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Abstract

Let £2 be a bounded domain in R? with smooth boundary. In this paper we are concerned with the existence of critical points for
the supercritical Trudinger—Moser trace functional

/ (1 (0.1)
92

in the set {u € Hl(Q): f_Q(|Vu|2 + uz)dx =1}, where k > 1 is an integer and u > 0 is a small parameter. For any integer k > 1
and for any u > O sufficiently small, we prove the existence of a pair of k-peaks constrained critical points of the above problem.
© 2013 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Let £2 be a bounded domain in R? with smooth boundary, and let H'(£2) be the Sobolev space, equipped with the
norm
1

e (/(|Vu|2+u2)dx)7.

Let o be a positive number, the Trudinger—Moser trace inequality states that

/ealuz{<C<~|—oo, ifa <,

Cals) = sup =400 ifa>m

eH! (), <1
UEH (82), lull <L vy

(1.1)
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[1,2,6,7,18,22,23]. Let us mention that the early works [6,7] do not include the case when the constant in (1.1) is

exactly 7. For (1.1) there is a loss of compactness at the limiting exponent o = 7. Despite of that, it has been proven

in [28] that the supremum Cj (£2) is attained by a function u € H'(£2) with fQ[IVul2 +u?] =1, for any bounded

domain £2 in R?, with smooth boundary. Also, for any « € (0, 7r), the supremum C,(2) is finite and it is attained.

But the exponent « = 7 is critical in the sense that for any o > 7, Cy (§2) = 00. See also [8,16,17] for generalizations.
The aim of this paper is to study the existence of critical points of the Trudinger—Moser trace functional

Eq(u) = / e, (1.2)
EY)
constrained to functions
ueM={uecH" (2): |ul*=1} (1.3)
in the supercritical regime
a > T

In view of the results described above, we will be interested in critical points other than global supremum. As far as
we know, no results are known in the literature concerning existence of critical points for the Trudinger—Moser trace
constrained problem in the supercritical regime. Nevertheless, much more is known for the corresponding Trudinger—
Moser functional.

Let us recall that the Trudinger—-Moser inequality in dimension 2 states that

/euulzdx{<C<+oo, if u <dm,

Sup = 400, if w>4m.

ueHy (), |Vul2<1 g

(1.4)

Here again £2 is a bounded domain of R2, with smooth boundary. We refer the reader to [25,23,27,29] for the first
works on problem (1.4), and to [3,4] for some more recent contributions. For problem (1.4) there is a loss of compact-
ness at the limiting exponent ; = 4 [21]. Despite of this loss of compactness, the supremum

2
sup /e‘”"”' dx
ueHy(2). |Vul2<1 g,

is attained for any bounded domain £2 C R2. This was proven first in the seminal work [5] for the ball £2 = B;(0)
(see also an alternative proof in [ 10]). In [26] the result was proven for domains £2 which are small perturbation of the
ball. The general result in dimension 2 was proven by Flucher in [14], and Lin [20] extended it for the corresponding
Trudinger-Moser inequality for general domain of RY, with N > 2.

Concerning the supercritical regime for the Trudinger—Moser functional, namely

1, () =/e“|”|2dx, ue HY (), |Vu|3=1, with u > 4x, (1.5)
2

some results are known. In the works [26] and [15] it has been proven that a local maxima and saddle point solutions
in the supercritical regime u € (4, o) for the functional (1.5) do exist, for some o > 4.

Our first result is an extension of the existence of a local maxima for the Trudinger—-Moser trace functional in the
supercritical regime « € (7, o). Namely, a local maximizer for problem (1.2)—(1.3) exists when the value of « is
slightly to the right of .

Theorem 1.1. Let 2 be a bounded domain in R2. Then there exists oo > 7, such that for any a € (0, o), there exists
a function uy, € M which locally maximizes of E, on M.

This result is proved in Section 2.

Much more is known for problem (1.5) and u > 47. Recently in [12] (see also [11]), the authors obtained several
results concerning critical points for problem (1.5) also in a very supercritical regime. They found general conditions
on the domain §2 under which there is a critical point for 7, (1) with f o |Vul?dx = 1 when pu € (4rk, ), for any
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integer k > 1 and for some 4 slightly bigger than 47 k. In particular, for any bounded domain 2, they found a critical
point for 7, (u) with fQ |Vu|>dx =1 when p € (47, ju1), for some 11 > 4. The L>-norm of this solution converges
to co as 4 — 4 and its mass is concentrated, in some proper sense, as ;. — 47, around a point in the interior of £2.
On the other hand, if £2 has a hole, namely it is not simply connected, they proved the existence of a critical point
for I, (u) with f_Q |Vu|2 dx =1 also in the supercritical range u € (8w, uy), for some wr > 8m. Again in this case,
the L°°-norm of these solutions converges to co as u — 87, but now its mass concentrates, as y — 87, around two
distinct points inside £2. Furthermore, if £2 is an annulus, taking advantage of the symmetry, a critical point for [, (1)
with | o |Vu|>dx =1 and p € (4rk, juy) does exist. In this latter case, the L>-norm of the solution converges to oo
as u — 4k and its mass concentrates, as ;. — 4wk, around k points distributed along the vertices of a proper regular
polygon with k sides lying inside £2.

The second result of this paper establishes the counterpart of the above situation for the Trudinger—Moser trace
functional in the supercritical regime: we will show the existence of critical points for E, constrained to M, for
a € (km, ay), for any k > 1 integer and for some oy slightly to the right of k7. We next describe our result.

Let G(x, y) be the Green’s function of the problem

—AG(x,y)+G(x,y) =0, xe82;

G (x, 1.6
06t y) =278y (x), X €382, (1.6)
dVy

and H its regular part defined as

H(xvy)ZG(xvy)_zlog

. (L.7)
lx — ¥l

Our second result reads as follows.

Theorem 1.2. Let 2 be any bounded domain in R? with smooth boundary. Fix a positive integer k > 1. Then there
exists oy > km such that for a € (km, ), the functional Eq (u) restricted to M has at least two critical points ué

and ui Furthermore, for any i = 1,2 there exist numbers m’j’a > 0 and points E]i.’a €382, for j=1,...,k such that
. i
al_lf}{lnmj,a—mj € (0, 00), (1.8)
El,—>E €OR, withE £ for j#1, asa — km (1.9)
and
o —km £
ul,(x) =,/ - Z;[m'j’aG(x,éjJ’.’a) +o()], i=1,2, (1.10)
J:
where o(1) — 0 uniformly on compact sets of 2 \ {5{,...,5,2}, as o — kw. In particular, (€', m') = (éf, ...,éli,
m’i, e m;;) in (BQ)k x (0, oo)k,fori =1, 2, are two distinct critical points for the function
2 k k
feg,m) =+ [22'"? log(2m3) =Y “miH(Ej, ) — Y mim;G(&, sn]
j=1 j=1 i#]
Moreover, for any i = 1,2, for any § > 0 small, forany j =1, ...k,
sup ufx(x)—>+oo as o — k. (1.11)
x€B(§}.9)

There are two important differences between the result stated in Theorem 1.2 and the corresponding result obtained
in [12] for the Trudinger—Moser functional (1.5). A first difference is that for problem (1.2)—(1.3) existence of critical
points in the range « € (ki, o) is guaranteed in any bounded domain £2 with smooth boundary, at any integer level k.
No further hypothesis on £2 is needed, unlike the Trudinger—Moser case (1.5). The second difference is that, we do find
two families of critical points for problem (1.2)—(1.3) when « € (km, o), and not only one as in the Trudinger—-Moser
case (1.5).
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In recent years a very successful method has been developed for studying elliptic equations in critical or supercrit-
ical regimes. The main idea is to try to guess the form of the solution (using the shape of the “standard bubble”), then
linearize the equation at this approximate solution and use a Lyapunov—Schmidt reduction to arrive at a reduced finite
dimensional variational problem, whose critical points yield actual solutions of the equation. In this paper we use this
method to study problem (1.2)—(1.3) in the supercritical regime. We explain this in Section 3, where we also provide
the proof of Theorem 1.2. Some technical results are postponed to Section 4 and Section 5.

Let us just mention that through out the paper, C will always denote an arbitrary positive constant, independent
of A, whose value changes from line to line.

2. The local maximizer: proof of Theorem 1.1

We set
E(u) = / o, @.1)
982
and
My ={ue H' (2): |lul*=a}. (2.2)

We note that by the obvious scaling property, finding critical points of E, on M (see (1.2) and (1.3)) is equivalent
to finding critical points of £ on M, (see (2.1) and (2.2)). In this section, we study the local maximizer for the
functional E constrained on the set M, with « in the right neighborhood of 7.

We start with the following Lion’s type lemma. The proof is quite standard, but we reproduce it here for complete-
ness.

Lemma 2.1. Let u,, be a sequence of functions in H'(£2) with lum |l = 1. Suppose that u,, — ug weakly in H' ().
Then either

(1) uo=0,
or
(ii) there exists o > m such that the family et i uniformly bounded in L*(952).

In particular, in case (ii), we have that

2 2
/e”“m—>/‘e’”‘0 as m — oo.
982

082

Proof. Since |lu,,|| =1 and u,, — ug weakly in H'(£2), we have

/(VumVuo + ug) —> /(|Vuo|2 + u(z)) as m — oo.
Q Q
Thus we find that

lim i —uol® = lim {/[vam —ug)|* + (s — uoﬂ}
m-—00 m—00
2

= lim {numnz—2/<wmwo+umuo)+ ||M0||2}
m—0o0
2

2
=1 —luoll”.

Assume ug # 0. Take p € (1, W), and choose g1 and ¢» such that 1 < pgq; < % and q]_l + qu = 1. By

. . llum—uoll
Holder inequality we have
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f P / Pl =10 / Pt =10+ 2t )0 +u3]

082 082 82
— / Pl =0y 2ung—i3] / Pl =102+ 2]
52 82
L L
:-/e”P(umfuo)zez”Pumuo < < /6771”‘11(“/71140)2)(]1 (/ezﬂpqzumuo> qz.
982 082 982

We now recall that

= sup{@: sup / M do < oo} (2.3)
ueH(£2), lull<1 o

see for instance [2,0,7,18]. Hence, given the choice of p and g1, we get that there exists a constant C, independent
of m, such that

/e””q'(”’"_“(’)z <C.
082

On the other hand, Young’s inequality implies that 2|u,uq| < szui + 81—214(%, with € > 0 small. Then from (2.3), we
have

2.2 1.2 )
/eZﬂpqzumu0</e”P‘]2[8 ”m+5_2”0]=/eﬂpqﬁzuﬁ,enp‘h;”o<C
82 82 82

by choosing ¢ so that pgre? < 1. Here again C is a constant, independent of m. Thus, we have that there exists

o = prr > 1 such that the family et is uniformly bounded in L*(952).
We shall now show that

2 2
/e”“m — fe”“o as m — 0o. 2.4)
082

082
Indeed, let [ be a positive number and p > 1. We have

2 2 2
‘ f enum — / e”um‘ — ’ / en“m
82

320 um | <1} 320 um|>1) v e
1 1 p=1 C
2 14 P
T pu,; 2
S o (/e ”) (/“Wl> S 0
v Yo EYe, I

From the above relation, we conclude that

2 2
/eﬂum<|89|eﬂl +
982

2D °

14

Hence dominated convergence theorem implies (2.4).
Suppose now that ¢"n is not bounded in L%(082) for any « > 7. Using Stokes theorem, for « > 7 we have

/e‘w'z" do = /div(eo‘"'z'l)dx < C/ |Vum||um|e°‘”'2" dx

082 2

2
; : ;
q
gC(/qumFdx) </|um|q dx) </eﬁ“3" dx)
2 2 2

where g > 1 satisfies % + % + % =1 with 8 > 27. Then we get that f_q P dx is unbounded for all B >2m.
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Observe now that we can assume that f o Um dx =0, since otherwise we set i, = uy, — IA’IZ_I f o Um dx and obtain

f o Umdx = 0. We can also assume that f o Vi |? = 1. Furthermore, by Poincaré inequality, (u,,) is bounded in
H'(£2), and also (|u,,|) is bounded in H'(£2). Hence there exists u € H'(§2) such that |u,,| — uo weakly in H'(£2).
We claim that

m—00
2

lim /|V(um —mtfdx=1, vp>0. 2.5)

By contradiction, assume there exists 7 > 0 such that lim,,, f o IV, — m7*|?dx # 1. Define y = inf,, [, o |V, —
2

=4 > 2. Let us recall that

m7T|>dx < 1 and choose a sufficiently small & > 0 such that o :=

27 = sup{@: sup /eeuz dx < oo} (2.6)
ueH! (). [o IVul<1, o u=0

(see [2,6,7,28]). From (2.6), there exists a positive constant C such that

, . 5 (im 1= = 1y J Q1=
/e“ [t =1 17 [ ttm|—m) + 12 dx:/e al gt P e <C.

2 2

where we use the fact that [, |V (”\’;j"; [2dx < 1.

Define d,,, = \_rlz_| / o (uml — n)T. Choosing &’ > 0 small such that @ := ﬁ;, > 27, and by Young’s inequality,
2
w < O dn)” 4200+ dp) [ (| = 1) = don] + [(Jum| =) " — ]

<(1+&)[(uml —n)" —dn]” + (é + 1)(n +dn)*.

Thus, since there d,,, = O(1) as m — o0,

/65‘”3" dx =feﬁ”rzﬂ dx < Cy /e“'[('“’""”“‘\m Jaunl="F 4 < €5,

2 2 2

for some positive constants Cy and C5. This is a contradiction, thus (2.5) holds.
Set vy, = min{|u,,|, n}, then v,, is bounded in H'(£2) and, up to subsequence, we have that v,, — v. Observe now
that [upm| = v + (lum| — )", and

1=/|wm|2>/|V|um||2dx=/|va|2dx+/|v(|um|—n)+|2dx.
2 2 2 2

Therefore (2.5) implies that f_Q Vv |2 dx — 0 as m — o0, so v is constant. On the other hand,

lim [ |Vu,[?dx = lim_ f Vi ||* dx =0.
m—00
2 Qﬂ{|um|<n}

This implies that |[{x: |u,,| = n}| = 0 as m — oco. By Fatou Lemma,
[x: g > )| < limin] [x: ] > n}| =0,

then |{x: up > n}| =0 for any n > 0. Hence we get ug =0. O

We denote B :=sup,, ¢y E(u) =sup,cp Ex(u). A direct consequence of the previous lemma is the following

Proposition 2.1. Let u,, be a bounded sequence in H'(2) with ||\u,,|| = 1. Suppose that u,, — ug weakly in H'(£2).

Suppose Eq(up) — B with B > |082|. Then there exists o > m such that the family el is uniformly bounded in
L%(082). In particular Ex (uy,) — Ex(ug) and ug # 0.
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Proof. Suppose e“rzn is unbounded in L%(942) for all @ > 7, and assume the supremum of E; on M is not attained.
Then by Lemma 2.1, we have that ug = 0, which is impossible because E (u,,) — 8 > [0§2|. O

Let K be the set defined by

Kr={ueM: Ex(u)=B}.
Lemma 2.2. The set K is compact.

Proof. Let {u,} C K, be such that u,, — uo weakly in H'(£2), then by Proposition 2.1,
Ex(um) — Ex(uo).

Moreover, ||ug|| < ||lum|| = 1, then

En(ug) < Eg <u—0> < sup Ex (v) = B.
lluoll

veM

Then we get E; (uo) = 8, and |lug|| = 1, hence u,, — ug strongly in H'(£2), hence K is compact. [

The property of K, of being compact implies that the family of norm-neighborhoods
Ne={ueM|IvekKy: [lu—v|<e}

constitutes a basic neighborhood for K in M.

Lemma 2.3. For sufficiently small ¢ > 0, one has

sup E; < =supE;. 2.7)
Noe\Ng N

Proof. We argue by contradiction. We suppose that there is a sequence u,, € Ny \ N, such that E (u,,) — B. Then
we have u,, € H'(£2) with ||lu,,||*> = 1. Up to subsequence, we can assume that u,, — uo weakly in H'(£2). By the
definition of Ny, there is z;,, € K such that ||z, — u;; || < 2¢. By the compactness of K, we have that z,,, — 2
strongly, with z € K, and z satisfies

. 0z 7TzeZz
—Az+z=0 1in$2, —=-——7— o0naiQ.

v [n 2%
By the maximum principle, we have z € L*°(£2).
By the lower-semi continuity, we have ||z — ug|| < 2¢. Then
uo
Uy — ——
lluoll
Thus € Nye, and so E; (ug) < En(ﬁ) < B.If E;(up) = B then |lugl| = 1, and u,, — ug. On the other hand,
our assumptlon implies that uo ¢ N,, thus u( does not belong to K,; and ug cannot be relatively maximal. Thus we
necessarily get E; (ug) < .
Set w,, = umym — z2m + 2, S0 we have w,,, — ug weakly in HY(£). Since

HZ ] I ¢ ==+ 1~ ol < de
uo

eﬂlwmlz — en‘“m*1n1+z‘2 < 627T|”nz*2m|2 27T|Z|2

— 27‘[||Mm Zm” (“um ~mH 27T|Z| <687T8 (Hum m) zn‘zlz

um—zmll

Choosing ¢ small such that 1682 < 1, then from (2.3) we have that e™ w2 is uniformly bounded in L2(8.{2), as
m — oo. Thus lim,,— o0 Ex(w;,) = Ex(up). On the other hand, we have w,, — u,, — 0 strongly in Hl(.Q). By
uniform local continuity of E, and compactness of K, we obtain that E; (wy,) — E; (i) — 0, and E (ug) = B.
This is a contradiction. O
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Lemma 2.4. There exists a* > 7w, ¢ > 0 such that for all a € [, a*), then we have

(1) sup Ey <sup Ey. (2.8)
NZS\NS Ne

(ii) By :=supy, Eq is achieved in Ne.
(i) Ky ={u € N | E4 (1) = By} is compact.

Proof. (i) Since K, is compact, there is a neighborhood N of K, such that, for any ¢ > 0 there exists 8’ > 0 such
that for all | — 7| < § then |Ey(u) — Ex(u)| < ¢, for all u € N. Choose ¢ > 0 such that (2.7) holds and N, C N,
then (2.8) will be valid for all « in a small neighborhood of .

(ii) For such «, let u,, € N, be a maximizing sequence of E,, that is, E(u,,) — B, and let v,, € K, satisfy
letyy — v || < . We may assume that v,, — v strongly in H'(£2) with v e L*®, and u,, — u weakly in H'(£2). Set
Wy, = Uy — Uy + v, as in the proof of Lemma 2.3, we obtain that for ¢ > 0 small, ¢ in a neighborhood of = we have
that

Eo(wnm) = Eq(u), Eo(um) — Eq(wy) >0 asm — oo.
Then Ey(u) = B,. Moreover, by the lower-semi continuity, we have ||v — u| < e. Then

u
M——H=||U—u||+1—||u||<2€-

u
[ P
[luell [[ull

We get that = € No, and E“(IIZ_H) < Bgo- Furthermore, since |ju|| < 1, we can get E"‘(HZ_\I) < Ey(u) and |Ju||=1. 1Tt

flul
implies that u € M, thatis u € N, and B, is attained. Moreover, u,, — u strongly in H! (£2).
(iii) As in the proof of (ii), if u,, € K, we may assume that u,, — u weakly in H'(£2), we then get u € K, that
is Ky is compact. O

Proof of Theorem 1.1. From (2.3), we have that sup,, E is achieved for « < . Moreover, since sup,,cy E(u) >
|082], from Lemma 2.4 we have that for « sufficiently close to i, then E has relative maximizers on My,. O

3. The proof of Theorem 1.2

In this section, we consider critical points of functional E(u) constrained on the set M, (which is equivalent to
consider critical points of E,(u) constrained on the set M with o = k(1 4+ ), where © > 0 small). We define a
critical point of E, constrained on M to be a solution of the following problem

—Au+u=0 1in £;
u 2

— = Aue onds2,
ov

(3.1)

where
. o k(14 )
fa.o uet” faQ e

In this section we shall prove the existence of solutions to problem (3.1)—(3.2) with the properties described in
Theorem 1.2. In fact, we will construct a solution to (3.1)—(3.2) of the form

A

(3.2)

u=U + ¢, (3.3)

where U is the principal part while ¢ represents a lower order correction. In what follows we shall first describe
explicitly the function U (x). The definition of this function depends on several parameters: some points £ on the
boundary of £2 and some positive numbers m. Next we find the correction ¢ so that U + ¢ solves our problem in a
certain projected sense (see Proposition 3.1). Finally we select proper points & and numbers m in the definition of U
to get an exact solution to problem (3.1)—(3.2).
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To define the function U, first we introduce the following limit problem

Aw=0 in Ri;

B_w =e¥ on aRi;

dv (3.4)
/ e¥ < oo.
IR%

A family solution to (3.4) is given by
2

wy. , (x) = w; , (x1,x2) =1o , 3.5
o0 = W S =02+ (2 + )2 G-
where t € R and p > 0 are parameters. See [19,24,30]. Set
2u
wy(x) :=wo ,(x) =log 57———. (3.6)
' ' X} + (2 + )
Let &1, ..., & be k distinct points on the boundary and my, ..., mj be k positive numbers. We assume there exists
a sufficiently small but fixed number § > 0 such that
1
& —&jl>8 fori# j, 8<mj<§. 3.7
For notational convenience through out the paper we will use the notation
& m)=(&1,.... 86 my,...,mg).
Forany j=1,...,k, we define ¢; to be the positive numbers given by the relation
2 1 2
2um%| log — +2log(2m?) | = 1. (3.8)
; 2

Since the parameters m ; satisfy assumption (3.7), it follows that lim;, _,¢ ¢ ; = 0. Define moreover u ; to be the positive
constants given by

log(2uj) = —2log(2m?) + H(Ej, £)) + Y _mim; ' G(&, £)). (3.9)
i#]
Using once more assumption (3.7), we get that there exist two positive constants ¢ and C, such that ¢ < u; < C, as
A — 0.
We define the function U in (3.3) to be given by

k
UG)=vaY mj[uj(x)+ Hjx)], (3.10)
j=1
where
1

lx —&j —ejujv(E))
v(&;) denoting the unit outer normal to d£2 at the point &;, and where H; is a correction term given as the solution
of

uj(x)=1log B (3.11

—AHj+H'=—uj in £2;
0H; ou
J uj J
— =2¢jpje" — — onds2.
av it av
Arguing as in Lemma 3.1 in [9], one can show that the maximum principle allows a precise asymptotic description of
the functions H;, namely we have that

(3.12)
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Hj(x)=H(x,§j)+O(87) for0<o <1 (3.13)

uniformly in £2, as . — 0. Recall that H is the regular part of the Green’s function, as defined in (1.6). Therefore, the
function U can be described as follows

k
Ux)=v2) mi[Gx,&)+ 0(e9)] (3.14)
j=1
uniformly on compact sets of 2 \ {&1, ..., &}, as A — 0. On the other hand, if we consider a region close to &;, for
some j fixed, say for |x — &;| < 8, with sufficiently small but fixed §, we can rewrite
U(x) =~amj(w;(x) +loge;” + Bj +6(x)), (3.15)
where
x—§ 2 x o, &
wix)=w .<—)=log , y=—, & ==, (3.16)
! SANEY ly =& — mjvENP ej g
and
k
Bj=—logQuj) + HE}, &)+ Y m;'miGE &),  00)=0(x—&l)+ ) 0(c9).
i#] j=1

Define on the boundary 92 the error of approximation

oU
R:=fU)— —. 3.17)
av
Here and in what follows f denotes the nonlinearity
£@@) = riie .

The choice we made of 1 in (3.9) and of ¢ in (3.8) gives that in the region |x — &;| < 4, the error of approximation
can be described as follows

R=m;V/A{(1+2xm3 (w) + O(1))e7"I (1 + 0w))) — e e, (3.18)

where w; is defined in (3.16). Indeed, for x € 9§2 with |x — &;| < 8, we have that
-2
AR P = [ () +loge? + B +0(x)) 1 0 OO HOCDE
1
= (Amj (10g—2 +ﬂj> —i—)»mj(wj + 0(1)))
&4
J

Am%(log Eiz+ﬂ_/)2 ZAmﬁ(log §+ﬂj)w_/ 2Am§(log E%+,3_;)9(x)
X e J e J e J

1 1 !
J J

23’ (log 5 +7)0 (x)
J

e,\mﬁ(wj +0(x))?

Amz.(log Lz-l-ﬂ,-)z ZAmz.(log %—Q—ﬂj)w,- ) 2
< e J e J & / eAmj(wj+0(x))

e e

1 1
1 7 (log 5 +8;) 20 2
=5 (1 + Z)Lm?(wj + 0(1)))6 £ Wi ) Hj (W +0(x)
mj

= e P14 20m3 ) 4+ O(1)) eI (14 0 Gwy)
J

thanks to the definition of ¢; in (3.8). On the other hand, in the same region, we have
10U

k
_1 el _ 1w
A o= 5[mj(wj(x)+logaj2+,3j +6(x))] =mje; lewi +;0(5§) as A — 0.
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The definition of w1 ; in (3.9) allows to match at main order the two terms % and f(U) in the region under consider-
ation, since we easily get that
1 ~ 2.2
ATEFO) =mj(1+ 2am3 (w; + 0(1)))8;1ew/'e*mj"’j (1+00w))).
These facts imply the validity of expansion (3.18). Let us now observe that a direct computation shows that R(x) ~
A%(sj_lew/(x) in the region |x —&;| = O(A); while, in the region |x —&;| > 6 for all j, we have that |R(x)| < CA%, for
some positive constant C. We thus conclude that the error of approximation satisfies the global bound

IR| < CAZp(x),

where

k
pO0) = pj () xBsiep (0) + 1.
j=1

Here x;(;) is the characteristic function on Bs(§;) N 952 and
1 2,2 1w
pj(x) = m—z{(l +2Am§(wj + 0(1)))8’”./"’/‘ (1+ 0(w)) — 1}s]. Tei,
m=
i
From now on, let us write

w2
1 1 2_J -1 w;
pi)=cyiy |1+ —w; + D) J{ 1+ —(1+w;l) Je™s —1e; e, (3.19)
Vi Vi
where y; =log 8;2. We define the L°°-weight norm
Inllsa0 = sup p(x)~'[h(0)]. (3.20)
x€082
We thus have the validity of the following key estimate for the error term R
3
[ Rllx002 < CA2. (3.21)
Up to this point, we have defined a function U, whose expression depends on &, .. ., & points on 952, and depends
on miy, ..., my positive numbers. These points and numbers satisfy the bounds (3.7). We next describe the problem

that the function ¢ in (3.3) solves.
Define in RZ = {(x1, x2): x2 > 0} the functions

X2+ [ X1

20j (1 x2) = — — 21j (1 x) = 25—
! ! X} + (2 + 1)’

M X%+(X2+ll«j)2’
It has been shown in [9] that these functions are all the bounded solutions to the linearized equation around w,, ; (3.6)
associated to problem (3.4), that is they are the only bounded solutions to

w _

Ay =0 inRZ, —
v + 0X2

e"iy on dRZ. (3.22)

For &; € 9§2, we define F; : Bs(§;) — O to be a diffeomorphism, where O is an open neighborhood of the origin
in R%r such that F; (£2 N Bs(§;)) = Ri NO, Fj(02N Bs(§)) = BRi N O. We can select F; so that it preserves area.
Define

Zijx)=zij(e] ' Fi(x), i=0,1, j=1,....k (3.23)

Next, let us consider a large but fixed number R > 0 and a nonnegative radial and smooth cut-off function x with
x(r)y=1ifr <Rypand x(r)=0ifr > Ry + 1, 0 < x < 1. Then set

X =¢; ' x(e7 Fi). (3.24)
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The problem we solve is the following: given &1, ..., & and m, ..., my satisfying the bounds (3.7), find a function ¢
and numbers c¢;; such that

—AU+¢)+U+¢)=0 in £2;
k
a(U +
U +4) - D _ 0 + eV 4 VR >N cijxizij ondg;
i=0,1j=1 (3.25)
/XjZij(b:O fori=(),1,j=1,...,k.
2

Consider the norm
Iplloc = sup e (x)|.
xes
In [13], we have the following result.

Proposition 3.1. Let § > 0 be a small but fixed number and assume the points &1, ...,& € 052 and the numbers
mi, ..., my satisfy (3.7). Furthermore we assume that € ; and v j are given by (3.8) and (3.9). Then there exist positive
numbers Ay and C, such that for any 0 < A < Lo, there is a unique solution ¢ = ¢ (A, &, m), ¢;j = c;ij (A, &, m) to (3.25).
Moreover,

3
[¢llo < CAZ, cij| < CA. (3.26)
Furthermore, function ¢ and constant c;j are C U with respect to (§,m), and we have

3
| D m@lloo < CA2, |Dg mcij| < CA. (3.27)

We will sketch the proof in Section 4, leaving some technical details to Appendix A.
Assuming for the moment the validity of the statement in the above proposition, we observe that U + ¢ is an exact
solution to problem (3.1), if there exists a proper choice of A, of the points &; and the parameters m ;, such that

k(1
- 7+ W _ and ;=0 foralli, j, (3.28)
T U+ 67605
or equivalently
/[|V(U+¢)|2+(U+¢)2]dx:kn(l+u) and ¢;; =0 foralli, . (3.29)

2

In order to solve (3.29), we are in the need of understanding the asymptotic expansion, as A — 0, of [ olIVWU +
#)|*> + (U + ¢)*1dx in terms of the localization of the points & and the values of the parameters m. Next proposition
contains this result, together with the asymptotic expansion of |, 90 eV +¢’)2, as A — 0, again in terms of & and m.

Proposition 3.2. Under the conditions of Proposition 3.1, assume that € and w; are given by (3.8) and (3.9). Fur-
thermore, we assume that A is a free parameter. Then, as A — 0, we have

/[|V(U + &) + (U + )2 dx =k {1+ Afi (€, m) + 22O, (€, m)) (3.30)
2

where

k k
2
fe(&.m) = %[22 m3log(2m3) =Y "miH (&), &) — ) :mfij(Ei,Ej)}. (3.31)
j=1

j=1 i#]
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Moreover, as A — 0,

k k

2 -

/e<U+¢> = 10| + 47 Zm§+/\zm§[c+/Gz(x,gj)]Jr,\z@A(g,m), (3.32)
90 j=1 j=1 952

where ¢ is a positive constant. In (3.31) and (3.32) the function ©, (&, m)(x) denotes a generic smooth function,

uniformly bounded together with its derivatives, as A — 0, for (&, m) satisfying (3.7). In (3.31) and (3.32), G is the
Green’s function defined in (1.6) and H its regular part, as defined in (1.7).

Next proposition will suggest how to solve problem in (3.29).
Proposition 3.3. Under the conditions of Proposition 3.1, let R be the set of points (§, m) satisfying (3.7). Then there

exist 1y > 0 and a subregion R’ of R such that for all 0 < . < po and for all (§,m) € R’, there exists a function
A =A(u, &, m) such that

/[IV(U + ) + U +¢)*]dx =kn(1+p) forall >0, u— 0. (3.33)
2
Moreover, ) is a smooth function of the free parameter wu, of the points &1, ..., & and of the parameters my, ..., m.
Furthermore, ). — 0 as u — 0 for points &1, ..., & and parameters m1, ..., my belonging to R'. With this definition

of A, we have that the function ¢ and the constants c;; are C Uwith respect to (€, m). We finally have that
DeE(U+¢)=0 = ¢;j=0 foralli,j. (3.34)
See (2.1) for the definition of E.
The proofs of Proposition 3.2 and of Proposition 3.3 are postponed to Section 5.

Given the choice of A defined through formula (3.33), for all ;£ > 0 small, Proposition 3.3 gives that U + ¢ is a
solution to problem (3.1)—(3.2) if we can find (§, m) to be a critical point of the function

Z(E,m):=EU +¢). (3.35)

We have now all the elements to give the

Proof of Theorem 1.2. Let D be the open set such that

Dc{E me@2) xRh: & #£¢&;, Vi#j).

Let U (x) be defined as in (3.10), and ¢ (x) be the solution of problem (3.25), whose existence and properties are stated
in Proposition 3.1. Proposition 3.3 gives that

ux) =Ux)+o(x)

is a solution to problem (3.1)—(3.2) if we can find (£, m) to be a critical point of the function
Z(,m):=EWU +¢).

From (3.33) and (3.30), we have

A€ m) + 220, (. m) = (3.36)
where
2 k k
fieg,m) == [2_21”@ log(2m?) — X;m?H(gj, &) — gmimﬁ(a, s,->}.
J= J= 7]

In (3.36), ©, (&, m)(x) denotes a smooth function, uniformly bounded together with its derivatives, as A — 0, for
(&, m) satisfying (3.7). Make the change of variables s; = m% So we write, with abuse of notation,
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k k
2
feE.s) =7 [2Zsj log(2s)) — Y s H(E}. E)) — Y /5i5; G (& s,o}.
j=1 j=1 i#j
Fix &. Observe that the function s — f; (£, s) has a unique zero, namely there exists a unique s = (51 (§), ..., 5(§)) €
Rﬁ_ satisfying fi (&, 5s) = 0. We have the following properties:

(1) sjisa C! function with respect to £ defined in (352)%;

(ii) There is a positive constant co, independent of the points &, such that 5; > cq for each j =1, ..., k;
(iii) §; — +ooas |§ —&;j| — 0 for some i # j;
(iv) Define

MT={( ) e @) xRE: 51505k #£0, fi(&,s) > 0}.
Then (£, (1 4+r)5) € M for r > 0 small.

Proof of (i). Since f(&,5) =0, and for j fixed,
2 1
0s; fx (€, 8)|s=s = z{ﬂog(ﬁj) +2-— [H(gj, &) — 3 Zin/EjG(fi’ g/’)} }
i#]
Then

k
- o __ 4 _
Vi fil§,5) 5 =0y filE, D51+ + By fil€, 3= ) 55> 0. (3.37)
j=1
Thus we get V; fr (€, 5)|s=5 # 0. The implicit function theorem implies the validity of (i).

Proof of (ii). According to the definition of 5, we know that
k

2 Si
%Zij[Zlog(Zij)—H(fj,éj)—z %G(Si,éj)}=0-
j=1 i#j VY
It yields that

_ Si
210g(25)) — H(Ej. ) =Y |=G(&.&)) > 0.
i#j |
So
_ 1 HE; 8
S/' > —e 2 .
’ 2

Then we get (ii).

Proof of (iii). Since G(§;,&;) — +ooif |§ —&;| — 0, for some i # j, if we suppose that 5; is bounded, for some /,
then the relation f; (€, s5) = 0 would provide a contradiction. This proves (iii).

Proof of (iv). For r > 0 small, by the Taylor expansion, from (3.37) we have

Je(6, A+1)35) = fi6,5) + [8s, fu (€, 5)51 + - - + By, fir (€, D)5 ]r +0(r)

k
4 _
=%r2s,~ +o(r) > 0. (3.38)
j=1
Making the change of variable, define s = (1 + )3 with > 0 small, we have (£, (1 +r)s) e M™.
Thanks to the above properties, we conclude that relation (3.36) defines A as a function of the free parameter u and
(&, s5). More precisely,

n w?

A=
Je(€, (1 +1)5) " fi &, (1+1)5)°3

where ©, (&, s) is a smooth function, uniformly bounded together with its derivatives, as A — 0.

OL(,s) (3.39)
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Taking (3.39) into (3.32), we get that

k k_§ié+ [0 G2(x,E))]
I(g,(1+r)§):|39|+4(1+r)n2§j+,u21_] Jik(é,(lfdfrﬁ) J +<fk(§,(l;+r)§)

j=I
k ko < rx 2
i 5i[e+ G-(x,&)]
=|a:z|+4(1+r)n25j+uzf — {m_ J
j=1 xr Zj:l Sj
where @, (§, s) is a smooth function, uniformly bounded together with its derivatives, as @ — 0.
We claim that, given § > 0, for all © > 0 small enough, the function

k k SK_Sile+ [0 GHx, E)]
¢M(S,§,r)::|39|+4nZ§j+4rnZ§j+M /=1 ]4 {ag_ d
j=1 j=1 2 Zj:lsj

2
> Ou(§,s)

+UOuE. ). (3.40)

has a critical point in the region [§ — &;| > 6 for i # j, §; € 082, and 8,/ <r < 8~ /i, with value |3£2| +
4 Zl]‘:l 5j+ O0( /1), as u— 0, in the region considered. By construction, the critical point situation is stable under
proper small C ! perturbation of ¢, : to be more precise, any function ¥ such that ||y — @ llco + V¥ — V@, [loc < Cp

in the region considered, also has a critical point. This fact will conclude the proof of Theorem 1.2.

Observe that the function
k k k<= 2 .

P Qu(E.5.r) = 1082] +4n Y 5 +arm Y 5+ quzl S’EC al {‘m G t, 5]
j=1 j=1 x’ Zj:l Sj

has a critical point 7 given by

VDt oo G
4% Zf‘:l 5j
which is a nondegenerate minimum, since
ShotjlE+ fog GP0rE91 1
: Zl;'=1 5j r?
Inserting the value of 7 in ¢, in the new variables & (052)%, we get

@ (&) :=Z(&, (1 +7)3)

VA,

> 0.

2 €5, 1) =n

k k
= 0R2| +4r Y §; +2vkm §j|:5+fGZ(X,fj):|«/ﬁ+M@M(§,S)
— ‘

Jj=1 J PY9)
k

= 02| +47 Y 5+ 0(Jm) aspu—0
j=1

for& € 2 ={(51,....&) € Ok & #¢& ifi # j).
Next we show that functional @ (£¢) has at least two critical points. Let Cy be a component of 952. Let A : S LN
be a continuous bijective function that parametrizes Cp. Set

Qu={G1,....8) €Ch: & — & > 8 fori # j}.
The function @ is C, bounded from below in Qk, and from (iii) we have
DE)=D(&1,...,5) > +oo  as|§ —&j| — 0for some i # j.

Hence, since § is arbitrarily small, @ has an absolute minimum ¢, in ka.
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On the other hand, using the Ljusternik—Schnirelmann theory, we get that ¢ has at least two distinct points in k.
Let car(§2;) be the Ljusternik—Schnirelmann category of 2y relative to §2¢, which is the minimum number of closed
and contractible sets in .Qk whose union covers Qk. We will estimate the number of critical points for @ by cat(.Qk).

Claim: car($2;) > 1.

Indeed, by contradiction, suppose that car(§2;) = 1. This means that §2; is contractible in itself, namely there exist
a point & 0e S~2k and a continuous function I" : [0, 1] x S~2k — fzk, such that, for all £ Qk,

1"(0,8) =§, I"(1,8) = &o.

Define f : S' — §2; to be the continuous function given by
FE) = (AG). A(PTEE). ... AT E)).

Let :[0, 1] x S' — S! be the well-defined continuous map given by
n(t.5)=A""om o I'(t, f(§)),

where 7 is the projection on the first component. The function 7 is a contraction of S! to a point and this gives
a contradiction, then claim follows.
Therefore we have that cat(SZk) 2 for any k > 1. Define
c = sup 1nf D)
cezé
where

& ={C C 2 C closed and car(C) > 2}.

Then by Ljusternik—Schnirelmann theory we obtain that c is a critical level.

If ¢ # ¢, we conclude that @ has at least two distinct critical points in f}k- If ¢ = ¢y, there is at least one set C
such that cat(C) > 2, where the function @ reaches its absolute minimum. In this case we conclude that there are
infinitely many critical points for @ in .

Thus we obtain that the function @ has at least two distinct critical points in fzk, denoted say by & 1 & 2 Hence, for
w sufficiently small, the function Z (£, s) has two distinct points (& L s,ll) and (¢ 2 sﬁ) close respectively to (§ La+
F(EY5ED) and to (€2, (1 +7(£2))5(£2)). This implies the existence of a solution to our problem of the form U + ¢.
Finally, let us remark that (1.10) holds as a direct consequence of the construction of U and of the fact that ¢ is a
smaller perturbation. This ends the proof of the theorem. O

4. Proof of Proposition 3.1

The proof of Proposition 3.1 is based on a fixed point argument and the invertibility property of the following linear
problem: Given i € L*°(942), find a function ¢ and constants ¢;; such that

—Ap+¢=0 in £2;
k
L@)=h+ Y > cijxjZij onds;
i=0,1j=1 (41)
fXjZij¢=O fori=0,1, j=1,...,k.

2
We shall prove the validity of the following

Proposition 4.1. Let § > 0 be a small but fixed number and assume we have &1, ..., & € 082 and my, ..., my with
.. 1
& —&j1 =68, Vi#], 8<mj<g. 4.2)

Then there exist positive numbers Ly and C such that, for any 0 < A < Ay and any h € L*°(352), there is a unique
solution ¢ = T (h), and c;j € R to (4.1). Moreover,

[Plloe < Clinllx5- (4.3)
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The proof of this result is postponed to Appendix A.

The result of Proposition 4.1 implies that the unique solution ¢ = T (k) of (4.1) defines a continuous linear map
form the Banach space C, of all functions /# in L>°(9£2) for which ||A]|« 50 < oo into L°°, with norm bounded
uniformly in X.

Lemma 4.1. The operator T), is differentiable with respect to the variables &1, ...,& on 082 satisfying (4.2), and
mi, ..., myg, one has the estimate
|D: T ()|, < Clikllsoe. | DuT®)|, < Clihllko0 (4.4)

for a given positive C, independent of A, and for all . small enough.

Proof. Differentiating Eq. (4.1), formally Z := 0g, ¢, for all s, [, should satisfy in £2 the equation
—AZ+Z=0 in§2,

and on the boundary 92

L(Z)= agél(Ze ! w,>¢+ Z Zcz]ai;‘”()(] Zij) + Z Zdl]ZlJX]

i=0,1j=1 i=0,1j=1

with d;; = ¢, ¢;;, and the orthogonality conditions now become

/ZL/X./ZZO ifs #j,

Q
f ZisxsZ=— / 8&1 (Zisxs)o.
Q Q
We consider the constants «,p, a =0,1,b=1, ..., k, defined as

“ub/Xb2|Zab|2=/38x,(zab)(b)¢, fora=0,1, b=1,...,k.
2 2
Define

k
7= Z+ Z ZaabXbZab-

a=0,1b=1
‘We then have

—AZ+7Z=f in £2;
k
L(Z):h] + Z Zdl‘jzij)(j on d52;
i=0,1j=1

/ij,~,2=0 fori=0,1, j=1,...,k,
2

where

k
fi=>"  dar(— A Zab) + XbZab),

a=0,1b=1

hy =—assz<Ze]1 w1>¢+ > Zc,,aglle,x,w > ZaabL(szaw.

Jj=1 i=0,1j=1 a=0,1b=1
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Hence, using the result of Lemma A.1 we have that

1Zlloo < C(Il1llx002 + 1l fillax,2)-
By the definition of a4p, we get |agp| < Cll@|loo. Since [|plloo < Clihlls,0, |cij| < Cllhll«,a52 we obtain that

1Zlloo < Cllhl+,00-
Hence we get

|0z, To(h)| , < Cliklls,9  foralls, .

Analogous computation holds true if we differentiate with respect tom;. O
We are now in the position to prove Proposition 3.1.

Proof of Proposition 3.1. In terms of the operator 7) defined in Proposition 4.1, problem (3.25) becomes

¢=Ti(R+N(@)):=A9), (4.5)

where R is defined in (3.17). For a given number y > 0, let us consider the region

Fyi={p € C2): Iploo <yri).

From Proposition 4.1, we get

|A@)] . < C[IRIk02 + [N@D, 40

An involved but direct computation shows that

k
‘ 1Oy =Y e tem|  <cns (4.6)
j=1 *,082

and

|77 @], 40 <C. 4.7)
From (3.21), (4.6) and (4.7), from the definition of N (¢) in (4.5), namely

k
N@):=fU+¢) - fO) - f' () + [f’(ﬁ) - Zs;‘ewf}qs, (4.8)
j=1

it follows that

|A@) ], <C(3 + 912 + Aidlloo).

We then get that A(F),) C F), for a sufficiently large but fixed y and all small 1. Moreover, for any ¢1, ¢ € F,, one
has

[N@D) =N @], 50 < C[(max Igilloc) +2]I61 = d2ll.
In fact, using directly (4.8),

k
N(¢D) = N(@2) = f(U +¢1) — [ (U +¢2) — 'O (1 — o) + [f’(f]) - Zs;‘ewf} (@1 — ¢2)

=1

j=1

k
= | (F(T+d2+1(1 — d) — £/(@)) di ($1 — p2) + [f’(ﬁ) - Ze;lewf} (@1 — p2).

j=1

1 k
d ~ - -
/(Ef(U + @2+t —¢2))) dt — f'(U)(¢1 — ¢2) + |:f/(U) - ZE}lew’}(qﬁl —¢2)
0
1
0
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Thus, for a certain t* € (0, 1), and s € (0, 1)
k
[N(¢1) = N(@2)| < C[|f’(l7 +éo+ 15 (g1 — ) — f1(O)] + (f’(U) - Ze;lewfﬂ l¢1 — p2lloo
j=1

< C[|f”((7 +5¢2 + 15 (91 — 92))| (16111 (2) + 1921100)

k
+ [f’(ff) - Zs;lew-fﬂnm — $2llco.
j=1
Thanks to (4.6), (4.7) and the fact that ||@1||co, [[P2]lcc = 0 as A — 0, we conclude that
IN@1D) =N @), 40 < Cllg1lloc + lIp2lloc +2]161 = d2lloo-

Then we have
[4@) = 4@, < C[N@) = N @] 50 < €[ max 510+ 2] 161 = B2llc.

Thus the operator A has a small Lipschitz constant in 7, for all small A, and therefore a unique fixed point of A exists
in this region.

We shall next analyze the differentiability of the map (&, m) = (€1, ..., &, m1, ..., m) — ¢. Assume for instance
that the partial derivative g, ¢ exists, fors =1,...,k,l =1, 2. Since ¢ =T, (N (¢) + R), formally we have that

3, ¢ = (B, T) (N (@) + R) + T (3, N (¢) + 9, R).

From (4.4), we have

N\w

|05, T2 (N (@) + R) | < C|N@) + R, 5, < Ch
On the other hand,

8, N@) = [1/(T +¢) — £/ — f"(0)¢]0e,T + 8&( [ZS D

k
+[f @ +¢)— f(O0)]oe, 0 + (f’(U) - [Z e w“fDéM.

j=1
Then,

|36, N (@), 50 < C{lll1Z, + Mlloo + 1600196y Plloo + 2119z, oo}

Since |0, Rlx,002 < <2 , Proposition 4.1 guarantees that

l19g,Plloc < %

for all s, /. Analogous computation holds true if we differentiate with respect to m ;. Then, the regularity of the
map (§,m) — ¢ can be proved by standard arguments involving the implicit function theorem and the fixed point
representation (4.5). This concludes proof of the proposition. O

5. Proofs of Proposition 3.2 and of Proposition 3.3

5.1. Proof of Proposition 3.2

Proof. Let us write

k
Ux)=) Uj(x), withU;x)=~vam;[uj(x)+ Hj(x)]

Jj=1
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where u ; and H; are given by (3.11) and (3.12). We observe that U; satisfies
—AU;jx)+U;j(x)=0

oU;
(I;U(X) = 2\/ij8jujeuj(x) on 052.

in £2;

5.1
We have

/[|V(U+¢)|2+(U+¢)2] =/(|VU|2+U2)+/
2

2(VUVe +Up) + (IVoI* +¢*) ] i= L+ I,.  (5.2)
2 2
For 1,, we have
k
Zf |VU; |* +U —i—Z/(VUiVUj—i-Uin):Ia1+1u2 (5.3)
i=lg i#] 0

Multiplying (5.1) by U; and integrating on §2, by (3.13) we find

k
a1—22\/_111/8/;/,1/e“j(x)Uj(x)=ZZAm§8juj/e“f(uj-l-Hj)
a2 j=l a2

k

—ZZKmZ./ Eilti ( 1
j=1 ja.(z = |x —5i

+H(x, &)+ 0(e
§j _8JMJV(§])|2 gjﬂjv(fjﬂz (x, &5) (81 ))

1 1
=Y 2am3 / [log + H(Ej E) —2log(ein;) + O(e2 ]
; g y=vOPL "y —vOFP " )+ O(E])
= 2% ju
where £2¢,,; = f,f,j . Using the following facts
1 1 1
——=7w+0(&9), /
f ly —v(0)? (=)
Ejtj

log = —2mlog2+ 0(&9),
ly =v(O2 |y —v(0)? ( j)
Ejtj

and the definition of ¢; given in (3.8), we obtain

ol = Z2Am%[—2n log2+mH (&), &)) — 2 log(ejuj) + O(¢7)]

=k 4270 Y mA[H(E, &) — 2log(2m?) — 2log2u,) + O (c%)]
j=1

54
Multiplying (5.1) by U; and integrating on £2, we find

laa=) | 2Vhmjejn;e iU ) =2 imimjeju, / e (u; + H;)
i%i 5

1 1
=22Am,-mj / 2[log 5 +Hi(8jujy+$j)}
— ly —v(0)] & —& +ejujy —eipivE)l
i#£] a‘QSjHj

_2nAZm m;j

1 1
|:G($,,$J) + o(e, log — +e] log — ) +0(ef + 87):|. (5.5)
i#]
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Thus from (5.3), (5.4), (5.5) and the definition of x; givenin (3.9) we get

k
1
/(|VU|2 +U%) = kn{l + Afe(E,m) + Zs, log —@;,.(&,m) (5.6)
2 Jj=1 £

where f; is the function defined in (3.31) and @, (&, m) is a smooth function, uniformly bounded as A — 0, in the

region for (¢, m) satisfying (3.7). This is an estimate in the C 0_gense. For C!-closeness, the derivatives in & and in m,
by the same argument of C?-estimate, we have

k
1
D¢ (/(|VU|2 + U2)) = km A D (fi(€.m)) + ) _e;jlog — O m), (5.7)
Q j=1 !
k 1
Dy, (/(IVU|2 + UZ)) = KTtk Dy (fie&, m)) + ) e log —O1(E,m), (5.8)
19 j=1 /

where © (&, m) is uniformly bounded, as A — 0, in the region for (§,m) satisfying (3.7). From the choice of ¢;
in (3.8), we note that ¢ log SL =o(\3).
J
On the other hand, for I; given in (5.2), we have

I, < 2‘/[V(U +Vp+ (U +¢)¢]‘-
2

Multiplying (3.25) by ¢ and integrating on £2, we find

/ (VWU +§)Vg + (U +¢)g] =2 / (U +@)eV %,
2 882
By (3.26) we have ||@|loc < C A3 for some fixed constant C independent of A, and using a Taylor expansion, we find

»/UeU2

052

+ CA*

/\/(U+¢)e(U+¢>2¢ <A||¢||oo‘ /(U+¢)6(U+¢)2‘ <3
82 982

Since, for some § > 0 small, we write

k
erUZ=Z / UeU’ + / UeV’ =1.+1,.

082 jzlaQﬂB(Ej,ﬁﬁ) BQ\U/}'_=1 B(&;.8./57)
where
2 2 2
UeV" = / UeV” + / UeV :=1.1+1.,.
3R2NB(E;.8,/57) dRNB(E;, 8¢ ]log e ;) IRN(B(E; .8, FD\B(&;.8¢llog ;1))

From (3.8) and (3.15), for x close to point &;, we have U = «/ij(wj + ﬁ 4+ O(1)) and U = 2m§g;1ew1(1 +
O (1)), where w; is defined in (3.16). Hence, ’

1
_ 3 -1 . j
IRNB(E;,8¢;llog e ;) J
=2v/am? / <log 2M;l + ! + 0(1)) #(1 +00).
! ly —v(0)|? 2)»m§ ly —v(0)?
8{275] ﬂB(O,allog_Ej‘)

ejtj "
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Moreover,
-1 2 2
de; ’ log2 r Rot “ 4 R2+y4
[ 1 2 _2t+L 3
[I.2] < CVA / e 7 rdr=CVn / i dt < CV/ / e~'dr = 0(r2).
Slloge;l RH—]OgyI R]—Hogy]

For I, since in the region 92 \ Ulj':l B(&;,8,/€;), the function U (x) satisfies U(x) = \/X[Z];:l m;G(x,&;) +
o(1)], with o(1) — 0 as A — 0, we then have

k 2
Iyj= / Uevzzﬁzmjfc(x £)) [ —i—k(Zm]G(x s,)) :|(1+0(1))

a2\Uk_, B8 /57 P
k
=ﬁzmj/.G(x"§j)(l+o(1)).
=t g0

Thanks to above facts, we obtain
I, = 2’05 (m, £) (5.9)

with @, (m, &) is a function, uniformly bounded, in the region for (§,m) satisfying (3.7), as A — 0. Therefore,
from (5.2), (5.6) and (5.9) we obtain that estimate (3.30) holds in the C?-sense.
Next let us show the C!-closeness in estimate (3.30). From (3.25) and (3.27) we have

Ds (/(|V(U +<;>)|2 + (U + ¢)2)> = 2/[V(U + @)V (O:U + 9:¢) + (U + ¢)(0: U + 0:9) |
2 2

_2/ a(U8+¢)(3SU+35¢) /—85U+)»20A(m £ (5.10)
90 082

where @, (m, &) is a function, uniformly bounded, in the region for (¢, m) satisfying (3.7), as A — 0, here we use the
facts [|0g@[loo < CX% and /39 93U < C+/x. On the other hand, we note that —AU + U = 0 in £2, hence

(/(|VU|2+U >—2f[VUV8§U+U85U /—85U (5.11)
Q
From (5.7), (5.10) and (5.11), we obtain the C'-closeness in estimate (3.30)
D: (/(W(U +o) + W+ ¢)2)> = kA Dg (fi(&, m)) + A2 Ox (&, m), (5.12)
Q
and by the same argument, we have

Dm</(|V(U +¢>)|2 +U +¢)2)> = ks 2Dy (fi (€, m)) + A2 Os (&, m), (5.13)
2

where @, (m, &) is a function, uniformly bounded, in the region for (¢, m) satisfying (3.7), as A — 0.
Finally, let us evaluate f 90 eU+9), By a Taylor expansion, we find

/e(U+¢)2 =/e’f2+x2(~)k(m,g). (5.14)
082 92
We write

k
/eUz _ Z / eUZ(x) + / @UZ(X) =1+ If. (5.15)

a2 j=IBQﬂB(§j,5\/§) B-Q\Ul;:l B(}.8. /%))
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Since

2 2 2
U™ = U™ U = L1+ L.
IR2NB(E; .8 /57) IR2NB(E;,88llog e ]) IRN(B(},8 JED\B(E; 3¢ llog 1))
From (3.8), (3.9), (3.15) and definition of §;, we have
= U0 8;162 17 00 w342, 0(6)+6%(x)]
02NB(§;,d¢|loge ) a82NB(§;,d¢|log ;)

2
=2m? — = (1+0W0W)=47mi(1+0W0)), 5.16
w0t = smmi(1+ 000) 5.16)
R2—-¢&; S|log e ;|
iy MO

with ©®, (m, &) a function, uniformly bounded, in the region for (¢, m) satisfying (3.7), as A — 0. Moreover,

- y2 /2
de; ] log2 R+ -~ Ry++
2 - 2
2] < C / e rdr=C / e idi<C edi=0W0). (5.17)
r
sllog e | Ry+og 2 Ry+log y?

Furthermore, we have

k
Ip= / eV = / |:1+AZm§G2(X,§j):| (1+0(1))

a2\, B85 a2\, B85 /=]
k
=021 +2 Y m} [ G &) +20um. ) (5.18)
=l 5

with |0£2| denotes the measure of domain 052, and @, (m, &) is a function, uniformly bounded, in the region for (§, m)
satisfying (3.7), as A — 0. Then from (5.14)—(5.18) we get that estimate (3.32) holds true in CO-sense.

On the other hand, by a Taylor expansion and the facts ||@||cc < Ck% and f 9o U < C+/A, we have

Dg(/e(U+¢)2> :2/eU2U85U+)»2@A(m,$):Dg</eU2> 1 320,(m, 8),

982 a2 982

Dm</e(u+¢)2> :Dm</eU2> + 220, (m, &)
1) 08

with @; (m, &) is a function, uniformly bounded, in the region for (£, m) satisfying (3.7), as A — 0. Then we obtain
the C'-closeness in (3.32) by the same way as in the proof of C!-closeness in (3.30). O

and

5.2. Proof of Proposition 3.3

Proof. Define the set
R ={(&,m)eR: fr(E,m)#0}.
From Proposition 3.2, replacing expansion (3.30) into (3.33), we see that (3.33) gives

Afi(E,m) + 22O (5, m) = . (5.19)

In R/, (5.19) defines A as a function of w, & and m, which is smooth in (§, m) in the region R’. Furthermore, as u — 0,
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2
P
fe@&m) 3 & m)
with ®,(m, §) is a function, uniformly bounded with its derivatives, as u — 0.
Assume now (3.33), we shall prove (3.34). Let us denote d by the partial derivative with respect to m; for any
J=1,...,k, or the partial derivative with respect to &;; for j =1, ..., k. By a direct computation we have

J U+ [ + )] = %8(/(IV<U +o)° + <u+¢>2)> - %a( / e(U+¢)2>.
2 982

Ou(§.m)

From (3.33) we have that 3(f,(IV(U + ¢)|*> + (U + $)?)) = 0. Thus 3(J;, eWU+®%) — 0 if and only if J/(U +
MU + ¢)] = 0. Let us now rewrite

1
NG

forsome! =1, ..., k, with

_ 1
(U + )€, m)(x) = mzvl(’“ 5’) +

&l 2Amy

k
)
u(y) i=w, )+ Y _(O(lery+& = &)+ 0(¢3))  for |yl < p
Jj=1

Since U + ¢ is the solution of (3.25), then v; satisfies

1
—AU]+812<U1+ 2> =0 in £2;;
25mj
vy 2.2
e (1 + 2)»m12v1)evlekml i

k
—m e Z Zcij8;1X<Fj(81y +}El - Ej))zij<Fj(81y +& — éfj)) on 32,

i=0,1 j=1 & €j
where £2; = “Q;lél . For any [/, we define
1 2, .2 Y v miv}
11(v1)=§/|:|Vvl| + & (vl+m> ]— / eletr,

2 52
We observe that

J' (U +)[dU +¢)] = AmP 1] (v)[9v,]

and

k
Amlzll/(vl)[avz] = Amyg; Z Z( / 81-_1X<Fj ey —;El — éj))zi/(F] €1y jgl — g]))81)1 dy>Cij.
j j

i=0.1j=1 "y,
Now, fix 7 and j, we compute the coefficient in front of ¢;;, we choose [ = j, dv; = Dy, v;(y), and obtain

/ €1X<Fj(8ly +'€1 - §j)>zij(Fj(81y +";§I —&)

J
€j €j

)Dmx vi(y)dy

1

k

= f &7 X (12 (3) D, [wuj<y>+2(0(|ejy|)+0(8?))}@
952 j=1

)

om
2
OR2.

i dy (1+0(1)).
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Thus we conclude that for any s =1, 2, ..., k, we have

J' U + ) [0, (U + )] = ?»mwzz / 25; (" dy coj (1 +o(D)).

Jj=1 B]Rz
Similarly, we get that for all s, [
k o
J’(U+¢>[a;ﬂ<U+¢>]=Amzez[2(3§’1 /Z%,-(y)dy>601+< f zi(y)dy)cls}(Ho(l)).
. S
=1 IR IR

Thus, we can conclude that J'(U + ¢)[0(U + ¢)] = 0, that is D¢ ,, E(U + ¢) = 0 then we have the following sys-
tem

k
8 .
[Z “Jcoj}(1+o(1))=0, s=1.2... .k (5.20)
— Omyg
J=1
K o
AS 2 e [+ 0)) =0 foralls, (5.21)

for some fixed constant A, with o(1) small in the sense of the L°°-norm as A — 0. Then (3.34) follows if we show

that the matrix 3 of dimension k x k is invertible in the region for (&, m) satisfying (3.7). Indeed, this fact implies
unique solvability ‘of (5.20). Inserting this in (5.21) we get unique solvability of (5.21).

Consider the definition of the 1, in terms of m;’s and points &; given in (3.7). These relations correspond to the
gradient D,, F (m, &) of the function F (m, &) defined as follows

1 k
Fm, &)= > m3[—2log(2m}) —logu)) + 2+ H(Ej. €N + Y _mim ;G (&, £)).
j=1 i#j

We set s = m?, then the above function can be written as follows

=

F(s,6) = % 3 si[—2log@s)) —log@u) + 2+ H(E; 6] + D 557G 6 &)).
Jj=l1 i#]
This function is strictly convex function of the parameters s;, for parameters s; uniformly bounded and uniformly
bounded away from 0 and for points &; in £2 uniformly far away from each other and from the boundary. For this
reason, the matrix (%) is invertible in the range of parameters and points we are considering. Thus, by the implicit
function theorem, relation (3.9) defines a diffeomorphism between j; and m ;. This fact gives the invertibility of
( a“’ ). Thus we finish the proof of Proposition 3.3. O

Appendix A

This section is devoted to the proof of Proposition 4.1. The proof of this result is based on the a priori estimate for
solutions to the following problem

—Ap+op=Ff in §2;
k
L(@)=h+ Z ZcinjZij on 4£2;
i=0,1j=1 (A1)
/ijij¢20 fOI‘i:O,l,j:l,...,k.

2
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Define

o —1
8
1 w2 o= sup(Z ( + 1) | £ (0] (A2)

xXeR = I+ |x — S/ EJ/L/V("E/)DZJFG

where 0 <o < 1.

Lemma A.1. Under the assumptions of Proposition 4.1, if ¢ is a solution of (A.1) for some h € L*°(952) and for
some f € L=(82) with |hll«,02, | flls+,@ < oo and c;j € R, then
Ipllco < ClIIRlx02 + 11 fllsx.2], (A3)
lcijl SC(Ihllvoe + 1 f ), Vi=0,1, j=1,....k
hold for C independent of A.

Proof. We will carry out the proof of the a priori estimate (A.3) by contradiction. We assume then the existence of
sequences A, — 0, points S" € 052 and numbers m ,u which satisfy relations (4.2) and (3.9), functions h,,, f,, with

170 llc002, | fullss,2 — 0, ¢n with [|¢nllec =1, constants Cijns

—A¢y +Pu=fy in$2, (A4)
2k

L(¢n):hn+zzcij,nzijj on 952, (A.5)
i=0 j=1

/Zinj¢n =0 forall i,]J. (A.6)

2

We will prove that in reality under the above assumption we must have that ¢,, — 0 uniformly in £2, which is a con-
tradiction that concludes the result of the lemma.
Passing to a subsequence we may assume that the points & 7 approach limiting, distinct points S}* in 0£2. We claim

that ¢,, — 0 in C! local sense on compacts of £2 \ {&,.... &7} Indeed, let us observe that f,, — 0 locally uniformly
in £2, away from the points &;. Away from the Ej’.k’s we have then —A¢,, + ¢, — 0 uniformly on compact subsets on
2\ {&],.... &} Since ¢, is bounded it follows also that passing to a further subsequence, ¢, approaches in C ocal
sense on compacts of £2\ {£], ..., £} alimit ¢* which is bounded and satisfies —A¢* +¢* =01in 2\ {&f,..., &'}
Furthermore, observe that far from (£}, ..., &}, h, — 0 locally uniformly on 92 \ {&}, ..., &/} and so we also have
M” — 0on a2\ {&,...,&}. Hence ¢* extends smoothly to a function which satisfies —A¢* + ¢* =0 in §2, and
B¢ =0 on 9£2. We conclude that ¢* = 0, and the claim follows.

For notational convenience, we shall omit the explicit dependence on 7 in the rest of the proof. We shall next show
that

lcijl < C(llplloo + Illso2 + 1| fllsx,2)- (A7)

Multiplying the first equation of (A.1) by Z;; and integrating over B(;, §), we find

¢
Z Cij / XjZijZij = — / hZi; + / L(Zij)¢ — / RZU
1=0,1

3903(5/',3) 3903(51',5) 8(203@]‘,5) QﬂaB(Ej,S)
+ / (=AZj + Zi)) — / £Zi;. (A8)
2NB(E;.5) Q2NB(E;}.9)

Having in mind that ¢, — 0 in Cl-sense in £2 N 0B(&;,d), we have that f.QDBB(§~ 5) %Z,'j — 0 as A — 0. Further-
J
more, a direct computation shows that
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XjleZijZMi51i+0(1) asA— 0 (A.9)
92NB(E;.5)

where M; is some universal constant and &;; = 1 if i =1, and = 0 if i #£ [. On the other hand, we have that

k
3Zii .
/ (auj_[zgjle ’}Zij)¢+ / (=AZij+Zij)¢ < Clgloo (A.10)

dRNB(E;,5) j=1 20NB(;,8)

and
‘/fzij SClSf s 2+ (A.11)
Q

In fact, estimate (A.11) is a direct consequence of the definition of the || - |4« o-norm. Let us prove the validity

of (A.10). Recall that in £2 N B(§;, §), we have that Z;;(x) = z;; (sj_le (x)), where F; is chosen to preserve area
(see (3.23)). Performing the change of variables y = aj_l Fj(x), we get that

(=AZij+ Zij)p = (14 0(D)) / (Lzij +&52i7) ¢ (A.12)

2NB(E;,9) RimB(O,%)

where ¢~>(y) =¢(F ]71 (¢j¥)) and L is a second order differential operator defined as follows

8
L=—A+0(gly) V> + 0V inRiﬂB(O, ;). (A.13)
J

Hence

(—AZ;j + Zij)¢' < Clldlloo-
20B(E;,8)

On the other hand, we observe that, after a possible rotation, we can assume that V F; (§;) = I. Hence, using again the
change of variables y = ej_l Fj(x), we get

/ L(Zipd = (1+0(D) / (B(zij) — Weij )b (A.14)

32NB(;.9) B]RiﬂB(O,%)

where W(y) =g W(F]f1 (ejy)) with W(x) = ZLI e;l e™i, and b(y) is a positive function, coming from the change
of variables, which is uniformly positive and bounded as A — 0. Furthermore B is a differential operator of order one
on BRi. In fact, we have that

9 ) 8
B:-a—y2+0(gj|y|)v 0n8R+ﬂB<0, ;) (A.15)

On the other hand, since

2/Lj82-
W) =e;' : <1+ 818'0(1))
Tl =& —ejuvENP ; !
J
we get
- 2 & 2 ( 8)
W(y) = + on dR: N B[O, — ], (A.16)
v+l ;<1+|y|) ! £j
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for some 0 < « < 1. Thus we can conclude that

L(Zij)qﬁ‘ < Cll@lloo-
32NB(E;,8)
This shows the validity of (A.10).

We shall now estimate the term | 90 PZij. Using the definition of the || - ||« 952 -norm, we observe that

[
082

=f,0(X)_1|h|p(X)Zij< ||h||*,89/p(x)zij
a2

082

=1

k
- ||h||*,3(2/(ZPIXBS(SI)(X)-Fl)Zij
052

k 2
1 1 “r
< Cllhlls0 E / 7/1{(1+ wr + ><1+ +|w1|)ezy, —l}sl_lew’

=1 I Vi
T 92NB; (&)

 Cllhlhse / Zi.
39\Uf=1 Bs (&)

(A.17)

Since Z;; are uniformly bounded, as A — 0, in 982 \ Ule Bs(&), we just need to estimate famBa(s,) yi{(l +

w?
i+1 I+ wl, == 1w .
%)(1 + #)ezy«f — l}ej lewj . Recall that the functions w; are defined as
J J

2/,Lj

. =1 ,
B I CAlE

with y= X
(B5(§)) \ Bs (§))). We write

s
Y

11}2.
. . J
yj{(l + w]_—i—l) (1 + 1+ |w]|)627j — 1},9._16“)/'
. . J
Vi Vi

IRNB5(E))

: I\
_ / yj{<1 N wf_+1) (1 4 M)ezn _ l}gflewj
. . J
Vi Vj

92NB 5 (§5)
vj

41 1 A\ L
+ / y,-{<1+u> <1+ M)m — 1}5f1ewf

39ﬂ(35($j)\3%(éj))
j
=L+ Ls.

Using the change of variables ¢;y = x — &, we have

- 1 1 - w4 B
L= / yj{<1+w’+ ><1+7+|wf|)e Vj_l}e“’f
Vi Vj

[N

)
[~

and

& éj’. = g—;, and y; = —2loge;. We decompose 952 N B;s(&;) into the union of 32 N Bs (§;) and 082 N
. vj

(A.18)
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2
= 1 7) _J _
T TR (L G S
Vi Vi
382 ,N(B s (D\B_s5_(0))
: gj Vj€j

9_ .
where £2;; = g—sf and
J

) —log — 1
J = g _ A O 2°
ly —u;v(0)]

First we estimate L;:

u_vz.
w;+1 1+ |w s -
le VJ{(I J ><1+ | J|>62y] _1}ew]
Vi Vj
92,.NB 5 (0)
e
B 1
<C eVl =C —_—s
|y — wjv(0)]|
32:.NB_5 (0) 32:.NB_5 (0)
T T
M
r

On the other hand, using the fact that w; = —2logr + O (1) with r = |y — ;v (0)|, the term L, can be estimated as

follows

w2
1) - 1 7 - J _
L, = / Vj{<l+w]+ )(1+—+|w}|)e2w —l}ewf
j Vi

Vi
092:;N(B 5 (O\B_s_(0))

J Vj€j
8
2 _ £ 2
] +w _ 1 (log r)
<C / yjezy_j Vi J eWi <C / _28 log & ()/j _ 210gr) dr
Vi r
382: ;N(B 5 (O\B_s_(0)) 5
’ £j Vjtj Vj€j
log si log %
e
<C / e~e™l (y; —1)d1 < C / ey, —ndt<C
log yjse./ log yjss ;

for some positive o. Therefore we get

Iz
982

Thus, from (A.8)—(A.19) we find the validity of (A.7).
We now conclude our argument by contradiction to prove (A.3). From (A.7), we have that ¢;; , is bounded, thus

< Clhllyo0- (A.19)

we may assume that ¢;; , — c¢;; as n — oo.
Let us fix R > 0 large sufficiently but fixed. By the maximum principle and the Hopf Lemma we find that,

oomax igel= max gl
2\Uj=1 Bre; ) 2\Uj=1 9Bre; ()
Thus, from ||¢,|lc0c = 1, we can find that there is some fixed jo € {1,2, ..., k} such that
max |pn| = 1. (A.20)

f)ﬁa BRs]-O (Ejo,n)
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Q_Ejo.n

Set 2,. = , and consider

€0 T Ejgn
(@) = PnEjon +Ejon)s (@) =hu(Ejon + €jon2),
F@ = fuEjon +ejon)s  Zij@) =ZijEjom + Ejon2)-

Then
—AGu(2) + 5, hu(2) =3 fu(2) in 2,
3(]3 k k
avn — 8j0|:28jlew-/:|¢n =¢jhy + Z Zgjocij,nszij on B.ngo.
j=1 i=0,1j=1

Then by elliptic estimate 43,, (up to subsequence) converges uniformly on compact sets to a nontrivial solution ¢3 #0
of the problem

Ap=0 in R%;
a 21
—¢— z,u] ¢ =0 onBRi.
ov xl—i—uj

By the nondegeneracy result [9], we conclude that qAﬁ is a linear combination of zo; and z; ;. On the other hand, we can
take the limit in the orthogonality relation and we find that f oR% quz,- =0 fori =0, 1. This contradicts the fact that

~

¢ £ 0. This ends the proof of the lemma. O

Proof of Proposition 4.1. In proving the solvability of (4.1), we may first solve the following problem: for given
h e L*(382), with ||A]|4,5 bounded, find ¢ € L*(£2) and d;; e R,i =0, 1, j=1,..., k such that

k
—Ap+¢= Z Zd,'j)(jZ,’j in £2;
i=0,1 j=1
k
8¢ -1 w; .
Fle |:Z‘9j e J]¢=h on 0£2; (A2D)
j=1
/XjZ,'j(]ﬁ:O fori =0,1, j=1,...,k.
2

First we prove that for any ¢, d;; solution to (A.21) the bound

[Pl < Cliallx00 (A.22)
holds. In fact, by Lemma A.1, we have

k
oo < C(IIhII*,asz + Y Ze,~|d,;,~|) (A.23)

i=0,1j=1
and therefore it is enough to prove that ¢;|d;;| < C||hll+,550-
Fix an integer j. To show that ¢;|d;;| < C||hll« 5, we shall multiply Eq. (A.21) against a test function, properly

chosen. Let us observe that, the proper test function depends whether we are considering the case i =0 ori =1. We

log<;‘7>—log Iyl

start with i = 0. We define Zo;(y) = h(y)z0,(y), where h(y) = . In fact, we recognize that Ah =0 in

log %7logR
B(0, %) \ B(0, R), h=10ndB(0, R) and h =0 on 3 B(0, gj).
Let 71 and 7, be two smooth cut-off functions defined in R? as
m=1 inB(0,R), =0 inR*>\BO,R+1)
so that
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o<m<l, Va1l
and
m=1 mB(O > =0 inRz\B(O—)
4] J
so that
€j 2 gj g
Osm<l,  [Vml<C—, |VPm|<C )

We assume that R > R (see (3.24)) and we define

Zoj () =m(e7 Fj(0)) Zoj () + (1 = m(e7 Fj0)))ma (e Fj(0) 20 (67 Fj (),

forx € B(§;,8) N $2.
We multiply Eq. (A.21) against Z ; and we integrate by parts. We get

Z aj/XjZajZOJ f( AZOJ +ZOJ)¢+/hZOJ /L(ZOj)¢~

a=0,1 EY?) EY?)

Observe first that, assuming R > Ry, we have

da.j/‘XjZajZOj Zdaj‘/)(jzajZoj =8jM05a0daj(1+0(1)) as A — 0.

2 ko)

Furthermore we have that

/hZo,- < Cllhllae.
082
We claim that
1= AZ0; + Zoj g < —
loge; |
Lol pe < gy

89

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

The proof of estimates (A.27) and (A.28) is postponed to the end of the appendix. Assuming for the moment the

validity of (A.27) and (A.28), from estimates (A.25)—(A.28) we conclude that

lejdojl < C(Ihllxa0 + |10g8j|_1||¢||oo)~

(A.29)

We shall now obtain an estimate similar to (A.29) for € ;d ;. To do so, we use another test function. Indeed we multiply

Eq. (A.21) against n2Z1; and we integrate by parts. We get

0
Z daJ/Xj ZajmZij —/(—A(nzzlj)+n221j)¢—/hnzzl,j+fL(le)n2¢+/leﬁqi

a=0,1 o 2 Y] 30

Observe first that, assuming R > Ry, we have

da.,/‘szajngzlj:daj/XjZajZU:M18a18.,d1j(1+o(1)) as A — 0,

2 2

and |fa.o hn2Z1j| < C||hll4 3. Using the change of variables y = sj_] Fj(x), we get that

an an ~
/lea—tb—/ A5 ¢

382 382,
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where .ng = % and ¢~)(y) =¢(Fj7](8]71y)). But z;; = 0(1#“) and Vi, = O(gj) so |f3Q le%qﬂ < Cejlloge;l.
Using again the change of variables y = sj_l F;(x), and proceeding similarly to (A.14), (A.15) and (A.16), one gets

0zij ~ -
/L(Zij)ng(P = (1 +0(1)) / [ aZUJ _ WZiji|772¢

382 082,

where ¢(y) = ¢ (F jfl (¢;¥)) and b(y) is a positive function, coming from the change of variables, which is uniformly

positive and bounded as A — 0. Observe that B{f—’vf — Wz,-j = O(I%) + O(%) forye .ng and |y| < 88;], and this
implies that

/

082,

0zij

—Wzij| < CE?

for some 0 < a < 1. Thus we can conclude that

‘ /L(Zij)n2¢
EYe)

Consider once again the change of variables y = 8;1 Fj(x). Arguing as in (A.12) and (A.13) we get that

< Ce%1 -

/(—A(nzzij)+nzzij)¢= (1+o0(1)) /(—A(nzzij)+8§nzzij)¢3
2 0

where ¢(y) = gb(F;l (¢jy)). We thus compute in y € £2¢,, with |y| < 38;],

2
| €j
A(n2z1j) = An2z1; +2VmVzyj + Az = O<1 +r> + O<m> +mAzy;.

2
On the other hand, in this region we have —Az;; + sjzz]j = O(%) + O(I%). Thus

/ |—A(n2zif) —i—s?nzzlﬂ < Cgjlloge;].

'QE./'

Summarizing all the above information, we get

lejdij| < C(Ihllxa0 +&jlldlloc)- (A.30)
Estimates (A.29), (A.30) combined with (A.23) yield

lejdij| < Cllhll+a0

which gives the validity of (A.22). Now consider the Hilbert space

H={¢>6H1(.Q): /X,-z,-j¢=o, Vi=0,1, j=1,...,k},
2

endowed the norm ||gz§||§1l = fQ(|V¢|2 + ¢?). Problem (A.21), expressed in a weak form, is equivalent to find ¢ € H
such that

k
/(V¢V¢+¢1/f)—/|:28j]ewf':|1p=/h1/f for all ¢ € H.
j=1

2 952 a2
With the aid of Fredholm’s alternative guarantees unique solvability of (A.21), which is guarantees by (A.22).
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In order to solve (4.1), let Y;; € L*°(£2,), dllj € R be the solution of (A.21) with h = x; Zj,, that is

k
—AY+Yis =Y > diix;jZij in2;
i=0,1 j=1
3y,
ls |:Ze :|Y1S=XSZIS on 982: (A.31)
/XjZinlsZO forl:O,l,s:l,...,k.
2

Then there is a unique solution Y;; € L*°(§2) of (A.31), and

Willo <C, gl <C (A.32)
for some constant C independent of A.
Multiplying (A.31) by Z;;, and integrating by parts, we have

ZZ / dijisxj(Zij)* = / XsZisZij + / (—AZij+ Zij)Yis

=0.17=1p; 5 IB(E;.5) B(£;.8)
dZ;
+ / ( i [Z ] :| t])Yls‘
IB(£.,8)

=818 s / X (Zij)* +o(1)
dB(&;.5)

where §;;, §j; are Kronecker’s delta. Then we get

dojos = adjs +o(1), dij1s =bdjs +o(1) (A.33)

with a, b > 0 are independent of ¢;. Hence the matrix Dy (or D) with entries do; o5 (or dy;,15) in invertible for
small ¢; and ||D;1 | <C (i=1,2) uniformly in ¢;.
Now, given h € L*>°(32) we find ¢, d;;, solution to (A.21). Define constants ¢;; as

ZZ% B dy, Vi=0,1, j=1,....k

1=0,1s5=1

The above linear system is almost diagonal, since arguing as before one can show that dll; = 8;1 M;5;58i1(1 4+ 0(1)),
as A — 0, where M, is a positive universal constant. Then define

k
¢=¢1+ Z ZClels-

1=0,1s5=1

A direct computation shows that ¢ satisfies (4.1) and furthermore

k k
Iplloo < il + Y D lesl < Cllkllvae + Y > ejldijl < Cllhlsa0

1=0,1 s=1 i=0,1 j=1
by (A.22). This finishes the proof of Proposition 4.1. O

Proof of (A.27). We shall prove

C

—AZ Z < —
” 0j + O]”** 2 |10g8]|
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where Zoj is defined in (A.24). Perform the change of variables y = 8;1 F;(x) and denote Zp;(y) = Zoj(ijl (&jy)).
Then —AZy; + Zo; = (LZ0j + 8520 i), where £ is defined in (A.13). We shall show that

m
- ~ 2
|(£zoj+s§zoj)|\|log€|[5+§ L+ ]y -8~ } ve—.
j=1

J

This fact implies (A.27).
Let us first consider the region where |y| < R. In this region, Zo; = zo;. Since Azp; = 0 and since (A.13) holds,
we have that

(LZ0; + €3205) = 0(8,-) for |y| < R. (A.34)

In the region R + 1 < |y| < .-, we have zo; = hz;. Therefore, in this region,

8
R+1<r<—r=]|y|

|AZoj| =2|VhVzpi| K —,
! g \r310g% 4e;
J

For the other terms we find

’V220j’ < ’Vzh‘zoj +2|VhVzp;| —l—h’VzZo]“

1 1 1 8
=0\——)+0|——)+0[—=), R+1l<r<—
(rﬂog%) (r310g%> (r3> 4ej
J J

SO
& £ é
Ofe; vzz»=0<—1>+0<—1>, R+1<r<—.
(e71y1)[V*Z0; rlog% 72 4¢;
J
Also
[VZoil <|Vhlzo; + h|Vzo;| 0< ! >+0<1> R+1 )
Z0il < 707 z0i|l = — ), <r<-—.
0j 0j 0j rlog% r2 de
Hence
- 2~ 1 &j gj 2~ 8
(£Z0j+8j20j)=0 =5 + 0 3 + 0 - +8jz()j7 R+1l<r<—. (A.35)
r3log = rlog = r 4ej
J J

In the region % <r< i the definition of Zo; is Zo; = n2hzo;. We will estimate each term of (A.13) using the

2
facts that Vi, = 0(8’) |V2n2| = 0( ) and that in the considered region & = 0(

=) which implies also Zo; =

ggj

0( 3 ) We obtain

AZOj = Amhzoj +2Vn2V(hzoj) + mA(hzo;)

= Anphzoj + 2V Vhzoj + 2V Vzoih +212VhVzg;
2

8j g €j 1
=0 3 ) TO\——5)+0 YT +0 T
8 loga—j rcSlogS—j r 810g5—j r loga—j

2

€5 ) )
=0 S5 ) o <<z
) loga—j 4sj 38j

Next

- )
V2Z0; = VZnahzoj +2VmV(hzo;) + ma V3 (hzo;), 2 < <3



S.-B. Deng, M. Musso / Ann. I. H. Poincaré — AN 32 (2015) 59-95 93

. ) )
and by the above computations, for prn <r< 3

&2 g2
v220j:0( L )+nz(v2hmj+ZVtho,-+hv2z0j)=0( L )
82log & §%log ¢
Similarly, for e, <7 <73
~ Ej
VZpj = Vnzhzoj + nthZ()j + nthZ()j = 0< J 3 )
dlog =
J
This shows that
2
e 8 8
L3 +2%0)) =0 —+), —<r<—. A.36
(£20; + &5707) (8210g§> 4e; 3¢ (4.36)
J

Thus we only need to estimate the size of LZp; + 81220 ; in the region R <r < R + 1. In this region we have zo; =
n1zo;j + (1 — n1j)hzo; and hence

AZoj = Ani(1 —h)zoj; —2VmVhzo; +2Vn1Vzoi(1 —h) +n1Azo; + (1 — n1) A(hzo;)

1
:0(1 8)+n1AZoj+(l—7}1)A(hZOj), R<r<R+1.
Ogg

First we recall that Azp; =0 and, for R <7 < R+1,

1
A(hZyj)=2VhVzp; + O(¢j) = 0( 3 >+ O(gj).
lo E
Thus
1
czoj+g}zoj=o<l 6), R<r<R+1. (A.37)
Ogg

This bound and (A.34), (A.35) and (A.36) imply (A.27). O

Proof of (A.28). We shall prove

C

1LZop], 40 < Toge) |

We perform the change of variables y = 8;] Fj(x). We already observed that we can assume that VF;(&;) = I.
Hence,

L(Zyj) = (1+o(1))[B(Goj) — Wio;]
where Zo; = Zoj (Fj_1 (¢;y)) and W(y) = W(Fj_1 (¢;jy)). B is the differential operator of order one on 9R2 , defined
in (A.15) and W is described in (A.16). Thus in the region y € 8(%), with |y| < R, we get
J
B(z0j) — Wioj = O(¢)). (A.38)
Next, in the region R < |x| < R+ 1 we have

VZoj = V(m( — h)zoj + hzo;)
= V(1 = h)zoj — mVhzoj +n1(1 —h)Vzoj + Vhzoj +hVzo;

1
=0( 3 >+771(1—h)Vzoj+thoj.
log =

€j
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Since £ is radial this implies

- 3207 1 Re;
B(Zo;) = —h 0’+0< 3>+0( g), R<|yl<R+1, yedR:.
R%log & -

9x2 log -
Using (A.16) we see that
- ~ . 1 Re;
B(Zoj)—WZ0j=0<7a>+0( G), R <|yl|<R+1, yeaRﬁ_. (A.39)
R%log 2 logs—j

Using the fact that & has zero normal derivative on B]Ri we deduce

020
B(hZOJ)—_h oy +0(81I’)(Vh101+hVZ0/)

020/ &j 8
=—h—+40 + 0 , R+l<r<—. (A.40)
0x; log r £j
On the other hand, using (A.16) wehavein R+ 1 <r < 8%
o
. 7 €j &)
B(Zoj) — Wzoj = 0< 5 ) + O(—) (A41)
logg—i r

for some 0 < o < 1. Finally we consider ;- <r < T Here we have Zo; = n2hzo; and hzo; = 0( 5 ) Vi =
0(%). Using these facts, estimate (A.40) and that 1, has zero normal derivative we find

B(Zoj) = B(n2)hzoj + n2B(hzoj)

er 1 £ 5 5
=0(—L5)+0 +o(—L-)+o(2). —<r<—.
810g8—j r? log r de; 3¢

From (A.16) we have

. &g b )
W=0|—), —<r<—.
r 48j 8]'

Thus we conclude that for y € 082, 7~ <7 < 3~

)
€

2

B(ZO])_WZO]_O<L>+O(])+O< >+O< ) (A.42)
Slog 2 r? log r

Estimates (A.38), (A.39), (A.41) and (A.42) give the validity of (A.28). O
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