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Abstract

This paper investigates time-global wave-like solutions of heterogeneous reaction–diffusion equations: ∂tu − a(x)∂xxu −
b(x)∂xu = f (x,u) in R×R, where the coefficients a, ax , axx , 1/a, b, bx and f are only assumed to be measurable and bounded
in x ∈ R and the nonlinearity f is Lipschitz-continuous in u ∈ [0,1], with f (x,0) = f (x,1) = 0 for all x ∈ R. In this general
framework, the notion of spatial transition wave has been introduced by Berestycki and Hamel [4]. Such waves always exist for
one-dimensional ignition-type equations [22,27], but not for monostable ones [26]. We introduce in the present paper a new notion
of wave-like solutions, called critical travelling waves since their definition relies on a geometrical comparison in the class of
time-global solutions trapped between 0 and 1. Critical travelling waves always exist, whatever the nonlinearity of the equation is,
are monotonic in time and unique up to normalization. They are spatial transition waves if such waves exist. Moreover, if the equa-
tion is of monostable type, for example if b ≡ 0 and f (x,u) = c(x)u(1 − u), with infR c > 0, then critical travelling waves have
minimum least mean speed. If the coefficients are homogeneous/periodic, then we recover the classical notion of planar/pulsating
travelling wave. If the heterogeneity of the coefficients is compactly supported, then critical transition waves are either a spatial
transition wave with minimal global mean speed or bump-like solutions if spatial transition does not exist. In the bistable frame-
work, the nature of the critical travelling waves depends on the existence of non-trivial steady states. Hence, the notion of critical
travelling wave provides a unifying framework to earlier scattered existence results for wave-like solutions. We conclude by prov-
ing that in the monostable framework, critical travelling waves attract, in a sense and under additional assumptions, the solution of
the Cauchy problem associated with a Heaviside initial datum.
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1. Previous notions of waves for reaction–diffusion equations

1.1. General framework

This paper investigates time-global wave-like solutions of general heterogeneous reaction–diffusion equations

∂tu − a(x)∂xxu − b(x)∂xu = f (x,u) in R×R. (E)

We shall make the following assumptions on the coefficients throughout the paper:

a, ax, axx,1/a, b, bx ∈ L∞(R), f ∈ L∞(
R× [0,1]),

∃C > 0 s.t.
∣∣f (x,u) − f (x, v)

∣∣ � C|u − v| a.e. (x,u, v) ∈R× [0,1] × [0,1],
f (x,0) = f (x,1) = 0 a.e. x ∈ R. (H)

This equation arises in many scientific fields such as genetics, population dynamics, chemistry or combustion.
The underlying models rely on a simple mechanism: u ∈ [0,1] is the proportion of a population or of a product, which
diffuses and reacts in the environment. Hence, a(x) is sometimes called the diffusion coefficient, b(x) the advection
coefficient and f (x,u) the reaction term. The last hypothesis f (x,0) = f (x,1) = 0 means that Eq. (E) admits two
uniform steady states u = 0 and u = 1. The key question in all these models is to understand how the steady state 1
invades the steady state 0. One way to address this question is to investigate the existence of wave-like solutions.

Note that one can consider the more general framework where the two steady states u− = u−(x) and u+ = u+(x)

depend on space, under the conditions that u± are measurable, essentially bounded and u+ > u−, just by perform-
ing the change of variables v(t, x) := (u(t, x) − u−(x))/(u+(x) − u−(x)). Hence, there is no loss of generality in
assuming that u− ≡ 0 and u+ ≡ 1.

We underline that our results will be stated without making any other structural hypothesis on the dependence
in x of the coefficients, such as periodicity, almost periodicity or ergodicity for examples. We do not even need the
coefficients to be continuous in general. Considering such a general heterogeneity is natural in many applications, for
example in population dynamics models. Before stating our results in this general framework, we will first review
earlier existence results for wave-like solutions in homogeneous and periodic one-dimensional reaction–diffusion
equations.

1.2. Planar travelling waves for homogeneous equations

Eq. (E) has first been investigated by Kolmogorov, Petrovsky, Piskunov [17] and Fisher [12] in the 30’s when a ≡ 1,
b ≡ 0, and f does not depend on x:

∂tu − ∂xxu = f (u) in R×R. (1.1)

Kolmogorov, Petrovsky and Piskunov proved that, if f is derivable, f (u) > 0 and f ′(u) � f ′(0) for all u ∈ (0,1),
then (1.1) admits a planar travelling wave of speed c for all c � c∗ = 2

√
f ′(0). That is, for all c � c∗, there exists a

function u = u(t, x) which satisfies (1.1) and which can be written

u(t, x) = U(x − ct), with U ∈ C2(R), 0 < U < 1, U(−∞) = 1, U(+∞) = 0. (1.2)

The quantity c is called the speed of the planar travelling wave u and U is called its profile. Moreover, if v is a solution
of {

∂tv − ∂xxv = f (v) in (0,∞) ×R,

v(0, x) = 1 if x � 0, v(0, x) = 0 if x > 0,
(1.3)

then for all θ ∈ (0,1), there exists a unique function X ∈ C0(R) such that v(t,X(t)) = θ for all t > 0 and one has
limt→+∞ v(t, x +X(t)) = u∗(0, x) uniformly in x ∈ R, where u∗ is a planar travelling wave with speed c∗ = 2

√
f ′(0)

such that u∗(0,0) = θ [17]. Hence, the travelling wave with minimal speed c∗ is attractive in a sense.
More general types of nonlinearities, still independent of x, have been considered by Aronson and Weinberger [2].

These authors distinguished three classes of equations. When f (u) > 0 for all u ∈ (0,1), then (1.1) is called a monos-
table equation because the steady state 0 is unstable while 1 is globally attractive. In combustion models, it may
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be relevant to assume that the reaction only starts when the temperature is large enough. These models gave rise to
ignition-type equations, for which there exists θ0 ∈ (0,1) such that f (u) = 0 for all u ∈ [0, θ0] and f (u) > 0 for
all u ∈ (θ0,1). The quantity θ0 can be viewed as an ignition temperature. Lastly, if there exists θ0 ∈ (0,1) such that
f (u) < 0 for all u ∈ (0, θ0) and f (u) > 0 for all u ∈ (θ0,1), then the equation is called bistable since the two steady
states 0 and 1 are both stable, while θ0 is an unstable steady state.

The classical result proved by Aronson and Weinberger [2] (see also [11,33]) is the following:

• if Eq. (1.1) is monostable, then there exists a speed c∗ > 0 such that (1.1) admits a planar travelling wave with
speed c if and only if c � c∗,

• if Eq. (1.1) is bistable or of ignition-type, then there exists a speed c∗ such that (1.1) admits a planar travelling
wave with speed c if and only if c = c∗. Moreover, c∗ has the same sign as

∫ 1
0 f (s)ds.

For bistable and ignition-type equations, planar travelling waves (of speed c∗) attract, in a sense, the solutions of the
Cauchy problem (1.3) [11]. For monostable equations, the solutions of the Cauchy problem (1.3) are attracted, in
the same meaning as in [17], by a travelling wave with minimal speed c = c∗ [33]. Hence, the travelling wave with
minimal speed is the most important one in order to understand the dynamics of the Cauchy problem (1.3) in the
monostable framework.

1.3. Pulsating travelling waves for periodic equations

A first heterogeneous generalization of the Fisher-KPP reaction–diffusion equation (1.1) investigated in the last
decades was the periodic reaction–diffusion equation. Assume that the coefficients are L-periodic in x, with L > 0,
that is,

a(x + L) = a(x), b(x + L) = b(x), f (x + L,u) = f (x,u) for all (x,u) ∈ R× [0,1].
In this case the notion of pulsating travelling wave has been introduced in parallel ways by Shigesada, Kawazaki and
Teramoto [32] and Xin [34]. A solution u of Eq. (E) is called a pulsating travelling wave with speed c > 0 if for all
(t, x) ∈R×R:

u(t + L/c, x) = u(t, x − L), 0 < u < 1, lim
x→−∞u(t, x) = 1, lim

x→+∞u(t, x) = 0 (1.4)

where the limits hold locally in t ∈ R.
The existence of pulsating travelling waves has been proved by Xin [34] when only the diffusion a is heterogeneous

in the ignition-type framework, and by Berestycki and Hamel [3] for general monostable and ignition-type equations.
For periodic bistable equations, the existence of pulsating travelling waves is due to Xin when the equation is a uniform
perturbation of a homogeneous equation [35], to Heinze if the equation is close to some homogenization limit [16],
and to Ducrot, Giletti and Matano [9] or Fang and Zhao [10] when the only stationary solutions between 0 and 1 are
assumed to be unstable.

The literature on the properties of these pulsating travelling waves is very dense and we will not describe it here
since this is not the main topic of the present paper. Let us just mention that the attractivity of pulsating travelling
waves has been proved by Xin [35] in the ignition-type framework and by Ducrot, Giletti and Matano [9], in a less
accurate meaning, in ignition-type, monostable and bistable frameworks for Heaviside initial data and by Giletti [13]
for more general initial data in the monostable framework.
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Fig. 1. The interface Iε(t) of the spatial transition wave u.

1.4. Spatial transition waves for general heterogeneous equations

1.4.1. Definition of the spatial transition waves
A generalization of the notions of planar and pulsating travelling waves to heterogeneous equations like (E) has

been given by Berestycki and Hamel in [4,5].

Definition 1.1. (See [4,5].) A spatial transition wave (to the right) of Eq. (E) is a time-global (weak) solution u ∈
C0(R×R), with 0 < u < 1, such that there exists a function X :R→ R such that

lim
x→−∞u

(
t, x + X(t)

) = 1 and lim
x→+∞u

(
t, x + X(t)

) = 0 uniformly in t ∈R. (1.5)

Heuristically, this definition means that the solution x 	→ u(t, x) connects 0 to 1 for all t , and that the widths of
the spatial interfaces Iε(t) = {x ∈ R, ε < u(t, x) < 1 − ε} are bounded with respect to t ∈ R for all ε ∈ (0,1/2) (see
Fig. 1).

Such solutions were called generalized transition waves in [4,5]. We add the term “spatial” here because
limx→−∞ u(t, x) = 1 and limx→+∞ u(t, x) = 0 for all t ∈ R. This will be useful later in order to emphasize a dif-
ference with other notions of waves, see Section 3.4 below. Note that Definition 1.1 holds in a general framework:
one could consider time-dependent coefficients and multidimensional equations. Several properties of spatial transi-
tion waves have been proved in [4,5]. Berestycki and Hamel showed in particular that the notion of spatial transition
waves includes all the previous notions of fronts in homogeneous or periodic media, including non-trivial ones such
as fronts with a speed which changes with respect to time (which have been proved to exist in [15]). Thus Defini-
tion 1.1 could be a good generalization of the notion of waves to heterogeneous equations. But such a generalization
is meaningful only if one could prove that such spatial transition waves exist.

1.4.2. Existence results for spatial transition waves
The first existence result of spatial transition waves in a heterogeneous framework is due to Shen, for bistable

and time-dependent equations [30]. Next, spatial transition waves for the space-heterogeneous equation (E) has been
proved to exist for ignition-type equations in parallel by Nolen and Ryzhik [27] and Mellet, Roquejoffre and Sire [22]
(see Section 3.2 for the definition of such equations). Then, Mellet, Nolen, Roquejoffre and Ryzhik [21] proved
that these spatial transition waves are unique (up to translation in time) and stable, still for ignition-type equations.
These results have been extended by Zlatos [36] to multidimensional ignition-type equations with periodic shear
heterogeneities.

The existence of spatial transition waves for monostable time-dependent equations has been proved when the coef-
ficients are assumed to be uniquely ergodic by Shen [31] and in the general framework by Rossi and the author [24].
In these two papers, the nonlinearity is assumed to be KPP, that is, it is C1 in u = 0 and f (t, u) � f ′

u(t,0)u for all
(t, u) ∈ R × [0,1]. Due to this property, one can construct X(t) in Definition 1.1 explicitly with respect to the co-
efficients and thus the spatial transition waves satisfy the same types of properties as the coefficients. This existence
result has been extended to KPP equations with a time-heterogeneous reaction term and space-periodic diffusion and
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advection terms by Rossi and Ryzhik [29], and to general space-periodic and time-heterogeneous equations by Rossi
and the author [25]. Note that in this last paper some conditions ensuring the existence of spatial transition waves for
space–time general heterogeneous Fisher-KPP equations were derived, involving a global Harnack-type property for
the solution of the linearized equation near the unstable equilibrium.

The existence of waves for the spatially heterogeneous equation (E) is still poorly understood when the nonlinearity
is bistable, even in the periodic case. Spatial transition waves solutions of the homogeneous multidimensional equation
with a convex obstacle have been constructed by Berestycki, Hamel and Matano [6]. However, in other frameworks
the bistability could produce new steady states which could block the propagation between 0 and 1 [6,8,19,28]. Such
non-trivial steady states are spatial transition waves with null speed, i.e. X ≡ 0.

1.4.3. Nonexistence results for spatial transition waves
A remaining gap was the existence of spatial transition waves for the spatially heterogeneous monostable equa-

tion (E). In this framework, a counter-example to the existence of spatial transition waves has been constructed by
Nolen, Roquejoffre, Ryzhik and Zlatos [26]. These authors proved that if a ≡ 1 and b ≡ 0, if there exists R > 0 such
that f (x,u) = fmin(u) for all |x| > R and u ∈ [0,1], if f ′

min(0) = 1, if f (x, s) � f ′
u(x,0)u for all (x,u) ∈ R× [0,1]

and if there exists a principal eigenvalue λ, defined by the existence of a positive function ψ ∈ L2(R) such that
ψ ′′ + f ′

u(x,0)ψ = λψ , which satisfies λ > 2, then for all time-global solution u of (E) such that 0 < u < 1, and for
all c < λ/

√
λ − 1, there exists Cc > 0 such that

u(t, x) � Cce
−|x|+ct for all (t, x) ∈ R

− ×R. (1.6)

In particular, spatial transition waves do not exist in this framework, since any time-global solution converges to 0 as
|x| → +∞ locally in time.

On the other hand, if λ < 2, then spatial transition waves exist with various global mean speeds [26]. This existence
result has been extended by Zlatos [37] to Eq. (E), still under a hypothesis which is the analogous of λ < 2. Namely,
assume that a ≡ 1, b ≡ 0 and f (x,u) = c(x)u(1 − u) in order to simplify the presentation. Let λ be the supremum of

the spectrum of the operator d2

dx2 + c(x) and assume that λ < 2 infx∈R c(x). Then, for all γ ∈ (λ,2 infR c), there exists
a unique solution ϕγ > 0 of equation ϕ′′

γ + c(x)ϕγ = γ ϕγ in R such that ϕγ (0) = 1 and limx→+∞ ϕγ (x) = 0, and
there exists a spatial transition wave uγ of Eq. (E) which is increasing in time and such that uγ (t, x) ∼ eγ tϕγ (x) when
uγ (t, x) → 0. Zlatos’ result [37] is indeed more general: it holds for heterogeneous diffusion and advection terms a

and b.
However, we repeat that spatial transition waves do not exist in general because of the counter-example in [26] and

that the identification of optimal conditions on the coefficients which ensure the existence of spatial transition waves
is still an open problem.

Lastly, in multi-dimensional media, Zlatos [38] has recently provided a counter-example showing that spatial tran-
sition waves do not exist in general even for ignition-type nonlinearities.

1.4.4. Matano’s alternative definition
Let us mention to conclude another notion of wave introduced by Matano [20]. This definition relies on a different

point of view involving a translation property of the wave with respect to the environment (a, b, f ). Namely, assume
that the coefficients are uniformly continuous with respect to x ∈R and define the hull H of the coefficients by

H := cl
{
(πya,πyb,πyf ), y ∈R

}
where πya(x) := a(x + y), πyb(x) := b(x + y) and πyf (x,u) := f (x + y,u) (1.7)

and the closure is associated with the topology of the local convergence. The uniform continuity of the coefficients in
x ensures that this set is relatively compact.

Definition 1.2. (See [20,30].) A generalized travelling wave (in the sense of Matano) is a continuous function
u : R×R×H → [0,1] such that

• for all (ã, b̃, f̃ ) ∈ H, (t, x) 	→ u(t, x; (ã, b̃, f̃ )) is a solution of Eq. (E) with coefficients (ã, b̃, f̃ ),
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• there exists a function X : R → R such that limx→−∞ u(t, x + X(t); (a, b, f )) = 1 and limx→+∞ u(t, x + X(t);
(a, b, f )) = 0 uniformly in t ∈R,

• (translation property) u(t, x + X(t); (a, b, f )) = u(0, x;πX(t)(a, b, f )) for all (t, x) ∈R×R.

This last property implies in particular that if the coefficients are homogeneous/periodic, generalized travelling
waves are necessarily planar/pulsating travelling waves.

The second property in Definition 1.2 means that (t, x) 	→ u(t, x; (a, b, f )) is a spatial transition wave of Eq. (E).
The reciprocal assertion is not true since, when the coefficients do not depend on x, then Matano’s waves are nec-
essarily planar travelling waves, while Hamel and Nadirashvili [15] proved that there exist spatial transition waves
which are not planar.

The two additional properties required on u are the continuity with respect to the environment (ã, b̃, f̃ ) ∈ H
and the translation property. Shen proved in a general framework that if there exists a family of spatial transition
waves v(·, ·; (ã, b̃, f̃ )) for all (ã, b̃, f̃ ) ∈ H such that the convergences in Definition 1.1 are uniform with respect to
(ã, b̃, f̃ ) ∈ H, then there exists a function u : R×R×H → [0,1] which satisfies all the above properties except the
continuity with respect to (ã, b̃, f̃ ) ∈ H [30]. Shen noticed that u was continuous on a residual subset of H.

It is easily checked that the translation property in Definition 1.2 is immediately satisfied if the spatial transition
wave is unique (up to translation in time). Hence, in all the cases where spatial transition waves are known to exist
and to be unique [21,24,30], these solutions are indeed generalized travelling waves in the sense of Matano.

As generalized travelling waves are necessarily spatial transition waves, such waves do not exist for the monostable
equations with compactly supported heterogeneities considered in [26]. Hence, this alternative notion does not help
to fill the non-existence gap exhibited in [26].

1.5. Scope of the paper

The aim of the present paper is to find a new generalization of the notion of wave for Eq. (E). In order to find a
meaningful generalization, we want to

• prove the existence of this new notion of wave in a general setting,
• recover the earlier notions of planar/pulsating waves with minimal speed when the coefficients are homoge-

neous/periodic and of spatial transition waves for ignition-type equations with general heterogeneities.

Ideally, we would also like this new type of waves to give some information about the large-time behaviour of the
solution of the Cauchy problem associated with Eq. (E). For example, we would like such waves to attract the solutions
of the Cauchy problem associated with Heaviside-type initial data, as in homogeneous media.

We introduce the notion of critical travelling waves and prove their existence for general spatially-heterogeneous
equations in Section 2. We then compare this notion and the notion of spatial transition waves in Section 3. In Sec-
tion 4, we prove a translation property of critical travelling waves close to [20], from which we derive that this new
notion of wave fits with earlier notions in homogenous, periodic or compactly supported heterogeneities. We also
derive new results in the random stationary ergodic monostable framework, for which no notion of wave-like solution
was known to exist before. We discuss the attractivity of these waves and state some open problems in this direction
in Section 5. A particular example of bistable equations admitting non-trivial steady states is investigated in Section 6.
Sections 7 to 11 are devoted to the proof of the results. Lastly, we give a brief summary of the results in Section 12.

2. Statement of the main results

2.1. Definition of critical travelling waves

Our generalization of the notion of wave to general spatially heterogeneous reaction–diffusion equations (E) is
stated in the next definition.
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Fig. 2. The critical travelling wave u compared with a time-global solution v at t = t0.

Definition 2.1. We say that a time-global (weak) solution u ∈ C0(R×R) of (E), with 0 < u < 1, is a critical travelling
wave (to the right) if for all (t0, x0) ∈ R × R, if v ∈ C0(R × R) is a time-global (weak) solution of (E) such that
v(t0, x0) = u(t0, x0) and 0 < v < 1, then either u ≡ v or

u(t0, x) > v(t0, x) if x < x0 and u(t0, x) < v(t0, x) if x > x0. (2.1)

In Fig. 2, the critical travelling wave u converges to 1 as x → −∞ and to 0 as x → +∞. This is just one possible
behaviour: it may happen that u converges to 0 as |x| → +∞ for example, as in Section 4.4 below.

Critical travelling wave to the left could be defined similarly, only by reversing the inequalities in (2.1). In the
sequel, only critical travelling waves to the right will be considered.

The notion of criticality is not new. Shen introduced a similar notion in [30] but as a property of travelling waves
(in the sense of Matano). She proved the existence of such waves under the assumption that there exists a particular
family of spatial transition waves (see the discussion after Theorem 3.1 below). The contribution of the present paper
is to use the criticality property as a definition for a new notion of wave. As we require a comparison in the class of
time-global solutions instead of that of travelling waves like in [30], our definition is meaningful independently of
the existence of travelling waves. Many properties, in particular existence, will be derived from this simple definition.
We will prove in Section 4 that if the coefficients are homogeneous/periodic, then the critical travelling wave is a
planar/pulsating travelling wave with minimal speed. Hence, the notion of criticality is, somehow, the generalization
to heterogeneous equations (E) of the minimality of the speed.

A similar notion, called “steepness”, has also been introduced recently by Ducrot, Giletti and Matano [9] in order
to investigate large time behaviour of the solution of Cauchy problem for periodic reaction–diffusion equations with
Heaviside initial data. These authors used the fact that such solutions are always “steeper” than any entire solution in
order to prove that they converge to particular solutions called propagating terraces in [9], which could be identified
as pulsating fronts in several particular cases. Our technical approach is close, but we are focused in the present paper
on entire solutions more than initial value problems (even if this question will be addressed in Section 5 below), and
we aim at handling general heterogeneous reaction–diffusion equations, without any periodicity assumption.

2.2. Existence, uniqueness and monotonicity of critical travelling waves in a general setting

We are now in position to state our main result.

Theorem 2.2. Assume that (H) is satisfied.

1. (Existence and uniqueness) For all θ ∈ (0,1) and x0 ∈ R, Eq. (E) admits a unique critical transition wave u such
that u(0, x0) = θ .

2. (Monotonicity in time) t 	→ u(t, x) is either decreasing for all x ∈ R, increasing for all x ∈ R or constant for all
x ∈R.

3. (Monotonicity in space) If f does not depend on x, then x 	→ u(t, x) is nonincreasing for all t ∈R.
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One can check that Definition 2.1 and Theorem 2.2 still hold if one considers space–time heterogeneous reaction–
diffusion equations. However, as all the applications we provide in the present paper involve time-independent
coefficients, we chose to present all the results in the spatially heterogeneous framework.

We underline that critical travelling waves exist for all reaction–diffusion equations, even when spatial transition
waves do not exist as in [26], whatever the stabilities of the steady states 0 and 1 are and for general heterogeneous
coefficients.

Definition 2.1 only fits to dimension 1. If one considers multidimensional versions of Eq. (E), then it is not clear at
all whether there exist good generalizations of Definition 2.1 and Theorem 2.2 or not. This might help to understand
why most of the known existence results of spatial transition waves hold in dimension 1.

The monotonicity in time of the critical travelling waves yields that the limits u±(x) := limt→±∞ u(t, x) always
exist and are steady states of Eq. (E). Of course these limits are not necessarily u ≡ 0 or u ≡ 1 and may depend on
the normalization u(0, x0) = θ . This may be the case in particular if non-trivial steady states exist as illustrated in
Section 6 below. Hence, critical travelling waves can always be viewed as temporal heteroclinic connections between
steady states.

3. Comparison with spatial transition waves

3.1. Comparison in the general framework

Let now consider equations which admit a spatial transition wave and investigate the properties of critical travelling
waves in this framework.

Theorem 3.1. Assume that Eq. (E) admits a spatial transition wave v (in the sense of Definition 1.1) such that
limt→−∞ v(t, x) = 0 and limt→+∞ v(t, x) = 1 for all x ∈ R. Then any critical transition wave u of Eq. (E) is a
spatial transition wave and one has limt→−∞ u(t, x) = 0 and limt→+∞ u(t, x) = 1 for all x ∈R.

Hence, if there exists a spatial transition wave which connects 0 to 1 in time, then critical travelling waves are
spatial transition waves. However, the two notions are not necessarily equivalent. First, critical travelling waves always
exist, unlike spatial transition waves. Second, some spatial transition waves are not critical travelling waves (see the
discussion in Section 4.2 below).

This result is close to Theorem A in Shen’s paper [30]. She proved that if there exists a so called “wave-like
solution” (in the sense of Definition 2.3 in [30]) then there exists a travelling wave solution which is critical (in the
sense of Definition 2.2 in [30]). The notion of criticality we use here is very close from Shen’s one, except that in
Shen’s paper the criticality is only related to comparison with respect to other travelling waves, unlike in the present
paper where all the time-global solutions are involved. This enables us to use the criticality notion as a definition of
critical travelling waves, unlike Shen who considered criticality as a property of particular spatial transition waves,
which are thus required to exist in [30]. The other difference with Shen’s result lies in her definition of “wave-like
solutions”. Such solutions are spatial transition wave such that the convergences in Definition 1.1 are uniform with
respect to translations of the coefficients. We do not require such a uniformity in Theorem 3.1: we consider the
classical notion of spatial transition wave (in the sense of Berestycki–Hamel).

Let now consider particular classes of nonlinearities for which further links between the two notions can be proved.

3.2. The case of ignition-type equations: equivalence between the two notions

Consider ignition-type equations in the sense of [21]:

a ≡ 1, b ≡ 0, f (x,u) = g(x)f0(u),

g is uniformly bounded and Lipschitz-continuous over R and inf
R

g > 0,

f0 is Lipschitz-continuous and there exists θ0 ∈ (0,1) such that

f0(s) = 0 for s ∈ [0, θ0], f0(1) = 0, f0(s) > 0 for s ∈ (θ0,1), f ′
0(1) < 0. (3.1)

Under these assumptions, spatial transition waves are known to exist and to be unique up to translation in time.
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Theorem 3.2. (See [21,22,27].) Assume that (3.1) is satisfied. Then (E) admits a spatial transition wave v. Moreover,
v is increasing in time and if ṽ is another spatial transition wave, then there exists τ > 0 such that v(t, x) = ṽ(t +τ, x)

for all (t, x) ∈R×R.

We just mentioned here the main properties of these spatial transition waves and we refer to [21,22,27] for further
results.

In this framework, Theorems 3.1 and 3.2 yield that the notions of spatial transition waves and critical travelling
waves are equivalent.

Corollary 3.3. Assume that (3.1) is satisfied. Then a solution u of (E), with 0 < u < 1, is a spatial transition wave if
and only if it is a critical travelling wave. Consequently, critical travelling waves are increasing with respect to t and
if u and ũ are two critical travelling waves of Eq. (E), then there exists τ ∈ R such that u(t, x) = ũ(t + τ, x) for all
(t, x) ∈R×R.

We underline that this result does not trivially follow from the uniqueness of spatial transition waves proved in [21].
A new property of the spatial transition wave is proved: it is critical. Hence, Corollary 3.3 provides a new characteri-
zation of spatial transition waves in this framework.

Note that the difference between the uniqueness results of Theorem 2.2 and that of Corollary 3.3 is that in the
corollary we do not assume that ũ(0, x0) = θ . This is why we get a uniqueness result in Corollary 3.3 up to translation
in time.

3.3. The case of monostable equations: minimization of the least mean speed

The notion of monostability we will use in this paper is the following.

Definition 3.4. We say that Eq. (E) is monostable if for all continuous function u0 �≡ 0, with 0 � u0 � 1, if u ∈
C0([0,∞) ×R) is the (weak) solution of{

∂tu − a(x)∂xxu − b(x)∂xu = f (x,u) in (0,∞) ×R,

u(0, x) = u0(x) for all x ∈ R,
(3.2)

then limt→+∞ u(t, x) = 1 locally uniformly in x ∈ R.

In other words, any perturbation of 0 converges to 1, meaning that 0 is unstable while 1 is globally attractive. This
implies in particular that there exists no non-trivial steady state between 0 and 1.

It immediately follows from the parabolic maximum principle that Eq. (E) is monostable in the case where a ≡ 1,
b ≡ 0 and there exists a Lipschitz-continuous function fmin : [0,1] → R such that

fmin(0) = fmin(1) = 0, fmin(s) > 0 for all s ∈ (0,1), f ′
min(0) > 0,

f (x,u) � fmin(u) a.e. (x,u) ∈ R× [0,1]. (3.3)

We refer to [7] for more general conditions on the coefficients guaranteeing the monostability of the equation. In par-
ticular, the results of [7] yield that the equation associated with b ≡ 0, f as in (3.3) and an arbitrary a (satisfying (H))
is monostable.

First, in this framework, critical travelling waves are time-increasing and unique up to translation in time, as in the
ignition-type setting.

Proposition 3.5. Assume that (H) is satisfied and that Eq. (E) is monostable in the sense of Definition 3.4. Let θ ∈ (0,1)

and u be a critical travelling wave of Eq. (E). Then u is increasing in time and there exists a unique continuous function
T : R → R such that u(T (x), x) = θ for all x ∈ R. Moreover, if ũ is another critical travelling waves of Eq. (E), then
there exists τ ∈R such that ũ(t, x) = u(t + τ, x) for all (t, x) ∈ R×R.

Note that this result holds in the general monostable framework: it does not depend on the existence of spatial
transition waves.
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Such a uniqueness up to translation does not hold in general. The shape of critical travelling waves may depend on
their normalizations (see Section 6 below).

Next, assume that Eq. (E) is monostable and admits a spatial transition wave (which is not always true, see [26]).
Together with their definition of spatial transition waves, Berestycki and Hamel [4,5] gave a generalization of the
notion of speed. If v is a spatial transition wave of Eq. (E), let θ ∈ (0,1) and define for all t ∈ R, Y(t) := sup{x ∈ R,

v(t, x) � θ}. Then

if lim
t→+∞

Y(s + t) − Y(s)

t
= c exists uniformly in s ∈ R,

we call c the global mean speed of the spatial transition wave v. It is easily checked that this quantity does not depend
on θ . Of course spatial transition waves do not always admit global mean speeds. This is why we are led to introduce
another quantity here. Namely, with the same notations as above, let

c := lim inf
t→+∞ inf

s∈R
Y(s + t) − Y(s)

t
.

We call c the least mean speed of the spatial transition wave v. This quantity is always well-defined in [−∞,∞) and
it follows from the definition of spatial transition waves that it does not depend on θ . Of course if v admits a global
mean speed c, then c is also the least mean speed of v.

A similar quantity has been introduced by Rossi and the author in [24]. They proved that, in the framework of
time-dependent monostable equations, there exists an explicit threshold c∗ such that spatial transition waves with
least mean speed c exist for all c > c∗ and do not exist if c < c∗. This result generalized the classical existence results
in monostable homogeneous/periodic equations, where planar/pulsating travelling waves with speed c exist if and
only if c � c∗. Hence, least mean speed seems to be an appropriate quantity in order to compute existence threshold
in monostable heterogeneous equations.

Let now turn back to the spatially heterogeneous equation (E).

Theorem 3.6. Assume that Eq. (E) is monostable in the sense of Definition 3.4 and admits a spatial transition wave
solution v. Assume in addition that s 	→ f (x, s)/s is nonincreasing for all x ∈ R. Let θ ∈ (0,1), u be a critical
travelling wave of Eq. (E) and

X(t) := sup
{
x ∈ R, u(t, x) > θ

}
and Y(t) := sup

{
x ∈R, v(t, x) > θ

}
.

Then there exists L > 0 such that

∀t > 0, inf
s∈R

(
X(s + t) − X(s)

)
� inf

s′∈R
(
Y

(
s′ + t

) − Y
(
s′)) + L.

Therefore, the least mean speed of the critical travelling wave u is smaller than the least mean speed of any spatial
transition wave v.

We remind to the reader that X(t) is well-defined since the critical travelling wave u is a spatial transition wave by
Theorem 3.1.

Theorem 3.6 means that, in the monostable framework, critical travelling waves generalize the notion of waves
with minimal speed. The monotonicity hypothesis on s 	→ f (x, s)/s is indeed quite strong and we do not know if
this result holds in a more general setting. If we assume the coefficients to be homogeneous or periodic, then we will
check in Propositions 4.2 and 4.3 that this result still holds without any monotonicity hypothesis on s 	→ f (x, s)/s,
under the additional assumption that the principal eigenvalue associated with the linearization near u = 1 is negative.
This assumption is not milder or stronger than the monotonicity hypothesis on s 	→ f (x, s)/s, it is just different.

3.4. Spatial/temporal connections between steady states

Let conclude this section with some comments on the definition of spatial transition waves in the sense of Beresty-
cki and Hamel [4,5]. The convergences in Berestycki–Hamel’s Definition 1.1 are convergences as x → ±∞. Hence,
spatial transition waves are connections in x between two steady states. Definition 1.1 does not involve any conver-
gences as t → ±∞. This has very important consequences.
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For example, assume that there exists a steady state w = w(x) of Eq. (E) such that 0 < w < 1, w(−∞) = 1 and
w(+∞) = 0. Such a situation typically arises in bistable equations, even simple ones, see [19,28,35] and Section 6
for example. Then w = w(x) is a spatial transition wave with global mean speed 0 (with X ≡ 0), but it does not
converge to 0 or 1 as t ± ∞ since it does not depend on time. Moreover, it could block the convergence to 1 as
t → +∞ of the solution of the Cauchy problem associated with front-like initial data. This is why in the literature
some authors [19,35] consider that the existence of such non-trivial steady states proves that travelling waves do not
exist, although such steady states are spatial transition waves according to Berestycki–Hamel’s definition.

On the other hand, some monostable equations have been constructed by Nolen, Roquejoffre, Ryzhik and
Zlatos [26], for which any time-global solution u satisfies lim|x|→+∞ u(t, x) = 0 for all t ∈ R, limt→−∞ u(t, x) = 0
and limt→+∞ u(t, x) = 1 for all x ∈ R. Hence, spatial transition waves do not exist, but any time-global solution, in
particular critical travelling waves, is a temporal connection between 0 and 1.

These two examples show that when one investigates the existence and properties of wave-like solutions of (E),
that is, heteroclinic connections between two steady states, one could be led to different conclusions depending upon
the nature of the connection: is this a connection in space or in time? This is why we use the name “spatial transition
wave” in the present paper instead of “generalized transition waves” as in the original articles [4,5].

Note that our definition of critical travelling waves does not involve any convergence to the steady states, which
enables us to go beyond the difficulties described above. Indeed, Definition 2.1 yields that if there exists a spatial
connection between the steady states, then any critical travelling wave converges to these steady states as x → ±∞.
On the other hand, as critical travelling waves are monotonic in time, they are always temporal connections between
steady states (which may be constant in time).

4. Identification and properties of critical travelling waves for particular classes of heterogeneities

The aim of this section is to identify critical travelling waves when particular structural dependences of the coef-
ficients of Eq. (E) in x are prescribed. We will first prove that if the coefficients are homogeneous/periodic, then the
critical travelling waves are planar/pulsating travelling waves (with minimal speed in the monostable framework). If
the heterogeneity is compactly supported and if the equation is monostable, then the critical travelling wave is either a
spatial transition wave with minimal speed, or a bump-like solution in the sense of [21] if spatial transition waves do
not exist. Lastly, if the coefficients are random stationary ergodic variables and the equation is almost surely monos-
table, then we prove that the critical travelling wave depends in a random stationary ergodic way, in a sense, on the
environment. Most of these results rely on a translation property of critical travelling waves.

4.1. The translation property

We are interested here in proving some analogous of the translation property introduced by Matano (see Defini-
tion 1.2).

Proposition 4.1. Assume that (H) is satisfied and let θ ∈ (0,1). For all (ã, b̃, f̃ ) ∈ H, let u(·, ·; (ã, b̃, f̃ )) =
u(t, x; (ã, b̃, f̃ )) the solution of (E) associated with the coefficients (ã, b̃, f̃ ) constructed in Theorem 2.2 and nor-
malized by u(0,0; (ã, b̃, f̃ )) = θ . Assume that limt→−∞ u(t, x; (a, b, f )) = 0 and limt→+∞ u(t, x; (a, b, f )) = 1 for
all x ∈ R.

Then there exists a unique point T (y) ∈ R such that u(T (y), y; (a, b, f )) = θ for all y ∈ R and one has for all
(t, x, y) ∈ R×R×R:

u
(
t + T (y), x + y; (a, b, f )

) = u
(
t, x; (πya,πyb,πyf )

)
. (4.1)

Note that the hypothesis limt→−∞ u(t, x; (a, b, f )) = 0 and limt→+∞ u(t, x; (a, b, f )) = 1 is at least checked for
monostable and ignition-type equations and implies that u is time-increasing. If the limits are reversed, that is, if
limt→−∞ u(t, x; (a, b, f )) = 1 and limt→+∞ u(t, x; (a, b, f )) = 0, then the results still hold (just let v := 1 − u). If
the critical travelling wave is time-independent or does not connect 0 to 1, then Proposition 4.1 does not hold anymore,
as emphasized by the example investigated in Section 6.

The difference with Matano’s translation property of Definition 1.2 is that here we translate in time instead of
space, which is natural since, as already underlined, critical travelling waves are somehow temporal transitions.
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4.2. Homogeneous equations

Let first consider coefficients which do not depend on x. Up to some well-chosen change of variables, one can
always assume that a ≡ 1 and b ≡ 0.

Proposition 4.2. Assume that a ≡ 1, b ≡ 0 and f = f (u) is a Lipschitz-continuous function which does not depend
on x such that f (0) = f (1) = 0. Then

• if there exists θ0 ∈ [0,1) such that f (u) � 0 when u ∈ [0, θ0], f (u) > 0 when u ∈ (θ0,1] and
∫ 1

0 f (u)du > 0, then
the critical travelling waves are unique up to translation in time and are planar travelling waves (in the sense
of (1.2)),

• moreover, if θ0 = 0, f ′(1) < 0 and if we write the critical travelling wave u(t, x) = U(x − ct), then there exists
no planar travelling wave with speed c′ < c.

Heuristically, this result means that if 0 is less stable than 1 (that is, when
∫ 1

0 f (u)du > 0), then we recover the
classical notion of planar travelling waves. If this condition is not met, for example if f (u) = u(1 − u)(u− 1/2), then
such a result still holds except that one would get a uniqueness up to translation in space instead of time in general.
The second part of the result means that, in the monostable framework (θ0 = 0), if f ′(1) < 0, critical travelling waves
are a planar travelling wave with minimal speed.

Note that in the monostable framework, there exist many other wave-like solutions: planar travelling waves with
speed c′ > c and even non-planar travelling waves with a changing speed (see [15]). Such waves are spatial transition
waves in the sense of Definition 1.1 but not critical travelling waves. Hence, the notion of critical travelling wave is not
more general than the notion of spatial transition wave. One can just claim that critical travelling waves always exist,
while spatial transition waves do not for heterogeneous equations (see [26]), but on the other hand some wave-like
solutions are spatial transition waves but not critical travelling waves. This is why critical travelling wave is only a
good generalization of the notion of waves with minimal speed in the monostable framework.

Lastly, Proposition 4.2 gives a new geometrical characterization of the waves with minimal speed in the homoge-
neous framework: theses waves are necessarily critical travelling waves in the sense of Definition 2.1, which is a new
result of independent interest.

4.3. Periodic heterogeneity

Assume now that the coefficients are periodic. That is, there exists L > 0 such that

a(x + L) = a(x), b(x + L) = b(x) and f (x + L,u) = f (x,u) for all (x,u) ∈ R× [0,1].
Assume that f = f (x,u) is differentiable at u = 1. The statement of the results will involve the elliptic operator L1
associated with the linearization near the stable steady state u = 1, defined for all ϕ ∈ C2(R) by

L1ϕ = a(x)ϕ′′ + b(x)ϕ′ + f ′
u(x,1)ϕ.

As its coefficients are periodic and bounded, this operator admits a unique periodic principal eigenvalue, that is,
a unique μ associated with a periodic function ϕ ∈ W 2,∞(R) > 0 such that L1ϕ = μϕ. Note that if f ′

u(x,1) does not
depend on x, then μ is just the constant function f ′(1).

Proposition 4.3. Assume that (H) is satisfied, that the coefficients are periodic and that f is differentiable at u = 1.

• If Eq. (E) is monostable in the sense of Definition 3.4, then a critical travelling wave of Eq. (E) is a pulsating
travelling wave with speed c. Moreover, if (x,u) 	→ (a(x), b(x), f (x,u)) is of class C1,γ (R × [0,1]) for some
γ ∈ (0,1) and if μ < 0, then for all c′ < c, there exists no pulsating travelling wave with speed c′.

• If (x,u) 	→ (a(x), b(x), f (x,u)) is of class C2,γ (R× [0,1]) for some γ ∈ (0,1), b ≡ ∂xa, there exists β ∈ (0,1)

such that u ∈ (1 − β,1] 	→ f (x,u) is nonincreasing for all x ∈R and there exists θ0 ∈ (0,1) such that

∀(x,u) ∈R× [0, θ0], f (x,u) = 0 and ∀u ∈ (θ0,1), maxf (x,u) > 0,

x∈R
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then critical travelling waves are unique up to translation in time and are pulsating travelling waves of speed c∗.
Moreover, there exists no pulsating travelling wave of speed c �= c∗.

It is easy to check that the monostability hypothesis ensures that μ � 0. Even if it is not involved in the existence
of pulsating travelling waves, hypothesis μ < 0 ensures the uniqueness, monotonicity or exponential decay of these
waves (see [3] for example). If μ = 0, there are still many open questions stated in the literature. We do not know if
the critical travelling wave is the pulsating travelling wave with minimal speed if μ = 0.

We will prove in Section 5 below that, if the coefficients are periodic and if the equation is monostable, then the
critical travelling wave attracts the solution of the Cauchy problem associated with Heaviside-type initial data. This
result does not involve any hypothesis like μ < 0. In other words, in the case μ = 0, if the critical transition wave was
not the pulsating travelling wave with minimal speed, it would still be attractive. Hence, from the point of view of
attractivity, criticality is a more relevant notion than being of minimal speed.

The hypotheses of the second part of Proposition 4.3 mean that Eq. (E) is of ignition-type and in the divergence
form. Under these hypotheses, the existence and uniqueness of pulsating travelling waves have been proved in [3].
Our contribution is the identification of critical travelling waves in this framework.

Lastly, we leave possible extensions to bistable equations using [9,10,16,34] to the reader.

4.4. Compactly supported heterogeneity

We consider in this section the same type of equation as in [26]. In other words, we assume that a ≡ 1, b ≡ 0, f is
a uniformly Lipschitz-continuous function over R× [0,1] such that f (x,0) = f (x,1) = 0 for all x ∈ R and

f ′
u(x,0) exists and f (x,u) � f ′

u(x,0)u for all (x,u) ∈R× [0,1],
∃C,δ > 0 such that f (x,u) � f ′

u(x,0)u − Cu1+δ for all (x,u) ∈R× [0,1],
f ′

u(·,0) is continuous and inf
x∈Rf ′

u(x,0) > 0,

∃R > 0, ∀|x| > R, f ′
u(x,0) = 1. (4.2)

We also assume that the supremum λ of the spectrum of the operator ∂xx + f ′
u(x,0) is strictly larger than 1. Due

to (4.2), it is equivalent to assume that

∃λ ∈ (1,∞), ∃ψ ∈ L2(R), ψ > 0 | ψ ′′ + f ′
u(x,0)ψ = λψ in R. (4.3)

Under these hypotheses, Nolen, Roquejoffre, Ryzhik and Zlatos [26] proved that such spatial transition waves exist
for a given range of speeds if λ > 2 and do not exist if λ < 2. Moreover, they proved that another class of time-global
solutions, that they called bump-like solutions, is always non-empty.

Theorem 4.4. (See [26].) Assume that (4.2) and (4.3) hold.

1. If λ > 2, then any time-global solution v of (E) such that 0 < v < 1 satisfies (with Cc > 0) v(t, x) � Cce
−|x|+ct

for any c < λ/
√

λ − 1 and (t, x) ∈ (−∞,0) ×R. In particular, no spatial transition wave exists.
2. If λ ∈ (1,2), then for all c ∈ (2, λ/

√
λ − 1), Eq. (E) admits a spatial transition wave with global mean speed

c. If in addition x 	→ f ′
u(x,0) is even, then there exists no spatial transition wave with global mean speed c >

λ/
√

λ − 1.
3. For all λ > 1, if there exists θ0 ∈ (0,1) such that f (x,u) = f ′

u(x,0)u for all (x,u) ∈R× [0, θ0], then there exists
a solution v of Eq. (E) such that 0 < v < 1 and v(t, ·) ∈ L1(R) for all t ∈ R. If in addition λ > 2, then there exists
a unique (up to translation in time) time-global solution v such that 0 < v < 1.

Let now identify the critical transition waves in this framework.

Proposition 4.5. Assume (4.2)–(4.3) and f ′
u(x,0) � 1 for all x ∈ R. Let u be a critical travelling wave.

1. If λ > 2, then u(t, ·) ∈ L1(R) for all t ∈R.
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2. If λ ∈ (1,2) and if s 	→ f (x, s)/s is nonincreasing for all x ∈ R, then u is a spatial transition wave with global
mean speed c = 2.

In other words, if λ > 2, then the critical travelling waves are bump-like solutions, while if λ ∈ (1,2), critical
travelling waves are spatial transition waves with minimal speed. We underline that the existence of spatial transition
waves with global mean speed c = 2 is a new result: only the existence of spatial transition waves with global mean
speed c > 2 was proved in [26].

4.5. Random stationary ergodic heterogeneities

We consider here reaction–diffusion equations with random coefficients

∂tu − a(x,ω)∂xxu − b(x,ω)∂xu = f (x,ω,u). (4.4)

The functions a : R × Ω → (0,∞), b : R × Ω → R and f : R × Ω × [0,1] → R are random variables defined on
a probability space (Ω,P,F). We assume that the coefficients are random stationary ergodic functions with respect
to x. Namely, there exists a group (πx)x∈R of measure-preserving transformations of Ω such that for all (x, y,ω,u) ∈
R×R× Ω × [0,1]:

a(x + y,ω) = a(x,πyω), b(x + y,ω) = b(x,πyω), f (x + y,ω,u) = f (x,πyω,u),

and for all A ∈F , if πxA = A for all x ∈ R, then P(A) = 0 or 1.
The case of ignition-type equations with random stationary ergodic equations has been addressed by Nolen and

Ryzhik [27].

Theorem 4.6. (See [27].) Assume that a ≡ 1, b ≡ 0 and f (x,ω,u) = g(x,ω)f0(u), where f0 is of ignition-type and
x 	→ g(x,ω) is a uniformly Lipschitz-continuous and bounded function, with infx∈R g(x,ω) > 0, for almost every
ω ∈ Ω . Then there exists a measurable function u : R×R× Ω → [0,1] such that

• for almost every ω ∈ Ω , (t, x) 	→ u(t, x,ω) is a spatial transition wave of Eq. (4.4) which is increasing in t ,
• if X(t,ω) is defined by u(t,X(t,ω),ω) = θ0, then X is increasing in t , measurable in ω and

the limit cθ0 = lim
t→+∞

X(t,ω)

t
exists almost surely and is deterministic,

• u(t, x,ω) = u(0, x − X(t,ω),πX(t,ω)ω) for almost every (t, x,ω) ∈R×R× Ω .

Such a family of solutions is called a random travelling wave in [27,30]. Moreover, the speed cθ0 is the spreading
speed associated with compactly supported initial data (see [27]).

When the equation is monostable almost surely in ω ∈ Ω , the existence of random travelling waves is still a fully
open problem. Nevertheless, we know that for almost every ω ∈ Ω , there exists a critical travelling wave (t, x) 	→
u(t, x,ω) and this solution satisfies properties related to the stationary ergodicity of the equation, as stated in the next
result.

Proposition 4.7. Assume that for almost every ω ∈ Ω , Eq. (4.4) (where ω is fixed) is monostable in the sense of Defi-
nition 3.4 and satisfies (H). Take θ ∈ (0,1). For almost every ω ∈ Ω , let u : (t, x) 	→ u(t, x,ω) the critical travelling
wave of Eq. (4.4) normalized by u(0,0,ω) = θ and define T : R × Ω → R such that u(T (x,ω), x,ω) = θ for all
(x,ω) ∈ R× Ω . Then

• ω 	→ u(t, x,ω) and ω 	→ T (x,ω) are measurable for all (t, x) ∈R×R,
• u(t + T (y,ω), x + y,ω) = u(t, x,πyω) and T (x + y,ω) = T (y,ω) + T (x,πyω) for all (t, x, y) ∈ R × R × R

and almost every ω ∈ Ω ,
• the limit

c∗ = lim
x→+∞

x

T (x,ω)
exists almost surely and is deterministic.
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As T (x,ω) is the localization of the temporal interface of the wave u between 0 and 1, the quantity c∗ can be
viewed as the propagation speed of u.

This result does not solve the problem of the existence of random travelling waves in the monostable framework.
However, it shows that there exists a family of wave-like solutions satisfying some random stationarity property, which
may be a random travelling wave.

5. Attractivity of critical travelling waves along a subsequence for recurrent at infinity coefficients

This section investigates the attractivity of critical travelling waves. Recall that in homogeneous media, the solution
of the Cauchy problem associated with a Heaviside initial datum is attracted, in a sense (see the Introduction), by the
planar travelling wave with minimal speed [17], which is indeed the critical travelling wave in this framework.

We were not able to fully extend this result to general heterogeneous framework. However, we proved that such an
attractivity holds along a subsequence, if the coefficients are recurrent at infinity.

Definition 5.1. We say that a uniformly continuous function g : R → R is recurrent at infinity if there exists a se-
quence (yn)n such that limn→+∞ yn = +∞ and g(x) = limn→+∞ g(x + yn) locally uniformly in x ∈R.

Heuristically, this notion means that the structure of g is repeated along a sequence of translations which diverge
to +∞. It is easy to check that periodic and almost periodicity functions are recurrent at infinity. Typical function that
is not recurrent at infinity is compactly supported ones: if g(x) = 0 when x is large enough and g �≡ 0, then for all
sequence (yn)n such that limn→+∞ yn = +∞, one has limn→+∞ g(x + xn) ≡ 0 locally in x, which contradicts the
recurrence at infinity by taking xn = 0 for all n.

Theorem 5.2. Assume that a, b and f (·, u) are uniformly continuous and recurrent at infinity for all u ∈ [0,1], that
(H) is satisfied and that Eq. (E) is monostable. Let v be the solution of the Cauchy problem⎧⎨

⎩
∂tv − a(x)∂xxv − b(x)∂xv = f (x, v) in (0,∞) ×R,

v(0, x) =
{

1 if x � 0,

0 if x > 0
for all x ∈R.

(5.1)

Let θ ∈ (0,1) and

S(y) := sup
{
t > 0, v(t, y) � θ

}
for all y > 0.

Then there exists a sequence (yn)n such that limn→+∞ yn = +∞ and

v
(
S(yn), x + yn

) − u
(
T (yn), x + yn

) → 0 as n → +∞ locally in x ∈R, (5.2)

where u is the unique critical travelling wave normalized by u(0,0) = θ and T is uniquely defined by u(T (y), y) = θ

for all y ∈R.

We do not know if this attractivity holds along any sequence (yn)n converging to +∞ and if more general het-
erogeneities could be handled. Some partial results in this direction are stated in Section 10. In particular, we prove
that there is a strong link between the attractivity and the continuity of critical travelling waves with respect to the
coefficients.

If the nonlinearity is periodic, then we can improve this result and get the full convergence instead of the conver-
gence along a subsequence.

Proposition 5.3. Assume that a, b and f are L-periodic in x, with L > 0, that (H) is satisfied and that Eq. (E) is
monostable in the sense of Definition 3.4. Then, with the same notations as in Theorem 5.2, one has

lim
y→+∞

(
v
(
S(y), x + y

) − u
(
T (y), x + y

)) = 0 locally in x ∈R. (5.3)
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We recall that this result has been proved in a parallel work by Ducrot, Giletti and Matano [9]. Note that we do not
need any hypothesis involving the linearization of Eq. (E) near the steady state u = 1. Hence, Proposition 4.3 above
yields that the critical travelling wave is a pulsating travelling wave but we do not know if its speed is the minimal
speed of such waves. However, Proposition 5.3 ensures that the critical travelling wave is always attractive.

A natural open problem is the extension of Theorem 5.2 to more general wave-like initial data. We recall here that
Giletti [13] proved that such an extension holds for periodic monostable equations.

6. Wave-blocking phenomena and critical travelling waves

Several papers [6,8,19,28] observed in various framework that heterogeneous bistable equations might admit non-
trivial stationary solutions. In this case the monotonicity and the convergences as t → ±∞ of the critical travelling
waves will strongly depend on the normalization of the wave. Typically, these non-trivial steady states could be critical
travelling waves (see Proposition 11.1 below for a result in this direction in a general bistable framework).

We will now focus on an example investigated in [19] in order to illustrate this phenomenon. Consider

∂tu − ∂xxu = f (x,u) =
{

f0(u) if x < 0 or x > L,

0 if 0 � x � L
(6.1)

where L > 0 and f0 satisfies f0(0) = f0(θ0) = f0(1) = 0, f0 is convex and negative in (0, θ0), f0 is concave and
positive in (θ0,1), f ′

0(0) �= 0 �= f ′
0(1) and

∫ 1
0 f0(s)ds > 0. An example of nonlinearity satisfying this set of hypotheses

is f0(u) = u(1 − u)(u − θ0), with θ0 ∈ (0,1/2).
In this case the existence of stationary solutions has been investigated by Lewis and Keener [19]. They proved that

there exists L∗ > 0 such that for all L > L∗, there exist two (and only two) C1(R) solutions w− < w+ of

−w′′ = f (x,w) in R, w(−∞) = 1, w(+∞) = 0, 0 < w < 1. (6.2)

Moreover, w± are decreasing, w−(0) < θ0 < w+(0), w− is stable and w+ is unstable (see [19] for a precise statement
on the stability).

Proposition 6.1. Consider L > L∗ and let x± be the unique points such that w±(x±) = θ0. Let u be the critical
travelling wave normalized by u(0, x0) = θ0,

• if x0 < x−, then u is time-increasing, u(−∞, x) = 0 and u(+∞, x) = w−(x),
• if x0 = x−, then u does not depend on time and u ≡ w−,
• if x− < x0 < x+, then u is time-decreasing, u(−∞, x) = w+(x) and u(+∞, x) = w−(x),
• if x0 = x+, then u does not depend on time and u ≡ w+,
• if x0 > x+, then u is time-increasing, u(−∞, x) = w+(x) and u(+∞, x) = 1,

where all these convergences are locally uniform in x ∈R (see Fig. 3).

This example shows that in the multistable setting, the shape of the critical travelling wave is not unique up to
translation in time unlike in monostable or ignition-type framework. Indeed, different normalizations of the critical
travelling wave could give very different behaviours.

7. Construction and properties of critical travelling waves

7.1. Preliminaries: zero set of the solution of a parabolic equation

Our main tool in the sequel will be Proposition 7.1, which is an extension of Angenent’s classical result [1]. It
basically states that if the solution u of a linear parabolic equation admits only one zero at t = 0, then u(t, ·) will
admit at most one zero for all t > 0. Angenent’s result [1] states that the number of zeros of u(t, ·) is nonincreasing
with respect to t > 0, but it does not include the time t = 0. Hence, we need to start the proof through direct arguments,
before being able to use Angenent’s result. Moreover, we will need in the sequel a slightly more general assumption
on the initial datum.
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Fig. 3. A representation of Proposition 6.1. The arrows indicate the evolution with respect to time of the critical travelling waves lying in the area.

Proposition 7.1. Assume that a, 1/a, at , ax , axx , b, bt , bx and c are measurable and essentially bounded functions
over (0,∞) ×R. Consider a bounded weak solution u ∈ C0((0,∞) ×R) ∩ L∞((0,∞) ×R) of{

∂tu = a(t, x)∂xxu + b(t, x)∂xu + c(t, x)u in (0,∞) ×R,

u(0, x) = u0(x) in R,
(7.1)

where u0 �≡ 0 is continuous by parts and bounded over R and there exists x0 ∈ R such that

u0(x) � 0 if x < x0, u0(x) � 0 if x > x0.

Then, for all t > 0, there exists a unique ξ(t) ∈ [−∞,∞] such that

u(t, x) > 0 if x < ξ(t), u(t, x) < 0 if x > ξ(t).

Proof. 1. Take T > 0 and let Ω := {(t, x) ∈ (0, T ) × R, u(t, x) > 0}. Assume that Ω is non-empty and write Ω =⋃
i∈I Ωi , where Ωi are disjoint non-empty connected open sets of (0, T ) × R for all i ∈ I . Assume that there exists

i0 ∈ I such that {(0, x), x ∈ R} ∩ Ωi0 = ∅. Define

V = (
(0, T ) ×R

)\ ⋃
i �=i0

Ωi.

It is easy readily checked that

∂V\{(T , x), x ∈ R
} ⊂ {u � 0} since

{
(0, x), x ∈R

} ∩ Ωi0 = ∅.

The parabolic weak maximum principle yields that u � 0 in V , which is a contradiction since Ωi0 ⊂ V and u > 0
in Ωi0 . Hence, {(0, x), x ∈ R} ∩ Ωi0 �= ∅ for all i ∈ I .

2. Define Ω(t) := {x ∈ R, u(t, x) > 0} for all t > 0. Assume that y1 ∈ Ω(T ) and y2 ∈ Ω(T ), with T > 0 and
y1 < y2. We will prove that [y1, y2] ∈ Ω(T ). Define Ω as in the first step. As Ω = ⋃

i∈I Ωi , there exist i1, i2 ∈ I such
that (T , y1) ∈ Ωi1 and (T , y2) ∈ Ωi2 . For all i, as Ωi is connected, Ωi is connected and, as the first step yields that
{(0, x), x ∈ R} ∩ Ωi0 �= ∅ for i = 1,2, there exist two continuous paths φ1 : [0,1] → Ω1 and φ2 : [0,1] → Ω2 such
that φk(1) ∈ {(0, x), x ∈ R} for k = 1,2, φ1(0) = (T , y1) and φ2(0) = (T , y2). We can assume that these paths are
non-self-intersecting and that φk(s) /∈ {(T , x), x ∈ R} for k = 1,2.

3. Consider first the case where there exist s1, s2 ∈ (0,1) such that φ1(s1) = φ2(s2). We can assume that s1 is the
smallest s such that φ1(s) intersects the curve associated with φ2. Define the path: for all s ∈ [0, s1 + s2 + 1],

ψ(s) :=

⎧⎪⎨
⎪⎩

s(T , y1) + (1 − s)(T , y2) if s ∈ [0,1],
φ1(s − 1) if s ∈ [1,1 + s1],
φ2(s2 + s1 + 1 − s) if s ∈ [1 + s1,1 + s1 + s2].

This path is a Jordan curve since it is continuous, non-self-intersecting and ψ(0) = ψ(s1 + s2 + 1) = (T , y2). Let K

be its (compact) interior region. Then

∂K\{(T , x), x ∈R
} ⊂ {

φ1(s), s ∈ [0, s1]
} ∪ {

φ2(s), s ∈ [0, s2]
} ⊂ {u � 0},
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and the weak parabolic maximum principle gives u � 0 in K . If there exists x ∈ (y1, y2) such that u(T , x) = 0, then
for all δ > 0 such that [T − δ, T ] × [x − δ, x + δ] ⊂ K , the Krylov–Safonov–Harnack inequality (see [18]) would
give u(T , ·) ≡ 0 on [x − δ, x + δ]. Iterating, one would eventually get by continuity u(T , y1) = 0, which would be a
contradiction. Hence, u(T , x) > 0 for all x ∈ [y1, y2].

If the paths φ1 and φ2 do not intersect, constructing a Jordan curve by connecting the points where φ1 and φ2 touch
{(0, x), x ∈R} through a segment, one concludes similarly.

This proves that Ω(t) is connected for all t > 0. In other words, it is an interval. Similarly, {x ∈ R, u(t, x) < 0}
is an interval for all t > 0 if it is not empty. Hence, one can define ξ−(t) := sup{x, u(t, x) > 0} and ξ+(t) :=
inf{x, u(t, x) < 0} for all t > 0. If ξ−(t) < ξ+(t) for some t > 0, then u(t, x) = 0 for all ξ−(t) � x � ξ+(t) and
Theorem A in [1] would give u ≡ 0, which is a contradiction. Letting ξ(t) := ξ−(t) = ξ+(t) concludes the proof. �
7.2. Construction of the function u

The construction of the wave is similar to the construction of random travelling waves in earlier works of Nolen
and Ryzhik [27] and Shen [30]. However, we will diverge from these two papers in the next subsections since the
properties of the wave we seek to prove are different.

Define for all s < 0, y ∈R, the solution u
y
s = u

y
s (t, x) of Eq. (E) with initial condition at t = s:

u
y
s (s, x) =

{
1 if x � y,

0 if x > y.

Take θ ∈ (0,1) and x0 ∈ R as in the statement of Theorem 2.2.

Lemma 7.2. For all s < 0, there exists a unique xs ∈ R such that u
xs
s (0, x0) = θ .

Proof. The parabolic maximum principle and the parabolic regularity estimates respectively yield that y 	→ u
y
s (0, x0)

is increasing and continuous. Let m := limy→−∞ u
y
s (0, x0). Take a sequence (yn)n such that limn→+∞ yn = −∞.

The parabolic regularity estimates yield that one can assume, up to extraction, that the sequence (u
yn
s )n converges

locally uniformly to the solution v of (E) associated with the initial datum v(s, x) = 0 for all x ∈ R. Hence v ≡ 0 and
m = limn→+∞ u

yn
s (0, x0) = v(0, x0) = 0. Similarly, one can prove that limy→+∞ u

y
s (0, x0) = 1. The existence and

uniqueness of xs ∈ R follow from the intermediate value theorem and the monotonicity of y 	→ u
y
s (0, x0). �

In the sequel, we will denote us := u
xs
s in order to enlight the notations.

Lemma 7.3. The limit

u(t, x) := lim
s→−∞us(t, x) (7.2)

exists locally uniformly in (t, x) ∈ R×R and it is a solution of (E).

Proof. Take s1 < s2 and define w(t, x) := us2(t, x) − us1(t, x) for all t � s2 and x ∈ R. The function w satisfies the
parabolic equation

∂tw − a(x)∂xxw − b(x)∂xw = c(t, x)w in (s,∞) ×R

where

c(t, x) =
{

f (x,us2 (t,x))−f (x,us1 (t,x))

us2 (t,x)−us1 (t,x)
if us2(t, x) �= us1(t, x),

0 if us2(t, x) = us1(t, x).

As f is Lipschitz-continuous, the function c is bounded and measurable. On the other hand, we know from the
parabolic maximum principle that 0 < us1(t, x) < 1 for all t > s1 and x ∈ R. Hence, w(s2, x) > 0 if x < xs2 and
w(s2, x) < 0 if x > xs2 . It follows from Proposition 7.1 that for all t > s2, {w(t, ·) > 0} and {w(t, ·) > 0} are intervals.
But we also know that w(0, x0) = θ − θ = 0. Hence, we eventually get

us2(0, x) � us1(0, x) if x < x0 and us2(0, x) � us1(0, x) if x > x0.
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In other words, s 	→ us(0, x) is nondecreasing if x < x0 and nonincreasing if x > x0. Thus, the limit u0(x) :=
lims→−∞ us(0, x) is well-defined for all x ∈ R and as the solution u = u(t, x) of the Cauchy problem associated
with Eq. (E) and the initial datum u0 = u0(x) is unique, parabolic regularity estimates give the conclusion. �
7.3. Criticality of the wave

Lemma 7.4. Assume that v ∈ C0(R × R) is a time-global solution of (E) such that v(t0, x0) = u(t0, x0) for some
(t0, x0) ∈R×R and 0 < v < 1, then either u ≡ v or

u(t0, x) > v(t0, x) if x < x0 and u(t0, x) < v(t0, x) if x > x0,

where u is defined by (7.2).

Proof. Assume that u �≡ v. Let w(t, x) := us(t, x)− v(t, x), where s < 0. The definition of us yields that w(s, x) > 0
if x < xs and w(s, x) < 0 if x > xs . As in the proof of Lemma 7.3, it follows from Proposition 7.1 that for all t > s,
there exists ξs(t) ∈ R such that us(t, ξs(t)) = v(t, ξs(t)) and

us(t, x) > v(t, x) if x < ξs(t) and us(t, x) < v(t, x) if x > ξs(t). (7.3)

Assume that there exists a sequence (sn)n such that sn → −∞ and ξsn(t0 − 1) → +∞. Then letting s = sn, t = t0 − 1
and n → +∞ in (7.3) gives u(t0 − 1, x) � v(t0 − 1, x) for all x ∈ R. It follows from the parabolic strong maximum
principle that u(t0, x) > v(t0, x) for all x ∈ R since u �≡ v, which is a contradiction at x = x0. Similarly, one can
prove that ξsn(t0 − 1) → −∞ would lead to a contradiction. Hence, s 	→ ξs(t0 − 1) is bounded and there exists a
sequence (sn)n such that sn → −∞ and (ξsn(t0 − 1))n converges to a limit ξ∞ ∈R. One gets from (7.3)

u(t0 − 1, x) � v(t0 − 1, x) if x � ξ∞ and u(t0 − 1, x) � v(t0 − 1, x) if x � ξ∞. (7.4)

It follows from Proposition 7.1 that the function x 	→ u(t0, x)− v(t0, x) admits a unique zero, which is necessarily x0,
and that

u(t0, x) > v(t0, x) if x < x0 and u(t0, x) < v(t0, x) if x > x0. �
7.4. Monotonicity of the wave in time

Lemma 7.5. Let τ > 0.

• If there exists a sequence (sn)n such that limn→+∞ sn = −∞ and xsn+τ � xsn for all n ∈ N, then t 	→ u(t, x) is
nonincreasing for all x ∈ R.

• If there exists a sequence (sn)n such that limn→+∞ sn = −∞ and xsn+τ � xsn for all n ∈ N, then t 	→ u(t, x) is
nondecreasing for all x ∈ R.

Hence, t 	→ u(t, x) is either nondecreasing for all x ∈ R or nonincreasing for all x ∈R.

Proof. Assume first that there exists a sequence (sn)n such that limn→+∞ sn = −∞ and xsn+τ � xsn for all n ∈ N.
Define for all n ∈N, (t, x) ∈ (sn,∞) ×R:

vn(t, x) := usn+τ (t + τ, x).

This function satisfies (E) in (sn,∞) ×R together with the initial condition

vn(sn, x) =
{1 if x � xsn+τ ,

0 if x > xsn+τ .

The function usn satisfies the same Cauchy problem but with xsn instead of xsn+τ in the definition of the initial
condition. Hence, as xsn+τ � xsn , the parabolic maximum principle gives

usn(t, x) � vn(t, x) = usn+τ (t + τ, x) for all (t, x) ∈ (sn,∞) ×R.
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Letting n → +∞ in this inequality, as u(t, x) = lims→+∞ us(t, x) for all (t, x) ∈ R×R, one gets u(t, x) � u(t +τ, x)

for all (t, x) ∈R×R. This proves the first part of Lemma 7.5.
If there exists a sequence (sn)n such that limn→+∞ sn = −∞ and xsn+τ � xsn for all n ∈ N, then the monotonicity

of t 	→ u(t, x) follows through similar arguments.
If there exists no sequence (sn)n such that limn→+∞ sn = −∞ and xsn+τ � xsn for all n ∈ N, then there exists

S < 0 such that xs+τ > xs for all s < S and thus the second part of the lemma yields that t 	→ u(t, x) is nondecreasing
for all x ∈R. We conclude that t 	→ u(t, x) is either nondecreasing for all x ∈R or nonincreasing for all x ∈R. �
7.5. Monotonicity of the wave in space for homogeneous f

Lemma 7.6. Assume that f does not depend on x. Then x 	→ u(t, x) is nonincreasing for all t ∈R.

Proof. Define u
y
s as above for all s < 0 and y ∈ R. It is clear from the previous proof that we only need to prove that

x 	→ u
y
s (t, x) is nonincreasing for all t > s in order to conclude.

Assume first that the coefficients a, b and f are C∞ functions and let v := ∂xu
y
s . This function satisfies the smooth

parabolic equation

∂tv − a(x)∂xxv − (
a′(x) + b(x)

)
∂xv = (

f ′(u(t, x)
) + b′(x)

)
v in (s,∞) ×R.

Moreover, v(t, ·) ⇀ −δy as t → s+ in the sense of measures, where δy is the Dirac measure localized at y. Hence,
the weak parabolic maximum principle yields that v(t, x) � 0 for all (t, x) ∈ (s,∞) ×R, meaning that x 	→ u

y
s (t, x)

is nonincreasing for all t > s.
If a = a(x), b = b(x) and f = f (u) satisfy (H), then the result follows from the previous step by approxima-

tion. �
7.6. End of the proof of Theorem 2.2

Proof of Theorem 2.2. 1. The existence of the critical travelling wave immediately follows from Lemmas 7.3 and 7.4.
Assume that ũ is a critical travelling wave of (E) such that ũ(0, x0) = θ . As u is a critical travelling wave and ũ is
a time-global solution, one has u(0, x) � ũ(0, x) if x < x0 and u(0, x) � ũ(0, x) if x > x0. But as ũ is a critical
travelling wave, we also have u(0, x) � ũ(0, x) if x < x0 and u(0, x) � ũ(0, x) if x > x0. Hence ũ(0, x) = u(0, x) for
all x ∈ R. As u and ũ both satisfy the parabolic equation (E), the uniqueness follows.

2. Next, we know from Lemmas 7.4 and 7.5 that u is either nonincreasing or nondecreasing in time. Let v := ∂tu.
This function satisfies

∂tv − a(x)∂xxv − b(x)∂xv = f ′
u

(
x,u(t, x)

)
v in R×R.

It follows from parabolic regularity estimates that ∂tv ∈ L
p

loc(R × R) and ∂xxv ∈ L
p

loc(R × R) for all p ∈ (1,∞). In
particular, v is a continuous function on R×R.

Assume that u is nonincreasing in t . Then v := ∂tu � 0 on R × R. If there exists (t0, x0) ∈ R × R such that
v(t0, x0) = 0, then the Harnack–Krylov–Safonov inequality for parabolic equations [18] implies that v(t, x) = 0 for
all t < t0, x ∈ R and thus v ≡ 0. Hence u would be constant with respect to time. If v is positive, this means that
∂tu > 0 and thus u is increasing in time. Similarly, if u is nonincreasing in time, then one can prove that either u is
either constant or decreasing in time.

3. Lastly, when f does not depend on x, the monotonicity in x immediately follows from Lemma 7.6. �
8. Proof of the comparison results with spatial transition waves

8.1. Proof of the results in the general framework

Proof of Theorem 3.1. Consider a critical transition wave u. As limt→−∞ v(t,0) = 0 and limt→+∞ v(t,0) = 1, there
exists τ ∈ R such that v(τ,0) = u(0,0). The criticality of u yields

u(0, x) � v(τ, x) if x � 0 and u(0, x) � v(τ, x) if x � 0.
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Hence, limx→−∞ u(0, x) = 1 and limx→+∞ u(0, x) = 0 and it easily follows from parabolic regularity estimates and
the parabolic strong maximum principle that

lim
x→−∞u(t, x) = 1 and lim

x→+∞u(t, x) = 0 for all t ∈ R.

Next, let ε ∈ (0,1/2) and take (t0, x0) ∈ R × R such that ε < u(t0, x0) < 1 − ε. There exists τ ′ ∈ R such that
v(t0 + τ ′, x0) = u(t0, x0). Define for all t ∈ R, Iε(t) := {x ∈ R, ε < u(t, x) < 1 − ε} and Jε(t) := {x ∈ R, ε <

v(t, x) < 1 − ε}. As v is a spatial transition wave, we know that there exists L > 0 such that the diamJε(t) � L for
all t ∈R.

On the other hand, one has

u(t0, x) � v
(
t0 + τ ′, x

)
if x � x0 and u(t0, x) � v

(
t0 + τ ′, x

)
if x � x0.

Also, x0 ∈ Jε(t0 + τ ′) ∩ Iε(t0). Take x < infJε(t0 + τ ′). One has x < x0 and v(t0 + τ ′, x) � 1 − ε, which gives
u(t0, x) � 1 − ε. Hence x < inf Iε(t0). Similarly, one can prove that x > supJε(t0 + τ ′) implies x > sup Iε(t0). We
conclude that diam Iε(t0) � diamJε(t0 +τ ′) � L. As L does not depend on t0, we conclude that u is a spatial transition
wave. �
8.2. Proof of the results in the ignition-type framework

Proof of Corollary 3.3. Consider a critical travelling wave u. We know from [22,27] that there exists a spatial
transition wave v such that limt→+∞ v(t, x) = 1 and limt→−∞ v(t, x) = 0 for all x ∈ R. Hence, Theorem 3.1 yields
that u is a spatial transition wave.

On the other hand, if v is an arbitrary spatial transition wave, then as u is a spatial transition wave, it follows
from [21] that there exists τ ∈ R such that u(t, x) = v(t + τ, x) for all (t, x) ∈ R×R. Thus, v is a critical travelling
wave.

The monotonicity and the uniqueness immediately follow from Theorem 3.2. �
8.3. Proof of the results in the monostable framework

Proof of Proposition 3.5. We know from Theorem 2.2 that u is either increasing, decreasing or constant in time from
Theorem 2.2. Moreover, the monostability of Eq. (E) ensures that limt→+∞ u(t, x) = 1 since u(0, ·) �≡ 0. Hence, as
0 < u < 1, u is necessarily increasing in time. Let u∞(x) = limt→−∞ u(t, x) for all x ∈ R. The parabolic regularity
estimates yield that u∞ ∈ W 2,p(R) for all p ∈ (1,∞) and that it is a weak solution of a(x)u′′∞+b(x)u′∞+f (x,u∞) =
0 over R. Taking u∞ as an initial datum in the Cauchy problem (3.2), we get from the monostability hypothesis that
u∞ ≡ 1 if u∞ �≡ 0. Hence, as u∞(x) = limt→−∞ u(t, x) � u(0, x) for all x ∈R, one gets u∞ ≡ 0.

The existence and the uniqueness of T (x) follow from the monotonicity of u with respect to t and the convergences
as t → ±∞. The continuity of T in x immediately follows from the continuity of u and the uniqueness of T .

Assume that ũ is another critical travelling wave of (E). As limt→−∞ ũ(t,0) = 0 and limt→+∞ ũ(t,0) = 1, there
exists τ ∈ R such that u(τ,0) = ũ(0,0). Theorem 2.2 ensures that ũ(τ, x) = u(0, x) for all x ∈ R. As u and ũ both
satisfy the parabolic equation (E), the conclusion follows. �
Lemma 8.1. Assume that v is a spatial transition wave of Eq. (E). Let θ ∈ (0,1) and Y(t) := sup{x ∈R, v(t, x) > θ}.
Then, inft∈R infx�Y(t) v(t, x) > 0.

Proof. Assume by contradiction that inft∈R infx�Y(t) v(t, x) = 0. Consider a sequence (tn, xn)n in R × R
− such

that xn � 0 for all n and limn→+∞ v(tn, xn + Y(tn)) = 0. The definition of spatial transition waves yields that, as
v(tn, Y (tn)) = θ for all n, there exists L > 0 such that v(tn, x + Y(tn)) � θ for all x � −L. Hence the sequence (xn)n
is bounded and one can assume that it converges to a limit x∞ ∈ [−L,0].

Let cn(t, x) := f (x + Y(tn), v(t + tn, x + Y(tn)))/v(t + tn, x + Y(tn)). We know from (H) that this function is
bounded over R × R. One can assume, up to extraction, that the sequences (a(· + Y(tn)))n, (b(· + Y(tn)))n and
(cn)n converge respectively in the W 2,∞(R), W 1,∞(R) and L∞(R×R) weak-* topologies. Let a∞, b∞, c∞ be their
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respective limits. The parabolic regularity estimates yield that the sequence (v(· + tn, · + Y(tn)))n converges (up to
extraction) locally uniformly to a function v∞ which is a weak solution of

∂tv∞ − a∞(x)∂xxv∞ + b∞(x)∂xv∞ = c∞(t, x)v∞ over R×R.

Moreover, 0 � v∞ � 1 and v∞(0, x∞) = 0. The Krylov–Safonov–Harnack inequality [18] thus gives v∞ ≡ 0, which
is a contradiction since v∞(0, x) � θ for all x � −L. �
Proof of Theorem 3.6. Consider a critical travelling wave u and a spatial transition wave v as in the statement of
Theorem 3.6. One can define through Lemma 8.1 the quantity

κ := 1/ inf
s∈R,

x<Y(s)

v(s, x) > 1.

As u and v are both spatial transition waves, the width of their interfaces is bounded and thus there is no loss of
generality in assuming that κθ < 1/2.

Take s0 ∈ R. As Eq. (E) is monostable, one has limt→+∞ v(t, x) = 1 for all x ∈ R. It can easily be proved that
limt→−∞ v(t, x) = 0 for all x ∈R since v is a time-global solution. Hence, there exists s1 ∈R such that v(s1,X(s0)) =
u(s0,X(s0)) (= θ). In particular, Y(s1) � X(s0). Moreover, as u is a critical travelling wave, one has u(s0, x) �
v(s1, x) if x � X(s0). The definition of κ gives

u(s0, x) � κv(s1, x) for all x ∈ R.

Next, as s 	→ f (x, s)/s is nonincreasing for all x ∈ R and κ > 1, one has

κ∂tv − κa(x)∂xxv − κb(x)∂xv = κf (x, v) � f (x, κv) in R×R,

which means that κv is a supersolution of (E). It thus follows from the parabolic maximum principle that

u(s0 + t, x) � κv(s1 + t, x) for all (t, x) ∈ R
+ ×R.

Taking t > 0 and x = Y(s1 + t) in this inequality gives u(s0 + t, Y (s1 + t)) � κθ . Hence,

Y(s1 + t) � ξ where ξ := inf
{
x ∈R, u(s0 + t, x) � κθ

}
.

Take ε < min{θ,1 − θ} and define Iε(t) = {x ∈R, ε < u(t, x) < 1 − ε}, Jε(t) = {x ∈ R, ε < v(t, x) < 1 − ε} and
L such that diam Iε(t) � L and diamJε(t) � L for all t ∈ R. As u(s0 + t, ξ) = κθ ∈ (θ,1/2), one has ξ ∈ Iε(s0 + t)

and thus∣∣ξ − X(s0 + t)
∣∣ � L.

Similarly, as v(s1, Y (s1)) = v(s1,X(s0)) = θ , one has |X(s0) − Y(s1)| � L. We eventually get

X(s0 + t) − X(s0) � L + ξ − X(s0)

� 2L + ξ − Y(s1)

� Y(s1 + t) − Y(s1) + 2L,

which gives the conclusion since L does not depend on s0 and s1. �
9. Proof of the results for particular classes of heterogeneities

9.1. The translation property

Proof of Proposition 4.1. As limt→−∞ u(t, x; (a, b, f )) = 0 and limt→+∞ u(t, x; (a, b, f )) = 1 for all x ∈ R, we
know from Theorem 2.2 that u is increasing in time. Hence, T (y) is uniquely defined for all y ∈ R.

Let y ∈R and define

ũ(t, x) := u
(
t − T (y), x − y; (πya,πyb,πyf )

)
for all (t, x) ∈ R×R.
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We need to prove that u ≡ ũ. We know that

ũ
(
T (y), y

) = u
(
0,0, (πya,πyb,πyf )

) = θ = u
(
T (y), y; (a, b, f )

)
.

Moreover, ũ is a time-global solution of (E) and 0 < ũ < 1. Hence

u
(
T (y), y + x; (a, b, f )

)
� ũ

(
T (y), x + y

) = u
(
0, x; (πya,πyb,πyf )

)
if x < 0 and

u
(
T (y), y + x; (a, b, f )

)
� ũ

(
T (y), x + y

) = u
(
0, x; (πya,πyb,πyf )

)
if x > 0.

On the other hand, (t, x) 	→ u(t, x + y; (a, b, f )) is a time-global solution of Eq. (E) with coefficients
(πya,πyb,πyf ) instead of (a, b, f ). As u(T (y), y; (a, b, f )) = θ = u(0,0,πy(a, b, f )), we know that

u
(
T (y), y + x; (a, b, f )

)
� u

(
0, x; (πya,πyb,πyf )

)
if x < 0 and

u
(
T (y), y + x; (a, b, f )

)
� u

(
0, x; (πya,πyb,πyf )

)
if x > 0.

Hence, u(T (y), y + x; (a, b, f )) = u(0, x; (πya,πyb,πyf )) for all x ∈ R. As u(· + T (y), · + y; (a, b, f )) and
u(·,·; (πya,πyb,πyf )) both satisfy (E) with coefficients (πya,πyb,πyf ) instead if (a, b, f ), it follows from the
well-posedness of the Cauchy problem that

u
(
t + T (y), y + x; (a, b, f )

) = u
(
t, x; (πya,πyb,πyf )

)
for all (t, x) ∈ R×R. �

9.2. Comparison with planar and pulsating travelling waves

We first prove Proposition 4.3, from which we will derive partially Proposition 4.2. The next lemma, which proves
that monostable equations (in the sense of Definition 3.4) always admit pulsating travelling waves with positive speeds,
is crucial since we will need to compare critical travelling waves with these pulsating travelling waves in order to
obtain estimates on the speed of the critical travelling wave. Of course the existence of pulsating travelling waves has
already been studied in earlier papers, but always under more restrictive notions of monostability. Hence, Lemma 9.1
cannot be trivially derived from earlier results.

Lemma 9.1. Assume that Eq. (E) is monostable and let θ ∈ (0,1) and x0 ∈R. Then there exists c > 0 such that for all
c � c, Eq. (E) admits a pulsating travelling wave v of speed c such that v(0, x0) = θ0.

Note that we do not know if c is a minimal speed. In other words, we do not know if there could exist some
pulsating travelling waves with speed c < c under our mild monostability hypothesis.

Proof of Lemma 9.1. Let λ be the periodic principal eigenvalue associated with the linearized operator near u = 0,
defined for all ϕ ∈ C2(R) by

Mϕ = a(x)ϕ′′ + b(x)ϕ′ + f ′
u(x,0)ϕ.

Assume first that λ > 0. As Eq. (E) is monostable, we know that if v is a solution of −a(x)v′′ − b(x)v′ = f (x, v)

over R such that 0 � v � 1 and v is L-periodic, then v ≡ 0 or v ≡ 1. Hence, all the hypotheses of Theorem 2.3
of [23] are satisfied and the conclusion follows: there exists a speed c such that for all c � c, Eq. (E) admits a
pulsating travelling wave v of speed c such that v(0, x0) = θ . Moreover, one can take c = 2

√‖a‖∞‖f ‖Lip + ‖b‖∞
(this immediately follows from basic estimates on the speed c∗

e (A,q,f ) using the same notations as in [23]) and the
pulsating travelling wave we obtain is increasing in time. Note that we refer to [23], which investigates space–time
periodic media, instead of classical papers such as [3,34]. This is because this paper gives the only proof of existence
of pulsating travelling waves under the very mild hypothesis λ > 0, as far as we know.

Next, assume that λ < 0, then let ϕ be the periodic principal eigenfunction associated with λ and normalized by
‖ϕ‖∞ = 1. That is, φ is a positive periodic solution of Mϕ = λϕ. As λ < 0, it is easy to check that −κa(x)ϕ′′ −
κb(x)ϕ′ � f (x, κϕ) over R if κ > 0 is small enough. Hence, the solution v of ∂tv − a(x)∂xxv − b(x)∂xv = f (x, v)

in (0,∞) ×R with initial condition v(0, x) = κϕ(x) for all x ∈ R is nonincreasing in time. Thus it cannot converges
to 1 as t → +∞, which contradicts the fact that Eq. (E) is monostable. Hence the monostability implies λ � 0.
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Lastly, assume that λ = 0. For all ε > 0 and (x,u) ∈R×[0,1], define fε(x,u) := f (x,u)+ εu(1−u). As fε � f ,
it is easy to see that Eq. (E) with nonlinearity fε instead of f is still monostable. Moreover, if λε is the periodic
principal eigenvalue associated with the linearization at 0, then one has λε = λ + ε = ε > 0 since (fε)

′
u(x,0) =

f ′
u(x,0) + ε for all x ∈ R. Hence, it follows from our first case that for all c � 2

√‖a‖∞(‖f ‖Lip + ε) + ‖b‖∞, there
exists a pulsating travelling wave with speed c associated with the nonlinearity fε , which is increasing in time.

Define c = 2
√‖a‖∞(‖f ‖Lip + 1)+‖b‖∞ and take c � c. Consider for all ε ∈ (0,1) a pulsating travelling wave vε

with speed c, normalized (up to translation in time) by vε(0, x0) = θ , which is increasing in time. It follows from
parabolic regularity estimates that there exists a sequence (εn)n such that εn → 0 and (vεn)n converges locally
uniformly. Let v0 be its limit. Then v0 satisfies Eq. (E), v0(0, x0) = θ , v0 is nondecreasing in time and one has
v0(t + L/c, x + L) = v0(t, x) for all (t, x) ∈ R × R. Moreover, it follows from the monostability of Eq. (E) that
limt→+∞ v0(t, x) = 1 locally in x ∈ R and one also gets limt→−∞ v0(t, x) = 0 since v0 is nondecreasing in time.
Hence, v0 is a pulsating travelling wave with speed c, which concludes the proof. �
Proof of Proposition 4.3. Let u be the critical travelling wave of Eq. (E) normalized by u(0, x0) = θ and T (y) the
unique solution of u(T (y), y) = θ for all y ∈ R. As a, b and f are L-periodic, one has πLa = a, πLb = b and πLf .
Proposition 4.1 implies that u(t + T (L), x + L) = u(t, x), for all (t, x) ∈R×R.

Next, we know from Lemma 9.1 that there exists a pulsating travelling wave v(t, x) with speed c′ > 0 such that
v(0, x0) = θ . The criticality of u gives u(0, x) � v(0, x) for all x > x0. Taking x = x0 + nL with n ∈ N, one gets
u(−nT (L), x0) = u(0, x0 + nL) � v(0, x0 + nL) = v(−nL/c′, x0) for all n ∈ N and the right hand-side converges
to 0 as n → +∞ since c′ > 0. Hence, T (L) > 0 and one can define c := L/T (L). One has u(t +L/c, x +L) = u(t, x)

for all (t, x) and thus u is a pulsating travelling wave.
Assume that there exists a pulsating travelling wave solution v of Eq. (E) with speed c′ < c. Define φ(z, x) :=

u((z + x)/c, x) and ψ(z, x) := v((z + x)/c′, x) for all (z, x) ∈ R × R. It follows from the definition of pulsating
travelling waves that φ and ψ are L-periodic in x. Assume furthermore that the coefficients are of class C1,γ (R ×
[0,1]) for some γ ∈ (0,1) and that the periodic principal eigenvalue associated with the linearization of Eq. (E) near
u = 1 is positive: μ > 0. For all α > 0, let Lα be the elliptic operator defined for all ϕ ∈ C2(R) by

Lαϕ = a(x)ϕ′′ + (
b(x) + 2αa(x)

)
ϕ′ + (

f ′
u(x,1) + αb(x) + α2a(x)

)
ϕ.

As the coefficients of this operator are L-periodic, it admits a periodic principal eigenvalue k(α). When α = 0, we
recover the linearization of the equation near u = 1 and thus k(0) = μ < 0. It has been proved by Hamel in [14] (see
Eq. (1.29) in [14]) that

lim
z→+∞

1

z
ln

(
1 − φ(z, x)

) = −αc and lim
z→+∞

1

z
ln

(
1 − ψ(z, x)

) = −αc′ uniformly in x ∈ R, (9.1)

where for all c̃ > 0 we define αc̃ the unique positive solution of equation k(α) = −αc̃. As α 	→ k(α) is convex
(see [14]), α > 0 and c′ < c, simple graphical considerations yield that αc < αc′ .

On the other hand, we know from the criticality of the wave u that u(0, x) � v(0, x) for all x < x0, which reads

φ(−x, x) � ψ(−x, x) for all x < x0.

It follows from (9.1) that −αc � −αc′ , which is a contradiction.
Let now prove the second part of Proposition 4.3. It has been proved in [3] that under the hypotheses of the second

part of Proposition 4.3, there exists a pulsating travelling wave v of Eq. (E) with speed c∗, which is increasing in time,
such that limt→−∞ v(t, x) = 0, limt→+∞ v(t, x) = 1, and that this pulsating travelling wave is unique up to translation
in time. Let θ ∈ (0,1), x0 ∈ R and u be the critical travelling wave normalized by u(0, x0) = θ . We can assume that
v(0, x0) = θ by translating in time and thus it follows from the criticality of u that u(0, x) � v(0, x) for all x < x0.
In particular, limx→−∞ u(0, x) = 1, which yields that u(t, x) → 1 as t → +∞ locally in x ∈ R. Hence, Theorem 2.2
implies that u is increasing in time.

Next, as limt→−∞ u(t, x) � u(0, x) � v(0, x) for all x > x0 and as limx→+∞ v(0, x) = 0, one gets
limt→−∞ u(t, x) = 0. It follows from Proposition 4.1 that u satisfies the translation property. Thus, the same ar-
guments as above yield that u is a pulsating travelling waves, meaning that u ≡ v by the uniqueness proved in [3].
The uniqueness up to translation in time follows from the same arguments as in the proof of Proposition 3.5 since u

is time-increasing and connect 0 to 1. �
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Proof of Proposition 4.2. If θ0 = 0, then Eq. (E) is monostable and we know from Proposition 4.3 that a critical
travelling wave is a pulsating travelling wave of period L for all L > 0. This means that it is a planar travelling wave
and the other results are proved similarly.

If θ0 > 0, then Theorem 2.4 in [11] asserts that there exists a planar travelling wave v with speed c > 0, which
is unique up to translation and time-increasing, and that there exists no planar travelling wave with speed c′ �= c.
The conclusion follows from the same arguments as in the proof of Proposition 4.3. �
9.3. The case of compactly supported heterogeneities

Proof of Proposition 4.5. 1. Let c < λ/
√

λ − 1. For all t ∈ R, as u(· + t, ·) is a time-global solution, it follows
from Theorem 4.4.1 that there exists Cc = Cc(t) > 0 such that u(t + s, x) � Cce

−|x|+cs for all (s, x) ∈ (−∞,0) ×R.
Letting s → 0+, this gives u(t, x) � Cce

−|x| for all x ∈R. Thus u(t, ·) ∈ L1(R).
2. We know from the parabolic regularity estimates that ∂xu is bounded over R × R. Let C > 0 such that

|∂xu(t, x)| � C for all (t, x) ∈ R × R. For all s ∈ R, as u(s,X(s)) = θ , one has u(s, x + X(s)) � (θ − C|x|)+
for all x ∈R. Define u the solution of the Cauchy problem{

∂tu − ∂xxu = u
(
1 − Cuδ

)
in (0,∞) ×R,

u(0, x) = (
θ − C|x|)+ for all x ∈ R.

It follows from f ′
u(x,0) � 1, (4.2) and the parabolic maximum principle that

u
(
t + s, x + X(s)

)
� u(t, x) for all s ∈ R and (t, x) ∈ (0,∞) ×R.

On the other hand, as x 	→ u(0, x) is compactly supported and u 	→ u − Cu1+δ is of KPP type, it follows from [2]
that limt→+∞ u(t, ct) = 1 for all c < 2. Hence, u(t + s, ct +X(s)) → 1 as t → +∞ uniformly in s ∈ R, for all c < 2.
Take c < 2 and let T > 0 such that u(t + s, ct + X(s)) > θ for all t � T and s ∈R.

As u is also a spatial transition wave, there exists L > 0 such that u(t, x +X(t)) < θ for all x > L and for all t ∈ R.
It follows that ct + X(s) � X(t + s) + L for all t > T and s ∈R. We eventually get

lim inf
t→+∞ inf

s∈R
X(t + s) − X(s)

t
� c for all c < 2.

On the other hand, as λ ∈ (1,2), we know from Theorem 4.4 that there exists a spatial transition wave v with global
mean speed c for all c ∈ (2, λ/

√
λ − 1). Let Y(t) be such that v(t, Y (t)) = θ . It follows from Theorem 3.6 that

lim sup
t→+∞

sup
s∈R

1

t

(
X(s + t) − X(s)

)
� lim

t→+∞ sup
s∈R

1

t

(
Y(s + t) − Y(s)

) = c.

We conclude by letting c → 2 in the two inequalities. �
9.4. The case of random stationary ergodic coefficients

Proof of Proposition 4.7. We first use the same types of arguments as in [27,30] in order to prove the measurability
of u and T . For all s < 0, let u

y
s = u

y
s (t, x,ω) the unique solution of{

∂tu
y
s − a(x,ω)∂xxu

y
s − b(x,ω)∂xu

y
s = f

(
x,ω,u

y
s

)
in (s,∞) ×R,

u
y
s (s, x,ω) = 1 if x � y and u

y
s (s, x,ω) = 0 if x > y,

and xs(ω) the unique real number such that u
xs(ω)
s (0,0) = θ . It can be proved exactly as in [27] that ω ∈ Ω 	→ xs(ω)

and ω 	→ us(t, x,ω) are measurable functions for all (t, x) ∈R×R. As we know from the proof of Theorem 2.2 that
u(t, x,ω) = lims→+∞ u

xs(ω)
s (t, x,ω) for all (t, x,ω) ∈R×R× Ω , the measurability of u in ω follows.

Let now prove the measurability of ω 	→ T (x,ω) for all x ∈ R. Take x ∈ R and define for all j,m ∈ N:

Am
j = {

ω ∈ Ω, u(t, x,ω) � θ for all t � j2−m
}
.
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The measurability of Am
j follows from the measurability of u. Define the measurable function:

τm(ω) := max
j∈N

2−mjχAm
j
(ω).

It is easy to check that for all ω ∈ Ω , τm(ω) = j2−m, where j is the unique integer such that j2−m � T (x,ω) <

(j + 1)2−m. It follows that for all ω ∈ Ω ,

τm(ω) � T (x,ω) � τm(ω) + 2−m.

Hence, limm→+∞ τm(ω) = T (x,ω) and thus ω ∈ Ω 	→ T (x,ω) is measurable.
Next, let ω ∈ Ω and y ∈ R. As, for all (x, y,u,ω) ∈ R×R× [0,1] × Ω ,

a(x + y,ω) = a(x,πyω), b(x + y,ω) = b(x,πyω) and f (x + y,ω,u) = f (x,πyω,u),

the functions (t, x) 	→ u(t +T (y,ω), x +y,ω) and (t, x) 	→ u(t, x,πyω) are both critical travelling waves of Eq. (4.4)
with πyω instead of ω. As u(T (y,ω), y,ω) = θ by definition of T (y,ω), u(0,0,πyω) = θ by definition of u and the
critical travelling wave is unique up to normalization, we eventually get

u
(
t + T (y,ω), x + y,ω

) = u(t, x,πyω) for all (t, x, y,ω) ∈ R×R×R× Ω. (9.2)

Considering this inequality at t = T (x,πyω), we obtain u(T (x,πyω) + T (y,ω), x + y,ω) = θ and thus, as u is
increasing in t , the definition of T implies that

T (x,πyω) + T (y,ω) = T (x + y,ω) for all (x, y,ω) ∈R×R× Ω. (9.3)

It follows from the Birkhoff ergodic theorem that the limit

1

c∗ := lim
x→+∞

T (x,ω)

x
exists almost surely and does not depend on ω ∈ Ω. �

10. Proof of the results on attractivity and continuity

Theorem 5.2 will follow from several intermediate results, which are more general but require hypotheses involving
the continuity of critical travelling waves with respect to the environment. It is not clear if such a continuity holds in
general. Assume that a, b and f are uniformly continuous in (x,u) ∈ R× [0,1], uniformly with respect to u ∈ [0,1].
As in Section 4, take ∈ (0,1) and let

H = cl
{
πyC = (πya,πyb,πyf ), y ∈ R

}
,

where the closure is associated with topology of the local convergence. This set is a complete metric space. Let
u(·, ·; C̃) be the unique critical travelling wave associated with the coefficients C̃ ∈H and normalized by u(0,0; C̃) =
θ ∈ (0,1) for all C̃ ∈H.

We say that C̃ ∈ H 	→ u(0, ·; C̃) ∈ C0(R) is continuous at C∗ ∈ H, or that the critical travelling wave is continuous
at C∗ if there is no ambiguity, if for all sequence (Cn)n in H which converges locally uniformly in R × [0,1] to
C∗ ∈ H, one has limn→+∞ u(0, x;Cn) = u(0, x;C∗) locally uniformly in x ∈ R. Then if the critical travelling wave
is continuous at C∗, it attracts the solutions of the Cauchy problem associated with the Heaviside initial datum along
a subsequence, as stated in the next proposition.

Proposition 10.1. Assume that (H) is satisfied and that Eq. (E) is monostable. Let θ ∈ (0,1). Assume that C ∈ H 	→
u(·, ·;C) is continuous at C∗ = (a∗, b∗, f∗) ∈H and that there exists a sequence (yn)n such that limn→+∞ yn = +∞,
limn→+∞ a(x + yn) = a∗(x), limn→+∞ b(x + yn) = b∗(x) and limn→+∞ f (x + yn,u) = f∗(x,u) locally in (x,u) ∈
R× [0,1]. Let v be the solution of (5.1). Then

v
(
S(yn), x + yn

) − u
(
T (yn), x + yn; (a, b, f )

) → 0 as n → +∞ locally uniformly in x ∈R.
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This result shows that the continuity of the wave with respect to the coefficients of the equation is another relevant
open question. As already mentioned in Definition 1.2, Matano requires the continuity of the wave with respect to
(ã, b̃, f̃ ) ∈ H. Shen [30] proved the existence of such waves for general heterogeneous equations under the assumption
that there exists a spatial transition wave which converges uniformly with respect to the translations of the coefficients,
except that she did not prove the continuity of the wave with respect to C̃ ∈ H. She only proved such a continuity when
the nonlinearity is bistable and depends on time. The full continuity remains an open problem. As already mentioned
above, another open problem is the extension of these results to more general wave-like initial data.

However, Shen also proved in a general framework that the critical travelling wave is always continuous at least
on a residual subset of H. We recall that a residual subset is the intersection of countably many open dense subsets
and that as H is a complete metric space, the Baire theorem yields that such a residual subset is dense in H. Hence,
the critical travelling waves are always continuous with respect to the environment at least at one point C∗ ∈ H. We
will prove a similar property in Proposition 10.2 below, but through direct arguments, which provide an alternative
approach to the topological one of [30].

Many other properties can be derived from continuity on the whole set H, as observed in the framework of spatial
transition waves by Shen [30]. Basically, the continuity of the wave ensures that any property of the coefficients, such
as almost periodicity, almost automorphy or recurrence, is also satisfied, in a sense, by the wave. We will not go any
further on this topic since we do not know if the wave is continuous over the whole set H or not.

Open Problem. Is it true that the critical travelling wave u(·, ·;g) is continuous with respect to g ∈H?

Proof of Proposition 10.1. First, as limt→+∞ v(t, x) = 1 for all x ∈ R and v(0, x) = 0 for all x > 0, the quantity
S(y) := sup{t > 0, v(t, x) � θ} is well-defined for all y > 0.

Assume by contradiction that there exists a sequence (zn)n such that limn→+∞ zn = +∞ and (S(zn))n is bounded.
Then there exists M > 0 such that S(zn) � M for all n. In other words, one has v(M,zn) � θ for all n. On the
other hand, it easily follows from the strong maximum principle and the fact that v(0, x) = 0 for all x > 0 that
limx→+∞ v(t, x) = 0 for all t > 0, which gives a contradiction. Hence (S(zn))n is unbounded and as this is true for
all sequence (zn)n converging to +∞, we get

lim
y→+∞S(y) = +∞.

Next, consider the critical travelling wave u = u(t, x;C), where C = (a, b, f ). For all n ∈N, as

v(0, x) = 1 > u
(
T (yn) − S(yn), x;C)

if x < 0 and

v(0, x) = 0 < u
(
T (yn) − S(yn), x;C)

if x > 0,

we know from Proposition 7.1 that the sets {v(t, ·) > u(t + T (yn) − S(yn), ·;C)} and {v(t, ·) < u(t + T (yn) −
S(yn), ·;C)} are intervals for all t > 0. Taking t = S(yn), as v(S(yn), yn) = θ = u(T (yn), yn;C), one gets

v
(
S(yn), x + yn

)
> u

(
T (yn), x + yn;C

) = u(0, x;πynC) if x < 0 and

v
(
S(yn), x + yn

)
< u

(
T (yn), x + yn;C

) = u(0, x;πynC) if x > 0, (10.1)

where we have used the translation property (see Proposition 4.1).
On the other hand, we know that, as u is continuous at C∗ = (a∗, b∗, f∗) ∈ H by assumption and as

πynC = (πyna,πynb,πynf ) → (a∗, b∗, f∗) = C∗ as n → +∞,

locally uniformly in (x,u) ∈R× [0,1], one has

lim
n→+∞u(0, x;πynC) = u(0, x;C∗) locally in x ∈R.

Let wn(t, x) := v(t + S(yn), x + yn). This function satisfies

∂twn − a(x + yn)∂xxwn − b(x + yn)∂xwn = f (x + yn,wn) in
(−S(yn),∞

) ×R.
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Hence, one can assume from parabolic regularity estimates that the sequence (wn)n converges to a function w∞
locally uniformly in R×R. As limn→+∞ S(yn) = +∞, the function w∞ is a time-global solution of

∂tw∞ − a∗(x)∂xxw∞ − b∗(x)∂xw∞ = f∗(x,w∞) in R×R. (10.2)

Moreover, letting n → +∞ in (10.1), one gets

w∞(0, x) � u(0, x;C∗) if x < 0 and w∞(0, x) � u(0, x;C∗) if x > 0.

But as u is a critical travelling wave and w∞ is a time-global solution of (10.2), the reverse inequalities hold. Hence
w∞(0, x) = u(0, x;C∗) for all x ∈R. In other words, up to extraction, one has for all x ∈R:

lim
n→+∞

(
v
(
S(yn), x + yn

) − u
(
T (yn), x + yn;C

)) = lim
n→+∞

(
wn(0, x) − u(0, x;πynC)

)
= w∞(0, x) − u(0, x;C∗) = 0.

As this convergence does not depend on the extraction, the convergence along the full sequence (yn)n follows from
standard arguments. �
Proposition 10.2. Assume that (H) is satisfied and let θ ∈ (0,1). Define

F : H → C0(R),

C̃ 	→ u(0, ·; C̃)

where u is the unique critical travelling wave associated with the coefficients C̃ and normalized by u(0,0; C̃) = θ .
Then there exists at least one set of coefficients C∗ ∈H such that F is continuous at C∗.

Proof. Take C̃ = (ã, b̃, f̃ ) ∈ H and (Cn)n a sequence of H such that Cn → C̃ as n → +∞ in H. For all C̃ ∈ H,
define us = us(t, x; C̃) as in the proof of Theorem 2.2, with coefficients C̃ instead of (a, b, f ), and xs(C̃) such that
us(s, x; C̃) = 1 if x < xs(C̃), us(s, x; C̃) = 0 if x > xs(C̃) and us(0,0; C̃) = θ .

We know from the parabolic regularity estimates that one can assume, up to extraction, that the sequence
(us(·, ·;Cn))n converges to a function v locally uniformly in (s,∞) ×R as n → +∞. This function satisfies

∂tv − ã(x)∂xxv − b̃(x)∂xv = f̃ (x, v) in (s,∞) ×R and v(0,0) = θ.

If (xs(Cn))n converges to +∞, then us(s, x;Cn) → 1 as n → +∞ locally in x and thus v ≡ 1, which is a con-
tradiction since v(0,0) = θ . One gets a similar contradiction if (xs(Cn))n converges to −∞. As this is true along
any subsequence, we conclude that (xs(Cn))n is bounded. Extracting one more time, we can assume that this se-
quence converges, let X := limn→+∞ xs(gn). Then v(s, x) = 1 if x < X, v(s, x) = 0 if x > X. Hence, it follows from
Lemma 7.2 that X = xs(C̃) since v(0,0) = θ and thus v(t, x) = us(t, x; C̃). As this eventual limit does not depend on
the previous extractions, we conclude that the full sequence (xs(Cn))n converges to (xs(C̃)) as n → +∞. Hence, the
sequence (u(0, ·;Cn))n converges to us(0, ·; C̃) as n → +∞, which means that

Fs : H → C0(R),

C̃ 	→ us(0, ·; C̃)
is continuous for all s < 0.

But we also know that u(0, ·; C̃) = lims→−∞ us(0, ·; C̃) for all C̃ ∈ H locally uniformly over R × R. In other
words,

Fs(C̃) → F(C̃) as s → −∞ pointwise in C̃ ∈ H.

It is a classical application of Baire theorem that the set of continuity points of the pointwise limit of continuous
functions is a residual set. Hence, F is continuous on a non-empty (residual) subset of H. �
Proof of Theorem 5.2. First, we know from Proposition 10.2 that there exists a set of coefficients C∗ ∈ H such
that the critical travelling wave is continuous at C∗. Let (yn)n be such that πynC → C∗ as n → +∞ locally in
(x,u) ∈ R × [0,1]. If limn→+∞ yn = +∞ Proposition 10.1 applies and gives the conclusion. If (yn)n is bounded,
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then the recurrence at infinity assumption yields that we can change (yn)n so that this sequence converges to +∞ and
conclude as in the previous case. �
Proof of Corollary 5.3. We can assume that the period L is the minimal periodic of f . That is: for all � ∈ (0,L),
there exists (x,u) ∈ R × [0,1] such that a(x + �) �= a(x), b(x + �) �= b(x) or f (x + �,u) �= f (x,u). Next, as the
coefficients a, b and f are periodic in x, one has πLC = C and thus H = {πyC; y ∈ [0,L]}. Consider C̃ ∈ H and a
sequence (Cn)n in H such that Cn → C̃ locally uniformly. Then there exist (yn)n and ỹ in [0,L) such that Cn = πynC

for all n and C̃ = πỹC. Consider an extraction (yn′)n′ such that this sequence converges to a limit y∞ ∈ [0,L]. One
has πy∞C = πỹC. As −L < y∞ − y < L and as L is the minimal period of the coefficients, one gets y∞ = ỹ. Hence,
the full sequence (yn)n converges to ỹ. We conclude that C̃ ∈ H 	→ u(0, ·; C̃) ∈ C0(R) is continuous. The conclusion
follows from Proposition 10.1. �
11. Proof of the results in the bistable framework

We start with a general result in the bistable framework. We do not consider the particular equation (6.1) yet.

Proposition 11.1. Assume that (H) is satisfied and that there exists θ0 ∈ (0,1) such that for all x ∈ R, f (x, θ0) = 0
and

u ∈ (0, θ0) 	→ f (x,u) is convex, u ∈ (θ0,1) 	→ f (x,u) is concave. (11.1)

Let x0 ∈ R and assume that there exists a stationary solution w of Eq. (E) such that w(x0) = θ0, w(x) > θ0 for all
x < x0, w(x) < θ0 for all x > x0, lim infx→−∞ w(x) > θ0 and lim supx→+∞ w(x) < θ0. Let u be the critical travelling
wave normalized by u(0, x0) = θ0. Then u is constant with respect to time and u ≡ w.

In other words, if there exists a non-trivial steady state w and if one considers a critical travelling waves u which
crosses w, then, under mild bistability hypotheses, u does not depend on time and u ≡ w. Note f is not assumed to
be positive (resp. negative) over (θ0,1) (resp. (0, θ0)).

This result will be derived from the following comparison result.

Lemma 11.2. Assume that (H) and (11.1) are satisfied. Consider two C1(R) weak solutions w1 and w2 of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−a(x)w′′
1 − b(x)w′

1 � f (x,w1) in (−∞, x1),

−a(x)w′′
2 − b(x)w′

2 � f (x,w2) in (−∞, x1),

lim inf
x→−∞w1(x) > θ0,

w1(x) > θ0 for all x � x1 and w1(x1) � w2(x1),

for some x1 ∈ R. Then w1 � w2 in (−∞, x1).

Proof of Lemma 11.2. Let

κ∗ = inf
{
κ > 0, (1 + κ)

(
w1(x) − θ0

)
� w2(x) − θ0 for all x ∈ (−∞, x1)

}
.

As w1(x) > θ0 for all x � x1, lim infx→−∞ w1(x) > θ0 and w2 is bounded, this quantity is well-defined. If
κ∗ = 0, then w1(x) � w2(x) for all x ∈ (−∞, x1), which ends the proof. Assume by contradiction that κ∗ > 0.
Then (1 + κ∗)(w1(x) − θ0) � w2(x) − θ0 for all x ∈ (−∞, x1] and there exists x∗ ∈ (−∞, x1] such that
(1 + κ∗)(w1(x∗) − θ0) = w2(x∗) − θ0. As w1(x1) � w2(x1) and κ∗ > 0, one gets x∗ �= x1.

Define z(x) := (1 + κ∗)(w1(x) − θ0) − w2(x) + θ0 for all x ∈ R. This function is nonnegative, vanishes at x = x∗
and it follows from the Lipschitz-continuity and the concavity of f on [θ0,1] that

−a(x)z′′ − b(x)z′ �
(
1 + κ∗)f (x,w1 − θ0 + θ0) − f (x,w2)

� f
(
x,

(
1 + κ∗)(w1 − θ0) + θ0

) − f (x,w2)

� −C
∣∣(1 + κ∗)(w1 − θ0) + θ0 − w2

∣∣ = −Cz
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in (−∞, x1). As z reaches its minimum and vanishes at the interior point x∗, the strong maximum principle yields
that z ≡ 0, which is a contradiction since

z(x1) = (
1 + κ∗)(w1(x1) − θ0

) − w2(x1) − θ0 � κ∗(w1(x1) − θ0
)
> 0.

Hence κ∗ = 0 and w1 � w2 in (−∞, x1). �
Proof of Proposition 11.1. We know from Theorem 2.2 that u is either increasing, decreasing or constant with respect
to time. Assume first that u is time-increasing. We know from the proof of Theorem 2.2 above that ∂tu > 0 in R×R.
As u(0, x0) = w(x0) = θ0 and u(0, ·) �≡ w since u is increasing in time, the criticality of u yields u(0, x) > w(x) for
all x < x0 and u(0, x) < w(x) for all x > x0.

Next, we know from Lemma 5.4 in [1] that there exist τ > 0 and a continuous function ξ : [−τ,0] → R such that
ξ(0) = x0 and u(t, ξ(t)) = w(ξ(t)) for all t ∈ [−τ,0]. Take t ∈ [−τ,0) and let w2(x) := u(t, x) for all x ∈ R. As
∂tu > 0, w2 satisfies

−a(x)w′′
2 − b(x)w′

2 < f (x,w2) in R. (11.2)

As u is time-increasing and t ∈ [−τ,0), one has u(t, ξ(t)) = w(ξ(t)) < u(0, ξ(t)) and thus ξ(t) < x0 since u(0, x) �
w(x) for all x � x0. Hence, w(ξ(t)) > θ0 by hypothesis. Thus, Lemma 11.2 applies and gives w2(x) = u(t, x) �
w(x) = w1(x) for all x < ξ(t) and t ∈ [−τ,0). Letting t → 0−, as ξ is continuous, one gets u(0, x) � w(x) for all
x < ξ(0) = x0, a contradiction.

A contradiction is reached similarly if u is time-decreasing, by applying the first step to the auxiliary function
v = 1 − u. Hence, u = u(x) does not depend on time and thus u ≡ w. �
Proof of Proposition 6.1. If x0 = x− or x0 = x+, then the conclusion immediately follows from Proposition 11.1.

Take now x0 ∈ R\{x+, x−} and u the critical travelling wave normalized by u(0, x0) = θ0. First, assume by contra-
diction that u = u(x) is a stationary solution of Eq. (E). We know that u �≡ w+ and u �≡ w− since w±(x0) �= u(x0) = θ0.
The criticality of u ensures that u(x) > θ0 for all x < x0 and u(x) < θ0 for all x > x0. Otherwise, one would have
u ≡ θ0 and it would follow from Proposition 11.1 that u ≡ w+ since θ0 = u(x+) = w+(x+), which is excluded. To-
gether with the hypotheses on f , this implies in particular that −u′′(x) = f (x,u(x)) � 0 (resp. � 0) for all x � x0
(resp. x � x0), from which it is easy to derive that u is nonincreasing in x and that u(−∞) = 1 and u(+∞) = 0.
But then, the uniqueness of the solutions of (6.2), proved in [28], yields that u ≡ w+ or w−, which gives the final
contradiction.

Hence, u is not a stationary solution and Theorem 2.2 ensures that u is either increasing or decreasing with respect
to time. One has u(t, x−) �= w−(x−) = θ0 (resp. u(t, x+) �= w+(x+)) for all t ∈ R, otherwise Proposition 11.1 would
yield that u(t0, ·) ≡ w− (resp. w+) for some t0 ∈ R and thus u would be constant in time.

Next, assume that x0 < x−. As u is a critical travelling wave and as u �≡ θ0, we know that

u(0, x) > θ0 if x < x0 and u(0, x) < θ0 if x > x0.

It follows that u(0, x−) < u(0, x0) = θ0 = w−(x−) and the previous remark yields that u(t, x−) < w−(x−) for all
t ∈ R. Take t ∈ R, if there exists xt ∈ R such that u(t, xt ) = w−(xt ), then as u is critical, one has u(t, x) < w−(x) if
x > xt and u(t, x) > w−(x) if x < xt . Hence, x− > xt and one has

u(t, x) < w−(x) for all t ∈R, x � x−. (11.3)

Assume by contradiction that u is decreasing with respect to time. Let u∞(x) := limt→−∞ u(t, x). This function
satisfies θ0 < u(0, x) < u∞(x) for all x � x0 and −u′′∞ = f (x,u∞) over R. It is easy to derive from this, together
with the hypotheses on f , that x ∈ (−∞, x0) 	→ u∞(x) is nonincreasing, from which we get limx→−∞ u∞(x) = 1.
Moreover, (11.3) implies u∞(x) � w−(x) for all x � x− and thus limx→+∞ u∞(x) = 0. We conclude from the
uniqueness result proved in [19] that u∞ ≡ w−.

Next, we know from [19] that there exists a subsolution 0 < w < w− of Eq. (6.2) with w(−∞) = 1 and w(+∞) =
0. Consider X ∈ R such that max{w(X),u(0,X)} < θ0 < w−(X). As limt→−∞ u(t,X) = w−(X), there exists T < 0
such that u(T ,X) = θ0. As u is decreasing with respect to time, one has −∂xxu(T , x) � f (x,u(T , x)) over R. As u

is critical, u(T , x) > θ0 for all x < X and u(T , x) < θ0 for all x > X. Hence, Lemma 11.2 applies with w1 = u(T , ·),
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w2 = w and x1 < X small, leading to u(T , x) � w(x) for all x < X. Hence, u∞(x) := limt→+∞ u(t, x) is a steady
state such that w � u∞ in (−∞,X) and u∞ < w−, which contradicts the uniqueness of w±.

We have thus proved that

u is increasing with respect to time.

Define u∞(x) = limt→+∞ u(t, x). This function is a steady state such that u∞(x) � u(0, x) and u∞(x) � w−(x) for
all x � x−. This gives limx→−∞ u∞(x) = 1 and limx→+∞ u∞(x) = 0, and thus

lim
t→+∞u(t, x) = u∞(x) = w−(x) for all x ∈ R.

Next, let u∞(x) = limt→−∞ u(t, x) � u∞(x) = w−(x) for all x ∈ R. We know from Lemma 5.5 in [1] that there
exists a continuous function ξ : (−∞,0] such that u(t, ξ(t)) = θ0 for all t � 0, with ξ(0) = x0. The criticality of u

implies

u(t, x) > θ0 for all x < ξ(t) and u(t, x) < θ0 for all x > ξ(t).

Clearly, ξ(t) � x− for all t � 0 since u(t, x) < w−(x) for all x ∈ R. Assume that there exists a sequence (tn)n such
that limn→+∞ tn = −∞ and the sequence (ξ(tn))n converges to a limit ξ∞ ∈ R as n → +∞. Then u∞(x) � θ0 for
all x < ξ∞ and u∞(x) � θ0 for all x > ξ∞. The hypotheses on f ensure that u′′∞(x) = −f (x,u∞(x)) � 0 for all
x � ξ∞. As u′∞(ξ∞) � 0, it follows that x ∈ (−∞, ξ∞) 	→ u∞(x) is nonincreasing and thus � := limx→−∞ u∞(x) is
well-defined. This limit satisfies f0(�) = 0, implying that � = θ0 or � = 1. If � = θ0, then u∞(x) = θ0 for all x < ξ∞
and thus u∞ ≡ θ0, which contradicts u∞ < w−. Thus � = 1, that is, limx→−∞ u∞(x) = 1. The uniqueness of w±
would thus give u∞ ≡ w−, a contradiction. Hence, limt→−∞ ξ(t) = −∞, which eventually gives u∞ � θ0 over R.
Hence, u′′∞ = −f (x,u∞) � 0, and as u∞ is bounded, it is constant. As u∞ < w−, one has u∞ ≡ 0. In other words,

lim
t→−∞u(t, x) = 0 for all x ∈ R.

The identification of u when x0 ∈ (x−, x+) or x > x+ is proved through similar arguments. �
12. Summary of the results

We have introduced a new notion of critical travelling waves for reaction–diffusion equations with arbitrary non-
linearity and general heterogeneous coefficients (Definition 2.1). These waves always exist, are monotonic in time and
unique up to normalization (Theorem 2.2). If there exists a spatial transition wave, then critical travelling waves are
necessarily spatial transition waves (Theorem 3.1). Hence, for ignition-type equations, the two notions are equivalent
(Corollary 3.3). For monostable equations, critical travelling waves always exist, unlike spatial transition waves, and
if there exists a spatial transition wave, then critical travelling waves have minimal least mean speed (Theorem 3.6).

In the cases where the critical travelling waves are unique up to translation in time, such as ignition-type or
monostable equations, these waves satisfy a property which is close to the translation property introduced in [20]
(Proposition 4.1). We derive from this result that if the coefficients are homogeneous/periodic, then the critical tran-
sition waves are planar/pulsating travelling waves in the ignition-type and monostable frameworks (Propositions 4.2
and 4.3) as well as in the bistable setting for homogeneous coefficients. If the heterogeneity of the coefficients is
compactly supported, as in [26], then critical travelling waves are spatial transition waves with minimal speed if such
waves exist, and bump-like solutions otherwise (Proposition 4.5). If the equation is monostable and the coefficients are
random stationary ergodic in space, then the wave and its interface also satisfy such a dependence in space and admit a
propagation speed, in a sense (Proposition 4.7). In the monostable setting, if the coefficients are “recurrent at infinity”,
then critical travelling waves attract the solution of the Cauchy problem with a Heaviside initial datum (Theorem 5.2)
along a subsequence. Lastly, if the equation is bistable, then there might exist non-trivial steady states which block
the propagation and in this case the identification of critical transition waves depends on the normalization of these
waves (Proposition 6.1).
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