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Abstract

This paper is concerned with the cubic Szegő equation

i∂t u = Π
(|u|2u

)
,

defined on the L2 Hardy space on the one-dimensional torus T, where Π : L2(T) → L2+(T) is the Szegő projector onto the
non-negative frequencies. For analytic initial data, it is shown that the solution remains spatial analytic for all time t ∈ (−∞,∞).
In addition, we find a lower bound for the radius of analyticity of the solution. Our method involves energy-like estimates of the
special Gevrey class of analytic functions based on the �1 norm of Fourier transforms (the Wiener algebra).
© 2013

MSC: 35B10; 35B65; 47B35
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1. Introduction

In studying the nonlinear Schrödinger equation

i∂tu + �u = ±|u|2u, (t, x) ∈ R× M,

Burq, Gérard and Tzvetkov [2] observed that dispersion properties are strongly influenced by the geometry of the
underlying manifold M . In [6], Gérard and Grellier mentioned, if there exists a smooth local in time flow map on the
Sobolev space Hs(M), then the following Strichartz-type estimate must hold:∥∥eit�f

∥∥
L4([0,1]×M)

� ‖f ‖Hs/2(M). (1.1)

It is shown in [1,2] that, on the two-dimensional sphere, the infimum of the number s such that (1.1) holds is 1
4 ;

however, if M = R
2, the inequality (1.1) is valid for s = 0. As pointed out in [6], this can be interpreted as a lack
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of dispersion properties for the spherical geometry. Taking this idea further, it is remarked in [6] that dispersion
disappears completely when M is a sub-Riemannian manifold (for instance, the Heisenberg group).

As a toy model to study non-dispersive Hamiltonian equation, Gérard and Grellier [6] introduced the cubic Szegő
equation:

i∂tu = Π
(|u|2u)

, (t, θ) ∈R×T, (1.2)

on L2+(T), where T =R/2πZ is the one-dimensional torus, which is identical to the unit circle in the complex plane.
Notice that L2+(T) is the L2 Hardy space which is defined by

L2+(T) =
{
u =

∑
k∈Z

û(k)eikθ ∈ L2(T): û(k) = 0 for all k < 0

}
.

Furthermore, in (1.2), the operator Π : L2(T) → L2+(T) is the Szegő projector onto the non-negative frequencies, i.e.,

Π

(∑
k∈Z

vke
ikθ

)
=

∑
k�0

vke
ikθ .

We mention the following existence result, proved in [6].

Theorem 1.1. (See [6].) Given u0 ∈ Hs+(T), for some s � 1
2 , then the cubic Szegő equation (1.2) has a unique solution

u ∈ C(R,H s+(T)).

Moreover, it has been shown in [6] that the Szegő equation (1.2) is completely integrable in the sense of admitting a
Lax pair structure, and as a consequence, it possesses an infinite number of conservation laws. Some other interesting
work concerning the Szegő equation can be found in [7,8,14,19–21].

Replacing the Fourier series by the Fourier transform, one can analogously define the Szegő equation on

L2+(R) = {
φ ∈ L2(R): supp φ̂ ⊂ [0,∞)

}
.

In [19], Pocovnicu constructed explicit spatially real analytic solutions for the cubic Szegő equation defined on L2+(R).
For the initial datum u0 = 2

x+i
− 4

x+2i
, it was discovered that one of the poles of the explicit real analytic solution

u(t, x) approaches the real line, as |t | → ∞; more precisely, the imaginary part of a pole decreases in the speed
O( 1

t2 ). Thus, the radius of analyticity of u(t, x) shrinks algebraically to zero, as |t | → ∞. This phenomenon gives
rise to the following questions: for analytic initial data, does the solution remain spatial analytic for all time? If so,
can one estimate, from below, the radius of analyticity? In this manuscript, we attempt to answer these questions by
employing the technique of the so-called Gevrey class of analytic functions.

The Gevrey classes of real analytic functions are characterized by an exponential decay of their Fourier coefficients.
If we set A := √

I − �, they are defined by D(AseσA), which consist of all L2 functions u such that ‖AseσAu‖L2(T)

is finite, where s � 0, σ > 0 (see e.g. [4,5,13]). Note, if σ = 0, then D(AseσA) =D(As) ∼= Hs(T). However, if σ > 0,
then D(AseσA) is the set of real analytic functions with the radius of analyticity bounded below by σ . Also notice,
D(AseσA) is a Banach algebra provided s > 1

2 for 1D (see [4]).
The so-called method of Gevrey estimates has been extensively used in literature to establish regularity results

for nonlinear evolution equations. It was first introduced for the periodic Navier–Stokes equations in [5], and studied
later in the whole space in [15], moreover, it was extended to nonlinear analytic parabolic PDE’s in [4], and for Euler
equations in [10,12,13] (see also references therein). Recently, this method was also applied to establish analytic
solutions for nonlinear wave equations [9].

In this paper, we employ a special such class based on the space W of functions with summable Fourier series. For
a given function u ∈ L1(T), u = ∑

k∈Z û(k)eikθ , θ ∈ T, then the Wiener norm of u is given by

‖u‖W = ‖û‖�1 =
∑
k∈Z

∣∣û(k)
∣∣. (1.3)

Notice that W is a Banach algebra (Wiener algebra).
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Based on the Wiener algebra, the following special Gevrey norm is defined in [16]:

‖u‖Gσ (W) =
∑
k∈Z

eσ |k|∣∣û(k)
∣∣, σ � 0. (1.4)

If u ∈ L1(T) is such that ‖u‖Gσ (W) < ∞, then we write u ∈ Gσ (W).
It is known that the Gevrey class Gσ (W) is a Banach algebra [16], and it characterizes the real analytic functions

if σ > 0. In particular, a function u ∈ C∞(T) is real analytic with uniform radius of analyticity ρ, if and only if,
u ∈ Gσ (W), for every 0 < σ < ρ.

Now, we state the main result of this paper.

Theorem 1.2. Assume u0 ∈ L2+(T) ∩ Gσ (W), for some σ > 0. Then the unique solution u(t) of (1.2) provided by
Theorem 1.1 satisfies u(t) ∈ Gτ(t)(W), for all t ∈ R, where τ(t) = σe−λ|t |, with some λ > 0 depending on u0. More
precisely, there exists C0 > 0, specified in (2.9) below, such that ‖u(t)‖Gτ(t)(W) � C0, for all t ∈R.

Essentially, Theorem 1.2 shows the persistency of the spatial analyticity of the solution u(t) for all time t ∈
(−∞,∞) provided the initial datum is analytic. Recall that τ(t) is a lower bound of the radius of spatial analyt-
icity of u(t). Thus, it implies that the radius of analyticity of u(t) cannot shrink faster than exponentially, as |t | → ∞.

Remark 1.3. The precise definition of λ in Theorem 1.2 is given in (2.23) below. In fact, as shown in Remark 2.2, one
can prove that the radius ρ(t) of real analyticity of u(t) satisfies, for every s > 1,

lim sup
t→∞

∣∣∣∣ logρ(t)

t

∣∣∣∣� Ks‖u0‖2
Hs ,

which is independent of the Gσ (W) norm of u0. The optimality of such an estimate is not known. However, let us
mention the following two recent results in [8]. Firstly, if u0 is a rational function of eiθ with no poles in the closed
unit disc, then so is u(t), and ρ(t) remains bounded from below by some positive constant for all time. Secondly, this
bound is by no means uniform. Indeed, starting with

u0 = eiθ + ε, ε > 0,

one can show that

ρ

(
π

ε

)
= O

(
ε2).

This phenomenon is to be compared to the one displayed by Kuksin in [11] for NLS on the torus with small dispersion
coefficient.

Finally, let us mention a recent work by Haiyan Xu [21], who found a Hamiltonian perturbation of the cubic Szegő
equation which admits solutions with exponentially shrinking radius of analyticity. Moreover, one can check that the
method of Theorem 1.2 applies as well to this perturbation, so that the above result is optimal in the case of this
equation.

By investigating the steady state of the cubic nonlinear Schrödinger equation, it is demonstrated in [16] that, by
employing the Gevrey class Gσ (W), one can obtain a more accurate estimate of the lower bound of the radius of
analyticity of solutions to differential equations, compared to the estimate derived from using the regular Gevrey
classes D(AseσA) (see also the discussion in [9]). Such observation is verified again in this paper, since we find that,
in studying the cubic Szegő equation, the Gevrey class method, based on Gσ (W), provides an estimate of the lower
bound of the analyticity radius of the solution, which has a substantially slower shrinking rate, than the estimate
obtained from using the classes D(AseσA). One may refer to Remark 2.4 for this comparison.

Throughout, we study the cubic Szegő equation defined on the torus T. However, by using Fourier transforms
instead of Fourier series, our techniques are also applicable to the same equation defined on the real line, and similar
regularity results and estimates can be obtained as well (see also ideas from [15]).
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Moreover, Theorem 1.2 is also valid under the framework of general Gevrey classes, i.e., intermediate spaces
between the space of C∞ functions and real analytic functions. Indeed, if we define Gevrey classes G

γ
σ (W) based on

the norm

‖u‖G
γ
σ (W) =

∑
k∈Z

eσ |k|γ ∣∣û(k)
∣∣, γ ∈ (0,1],

then, G
γ
σ (W) are Banach algebras, due to the elementary inequality eσ(k+j)γ � eσkγ

eσjγ
, for γ ∈ (0,1]. Thus, the

proof of Theorem 1.2 works equally for G
γ
σ (W), where γ ∈ (0,1]. For the sake of clarity, we demonstrate our tech-

nique for γ = 1, i.e., the Gevrey class of real analytic functions.

2. Proof of the main result

Before we start the proof of the main result, the following proposition should be mentioned.

Proposition 2.1. Assume u0 ∈ Hs+(T), for some s > 1. Let u be the unique global solution of (1.2), furnished by
Theorem 1.1. Then,∥∥u(t)

∥∥
W

� C(s)‖u0‖Hs , for all t ∈R. (2.1)

Proof. The proof can be found in [6], we recall it here. First we define the Hankel operator Hu : L2+(T) → L2+(T) of

symbol u ∈ H
1/2
+ (T) by

Hu(h) = Π(uh). (2.2)

Also, the Toeplitz operator Tb : L2+(T) → L2+(T) of symbol b ∈ L∞(T) is defined by

Tb(h) = Π(bh).

In [6], it has been shown that the cubic Szegő equation admits a Lax pair (Hu,Bu), where

Bu = i

2
H 2

u − iT|u|2 .

Thus the trace norm T r(|Hu(t)|) is a conserved quantity. By Peller’s theorem [17,18], T r(|Hu|) is equivalent to the
B1

1,1 norm of u. In particular, for every s > 1,

1

2
‖u‖W � T r

(|Hu|
)
� Cs‖u‖Hs . (2.3)

Hence∥∥u(t)
∥∥

W
� 2T r

(|Hu(t)|
) = 2T r

(|Hu0 |
)
� 2Cs‖u0‖Hs .

The proof is complete. �
For the sake of completion, we provide a straightforward proof of (2.3) in Appendix A. We now start the proof of

Theorem 1.2.

Proof. Due to the assumption on the initial datum u0, we know that u0 is real analytic, and hence u0 ∈ Hs+(T),
for every non-negative real number s, in particular for s � 1

2 . Therefore, the global existence and uniqueness of the
solution u ∈ C(R,H s+(T)) are guaranteed by Theorem 1.1, for s � 1

2 .
Throughout, we focus on the positive time t � 0. By replacing t by −t , the same proof works for the negative time.
We shall implement the Galerkin approximation method. Recall the cubic Szegő equation is defined on the Hardy

space L2+(T) with a natural basis {eikθ }k�0. Denote by PN the projection onto the span of {eikθ }0�k�N . We let

uN(t) =
N∑

ûN (t, k)eikθ (2.4)

k=0
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be the solution of the Galerkin system:

i∂tuN = PN

(|uN |2uN

)
, (2.5)

with the initial condition uN(0) = PNu0. We see that (2.5) is an N -dimensional system of ODE with the conservation
law

∥∥uN(t)
∥∥2

L2 =
N∑

k=0

∣∣ûN (t, k)
∣∣2

,

and thus it has a unique solution uN ∈ C∞(R) on R.
Furthermore, we observe that

N∑
k=0

k
∣∣ûN (t, k)

∣∣2

is also conserved, hence ‖uN(t)‖H 1/2 is a conservation law. Consequently, arguing exactly as in Section 2 of [6] with
Brezis–Gallouët type estimates, we obtain that for every s � 1

2 and every T > 0,

sup
N

sup
t∈[0,T ]

∥∥uN(t)
∥∥

Hs < ∞.

By using Eq. (2.5), one concludes that the same estimate holds for the time derivative u′
N(t). Now, let us fix an

arbitrary T > 0. Since, moreover, the injection of Hs+ε into Hs is compact, we conclude from Ascoli’s theorem that,
up to a subsequence, uN(t) converge to some ũ(t) in every Hs , uniformly for t ∈ [0, T ]. Then, it is straightforward
to check, by letting N → ∞, that ũ is a solution of the cubic Szegő equation (1.2) on [0, T ] with the initial datum u0.
Since u is the unique global solution furnished by Theorem 1.1, one must have u = ũ on [0, T ]. Since Hs is contained
into W for every s > 1

2 , uN(t) tends to u(t) in W uniformly for t ∈ [0, T ]. By Proposition 2.1, there exists a constant
C1 > 0 such that∥∥u(t)

∥∥
W

+ 1 � C1, for all t ∈R. (2.6)

Consequently, there exists N ′ ∈ N such that∥∥uN(t)
∥∥

W
�

∥∥u(t)
∥∥

W
+ 1 � C1, for all N > N ′, t ∈ [0, T ]. (2.7)

Also, recall that the initial condition u0 ∈ Gσ (W), i.e., ‖u0‖Gσ (W) < ∞. Since uN(0) = PNu0, one has

N∑
k=0

eσk
∣∣ûN (0, k)

∣∣ � ‖u0‖Gσ (W). (2.8)

Define

C0 := max

{
‖u0‖Gσ (W),

1 + √
5

2
eC1

}
, (2.9)

where C1 has been specified in (2.6).
Let us fix an arbitrary N > N ′. We aim to prove

N∑
k=0

eτ(t)k
∣∣ûN (t, k)

∣∣ � C0, for all t ∈ [0, T ], (2.10)

with τ(t) > 0 that will be specified in (2.23), below.
Notice, due to (2.4) and (2.5), we infer

d

dt
ûN (t, k) = −i

∑
n−j+m=k

ûN (t, n)ûN (t, j)ûN (t,m), t ∈ [0, T ], k = 0,1, . . . ,N.
0�n,j,m�N
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Then, one can easily find that

d

dt

∣∣ûN (t, k)
∣∣ � ∑

n−j+m=k
0�n,j,m�N

∣∣ûN (t, n)
∣∣∣∣ûN (t, j)

∣∣∣∣ûN (t,m)
∣∣, (2.11)

for k = 0,1, . . . ,N , and all t ∈ [0, T ].
In order to estimate the Gevrey norm, we consider

d

dt

(
eτ(t)k

∣∣ûN (t, k)
∣∣) = τ ′(t)keτ(t)k

∣∣ûN (t, k)
∣∣ + eτ(t)k d

dt

∣∣ûN (t, k)
∣∣

� τ ′(t)keτ(t)k
∣∣ûN (t, k)

∣∣ + eτ(t)k
∑

n−j+m=k
0�n,j,m�N

∣∣ûN (t, n)
∣∣∣∣ûN (t, j)

∣∣∣∣ûN (t,m)
∣∣,

for k = 0,1, . . . ,N , and t ∈ [0, T ], where (2.11) has been used in the last inequality.
Summing over all integers k = 0,1, . . . ,N yields

d

dt

(
N∑

k=0

eτ(t)k
∣∣ûN (t, k)

∣∣)

� τ ′(t)
N∑

k=0

keτ(t)k
∣∣ûN (t, k)

∣∣ +
N∑

k=0

eτ(t)k

( ∑
n−j+m=k

0�n,j,m�N

∣∣ûN (t, n)
∣∣∣∣ûN (t, j)

∣∣∣∣ûN (t,m)
∣∣)

= τ ′(t)
N∑

k=0

keτ(t)k
∣∣ûN (t, k)

∣∣ +
N∑

k=0

( ∑
n−j+m=k

0�n,j,m�N

eτ(t)n
∣∣ûN (t, n)

∣∣e−τ(t)j
∣∣ûN (t, j)

∣∣eτ(t)m
∣∣ûN (t,m)

∣∣)

� τ ′(t)
N∑

k=0

keτ(t)k
∣∣ûN (t, k)

∣∣ +
(

N∑
k=0

eτ(t)k
∣∣ûN (t, k)

∣∣)2( N∑
k=0

∣∣ûN (t, k)
∣∣), (2.12)

where the last formula is obtained by using the Young’s convolution inequality and the fact e−τj � 1, for τ , j � 0.
Now, we estimate the second term on the right-hand side of (2.12). The key ingredient of the calculation is the

elementary inequality ex � e + x�ex , for all x � 0, � � 0, and we select � = 1
2 here. Hence

(
N∑

k=0

eτ(t)k
∣∣ûN (t, k)

∣∣)2( N∑
k=0

∣∣ûN (t, k)
∣∣)

�
(

N∑
k=0

e
∣∣ûN (t, k)

∣∣ +
N∑

k=0

τ
1
2 (t)k

1
2 eτ(t)k

∣∣ûN (t, k)
∣∣)2( N∑

k=0

∣∣ûN (t, k)
∣∣)

� 2e2

(
N∑

k=0

∣∣ûN (t, k)
∣∣)3

+ 2τ(t)

(
N∑

k=0

keτ(t)k
∣∣ûN (t, k)

∣∣)(
N∑

k=0

eτ(t)k
∣∣ûN (t, k)

∣∣)(
N∑

k=0

∣∣ûN (t, k)
∣∣), (2.13)

where we have used Young’s inequality and Hölder’s inequality.
Thus, combining (2.12) and (2.13) yields

d

dt

(
N∑

k=0

eτ(t)k
∣∣ûN (t, k)

∣∣) � τ ′(t)
N∑

k=0

keτ(t)k
∣∣ûN (t, k)

∣∣ + 2e2

(
N∑

k=0

∣∣ûN (t, k)
∣∣)3

+ 2τ(t)

(
N∑

keτ(t)k
∣∣ûN (t, k)

∣∣)(
N∑

eτ(t)k
∣∣ûN (t, k)

∣∣)(
N∑∣∣ûN (t, k)

∣∣)

k=0 k=0 k=0
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� 1

2
τ ′(t)

N∑
k=0

keτ(t)k
∣∣ûN (t, k)

∣∣ + 2e2C3
1

+
(

1

2
τ ′(t) + 2C1τ(t)

N∑
k=0

eτ(t)k
∣∣ûN (t, k)

∣∣)(
N∑

k=0

keτ(t)k
∣∣ûN (t, k)

∣∣), (2.14)

for all t ∈ [0, T ], where we have used (2.7).
Denote by τN(t), t ∈ [0, tN ], the unique solution of the ODE

1

2
τ ′
N(t) + 2C1τN(t)zN(t) = 0, with τN(0) = σ, (2.15)

where we set

zN(t) :=
N∑

k=0

eτN (t)k
∣∣ûN (t, k)

∣∣. (2.16)

Due to (2.15) and (2.16), we infer from (2.14) that

dzN

dt
(t) � 1

2
τ ′
N(t)

N∑
k=0

keτN (t)k
∣∣ûN (t, k)

∣∣ + 2e2C3
1

� −2C1zN(t)τN(t)

N∑
k=0

keτN (t)k
∣∣ûN (t, k)

∣∣ + 2e2C3
1 , t ∈ [0, tN ]. (2.17)

Next, we estimate τN(t)
∑N

k=0 keτN (t)k|ûN (t, k)| by considering the following two cases:
Case 1: N � 1

τN (t)
. In this case, one has

τN(t)

N∑
k=0

keτN (t)k
∣∣ûN (t, k)

∣∣ � τN(t)
∑

1
τN (t)

�k�N

keτN (t)k
∣∣ûN (t, k)

∣∣ � ∑
1

τN (t)
�k�N

eτN (t)k
∣∣ûN (t, k)

∣∣

=
N∑

k=0

eτN (t)k
∣∣ûN (t, k)

∣∣ −
∑

0�k< 1
τN (t)

eτN (t)k
∣∣ûN (t, k)

∣∣

� zN(t) − e
∑

0�k< 1
τN (t)

∣∣ûN (t, k)
∣∣ � zN(t) − eC1, (2.18)

where the fact (2.7) has been used.
Case 2: N < 1

τN (t)
. In this case, in order to obtain the same estimate as (2.18), we proceed as follows:

τN(t)

N∑
k=0

keτN (t)k
∣∣ûN (t, k)

∣∣ � 0 = zN(t) −
N∑

k=0

eτN (t)k
∣∣ûN (t, k)

∣∣ � zN(t) − e

N∑
k=0

∣∣ûN (t, k)
∣∣ � zN(t) − eC1.

We conclude from the above two cases that

τN(t)

N∑
k=0

keτN (t)k
∣∣ûN (t, k)

∣∣ � zN(t) − eC1,

and by substituting it into (2.17), one has

dzN
(t) � −2C1z

2
N(t) + 2eC2

1zN(t) + 2e2C3
1 , for all t ∈ [0, tN ]. (2.19)
dt
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Notice that the right-hand side of (2.19) is negative when zN > z∗ = 1+√
5

2 eC1, and hence (2.19) implies that

zN(t) � max
{
zN(0), z∗} = max

{
N∑

k=0

eσk
∣∣ûN (0, k)

∣∣, 1 + √
5

2
eC1

}
� C0, (2.20)

for all t ∈ [0, tN ], where we have also used (2.8) and (2.9) in the above estimate. Therefore, by virtue of the uniform
bound (2.20) of zN(t), the solution τN(t) of the initial value problem (2.15) on [0, tN ] can be extended to the solution
on [0, T ], and thus (2.20) holds for all t ∈ [0, T ], i.e.,

zN(t) � C0, for all t ∈ [0, T ], (2.21)

and along with (2.15), we infer

τN(t) = σ exp

(
−4C1

t∫
0

zN(s) ds

)
� σe−4C0C1t , for all t ∈ [0, T ]. (2.22)

Let us define

τ(t) = σe−λ|t |, with λ = 4C0C1, (2.23)

where C0 and C1 are specified in (2.9) and (2.6), respectively. Then, (2.22) and (2.23) show that τ(t) � τN(t) on
[0, T ], and consequently,

∥∥uN(t)
∥∥

Gτ(t)(W)
=

N∑
k=0

eτ(t)k
∣∣ûN (t, k)

∣∣ � N∑
k=0

eτN (t)k
∣∣ûN (t, k)

∣∣ = zN(t) � C0, (2.24)

for all t ∈ [0, T ], due to (2.21). Since N is an arbitrary integer larger than N ′, we conclude, for every fixed number N0,
for every t ∈ [0, T ],

N0∑
k=0

eτ(t)k
∣∣û(t, k)

∣∣ = lim
N→∞

N0∑
k=0

eτ(t)k
∣∣ûN (t, k)

∣∣ � C0.

Therefore, since N0 � 0 and T > 0 are arbitrarily selected, ‖u(t)‖Gτ(t)(W) � C0 for all t � 0. �
Remark 2.2. In Theorem 1.2, we found a lower bound τ(t) of the radius of spatial analyticity of u(t), where τ(t) =
σe−λ|t |, with λ = 4C0C1. By the definition of C0 in (2.9), one has

λ =
{

2(1 + √
5 )eC2

1 , if ‖u0‖Gσ (W) � (1 + √
5 )eC1/2,

4C1‖u0‖Gσ (W), if ‖u0‖Gσ (W) > (1 + √
5 )eC1/2.

(2.25)

Here, we shall provide a slightly different lower bound τ̃ (t) of the radius of analyticity of u(t). More precisely, we can
choose τ̃ (t) = σe−λ̃(t)|t |, where λ̃(t) defined in (2.29) below, is almost independent of the Gevrey norm ‖u0‖Gσ (W) of
the initial datum, for large values of |t |. Indeed, by (2.19), it is easy to see that

dzN

dt
(t) � −2C1

(
zN(t) − eC1

2

)2

+ 5

2
e2C3

1 . (2.26)

After some manipulations of (2.26), we obtain

t∫ (
zN(s) − eC1

2

)2

ds � zN(0)

2C1
+ 5e2C2

1 t

4
� ‖u0‖Gσ (W)

2C1
+ 5e2C2

1 t

4
. (2.27)
0
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Note
t∫

0

zN(s) ds =
t∫

0

(
zN(s) − eC1

2

)
ds + eC1

2
t

�
[ t∫

0

(
zN(s) − eC1

2

)2

ds

] 1
2 √

t + eC1

2
t

�
[‖u0‖Gσ (W)

2C1
+ 5e2C2

1 t

4

] 1
2 √

t + eC1

2
t, (2.28)

where we have used the estimate (2.27). Thus, by (2.22) and (2.28), we may select

τ̃ (t) = σe−λ̃(t)|t |, with λ̃(t) = 2C1

[
2‖u0‖Gσ (W)

C1|t | + 5e2C2
1

] 1
2 + 2eC2

1 , |t | > 0, (2.29)

and then τ̃ (t) � τN(t). Thus, by adopting the argument in Theorem 1.2, it can be shown that ‖u(t)‖Gτ̃(t)(W) � C0 for

all t ∈ R. Also, we see from (2.29) that λ̃(t) → 2(1 + √
5 )eC2

1 as |t | → ∞, that is, λ̃(t) is almost independent of
‖u0‖Gσ (W), for large values of |t |, in contrast to the definition (2.25) of λ.

Remark 2.3. For analytic initial data, the Gevrey norm estimate ‖u(t)‖Gτ(t)(W) � C0, where τ(t) = σe−λ|t |, can
provide a growth estimate of the Hs norm of the solution u(t). Indeed,

‖u‖2
Hs =

∑
k�0

(
k2s + 1

)|uk|2 � sup |uk|
(∑

k�0

|uk|eτk k2s

eτk
+

∑
k�0

|uk|
)

.

Since the maximum of the function k �→ k2s

eτk occurs at k = 2s
τ

, we obtain

‖u‖2
Hs � ‖u‖W

[
e−2s

(
2s

τ

)2s

‖u‖Gτ (W) + ‖u‖W

]
.

It follows that∥∥u(t)
∥∥2

Hs � C(s)e2λst ,

that is to say, the Hs norm grows at most exponentially, if s > 1
2 , which agrees with the Hs norm estimates in

Corollary 2, Section 3 of [6].

Remark 2.4. Let us set A = √
I − �. Recall the regular Gevrey classes of analytic functions are defined by D(AseσA)

furnished the norm ‖AseσA · ‖L2(T), where s � 0, σ > 0. It has been mentioned in the Introduction that we choose to
employ the special Gevrey class Gσ (W) in this manuscript, since it provides better estimate of the lower bound the
radius of analyticity of the solution. In particular, we can do the following comparisons.

Suppose the initial condition u0 ∈ D(AseσA), s > 1
2 , σ > 0, and let us perform the estimates by using the regular

Gevrey classes D(AseσA). Adopting similar arguments as in [9,12], one can manage to show that

∥∥Aseτ1(t)Au(t)
∥∥2

L2 �
∥∥AseσAu0

∥∥2
L2 + C

|t |∫
0

∥∥u
(
t ′
)∥∥4

Hs dt ′, s >
1

2
,

if τ1(t) = σe− ∫ |t |
0 h(t ′) dt ′ , where h(t) = C(‖ApeσAu0‖2

L2 + ∫ |t |
0 ‖u(t ′)‖4

Hs dt ′). Since ‖u(t)‖Hs , s > 1
2 , has an upper

bound that grows exponentially as |t | → ∞ (see [6]), we infer that τ1(t) might shrinks double exponentially, compared
to the exponential shrinking rate of τ(t) established in Theorem 1.2, where the Gevrey class Gσ (W) is used. Such
advantage of employing the special Gevrey class Gσ (W) stems from the uniform boundedness of the norm ‖u(t)‖W

for the solution u to the cubic Szegő equation for sufficiently regular initial data.
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Appendix A

For the sake of completion, we provide a straightforward proof of the following property of the Hankel operator.

Proposition A.1. For any u ∈ L2+(T) ∩ W , the following double inequality holds

1

2
‖u‖W � T r

(|Hu|
)
�

∞∑
k=0

( ∞∑
�=0

∣∣û(k + �)
∣∣2

) 1
2

. (A.1)

Proof. Recall the following result in the operator theory (see, e.g., [3]). Let A be an operator on a Hilbert space H ,
where A belongs to the trace class. If {ek} and {fk} are two orthonormal families in H , then∑

k

∣∣(Aek, fk)
∣∣ � T r(|A|). (A.2)

In order to find a lower bound of T r(|Hu|), we use the estimate (A.2) by computing
∑

k |(Hu(e
ikθ ), fk)| with two

different orthonormal systems {fk} selected below. Notice that, by the definition (2.2) of the Hankel operator Hu :
L2+(T) → L2+(T), we have

Hu

(
eikθ

) = Π
(
ue−ikθ

) = Π

( ∑
j�0

û(j)ei(j−k)θ

)
=

∑
j�0

û(j + k)eijθ . (A.3)

If we choose fk = eikθ , k � 0, and use (A.3), then it follows that

T r
(|Hu|

)
�

∑
k�0

∣∣(Hu

(
eikθ

)
, eikθ

)∣∣ =
∑
k�0

∣∣∣∣
(∑

j�0

û(j + k)eijθ , eikθ

)∣∣∣∣ =
∑
k�0

∣∣û(2k)
∣∣.

However, if we select fk = ei(k+1)θ , for every integer k � 0, then

T r
(|Hu|

)
�

∑
k�0

∣∣(Hu

(
eikθ

)
, fk

)∣∣ =
∑
k�0

∣∣û(2k + 1)
∣∣.

Summing up, we have proved

2T r
(|Hu|

)
�

∑
k�0

∣∣û(k)
∣∣ = ‖u‖W .

We now pass to the second inequality. Recall from (2.2) that, for every h1, h2 ∈ L2+,(
Hu(h1), h2

) = (u,h1h2) = (
Hu(h2), h1

)
,

which implies that H 2
u is a positive self-adjoint linear operator. Moreover,

T r
(
H 2

u

) =
∑

k,��0

∣∣û(k + �)
∣∣2 =

∞∑
n=0

(n + 1)
∣∣û(n)

∣∣2
< ∞

as soon as u ∈ H 1/2. In other words, |Hu| =
√

H 2
u is a positive Hilbert–Schmidt operator if u ∈ L2+ ∩H 1/2. Let {ρj } be

the sequence of positive eigenvalues of |Hu|, and let {εj } be an orthonormal sequence of corresponding eigenvectors.
Notice that(

Hu(εj ),Hu(εj ′)
) = (

H 2
u (εj ′), εj

) = ρ2
j ′δjj ′ .
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We infer that the sequence {Hu(εj )/ρj } is orthonormal. We then define the following antilinear operator on L2+,

Ωu(h) =
∑
j

(Hu(εj ), h)

ρj

εj .

Notice that, due to the orthonormality of both systems {εj } and {Hu(εj )/ρj },∥∥Ωu(h)
∥∥ � ‖h‖.

We now observe that

ρj = (
Ωu

(
Hu(εj )

)
, εj

) =
∞∑

k=0

(
Ωu

(
eikθ

)
, εj

)(
eikθ ,Hu(εj )

) =
∞∑

k=0

(
Ωu

(
eikθ

)
, εj

)(
εj ,Hu

(
eikθ

))
=

∑
k,��0

û(k + �)
(
Ωu

(
eikθ

)
, εj

)(
εj , e

i�θ
)
,

and therefore, for every N ,

T r
(|Hu|

) =
∑
j

ρj =
∑

k,��0

û(k + �)
(
Ωu

(
eikθ

)
, ei�θ

)
.

Apply the Cauchy–Schwarz inequality to the sum on �,

T r
(|Hu|

)
�

∞∑
k=0

∥∥Ωu

(
eikθ

)∥∥( ∞∑
�=0

∣∣û(k + �)
∣∣2

) 1
2

,

and the claim follows from ‖Ωu(e
ikθ )‖� ‖eiθ‖ = 1. �

Using the above proposition, it is easy to derive the estimate (2.3) used in the proof of Proposition 2.1. Indeed, by
the Cauchy–Schwarz inequality in the k sum, we have, for every s > 1,

∞∑
k=0

( ∞∑
�=0

∣∣û(k + �)
∣∣2

) 1
2

�
( ∞∑

k=0

(1 + k)1−2s

) 1
2 ( ∑

k,��0

(1 + k)2s−1
∣∣û(k + �)

∣∣2
) 1

2

�
(

s

s − 1

) 1
2
( ∑

k,��0

(1 + k + �)2s−1
∣∣û(k + �)

∣∣2
) 1

2

� Cs‖u‖Hs .
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[20] O. Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE 4 (3) (2011) 379–404.
[21] H. Xu, Large time blow up for a perturbation of the cubic Szegő equation, preprint, arXiv:1307.5284, 2013.
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