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Abstract

We consider a quasilinear elliptic equation involving a first-order term, under zero Dirichlet boundary condition in half-spaces.
We prove that any positive solution is monotone increasing with respect to the direction orthogonal to the boundary. The main
ingredient in the proof is a new comparison principle in unbounded domains. As a consequence of our analysis, we also obtain
some new Liouville type theorems.
© 2013

MSC: 35B05; 35B65; 35J70

1. Introduction and statement of the main results

We consider C1,α weak solutions to the problem⎧⎪⎨
⎪⎩

−div
(
a(u)|∇u|p−2∇u

) + b(u)|∇u|q = f (u), in R
N+ ,

u
(
x′, y

)
> 0, in R

N+ ,

u
(
x′,0

) = 0, on ∂RN+

(1.1)

where we assume N � 2, α ∈ (0,1) and

(H1) 1 < p < 2, 1 < q � p;
(H2) a, b and f are locally Lipschitz continuous functions on R;
(H3) there exists γ > 0 such that a(s) � γ for every s ∈R.

We denote a generic point in R
N+ by x = (x′, y) with x′ = (x1, x2, . . . , xN−1) and y = xN .
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Note that the C1,α regularity of the solutions follows by the well-known results in [18,30,31,40].
We study monotonicity properties of the solutions, w.r.t. (with respect to) the y-direction, via the Alexandrov–

Serrin moving plane method [1,6,27,38]. For the semilinear case, the founding papers on this topic go back to the
works [2–5,15,28]. We also refer the readers to [7,9,16,19,20,25,36] for other results concerning the monotonicity of
the solutions in half-spaces also in more general settings (always in the uniformly elliptic case).

In the present work, we consider the quasilinear problem (1.1) and we continue the study that we have started in
[21,22].

The first main contribution of this paper is the following:

Theorem 1.1. Let u be a solution to (1.1) and let us assume that u ∈ C
1,α
loc (RN+) and ∇u ∈ L∞(RN+). Let (H1), (H2)

and (H3) be satisfied and assume that f (s) > 0 for s > 0. Then u is monotone increasing w.r.t. the y-direction, that is

∂u

∂y
� 0 in R

N+ .

For a(·) = 1 and b(·) = 0 problem (1.1) reduces to⎧⎪⎨
⎪⎩

−�pu = f (u), in R
N+ ,

u
(
x′, y

)
> 0, in R

N+ ,

u
(
x′,0

) = 0, on ∂RN+ .

(1.2)

The monotonicity of solutions to (1.2) was first studied in [14] in the two dimensional case and considering positive
nonlinearities. Later, in dimension N (always for positive nonlinearities) a first result was obtained in [21]. Both the
results hold under the restriction 2N+2

N+2 < p < 2.
As a consequence of Theorem 1.1, we can remove this restriction and get the following:

Corollary 1.2. Let 1 < p < 2 and u ∈ C
1,α
loc (RN+) be a solution of problem (1.2) with |∇u| ∈ L∞(RN+). Assume that f

is locally Lipschitz continuous with f (s) > 0 for s > 0. Then u is monotone increasing w.r.t. the y-direction.

Let us point out that in [21] the restriction 2N+2
N+2 < p < 2 is needed because there the strong maximum and

comparison principles of [13] are used, which, in turn, are based on the estimates in [12]. A novelty in this paper,
even in the special case of the pure p-Laplacian operator, is the fact that we avoid the restriction 2N+2

N+2 < p < 2.
Let us also mention that the case p = 2 is well known, as remarked here above, while recently in [22] the mono-

tonicity of solutions to (1.2) is proved in the case 2 < p < 3, for positive power-like nonlinearities or in the case p > 2,
for strictly positive nonlinearities.

The technique exploited in the proof of Theorem 1.1 also allows us to improve Theorem 1.8 in [21] allowing the
presence of a first-order term in the equation and avoiding also in this case the restriction p > 2N+2

N+2 . Namely we have
the following:

Theorem 1.3. Let (H1) and (H2) be satisfied. Assume that u ∈ C
1,α
loc (RN+), with u ∈ W 1,∞(RN+), is a solution to⎧⎪⎨

⎪⎩
−div

(|∇u|p−2∇u
) + b(u)|∇u|q = f (u), in R

N+ ,

u
(
x′, y

)
> 0, in R

N+ ,

u
(
x′,0

) = 0, on ∂RN+
with b(u) � 0. Suppose that

∃z > 0: 0 < s < z ⇒ f (s) > 0 and s > z ⇒ f (s) < 0.

Then u is monotone increasing w.r.t. the y-direction.

Let us emphasize some new Liouville type results that complement and improve those we proved in [21, Theo-
rem 1.6]. They follow from our monotonicity results and some techniques used in [21]:



A. Farina et al. / Ann. I. H. Poincaré – AN 32 (2015) 1–22 3
Theorem 1.4. Assume 1 < p < 2 and let f be locally Lipschitz continuous. Let u ∈ C
1,α
loc (RN+) ∩ W 1,∞(RN+) be

a non-negative solution of{
−�pu = f (u), in R

N+ ,

u
(
x′,0

) = 0, on ∂RN+ .
(1.3)

Assume that one of the following holds:

(a) N = 2 and f (s) > 0 for s > 0, with f (0) = 0,
(b) N � 3, f (s) > 0 for s > 0, f (0) = 0 and f is subcritical w.r.t. the Sobolev critical exponent in R

N−1,

(c) N � 3, f (s) > 0 for s > 0, f (0) = 0 and f (s) � λs
(N−1)(p−1)

N−1−p in [0, δ], for some λ, δ > 0.

Then u ≡ 0.
On the other hand, if N � 2, f (s) > 0 for s � 0, then there are no non-negative solutions of (1.3).

We refer the readers to [14,21,22,42] for other Liouville type theorems for quasilinear elliptic equations in half-
spaces.

The proofs of the monotonicity results in half-spaces are generally based on weak comparison principles in narrow
unbounded domains. We refer the readers to [3–5,9,15,16,20,25,36].

In our case, the presence of the therm |∇u|p−2 gives rise to a phenomenon that was first pointed out in [8,11],
in the case of bounded domains. Namely, we will prove our monotonicity result via a weak comparison principle in
domains that can be decomposed into two parts. A narrow part (w.r.t. the Lebesgue measure of the section) and a part
where the gradient of the solution is small.

We will state our comparison principle, which is the second main contribution of the present work, under more
general structural assumptions and for more general quasilinear problems (cf. (1.5) below). We also remark that
no restriction on the sign of u and v is required. More precisely, we consider continuous functions a = a(x,u),
b = b(x,u) and f = f (x,u) defined on R

N+ ×R and satisfying the following conditions:

(H4) a, b and f are locally Lipschitz continuous functions, uniformly w.r.t. x. Namely, for every M > 0, there are
positive constants La = La(M), Lb = Lb(M) and Lf = Lf (M) such that for every x ∈ R

N+ and every u,v ∈
[−M,M] we have∣∣a(x,u) − a(x, v)

∣∣� La|u − v|, ∣∣b(x,u) − b(x, v)
∣∣ � Lb|u − v|,∣∣f (x,u) − f (x, v)

∣∣ � Lf |u − v|.
For every M > 0 there is a constant K = K(M) > 0 such that for every x ∈ R

N+ and every s ∈ [−M,M] we
have ∣∣a(x, s)

∣∣ �K,
∣∣b(x, s)

∣∣ �K;
(H5) There is a constant γ > 0 such that a(x, s) � γ for every (x, s) ∈R

N+ ×R.

Remark 1.5. (i) When the functions a, b and f depend only on the variable u and are locally Lipschitz continuous
on R, assumption (H4) is automatically satisfied.

(ii) Typical examples of functions a = a(x,u) satisfying both (H4) and (H5) are provided by a(x,u) =
(sin2(x1) + 10)(|u| + 1) or a(x,u) = |u| + 2 + cos2(|x|).

We have the following:

Theorem 1.6. Let 1 < p < 2, N � 2 and let (H1), (H4), (H5) be satisfied. Fix λ0 > 0 and M0 > 0. Consider λ ∈
(0, λ0], τ, ε > 0 and set

Σ(λ,y0) := R
N−1 ×

(
y0 − λ

,y0 + λ
)

, y0 �
λ

. (1.4)

2 2 2
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Let u,v ∈ C
1,α
loc (Σ(λ,y0)) such that ‖u‖∞ + ‖∇u‖∞ � M0, ‖v‖∞ + ‖∇v‖∞ � M0 and⎧⎨

⎩
−div

(
a(x,u)|∇u|p−2∇u

) + b(x,u)|∇u|q � f (x,u), in Σ(λ,y0),

−div
(
a(x, v)|∇v|p−2∇v

) + b(x, v)|∇v|q � f (x, v), in Σ(λ,y0),

u � v, on ∂S(τ,ε),

(1.5)

where the open set S(τ,ε) ⊆ Σ(λ,y0) is such that

S(τ,ε) =
⋃

x′∈RN−1

I
τ,ε
x′ ,

and the open set I
τ,ε
x′ ⊆ {x′} × (y0 − λ

2 , y0 + λ
2 ) has the form

I
τ,ε
x′ = Aτ

x′ ∪ Bε
x′ with

∣∣Aτ
x′ ∩ Bε

x′
∣∣ = 0 (1.6)

and, for x′ fixed, Aτ
x′ ,Bε

x′ ⊂ (y0 − λ
2 , y0 + λ

2 ) are measurable sets such that∣∣Aτ
x′

∣∣ � τ and Bε
x′ ⊆ {

y ∈ R:
∣∣∇u

(
x′, y

)∣∣ < ε,
∣∣∇v

(
x′, y

)∣∣ < ε
}
.

Then there exist

τ0 = τ0(N,p,q,λ0,M0, γ ) > 0

and

ε0 = ε0(N,p,q,λ0,M0, γ ) > 0

such that, if 0 < τ < τ0 and 0 < ε < ε0, it follows that

u� v in S(τ,ε).

If the functions f , a and b are assumed to be globally Lipschitz continuous on R
N+ ×R and the functions a and b are

supposed to be bounded on R
N+ ×R, the same conclusion holds true without any assumption on the boundedness of u

and v.

Note that, both ε0 and τ0 in Theorem 1.6 can be explicitly calculated, cf. Remark 2.3. For later purposes, we also
state the following special case of the previous theorem. It corresponds to the case in which Bε

x′ ≡ ∅ and the set S(τ,ε)

is contained in a narrow strip. This result also provides an extension of Theorem 1.1 in [21] to the case of problems
involving a first-order term as in (1.1) or in (1.5).

Theorem 1.7. Let 1 < p < 2, N � 2 and let (H1), (H4), (H5) be satisfied. Fix M0 > 0. Consider λ > 0 and set

Σ(λ,y0) := R
N−1 ×

(
y0 − λ

2
, y0 + λ

2

)
, y0 �

λ

2
.

Let u,v ∈ C
1,α
loc (Σ(λ,y0)) such that ‖u‖∞ + ‖∇u‖∞ � M0, ‖v‖∞ + ‖∇v‖∞ � M0 and⎧⎨

⎩
−div

(
a(x,u)|∇u|p−2∇u

) + b(x,u)|∇u|q � f (x,u), in Σ(λ,y0),

−div
(
a(x, v)|∇v|p−2∇v

) + b(x, v)|∇v|q � f (x, v), in Σ(λ,y0),

u � v, on ∂S,

(1.7)

where S ⊆ Σ(λ,y0) is an open subset.
Then there exists

λ = λ(N,p,q,M0, γ ) > 0

such that, if 0 < λ < λ, it follows that

u� v in S.

If the functions f , a and b are assumed to be globally Lipschitz continuous on R
N+ ×R and the functions a and b are

supposed to be bounded on R
N+ ×R, the same conclusion holds true without any assumption on the boundedness of u

and v.
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We point out that λ in the above theorem, can be explicitly calculated, cf. Remark 2.3.

Remark 1.8. Theorem 1.6 and Theorem 1.7 are the main ingredients in the proof of our monotonicity result The-
orem 1.1. The new geometry of the domain that we consider is crucial to prove our monotonicity result in the case
1 < p < 2, without the restriction p > 2N+2

N+2 that appears in [21]. At each x′ fixed, the section of the domain is
decomposed into two parts: a narrow (w.r.t. the Lebesgue measure) part and a part where the gradients are small.

The qualitative properties of positive solutions to −�pu = f (u), in various unbounded domains, are also studied
in [10,14,17,19,21–24,26,33,37,39,42].

Here below we describe the scheme of the paper:

(i) In Section 2 we prove the general weak comparison principle stated in Theorem 1.6 (and also Theorem 1.7). The
proof is carried out exploiting the iteration scheme introduced in [21] (see also [22]), and taking advantage from
the geometry of the considered domain.

(ii) In Section 3 we prove a crucial property of local symmetry regions of the solutions. Namely we show that such
regions must touch the boundary. This follows by a fine analysis of the limiting profiles of the solution.

(iii) In Section 4 we prove Proposition 4.1, that allows to carry out the moving plane procedure via Theorem 1.6.
(iv) In Section 5 we prove Theorem 1.1.
(v) In Section 6 we prove Theorem 1.3 and Theorem 1.4.

2. The weak comparison principle: Proof of Theorem 1.6

In the sequel we will use the following inequalities: ∀η,η′ ∈ R
N with |η| + |η′| > 0 there exist positive con-

stants C1, C2 depending only on p such that[|η|p−2η − ∣∣η′∣∣p−2
η′][η − η′] � C1

(|η| + ∣∣η′∣∣)p−2∣∣η − η′∣∣2 if p > 1,∣∣|η|p−2η − ∣∣η′∣∣p−2
η′∣∣� C2

∣∣η − η′∣∣p−1 if 1 < p � 2. (2.1)

Notation. Generic fixed numerical constants will be denoted by C (with subscript in some case) and they will be
allowed to vary within a single line or formula. |S| denotes the Lebesgue measure of a set S. f + and f − are the
positive part and the negative part of a function f , i.e. f + = max{f,0} and f − = −min{f,0}.

We start recalling a lemma, whose proof can be found in [21, Lemma 2.1].

Lemma 2.1. Let θ > 0 and β > 0 such that θ < 2−β . Moreover let R0 > 0, c > 0 and

L : (R0,+∞) →R

be a non-negative and non-decreasing function such that{
L(R) � θL(2R) + g(R) ∀R > R0,

L(R) � CRβ ∀R > R0,
(2.2)

where g : (R0,+∞) →R
+ is such that limR→+∞ g(R) = 0. Then

L(R) = 0.

We provide now the proof of a generalized version of the Poincaré inequality in one dimension.

Lemma 2.2 (Poincaré type inequality). Let I be an open bounded subset of R and assume that I = A ∪ B with
|A ∩ B| = 0, A and B measurable subsets of I . Let ρ : I → R∪ {∞} be measurable and such that

inf ρ(t) > 0.

t∈I
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Then for any w ∈ H 1
0 (I ) such that

∫
I
ρ(t)|∂tw|2(t) dt is finite, the following inequality holds:∫

I

w2(t) dt � 2|I |max

{
|A| sup

t∈A

1

ρ(t)
, |B| sup

t∈B

1

ρ(t)

}∫
I

ρ(t)|∂tw|2(t) dt. (2.3)

Proof. Since w belongs to H 1
0 (I ), there exists a ∈ I such that w(x) =

x∫
a

∂tw(t) dt . Thus we have

∣∣w(x)
∣∣�

x∫
a

∣∣∂tw(t)
∣∣dt �

∫
I

∣∣∂tw(t)
∣∣dt =

∫
A

∣∣∂tw(t)
∣∣dt +

∫
B

∣∣∂tw(t)
∣∣dt

� |A|1/2
(∫

A

|∂tw|2(t) dt

)1/2

+ |B|1/2
(∫

B

|∂tw|2(t) dt

)1/2

�
(

|A| sup
t∈A

1

ρ(t)

)1/2(∫
A

ρ(t)|∂tw|2(t) dt

)1/2

+
(

|B| sup
t∈B

1

ρ(t)

)1/2(∫
B

ρ(t)|∂tw|2(t) dt

)1/2

. (2.4)

Finally, by using (2.4) we obtain∫
I

w2(t) dt � |I | sup
t∈I

w2(t)

� 2|I |
(

|A| sup
t∈A

1

ρ(t)

∫
A

ρ|∂tw|2(t) dt + |B| sup
t∈B

1

ρ(t)

∫
B

ρ|∂tw|2(t) dt

)
,

from which the thesis immediately follows. �
Proof of Theorem 1.6. In the proof, the quantities La(M0),Lb(M0),Lf (M0) and K(M0) will denote the structural
constants appearing in assumption (H4). Also we denote by ‖ · ‖∞, the L∞ norm in Σ(λ,y0).

We remark that (u − v)+ belongs to L∞(Σ(λ,y0)) since u and v are bounded in Σ(λ,y0). For α > 1 we define

ψ = [
(u − v)+

]α
ϕ2, (2.5)

where ϕ(x′, y) = ϕ(x′) ∈ C∞
c (RN−1) is such that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ � 0, in R
N+ ,

ϕ ≡ 1, in B ′(0,R) ⊂R
N−1,

ϕ ≡ 0, in R
N−1 \ B ′(0,2R),

|∇ϕ|� C

R
, in B ′(0,2R) \ B ′(0,R) ⊂R

N−1,

(2.6)

where B ′(0,R) = {x′ ∈ R
N−1: |x′| < R}, R > 1 and C is a positive constant.

Let C(R) be defined as

C(R) := {
S(τ,ε) ∩ {

B ′(0,R) ×R
}}

.

The assumptions in (2.6) and the inequality u� v on ∂S(τ,ε) imply that ψ ∈ W
1,p

0 (C(2R)). This allows us to use ψ

as a test function in both equations of problem (1.5) and to get (by subtracting)∫
C(2R)

(
a(x,u)|∇u|p−2∇u − a(x, v)|∇v|p−2∇v,∇ψ

) +
∫

C(2R)

(
b(x,u)|∇u|q − b(x, v)|∇v|q)

ψ

�
∫ (

f (x,u) − f (x, v)
)
ψ, (2.7)
C(2R)
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from which we infer∫
C(2R)

a(x,u)
(|∇u|p−2∇u − |∇v|p−2∇v,∇ψ

) +
∫

C(2R)

(
a(x,u) − a(x, v)

)(|∇v|p−2∇v,∇ψ
)

+
∫

C(2R)

b(x,u)
(|∇u|q − |∇v|q)

ψ +
∫

C(2R)

(
b(x,u) − b(x, v)

)|∇v|qψ

�
∫

C(2R)

(
f (x,u) − f (x, v)

)
ψ (2.8)

and hence∫
C(2R)

a(x,u)
(|∇u|p−2∇u − |∇v|p−2∇v,∇ψ

)

�
∫

C(2R)

∣∣a(x,u) − a(x, v)
∣∣|∇v|p−1|∇ψ | + K(M0)

∫
C(2R)

∣∣|∇u|q − |∇v|q ∣∣ψ
+

∫
C(2R)

∣∣b(x,u) − b(x, v)
∣∣|∇v|qψ +

∫
C(2R)

∣∣f (x,u) − f (x, v)
∣∣ψ

� La(M0)

∫
C(2R)

|∇v|p−1|∇ψ ||u − v| + K(M0)

∫
C(2R)

∣∣|∇u|q − |∇v|q ∣∣ψ
+ Lb(M0)

∫
C(2R)

|∇v|qψ |u − v| + Lf (M0)

∫
C(2R)

ψ |u − v|. (2.9)

Since ∇u and ∇v belongs to L∞(Σ(λ,y0)), using (2.5) we obtain

α

∫
C(2R)

a(x,u)
(|∇u|p−2∇u − |∇v|p−2∇v,∇(u − v)+

)[
(u − v)+

]α−1
ϕ2

+
∫

C(2R)

a(x,u)
(|∇u|p−2∇u − |∇v|p−2∇v,∇ϕ2)[(u − v)+

]α

� αLa(M0)‖∇v‖p−1∞
∫

C(2R)

[
(u − v)+

]α∣∣∇(u − v)+
∣∣ϕ2 + La(M0)‖∇v‖p−1∞

∫
C(2R)

[
(u − v)+

]α+1∣∣∇ϕ2
∣∣

+ (
Lb(M0)‖∇v‖q∞ + Lf (M0)

) ∫
C(2R)

[
(u − v)+

]α+1
ϕ2

+ qK(M0)M0
q−1

∫
C(2R)

∣∣∇(u − v)+
∣∣[(u − v)+

]α
ϕ2, (2.10)

where, in the last term we used the mean value theorem and the boundedness of ∇u and ∇v to deduce that ||∇u|q −
|∇v|q | � qM0

q−1|∇(u − v)|.
Recalling (2.1), from (2.10) we obtain

αC1γ

∫
C(2R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

ϕ2

� C2K(M0)

∫ ∣∣∇(u − v)+
∣∣p−1∣∣∇ϕ2

∣∣[(u − v)+
]α
C(2R)
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+ αLa(M0)‖∇v‖p−1∞
∫

C(2R)

∣∣∇(u − v)+
∣∣[(u − v)+

] α−1+α+1
2 ϕ2

+ La(M0)‖∇v‖p−1∞
∫

C(2R)

[
(u − v)+

]α+1∣∣∇ϕ2
∣∣

+ (
Lb(M0)‖∇v‖q∞ + Lf (M0)

) ∫
C(2R)

[
(u − v)+

]α+1
ϕ2

+ qK(M0)M0
q−1

∫
C(2R)

∣∣∇(u − v)+
∣∣[(u − v)+

] α−1+α+1
2 ϕ2.

It is easy to resume the computations above as follows:

αC1γ

∫
C(2R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

ϕ2

�
(
C2K(M0)(2M0)

p−1 + 2M
p

0 La(M0)
) ∫
C(2R)

∣∣∇ϕ2
∣∣[(u − v)+

]α

+ α · (La(M0)M
p−1
0 + qK(M0)M0

q−1) ∫
C(2R)

∣∣∇(u − v)+
∣∣[(u − v)+

] α−1+α+1
2 ϕ2

+ (
Lb(M0)M

q

0 + Lf (M0)
) ∫
C(2R)

[
(u − v)+

]α+1
ϕ2. (2.11)

Recalling that p < 2 and using the weighted Young inequality zy � εz2 + y2

4ε
, from

∫
C(2R)

∣∣∇(u − v)+
∣∣[(u − v)+

] α−1+α+1
2 ϕ2 =

∫
C(2R)∩{|∇u|+|∇v|>0}

∣∣∇(u − v)+
∣∣[(u − v)+

] α−1
2 ϕ · [(u − v)+

] α+1
2 ϕ

we deduce that, for every δ > 0 it holds

αC1γ

∫
C(2R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

ϕ2

�
(
C2K(M0)(2M0)

p−1 + 2M
p

0 La(M0)
) ∫
C(2R)

∣∣∇ϕ2
∣∣[(u − v)+

]α

+ δ · α · (La(M0)M
p−1
0 + qK(M0)M0

q−1) ∫
C(2R)

∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

ϕ2

+
(

α
(La(M0)M

p−1
0 + qK(M0)M0

q−1)

4δ
+ (

Lb(M0)M
q

0 + Lf (M0)
)) ∫

C(2R)

[
(u − v)+

]α+1
ϕ2

�
(
C2K(M0)(2M0)

p−1 + 2M
p

0 La(M0)
) ∫ ∣∣∇ϕ2

∣∣[(u − v)+
]α
C(2R)
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+ δα22−p
(
La(M0)M0 + qK(M0)M0

q−(p−1)
) ∫
C(2R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

ϕ2

+
(

α
22−p · (La(M0)M0 + qK(M0)M0

q−(p−1))

4δ
+ (

Lb(M0)M
q

0 + Lf (M0)
)) ∫

C(2R)

[
(u − v)+

]α+1
ϕ2.

(2.12)

Here we are using the fact that q > 1 > p − 1, since (H1) holds.
Take now

δ := C1γ

2 · (22−pLa(M0)M0 + 22−pqK(M0)M0
q−(p−1))

.

Consequently we have

α
C1γ

2

∫
C(2R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

ϕ2

�
(
C2K(M0)(2M0)

p−1 + 2M
p

0 La(M0)
) ∫
C(2R)

∣∣∇ϕ2
∣∣[(u − v)+

]α

+ α
(22−pLa(M0)M0 + 22−pqK(M0)M0

q−(p−1))2

2C1γ

∫
C(2R)

[
(u − v)+

]α+1
ϕ2

+ (
Lb(M0)M

q

0 + Lf (M0)
) ∫
C(2R)

[
(u − v)+

]α+1
ϕ2. (2.13)

Since α > 1 we immediately get that∫
C(2R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

ϕ2

�
2(C2K(M0)(2M0)

p−1 + 2M
p

0 La(M0))

C1γ

∫
C(2R)

∣∣∇ϕ2
∣∣[(u − v)+

]α

+ (22−pLa(M0)M0 + 22−pqK(M0)M0
q−(p−1))2

(C1γ )2

∫
C(2R)

[
(u − v)+

]α+1
ϕ2

+ 2(Lb(M0)M
q

0 + Lf (M0))

C1γ

∫
C(2R)

[
(u − v)+

]α+1
ϕ2. (2.14)

Let us define

c1 = 2(C2K(M0)(2M0)
p−1 + 2M

p

0 La(M0))

C1γ
, (2.15)

c2 = (22−pLa(M0)M0 + 22−pqK(M0)M0
q−(p−1))2

(C1γ )2
+ 2(Lb(M0)M

q

0 + Lf (M0))

C1γ
, (2.16)

I1 =
∫ ∣∣∇ϕ2

∣∣[(u − v)+
]α

, I2 =
∫ [

(u − v)+
]α+1

ϕ2
C(2R) C(2R)
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and note that both c1 and c2 depend only on p, q , γ and M0, in particular they are independent of α > 1. Thus, with
the definitions above, we now rewrite (2.14) as follows: for every α > 1,∫

C(2R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

ϕ2 � c1I1 + c2I2. (2.17)

We also observe that∫
RN−1

( ∫
I

τ,ε

x′

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

)
dy ϕ2(x′)dx′

=
∫

C(2R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

ϕ2 < +∞

since ϕ depends only on x′ and the right-hand side of (2.17) is finite. Hence, for almost every x′ ∈ R
N−1 we have that∫

I
τ,ε

x′

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

dy < +∞, (2.18)

which also entails: for almost every x′ ∈R
N−1∫

I
τ,ε

x′

(|∇u| + |∇v|)p−2∣∣∂y(u − v)+
∣∣2[

(u − v)+
]α−1

dy < +∞. (2.19)

↪→ Evaluation of the term I1. Let us recall the decomposition stated in (1.6) which gives

S(τ,ε) =
⋃

x′∈Rn−1

I
τ,ε
x′ with I

τ,ε
x′ = Aτ

x′ ∪ Bε
x′ .

We set

ρx′(t) = (∣∣∇u
(
x′, t

)∣∣ + ∣∣∇v
(
x′, t

)∣∣)p−2

in order to apply Lemma 2.2 in each I
τ,ε
x′ , for which (2.19) holds true, with ρ(t) := ρx′(t), A := Aτ

x′ , B := Bε
x′ and

w(t) = [(u − v)+(x′, t)] α+1
2 . Note that the constant in (2.3) in this case is given by

Cτ,ε

(
x′) = 2λmax

{∣∣Aτ
x′

∣∣ sup
t∈Aτ

x′

1

ρx′(t)
,
∣∣Bε

x′
∣∣ sup
t∈Bε

x′

1

ρx′(t)

}
.

Therefore, for almost every x′ ∈R
N−1, we have

Cτ,ε

(
x′) � Cτ,ε := 2λ0 max

{
τ(2M0)

2−p,λ0(2ε)2−p
}
, (2.20)

so that, since 1 < p < 2, Cτ,ε can be chosen arbitrary small, for τ and ε sufficiently small. Now, recalling that ϕ

depends only on x′ and using Young inequality with conjugate exponents α+1
α

and α + 1, we get

I1 � 2
∫

C(2R)

[
(u − v)+

]α
ϕ|∇ϕ| = 2

∫
C(2R)

[
(u − v)+

]α
ϕ|∇ϕ| 1

2 |∇ϕ| 1
2

� 2
∫

C(2R)

[(u − v)+]α+1ϕ
α+1
α |∇ϕ| α+1

2α

α+1
α

+ 2
∫

C(2R)

|∇ϕ| α+1
2

α + 1

� 2
∫

RN−1

( ∫
I

τ,ε′

([
(u − v)+

] α+1
2

)2
dy

)
ϕ

α+1
α |∇ϕ| α+1

2α dx′ + 2
∫

C(2R)

|∇ϕ| α+1
2

x
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and the application of Lemma 2.2 yields

I1 � Cτ,ε

(α + 1)2

2

∫
C(2R)

(|∇u| + |∇v|)p−2[
(u − v)+

]α−1∣∣∂y(u − v)+
∣∣2

ϕ
α+1
α |∇ϕ| α+1

2α + 2
∫

C(2R)

|∇ϕ| α+1
2

� Cτ,ε

(α + 1)2

2

∫
C(2R)

(|∇u| + |∇v|)p−2[
(u − v)+

]α−1∣∣∇(u − v)+
∣∣2

ϕ
α+1
α |∇ϕ| α+1

2α + 2
∫

C(2R)

|∇ϕ| α+1
2 ,

(2.21)

where Cτ,ε has been defined in (2.20).
↪→ Evaluation of the term I2. We use the same notations as in the evaluation of I1 and we get

I2 =
∫

C(2R)

([
(u − v)+

] α+1
2

)2
ϕ2 =

∫
RN−1

( ∫
I

τ,ε

x′

([
(u − v)+

] α+1
2

)2
dy

)(
ϕ
(
x′))2

dx′

� Cτ,ε

(
α + 1

2

)2 ∫
RN−1

( ∫
I

τ,ε

x′

(|∇u| + |∇v|)p−2[
(u − v)+

]α−1∣∣∂y(u − v)+
∣∣2

dy

)(
ϕ
(
x′))2

dx′

� Cτ,ε

(
α + 1

2

)2 ∫
C(2R)

(|∇u| + |∇v|)p−2[
(u − v)+

]α−1∣∣∇(u − v)+
∣∣2

ϕ2. (2.22)

Let us fix

α = 2N + 1 > 1. (2.23)

Recalling that Cτ,ε tends to 0, as both τ and ε go to zero, we can take τ > 0 and ε > 0 small enough, such that

c2Cτ,ε

(
α + 1

2

)2

<
1

2
, c1Cτ,ε(α + 1)2 < 2−N (2.24)

so that from (2.17) we have∫
C(2R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

ϕ2 � 2c1I1. (2.25)

From (2.6) we infer that∫
C(R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2

(u − v)α−1

�
∫

C(2R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2

(u − v)α−1ϕ2 � 2c1I1 (2.26)

and, using (2.21), we obtain∫
C(R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

� c1Cτ,ε(α + 1)2
∫

C(2R)

(|∇u| + |∇v|)p−2[
(u − v)+

]α−1∣∣∇(u − v)+
∣∣2

ϕ
α+1
α |∇ϕ| α+1

2α + 4c1

∫
C(2R)

|∇ϕ| α+1
2 .

(2.27)
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Recalling (2.23) one has∫
C(R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2

(u − v)α−1

� θ

∫
C(2R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1 + ĈR−2, (2.28)

where

θ = c1Cτ,ε(α + 1)2,

Ĉ = 4c1λC
α+1

2 > 0

exploiting also (2.6). Notice that, in view of (2.24), we also have that θ < 2−N . In order to apply Lemma 2.1 we set

L(R) =
∫

C(R)

(|∇u| + |∇v|)p−2∣∣∇(u − v)+
∣∣2[

(u − v)+
]α−1

,

and

g(R) = ĈR−2.

Then from (2.28) we have{
L(R) � θL(2R) + g(R) ∀R > 0,

L(R) � CRN ∀R > 0.

Applying Lemma 2.1 with β = N , we get L(R) = 0 and consequently the thesis. �
Proof of Theorem 1.7. The desired result is obtained with the same proof as that of Theorem 1.6 with the following
slight (but necessary) modifications. Replace S(τ,ε) by S , set ε = τ = λ, Bε

x′ = ∅, I
τ,ε
x′ = Aτ

x′ = S ∩ {x′} × (y0 − λ
2 ,

y0 + λ
2 ) and observe that (2.20) becomes

Cλ

(
x′)� Cλ := 2λ2(2M0)

2−p, (2.29)

and that (2.24) becomes

c2Cλ

(
α + 1

2

)2

<
1

2
, c1Cλ(α + 1)2 < 2−N. (2.30)

The conclusion then follows by taking λ small enough in the latter one. �
Remark 2.3. In view of (2.15), (2.16), (2.20), (2.23) and of (2.24), it is possible to calculate explicitly the value of ε0
and τ0. The same can be done for λ.

3. Properties of the local symmetry regions

Let us start this section recalling a useful change of variable. Under our assumptions on the function a = a(s) set

A(s) :=
s∫

0

a(t)
1

p−1 dt.

It follows that A belongs to C
1,1
loc ([0,+∞), [0,+∞)), is strictly increasing and satisfies A(0) = 0 and

limt→+∞ A(t) = +∞. Set

w := A(u) (3.1)
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then w ∈ C
1,α
loc (RN+) and⎧⎪⎨

⎪⎩
−�pw + b̃(w)|∇w|q = f̃ (w), in R

N+ ,

w
(
x′, y

)
> 0, in R

N+ ,

w
(
x′,0

) = 0, on ∂RN+

(3.2)

with b̃(w) := b(A−1(w))

(a(A−1(w)))
q

p−1
and f̃ (w) := f (A−1(w)). It follows that b̃ and f̃ still are locally Lipschitz continuous

(here we used the fact that q > 1 > p − 1, since (H1) is in force). We notice that: f (s) > 0 for s > 0 if and only if
f̃ (s) > 0 for s > 0 and that f (0) = f̃ (0). This shows that, as we will recall later, it is not restrictive to our purposes
to assume from now on that

a(s) = 1.

We also observe that using the mean value theorem in the y-direction, the Dirichlet condition on u and the fact that
∇u ∈ L∞(RN+), we get that u is bounded on every set of the form {0 � y � η}, for any η > 0. This implies that also
w and ∇w are bounded on every set of the form {0 � y � η}, for any η > 0 (the bound might depend on η).

With this in mind, now we are going to prove an important properties concerning the local symmetry regions of
the solutions. Let us start with some notations.

We define the strip Σλ by

Σλ := {0 < y < λ}
and the reflected function uλ(x) by

uλ(x) = uλ

(
x′, y

) := u
(
x′,2λ − y

)
in Σ2λ.

As customary we also define the critical set Zu by

Zu = {
x ∈ R

N+ : ∇u(x) = 0
}
.

We have the following:

Theorem 3.1. Let 1 < p < 2 and let u ∈ C
1,α
loc (RN+) be a solution to (1.1) with a(s) = 1. Let (H1), (H2) be satisfied

and assume that f (s) > 0 for s > 0. Let us assume that both u and ∇u are bounded on every strip Ση, η > 0. Suppose
furthermore that u is monotone non-decreasing in Σλ, for some λ > 0. Assume that U is a (not empty) connected
component of Σλ \ Zu such that u(x) ≡ uλ(x) in U , (i.e. a local symmetry region for u). Then necessarily U touches
the boundary of RN+ , namely

∂U ∩ {y = 0} �= ∅.

Proof. Let us start showing the following:

Claim 1. There exists τ = τ(U , λ) > 0 such that dist(U , {y = 0}) > τ .

By contradiction let us assume that there exists a sequence of points

xn = (
x′
n, yn

) ∈ U ,

such that

lim
n→∞ dist

(
xn, {y = 0}) = lim

n→∞yn = 0. (3.3)

We consider the sequence

x̂n =
(

x′
n,

λ

2

)
and the two different cases
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(a) u(x̂n) is strictly bounded away from zero uniformly on n;
(b) up to subsequences limn→∞ u(x̂n) = 0.

Case (a). Define the sequence

un(x) = u
(
x′ + x′

n, y
)
. (3.4)

Let K ⊂R
+
N be a compact set. Since both u and ∇u are bounded on every strip Ση, η > 0, we get

0 � un(x) � C(K),
∣∣∇un(x)

∣∣ � C(K) ∀x ∈ K,

for some positive constant C(K).
Therefore C1,α estimates (see the classical results [18,31,40]), Ascoli’s Theorem and a standard diagonal process

imply that

un

C
1,α′
loc

(
R

N+
)

−−−−−−→ u∞, (3.5)

up to subsequences, for α′ < α. Recalling that un(0, λ
2 )� γ0 > 0, uniform convergence implies that u∞ is a non-trivial

non-negative solution to the equation in (1.1) (with a(s) = 1). Actually, by the strong maximum principle [41], we
have that

u∞(x) > 0 ∀x ∈R
N+ . (3.6)

By the definition of U (i.e. u(x) ≡ uλ(x) in U ), since by (3.3) (together with the Dirichlet condition and the mean
value theorem) we have

u
(
x′
n, yn

)
�

∥∥∇u(x)
∥∥∞ · yn → 0, as n → +∞.

Then it follows:

lim
n→+∞u

(
x′
n,2λ − yn

) = lim
n→+∞u

(
x′
n, yn

) = 0. (3.7)

From (3.7), using (3.4) and (3.5), we obtain

u∞(0,2λ) = 0.

This is a contradiction with (3.6) and Claim 1 is proved in case (a).
Case (b). Arguing exactly as in the proof of the case (a) here above, it follows that necessarily u∞ ≡ 0. This implies

that case (b) occurs only if f (0) = 0 because if not, 0 cannot be a solution of our equation.
Recalling (3.4) we define

ūn

(
x′, y

) ≡ un(x
′, y)

un(0, λ
2 )

= u(x′ + x′
n, y)

u(x′
n,

λ
2 )

, (3.8)

so that

ūn

(
0,

λ

2

)
= 1,

and un uniformly converges to 0 on compact sets of RN+ by construction. Recalling that we are assuming that a(s) = 1,
it is easily seen that

−div
(|∇ūn|p−2∇ūn

) +
(

un

(
0,

λ

2

))q−(p−1)

· b(un) · |∇ūn|q = f (un)

u
p−1
n

· ūp−1
n ,

that is

−div
(|∇ūn|p−2∇ūn

) + ĉn(x) · |∇ūn|p−1 = c̃n(x) · ūp−1
n , (3.9)

where
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ĉn(x) = b(un)|∇un|q−(p−1), c̃n(x) = f (un)

u
p−1
n

.

The assumptions on b(·) and f (·) and the fact that q > 1 > p − 1 imply that ĉn and c̃n are bounded on every strip Ση,
η > 0. Indeed, since b and f are locally Lipschitz continuous functions we have∣∣ĉn(x)

∣∣ � ∥∥b(u)
∥∥∞,Ση

‖∇u‖q−(p−1)
∞,Ση

, (3.10)

0 � c̃n(x) = f (un)

u
p−1
n

� Lf

(‖u‖∞,Ση

)∣∣un(x)
∣∣2−p � Lf

(‖u‖∞,Ση

)‖u‖2−p
∞,Ση

, (3.11)

where we used that f (0) = 0.
On the other hand we have that limt→0+ f (t)

tp−1 = 0, since f (0) = 0 as remarked above, p − 1 < 1 and f is locally
Lipschitz continuous. The latter, together with the fact that both un and ∇un converge to zero uniformly on compact

sets of RN+ and q > 1 > p − 1, immediately yields that also c̃n and ĉn converge to zero uniformly on compact sets

of RN+ .

Fix 0 < δ < λ
2 and consider an arbitrary compact set K of RN+ containing the point (0, λ

2 ). By Harnack inequality
(see [35, Theorem 7.2.2]), applied to Eq. (3.9) on the compact set K ∩ {y � δ} ⊂⊂R

N+ , we get that

sup
K∩{y�δ}

ūn � CH inf
K∩{y�δ}

ūn � CH . (3.12)

Moreover, by the monotonicity of u in Σλ we have

sup
K∩{y�0}

ūn � sup
K∩{y�δ}

ūn � CH . (3.13)

Hence we can use (once again) C1,α estimates, Ascoli’s Theorem and a diagonal argument to get, up to subsequences,
that

ūn

C
1,α′
loc

(
R

N+
)

−−−−−−→ ū

for α′ < α. Arguing as above, we see that ū� 0 in R
N+ and ū(0, λ

2 ) = 1.
Taking into account the properties of ĉn and of c̃n, we can pass to the limit in (3.9) obtaining

−�pū = 0 in R
N+ .

By the strong maximum principle [41], we therefore get that ū > 0 since ū cannot be equal to zero because of the
condition ū(0, λ

2 ) = 1. Actually, by construction, we have⎧⎪⎨
⎪⎩

−�pū = 0, in R
N+ ,

ū > 0, in R
N+ ,

ū
(
x′,0

) = 0, on ∂RN+ .

(3.14)

By [29, Theorem 3.1] it follows that ū is affine linear, that means

ū
(
x′, y

) = ky,

for some k > 0 by the Dirichlet assumption. This is a contradiction since by assumption u and consequently ū have
a local symmetry region and this concludes the proof of Claim 1.

We show the following:

Claim 2. There exists γ = γ (U , λ) > 0 such that u � γ in U .

To show this, assume by contradiction that there exists a sequence of points

xn = (
x′
n, yn

) ∈ U ,

such that
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lim
n→∞u(xn) = 0 (3.15)

and with yn converging (up to subsequences) to y0 > 0.
Using definition (3.4) we set

ūn

(
x′, y

) ≡ u(x′ + x′
n, y)

u(x′
n, yn)

,

so that ū(0, yn) = 1 and un uniformly converges to 0 on compact sets of RN+ by construction (see (3.15)). As above
(see (3.9)), it is easy to see that

−div
(|∇ūn|p−2∇ūn

) + ĉn(x) · |∇ūn|p−1 = c̃n(x) · ūp−1
n , (3.16)

with ĉn and c̃n satisfy (3.10) and (3.11) and, both of them converges to zero uniformly on compact sets of R
N+ .

Furthermore, we have that

ūn

C
1,α′
loc

(
R

N+
)

−−−−−−→ ū

up to subsequences, for α′ < α. Then, arguing as above, we get that ū � 0 in R
N+ and ū(0, y0) = 1, with y0 > 0.

Moreover

−�pū = 0 in R
N+ .

By the strong maximum principle (see [41]) we get that ū > 0, since ū cannot be equal to 0 because of the condition
ū(0, y0) = 1. In fact, as in (3.14), by construction and using [29, Theorem 3.1], it follows that ū is of the form:

ū
(
x′, y

) = ky, (3.17)

for some k > 0.
Since by construction

ū(0, y0) = ūλ(0, y0),

if y0 < λ, we get a contradiction by (3.17) concluding the proof of Claim 2. If else y0 = λ, it follows by construc-
tion that ∂ū

∂y
(0, y0) = 0. This is deduced by observing that ∂ūn

∂y
vanishes somewhere on the segment from (0, yn) to

(0,2λ − yn) (since (x′
n, yn) ∈ U ) and exploiting the uniform convergence of the gradients. Therefore again we get

a contradiction by (3.17) concluding the proof of Claim 2.
Since f (s) > 0 for s > 0, Claim 2 implies that there exists γ + > 0 such that

f (u) � γ + in U . (3.18)

Now we proceed in order to conclude the proof. Let ϕR(x′, y) = ϕR(x′) with ϕ(x′) ∈ C∞
c (RN−1) defined as in (2.6).

For all ε > 0, let Gε : R+ ∪ {0} →R be defined as

Gε(t) =
⎧⎨
⎩

t, if t � 2ε,

2t − 2ε, if ε � t � 2ε,

0, if 0 � t � ε.

(3.19)

Let χ be the characteristic function of a set. We define

Ψ = Ψε,R := e−s(u)ϕR

Gε(|∇u|)
|∇u| χ(U∪Uλ),

where Uλ is the reflected set of U w.r.t. the hyperplane Tλ = {y = λ} and

s(t) = Ĉ ·
t∫
b+(

t ′
)
dt ′, (3.20)
0
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with Ĉ some positive constant to be chosen later. By the definition of U and taking into account the fact that U is
a local symmetry region of u, we have that ∇u = 0 on ∂(U ∪Uλ). Moreover ∇u ∈ L∞(RN+) implies that u is bounded
in Σλ. Therefore Ψ is well defined and we can use it as a test function in Eq. (1.1) (see also [32, Lemma 5]), getting∫

U∪Uλ

|∇u|p−2(∇u,∇Ψ )dx +
∫

U∪Uλ

b+(u)|∇u|qΨ dx =
∫

U∪Uλ

b−(u)|∇u|qΨ dx +
∫

U∪Uλ

f (u)Ψ dx. (3.21)

Since u and Ψ are even w.r.t. the hyperplane {y = λ}, it follows that (∇u,∇Ψ ) is even too. Therefore we infer that∫
U

|∇u|p−2(∇u,∇Ψ )dx +
∫
U

b+(u)|∇u|qΨ dx =
∫
U

b−(u)|∇u|qΨ dx +
∫
U

f (u)Ψ dx. (3.22)

Let us suppose 1 � q � p. For every σ > 0 we have

xq � C(σ) · xp + σ, x � 0, (3.23)

say e.g. C(σ) = σ
1− p

q . Therefore (3.22) and (3.23) imply∫
U

|∇u|p−2(∇u,∇Ψ )dx + C(σ)

∫
U

b+(u)|∇u|pΨ dx + σ

∫
U

b+(u)Ψ dx

�
∫
U

b−(u)|∇u|qΨ dx +
∫
U

f (u)Ψ dx �
∫
U

f (u)Ψ dx. (3.24)

By (3.18) we can choose σ in (3.23), say σ̄ , small enough such that

γ + − σ̄
∥∥b+(u)

∥∥∞ = C̃ > 0,

so that∫
U

|∇u|p−2(∇u,∇Ψ )dx + C(σ̄ )

∫
U

b+(u)|∇u|pΨ dx � C̃

∫
U

Ψ dx. (3.25)

Choosing Ĉ in (3.20) equal to C(σ̄ ) in (3.25) we obtain∫
U

e−s(u)ϕR|∇u|p−2
(

∇u,∇ Gε(|∇u|)
|∇u|

)
dx +

∫
U

e−s(u) Gε(|∇u|)
|∇u| |∇u|p−2(∇u,∇ϕR)dx

� C̃

∫
U

e−s(u)ϕR

Gε(|∇u|)
|∇u| dx. (3.26)

We set hε(t) = Gε(t)

t
, meaning that h(t) = 0 for 0 � t � ε. We have

∣∣∣∣
∫
U

e−s(u)ϕR|∇u|p−2
(

∇u,∇ Gε(|∇u|)
|∇u|

)
dx

∣∣∣∣� C

∫
U

|∇u|p−1
∣∣h′

ε

(|∇u|)∣∣∣∣∇(|∇u|)∣∣ϕR dx

� C

∫
U

|∇u|p−2(|∇u|h′
ε

(|∇u|))∥∥D2u
∥∥ϕR dx, (3.27)

where ‖D2u‖ denotes the Hessian norm.
Here below, we fix R > 0 and let ε → 0. Later we will let R → ∞. To this aim, let us first show that

(i) |∇u|p−2‖D2u‖ϕR ∈ L1(U) ∀R > 0;
(ii) |∇u|h′

ε(|∇u|) → 0 a.e. in U as ε → 0 and |∇u|h′
ε(|∇u|) � C with C not depending on ε.
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Let us prove (i). Defining D(R) = {U ∩ {B ′(0,R) ×R}}, by Hölder’s inequality it follows

∫
U

|∇u|p−2
∥∥D2u

∥∥ϕR dx � C
(
D(2R)

)( ∫
D(2R)

|∇u|2(p−2)
∥∥D2u

∥∥2
ϕ2

R dx

) 1
2

� C

( ∫
D(2R)

|∇u|p−2−β
∥∥D2u

∥∥2
ϕ2

R|∇u|p−2+β dx

) 1
2

� C‖∇u‖(p−2+β)/2
L∞(RN+ )

( ∫
D(2R)

|∇u|p−2−β
∥∥D2u

∥∥2
dx

) 1
2

, (3.28)

with 0 � β < 1 and ϕ2
R|∇u|p−2+β consequently bounded. By Claim 1 we have

dist
(
U , {y = 0}) > 0.

Using [34, Proposition 2.1],3 we infer that

( ∫
D(2R)

|∇u|p−2−β
∥∥D2u

∥∥2
dx

) 1
2

� C.

Then by (3.28) we obtain∫
U

|∇u|p−2
∥∥D2u

∥∥ϕR dx � C.

Let us prove (ii). Recalling (3.19), we obtain

h′
ε(t) =

⎧⎨
⎩

0, if t � 2ε,
2ε

t2 , if ε � t � 2ε,

0, if 0 � t � ε,

and then |∇u|h′
ε(|∇u|) tends to 0 almost everywhere in U as ε goes to 0 and we have |∇u|h′

ε(|∇u|) � 2.
Then by (3.26), (3.27) and (i), (ii) above, passing to the limit as ε → 0, we get∫

U

e−s(u)|∇u|p−2(∇u,∇ϕR)dx � C

∫
U

ϕR dx ∀R > 0.

Recalling (2.6), we have that there exists C = C(‖∇u‖L∞(RN+ )) (not depending on R) such that

∣∣U ∩ supp(ϕR)
∣∣ · 1

R
� C · ∣∣U ∩ supp(ϕR)

∣∣
and we get a contradiction for R large, concluding the proof. �
4. Recovering compactness

In this section we prove a crucial result, which allows us to localize the support of (u − uλ̄)
+, where λ̄ is defined

in (4.2) below. The localization obtained will enable us to apply the weak comparison principle Theorem 1.6.
With the notations introduced at the beginning of the previous section, we set

Λ := {
λ ∈ R

+: u � uμin Σμ ∀μ < λ
}

(4.1)

3 Actually in Proposition 2.1 of [34] it is considered the case q = p. The same result in the more general case 1 < q � p follows exactly in the
same way repeating the same calculations.
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and we define

λ̄ := supΛ. (4.2)

We have the following:

Proposition 4.1. Let 1 < p < 2 and let u ∈ C
1,α
loc (RN+) be a solution to (1.1) with a(s) = 1. Let (H1), (H2) and (H3)

be satisfied and assume that f (s) > 0 for s > 0. Let us assume that both u and ∇u are bounded on every strip Ση,
η > 0.

Assume 0 < λ̄ < +∞ and set

Wε := (u − uλ̄+ε) · χ{y�λ̄+ε}
where ε > 0.

Given 0 < δ < λ̄
2 and ρ > 0, there exists ε0 > 0 such that, for any ε � ε0, it follows

SuppW+
ε ⊂ {0 � y � δ} ∪ {λ̄ − δ � y � λ̄ + ε} ∪

( ⋃
x′∈RN−1

B
ρ

x′

)
,

where B
ρ

x′ is such that

B
ρ

x′ ⊆ {
y ∈ (0, λ̄ + ε):

∣∣∇u
(
x′, y

)∣∣ < ρ,
∣∣∇uλ̄+ε

(
x′, y

)∣∣ < ρ
}
. (4.3)

Proof. Assume by contradiction that there exists δ > 0, with 0 < δ < λ̄
2 , such that, given any ε0 > 0, we find ε � ε0

and xε = (x′
ε, yε) such that:

(i) u(x′
ε, yε) � uλ̄+ε(x

′
ε, yε);

(ii) xε belongs to the set{(
x′, y

) ∈ R
N : δ � yε � λ̄ − δ

}
and it holds the alternative: either |∇u(xε)| � ρ or |∇uλ̄+ε(xε)| � ρ.

Take now ε0 = 1
n

, then there exists εn � 1
n

and a sequence

xn = (
x′
n, yn

) = (
x′
εn

, yεn

)
such that

u
(
x′
n, yn

)
� uλ̄+εn

(
x′
n, yn

)
and satisfying conditions (i) and (ii) above. Up to subsequences we may assume that

yn → y0 as n → +∞, with δ � y0 � λ̄ − δ.

Let us define

ũn

(
x′, y

) = u
(
x′ + x′

n, y
)
. (4.4)

Since both u and ∇u are bounded on every strip Ση, η > 0, as before, by C1,α estimates, Ascoli’s Theorem and
a standard diagonal process we get that

ũn

C
1,α′
loc

(
R

N+
)

−−−−−−→ ũ (4.5)

(up to subsequences) for α′ < α.
We claim that

– ũ � 0 in R
N+ , with ũ(x,0) = 0 for every x ∈R

N−1;
– ũ � ũλ̄ in Σλ̄;



20 A. Farina et al. / Ann. I. H. Poincaré – AN 32 (2015) 1–22
– ũ(0, y0) = ũλ̄(0, y0);
– |∇ũ(0, y0)| � ρ.

To prove this note that, since each ũn(x
′, y) is positive and satisfies the homogeneous Dirichlet boundary condition

by construction, we have ũ � 0 in R
N+ and ũ(x,0) = 0 for every x ∈ R

N−1. It is also clear that ũ � ũλ̄ in Σλ̄ and
ũ(0, y0)� ũλ̄(0, y0). Since (as shown above) ũ � ũλ̄, actually there holds: ũ(0, y0) = ũλ̄(0, y0). Finally, at x0 = (0, y0)

(where ũ(0, y0) = ũλ̄(0, y0)) we have that ∇ũ(0, y0) = ∇ũλ̄(0, y0), because x0 is an interior minimum point for the
function w(x) := ũλ̄(x) − ũ(x) � 0. For all n we have |∇u(xn)| � ρ or |∇uλ̄+εn

(xn)| � ρ, and, using the uniform C1

convergence on compact set, we get |∇ũ(0, y0)| � ρ.
Recalling that we assumed here a(s) = 1, passing to the limit we obtain that ũ satisfies∫

R
N+

|∇ũ|p−2(∇ũ,∇ϕ)dx +
∫
R

N+

b(ũ)|∇ũ|q dx =
∫
R

N+

f (ũ)ϕ dx ∀ϕ ∈ C∞
c

(
R

N+
)
.

Since ũ � 0 in R
N+ , by the strong maximum principle [35, Theorem 2.5.1], it follows that ũ > 0 or ũ = 0; by the

fact that |∇ũ(0, y0)| � δ, the case ũ = 0 is not possible. Hence ũ > 0 on R
N+ . Moreover we have ũ � ũλ̄ in Σλ̄ and

ũ(0, y0) = ũλ̄(0, y0). By the strong comparison principle [35, Theorem 2.5.2], we have that ũ = ũλ̄ in the connected
component, say U , of Σλ̄ \ Zu containing the point (0, y0). By Theorem 3.1 we have that ∂U ∩ ∂RN+ �= ∅. The latter
yields the existence of a point z = (z′,2λ̄) such that ũ(z) = 0, which contradicts ũ > 0 in R

N+ . �
5. Proof of Theorem 1.1

Let us start recalling that, in view of the changing of variable in (3.1), which preserves the monotonicity property,
it is not restrictive to prove Theorem 1.1 in the case a(·) = 1. As already remarked, the assumption ∇u ∈ L∞(RN+)

implies that w and ∇w (see (3.1)) are bounded on every set of the form {0 � y � λ}, for any λ > 0. Thus, we can use
the results demonstrated in Section 3 and Section 4.

The proof is based on the moving planes procedure. By Theorem 1.7 the set Λ defined in (4.1) is not empty and
λ̄ ∈ (0,+∞]. To conclude the proof we need to show that λ̄ = ∞.

Assume that λ̄ is finite, set λ0 = λ̄ + 2,

M0 := ‖u‖L∞({0�y�2λ̄+10}) + ‖∇u‖L∞({0�y�2λ̄+10}) + 1 > 0

and take τ0 = τ0(N,p,q,λ0,M0, γ ) > 0 and ε0 = ε0(N,p,q,λ0,M0, γ ) > 0 as in Theorem 1.6.
By Proposition 4.1 we have that, given 0 < δ < min{ λ̄

2 ,
τ0
4 } and 0 < ρ < ε0, we find ε̄ > 0 such that, for any

0 < ε � min{ε̄, τ0
4 ,1}, it follows

SuppW+
ε ⊂ {0 � y � δ} ∪ {λ̄ − δ � y � λ̄ + ε} ∪

( ⋃
x′∈RN−1

B
ρ

x′

)
,

where W+
ε = (u − uλ̄+ε)

+ · χ{y�λ̄+ε} and B
ρ

x′ is defined in (4.3).

We claim that u� uλ̄+ε in Σλ̄+ε , which contradicts the definition of λ̄ and yields that λ̄ = ∞. This, in turn, implies
the desired monotonicity of u, that is ∂u

∂y
(x′, y) � 0 in R

N+ .
To this end, we proceed by contradiction. Suppose that the open set

S(2δ+ε,ρ) := {
x ∈ Σλ̄+ε: u(x) − uλ̄+ε(x) > 0

}
is not empty, then u and v = uλ̄+ε satisfy (1.5) with λ = y0 = λ̄ + ε(< λ0), as well as: ‖u‖∞ + ‖∇u‖∞ � M0,
‖v‖∞ + ‖∇v‖∞ � M0. Since by construction 2δ + ε < τ0 and ρ < ε0, we can apply Theorem 1.6 to conclude that
u � uλ̄+ε on S(2δ+ε,ρ). This clearly contradicts the definition of S(2δ+ε,ρ). Hence S(2δ+ε,ρ) = ∅, which concludes the
proof. �
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6. Proof of Theorem 1.3 and Theorem 1.4

Proof of Theorem 1.3. Since we assumed that b(u) � 0 then −�pu � f (u) so that Theorem 1.7 in [21] applies and
gives that actually

0 < u� z

in R
N+ . Note that, once it is proved that 0 < u � z, then the strong maximum principle (see [35]) applies and gives

that 0 < u < z. It follows furthermore that u is strictly bounded away from z in Σλ for any λ > 0. In fact, if this is
not the case, arguing as in the proof of Theorem 3.1 (see case (a)) we could easily construct a limiting profile u∞
with 0 < u∞ � z, touching z at some point. This is not possible again by the strong maximum principle [35]. This is
enough to repeat the proof of Theorem 1.1 and get the thesis. �
Proof of Theorem 1.4. If u is not identically zero, then it is strictly positive by the strong maximum principle (see
[35,41]). Therefore u is monotone increasing w.r.t. the y-direction by Theorem 1.1 and the proof of (b) and of (c)
follows by [33,39] exactly in the same way as (b) and (c) in Theorem 1.6 of [21].

To prove (a) let N = 2 and denote by (x, y) a point in the plane. Define

w(x) := lim
y→∞u(x, y). (6.1)

We see that (see e.g. the proof of Theorem 8.3 in [21] for details) w :R→ R is non-negative and bounded with

−(∣∣w′∣∣p−2
w′)′ = f (w) � 0.

A simple O.D.E. analysis shows that w is constant and, by the assumptions on f , it follows that necessarily w = 0
that also implies u = 0 and the thesis.

To prove the non-existence result when f (s) > 0 for s � 0, we first consider the case N = 2. By the above argument
(which uses only the assumption f (s) > 0 for s > 0) we infer that u = 0 which contradicts f (0) > 0. Thus, there are
no non-negative solutions. The same argument can be employed to treat the case N � 3. Indeed, in this case the

assumption f (0) > 0 implies that f (s)� λs
(N−1)(p−1)

N−1−p in [0, δ], for some λ, δ > 0, yielding u = 0. Again contradicting
f (0) > 0. �
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