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Abstract

We consider a minimization problem that combines the Dirichlet energy with the nonlocal perimeter of a level set, namely

/|Vu(x)|2dx + Pery ({u > 0}, 2),
2

with o € (0, 1). We obtain regularity results for the minimizers and for their free boundaries d{u > 0} using blow-up analysis. We
will also give related results about density estimates, monotonicity formulas, Euler—Lagrange equations and extension problems.
© 2014 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Keywords: Free boundary problems; Fractional minimal surfaces; Regularity theory

1. Introduction

Let £2 be a bounded domain R” and ¢ € (0, 1) a fixed parameter. In this paper we discuss regularity properties for
minimizers of the energy functional

J(u) ::/|Vu|2dx+Perg(E,.Q), E ={u>0}in £2, (1.1)
2

where Per, (E, §2) represents the o -fractional perimeter of the set E in £2.

Here the set E is fixed outside §2 and coincides with {# > 0} in §2, and we minimize J among all functions u €
H'(£2) with prescribed boundary data, i.e. u = ¢ on 952 for some fixed ¢ € H L(£2).

The fractional perimeter functional Per, (E, §2) was first introduced in [6] and it represents the §2-contribution in
the double integral of the norm || x g || yo/2. Precisely, for any measurable set £ C R"

Per, (E,2):=L(EN,E°)+ L(E\ 2,2\ E), (1.2)
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where

dxdy

L(A, B) := T

AXB

It is well known (see [7,3,10,9]) that suitably renormalized Per,; (E, R") converges to the classical perimeter functional
as 0 — 1 and it converges to | E|, the Lebesgue measure of E, as 0 — 0. In this spirit, the functional in (1.1) formally
interpolates between the two-phase free boundary problem treated in [4] (where the term Per, (E, £2) is replaced by the
classical perimeter of E in £2) and the Dirichlet-perimeter minimization functional treated in [1] (where Per, (E, £2)
is replaced by the Lebesgue measure of E in £2).

In fact, all previous models correspond to particular cases of the general nonlocal phase transition setting as dis-
cussed in [8] (see in particular Section 3.5 there): in our case, the square of the H 9/2 norm of the function signu is,
in terms of [8], the double convolution of the “phase field parameter” ¢ with the corresponding fractional Laplacian
kernel.

The existence of minimizers follows easily by the direct method in the calculus of variations, see Lemma 2.1 below.
Our first regularity result deals with the Holder regularity of solutions and density estimates for the free boundary 0 E.

Theorem 1.1. Let (u, E) be a minimizer of J in By with O € 0E. Then u is C*(By), witha :=1 — 5 and

lullces,y) < C- (1.3)
Moreover for any r < ry

min{|B, N E|, |B, N E€|} > cr". (1.4)

The positive constants C, ¢ above depend only on n and o, and ro depends also on ||u|l;2(p,)-

We remark that the Holder exponent obtained in Theorem 1.1 is consistent with the natural scaling of the problem,
namely

. . e e g _ . e e
if u is a minimizer and u, (x) :=r?2 lu(rx), then u, is also a minimizer. (1.5)

A minimizer u is harmonic in its positive and negative sets and formally, at points x on the free boundary {u = 0}
it satisfies

Ko () —/ |XE e L dy=|vut )]’ - (1.6)

where, as usual, ¥ := max{u, 0}, ¥~ := max{—u, 0}, and «, (x) represents the o -fractional curvature of dE at x
(a precise statement will be given in Theorem 4.1).

Generically, we expect that the minimizer u is Lipschitz near the free boundary. Then the fractional curvature
becomes the dominating term in the free boundary condition above and dE can be viewed as a perturbation of the
o-minimal surfaces which were treated in [6]. However, differently from the limiting cases 0 = 0 and o = 1, for
o € (0, 1) it seems difficult to obtain the Lipschitz continuity of u at all points (see the discussion at the end of Sec-
tion 5). For the regularity of the free boundary we use instead a monotonicity formula and study homogeneous global
minimizers. Following the strategy in [6] we obtain an improvement of flatness theorem for the free boundary 0 E.
We also show in the spirit of [12,13] that in dimension n = 2 all global minimizers are trivial and by the standard
dimension reduction argument we obtain the following result.

Theorem 1.2. Let (u, E) be a minimizer in By. Then dE is a C“Y -hypersurface and it satisfies the Euler—Lagrange
equation (1.6) in the viscosity sense, outside a small singular set X C 0 E of Hausdorff (n — 3)-dimension.

In particular in dimension n = 2 the free boundary is always a C'? curve. We remark that by using the strategy
in [5] the C7 regularity of 8 E can be improved to C™ regularity.
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The proofs of Theorem 1.1 and 1.2 require some additional results, that will be presented in the course of the paper,
such as a monotonicity formula, a precise formulation of the Euler-Lagrange equation and an equivalent extension
problem of local type.

The paper is organized as follows. In Section 2 we state various estimates for the change in the Dirichlet integral
whenever we perturb the set £ by E U A. We use these estimates throughout the paper and their proofs are postponed
in the last section of the paper. We prove Theorem 1.1 in Section 3 and the improvement of flatness theorem in
Section 4. The monotonicity formula and some of its consequences are presented in Section 5. Finally in Section 6
we prove Theorem 1.2 by showing the regularity of cones in dimension 2.

2. Estimates for the harmonic replacement

In order to rigorously deal with the minimization of the functional in (1.1), we introduce some notation.
Letpe H 1(2) and Ey C £2€ be given. We want to minimize the energy

Jo) = / |Vu|2dx + Per, (E, $2) 2.1
2

among all admissible pairs (u, E) that satisfy

u—¢eH (), ENR°=E,,
u>0 ae.in ENS, u<0 ae.in E°NS.

We assume that there is an admissible pair with finite energy, say for simplicity J (¢, Eg U {¢ > 0}) < co. From the
lower semicontinuity of J we easily obtain the existence of minimizers.

Lemma 2.1. There exists a minimizing pair (u, E).

Proof. Let (ui, Er) be a sequence of pairs along which J approaches its infimum. By compactness, after passing to
a subsequence, we may assume that uy — u in H'(2), uy — u in L*>(2) and xg, — xg in L'(£22). Then (u, E) is
admissible and by the lower semicontinuity of the fractional perimeter functional (i.e. Fatou’s lemma) we obtain that
(u, E) is a minimizing pair. O

Notice that a minimizing pair in £2 is also a minimizing pair in any subdomain of £2. We assume throughout, after
possibly modifying E on a set of measure 0, that the topological boundary of E coincides with its essential boundary,
that is

0E = {x eR"s.t.0< |E N B,(x)| < |B,(x)| forall r > 0}.
We recall the notion of harmonic replacement from [4].
Definition 2.2. Let ¢ € H!(£2) and K C £2 be a measurable set. Assume that the set

D::{Us.t.v—gaeHé(ﬂ)andv:Oa.e.inK}

is not empty. Then we denote by ¢k € D the unique minimizer of

min / |Vvl|?,
veD
2
and say that ¢ is the harmonic replacement of ¢ that vanishes in K.

From the definition it follows that

/wk -Vw=0, forallwe H}(2)withw=0ae.inK.
2
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Also, it is straightforward to check that if ¢ > 0 then g is subharmonic. In this case we think that ¢x is defined
pointwise as the limit of its solid averages.
Clearly if (u, E) is a minimizing pair then we obtain
ut = u‘gc and u” =uy.

Below we estimate the difference in the Dirichlet energies of the harmonic replacements in two different sets E
and E \ A, in terms of the measure of the set A C B3/4. These estimates depend on the geometry of £ and A. We
assume that ¢ € H!(B1) N L>®(By), ¢ >0, and let

W = @Ec, VI=@EUA.

The first lemma deals with the case when A is contained in a ball.

Lemma 2.3. Assume v, w are as above and A :== B, N E for some p € [%, %]. Then

/|Vv|2 —|Vw|?dx < C|A|||w||%m(31),
By

for some constant C depending only on n.

The next lemma gives the same bound in the case when A is exterior to a ball under the additional hypothesis
that A satisfies a density property.

Lemma 2.4. Let v, w be as above and assume E N By = . Let A C B34 \ By2 be a closed set that satisfies the
density property

|ANB,(x)| > pr" forallx edA and B.(x)NBip=0,
for some > 0. Then

[ 190R = 1Vl dx < CBIANIE ~ s,

By

for some constant C(B) depending only on n and B.

Finally we provide a more precise estimate in the case when 9 E is more regular.
Let u € H'(B}) N C($2) be harmonic in the sets E = {u > 0} and {u < 0}. Assume

0€dE and E={x,>g(x")}
is given by the epigraph in the e, direction of a C!¥ function. For a sequence of &y — 0 we consider sets
A :={g(x") <xn < fi(x")} C B,

for a sequence of functions f; with bounded C!¥ norm. For each k we define by i the perturbation of u for which
the positive set is given by E U Ay, i.e.

_+ _ + -— —
Up =Upc\p,» Up =Ugyy-

Lemma 2.5. Then

1
lim —/|Vﬁk|2— IVul?dx = [Vu~ )] = |Vut ©0)[*.
k—o0 |Ag|

B

The proofs of Lemmas 2.3-2.5 will be completed in the last section.
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3. Proof of Theorem 1.1

In this section we obtain the Holder continuity of minimizers and uniform density estimates for their free boundary.
We adapt to our goals the strategy of [4], and we simplify some steps using Lemma 2.3. We start with a density
estimate.

Lemma 3.1. Let (u, E) be a minimizer in B| and assume

0€dE and ||M+||L°°(Bl) <M,

for some constant M. Then

|EN Byl 234, ||M7||L°°(Bl/2) sk

for some positive constant §, K depending on n, o and M.

Proof. First we prove the density estimate. For each p € [%, %], set
V,=|ENB,| a(p)=H"YENIB,)

and assume by contradiction that V5 < § small.
For each such p we consider u the perturbation of u which has as positive set £ \ A with A := E N B, that is

S+ =
U =Upge iy U™ =Up y-

From the minimality of (u, E) we find
Per, (E, Bi) — Pery (E \ A, B)) < / |Vi|? — [Vul*dx. (3.1)
By
Since (see (7.2), applied here with w :=u~ and ¢ :=u~ —u")
/|v12|2— \Vul? dx =/|v:z+|2— |Vut|dx —/\v(a— —u”)[Pdx
B B B

</|Vﬁ+|2— |Vut|* dx, (3.2)

we use Lemma 2.3 and the definition of Per, (see (1.2)) and we conclude that
L(A, Ec) —L(A,E\ A) <CM?|A.
Hence
L(A,A°) <2L(A,E\ A)+CM?*|A| <2L(A, BS) + CM?V,. (3.3)

We estimate the left term by applying the Sobolev inequality (see, e.g., Theorem 7 in [11]): we obtain that

n—o

n 2 2 _ c
Vor =lxal? u < Clltalieng, = CL(A, A°).

If x € B, then
o
o dy<C b ~lar<cC -
|x_y|n+a ys rn+ar r's (,0—|X|) ’
BS p—Ix|

hence integrating in the set A we obtain
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P
L(A,Bj) < C/a(r)(,o —r)°dr.
0

We insert these inequalities into (3.3) and use the assumption that V,, < § is sufficiently small to find
B p
V," < C/a(r)(,o —r)%dr.
0

Integrating the inequality above between % andt € [%, %] gives

t 13

/Vp; dpgcﬂ—“/a(r)drgcv,. (3.4)
174 0

The proof is now a standard De Giorgi iteration: let
K=o u=Vi
4 2k g
and notice that 1, = % and too = %. Eq. (3.4) yields

n—

2_(’”'1)vk+71 < Cug.

Since v; < §, that is conveniently small, we obtain vy — 0 as k — 00. Thus Vj,4 =0 and we contradict that 0 € 9 E.
For the bound on #~ we write the energy inequality for p = 43_1 and we estimate also the negative term in (3.2) by
the Poincaré inequality

/|V(L‘f —u7)|2dx >c/|127 —u- 2dx >c / |L_f|2dx > cS(supL_f)z,
B B ENBy )2 B

where in the last inequality we used that i~ is harmonic in B3 4.

We have
2
0< L(A, E) < L(A,E\ A) + CM2V, — cs(supﬁ*)
Bi2
and the desired conclusion follows since
L(A,E\A)<L(B,.B;)<C, V,<C, and u” <u . 0O

If (4, E) is a minimizing pair in B, then the rescaled pair (i, E,) is minimizing in B; with
uy(x) :=r%_lu(rx), E.:=r'E. 3.5)
Let

Af1=””j“quh>:’%7qW+”wa»’

and define A~ similarly.
If either A" or A is less than 1 then, by Lemma 3.1 with M =1,

|EN B
| B, |
with ¢, C constants depending on o and n. Theorem 1.1 follows provided the inequalities above hold for all small r.

Thus, in order to prove Theorem 1.1 it remains to show that for all r < rg either )»;“ < lor A < 1. This follows from
the next lemma which is a consequence of the Alt—Caffarelli-Friedman monotonicity formula in [2].

<l-c¢

’

+ —
,\r/zgc, Ar/ng, and c¢<
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Lemma 3.2. Let (u, E) be a minimizing pair in By, and assume O € 0E. Then
WA SCrlulfagg,.  Vre(.1/4]

with C depending only on n.

Proof. Similar arguments appear in Section 2 of [4]. We sketch the proof below.
First we prove that u* and ™~ are continuous. For this we need to show that u™ = u~ =0 on dE. Assume by
contradiction that, say for simplicity #~ (0) > 0. Since

limsupu™ (x) =u" (0),
x—0
we see that the density of E in B, tends to 0 as r — 0. Since ut >0 is subharmonic and u™ =0 a.e. in E€ it follows
that «™ must vanish of infinite order at the origin. Then A" < 1 for all small r and by the discussion above E has
positive density in B, for all small r and we reach a contradiction.
Since u™ and u~ are continuous subharmonic functions with disjoint supports we can apply the Alt—Caffarelli—
Friedman monotonicity formula, according to which

1 [|Vut)? Vu~|?
1 = — d dx,
) r4/ 2 x/ 2

B, B,

is increasing in r.
From the definition of the harmonic replacement it follows that (see Lemma 2.3 in [4] for example)

A(u+)2 = 2|Vu+|2
and we find
[Vut|?

2 2 2
cHuJr ||Loo(Br/2) < C][(M+) dx < NG dx < C][ (u+) dx.
B, B, B,

In further detail: the first inequality above follows from subharmonicity, the second one from the formula below (2.6)
in [4] and the third one from Lemma 2.6 in [4]. We use these bounds in the monotonicity formula above and obtain
the conclusion. O

4. Improvement of flatness for the free boundary

In this section we obtain the Euler—Lagrange equation at points on the free boundary and also we show that if d E
is sufficiently flat in some ball B, then E is a C-¥ graph in B, /2. The proofs are similar to the corresponding proofs
for nonlocal minimal surfaces in [6]. The difference is that when we perturb E by a set A, the change in the nonlocal
perimeter is bounded by the change in the Dirichlet integrals (instead of 0), and by Section 2, this can be bounded in
terms of |A].

Our main theorem on this topic is the following.

Theorem 4.1. Assume (u, E) is minimal in By and that in B

{x, > &0} C E C{xy > —s0}, lullpe <1,

for some g9 > 0 small depending on o and n. Then 0E N By3 is a CLY graph in the e, direction and it satisfies the
Euler—Lagrange equation in the viscosity sense

R by vt - v

x€dE. 4.1)

Rn
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The constant y above depends on n and o. The Euler—Lagrange equation in the viscosity sense means that at any
point x where d E has a tangent C 2 surface included in E (respectively E€) we have > (respectively <) in (4.1).
First we bound the o -curvature of d E at points x that have a tangent ball from E°.

Lemma 4.2. Let (u, E) be a minimizing pair in By. Assume that By,4(—e, /4) is tangent from exterior to E at 0. Then

XEc — XE 2
/de <Clut | sy

RV!
with C depending on n and o. If moreover dE is a CV surface near O then

/X|E;|n—_+ffde < |Vut O = [vu- .

Rn

Proof. We follow closely the proof of Theorem 5.1 of [6]. We will also make use of Lemma 2.4. For this, we remark
that the density estimates needed to apply this result are warranted here by Theorem 1.1.

After a dilation we may assume that E€ contains By(—2e¢,). Fix § > 0 small, and ¢ < §. Let T be the radial
reflection with respect to the sphere d B1.(—ey).

We define the sets:

A” :=Biie(—ey) NE, At=T(A")NE, A:=A"UAT,
and let
F:=T(BsN(E\ A)).

It is easy to check that F C E€ N Bs.

Let i be the perturbation of # which has as positive set E \ A as in the proof of Lemma 3.1. First we estimate the
right hand side in the energy inequality (3.1). Let u be the perturbation of # which has as positive set £\ A~. We use
Lemmas 2.3 and 2.4 and we obtain

/|VzZ|2—|Vu|2dx=/|Vﬁ|2—|V12|2dx+/|Vﬁ|2—|Vu|2dx

By By By
</|Vﬁ+|2—|Vﬁ+|2dx+/|Vﬁ+|2—|Vu+|2dx
B, B,
< C|A|””+Hiw(31)'

Notice that

Syt — 4
u =u - U =Upeya-ura-)

and, by Theorem 1.1, T (A7) satisfies the uniform density property of Lemma 2.4.
Now we consider the left hand side of the energy inequality (3.1):
Per, (E, B;) —Pers (E \ A, By)
= L(A, E") — L(A, C(E\ A))
=[L(A,E°\ Bs) — L(A,E\ Bs)| +[L(A, F) = L(A,T(F))] 4+ L(A, (E°N Bs) \ F)
=h+hLh+LE>25L+D.
We estimate /; and I, as in [6], and we conclude that

1 e —
‘—11— / XEC = XE ;.

Al s < C81/28—1—s
R\ Bs
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and
L >—C8""F|A| — CeL(A™, F).
It remains to show that for all small &

L(A™,F)<CL(A™, B{ . (—en))

since then, as in Lemma 5.2 of [6], there exist n and C and a sequence of ¢ — 0 such that

)

eL(A™,F) < Ce"|A™

and our result follows.
We prove (4.2) by writing the energy inequality for u# defined above. We have L(A™, F) < L(A™, E€) and

L(A™,EY)<L(A™,E\A™)+ /|sz+|2 — |Vt [P dx
B

<L(A™,Bf, (—en) + C|A [lull7~ g,
<2L(A™, B{, (—en)),

where the last inequality holds for all small ¢.

909

4.2)

In the case when dE is a C!»7 surface near 0 we can estimate the change in the Dirichlet integral by Lemma 2.5

and obtain the second part of our conclusion. 0O

With the results already obtained, Theorem 4.1 now follows easily from the improvement of flatness property

of 0F:

Proposition 4.3. Assume (u, E) is a minimal pair in By and fix 0 < a < s. There exists ko depending on s, n and o

such that if

0€dE, lullLoepy <1, and for all balls By—x with 0 < k < ko we have
{x- e > Z_k(“H)} CEC{x-e> —2_"(““)}, lex| =1,

then there exist vectors ey for all k € N for which the inclusion above remains valid.

The proof now follows closely the one of Theorem 6.8 in [6]. We sketch it below.
Assume (4.3) holds for some large k > ko. Then by comparison principle we find that

u* <Cr, in B, forallr > 271‘,

for some C depending on n and «.

(4.3)

Rescaling by a factor 2k the pair (u, E), the situation above can be described as follows: if for all / with 0 </ <k

lullLoo(sy) < 2o~ @h/2
IEN By C {Ix-¢] <2290}, eyl =1
then the inclusion holds also for [ = —1, i.e.
IEN By Clx-ey| <27 l27e®HDY

For some fixed / we see that d E N By has C(1)2~*F flatness, and u is bounded by C(1)2=(h/2 ip By
First we give a rough Harnack inequality that provides compactness for a sequence of blow-ups.

Lemma 4.4. Let o < 0. Assume that for some large k (k > k1)

dENB C {|xn| <a:= sza}’ ||u||Lo<>(B]) < a"/(z"‘)

(4.4)
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and
IEN By C{Ix-e| <a2'™), 1=0,1,... k.
Then either

Xn

8EﬂBgC{ <1—52} or aEmBgc{x—">—1+52},
a

a

for & small, depending on o, n, .
Proof. The proof is the same as the one of Lemma 6.9 in [6]. The only difference is that at the contact point y between
the paraboloid P and 0 E the quantity

1 ¢ —
1 [ XEc — XE dx (4.5)
a) |x—y?

Rn

is not bounded above by 0, instead by Lemma 4.2, it is bounded by
1
~Cllul} g, <Ca™ ™' -0 asa—0,
a

and all the arguments apply as before. O

Completion of the proof of Proposition 4.3. As k becomes much larger than k1, we can apply Harnack inequality
several times as in [6]. This gives compactness of the sets

AE* := {(x/, x—”) st.xe 8E},
a

as a — 0. Precisely, we consider pairs (4, E) that are minimal in By« with 0 € 9 E, for which
OE N By C f{lan| <a:=27%}, llull oo B,y < a®/ @9,

and forall 0 </ <k
dEN By C {|x el < a21<1+a)}’ ||”||L°°(BZI) < 210/,

and we want to show that (4.4) holds.
If (u,, E,) is a sequence of pairs as above with a,, — 0 there exists a subsequence my such that

IEy,, — (¥ o(x))
uniformly on compact sets, where w : R”~! — R is Holder continuous and
0©0)=0, lol<C(1+[x]"").

Moreover, since the quantity in (4.5) tends to 0, the proof of Lemma 6.11 of [6] works as before, thus
o+1

A7 w=0 inR"L

This shows that w is a linear function and therefore (4.4) holds for all large m. O
5. A monotonicity formula

The goal of this section is to establish a Weiss-type monotonicity formula for minimizing pairs (u, E), that is
different from the Alt—Caffarelli-Friedman monotonicity formula used in Lemma 3.2. For this scope, we first intro-
duce the localized energy for the o -perimeter by using the extension problem in one more dimension as in [6]. With
a measurable set £ C R” we associate a function U (x, z) defined in R’fl as

o

Z
(|x|2 + Z2)(n+t7)/2 ’

U(,z2) =g — xg) * P(-,2), with P(x,2) :=Cn0

where ¢, » is a normalizing constant depending on n and o.
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For a bounded Lipschitz domain £2 ¢ R"*! we denote by
20:=2N{z=0} CcR", 2, :=2nN{z>0}
and denote the extended variables as
X:=@oeRM,  BF={X|<r}

The relation between the o -perimeter and its extension is given by Lemma 7.2 in [6]. Precisely, let E be a set with
Per, (E, B;) < oo and U its extension, and let F be a set which coincides with E outside a compact set included
in B,. Then

Pery (F, By) = Pero (E, By) = cno inf /zl_"(|VV|2—|VU|2)dX.

N+

Here the infimum is taken over all bounded Lipschitz sets with §£29 C B, and all functions V that agree with U near
052 and whose trace on {z = 0} is given by xr — xrc. The constant ¢, , > 0 above is a normalizing constant. As
a consequence we obtain the following characterization of minimizing pairs (u, E) using the extension U of E.

Proposition 5.1. The pair (u, E) is minimizing in B, if and only if

/|Vu|2dx+c,,,a /zl_"|VU|2dX</|Vv|2dx+c,w /zl_”|VV|2dX
Br .Q+ Br .Q+

for any bounded Lipschitz domain §2 with §2o C B, and any functions v, V that satisfy
(1) V =U in a neighborhood of 952,

(2) the trace of V on {z =0} is xg — xFec for some set F C R",
(3) v=unear 0B, andv >0a.e.in F, v<0a.e. in F€.

Now we present a Weiss-type monotonicity formula for minimizing pairs (u, E).

Theorem 5.2. Let (u, E) be a minimizing pair in B,,. Then

Du(r) = rﬂ—"</|w|2dx+cn,g/zl“’wwzdx) - (1 — %)r"_"_l /ude”_l
B,

B 9B,
is increasing inr € (0, p).

Moreover, @, is constant if and only if u is homogeneous of degree 1 — % and U is homogeneous of degree 0.

Proof. The proof is a suitable modification of the one of Theorem 8.1 in [6]. We notice that @, possesses the natural
scaling
Dy (rs) = (pur (),

where (u,, E;) is the rescaling given in (3.5).
We prove that

d
—®w,U,r) >0 forae.r.
dr

By scaling it suffices to consider the case when r = 1 and r is a “regular” radius for |Vu|?dx, 217\ VU|*dxdz
and E. We use the short notation @ (r) for @, (r) and write

@(r)=G(r)— H(r),

with
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G(r):=r°" </ IVul>dx +cp.o / 27 vU dX),
B, B
H(r) = (1 - %)r"—"—l / WrdH" !
3B,
Below we use the minimality to obtain a bound for G’(1). We denote as usual u,, and u, for the normal and tangential

gradient of u on 0 B,. Let ¢ > 0 be small. We compute G (1) by writing the integrals in Bj_, and By \ B1—_¢:

Gu(1) = / |Vul?dx + ¢ / |Vul|? dH" !
Bi_¢ 9B
+c,w< / ZTO\VU P dxdz + ¢ / zl_"|VU|2d7-£”) +o0(e)
B, B
=(1—8)""G(l—¢)+e / lue|® + |uy|? dH !
dB
+ecn / (U2 + U ) dH + oe). 5.1)
aB)
We now consider a competitor (u?, U?) for (u, U) defined as
(1-o)'"%u(%) ifxeBi,
uf(x) = |x|‘*%u(|j§—|) if x € B\ Bi_,
u(x) if x € BY,
and
Ui%) ifxeB,,
UiX) = U ifxeBf\ B[,
UXx) if|X|>1.
From Proposition 5.1 we obtain
Gu(1) <Gy (1). (5.2)

We compute G (1) noticing that #® in Bj_, coincides with the rescaling u1/(1—¢), hence

Gur (1) = (1= £)" " Gy g (1 — &) + £ g / U R d
B

2
p /<|ut|2+ (1— %) u2) dH"! 1 o(e). (5.3)
0

By

By scaling, the first term in the sum above equals (1 — €)"7° G, (1). Plugging G, (1) and G, (1) in the inequality
above and recalling (5.1), (5.2) and (5.3) we conclude that

2
(1—e)”_”Gu(1)>(1—8)”_"Gu(1—8)+8/|uU|2—(l—%> udH" !
0B
+ecno / AU P M + o(e),

B
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hence
o\ 2
G’(1)>/|uv|2—<1—§) wdH" ' e, /zl_"|UU|2d”H”.
9B aBy
On the other hand,
/ g 2 gam—1
H(l):(l—z)/Zuulﬂ—(a—Z)u dH"—,
9B

and we conclude that
2
®'(1) > /(uu—<1—%)u) dH" '+ cng / Pl MEP EYL
0B B

and the conclusion follows. 0O

The monotonicity formula allows us to characterize the blow-up limit of a sequence of rescalings (i, E,). First
we need to show that the set of minimizing pairs is closed.

Proposition 5.3. Assume (u,,, E,;) are minimizing pairs in By and
um —u inL*(By), and En— E inLj (R").
Then (u, E) is a minimizing pair in By and u,, — u in H'(By) and

Per, (E,,, B1) — Per, (E, By).

Proof. First we show that u,, — u in H'(B;). For this, we use a version of the Caccioppoli inequality (see, e.g.,
Remark 4.2 in [1]) to obtain, for any n € C3°(Bo),

/|Vum|2dx</n2|Vum|2dx<4/u31|Vn|2dx<C/u3”dx,
B By By B>

for some C > 0. Since the latter quantity is bounded uniformly in m, we have that Vu,, — Vu weakly in L>. As
a consequence, it suffices to show that

/|Vum|2dx—> /|Vu|2dx. (5.4)

By B

As a matter of fact, by the weak convergence we know that
: 2 2
lim / |Vuy,|“dx > / |Vu|“dx,
m——+00
By By
so we only need to check the reverse inequality. For this, since, by Theorem 1.1, u,, and u are continuous functions
which are harmonic in their positive and negative sets, we have

Au? =2|Vu|?, AuZ =2|Vu, %,

in the sense of distributions (see, e.g., page 482 in [4]). Thus, if we take a > 0 and ¢, € Cgo(Bl+a, [0, 1]) such
that ¢, = 1 in By and we use that u,zn — u?in Ll(Bz), we have that
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m— 400

lim /|Wm|2dx< lim /|Vum|2¢adx
m——+00
B

Bita

= lim uiAq&adx:/uquﬁadx

m——+00
Biiq Bita
_ 2 2
= / [Vuy,|“¢p, dx < / [Vuy,|“dx.
Bl+a Bl+a

Now we can send a — 0 and obtain

lim |V |? dx < / [V dx,
m——4o0
By Bita

which completes the proof of (5.4).
Now, let (v, F) be a compact perturbation for (#, E) in By. Precisely, assume F = E and v = u outside a compact
setof Bj,andv >0a.e.in F,v<0ae.in F¢. Let

+

wyb = minf{u;}, u™}

and define v, such that v = v in Bi_2., v;} = w,} in the annulus Bj4. \ Bi—, and v/, =, outside Bjj2.. In

Bi \ Bi_2 we define v}, as an interpolation between v and w;}, i.e.

vjn' = nv+ + (1 - n)w+

m»

with 7 a cutoff function such that n = 1 in Bj_», and n =0 outside Bj_,. Similarly, in Bj4, \ B; we let v} to be an
interpolation between u;;, and w;.
We define v, similarly. We have

vy =0 ae.in F,, vy <0 ae.in Fy,

with Fy, := (F N By) U (Ep \ By),
thus (v, Fy) is a compact perturbation of (u,,, E,,). From the minimality of (u,,, E,;) (see (2.1)) we find

I, (um) < JB, (Uim).

By construction,

/|va|2—|wm|2dx</|w|2—|Vum|2dx+cm<s>,

B> B
with

cm () = C8_2/(um —uw)ldx+C / IVul? + | Vi |* dx.

By B2\ B1—2¢

Notice also that

Pera(Fma BZ) - PerU(Ema BZ) < PerU(Fv Bl) - PerU(Em, Bl) + bm»
with

by :=L(B1, (EnAE) \ By).

Since E,, — E in Llloc (R") it follows easily that b,, — 0 (see Theorem 3.3 in [6]). Using the last two inequalities in
the energy inequality and letting first m — oo and then ¢ — 0 we find

limsup Jp, () < Jp, (V).

On the other hand from the lower semicontinuity of J we have
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liminf Jg, (um) = Jp, ().

This shows that (1, E) is a minimizing pair and that Jp, (4,,) — Jp, (1) and our conclusion follows. O

Next we consider the limit of a sequence of rescalings u;,, E,, U, asr — 0,

) =r2 uerx), E.=r'E, UX)=U(@rX).

Proposition 5.4 (Tangent cone). Assume (u, E) is a minimizing pair in By, and 0 € 0E. There exists a sequence of
r =r; — 0 such that

Uur — u in leoc(Rn)’ EV - E in Llloc(Rn)’ Ur g U in leoc(R’le’ Zlia dX)
with u homogeneous of degree 1 — 3, U homogeneous of degree 0 and (i, E) a minimizing pair in R,

We refer to a minimizing homogeneous pair (u, E) as a minimizing cone. From Theorem 1.1 we see that on compact
sets u, — u uniformly and E, — E in the Hausdorff distance (possibly up to a subsequence).

Proof. By compactness we can find a sequence such that u, — u and E, — E as above. From Proposition 5.3 we
have Per, (E,) — Per, (E) and, as in Proposition 9.1 in [6], this implies the convergence above of U, to U, and

D, (t) > D;(t) asr—0.

Then &;(t) = @, (0+4) and the conclusion follows from Theorem 5.2. Notice from the definition of @ that @ (0+) is
bounded since u € C*(By), with « =1 — %, thanks to Theorem 1.1. O

Let (i1, E) be a minimizing cone. We define its energy as ®; which is a constant (recall Theorem 5.2). From the
homogeneity of u it follows that

@; =cn,g/|v0|2dx,
B

hence the energy depends only on E. B B
Since it are complementary homogeneous harmonic functions in E respectively E€, at least one of them, say i,
has homogeneity greater or equal to 1, thus 2~ = 0. Then i is homogeneous of degree 1 — 5 and

XEe — XE

—Ivatiol? >
|y_x|n+0dy—|Vu x)|”, VYxe€odE,

holds in the viscosity sense. Notice that both terms are homogeneous of degree —o .

If it = 0 then the study of minimizing cones reduces to the study of o-minimal surfaces. This is the case when
o = 1 which was treated in [4]. Indeed, the homogeneity of a positive harmonic function in a mean-convex cone E
which vanishes on d E' cannot be less than 1. This follows since a multiple of the distance function to d E is superhar-
monic and is an upper barrier for #T. When o < 1 it is not clear whether or not there exist minimizing cones with
it # 0 and it seems difficult to relate the o -curvature of 3 E with the homogeneity of i*.

When E = IT is a half-space then i = 0 and we call (0, IT) a trivial cone. If the blow-up limit (iz, E) of a mini-
mizing pair (u, E) is trivial then we say that 0 € 9 E is a regular point of the free boundary. By Theorem 4.1, 9 F is
a C17 surface in a neighborhood of its regular points.

We remark that if E admits an exterior tangent ball at 0 € d E then E C I and @t = 0. Then, we use the Euler—
Lagrange equation (Lemma 4.2) and obtain E = I1. Thus any point on d E which admits a tangent ball from E or E€¢
is a regular point. Therefore the set of regular points is dense in d E. We summarize these results below.

Proposition 5.5. Let (u, E) be a minimal pair, 0 € JE, and let (it, E) be its tangent cone as in Proposition 5.4. If E
is a half-space (i.e. if O is a regular point) then dE is a C"Y surface and the free boundary equation (4.1) holds.
Moreover, all points on d E which have a tangent ball from either E or E€ are regular points.



916 L. Caffarelli et al. / Ann. I. H. Poincaré — AN 32 (2015) 901-924

By a standard argument (see Theorem 9.6 in [6]), we also obtain that the trivial cone has the least energy amongst
all minimizing cones. Precisely if (i, E) is a minimizing cone then

Py 2 Py,
and if E is not a half-space then
Py = P+ o

for some &g > 0 depending only on 7, o.
6. Proof of Theorem 1.2

In this section we prove Theorem 1.2 using the dimension reduction argument of Federer. As in Section 10 in [6],
in order to obtain Theorem 1.2 it suffices to prove the following two propositions.

Proposition 6.1. The pair (u, E) is minimizing in R" if and only if (u(x), E x R) is minimizing in R"*1,
Proposition 6.2. In dimension n = 2, all minimizing cones are trivial.

Proof of Proposition 6.1. The proof is similar to the one of Theorem 10.1 in [6]. We just sketch the main difference.
The only issue that needs to be discussed is the existence of a perturbation which is admissible when we prove that
(u, E) is minimizing in R" if (u(x), E x R) is minimizing in R+

Precisely let v(x), V(x, z) be admissible functions which coincide with u, respectively U say outside Bfr/z. It
suffices to construct an admissible pair w(x, x,+1) and W (x, x,+1, z) in one dimension higher, i.e. in | x [0, 1] such
that on the n dimensional slice x,+1 =0, (w, W) coincides with (u#, U), and on the slice x,,+1 = 1, (w, W) coincides
with (v, V).

For x,,4+1 € [0, 1/4] we define

W(x, x041,2) =U(x,2), and  w(x,x,11) = (1 — ¢ + ¢n(x))u(x)

with ¢ = ¢(x,+1) a smooth function vanishing for x,,1; < 0 and which equals 1 for x,,+; > 1/4. The function 1 above
is a cutoff function which vanishes in Bj,; and equals 1 outside Bj/4.

Similarly we construct W and w for x,,41 € [3/4, 1], by using the pair (v, V).

In the interval x, 1 € [1/4, 3/4] we extend w to be constant in the x, 1 variable. We also extend W to be constant
in the annulus Bf“ \ Bf'/z. It remains to construct W in the inner cylinder By,; x [1/4,3/4]. Since w =0 on the
“bottom” of this cylinder, any choice for W with trace £1 on {z = 0} makes the pair (w, W) admissible. Now we
can argue precisely as in the proof of the o-minimal surfaces, and the construction for the interpolating W is given in
Lemma 10.2in [6]. O

Proof of Proposition 6.2. We follow the methods in [12,13] where the same result was proved for o-minimal sur-
faces. We remark that the assumption that n = 2 is only necessary at the end of the proof. We define
EW, V)= / IVu|?dx + cpo /zl—" |VV(X)|2dX.
B, B

By Proposition 5.1, we know that (u, U) minimizes £ under domain variations. We consider a diffeomorphism on
R+ given, for any X € R'fl by

X|—>Y:=X+§0(|X|/R)el, (6.1)

where ¢ € C*R), ¢ =1 in [—1/2,1/2] and ¢ = 0 outside (—3/4,3/4), and R is a large parameter. We define
UIJ{(Y) := U(X) and similarly, if we change e; into —e; in (6.1), we may define Uy . The diffeomorphism in (6.1)
restricts to a diffeomorphism in R” just by considering points of the type X = (x, 0), i.e.

yi=x+o(lx|/R)er,
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and we set u;(y) :=u(x), and similarly we define u 5. We claim that

Er(uf, UR) +Er(ug, Uy) —26r(u, U) < CR™27°, (6.2)
for some C independent of R. By Proposition 5.1, the minimality of (u, U) gives

Er(u, U) < Er(uyg. Ug),
and the last two inequalities imply

Er(uf, UF) < Er(u,U)+ CR"™7°. (6.3)
To prove (6.2), by direct calculations (or see formula (11) in [12]) we obtain

2 -2
(19 + [Vuz) dy = 2(1+ 0 (1/R%) 5,15, Tul .
S(IVURD +[VUR ) dY =227 (14 O(1/R) g gz ) IVUI dX.

We use that |[Vu(x)|? and ! =7 |VU (X)|? are homogeneous of degree —o respectively —1 — o and obtain

/(|wjg|2+|w;|2)dy—2/|Vu|2dx<C1r2 / |Vul?dx <CR™>-R"™°
Bg Bg Br\Bg/2

and

/zl—"(]VU,ﬂz +|VUR|})dY — 2/z1_"|VU|2dX <CR™? / ZO|VUPdX < CR?-R"°
By By B{\Bg,
and so the proof of (6.2) is complete.

Next we perform an argument similar to the one of Theorem 1 of [ 12] (the main difference here is that two functions
are involved in the minimization procedure instead of a single one). For this, we assume now that n = 2, we argue by
contradiction and we suppose that E is not a half-plane. Thus, there exist M > 0 and p € By, say on the e-axis, such
that p lies in the interior of E, and p 4 e; and p — e lie in E€. Therefore, if R is sufficiently large we have that

u;(x) =u(x —ey), forallx e Byyy,
Ug(X)=U(X —e), forall X € By,
u;(x) =U(x), forallxe R? \ Bg, and

Ug(X)=U(X), forallXeRl\ By. (6.4)
We define
vr(x) :=minfu(x), u} (x)}, wg(x) = max{u(x), u}(x)},

VR(X) :=min{U(X),Ux(X)} and Wr(X):=max{U(X), UF(X)}

and P :=(p,0) € R3. From (6.4) and the trace property of U we have that

U;{ < Wg=U inaneighborhood of P, and (6.5)
U<Wg= U;er in a neighborhood of P + . (6.6)
Moreover

Er(,U) < Er(VR, VR)

and

Er(R, VR) + Er(wr, Wg) = Er(u, U) + Er(uf, UF),

therefore
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Er(wr, Wr) < Er(uf. UZ). (6.7)

Now we observe that

(wg, WR) is not a minimizer for £y

with respect to compact perturbations in By X B;M. Otherwise Wg would be a minimizer too: then the fact
that U < Wg, (6.5) and the strong maximum principle would give that U = Wg in B; - but this would be in contra-
diction to (6.6). Thus there exist 6 > 0 and a competitor

(us, Uy) that coincides with (wg, Wg) outside By X B;M

(with u, = wg) and such that

Eom (s, Uy) + 8 < Expr(wg, Wpg).

Here 6 > 0 is independent of R since (wg, Wg) does not depend on R when restricted to By X B; o (recall (6.4)).
We conclude that

Er(uy, Uy) + 8 < Er(wr, Wg).
Combining this with (6.3) and (6.7) we obtain

ER (s, Uy) + 8 < Ep(wr, Wr) < Eg(uf, UF) < Eru,U)+CR™°.

If R is large enough we obtain that Eg (uy, U*) < Eg(u, U), which contradicts the minimality of (1, U) and completes
the proof of Proposition 6.2. O

7. Proofs of Lemmas 2.3-2.5

In this section we estimate the difference in the Dirichlet energies of the harmonic replacements in two different
sets £ and E \ A, with A C B3;4. We assume that ¢ € H'(B1) N L*®(By), ¢ >0, and let
w = QEc, V I=@QECUA-

Here above, we used the notation for the harmonic replacements of ¢ that vanish in E€ and E€ U A, as introduced in
Definition 2.2. We remark that the existence of v follows from the existence of w. Indeed, given w we can easily find
an explicit test function with finite energy which vanishes in £¢ U B34, for example a function of the form w(1 — n)
with 1 a cutoff function.

Since w minimizes the Dirichlet energy among all functions which are fixed in E£¢ and have prescribed values on
0B we find

/Vw-Vl//dxzo, Vi € H} (B)) with ¥ =0 a.e. in E°, (7.1)

By

and therefore

/}V(w—w)|2—|Vw|2dx=/|vw|2dx. (7.2)
B By

By definition, v minimizes the Dirichlet energy among all functions which equal w on dBj, and are O a.e. in
E€ U A. We may relax this last condition to functions that are equal to 0 a.e. in £¢ and are nonpositive in A, since
then we can truncate them wherever they are negative. This and (7.2) show that

/|Vv|2—|Vw|2dx= inf /|V1/f|2dx, (7.3)
veA
B By

where
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A:={y € Hj(By), ¥ =0ae.in E°, ¥ > wae.in A}.
We use this characterization and show that the difference between the energies of v and w depends monotonically

on ¢, E and A. Precisely, for i = {1, 2} let w;, v; be the corresponding functions for ¢;, E;, A;.

Lemma 7.1. Assume
01 < @2, E| C Ex, Ay C Az
Then

/|Vv1|2—|Vw1|2dx</|Vv2|2—|Vw2|2dx.
By By

Proof. Let v, minimize the Dirichlet integral in By among all the functions that equal v, a.e. in E{ and v, — v €
HO1 (B1). Notice that v, is well defined since v, is a test function with finite energy, so the minimizer exists by direct
methods. Asin (7.1) and (7.2) above, we find

/|VU2|2— |V52|2dx=/\vwz—v2)\2dx.
By By

Since v = vy, =0 a.e. in E; C Ef, and vy = wy on d B; we find from the definition of w, that

/|Vw2|2dx</|va2|2dx,
B B

hence

/|V(6z—vz>|2dx=/|wz|2—|vaz|2dx</|sz|2—|sz|2dx.
B By B

Using the characterization in (7.3) for vy, w; it suffices to show that v — v € A. By construction v — vy € HOl (By),
vy —vp =0a.e.in Ef and v, — vy = vy a.e. in A| C A». It remains to check that vy > w; which follows by maximum
principle.

Indeed, let i := (w; — 02)". We have 7 =0 a.e. in Ef and also h € HO1 (By) since ¢1 < ¢o. From the definitions
of wi, vy (see (7.1)) we obtain

/Vw1~Vhdx=O, /V62~Vhdx=0.

By By

Then
/W(wl — o)t dx = /V(w1 — ) Vhdx =0,
B By

and the desired inequality w; < vp is proved. O

Proof of Lemma 2.3. For simplicity, we consider here the case n > 3 (the low-dimensional case may be treated
similarly, changing the fundamental solution accordingly). After dividing w and v by an appropriate constant, we may
assume that ||w|| Lo (p,) = 1. Then by Lemma 7.1 it suffices to prove our bound in the case whengp =1, B\ B, C E
and A = B, N E. In this case

V= C(pzfn _ |x|27}’l)+

for an appropriate ¢, and using symmetric rearrangement we see that the Dirichlet integral of w is minimized when-
ever w and the set A are radial. Therefore we need to prove the lemma only in the case when E = B, A= B, \ B,,
for some r < p. We have
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/|Vv|2—|Vw|2dx=/|V(w—v)|2dx= / (w—v)A(v — w)dx.
B

B B]\Br
Using that in B \E,
Alv—w)=Av=v, d'H"illaBP,
and that w —v=w < C(p —r) on 9B, we find
/|Vv|2— IVw[*dx < C(p —r) < C|A],
By
and the lemma is proved. O

Proof of Lemma 2.4. Once again, for simplicity, we consider here the case n > 3. Assume that |w||;>~(p,) =1 and
as before, by Lemma 7.1, it suffices to obtain the bound in the case when ¢ =1 and E = Bf 2 Then

wi=c(2"72 = |x )"
for an appropriate c, and let
v :=min{w, Coda},
where d4 represents the distance to the closed set A, and Cy is a large constant depending only on n. Notice that by

construction v — ¢ € Hg (B1), v=01n A and v has a bounded Lipschitz norm. Then

/|VU|2—|Vw|2dx</|W|2—|Vw|2dx<C|S|,
By By

where S := {v < w}. It remains to show that |S| < C(8)|A| which follows from the uniform density property of A.
By choosing Cj sufficiently large we have

SC {C()dA < w} C {6dA < daBl/z}.
Thus if x € S and y € 9A is the closest point to x then it easily follows that
X € Ba,/5(y) with dy = daBl/2 ().
Hence by Vitali’s lemma we can find a collection of disjoint balls dei /5(yi) such that

SC U Bg,, (yi).

Thus, by adding the inequalities

|AN Bay, /5(v)| = c(B)|Bay, (30)|
we obtain that |[A| > c(B)|S]. O
For the proof of Lemma 2.5 we first need a regularization result for the maximum of two C!: functions, y € (0, 1).

In the next lemma we smooth out the “corners” of the graph of the positive part of a C!¥ function without increasing
its area too much.

Lemma 7.2. Assume h : 2 — Rt is a CYY function that satisfies {h > 0} = 2, h =0 on 352, and for any z € 2
there exists a linear function I, (its tangent plane) such that

lh—1.| <elx — 2|17, Vxeg,

for some & > 0 small. Let



L. Caffarelli et al. / Ann. 1. H. Poincaré — AN 32 (2015) 901-924 921

K:={zeQs.t I+ |x —z|'7 >0inR"}
and denote by

h*(x) ;= inf (/ + x—zl Y.
Then

/h*dx§(1+80)/hdx

o K
with o > 0 depending onn and y .

Clearly if we replace |x — z|'™¥ by m|x — z|'*7 the conclusion still holds since the problem remains invariant
under multiplication by a constant m. The function 4* can be thought as a C»¥ upper envelope of norm || V| cr /¢
of the function & (extended by 0 in the whole R").

By construction 4* > h in £2, h = h* in K, and at any point z € K the graph of  is tangent by below to the C1:¥
function [, + |x — z|'T¥ > 0.

Proof. Notice that

v+l

y+l _
zeK & h(2)=c0|Vh@| 7, witheg:=y(y+1) 7.

We show that for any y € £2 \ K there exists dy > 0 such that

/ I dx < &° / hdx. (7.4)

(2\K)N B4y, () Bay;s(y)NK

Then, by Vitali’s lemma, we cover 2 \ K with a collection of balls dei (yi) with Bd."i /5(yi) disjoint and we obtain
the desired claim by summing (7.4) for all y;.
Our hypotheses and (7.4) remain invariant under the scaling

By (x) = ATV h(x /),

thus we may assume for simplicity that y =0 and VA (0) = ¢,. Since 0 ¢ K we have h(0) € [0, cp), and by our
hypothesis

1) = (h(0) + x,)| < elx['*7,
hence

1) — (7(0) +x0)| <€V if x| < 2dp := &~ 77T
This implies that for some Cy sufficiently large,

20 By, C {xa = —Co},

[Vh| <2, h>c02y7+1 in the set By, N {x, = Co}.
We obtain

BiyN{xy 2 Co} CK, and h*<C in By N{lx,| < Co},
hence

/ h*dx < Cdy™', / hdx > cdyt!,
(2\K)NBy, KNBdy/s

and (7.4) follows. O
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Assume for simplicity that E is a set

E .= {xn > g(x’)},

where g is a clr furiction and g(0) =0, V,vg(0) =0.
Let u € H'(E N By), be positive and harmonic in the interior with u = 0 on dE. First we state a consequence
of C1-7 estimates for harmonic functions.

Lemma 7.3. Let F = {x, > f(x")} be a compact perturbation of E in By and denote by v the harmonic function in
F N By which vanishes on 8 F N By and equals u on 3 By. Assume that f, g are C"Y functions with norm bounded by
a constant M, ||lu||;2 < M and also that |f — g| < €. Then

.
IVu — VullpeEnrns, ) < Ce™7,

for some constant C depending on n, y and M.

Proof. By boundary C!-7 estimates
||v||cl»V(B3/4ﬂF) <C = |u—v|<Ce ond(ENFNB.
By maximum principle, the last inequality holds also in the interior of the domain and the conclusion follows since

u — v has bounded C!¥ norm in By sNENF. O

Completion of the proof of Lemma 2.5. We estimate the change in the Dirichlet integral for the harmonic replace-
ment of u whenever we perturb E by a small C1'” set A C B,. We distinguish two cases, when A is interior to E and
when A is exterior to E. Assume for simplicity that |[Vu(0)| = 1.

Case 1: The set A is interior to E,

A={g(x) <xp < f(x)} CBe, (7.5)

for some function f with C LY norm bounded by a constant M. We let i1 := ugcuys and we want to show that

1

lim — [ (|Va|> = |Vul|?)dx = 1. )

sf%IAI (IVal* = [Vul*)dx (7.6)
B

After modifying f in the set By, \ B we may assume that f = g outside Bo, and f has bounded C!¥ norm. From
(7.5) we also obtain that

Y
IIgIICI%(BéS), IIfIICI%(Bés) are bounded by Ce?2. (7.7)
We have
/|V12|2 — |Vul*dx = /V(ﬁ —u)- V(i +u)dx.
By By

After integrating by parts in the sets E \ A and A we find

/|Vﬁ|2—|Vu|2dx:/uﬁUd7-l”_l, (7.8)
B 9A
with v the exterior normal to A. We need to estimate
/ wii, ' with o= {(¢, £() st £(¥) > g(x)]-
r

Let T C I' be a measurable set and denote by 7’ C R"~! its projection along e,, direction. Since in By, u, = 1 +o(1)
with o(1) — 0 as ¢ — 0, we use (7.7) and we see that
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(1 +0(1)) iITlfﬁV/hdx/ < /uﬁud’H”_l < (1 +0(1)) supﬁu/hdx’,
T T r T’
with
h:=f—g.
For the upper bound we use that # < v with v defined in Lemma 7.3. Then u, < v, =14 0(1) in I" and we find
that
/uﬁvd’H"—l < (1+0(D)]Al (7.9)
r

For the lower bound we use Lemma 7.2 for 1t and consider its C!:¥/? envelope of norm &”/% > £¥/2. Denote by
K’ c R*~! the contact set between 2T and its envelope and let K C I" be the corresponding set that projects onto K.
At any point z € K there is a C'7/? graph

Goi=lu=f(x)). formgtl+efld —2[7F,

and G, is tangent by above to A and is included in E \ A. Moreover after using a cutoff function we may assume
that 4, has small C'¥/? norm in a neighborhood of 0 and coincides with g outside this neighborhood. Let v, denote
the corresponding harmonic function for /. as in Lemma 7.3. Then u > v, or u,,(z) > 1 + o(1) and we obtain

/ﬁvudH”_l > (1+o(1))/hdx/> (1+0(1))/hdx/, (7.10)
K K’ r’

where in the last inequality we used Lemma 7.2. Then (7.6) follows from (7.9) and (7.10).

Case 2: The set A is exterior to E,

A={f(x") <x,<g(x)} C B,

for some function f with C1” norm bounded. We let i := u Ec\4 and we want to show that

1
lim — [ (IVul* - |Vi|*)dx = 1. (7.11)

As before we may assume that & = g outside By, and (7.7) holds. Since

/|v1;|2— |Vu|2dx=/ﬁuvd7-[”_1 (7.12)
B A

and
uy =1+o0(1) (7.13)

we need to estimate

/ FdH" with I o= (¢ g (v) st g(v) > £().

The function v defined in Lemma 7.3 is a lower barrier for u# and since v, = 1 + o(1) we obtain

/ﬁcm"” > (l+o(l))/hdx/, withh = (g — f)T. (7.14)
r r’

For the upper bound we apply Lemma 7.2 for the function A as in Case 1 above. For any z = (z/, f(2)), 7 € I’ we
define the graph G of the function
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Go={n=rF)} fi=g-L —8%|x’—z’|1+%

which is included in E€ and it is tangent to A by below at z. Since & < v; and 9,v; =1 4 0o(1) we obtain

i< (L4 o) (xn — fz(x)).

After taking the infimum over all z € I" we find

’

u(x', g(xn)) < (14+o0M)n*(x') vx'er’.
By Lemma 7.2 we find

/Lid’H”_l < (1 + 0(1)) /h* dx’ < (1 +0(1)) /hdx’. (7.15)
r ad I’
Now, (7.11) is a consequence of (7.12), (7.13), (7.14) and (7.15), and this ends the proof of Lemma 2.5. O
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