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Abstract

We consider a minimization problem that combines the Dirichlet energy with the nonlocal perimeter of a level set, namelyˆ

Ω

∣∣∇u(x)
∣∣2 dx + Perσ

({u > 0},Ω)
,

with σ ∈ (0,1). We obtain regularity results for the minimizers and for their free boundaries ∂{u > 0} using blow-up analysis. We
will also give related results about density estimates, monotonicity formulas, Euler–Lagrange equations and extension problems.
© 2014
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1. Introduction

Let Ω be a bounded domain R
n and σ ∈ (0,1) a fixed parameter. In this paper we discuss regularity properties for

minimizers of the energy functional

J (u) :=
ˆ

Ω

|∇u|2 dx + Perσ (E,Ω), E = {u > 0} in Ω, (1.1)

where Perσ (E,Ω) represents the σ -fractional perimeter of the set E in Ω .
Here the set E is fixed outside Ω and coincides with {u > 0} in Ω , and we minimize J among all functions u ∈

H 1(Ω) with prescribed boundary data, i.e. u = ϕ on ∂Ω for some fixed ϕ ∈ H 1(Ω).
The fractional perimeter functional Perσ (E,Ω) was first introduced in [6] and it represents the Ω-contribution in

the double integral of the norm ‖χE‖Hσ/2 . Precisely, for any measurable set E ⊆R
n

Perσ (E,Ω) := L
(
E ∩ Ω,Ec

) + L(E \ Ω,Ω \ E), (1.2)
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where

L(A,B) :=
ˆ

A×B

dx dy

|x − y|n+σ
.

It is well known (see [7,3,10,9]) that suitably renormalized Perσ (E,Rn) converges to the classical perimeter functional
as σ → 1 and it converges to |E|, the Lebesgue measure of E, as σ → 0. In this spirit, the functional in (1.1) formally
interpolates between the two-phase free boundary problem treated in [4] (where the term Perσ (E,Ω) is replaced by the
classical perimeter of E in Ω) and the Dirichlet-perimeter minimization functional treated in [1] (where Perσ (E,Ω)

is replaced by the Lebesgue measure of E in Ω).
In fact, all previous models correspond to particular cases of the general nonlocal phase transition setting as dis-

cussed in [8] (see in particular Section 3.5 there): in our case, the square of the Hσ/2 norm of the function signu is,
in terms of [8], the double convolution of the “phase field parameter” φ with the corresponding fractional Laplacian
kernel.

The existence of minimizers follows easily by the direct method in the calculus of variations, see Lemma 2.1 below.
Our first regularity result deals with the Hölder regularity of solutions and density estimates for the free boundary ∂E.

Theorem 1.1. Let (u,E) be a minimizer of J in B1 with 0 ∈ ∂E. Then u is Cα(B1), with α := 1 − σ
2 and

‖u‖Cα(Br0 ) � C. (1.3)

Moreover for any r � r0

min
{|Br ∩ E|, ∣∣Br ∩ Ec

∣∣}� crn. (1.4)

The positive constants C, c above depend only on n and σ , and r0 depends also on ‖u‖L2(B1)
.

We remark that the Hölder exponent obtained in Theorem 1.1 is consistent with the natural scaling of the problem,
namely

if u is a minimizer and ur(x) := r
σ
2 −1u(rx), then ur is also a minimizer. (1.5)

A minimizer u is harmonic in its positive and negative sets and formally, at points x on the free boundary {u = 0}
it satisfies

κσ (x) :=
ˆ

Rn

χEc − χE

|x − y|n+σ
dy = ∣∣∇u+(x)

∣∣2 − ∣∣∇u−(x)
∣∣2

, (1.6)

where, as usual, u+ := max{u,0}, u− := max{−u,0}, and κσ (x) represents the σ -fractional curvature of ∂E at x

(a precise statement will be given in Theorem 4.1).
Generically, we expect that the minimizer u is Lipschitz near the free boundary. Then the fractional curvature

becomes the dominating term in the free boundary condition above and ∂E can be viewed as a perturbation of the
σ -minimal surfaces which were treated in [6]. However, differently from the limiting cases σ = 0 and σ = 1, for
σ ∈ (0,1) it seems difficult to obtain the Lipschitz continuity of u at all points (see the discussion at the end of Sec-
tion 5). For the regularity of the free boundary we use instead a monotonicity formula and study homogeneous global
minimizers. Following the strategy in [6] we obtain an improvement of flatness theorem for the free boundary ∂E.
We also show in the spirit of [12,13] that in dimension n = 2 all global minimizers are trivial and by the standard
dimension reduction argument we obtain the following result.

Theorem 1.2. Let (u,E) be a minimizer in B1. Then ∂E is a C1,γ -hypersurface and it satisfies the Euler–Lagrange
equation (1.6) in the viscosity sense, outside a small singular set Σ ⊂ ∂E of Hausdorff (n − 3)-dimension.

In particular in dimension n = 2 the free boundary is always a C1,γ curve. We remark that by using the strategy
in [5] the C1,γ regularity of ∂E can be improved to C∞ regularity.
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The proofs of Theorem 1.1 and 1.2 require some additional results, that will be presented in the course of the paper,
such as a monotonicity formula, a precise formulation of the Euler–Lagrange equation and an equivalent extension
problem of local type.

The paper is organized as follows. In Section 2 we state various estimates for the change in the Dirichlet integral
whenever we perturb the set E by E ∪ A. We use these estimates throughout the paper and their proofs are postponed
in the last section of the paper. We prove Theorem 1.1 in Section 3 and the improvement of flatness theorem in
Section 4. The monotonicity formula and some of its consequences are presented in Section 5. Finally in Section 6
we prove Theorem 1.2 by showing the regularity of cones in dimension 2.

2. Estimates for the harmonic replacement

In order to rigorously deal with the minimization of the functional in (1.1), we introduce some notation.
Let ϕ ∈ H 1(Ω) and E0 ⊂ Ωc be given. We want to minimize the energy

JΩ(u) :=
ˆ

Ω

|∇u|2 dx + Perσ (E,Ω) (2.1)

among all admissible pairs (u,E) that satisfy

u − ϕ ∈ H 1
0 (Ω), E ∩ Ωc = E0,

u� 0 a.e. in E ∩ Ω, u � 0 a.e. in Ec ∩ Ω.

We assume that there is an admissible pair with finite energy, say for simplicity J (φ,E0 ∪ {φ � 0}) < ∞. From the
lower semicontinuity of J we easily obtain the existence of minimizers.

Lemma 2.1. There exists a minimizing pair (u,E).

Proof. Let (uk,Ek) be a sequence of pairs along which J approaches its infimum. By compactness, after passing to
a subsequence, we may assume that uk ⇀ u in H 1(Ω), uk → u in L2(Ω) and χEk

→ χE in L1(Ω). Then (u,E) is
admissible and by the lower semicontinuity of the fractional perimeter functional (i.e. Fatou’s lemma) we obtain that
(u,E) is a minimizing pair. �

Notice that a minimizing pair in Ω is also a minimizing pair in any subdomain of Ω . We assume throughout, after
possibly modifying E on a set of measure 0, that the topological boundary of E coincides with its essential boundary,
that is

∂E = {
x ∈R

n s.t. 0 <
∣∣E ∩ Br(x)

∣∣ <
∣∣Br(x)

∣∣ for all r > 0
}
.

We recall the notion of harmonic replacement from [4].

Definition 2.2. Let ϕ ∈ H 1(Ω) and K ⊂ Ω be a measurable set. Assume that the set

D := {
v s.t. v − ϕ ∈ H 1

0 (Ω) and v = 0 a.e. in K
}

is not empty. Then we denote by ϕK ∈ D the unique minimizer of

min
v∈D

ˆ

Ω

|∇v|2,

and say that ϕK is the harmonic replacement of ϕ that vanishes in K .

From the definition it follows thatˆ
∇ϕK · ∇w = 0, for all w ∈ H 1

0 (Ω) with w = 0 a.e. in K.
Ω
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Also, it is straightforward to check that if ϕ � 0 then ϕK is subharmonic. In this case we think that ϕK is defined
pointwise as the limit of its solid averages.

Clearly if (u,E) is a minimizing pair then we obtain

u+ = u+
Ec and u− = u−

E.

Below we estimate the difference in the Dirichlet energies of the harmonic replacements in two different sets E

and E \ A, in terms of the measure of the set A ⊂ B3/4. These estimates depend on the geometry of E and A. We
assume that ϕ ∈ H 1(B1) ∩ L∞(B1), ϕ � 0, and let

w := ϕEc, v := ϕEc∪A.

The first lemma deals with the case when A is contained in a ball.

Lemma 2.3. Assume v, w are as above and A := Bρ ∩ E for some ρ ∈ [ 1
4 , 3

4 ]. Then
ˆ

B1

|∇v|2 − |∇w|2 dx � C|A|‖w‖2
L∞(B1)

,

for some constant C depending only on n.

The next lemma gives the same bound in the case when A is exterior to a ball under the additional hypothesis
that A satisfies a density property.

Lemma 2.4. Let v, w be as above and assume E ∩ B1/2 = ∅. Let A ⊂ B3/4 \ B1/2 be a closed set that satisfies the
density property

∣∣A ∩ Br(x)
∣∣ � βrn for all x ∈ ∂A and Br(x) ∩ B1/2 = ∅,

for some β > 0. Thenˆ

B1

|∇v|2 − |∇w|2 dx � C(β)|A|‖w‖2
L∞(B1)

,

for some constant C(β) depending only on n and β .

Finally we provide a more precise estimate in the case when ∂E is more regular.
Let u ∈ H 1(B1) ∩ C(Ω) be harmonic in the sets E = {u > 0} and {u < 0}. Assume

0 ∈ ∂E and E = {
xn > g

(
x′)}

is given by the epigraph in the en direction of a C1,γ function. For a sequence of εk → 0 we consider sets

Ak := {
g
(
x′) < xn < fk

(
x′)} ⊂ Bεk

,

for a sequence of functions fk with bounded C1,γ norm. For each k we define by ūk the perturbation of u for which
the positive set is given by E ∪ Ak , i.e.

ū+
k = u+

Ec\Aε
, ū−

k = u−
E∪A.

Lemma 2.5. Then

lim
k→∞

1

|Ak|
ˆ

B1

|∇ūk|2 − |∇u|2 dx = ∣∣∇u−(0)
∣∣2 − ∣∣∇u+(0)

∣∣2
.

The proofs of Lemmas 2.3–2.5 will be completed in the last section.
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3. Proof of Theorem 1.1

In this section we obtain the Hölder continuity of minimizers and uniform density estimates for their free boundary.
We adapt to our goals the strategy of [4], and we simplify some steps using Lemma 2.3. We start with a density
estimate.

Lemma 3.1. Let (u,E) be a minimizer in B1 and assume

0 ∈ ∂E and
∥∥u+∥∥

L∞(B1)
� M,

for some constant M . Then

|E ∩ B1/2|� δ,
∥∥u−∥∥

L∞(B1/2)
� K,

for some positive constant δ, K depending on n, σ and M .

Proof. First we prove the density estimate. For each ρ ∈ [ 1
4 , 3

4 ], set

Vρ = |E ∩ Bρ |, a(ρ) =Hn−1(E ∩ ∂Bρ)

and assume by contradiction that V1/2 < δ small.
For each such ρ we consider ū the perturbation of u which has as positive set E \ A with A := E ∩ Bρ , that is

ū+ := u+
Ec∪A, ū− := u−

E\A.

From the minimality of (u,E) we find

Perσ (E,B1) − Perσ (E \ A,B1)�
ˆ

B1

|∇ū|2 − |∇u|2 dx. (3.1)

Since (see (7.2), applied here with w := ū− and ψ := ū− − u−)ˆ

B1

|∇ū|2 − |∇u|2 dx =
ˆ

B1

∣∣∇ū+∣∣2 − ∣∣∇u+∣∣2
dx −

ˆ

B1

∣∣∇(
ū− − u−)∣∣2

dx

�
ˆ

B1

∣∣∇ū+∣∣2 − ∣∣∇u+∣∣2
dx, (3.2)

we use Lemma 2.3 and the definition of Perσ (see (1.2)) and we conclude that

L
(
A,Ec

) − L(A,E \ A) � CM2|A|.
Hence

L
(
A,Ac

)
� 2L(A,E \ A) + CM2|A| � 2L

(
A,Bc

ρ

) + CM2Vρ. (3.3)

We estimate the left term by applying the Sobolev inequality (see, e.g., Theorem 7 in [11]): we obtain that

V
n−σ

n
ρ = ‖χA‖2

L
2n

n−σ (Rn)
� C‖χA‖2

Hσ/2(Rn)
= CL

(
A,Ac

)
.

If x ∈ Bρ then

ˆ

Bc
ρ

1

|x − y|n+σ
dy � C

∞̂

ρ−|x|

1

rn+σ
rn−1 dr � C

(
ρ − |x|)−σ

,

hence integrating in the set A we obtain
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L
(
A,Bc

ρ

)
� C

ρ̂

0

a(r)(ρ − r)−σ dr.

We insert these inequalities into (3.3) and use the assumption that Vρ � δ is sufficiently small to find

V
n−σ

n
ρ � C

ρ̂

0

a(r)(ρ − r)−σ dr.

Integrating the inequality above between 1
4 and t ∈ [ 1

4 , 1
2 ] gives

tˆ

1/4

V
n−σ

n
ρ dρ � Ct1−σ

tˆ

0

a(r) dr � CVt . (3.4)

The proof is now a standard De Giorgi iteration: let

tk = 1

4
+ 1

2k
, vk = Vtk ,

and notice that t2 = 1
2 and t∞ = 1

4 . Eq. (3.4) yields

2−(k+1)v
n−σ

n

k+1 � Cvk.

Since v2 < δ, that is conveniently small, we obtain vk → 0 as k → ∞. Thus V1/4 = 0 and we contradict that 0 ∈ ∂E.
For the bound on u− we write the energy inequality for ρ = 3

4 and we estimate also the negative term in (3.2) by
the Poincaré inequalityˆ

B1

∣∣∇(
ū− − u−)∣∣2

dx � c

ˆ

B1

∣∣ū− − u−∣∣2
dx � c

ˆ

E∩B1/2

∣∣ū−∣∣2
dx � cδ

(
sup
B1/2

ū−)2
,

where in the last inequality we used that ū− is harmonic in B3/4.
We have

0 � L
(
A,Ec

)
� L(A,E \ A) + CM2Vρ − cδ

(
sup
B1/2

ū−)2

and the desired conclusion follows since

L(A,E \ A) � L
(
Bρ,Bc

ρ

)
� C, Vρ � C, and u− � ū−. �

If (u,E) is a minimizing pair in Br then the rescaled pair (ur ,Er) is minimizing in B1 with

ur(x) := r
σ
2 −1u(rx), Er := r−1E. (3.5)

Let

λ+
r := ∥∥u+

r

∥∥
L∞(B1)

= r
σ
2 −1

∥∥u+∥∥
L∞(Br )

,

and define λ−
r similarly.

If either λ+
r or λ−

r is less than 1 then, by Lemma 3.1 with M = 1,

λ+
r/2 � C, λ−

r/2 � C, and c � |E ∩ Br |
|Br | � 1 − c,

with c, C constants depending on σ and n. Theorem 1.1 follows provided the inequalities above hold for all small r .
Thus, in order to prove Theorem 1.1 it remains to show that for all r � r0 either λ+

r � 1 or λ−
r � 1. This follows from

the next lemma which is a consequence of the Alt–Caffarelli–Friedman monotonicity formula in [2].
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Lemma 3.2. Let (u,E) be a minimizing pair in B1, and assume 0 ∈ ∂E. Then

λ+
r λ−

r � Crσ ‖u‖2
L2(B1)

, ∀r ∈ (0,1/4],
with C depending only on n.

Proof. Similar arguments appear in Section 2 of [4]. We sketch the proof below.
First we prove that u+ and u− are continuous. For this we need to show that u+ = u− = 0 on ∂E. Assume by

contradiction that, say for simplicity u−(0) > 0. Since

lim sup
x→0

u−(x) = u−(0),

we see that the density of E in Br tends to 0 as r → 0. Since u+ � 0 is subharmonic and u+ = 0 a.e. in Ec it follows
that u+ must vanish of infinite order at the origin. Then λ+

r � 1 for all small r and by the discussion above E has
positive density in Br for all small r and we reach a contradiction.

Since u+ and u− are continuous subharmonic functions with disjoint supports we can apply the Alt–Caffarelli–
Friedman monotonicity formula, according to which

Ψ (r) := 1

r4

ˆ

Br

|∇u+|2
|x|n−2

dx

ˆ

Br

|∇u−|2
|x|n−2

dx,

is increasing in r .
From the definition of the harmonic replacement it follows that (see Lemma 2.3 in [4] for example)

�
(
u+)2 = 2

∣∣∇u+∣∣2

and we find

c
∥∥u+∥∥2

L∞(Br/2)
� c−

ˆ

Br

(
u+)2

dx �
ˆ

Br

|∇u+|2
|x|n−2

dx � C−
ˆ

B2r

(
u+)2

dx.

In further detail: the first inequality above follows from subharmonicity, the second one from the formula below (2.6)
in [4] and the third one from Lemma 2.6 in [4]. We use these bounds in the monotonicity formula above and obtain
the conclusion. �
4. Improvement of flatness for the free boundary

In this section we obtain the Euler–Lagrange equation at points on the free boundary and also we show that if ∂E

is sufficiently flat in some ball Br then ∂E is a C1,γ graph in Br/2. The proofs are similar to the corresponding proofs
for nonlocal minimal surfaces in [6]. The difference is that when we perturb E by a set A, the change in the nonlocal
perimeter is bounded by the change in the Dirichlet integrals (instead of 0), and by Section 2, this can be bounded in
terms of |A|.

Our main theorem on this topic is the following.

Theorem 4.1. Assume (u,E) is minimal in B1 and that in B1

{xn > ε0} ⊂ E ⊂ {xn > −ε0}, ‖u‖L∞ � 1,

for some ε0 > 0 small depending on σ and n. Then ∂E ∩ B1/2 is a C1,γ graph in the en direction and it satisfies the
Euler–Lagrange equation in the viscosity sense

ˆ

Rn

χEc(y) − χE(y)

|x − y|n+σ
dy = ∣∣∇u+(x)

∣∣2 − ∣∣∇u−(x)
∣∣2

, x ∈ ∂E. (4.1)
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The constant γ above depends on n and σ . The Euler–Lagrange equation in the viscosity sense means that at any
point x where ∂E has a tangent C2 surface included in E (respectively Ec) we have � (respectively �) in (4.1).

First we bound the σ -curvature of ∂E at points x that have a tangent ball from Ec.

Lemma 4.2. Let (u,E) be a minimizing pair in B1. Assume that B1/4(−en/4) is tangent from exterior to E at 0. Then
ˆ

Rn

χEc − χE

|x|n+σ
dx � C

∥∥u+∥∥2
L∞(B1)

with C depending on n and σ . If moreover ∂E is a C1,γ surface near 0 thenˆ

Rn

χEc − χE

|x|n+σ
dx �

∣∣∇u+(0)
∣∣2 − ∣∣∇u−(0)

∣∣2
.

Proof. We follow closely the proof of Theorem 5.1 of [6]. We will also make use of Lemma 2.4. For this, we remark
that the density estimates needed to apply this result are warranted here by Theorem 1.1.

After a dilation we may assume that Ec contains B2(−2en). Fix δ > 0 small, and ε � δ. Let T be the radial
reflection with respect to the sphere ∂B1+ε(−en).

We define the sets:

A− := B1+ε(−en) ∩ E, A+ := T
(
A−) ∩ E, A := A− ∪ A+,

and let

F := T
(
Bδ ∩ (E \ A)

)
.

It is easy to check that F ⊂ Ec ∩ Bδ .
Let ū be the perturbation of u which has as positive set E \ A as in the proof of Lemma 3.1. First we estimate the

right hand side in the energy inequality (3.1). Let ũ be the perturbation of u which has as positive set E \ A−. We use
Lemmas 2.3 and 2.4 and we obtainˆ

B1

|∇ū|2 − |∇u|2 dx =
ˆ

B1

|∇ū|2 − |∇ũ|2 dx +
ˆ

B1

|∇ũ|2 − |∇u|2 dx

�
ˆ

B1

∣∣∇ū+∣∣2 − ∣∣∇ũ+∣∣2
dx +

ˆ

B1

∣∣∇ũ+∣∣2 − ∣∣∇u+∣∣2
dx

� C|A|∥∥u+∥∥2
L∞(B1)

.

Notice that

ũ+ = u+
Ec∪A− , ū+ = u+

Ec∪A−∪T (A−)

and, by Theorem 1.1, T (A−) satisfies the uniform density property of Lemma 2.4.
Now we consider the left hand side of the energy inequality (3.1):

Perσ (E,B1) − Perσ (E \ A,B1)

= L
(
A,Ec

) − L
(
A,C(E \ A)

)
= [

L
(
A,Ec \ Bδ

) − L(A,E \ Bδ)
] + [

L(A,F ) − L
(
A,T (F )

)] + L
(
A,

(
Ec ∩ Bδ

) \ F
)

:= I1 + I2 + I3 � I1 + I2.

We estimate I1 and I2 as in [6], and we conclude that∣∣∣∣ 1

|A|I1 −
ˆ

n

χEc − χE

|x|n+s
dx

∣∣∣∣� Cε1/2δ−1−s
R \Bδ
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and

I2 � −Cδ1−s |A| − CεL
(
A−,F

)
.

It remains to show that for all small ε

L
(
A−,F

)
� CL

(
A−,Bc

1+ε(−en)
)

(4.2)

since then, as in Lemma 5.2 of [6], there exist η and C and a sequence of ε → 0 such that

εL
(
A−,F

)
� Cεη

∣∣A−∣∣,
and our result follows.

We prove (4.2) by writing the energy inequality for ũ defined above. We have L(A−,F ) � L(A−,Ec) and

L
(
A−,Ec

)
� L

(
A−,E \ A−) +

ˆ

B1

∣∣∇ũ+∣∣2 − ∣∣∇u+∣∣2
dx

� L
(
A−,Bc

1+ε(−en)
) + C

∣∣A−∣∣‖u‖2
L∞(B1)

� 2L
(
A−,Bc

1+ε(−en)
)
,

where the last inequality holds for all small ε.
In the case when ∂E is a C1,γ surface near 0 we can estimate the change in the Dirichlet integral by Lemma 2.5

and obtain the second part of our conclusion. �
With the results already obtained, Theorem 4.1 now follows easily from the improvement of flatness property

of ∂E:

Proposition 4.3. Assume (u,E) is a minimal pair in B1 and fix 0 < α < s. There exists k0 depending on s, n and α

such that if

0 ∈ ∂E, ‖u‖L∞(B1) � 1, and for all balls B2−k with 0 � k � k0 we have{
x · ek > 2−k(α+1)

} ⊂ E ⊂ {
x · ek > −2−k(α+1)

}
, |ek| = 1, (4.3)

then there exist vectors ek for all k ∈ N for which the inclusion above remains valid.

The proof now follows closely the one of Theorem 6.8 in [6]. We sketch it below.
Assume (4.3) holds for some large k � k0. Then by comparison principle we find that

u± � Cr, in Br for all r � 2−k,

for some C depending on n and α.
Rescaling by a factor 2k the pair (u,E), the situation above can be described as follows: if for all l with 0 � l � k

‖u‖L∞(B2l ) � 2l2−(σk)/2,

∂E ∩ B2l ⊂ {|x · el | � 2l2α(l−k)
}
, |el | = 1

then the inclusion holds also for l = −1, i.e.

∂E ∩ B1/2 ⊂ {|x · e−1| � 2−12−α(k+1)
}
. (4.4)

For some fixed l we see that ∂E ∩ B2l has C(l)2−αk flatness, and u is bounded by C(l)2−(σk)/2 in B2l .
First we give a rough Harnack inequality that provides compactness for a sequence of blow-ups.

Lemma 4.4. Let α < σ . Assume that for some large k (k > k1)

∂E ∩ B1 ⊂ {|xn| � a := 2−kα
}
, ‖u‖L∞(B1) � aσ/(2α)
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and

∂E ∩ B2l ⊂ {|x · el | � a2l(1+α)
}
, l = 0,1, . . . , k.

Then either

∂E ∩ Bδ ⊂
{

xn

a
� 1 − δ2

}
or ∂E ∩ Bδ ⊂

{
xn

a
� −1 + δ2

}
,

for δ small, depending on σ , n, α.

Proof. The proof is the same as the one of Lemma 6.9 in [6]. The only difference is that at the contact point y between
the paraboloid P and ∂E the quantity

1

a

ˆ

Rn

χEc − χE

|x − y|2 dx (4.5)

is not bounded above by 0, instead by Lemma 4.2, it is bounded by

1

a
C‖u‖2

L∞(B1)
� Ca(σ/α)−1 → 0 as a → 0,

and all the arguments apply as before. �
Completion of the proof of Proposition 4.3. As k becomes much larger than k1, we can apply Harnack inequality
several times as in [6]. This gives compactness of the sets

∂E∗ :=
{(

x′, xn

a

)
s.t. x ∈ ∂E

}
,

as a → 0. Precisely, we consider pairs (u,E) that are minimal in B2k with 0 ∈ ∂E, for which

∂E ∩ B1 ⊂ {|xn|� a := 2−kα
}
, ‖u‖L∞(B1) � aσ/(2α),

and for all 0 � l � k

∂E ∩ B2l ⊂ {|x · el | � a2l(1+α)
}
, ‖u‖L∞(B2l ) � 2laσ/(2α),

and we want to show that (4.4) holds.
If (um,Em) is a sequence of pairs as above with am → 0 there exists a subsequence mk such that

∂E∗
mk

→ (
x′,ω

(
x′))

uniformly on compact sets, where ω : Rn−1 → R is Hölder continuous and

ω(0) = 0, |ω| � C
(
1 + ∣∣x′∣∣1+α)

.

Moreover, since the quantity in (4.5) tends to 0, the proof of Lemma 6.11 of [6] works as before, thus

�
σ+1

2 w = 0 in R
n−1.

This shows that ω is a linear function and therefore (4.4) holds for all large m. �
5. A monotonicity formula

The goal of this section is to establish a Weiss-type monotonicity formula for minimizing pairs (u,E), that is
different from the Alt–Caffarelli–Friedman monotonicity formula used in Lemma 3.2. For this scope, we first intro-
duce the localized energy for the σ -perimeter by using the extension problem in one more dimension as in [6]. With
a measurable set E ⊂R

n we associate a function U(x, z) defined in R
n+1+ as

U(·, z) := (χE − χEc) ∗ P(·, z), with P(x, z) := c̃n,σ

zσ

(|x|2 + z2)(n+σ)/2
,

where c̃n,σ is a normalizing constant depending on n and σ .
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For a bounded Lipschitz domain Ω ⊂R
n+1 we denote by

Ω0 := Ω ∩ {z = 0} ⊂R
n, Ω+ := Ω ∩ {z > 0},

and denote the extended variables as

X := (x, z) ∈R
n+1+ , B+

r := {|X| < r
}
.

The relation between the σ -perimeter and its extension is given by Lemma 7.2 in [6]. Precisely, let E be a set with
Perσ (E,Br) < ∞ and U its extension, and let F be a set which coincides with E outside a compact set included
in Br . Then

Perσ (F,Br) − Perσ (E,Br) = cn,σ inf
Ω,V

ˆ

Ω+
z1−σ

(|∇V |2 − |∇U |2)dX.

Here the infimum is taken over all bounded Lipschitz sets with Ω0 ⊂ Br and all functions V that agree with U near
∂Ω and whose trace on {z = 0} is given by χF − χFc . The constant cn,σ > 0 above is a normalizing constant. As
a consequence we obtain the following characterization of minimizing pairs (u,E) using the extension U of E.

Proposition 5.1. The pair (u,E) is minimizing in Br if and only ifˆ

Br

|∇u|2 dx + cn,σ

ˆ

Ω+
z1−σ |∇U |2 dX �

ˆ

Br

|∇v|2 dx + cn,σ

ˆ

Ω+
z1−σ |∇V |2 dX

for any bounded Lipschitz domain Ω with Ω0 ⊂ Br and any functions v, V that satisfy

(1) V = U in a neighborhood of ∂Ω ,
(2) the trace of V on {z = 0} is χF − χFc for some set F ⊂R

n,
(3) v = u near ∂Br , and v � 0 a.e. in F , v � 0 a.e. in Fc.

Now we present a Weiss-type monotonicity formula for minimizing pairs (u,E).

Theorem 5.2. Let (u,E) be a minimizing pair in Bρ . Then

Φu(r) := rσ−n

(ˆ

Br

|∇u|2 dx + cn,σ

ˆ

B+
r

z1−σ |∇U |2 dX

)
−

(
1 − σ

2

)
rσ−n−1

ˆ

∂Br

u2 dHn−1

is increasing in r ∈ (0, ρ).
Moreover, Φu is constant if and only if u is homogeneous of degree 1 − σ

2 and U is homogeneous of degree 0.

Proof. The proof is a suitable modification of the one of Theorem 8.1 in [6]. We notice that Φu possesses the natural
scaling

Φu(rs) = Φur (s),

where (ur ,Er) is the rescaling given in (3.5).
We prove that

d

dr
Φ(u,U, r) � 0 for a.e. r.

By scaling it suffices to consider the case when r = 1 and r is a “regular” radius for |∇u|2 dx, z1−σ |∇U |2 dx dz

and E. We use the short notation Φ(r) for Φu(r) and write

Φ(r) = G(r) − H(r),

with
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G(r) := rσ−n

(ˆ

Br

|∇u|2 dx + cn,σ

ˆ

B+
r

z1−σ |∇U |2 dX

)
,

H(r) :=
(

1 − σ

2

)
rσ−n−1

ˆ

∂Br

u2 dHn−1.

Below we use the minimality to obtain a bound for G′(1). We denote as usual uν and uτ for the normal and tangential
gradient of u on ∂Br . Let ε > 0 be small. We compute G(1) by writing the integrals in B1−ε and B1 \ B1−ε:

Gu(1) =
ˆ

B1−ε

|∇u|2 dx + ε

ˆ

∂B1

|∇u|2 dHn−1

+ cn,σ

( ˆ

B+
1−ε

z1−σ |∇U |2 dx dz + ε

ˆ

∂B+
1

z1−σ |∇U |2 dHn

)
+ o(ε)

= (1 − ε)n−σ G(1 − ε) + ε

ˆ

∂B1

|uτ |2 + |uν |2 dHn−1

+ εcn,σ

ˆ

∂B+
1

z1−σ
(|Uτ |2 + |Uν |2

)
dHn + o(ε). (5.1)

We now consider a competitor (uε,Uε) for (u,U) defined as

uε(x) :=

⎧⎪⎨
⎪⎩

(1 − ε)1− σ
2 u( x

1−ε
) if x ∈ B1−ε,

|x|1− σ
2 u( x

|x| ) if x ∈ B1 \ B1−ε,

u(x) if x ∈ Bc
1,

and

Uε(X) :=

⎧⎪⎨
⎪⎩

U( X
1−ε

) if x ∈ B+
1−ε,

U( X
|X| ) if x ∈ B+

1 \B+
1−ε,

U(X) if |X|� 1.

From Proposition 5.1 we obtain

Gu(1) � Guε(1). (5.2)

We compute Guε(1) noticing that uε in B1−ε coincides with the rescaling u1/(1−ε), hence

Guε(1) = (1 − ε)n−σ Gu1/(1−ε)
(1 − ε) + εcn,σ

ˆ

∂B+
1

z1−σ |Uτ |2 dHn

+ ε

ˆ

∂B1

(
|uτ |2 +

(
1 − σ

2

)2

u2
)

dHn−1 + o(ε). (5.3)

By scaling, the first term in the sum above equals (1 − ε)n−σ Gu(1). Plugging Gu(1) and Guε(1) in the inequality
above and recalling (5.1), (5.2) and (5.3) we conclude that

(1 − ε)n−σ Gu(1) � (1 − ε)n−σ Gu(1 − ε) + ε

ˆ

∂B1

|uν |2 −
(

1 − σ

2

)2

u2 dHn−1

+ εcn,σ

ˆ

∂B+
z1−σ |Uν |2 dHn + o(ε),
1
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hence

G′(1) �
ˆ

∂B1

|uν |2 −
(

1 − σ

2

)2

u2 dHn−1 + cn,σ

ˆ

∂B+
1

z1−σ |Uν |2 dHn.

On the other hand,

H ′(1) =
(

1 − σ

2

) ˆ

∂B1

2uuν + (σ − 2)u2 dHn−1,

and we conclude that

Φ ′(1) �
ˆ

∂B1

(
uν −

(
1 − σ

2

)
u

)2

dHn−1 + cn,σ

ˆ

∂B+
1

z1−σ |Uν |2 dHn,

and the conclusion follows. �
The monotonicity formula allows us to characterize the blow-up limit of a sequence of rescalings (ur ,Er). First

we need to show that the set of minimizing pairs is closed.

Proposition 5.3. Assume (um,Em) are minimizing pairs in B2 and

um → u in L2(B2), and Em → E in L1
loc

(
R

n
)
.

Then (u,E) is a minimizing pair in B1 and um → u in H 1(B1) and

Perσ (Em,B1) → Perσ (E,B1).

Proof. First we show that um → u in H 1(B1). For this, we use a version of the Caccioppoli inequality (see, e.g.,
Remark 4.2 in [1]) to obtain, for any η ∈ C∞

0 (B2),
ˆ

B1

|∇um|2 dx �
ˆ

B2

η2|∇um|2 dx � 4
ˆ

B2

u2
m|∇η|2 dx � C

ˆ

B2

u2
m dx,

for some C > 0. Since the latter quantity is bounded uniformly in m, we have that ∇um ⇀ ∇u weakly in L2. As
a consequence, it suffices to show that

ˆ

B1

|∇um|2 dx →
ˆ

B1

|∇u|2 dx. (5.4)

As a matter of fact, by the weak convergence we know that

lim
m→+∞

ˆ

B1

|∇um|2 dx �
ˆ

B1

|∇u|2 dx,

so we only need to check the reverse inequality. For this, since, by Theorem 1.1, um and u are continuous functions
which are harmonic in their positive and negative sets, we have

�u2 = 2|∇u|2, �u2
m = 2|∇um|2,

in the sense of distributions (see, e.g., page 482 in [4]). Thus, if we take a > 0 and φa ∈ C∞
0 (B1+a, [0,1]) such

that φa = 1 in B1 and we use that u2
m → u2 in L1(B2), we have that



914 L. Caffarelli et al. / Ann. I. H. Poincaré – AN 32 (2015) 901–924
lim
m→+∞

ˆ

B1

|∇um|2 dx � lim
m→+∞

ˆ

B1+a

|∇um|2φa dx

= lim
m→+∞

ˆ

B1+a

u2
m�φa dx =

ˆ

B1+a

u2�φa dx

=
ˆ

B1+a

|∇um|2φa dx �
ˆ

B1+a

|∇um|2 dx.

Now we can send a → 0 and obtain

lim
m→+∞

ˆ

B1

|∇um|2 dx �
ˆ

B1+a

|∇um|2 dx,

which completes the proof of (5.4).
Now, let (v,F ) be a compact perturbation for (u,E) in B1. Precisely, assume F = E and v = u outside a compact

set of B1, and v � 0 a.e. in F , v � 0 a.e. in Fc. Let

w+
m = min

{
u+

m,u+}
and define v+

m such that v+
m = v+ in B1−2ε , v+

m = w+
m in the annulus B1+ε \ B1−ε and v+

m = u+
m outside B1+2ε . In

B1 \ B1−2ε we define v+
m as an interpolation between v+ and w+

m , i.e.

v+
m = ηv+ + (1 − η)w+

m,

with η a cutoff function such that η = 1 in B1−2ε and η = 0 outside B1−ε . Similarly, in B1+2ε \ B1 we let v+
m to be an

interpolation between u+
m and w+

m .
We define v−

m similarly. We have

vm � 0 a.e. in Fm, vm � 0 a.e. in Fc
m, with Fm := (F ∩ B1) ∪ (Em \ B1),

thus (vm,Fm) is a compact perturbation of (um,Em). From the minimality of (um,Em) (see (2.1)) we find

JB2(um) � JB2(vm).

By construction,ˆ

B2

|∇vm|2 − |∇um|2 dx �
ˆ

B1

|∇v|2 − |∇um|2 dx + cm(ε),

with

cm(ε) := Cε−2
ˆ

B2

(um − u)2 dx + C

ˆ

B1+2ε\B1−2ε

|∇u|2 + |∇um|2 dx.

Notice also that

Perσ (Fm,B2) − Perσ (Em,B2) � Perσ (F,B1) − Perσ (Em,B1) + bm,

with

bm := L
(
B1, (Em�E) \ B1

)
.

Since Em → E in L1
loc(R

n) it follows easily that bm → 0 (see Theorem 3.3 in [6]). Using the last two inequalities in
the energy inequality and letting first m → ∞ and then ε → 0 we find

lim supJB1(um)� JB1(v).

On the other hand from the lower semicontinuity of J we have
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lim infJB1(um) � JB1(u).

This shows that (u,E) is a minimizing pair and that JB1(um) → JB1(u) and our conclusion follows. �
Next we consider the limit of a sequence of rescalings ur , Er , Ur as r → 0,

ur(x) = r
σ
2 −1u(rx), Er = r−1E, Ur(X) = U(rX).

Proposition 5.4 (Tangent cone). Assume (u,E) is a minimizing pair in B1, and 0 ∈ ∂E. There exists a sequence of
r = rk → 0 such that

ur → ū in L2
loc

(
R

n
)
, Er → Ē in L1

loc

(
R

n
)
, Ur → Ū in L2

loc

(
R

n+1+ , z1−σ dX
)

with ū homogeneous of degree 1 − σ
2 , Ū homogeneous of degree 0 and (ū, Ē) a minimizing pair in R

n.

We refer to a minimizing homogeneous pair (ū, Ē) as a minimizing cone. From Theorem 1.1 we see that on compact
sets ur → u uniformly and Er → Ē in the Hausdorff distance (possibly up to a subsequence).

Proof. By compactness we can find a sequence such that ur → ū and Er → Ē as above. From Proposition 5.3 we
have Perσ (Er) → Perσ (Ē) and, as in Proposition 9.1 in [6], this implies the convergence above of Ur to U , and

Φur (t) → Φū(t) as r → 0.

Then Φū(t) = Φu(0+) and the conclusion follows from Theorem 5.2. Notice from the definition of Φ that Φ(0+) is
bounded since u ∈ Cα(B1), with α = 1 − σ

2 , thanks to Theorem 1.1. �
Let (ū, Ē) be a minimizing cone. We define its energy as Φū which is a constant (recall Theorem 5.2). From the

homogeneity of ū it follows that

Φū = cn,σ

ˆ

B1

|∇Ū |2 dX,

hence the energy depends only on Ē.
Since ū± are complementary homogeneous harmonic functions in Ē respectively Ēc, at least one of them, say ū−,

has homogeneity greater or equal to 1, thus ū− = 0. Then ū+ is homogeneous of degree 1 − σ
2 and

ˆ

Rn

χĒc − χĒ

|y − x|n+σ
dy = ∣∣∇ū+(x)

∣∣2
, ∀x ∈ ∂Ē,

holds in the viscosity sense. Notice that both terms are homogeneous of degree −σ .
If ū+ ≡ 0 then the study of minimizing cones reduces to the study of σ -minimal surfaces. This is the case when

σ = 1 which was treated in [4]. Indeed, the homogeneity of a positive harmonic function in a mean-convex cone E

which vanishes on ∂E cannot be less than 1. This follows since a multiple of the distance function to ∂E is superhar-
monic and is an upper barrier for ū+. When σ < 1 it is not clear whether or not there exist minimizing cones with
ū �= 0 and it seems difficult to relate the σ -curvature of ∂E with the homogeneity of ū+.

When Ē = Π is a half-space then ū ≡ 0 and we call (0,Π) a trivial cone. If the blow-up limit (ū, Ē) of a mini-
mizing pair (u,E) is trivial then we say that 0 ∈ ∂E is a regular point of the free boundary. By Theorem 4.1, ∂E is
a C1,γ surface in a neighborhood of its regular points.

We remark that if E admits an exterior tangent ball at 0 ∈ ∂E then Ē ⊂ Π and ū+ = 0. Then, we use the Euler–
Lagrange equation (Lemma 4.2) and obtain E = Π . Thus any point on ∂E which admits a tangent ball from E or Ec

is a regular point. Therefore the set of regular points is dense in ∂E. We summarize these results below.

Proposition 5.5. Let (u,E) be a minimal pair, 0 ∈ ∂E, and let (ū, Ē) be its tangent cone as in Proposition 5.4. If Ē

is a half-space (i.e. if 0 is a regular point) then ∂E is a C1,γ surface and the free boundary equation (4.1) holds.
Moreover, all points on ∂E which have a tangent ball from either E or Ec are regular points.
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By a standard argument (see Theorem 9.6 in [6]), we also obtain that the trivial cone has the least energy amongst
all minimizing cones. Precisely if (ū, Ē) is a minimizing cone then

Φū � ΦΠ,

and if Ē is not a half-space then

Φū � ΦΠ + δ0

for some δ0 > 0 depending only on n, σ .

6. Proof of Theorem 1.2

In this section we prove Theorem 1.2 using the dimension reduction argument of Federer. As in Section 10 in [6],
in order to obtain Theorem 1.2 it suffices to prove the following two propositions.

Proposition 6.1. The pair (u,E) is minimizing in R
n if and only if (u(x),E ×R) is minimizing in R

n+1.

Proposition 6.2. In dimension n = 2, all minimizing cones are trivial.

Proof of Proposition 6.1. The proof is similar to the one of Theorem 10.1 in [6]. We just sketch the main difference.
The only issue that needs to be discussed is the existence of a perturbation which is admissible when we prove that
(u,E) is minimizing in R

n if (u(x),E ×R) is minimizing in R
n+1.

Precisely let v(x), V (x, z) be admissible functions which coincide with u, respectively U say outside B+
1/2. It

suffices to construct an admissible pair w(x,xn+1) and W(x,xn+1, z) in one dimension higher, i.e. in B1 ×[0,1] such
that on the n dimensional slice xn+1 = 0, (w,W) coincides with (u,U), and on the slice xn+1 = 1, (w,W) coincides
with (v,V ).

For xn+1 ∈ [0,1/4] we define

W(x,xn+1, z) = U(x, z), and w(x,xn+1) := (
1 − ϕ + ϕη(x)

)
u(x)

with ϕ = ϕ(xn+1) a smooth function vanishing for xn+1 � 0 and which equals 1 for xn+1 � 1/4. The function η above
is a cutoff function which vanishes in B1/2 and equals 1 outside B3/4.

Similarly we construct W and w for xn+1 ∈ [3/4,1], by using the pair (v,V ).
In the interval xn+1 ∈ [1/4,3/4] we extend w to be constant in the xn+1 variable. We also extend W to be constant

in the annulus B+
1 \ B+

1/2. It remains to construct W in the inner cylinder B1/2 × [1/4,3/4]. Since w = 0 on the
“bottom” of this cylinder, any choice for W with trace ±1 on {z = 0} makes the pair (w,W) admissible. Now we
can argue precisely as in the proof of the σ -minimal surfaces, and the construction for the interpolating W is given in
Lemma 10.2 in [6]. �
Proof of Proposition 6.2. We follow the methods in [12,13] where the same result was proved for σ -minimal sur-
faces. We remark that the assumption that n = 2 is only necessary at the end of the proof. We define

Er (v,V ) :=
ˆ

Br

|∇v|2 dx + cn,σ

ˆ

B+
r

z1−σ
∣∣∇V (X)

∣∣2
dX.

By Proposition 5.1, we know that (u,U) minimizes E under domain variations. We consider a diffeomorphism on
R

n+1 given, for any X ∈ R
n+1+ by

X �→ Y := X + ϕ
(|X|/R)

e1, (6.1)

where ϕ ∈ C∞(R), ϕ = 1 in [−1/2,1/2] and ϕ = 0 outside (−3/4,3/4), and R is a large parameter. We define
U+

R (Y ) := U(X) and similarly, if we change e1 into −e1 in (6.1), we may define U−
R . The diffeomorphism in (6.1)

restricts to a diffeomorphism in R
n just by considering points of the type X = (x,0), i.e.

y := x + ϕ
(|x|/R)

e1,
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and we set u+
R(y) := u(x), and similarly we define u−

R . We claim that

ER

(
u+

R,U+
R

) + ER

(
u−

R,U−
R

) − 2ER(u,U) � CRn−2−σ , (6.2)

for some C independent of R. By Proposition 5.1, the minimality of (u,U) gives

ER(u,U) � ER

(
u−

R,U−
R

)
,

and the last two inequalities imply

ER

(
u+

R,U+
R

)
� ER(u,U) + CRn−2−σ . (6.3)

To prove (6.2), by direct calculations (or see formula (11) in [12]) we obtain
(∣∣∇u+

R

∣∣2 + ∣∣∇u−
R

∣∣2)
dy = 2

(
1 + O

(
1/R2)χBR\BR/2

)|∇u|2 dx,

z1−σ
(∣∣∇U+

R

∣∣2 + ∣∣∇U−
R

∣∣2)
dY = 2z1−σ

(
1 + O

(
1/R2)χB+

R \B+
R/2

)|∇U |2 dX.

We use that |∇u(x)|2 and z1−σ |∇U(X)|2 are homogeneous of degree −σ respectively −1 − σ and obtainˆ

BR

(∣∣∇u+
R

∣∣2 + ∣∣∇u−
R

∣∣2)
dy − 2

ˆ

BR

|∇u|2 dx � CR−2
ˆ

BR\BR/2

|∇u|2 dx � CR−2 · Rn−σ

and ˆ

B+
R

z1−σ
(∣∣∇U+

R

∣∣2 + ∣∣∇U−
R

∣∣2)
dY − 2

ˆ

B+
R

z1−σ |∇U |2 dX � CR−2
ˆ

B+
R \B+

R/2

z1−σ |∇U |2 dX � CR−2 · Rn−σ

and so the proof of (6.2) is complete.
Next we perform an argument similar to the one of Theorem 1 of [12] (the main difference here is that two functions

are involved in the minimization procedure instead of a single one). For this, we assume now that n = 2, we argue by
contradiction and we suppose that E is not a half-plane. Thus, there exist M > 0 and p ∈ BM , say on the e2-axis, such
that p lies in the interior of E, and p + e1 and p − e1 lie in Ec. Therefore, if R is sufficiently large we have that

u+
R(x) = u(x − e1), for all x ∈ B2M,

U+
R (X) = U(X − e1), for all X ∈ B+

2M,

u+
R(x) = U(x), for all x ∈ R

2 \ BR, and

U+
R (X) = U(X), for all X ∈R

3+ \ B+
R . (6.4)

We define

vR(x) := min
{
u(x),u+

R(x)
}
, wR(x) := max

{
u(x),u+

R(x)
}
,

VR(X) := min
{
U(X),U+

R (X)
}

and WR(X) := max
{
U(X),U+

R (X)
}

and P := (p,0) ∈ R
3. From (6.4) and the trace property of U we have that

U+
R < WR = U in a neighborhood of P, and (6.5)

U < WR = U+
R in a neighborhood of P + e1. (6.6)

Moreover

ER(u,U) � ER(vR,VR)

and

ER(vR,VR) + ER(wR,WR) = ER(u,U) + ER

(
u+

R,U+
R

)
,

therefore
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ER(wR,WR) � ER

(
u+

R,U+
R

)
. (6.7)

Now we observe that

(wR,WR) is not a minimizer for E2M

with respect to compact perturbations in B2M × B+
2M . Otherwise WR would be a minimizer too: then the fact

that U � WR , (6.5) and the strong maximum principle would give that U = WR in B+
2M , but this would be in contra-

diction to (6.6). Thus there exist δ > 0 and a competitor

(u∗,U∗) that coincides with (wR,WR) outside B2M ×B+
2M

(with u∗ = wR) and such that

E2M(u∗,U∗) + δ � E2M(wR,WR).

Here δ > 0 is independent of R since (wR,WR) does not depend on R when restricted to B2M × B+
2M (recall (6.4)).

We conclude that

ER(u∗,U∗) + δ � ER(wR,WR).

Combining this with (6.3) and (6.7) we obtain

ER(u∗,U∗) + δ � ER(wR,WR) � ER

(
u+

R,U+
R

)
� ER(u,U) + CR−σ .

If R is large enough we obtain that ER(u∗,U∗) < ER(u,U), which contradicts the minimality of (u,U) and completes
the proof of Proposition 6.2. �
7. Proofs of Lemmas 2.3–2.5

In this section we estimate the difference in the Dirichlet energies of the harmonic replacements in two different
sets E and E \ A, with A ⊂ B3/4. We assume that ϕ ∈ H 1(B1) ∩ L∞(B1), ϕ � 0, and let

w := ϕEc, v := ϕEc∪A.

Here above, we used the notation for the harmonic replacements of ϕ that vanish in Ec and Ec ∪ A, as introduced in
Definition 2.2. We remark that the existence of v follows from the existence of w. Indeed, given w we can easily find
an explicit test function with finite energy which vanishes in Ec ∪ B3/4, for example a function of the form w(1 − η)

with η a cutoff function.
Since w minimizes the Dirichlet energy among all functions which are fixed in Ec and have prescribed values on

∂B1 we findˆ

B1

∇w · ∇ψ dx = 0, ∀ψ ∈ H 1
0 (B1) with ψ = 0 a.e. in Ec, (7.1)

and thereforeˆ

B1

∣∣∇(w − ψ)
∣∣2 − |∇w|2 dx =

ˆ

B1

|∇ψ |2 dx. (7.2)

By definition, v minimizes the Dirichlet energy among all functions which equal w on ∂B1, and are 0 a.e. in
Ec ∪ A. We may relax this last condition to functions that are equal to 0 a.e. in Ec and are nonpositive in A, since
then we can truncate them wherever they are negative. This and (7.2) show thatˆ

B1

|∇v|2 − |∇w|2 dx = inf
ψ∈A

ˆ

B1

|∇ψ |2 dx, (7.3)

where
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A := {
ψ ∈ H 1

0 (B1), ψ = 0 a.e. in Ec, ψ � w a.e. in A
}
.

We use this characterization and show that the difference between the energies of v and w depends monotonically
on ϕ, E and A. Precisely, for i = {1,2} let wi , vi be the corresponding functions for ϕi , Ei , Ai .

Lemma 7.1. Assume

ϕ1 � ϕ2, E1 ⊂ E2, A1 ⊂ A2.

Then ˆ

B1

|∇v1|2 − |∇w1|2 dx �
ˆ

B1

|∇v2|2 − |∇w2|2 dx.

Proof. Let v̄2 minimize the Dirichlet integral in B1 among all the functions that equal v2 a.e. in Ec
1 and v̄2 − v2 ∈

H 1
0 (B1). Notice that v̄2 is well defined since v2 is a test function with finite energy, so the minimizer exists by direct

methods. As in (7.1) and (7.2) above, we findˆ

B1

|∇v2|2 − |∇v̄2|2 dx =
ˆ

B1

∣∣∇(v̄2 − v2)
∣∣2

dx.

Since v̄2 = v2 = 0 a.e. in Ec
2 ⊂ Ec

1, and v̄2 = w2 on ∂B1 we find from the definition of w2 thatˆ

B1

|∇w2|2 dx �
ˆ

B1

|∇v̄2|2 dx,

henceˆ

B1

∣∣∇(v̄2 − v2)
∣∣2

dx =
ˆ

B1

|∇v2|2 − |∇v̄2|2 dx �
ˆ

B1

|∇v2|2 − |∇w2|2 dx.

Using the characterization in (7.3) for v1, w1 it suffices to show that v̄2 − v2 ∈ A. By construction v̄2 − v2 ∈ H 1
0 (B1),

v̄2 − v2 = 0 a.e. in Ec
1 and v̄2 − v2 = v̄2 a.e. in A1 ⊂ A2. It remains to check that v̄2 � w1 which follows by maximum

principle.
Indeed, let h := (w1 − v̄2)

+. We have h = 0 a.e. in Ec
1 and also h ∈ H 1

0 (B1) since ϕ1 � ϕ2. From the definitions
of w1, v̄2 (see (7.1)) we obtainˆ

B1

∇w1 · ∇hdx = 0,

ˆ

B1

∇v̄2 · ∇hdx = 0.

Then ˆ

B1

∣∣∇(w1 − v̄2)
+∣∣2

dx =
ˆ

B1

∇(w1 − v̄2) · ∇hdx = 0,

and the desired inequality w1 � v̄2 is proved. �
Proof of Lemma 2.3. For simplicity, we consider here the case n � 3 (the low-dimensional case may be treated
similarly, changing the fundamental solution accordingly). After dividing w and v by an appropriate constant, we may
assume that ‖w‖L∞(B1) = 1. Then by Lemma 7.1 it suffices to prove our bound in the case when ϕ = 1, B1 \ Bρ ⊂ E

and A = Bρ ∩ E. In this case

v = c
(
ρ2−n − |x|2−n

)+

for an appropriate c, and using symmetric rearrangement we see that the Dirichlet integral of w is minimized when-
ever w and the set A are radial. Therefore we need to prove the lemma only in the case when E = Bc

r , A = Bρ \ Br ,
for some r � ρ. We have
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ˆ

B1

|∇v|2 − |∇w|2 dx =
ˆ

B1

∣∣∇(w − v)
∣∣2

dx =
ˆ

B1\Br

(w − v)�(v − w)dx.

Using that in B1 \ Br

�(v − w) = �v = vν dHn−1|∂Bρ ,

and that w − v = w � C(ρ − r) on ∂Bρ we findˆ

B1

|∇v|2 − |∇w|2 dx � C(ρ − r) � C|A|,

and the lemma is proved. �
Proof of Lemma 2.4. Once again, for simplicity, we consider here the case n � 3. Assume that ‖w‖L∞(B1) = 1 and
as before, by Lemma 7.1, it suffices to obtain the bound in the case when ϕ = 1 and E = Bc

1/2. Then

w := c
(
2n−2 − |x|2−n

)+

for an appropriate c, and let

v̄ := min{w,C0dA},
where dA represents the distance to the closed set A, and C0 is a large constant depending only on n. Notice that by
construction v̄ − ϕ ∈ H 1

0 (B1), v̄ = 0 in A and v̄ has a bounded Lipschitz norm. Then
ˆ

B1

|∇v|2 − |∇w|2 dx �
ˆ

B1

|∇v̄|2 − |∇w|2 dx � C|S|,

where S := {v̄ < w}. It remains to show that |S| � C(β)|A| which follows from the uniform density property of A.
By choosing C0 sufficiently large we have

S ⊂ {C0dA < w} ⊂ {6dA < d∂B1/2}.
Thus if x ∈ S and y ∈ ∂A is the closest point to x then it easily follows that

x ∈ Bdy/5(y) with dy := d∂B1/2(y).

Hence by Vitali’s lemma we can find a collection of disjoint balls Bdyi
/5(yi) such that

S ⊂
⋃
i

Bdyi
(yi).

Thus, by adding the inequalities∣∣A ∩ Bdyi
/5(yi)

∣∣ � c(β)
∣∣Bdyi

(yi)
∣∣

we obtain that |A| � c(β)|S|. �
For the proof of Lemma 2.5 we first need a regularization result for the maximum of two C1,γ functions, γ ∈ (0,1).

In the next lemma we smooth out the “corners” of the graph of the positive part of a C1,γ function without increasing
its area too much.

Lemma 7.2. Assume h : Ω → R
+ is a C1,γ function that satisfies {h > 0} = Ω , h = 0 on ∂Ω , and for any z ∈ Ω

there exists a linear function lz (its tangent plane) such that

|h − lz| � ε|x − z|1+γ , ∀x ∈ Ω,

for some ε > 0 small. Let
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K := {
z ∈ Ω s.t. lz + |x − z|1+γ � 0 in R

n
}

and denote by

h∗(x) := inf
z∈K

(
lz + |x − z|1+γ

)
.

Then ˆ

Ω

h∗ dx �
(
1 + εσ

)ˆ
K

hdx

with σ > 0 depending on n and γ .

Clearly if we replace |x − z|1+γ by m|x − z|1+γ the conclusion still holds since the problem remains invariant
under multiplication by a constant m. The function h∗ can be thought as a C1,γ upper envelope of norm ‖∇h‖Cγ /ε

of the function h (extended by 0 in the whole R
n).

By construction h∗ � h in Ω , h = h∗ in K , and at any point z ∈ K the graph of h is tangent by below to the C1,γ

function lz + |x − z|1+γ � 0.

Proof. Notice that

z ∈ K ⇔ h(z) � c0
∣∣∇h(z)

∣∣ γ+1
γ , with c0 := γ (γ + 1)

− γ+1
γ .

We show that for any y ∈ Ω \ K there exists dy > 0 such thatˆ

(Ω\K)∩Bdy (y)

h∗ dx � εσ

ˆ

Bdy/5(y)∩K

hdx. (7.4)

Then, by Vitali’s lemma, we cover Ω \ K with a collection of balls Bdyi
(yi) with Bdyi

/5(yi) disjoint and we obtain
the desired claim by summing (7.4) for all yi .

Our hypotheses and (7.4) remain invariant under the scaling

hλ(x) = λ1+γ h(x/λ),

thus we may assume for simplicity that y = 0 and ∇h(0) = en. Since 0 /∈ K we have h(0) ∈ [0, c0), and by our
hypothesis∣∣h(x) − (

h(0) + xn

)∣∣� ε|x|1+γ ,

hence∣∣h(x) − (
h(0) + xn

)∣∣� ε1/2 if |x| � 2d0 := ε
− 1

2(γ+1) .

This implies that for some C0 sufficiently large,

Ω ∩ Bd0 ⊂ {xn � −C0},
|∇h| � 2, h� c02

γ+1
γ in the set Bd0 ∩ {xn � C0}.

We obtain

Bd0 ∩ {xn � C0} ⊂ K, and h∗ � C in Bd0 ∩ {|xn|� C0
}
,

hence ˆ

(Ω\K)∩Bd0

h∗ dx � Cdn−1
0 ,

ˆ

K∩Bd0/5

hdx � cdn+1
0 ,

and (7.4) follows. �
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Assume for simplicity that E is a set

E := {
xn � g

(
x′)},

where g is a C1,γ function and g(0) = 0, ∇x′g(0) = 0.
Let u ∈ H 1(E ∩ B1), be positive and harmonic in the interior with u = 0 on ∂E. First we state a consequence

of C1,γ estimates for harmonic functions.

Lemma 7.3. Let F = {xn � f (x′)} be a compact perturbation of E in B1/2 and denote by v the harmonic function in
F ∩ B1 which vanishes on ∂F ∩ B1 and equals u on ∂B1. Assume that f , g are C1,γ functions with norm bounded by
a constant M , ‖u‖L2 �M and also that |f − g| � ε. Then

‖∇u − ∇v‖L∞(E∩F∩B1/2) � Cε
γ

1+γ ,

for some constant C depending on n, γ and M .

Proof. By boundary C1,γ estimates

‖v‖C1,γ (B3/4∩F) � C ⇒ |u − v| � Cε on ∂(E ∩ F ∩ B1).

By maximum principle, the last inequality holds also in the interior of the domain and the conclusion follows since
u − v has bounded C1,γ norm in B3/4 ∩ E ∩ F . �
Completion of the proof of Lemma 2.5. We estimate the change in the Dirichlet integral for the harmonic replace-
ment of u whenever we perturb E by a small C1,γ set A ⊂ Bε . We distinguish two cases, when A is interior to E and
when A is exterior to E. Assume for simplicity that |∇u(0)| = 1.

Case 1: The set A is interior to E,

A = {
g
(
x′)� xn < f

(
x′)} ⊂ Bε, (7.5)

for some function f with C1,γ norm bounded by a constant M . We let ū := uEc∪A and we want to show that

lim
ε→0

1

|A|
ˆ

B1

(|∇ū|2 − |∇u|2)dx = 1. (7.6)

After modifying f in the set B2ε \ Bε we may assume that f = g outside B2ε and f has bounded C1,γ norm. From
(7.5) we also obtain that

‖g‖
C

1,
γ
2 (B ′

2ε)
, ‖f ‖

C
1,

γ
2 (B ′

2ε)
are bounded by Cε

γ
2 . (7.7)

We haveˆ

B1

|∇ū|2 − |∇u|2 dx =
ˆ

B1

∇(ū − u) · ∇(ū + u)dx.

After integrating by parts in the sets E \ A and A we findˆ

B1

|∇ū|2 − |∇u|2 dx =
ˆ

∂A

uūν dHn−1, (7.8)

with ν the exterior normal to A. We need to estimateˆ

Γ

uūν dHn−1 with Γ := {(
x′, f

(
x′)) s.t. f

(
x′) > g

(
x′)}.

Let T ⊂ Γ be a measurable set and denote by T ′ ⊂R
n−1 its projection along en direction. Since in Bε , un = 1 + o(1)

with o(1) → 0 as ε → 0, we use (7.7) and we see that
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(
1 + o(1)

)
inf
T

ūν

ˆ

T ′
hdx′ �

ˆ

T

uūν dHn−1 �
(
1 + o(1)

)
sup
T

ūν

ˆ

T ′
hdx′,

with

h := f − g.

For the upper bound we use that ū � v with v defined in Lemma 7.3. Then ūν � vν = 1 + o(1) in Γ and we find
that ˆ

Γ

uūν dHn−1 �
(
1 + o(1)

)|A|. (7.9)

For the lower bound we use Lemma 7.2 for h+ and consider its C1,γ /2 envelope of norm εγ/4 � εγ/2. Denote by
K ′ ⊂R

n−1 the contact set between h+ and its envelope and let K ⊂ Γ be the corresponding set that projects onto K ′.
At any point z ∈ K there is a C1,γ /2 graph

Gz := {
xn = fz

(
x′)}, fz := g + lz + ε

γ
4
∣∣x′ − z′∣∣1+ γ

2 ,

and Gz is tangent by above to A and is included in E \ A. Moreover after using a cutoff function we may assume
that hz has small C1,γ /2 norm in a neighborhood of 0 and coincides with g outside this neighborhood. Let vz denote
the corresponding harmonic function for hz as in Lemma 7.3. Then ū � vz, or ūν(z) � 1 + o(1) and we obtainˆ

K

ūνudHn−1 �
(
1 + o(1)

)ˆ
K ′

hdx′ �
(
1 + o(1)

)ˆ
Γ ′

hdx′, (7.10)

where in the last inequality we used Lemma 7.2. Then (7.6) follows from (7.9) and (7.10).

Case 2: The set A is exterior to E,

A = {
f

(
x′) < xn � g

(
x′)} ⊂ Bε,

for some function f with C1,γ norm bounded. We let ū := uEc\A and we want to show that

lim
ε→0

1

|A|
ˆ

B1

(|∇u|2 − |∇ū|2)dx = 1. (7.11)

As before we may assume that h = g outside B2ε and (7.7) holds. Sinceˆ

B1

|∇ū|2 − |∇u|2 dx =
ˆ

∂A

ūuν dHn−1 (7.12)

and

uν = 1 + o(1) (7.13)

we need to estimateˆ

Γ

ū dHn−1 with Γ := {(
x′, g

(
x′)) s.t. g

(
x′) > f

(
x′)}.

The function v defined in Lemma 7.3 is a lower barrier for ū and since vn = 1 + o(1) we obtainˆ

Γ

ū dHn−1 �
(
1 + o(1)

)ˆ
Γ ′

hdx′, with h := (g − f )+. (7.14)

For the upper bound we apply Lemma 7.2 for the function h as in Case 1 above. For any z = (z′, f (z′)), z′ ∈ Γ ′ we
define the graph Gz of the function
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Gz := {
xn = fz

(
x′)}, fz := g − lz − ε

γ
4
∣∣x′ − z′∣∣1+ γ

2 ,

which is included in Ec and it is tangent to A by below at z. Since ū� vz and ∂nvz = 1 + o(1) we obtain

ū�
(
1 + o(1)

)(
xn − fz

(
x′)).

After taking the infimum over all z ∈ Γ we find

ū
(
x′, g(xn)

)
�

(
1 + o(1)

)
h∗(x′) ∀x′ ∈ Γ ′.

By Lemma 7.2 we findˆ

Γ

ū dHn−1 �
(
1 + o(1)

)ˆ
Γ ′

h∗ dx′ �
(
1 + o(1)

)ˆ
Γ ′

hdx′. (7.15)

Now, (7.11) is a consequence of (7.12), (7.13), (7.14) and (7.15), and this ends the proof of Lemma 2.5. �
Conflict of interest statement

We confirm that we do not have any conflict.

Acknowledgements

The first author has been supported by NSF grant 1160802 “Analytical and geometrical problems involving non
linear diffusion processes”. The second author has been supported by NSF grant DMS-1200701. The third author has
been supported by ERC grant 277749 “EPSILON Elliptic Pde’s and Symmetry of Interfaces and Layers for Odd Non-
linearities” and PRIN grant 201274FYK7 “Aspetti variazionali e perturbativi nei problemi differenziali nonlineari”.

References

[1] H.W. Alt, L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981) 105–144.
[2] H.W. Alt, L.A. Caffarelli, A. Friedman, Variational problems with two phases and their free boundaries, Trans. Am. Math. Soc. 282 (2) (1984)

431–461.
[3] L. Ambrosio, G. De Philippis, L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, Manuscr. Math. 134 (3–4) (2011)

377–403.
[4] I. Athanasopoulos, L.A. Caffarelli, C. Kenig, S. Salsa, An area-Dirichlet integral minimization problem, Commun. Pure Appl. Math. 54 (4)

(2001) 479–499.
[5] B. Barrios, A. Figalli, E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces,

Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) (2014), http://dx.doi.org/10.2422/2036-2145.201202_007, in press.
[6] L. Caffarelli, J.-M. Roquejoffre, O. Savin, Nonlocal minimal surfaces, Commun. Pure Appl. Math. 63 (9) (2010) 1111–1144.
[7] L. Caffarelli, E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differ. Equ. 41 (1–2)

(2011) 203–240.
[8] C.-K. Chen, P.C. Fife, Nonlocal models of phase transitions in solids, Adv. Math. Sci. Appl. 10 (2000) 821–849.
[9] S. Dipierro, A. Figalli, G. Palatucci, E. Valdinoci, Asymptotics of the s-perimeter as s ↘ 0, Discrete Contin. Dyn. Syst. 33 (7) (2013)

2777–2790.
[10] V. Maz’ya, T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces,

J. Funct. Anal. 195 (2) (2002) 230–238.
[11] O. Savin, E. Valdinoci, Density estimates for a nonlocal variational model via the Sobolev inequality, SIAM J. Math. Anal. 43 (6) (2011)

2675–2687.
[12] O. Savin, E. Valdinoci, Regularity of nonlocal minimal cones in dimension 2, Calc. Var. Partial Differ. Equ. 48 (1–2) (2013) 33–39.
[13] O. Savin, E. Valdinoci, Some monotonicity results for minimizers in the calculus of variations, J. Funct. Anal. 264 (10) (2013) 2469–2496.

http://refhub.elsevier.com/S0294-1449(14)00038-9/bib6163s1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib616366s1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib616366s1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib61646Ds1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib61646Ds1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib61636B73s1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib61636B73s1
http://dx.doi.org/10.2422/2036-2145.201202_007
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib637273s1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib6376s1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib6376s1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib6368656Es1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib647076s1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib647076s1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib6D617As1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib6D617As1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib7376s1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib7376s1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib4356636F6E65s1
http://refhub.elsevier.com/S0294-1449(14)00038-9/bib435667656Es1

	Minimization of a fractional perimeter-Dirichlet integral functional
	1 Introduction
	2 Estimates for the harmonic replacement
	3 Proof of Theorem 1.1
	4 Improvement of ﬂatness for the free boundary
	5 A monotonicity formula
	6 Proof of Theorem 1.2
	7 Proofs of 2.3-2.5
	Conﬂict of interest statement
	Acknowledgements
	References


