ×

Λmn . For every x = (x1, . . . , xn) ∈ Rm1 × . . . × Rmn and every λ = (t1,O1, . . . , tn,On) ∈ Λ we define πλ(x) =
π(t1O1x

1, . . . , tnOnx
n). Suppose that π is surjective and set

m := min

{∑
i∈I

dimH (Ki) + dimπ

(⊕
i∈I c

R
mi

)
, I ⊂ {1, . . . , n}, I �= ∅

}
.

Then we have

Theorem 1.1.

(i) If m> k, then πλ(K1 × . . . × Kn) has positive k-dimensional Lebesgue measure for almost every λ ∈ Λ.
(ii) If m � k and dimH (K1 × . . . × Kn) = dimH (K1) + . . . + dimH (Kn), then dimH (πλ(K1 × . . . × Kn)) = m for

almost every λ ∈ Λ.

We recover Marstrand–Mattila’s theorem considering the cartesian product of only one set.
Theorem 2.3 is a fundamental tool in our forthcoming work which generalizes the result of Moreira and Yoccoz [6]

about stable intersections of two regular Cantor sets for projections of cartesian products of several regular Cantor
sets. We prove the following result: for any given surjective linear map π : Rn → Rk , typically for regular Cantor sets
on the real line K1, . . . ,Kn with m > k, the set π(K1 × . . . × Kn) persistently contains non-empty open sets of Rk .
Such a result in particular implies an analogous result for simultaneous stable intersections of several regular Cantor
sets on the real line.

In another forthcoming work, in collaboration with Pablo Shmerkin, we use the results of this paper combined
with the techniques in [1] in order to obtain exact formulas for the Hausdorff dimensions of projections of cartesian
products of (real or complex) regular Cantor sets under explicit irrationality conditions.
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2. Statement the main results

Let μ be a finite Borel measure on Rm. The s-energy of μ is

Is(μ) =
¨

dμ(x)dμ(y)

|x − y|s .

We know (see [5, Theorem 8.9(3)]) that for a Borel set K ⊂Rm

dimH (K) = sup
{
s ∈ R, there is a compactly supported measure μ on K

with 0 < μ
(
R

m
)
< ∞ and Is(μ) < ∞}

. (2.1)

The Fourier transform of μ is denoted by μ̂ and defined as

μ̂(ξ) =
ˆ

Rm

e−iξ ·xdμ(x).

It is well-known that if μ̂ ∈ L2(Rm), then μ is absolutely continuous with L2-density. Energy and Fourier transform
are related as follows (see [5, Lemma 12.12])

Is(μ) = (2π)−mc(s,m)

ˆ
|ξ |s−m

∣∣μ̂(ξ)
∣∣2

dξ,

for 0 < s < m and μ with compact support.
We summarize the above observations as the following result. Let F ⊂ Rk a Borel set supporting a probability

measure ν with
´ |ξ |s−k|ν̂(ξ )|2dξ < ∞. If s � k, then F has positive k-dimensional Lebesgue measure. Otherwise, if

0 < s < k, then dimH (F) � s.
Let π : Rm1 × . . . ×Rmn → Rk be a linear map. For each I ⊂ {1, . . . , n}, let PI : Rm1 × . . . ×Rmn → Rm1 × . . . ×

Rmn the orthogonal projection onto the subspace
⊕

i∈I R
mi , where Rmi is as a canonical subspace of Rm1 × . . .×Rmn .

Then π = π ◦ PI + π ◦ PIc so, for K1, . . . ,Kn Borel subsets of Rm1, . . . ,Rmn respectively we have

dimH

(
π(K1 × . . . × Kn)

)
� dimH

(
πPI (K1 × . . . × Kn) × πPIc (K1 × . . . × Kn)

)
� dimH

(
πPI (K1 × . . . × Kn) × π

(⊕
i∈I c

R
mi

))

�
∑
i∈I

dimH (Ki) + dimπ

(⊕
i∈I c

R
mi

)
.

(In the last inequality, we assume that dimH (K1 × . . . × Kn) = dimH (K1) + . . . + dimH (Kn).) This proves the in-
equality (1.1) and also motivates us to define:

Definition 2.1. For π : Rm1 × . . . × Rmn → Rk a surjective linear map and d1, . . . , dn nonnegative real numbers, we
define m =m(π, d1, . . . , dn) as

m = min

{∑
i∈I

di + dimπ

(⊕
i∈I c

R
mi

)
, I ⊂ {1, . . . , n}, I �= ∅

}
.

Remark 2.2. If in addition di � mi (which holds for dimensions of subsets of Rmi ), then, for the open and total
measure family of linear maps π with the following transversality property:

dimπ

(⊕
i∈I

R
mi

)
= min

(
k,dim

(⊕
i∈I

R
mi

))
, for all I ⊂ {1, . . . , n},

the equivalence m(π, d1, . . . , dn) > k ⇔ d1 + . . . + dn > k holds. However, in general we must check more than one
of the 2n − 1 conditions appearing in the definition of m.
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Consider the space Λm = {(t,O), t ∈ R, O ∈ SO(m)}, with the product measure L1 × Θm, where L1 denotes
the one dimensional Lebesgue measure and Θm denotes the bi-invariant Haar probability measure on SO(m). Notice
that the set C(m) = {tO, t ∈ R, O ∈ SO(m)} represents essentially the family of linear conformal maps on Rm.

C(2) = {
(

a −b
b a

)
, a, b ∈ R}, which can be viewed as the set of multiplications by a complex number.

We set Λ = Λm1 × . . .×Λmn . For every x = (x1, . . . , xn) ∈ Rm1 × . . .×Rmn , and every λ = (t1,O1, . . . , tn,On) ∈
Λ we define πλ(x) = π(t1O1x

1, . . . , tnOnx
n). Also, given any finite measure μ on Rm1 × . . .×Rmn , let νλ = (πλ)∗μ.

We also define

Id1,...,dn(μ) =
¨

dμ(x)dμ(y)

|x1 − y1|d1 . . . |xn − yn|dn
.

Our main result is now the following:

Theorem 2.3. Let π and d1, . . . , dn be as in Definition 2.1 with m = m(π, d1, . . . , dn) �= 0,1, . . . , k − 1. Then, there
exist d ′

1 � d1, . . . , d
′
n � dn such that for every Borel measure μ on Rm1 × . . . ×Rmn we have

ˆ

Λ

ˆ

Rk

|ξ |m−k
∣∣ν̂λ(ξ)

∣∣2
ρ(λ)dξdλ � CmId ′

1,...,d
′
n
(μ),

where ρ(λ) = |t1|m1−1 . . . |tn|mn−1e− 1
2 (|t1|2+...+|tn|2) and Cm > 0 is some constant depending only on π,n, k,m1,

. . . ,mn and m.

In the proof of Theorem 2.3 the key tool will be the following combinatorial lemma.

Lemma 2.4 (Weights lemma). Let s, d1, . . . , dn � 0 and V1, . . . , Vn be vector subspaces of a fixed finite dimensional
vector space satisfying the following 2n conditions

∑
i∈I

di + dim

( ∑
i∈I c

Vi

)
� s, for every I ⊂ {1, . . . , n}

(with the conventions
∑

i∈∅ di = 0, dim∅ = 0).
Fix a generating set {vi

1, . . . , v
i
mi

} of Vi for each i ∈ {1, . . . , n}. Consider the family J of all possible J =
(J1, . . . , Jn), Ji ⊂ {vi

1, . . . , v
i
mi

} such that J1 ∪ . . . ∪ Jn is a linearly independent system with dimension greater than or
equal to s. Define

J= {
(J, i) ∈ J× {1, . . . , n}, Ĵ (i) := (#J1, . . . ,# Jn) + (

s − (#J1 + . . . + #Jn)
)
ei � 0

}
,

where e1, . . . , en is the canonical basis of Rn and � means that the inequality is coordinate to coordinate.
Then, there exist non-negative real numbers (α(J,i))(J,i)∈J with sum equal to 1 such that

∑
(J,i)∈J

α(J,i)Ĵ (i) � d := (d1, . . . , dn).

Proof of Theorem 1.1. The theorem follows immediately from Theorem 2.3 applied to μ = μ1 × . . . × μn for
suitable measures μi compactly supported in Ki coming from Eq. (2.1). Indeed, this is so because in the part (i) the
condition dimH (K1) > 0, . . . ,dimH (Kn) > 0 follows from the hypotheses, and in the part (ii) we may assume the
same condition by reduction to some cartesian product if necessary. �
Remark 2.5. We can derive the part (ii) of Theorem 1.1 from the part (i). Assume dimH (Ki) > 0. Let k′ < m �
k′ + 1 � k and consider any k′ < s < m, and set Λs = {λ ∈ Λ,dimH (πλ(K1 × . . . × Kn)) < s}. The idea is to add
another factor to the cartesian product: Let m0 := k − k′ and consider K0 a sufficiently regular subset of Rm0 with
dimH (K0) = k − s, and π̃ : Rm0 ×Rm1 × . . . ×Rmn →Rk with
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π̃ ◦ PIn = π, where In = {1, . . . , n},
dim π̃

( ⊕
i∈I∪{0}

R
mi

)
= min

(
k,m0 + dimπ

(⊕
i∈I

R
mi

))
, for all I ⊂ {1, . . . , n}.

In particular π̃ is surjective. Notice that

∑
i∈I

dimH (Ki) + dim π̃

(⊕
i∈I c

R
mi

)
> k, for all I ⊂ {0,1, . . . , n}, I �= ∅,

and also that dimH (π̃(λ0,λ)(K0 × K1 × . . . × Kn)) < k for all (λ0, λ) ∈ Λm0 × Λs . Applying Theorem 1.1(i) in this
new setting, we conclude that Λs is a zero measure subset of Λ.

Remark 2.6. Theorem 2.3, when combined with Proposition 7.5 of [7], also gives us a result on exceptional sets:
In the setting of Theorem 1.1, part (i), we have

dimH

({
λ ∈ Λ, ti �= 0 if mi > 1, Lk

(
πλ(K1 × . . . × Kn)

) = 0
})

� l + k −m,

where l = dimΛm1 × . . . × Λmn = n + ∑n
i=1 mi(mi − 1)/2.

3. Proof of the main results

Proof of Theorem 2.3 assuming Lemma 2.4. Notice that

∣∣ν̂λ(ξ)
∣∣2 =

¨
eiξ ·πλ(y−x)dμ(x)dμ(y),

=
¨

eiπT ξ ·(t1O1(y
1−x1),...,tnOn(yn−xn))dμ(x)dμ(y),

and that, for all z ∈ Rm, η ∈Rm,ˆ

R

ˆ

SO(m)

eiη·tOz|t |m−1e− 1
2 |t |2dΘmdt =

ˆ

R

ˆ

Sm−1

ei|z|η·tθ |t |m−1e− 1
2 |t |2dσm−1dt

= 2
ˆ

Rm

ei|z|η·xe− 1
2 |x|2dx

= 2π
m
2 e− 1

2 (|z||η|)2
,

where σm−1 denotes the normalized Lebesgue measure on Sm−1. Therefore by Fubini’s theorem
ˆ

Λ

ˆ

Rk

|ξ |m−k
∣∣ν̂λ(ξ)

∣∣2
ρ(λ)dξdλ = lim

a→∞

ˆ

|ξ |�a

ˆ

Λ

|ξ |m−k
∣∣ν̂λ(ξ)

∣∣2
ρ(λ)dλdξ

= c lim
a→∞

¨ ( ˆ

|ξ |�a

|ξ |m−ke− 1
2 |Dx,y(ξ)|2dξ

)
dμ(x)dμ(y)

= c

¨ (ˆ

Rk

|ξ |m−ke− 1
2 |Dx,y(ξ)|2dξ

)
dμ(x)dμ(y),

where Dx,y = (D1(|y1 − x1|), . . . ,Dn(|yn − xn|)) ◦ πT , and Di(t) : Rmi → Rmi is the diagonal transformation,
Di(t) = t.Id, for t ∈R.

We fix x, y assuming that yi − xi �= 0 for all i = 1, . . . , n. We estimate
´
Rk |ξ |m−ke− 1

2 |Dx,y(ξ)|2dξ separately, when
m� k and m < k. In both cases we apply Lemma 2.4 for Vi = π(Rmi ), taking vi

j = π(ei
j ), where ei

j , j = 1, . . . ,mi is
the canonical basis of Rmi as subspace of Rm1 × . . . ×Rmn .



838 J.E. López, C.G. Moreira / Ann. I. H. Poincaré – AN 32 (2015) 833–840
We use the notation zI = z
i1
1 . . . z

in
n if z = (z1, . . . , zn) ∈ Rn+ and I = (i1, . . . , in) ∈ Zn, for z = (|y1 − x1|, . . . ,

|yn − xn|).
Suppose m � k. Let i0 be such that zi0 � zi for all i = 1, . . . , n. Notice that m(π, d − (m − k)ei0) � k and in

particular d − (m − k)ei0 � 0. We apply Lemma 2.4 to d − (m − k)ei0 and s = k. For each J ∈ J, just looking for
the sums in 1

2 |Dx,y(ξ)|2 related to J and using the change of variables formula to an appropriate linear isomorphism
of Rk , we haveˆ

Rk

|ξ |m−ke− 1
2 |Dx,y(ξ)|2dξ � c′zk−m

i0
z−Ĵ

ˆ

Rk

|η|m−ke− 1
2 |η|2dη,

for some constant c′ > 0 depending only on π , m and k, where Ĵ := (#J1, . . . ,#Jn). Thereforeˆ

Rk

|ξ |m−ke− 1
2 |Dx,y(ξ)|2dξ � c′′zk−m

i0

∏
J∈J

z−αJ Ĵ = c′′z−(
∑

J αJ Ĵ+(m−k)ei0 ) =: c′′z−d ′
.

Suppose m< k. We apply Lemma 2.4 to d and s =m. Let (J, i) ∈ J. We define k′ := #J1 + . . .+ #Jn and k′
i := #Ji ,

then m< k′ and k′
i > k′ −m. Similary to the previous case, notice that

ˆ

Rk

|ξ |m−ke− 1
2 |Dx,y(ξ)|2dξ � c̃z−Ĵ

ˆ

R
k′
i

ˆ

Rk−k′

(∣∣η′∣∣/zi + ∣∣η′′∣∣)m−k
e− 1

2 |η′|2dη′dη′′,

for some constant c̃ > 0 depending only on π,m, k, k′, k′
i . We affirm that

ˆ

R
k′
i

ˆ

Rk−k′

(∣∣η′∣∣/zi + ∣∣η′′∣∣)m−k
e− 1

2 |η′|2dη′dη′′ � c̃′zk′−m
i ,

for some constant c̃′ > 0 depending only on m, k, k′, k′
i . If k′ = k the affirmation is true, since m− k′ > −k′

i . If k′ < k,
applying polar coordinates in Rk−k′

we haveˆ

R
k′
i

ˆ

Rk−k′

(∣∣η′∣∣/zi + ∣∣η′′∣∣)m−k
e− 1

2 |η′|2dη′dη′′ � C

ˆ

R
k′
i

ˆ

R+

(∣∣η′∣∣/zi + r
)m−k′−1

e− 1
2 |η′|2drdη′

= C
(
k′ − m

)−1
ˆ

R
k′
i

(∣∣η′∣∣/zi

)m−k′
e− 1

2 |η′|2dη′.

Then
´
Rk |ξ |m−ke− 1

2 |Dx,y(ξ)|2dξ � c̃′′z−Ĵ (i), and therefore
ˆ

Rk

|ξ |m−ke− 1
2 |Dx,y(ξ)|2dξ � c̃′′ ∏

(J,i)∈J
z−α(J,i)Ĵ (i) = c̃′′z− ∑

(J,i)∈J α(J,i)Ĵ (i) =: c̃′′z−d ′
. �

Proof of Lemma 2.4.

Claim. The vertices of the polyhedron

P =
{
(d1, . . . , dn) ∈R

n, d1 � 0, . . . , dn � 0,
∑
i∈I

di + dim

( ∑
i∈I c

Vi

)
� s, for all I ⊂ {1, . . . , n}

}

have all the form Ĵ (i) for some (J, i) ∈ J.

P ⊂ Rn+, therefore P is a pointed polyhedron (i.e. it does not contain any non-trivial affine subspace). We pro-
ceed by induction on n. For n = 1 it is trivial. Let x = (x1, . . . , xn) any vertex of the polyhedron. Then, there are n

independent inequalities from the definition of P that become equality at x (see [8, p. 104]).
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If xn = 0, notice that x′ = (x1, . . . , xn−1) is now a vertex of the polyhedron

P ′ =
{
(d1, . . . , dn−1) ∈ R

n−1, d1 � 0, . . . , dn−1 � 0,
∑
i∈I

di + dim

( ∑
i∈I c

Vi

)
� s, for all I ⊂ {1, . . . , n − 1}

}

(i.e. x′ ∈ P ′ and x′ satisfies n − 1 independent equalities). By induction hypothesis, there exist some J ′ =
(J′1, . . . , J′n−1) ∈ J′ and i′ ∈ {1, . . . , n − 1} such that x′ = Ĵ ′(i′). Then, J = (J′1, . . . , J′n−1,∅) ∈ J and i = i′ are such

that x = Ĵ (i).
Suppose x1 �= 0, . . . , xn �= 0. By simplicity, we denote

∑
i∈I Vi by VI . Consider

I =
{
I ⊂ {1, . . . , n}, I �= ∅,

∑
i∈I

xi + dimVIc = s

}
.

By the assumption on x, there are I1, . . . , In ∈ I such that the associated 0,1 row vectors Ĩ1, . . . , Ĩn defining the
equalities, are independent.

If I, J ∈ I , then

dimVIc + dimVJc = 2s −
∑
i∈I

xi −
∑
i∈J

xi

= 2s −
∑

i∈I∪J

xi −
∑

i∈I∩J

xi

� dimVIc∩J c + dimVIc∪J c

� dim(VIc ∩ VJc) + dim(VIc + VJc)

= dimVIc + dimVJc ,

therefore, I ∪ J ∈ I and I ∩ J ∈ I . Let I0 ∈ I, I0 �= ∅ a minimal element by inclusion. Then, for any J ∈ I , we have

I0 ⊂ J or I0 ∩ J = ∅.

This means the invertible matrix of rows Ĩ1, . . . , Ĩn has #I0 identical columns, and therefore #I0 = 1, say I0 = {n}, or,
equivalently, xn = s − dim(V1 + . . . + Vn−1).

Notice that now x̃ = (x1, . . . , xn−1) is a vertex of the polyhedron

P̃ =
{
(d1, . . . , dn−1) ∈ R

n−1, d1 � 0, . . . , dn−1 � 0,

∑
i∈I

di + dim

( ∑
i∈I c

Vi

)
� dim(V1 + . . . + Vn−1), for all I ⊂ {1, . . . , n − 1}

}
.

By induction hypothesis, there exist some appropriate J̃ = (J̃1, . . . , J̃n−1) ∈ J̃ such that x̃ = (#J̃1, . . . ,#J̃n−1). We can
take Jn ⊂ {vn

1 , . . . , vn
mn

} such that V1 + . . . + Vn−1 + 〈Jn〉 = V1 + . . . + Vn and J = (J̃1, . . . , J̃n−1, Jn) ∈ J. Notice that
x = Ĵ (n). This finishes the proof of the claim.

To finish the prove of the lemma, notice that for a pointed polyhedron P , we have

P = conv.hull
{
x1, . . . , xr

} + cone
{
y1, . . . , yt

}
where xi are the vertices of P and yi are its extremal rays (see [8, p. 107]); and we have necessarily yi � 0 since
P ⊂ Rn+. �
Remark 3.1. Notice that Ĵ (i) ∈ P for all (J, i) ∈ J, hence we conclude from Lemma 2.4 that

P = conv.hull
{
Ĵ (i), (J, i) ∈ J

} + cone{e1, . . . , en}.
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