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Abstract

We investigate large-time asymptotics for viscous Hamilton–Jacobi equations with possibly degenerate diffusion terms. We es-
tablish new results on the convergence, which are the first general ones concerning equations which are neither uniformly parabolic
nor first order. Our method is based on the nonlinear adjoint method and the derivation of new estimates on long time averaging
effects. It also extends to the case of weakly coupled systems.
© 2013
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1. Introduction

In this paper we obtain new results on the study of the large time behavior of Hamilton–Jacobi equations with
possibly degenerate diffusion terms

ut + H(x,Du) = tr
(
A(x)D2u

)
in T

n × (0,∞), (1.1)

where T
n is the n-dimensional torus Rn/Zn. Here Du,D2u are the (spatial) gradient and Hessian of the real-valued

unknown function u defined on T
n × [0,∞). The functions H : Tn × R

n → R and A : Tn → M
n×n
sym are the Hamil-

tonian and the diffusion matrix, respectively, where M
n×n
sym is the set of n × n real symmetric matrices. The basic

hypotheses that we require are that H is uniformly convex in the second variable, and A is nonnegative definite.
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Our goal in this paper is to study the large time behavior of viscosity solutions of (1.1). Namely, we prove that∥∥u(·, t) − (v − ct)
∥∥

L∞(Tn)
→ 0 as t → ∞, (1.2)

where (v, c) is a solution of the ergodic problem

H(x,Dv) = tr
(
A(x)D2v

) + c in T
n. (1.3)

In view of the quadratic or superquadratic growth of the Hamiltonian, there exists a unique constant c ∈ R such that
(1.3) holds true for some v ∈ C(Tn) in the viscosity sense. We notice that in the uniformly parabolic case (A is positive
definite), v is unique up to additive constants. It is however typically the case that v is not unique even up to additive
constants when A is degenerate, which makes the convergence (1.2) delicate and hard to be achieved. We will state
clearly the existence result of (1.3), which itself is important, in Section 2.

It is worth emphasizing here that the study of the large-time asymptotics for this type of equations was only
available in the literature for the uniformly parabolic case and for the first order case. There was no results on the
large-time asymptotics for (1.1) with possibly degenerate diffusion terms up to now as far as the authors know.

In the last decade, a number of authors have studied extensively the large time behavior of solutions of (first or-
der) Hamilton–Jacobi equations (i.e., (1.1) with A ≡ 0), where H is coercive. Several convergence results have been
established. The first general theorem in this direction was proven by Namah and Roquejoffre in [18], under the as-
sumptions: p �→ H(x,p) is convex, H(x,p) � H(x,0) for all (x,p) ∈ T

n × R
n, and maxx∈Tn H(x,0) = 0. Fathi

then gave a breakthrough in this area in [10] by using a dynamical systems approach from the weak KAM theory.
Contrary to [18], the results of [10] use uniform convexity and smoothness assumptions on the Hamiltonian but do
not require any condition on the structure above. These rely on a deep understanding of the dynamical structure of
the solutions and of the corresponding ergodic problem. See also the paper of Fathi and Siconolfi [11] for a beautiful
characterization of the Aubry set. Afterwards, Davini and Siconolfi in [7] and Ishii in [12] refined and generalized
the approach of Fathi, and studied the asymptotic problem for Hamilton–Jacobi equations on T

n and on the whole
n-dimensional Euclidean space, respectively. Besides, Barles and Souganidis [2] obtained additional results, for pos-
sibly non-convex Hamiltonians, by using a PDE method in the context of viscosity solutions. Barles, Ishii and Mitake
[1] simplified the ideas in [2] and presented the most general assumptions (up to now). In general, these methods are
based crucially on delicate stability results of extremal curves in the context of the dynamical approach in light of the
finite speed of propagation, and of solutions for time large in the context of the PDE approach. It is also important to
point out that the PDE approach in [2,1] does not work with the presence of any second order terms.

In the uniformly parabolic setting (i.e., A uniformly positive definite), Barles and Souganidis [3] proved the long-
time convergence of solutions. Their proof relies on a completely distinct set of ideas from the ones used in the first
order case as the associated ergodic problem has a simpler structure. Indeed, the strong maximum principle holds,
the ergodic problem has a unique solution up to constants. The proof for the large-time convergence in [3] strongly
depends on this fact.

It is clear that all the methods aforementioned (for both the cases A ≡ 0 and A uniformly positive definite) are not
applicable for the general degenerate viscous cases because of the presence of the second order terms and the lack of
both the finite speed of propagation as well as the strong comparison principle. We briefly describe the key ideas on
establishing (1.2) in Subsection 1.1. Here the nonlinear adjoint method, which was introduced by Evans in [8], plays
the essential role in our analysis. Our main results are stated in Subsection 1.2.

1.1. Key ideas

Let us now briefly describe the key ideas on establishing (1.2). Without loss of generality, we may assume the
ergodic constant is 0 henceforth. In order to understand the limit as t → ∞, we introduce a rescaled problem. For
ε > 0, set uε(x, t) = u(x, t/ε). Then (uε)t (x, t) = ε−1ut (x, t/ε), Duε(x, t) = Du(x, t/ε), and uε solves{

εuε
t + H

(
x,Duε

) = tr
(
A(x)D2uε

)
in T

n × (0,∞),

uε(x,0) = u0(x), on T
n.

By this rescaling, uε(x,1) = u(x,1/ε) and we can easily see that to prove (1.2) is equivalent to prove that∥∥uε(·,1) − v
∥∥ ∞ n → 0 as ε → 0.
L (T )
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To show the above, we first introduce the following approximation:{
εwε

t + H
(
x,Dwε

) = tr
(
A(x)D2wε

) + ε4�wε in T
n × (0,∞),

uε(x,0) = u0(x), on T
n.

Then, we observe that wε is smooth, and∥∥wε(·,1) − uε(·,1)
∥∥

L∞(Tn)
→ 0 as ε → 0.

It is thus enough to derive the convergence of wε(·,1) as ε → 0. To prove this, we show that

ε
∥∥wε

t (·,1)
∥∥

L∞(Tn)
→ 0 as ε → 0, (1.4)

which is a way to prove the convergence (1.2). Indeed, (1.2) is a straightforward consequence of (1.4) by using the
stability of viscosity solutions. We notice that this principle appears in the papers of Fathi [10], Barles and Souganidis
[2] in the case A ≡ 0 in a completely different way. More precisely, Barles and Souganidis [2] first realized the
importance of (1.4), and they gave a beautiful proof of the fact that max{ut ,0},min{ut ,0} → 0 as t → ∞ in the
viscosity sense. In view of this fact, they succeeded to deal with some cases of non-convex Hamilton–Jacobi equations.
On the other hand, we emphasize that the proofs in [10,2] do not work at all for the second order cases, and therefore,
one cannot apply it to (1.1). One of our key contributions in this paper is the establishment of (1.4) in the general
setting.

In order to prove (1.4), we use the nonlinear adjoint method introduced by Evans [8] and give new ingredients on
the averaging action as t → ∞ (or equivalently as ε → 0 by rescaling), as clarified below. Let Lwε be the formal
linearized operator of the regularized equation around wε , i.e.,

Lwεf := ∂

∂η

[
ε
(
wε + ηf

)
t
+ H

(
x,Dwε + ηDf

) − tr
(
A(x)

(
D2wε + ηD2f

)) − ε4�
(
wε + ηf

)]∣∣
η=0,

for any f ∈ C2(Tn × (0,∞)). Then we consider the following adjoint equation:{
L∗

wεσ ε = 0 in T
n × (0,1),

σ ε(x,1) = δx0 on T
n,

where L∗
wε is the formal adjoint operator of Lwε , and δx0 is the Dirac delta measure at some point x0 ∈ T

n. We then
see that σε(·, t) is a probability measure for all t ∈ (0,1) and conservation of energy holds, namely,

d

dt

∫
Tn

[
H

(
x,Dwε

) − tr
(
A(x)D2wε

) − ε4�wε
]
σε(x, t) dx = 0.

The conservation of energy in particular gives us a different and completely new way to interpret εwε
t (·,1) as

εwε
t (x0,1) =

1∫
0

∫
Tn

[
H

(
x,Dwε

) − tr
(
A(x)D2wε

) − ε4�wε
]
σε(x, t) dx dt. (1.5)

The most important part of the paper is then about showing that the right hand side of (1.5) vanishes as ε → 0, which
requires new ideas and estimates (see Lemmas 2.8 and 3.7). We also notice that the averaging action appears implicitly
in (1.5) and plays the key role here. More precisely, if we rescale the above integral back to its actual scale, it turns
out to be

1

T

T∫
0

∫
Tn

[
H

(
x,Dwε

) − tr
(
A(x)D2wε

) − ε4�wε
]
σε(x, t) dx dt, (1.6)

where T = 1/ε → ∞.
The nonlinear adjoint method for Hamilton–Jacobi equations was introduced by Evans [8] to study the vanishing

viscosity process, and gradient shock structures of viscosity solutions of non-convex Hamilton–Jacobi equations.
Afterwards, Tran [21] used it to establish a rate of convergence for static Hamilton–Jacobi equations and was able to
relax the convexity assumption of the Hamiltonians in some cases. Cagnetti, Gomes and Tran [4] then used it to study
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the Aubry–Mather theory in the non-convex settings and established the existence of Mather measures. See also [5,9]
for further developments of this new method in the context of Hamilton–Jacobi equations. We notice further that σε

here is strongly related to the Mather measures in the context of the weak KAM theory. See [4] for more details.

1.2. Main results

We state the assumptions we use throughout the paper as well as our main theorems.
For some given θ,C > 0, we denote by C(θ,C) the class of all pairs of (H,A) satisfying

(H1) H ∈ C2(Tn ×R
n), and D2

ppH � 2θIn, where In is the identity matrix of size n,

(H2) |DxH(x,p)| � C(1 + |p|2),
(H3) A(x) = (aij (x)) ∈ M

n×n
sym with A(x) � 0, and A ∈ C2(Tn).

Theorem 1.1 (Main Theorem 1). Assume that (H,A) ∈ C(θ,C). Let u be the solution of (1.1) with initial data
u(·,0) = u0 ∈ C(Tn). Then there exists (v, c) ∈ C(Tn) ×R such that (1.2) holds, where the pair (v, c) is a solution of
the ergodic problem (1.3).

We also consider the weakly coupled system

(ui)t + Hi(x,Dui) +
m∑

j=1

cijuj = tr
(
Ai(x)D2ui

)
in T

n × (0,∞), for i = 1, . . . ,m, (1.7)

where (Hi,Ai) ∈ C(θ,C) is, for each i, the Hamiltonian and diffusion matrix Hi : Tn ×R
n → R and Ai : Tn → M

n×n
sym

and ui are the real-valued unknown functions on T
n ×[0,∞) for i = 1, . . . ,m. The coefficients cij are given constants

for 1 � i, j � m which are assumed to satisfy

(H4) cii > 0, cij � 0 for i �= j ,
∑m

j=1 cij = 0 for any i = 1, . . . ,m.

We remark that (H4) ensures that (1.7) is a monotone system.
Under these conditions, we prove

Theorem 1.2 (Main Theorem 2). Assume that (Hi,Ai) ∈ C(θ,C), and cij satisfies (H4) for 1 � i, j � m. Let
(u1, . . . , um) be the solution of (1.7) with initial data (u01, . . . , u0m) ∈ C(Tn)m. There exists (v1, . . . , vm, c) ∈
C(Tn)m ×R such that∥∥ui(·, t) − (vi − ct)

∥∥
L∞(Tn)

→ 0 as t → +∞, for i = 1, . . .m, (1.8)

where (v1, . . . , vm, c) is a solution of the ergodic problem for systems:

Hi(x,Dvi) +
m∑

j=1

cij vj = tr
(
Ai(x)D2vi

) + c in T
n, for i = 1, . . . ,m.

The study of the large-time behavior of solutions to the weakly coupled system (1.7) of first order cases (i.e.
Ai ≡ 0 for 1 � i � m) was started by [14] and [6] independently under rather restrictive assumptions for Hamilto-
nians. Recently, Mitake and Tran [16] were able to establish convergent results under rather general assumptions on
Hamiltonians. Their proof is based on the dynamical approach, inspired by the papers [7,12], together with a new
representation formula for the solutions. See [19] for a PDE approach inspired by [2]. We also refer to [15] for a
related work on homogenization of weakly coupled systems of Hamilton–Jacobi equations with fast switching rates.

We prove Theorem 1.2 by following the ideas described above. We notice that the coupling terms cause some
additional difficulties and are needed to be handled carefully. We in fact establish a new estimate (see Lemma 3.7(ii)
and Subsection 3.4) to control these coupling terms in order to achieve (1.4). This is completely different from the
single case.



F. Cagnetti et al. / Ann. I. H. Poincaré – AN 32 (2015) 183–200 187
After this paper was completed, we learnt that Ley and Nguyen [13] obtained recently related convergence results
for some specific degenerate parabolic equations. They however assume rather restrictive and technical conditions on
the degenerate diffusions so that they could combine the PDE approaches in [2] and [3] to achieve the results. On the
other hand, they can deal with a type of fully nonlinear case, which is not included in ours.

This paper is organized as follows: Sections 2 and 3 are devoted to prove Theorems 1.1 and 1.2 respectively. We
provide details and explanations to the method described above in Subsections 2.1, 2.3, 3.1, and 3.3 and give key
estimates in Subsections 2.2 and 3.2.

2. Degenerate viscous Hamilton–Jacobi equations

In this section we study degenerate viscous Hamilton–Jacobi equations. To keep the formulation as simple as
possible, we first consider the equation

(C)

{
ut + H(x,Du) = a(x)�u in T

n × (0,∞),

u(x,0) = u0(x) on T
n,

where u0 ∈ C(Tn). Throughout this section we always assume that (H,aIn) ∈ C(θ,C), i.e., a is supposed to be in
C2(Tn) with a � 0. We remark that all the results proved for this particular case hold with trivial modifications for
the general elliptic operator tr(A(x)D2u), except estimate (2.5) and Lemma 2.8(ii). The corresponding results will be
considered in the end of this section.

The next three propositions concern basic existence results, both for (C) and for the associated stationary problem.
The proofs are standard, hence omitted. We refer the readers to the companion paper [17] by Mitake and Tran for the
detailed proofs of Propositions 2.2 and 2.3.

Proposition 2.1. Let u0 ∈ C(Tn). There exists a unique solution u of (C) which is uniformly continuous on T
n ×

[0,∞). Furthermore, if u0 ∈ Lip(Tn), then u ∈ Lip(Tn × [0,∞)).

Proposition 2.2. There exists a unique constant c ∈R such that the ergodic problem

(E) H
(
x,Dv(x)

) = a(x)�v + c in T
n,

admits a solution v ∈ Lip(Tn). We call c the ergodic constant of (E).

In order to get the existence of the solutions of the ergodic problem (E), we use the vanishing viscosity method as
described by the following proposition.

Proposition 2.3. For every ε ∈ (0,1) there exists a unique constant Hε such that the following ergodic problem:

(E)ε H
(
x,Dvε

) = (
ε4 + a(x)

)
�vε + Hε in T

n

has a unique solution vε ∈ Lip(Tn) up to some additive constants. In addition,

|Hε − c|� Cε2,
∥∥Dvε

∥∥
L∞(Tn)

� C, (2.1)

for some positive constant C independent of ε. Here c is the ergodic constant of (E).

In view of the quadratic or superquadratic growth of the Hamiltonian H , we can get (2.1) by the Bernstein method.
See the proof of [17, Proposition 1.1] for details. By passing to some subsequences if necessary, vε − vε(x0) for a
fixed x0 ∈ T

n converges uniformly to a Lipschitz function v : Tn → R which is a solution of (E) as ε → 0.
We prove Theorem 1.1 in a sequence of subsections by using the method described in Introduction.

2.1. Regularizing process and proof of Theorem 1.1

We only need to study the case where c = 0, where c is the ergodic constant, by replacing, if necessary, H and
u(x, t) by H − c and u(x, t) + ct , respectively. Therefore, from now on, we always assume that c = 0 in this section.
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Also, without loss of generality we can assume that u0 ∈ Lip(Tn), since the general case u0 ∈ C(Tn) can be obtained
by a standard approximation argument. In particular, thanks to Proposition 2.1, we see that u is Lipschitz continuous
on T

n × [0,∞).
As stated in Introduction, we consider a rescaled problem. Setting uε(x, t) = u(x, t/ε) for ε > 0, where u is the

solution of (C), one can easily check that uε satisfies

(C)ε

{
εuε

t + H
(
x,Duε

) = a(x)�uε in T
n × (0,∞),

uε(x,0) = u0(x) on T
n.

Notice however that in this way we do not have a priori uniform Lipschitz estimates on ε, since the Lipschitz bounds
on u give us that∥∥uε

t

∥∥
L∞(Tn×[0,1]) � C/ε,

∥∥Duε
∥∥

L∞(Tn×[0,1]) � C. (2.2)

In general, the function uε is only Lipschitz continuous. For this reason, we add a viscosity term to (C)ε , and we
consider the regularized equation

(A)ηε

{
εw

ε,η
t + H

(
x,Dwε,η

) = (
a(x) + η

)
�wε,η in T

n × (0,∞),

wε,η(x,0) = u0(x) on T
n,

for η > 0. The advantage of considering (A)
η
ε lies in the fact that the solution is smooth, and this will allow us to use

the nonlinear adjoint method. The adjoint equation corresponding to (A)
η
ε is

(AJ)ηε

{−εσ
ε,η
t − div

(
DpH

(
x,Dwε,η

)
σε,η

) = �
((

a(x) + η
)
σε,η

)
in T

n × (0,1),

σ ε,η(x,1) = δx0 on T
n,

where δx0 is the Dirac delta measure at some point x0 ∈ T
n.

Lemma 2.4 (Elementary properties of σε,η). We have σε,η � 0 and∫
Tn

σ ε,η(x, t) dx = 1 for all t ∈ [0,1].

This is a straightforward result of adjoint operator and easy to check. Heuristically, the vanishing viscosity method
gives that the rate of convergence of wε,η to wε as η → 0 is√

viscosity coefficient/
(
the coefficient of w

ε,η
t

)
and therefore, we naturally expect that we need to choose η = εα with α > 2. We mostly choose η = ε4 hereinafter,
and therefore we specially denote (A)ε

4

ε , (AJ)ε
4

ε by (A)ε , (AJ)ε and wε,ε4
, σε,ε4

by wε , σε .
The proof of Theorem 1.1 is based on the two following results, Proposition 2.5 and Theorem 2.7.

Proposition 2.5. Let wε be the solution of (A)ε . There exists C > 0 independent of ε such that∥∥wε(·,1)
∥∥

C1(Tn)
� C,

∥∥uε(·,1) − wε(·,1)
∥∥

L∞(Tn)
� Cε.

The proof of Proposition 2.5 can be derived using standard arguments. Nevertheless, we give the proof below, since
some of the estimates involved will be used later.

Before starting the proof, we state a basic property of the function a ∈ C2(Tn).

Lemma 2.6. There exists a constant C > 0 such that∣∣Da(x)
∣∣2 � Ca(x) for all x ∈ T

n. (2.3)

Proof. In view of [20, Theorem 5.2.3], a1/2 ∈ Lip(Tn). It is then immediate to get (2.3) by noticing that, for a(x) > 0,

D
(
a1/2)(x) = Da(x)

1/2
. �
2a (x)
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Proof of Proposition 2.5. Since we are assuming that the ergodic constant for (E) is 0 now and H is quadratic or
superquadratic on p, we can easily get the first estimate. We only prove the second one.

Let wε,η be the solution of (A)
η
ε and set ϕ(x, t) = |Dwε,η|2/2. Then, ϕ satisfies

εϕt + DpH · Dϕ + DxH · Dwε,η = (η + a)
(
�ϕ − ∣∣D2wε,η

∣∣2) + (
Da · Dwε,η

)
�wε,η.

We next notice that for δ > 0 small enough, in light of Lemma 2.6,

axk
wε,η

xk
�wε,η � C|Da| · ∣∣�wε,η

∣∣� C

δ
+ δ|Da|2∣∣D2wε,η

∣∣2 � C + 1

2
a
∣∣D2wε,η

∣∣2
. (2.4)

Hence

εϕt + DpH · Dϕ + 1

2
(η + a)

∣∣D2wε,η
∣∣2 � (η + a)�ϕ + C.

Multiply the above by σε and integrate over [0,1] ×T
n to yield

1∫
0

∫
Tn

(
a(x) + η

)∣∣D2wε,η
∣∣2

σε,η dx dt � C (2.5)

for some C > 0.
Note that wε,η is differentiable with respect to η by standard regularity results for elliptic equations. Differentiating

the equation in (A)
η
ε with respect to η, we get

ε
(
wε,η

η

)
t
+ DpH

(
x,Dwε,η

) · Dwε,η
η = �wε,η + (

a(x) + η
)
�wε,η

η , in T
n,

where fη denotes the derivative of a function f with respect to the parameter η. Multiplying the above by σε,η and
integrating by parts on [0,1] ×T

n yield

εwε,η
η (x0,1) =

1∫
0

∫
Tn

�wε,ησ ε,η dx dt,

where we used the fact that w
ε,η
η (x,0) ≡ 0. Thanks to (2.5), by the Hölder inequality

ε
∣∣wε,η

η (x0,1)
∣∣� C

( 1∫
0

∫
Tn

∣∣D2wε,η
∣∣2

σε,η dx dt

)1/2

� C√
η
.

By choosing properly the point x0 we have thus∥∥wε,η
η (·,1)

∥∥
L∞(Tn)

� C

ε
√

η
,

which gives

∥∥wε,η(·,1) − uε(·,1)
∥∥

L∞(Tn)
= ∥∥wε,η(·,1) − wε,0(·,1)

∥∥
L∞(Tn)

�
C

√
η

ε
.

Finally, observing that wε = wε,ε4
, choosing η = ε4 we get the result. �

Next theorem gives (1.4) in the special case of problem (A)ε .

Theorem 2.7. We have

lim
ε→0

ε
∥∥wε

t (·,1)
∥∥

L∞(Tn)
= 0.

More precisely, there exists a positive constant C, independent of ε, such that

ε
∥∥wε

t (·,1)
∥∥

L∞(Tn)
= ∥∥H

(·,Dwε(·,1)
) − (

ε4 + a(·))�wε(·,1)
∥∥

L∞(Tn)
� Cε1/4.
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The proof of Theorem 2.7 is postponed to the end of this section. We can now give the proof of Theorem 1.1.

Proof of Theorem 1.1. By Proposition 2.5, we can choose a sequence {εm} → 0 such that {wεm(·,1)} converges
uniformly to a continuous function v. In view of Theorem 2.7, v is a solution of (E), and thus a (time independent)
solution of the equation in (C)ε . We let tm = 1/εm and use Proposition 2.5 to deduce that∥∥u(·, tm) − v

∥∥
L∞(Tn)

→ 0 as m → ∞.

Let us show that the limit does not depend on the sequence {tm}m∈N. Now, for any x ∈ T
n, t > 0 such that tm � t <

tm+1, we use the comparison principle to yield that∣∣u(x, t) − v(x)
∣∣ � ∥∥u

(·, tm + (t − tm)
) − v(·)∥∥

L∞(Tn)
�

∥∥u(·, tm) − v(·)∥∥
L∞(Tn)

.

Thus,

lim
t→∞

∣∣u(x, t) − v(x)
∣∣ � lim

m→∞
∥∥u(·, tm) − v(·)∥∥

L∞(Tn)
= 0,

which gives the conclusion. �
2.2. Convergence mechanisms: Degenerate equations

We show now the following key lemma, which provides integral bounds on first and second order derivatives of
the difference wε − vε on the support of σε and a, where vε is a solution of (E)ε , and wε and σε are solutions of

(A)ε

{
εwε

t + H
(
x,Dwε

) = (
a(x) + ε4

)
�wε in T

n × (0,∞),

wε(x,0) = u0(x) on T
n,

(AJ)ε

{−εσ ε
t − div

(
DpH

(
x,Dwε

)
σε

) = �
((

a(x) + ε4
)
σε

)
in T

n × (0,1),

σ ε(x,1) = δx0 on T
n,

respectively.

Lemma 2.8 (Key estimates). There exists a positive constant C, independent of ε, such that the following hold:

(i)
∫ 1

0

∫
Tn(

1
ε
|D(wε − vε)|2 + ε7|D2(wε − vε)|2)σ ε dx dt � C,

(ii)
∫ 1

0

∫
Tn a2(x)|D2(wε − vε)|2σε dx dt � C

√
ε.

Proof. Subtracting Eq. (A)ε from (E)ε , thanks to the uniform convexity of H , we get

0 = ε
(
vε − wε

)
t
+ H

(
x,Dvε

) − H
(
x,Dwε

) − (
ε4 + a(x)

)
�

(
vε − wε

) − Hε

� ε
(
vε − wε

)
t
+ DpH

(
x,Dwε

) · D(
vε − wε

) + θ
∣∣D(

vε − wε
)∣∣2 − (

ε4 + a(x)
)
�

(
vε − wε

) − Hε.

Multiply the above inequality by σε and integrate by parts on [0,1] ×T
n to deduce that

θ

1∫
0

∫
Tn

∣∣D(
wε − vε

)∣∣2
σε dx dt � Hε −

1∫
0

∫
Tn

ε
((

vε − wε
)
σε

)
t
dx dt

+
1∫

0

∫
Tn

[
εσ ε

t + div
(
DpH

(
x,Dwε

)
σε

) + �
((

ε4 + a
)
σε

)]
(v − w)dx dt

= Hε + ε

[ ∫
Tn

(
wε − vε

)
σε dx

]t=1

t=0

= Hε + ε
(
wε(x0,1) − vε(x0)

) − ε

∫
n

(
u0(x) − vε(x)

)
σε(x,0) dx
T
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= Hε + εwε(x0,1) − ε

∫
Tn

(
vε(x0) − vε(x)

)
σε(x,0) dx − ε

∫
Tn

u0(x)σ ε(x,0) dx

� Hε + Cε + Cε
∥∥Dvε

∥∥
L∞(Tn)

− ε

∫
Tn

u0(x)σ ε(x,0) dx � Cε,

where we used Propositions 2.5, 2.3 (recall that we set c = 0) in the last two inequalities. We hence get

1∫
0

∫
Tn

∣∣D(
wε − vε

)∣∣2
σε dx dt � Cε, (2.6)

which is the first part of (i).
Next, subtract (A)ε from (E)ε and differentiate with respect to xi to get

ε
(
vε − wε

)
xi t

+ DpH
(
x,Dvε

) · Dvε
xi

− DpH
(
x,Dwε

) · Dwε
xi

+ Hxi

(
x,Dvε

) − Hxi

(
x,Dwε

)
− (

ε4 + a
)
�

(
vε − wε

)
xi

− axi
�

(
vε − wε

) = 0.

Let ϕ(x, t) = |D(vε − wε)|2/2. Multiplying the last identity by (vε − wε)xi
and summing up with respect to i, we

achieve that

εϕt + DpH
(
x,Dwε

) · Dϕ + [(
DpH

(
x,Dvε

) − DpH
(
x,Dwε

)) · Dvε
xi

](
vε
xi

− wε
xi

)
+ (

DxH
(
x,Dvε

) − DxH
(
x,Dwε

)) · D(
vε − wε

) − (
ε4 + a(x)

)(
�ϕ − ∣∣D2(vε − wε

)∣∣2)
− [

Da · D(
vε − wε

)]
�

(
vε − wε

) = 0.

By using various bounds on the above as in the proof of Proposition 2.5, we derive that

εϕt + DpH
(
x,Dwε

) · Dϕ − (
ε4 + a(x)

)
�ϕ + (

ε4 + a(x)/2
)∣∣D2(vε − wε

)∣∣2

� C + C
(∣∣D2vε

∣∣ + 1
)∣∣D(

vε − wε
)∣∣2

. (2.7)

The last term in the right hand side of (2.7) is a dangerous term. We now take advantage of (2.5) and (2.6) to handle
it. Using the fact that ‖Dvε‖L∞ and ‖Dwε‖L∞ are bounded, we have

C
∣∣D2vε

∣∣∣∣D(
vε − wε

)∣∣2 � C
∣∣D2(vε − wε

)∣∣∣∣D(
vε − wε

)∣∣2 + C
∣∣D2wε

∣∣∣∣D(
vε − wε

)∣∣2

� ε4

2

∣∣D2(vε − wε
)∣∣2 + C

ε4

∣∣D(
vε − wε

)∣∣2 + C
∣∣D2wε

∣∣. (2.8)

Combine (2.7) and (2.8) to deduce

εϕt + DpH
(
x,Dwε

) · Dϕ − (
ε4 + a(x)

)
�ϕ + ε4

2

∣∣D2(vε − wε
)∣∣2

� C
∣∣D(

vε − wε
)∣∣2 + C

ε4

∣∣D(
vε − wε

)∣∣2 + C
∣∣D2wε

∣∣. (2.9)

We multiply (2.9) by σε , integrate over [0,1] ×T
n, to yield that, in light of (2.5) and (2.6),

ε4

1∫
0

∫
Tn

∣∣D2(wε − vε
)∣∣2

σε dx dt � Cε + C

ε4
ε + C

1∫
0

∫
Tn

∣∣D2wε
∣∣σε dx dt

� C

ε3
+ C

( 1∫
0

∫
Tn

∣∣D2wε
∣∣2

σε dx dt

)1/2( 1∫
0

∫
Tn

σ ε dx dt

)1/2

� C

3
+ C

2
� C

3
.

ε ε ε
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Finally, we prove (ii). Setting ψ(x, t) = a(x)|D(vε − wε)(x, t)|2/2 = a(x)ϕ(x, t) and multiplying (2.7) by a(x)

we get

εψt + DpH
(
x,Dwε

) · Dψ − (
DpH

(
x,Dwε

) · Da
)
ϕ − (

ε4 + a(x)
)
�ψ

+ (
ε4 + a(x)

)
(�aϕ + 2Da · Dϕ) + a(x)

(
ε4 + a(x)/2

)∣∣D2(vε − wε
)∣∣2

� Ca(x)
(∣∣D2vε

∣∣ + 1
)∣∣D(

vε − wε
)∣∣2

.

We use the facts that Da, �a are bounded on T
n to simplify the above as follows

εψt + DpH
(
x,Dwε

) · Dψ − (
ε4 + a(x)

)
�ψ + a(x)

(
ε4 + a(x)/2

)∣∣D2(vε − wε
)∣∣2

� C
∣∣D(

vε − wε
)∣∣2 − 2

(
ε4 + a(x)

)
Da · Dϕ + Ca(x)

∣∣D2vε
∣∣∣∣D(

vε − wε
)∣∣2

. (2.10)

Next, we have to control the last two terms on the right hand side of (2.10). Observe first that for δ > 0 small enough

2
∣∣(ε4 + a(x)

)
Da · Dϕ

∣∣� C
(
ε4 + a(x)

)|Da|∣∣D2(vε − wε
)∣∣∣∣D(

vε − wε
)∣∣

� δ
(
ε4 + a(x)

)|Da|2∣∣D2(vε − wε
)∣∣2 + C

δ

∣∣D(
vε − wε

)∣∣2

� 1

8

(
ε4 + a(x)

)
a(x)

∣∣D2(vε − wε
)∣∣2 + C

∣∣D(
vε − wε

)∣∣2
, (2.11)

where we used Lemma 2.6 in the last inequality. On the other hand,

a(x)
∣∣D2vε

∣∣∣∣D(
vε − wε

)∣∣2

� a(x)
∣∣D2wε

∣∣∣∣D(
vε − wε

)∣∣2 + a(x)
∣∣D2(vε − wε

)∣∣∣∣D(
vε − wε

)∣∣
�

√
εa(x)

∣∣D2wε
∣∣2 + C√

ε

∣∣D(
vε − wε

)∣∣2 + a(x)2

8

∣∣D2(vε − wε
)∣∣2 + C

∣∣D(
vε − wε

)∣∣2
. (2.12)

We combine (2.10), (2.11), and (2.12) to deduce that

εψt + DpH
(
x,Dwε

) · Dψ − (
ε4 + a(x)

)
�ψ + a(x)2

4

∣∣D2(vε − wε
)∣∣2

�
(
C + Cε−1/2)∣∣D(

vε − wε
)∣∣2 + ε1/2a(x)

∣∣D2wε
∣∣2

.

We multiply the above inequality by σε , integrate over Tn × [0,1] and use (2.5) to yield the result. �
Remark 1. Let us give some comments on the estimates in Lemma 2.8.

1. In case a ≡ 0, estimate (i) gives us much better control of D(wε − vε) and D2(wε − vε) on the support of σε .
More precisely, a priori estimates only imply that D(wε − vε) and ε4�(wε − vε) are bounded. By using the
adjoint equation, we can get further formally that ε−1/2D(wε − vε) and ε7/2D2(wε − vε) are bounded on the
support of σε . We notice that while we need to require the uniform convexity of H to obtain the first term in (i),
the second term is achieved without any convexity assumption on H . A version of the second term in (i) was first
derived by Evans [8].

2. If the equation in (C) is uniformly parabolic, i.e., a(x) > 0 for all x ∈ T
n, then the second term of (i) is not needed

anymore as estimate (ii) is much stronger. On the other hand, if a is degenerate, then (ii) only provides estimation
of |D2(wε − vε)|2σε on the support of a and it is hence essential to use the second term in (i) to control the part
where a = 0.

2.3. Averaging action and proof of Theorem 2.7

Lemma 2.9 (Conservation of energy). The following hold:

(i) d
dt

∫
Tn(H(x,Dwε) − (ε4 + a(x))�wε)σ ε dx = 0,

(ii) εwε
t (x0,1) = ∫ 1 ∫

n(H(x,Dwε) − (ε4 + a(x))�wε)σ ε dx dt .
0 T



F. Cagnetti et al. / Ann. I. H. Poincaré – AN 32 (2015) 183–200 193
We stress the fact that identity Lemma 2.9(ii) is extremely important. As stated in Introduction, if we scale back
the time, the integral in the right hand side becomes (1.6), that is the averaging action as t → ∞. Relation (ii) together
with Lemma 2.8 allow us to conclude the proof of Theorem 2.7.

Proof of Lemma 2.9. We only need to prove (i) as (ii) follows directly from (i). This is a straightforward result of
adjoint operators and comes from a direct calculation:

d

dt

∫
Tn

(
H

(
x,Dwε

) − (
ε4 + a(x)

)
�wε

)
σε dx

=
∫
Tn

(
DpH

(
x,Dwε

) · Dwε
t − (

ε4 + a(x)
)
�wε

t

)
σε dx +

∫
Tn

(
H

(
x,Dwε

) − (
ε4 + a(x)

)
�wε

)
σε

t dx

= −
∫
Tn

(
div

(
DpH

(
x,Dwε

)
σε

) + �
(
ε4 + a(x)

)
σε

)
wε

t dx −
∫
Tn

εwε
t σ

ε
t dx = 0. �

We now can give the proof of Theorem 2.7, which is the main principle to achieve large time asymptotics, by using
the averaging action above and the key estimates in Lemma 2.8.

Proof of Theorem 2.7. Let us first choose x0 such that∣∣εwε
t (x0,1)

∣∣ = ∣∣H (
x0,Dwε(x0,1)

) − (
ε4 + a(x0)

)
�wε(x0,1)

∣∣
= ∥∥H

(·,Dwε(·,1)
) − (

ε4 + a(·))�wε(·,1)
∥∥

L∞(Tn)
.

Thanks to Lemma 2.9 and Proposition 2.3,

ε
∥∥wε

t (·,1)
∥∥

L∞(Tn)
= ∥∥H

(·,Dwε(·,1)
) − (

ε4 + a(·))�wε(·,1)
∥∥

L∞(Tn)

=
∣∣∣∣∣

1∫
0

∫
Tn

(
H

(
x,Dwε

) − (
ε4 + a

)
�wε

)
σε dx dt

∣∣∣∣∣
�

1∫
0

∫
Tn

∣∣(H (
x,Dwε

) − (
ε4 + a

)
�wε

) − (
H

(
x,Dvε

) − (
ε4 + a

)
�vε

)∣∣σε dx dt + |Hε|

�
1∫

0

∫
Tn

[
C

∣∣D(
wε − vε

)∣∣ + (
ε4 + a

)∣∣�(
wε − vε

)∣∣]σε dx dt + Cε2.

We finally use the Hölder inequality and Lemma 2.8 to get

ε
∥∥wε

t (·,1)
∥∥

L∞(Tn)
� C

( 1∫
0

∫
Tn

∣∣D(
wε − vε

)∣∣2
σε dx dt

)1/2

+ Cε4

( 1∫
0

∫
Tn

∣∣D2(wε − vε
)∣∣2

σε dx dt

)1/2

+ C

( 1∫
0

∫
Tn

a2(x)
∣∣D2(wε − vε

)∣∣2
σε dx dt

)1/2

+ Cε2 � Cε1/4. �

2.4. General case

In this subsection we consider the general case (1.1). As pointed out before we only need to address the analogs to
estimate (2.5) and Lemma 2.8(ii). These are
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1∫
0

∫
Tn

[
aij (x)wε

xixk
wε

xj xk
+ ε4

∣∣D2wε
∣∣2]

σε dx dt � C, (2.13)

1∫
0

∫
Tn

aij (x)all(x)
(
vε − wε

)
xixk

(
vε − wε

)
xj xk

σ ε dx dt � C
√

ε. (2.14)

In the previous formulas, and throughout this section we will use Einstein’s convention except in a few places where
the summation signs are explicitly written to avoid ambiguities. The proofs of (2.13) and (2.14) follow the same lines
as before. Recall that wε and σε satisfy{

εwε
t + H

(
x,Dwε

) = aij (x)wε
xixj

+ ε4�wε in T
n × (0,∞),

wε(x,0) = u0(x) on T
n,

(2.15)

and {−εσ ε
t − div

(
DpH

(
x,Dwε

)
σε

) = ∂xixj

(
aij (x)σ ε

) + ε4�σε in T
n × (0,1),

σ ε(x,1) = δx0 on T
n,

and vε is a solution to the approximate cell problem

H
(
x,Dvε

) = aij (x)vε
xixj

+ ε4�vε in T
n. (2.16)

We need the following estimates, which are from [20, Lemma 3.2.3],∣∣Daij
∣∣� C

((
aii

)1/2 + (
ajj

)1/2) for 1 � i, j � n, (2.17)(
tr(Axk

S)
)2 � C tr(SAS) for S ∈ M

n×n
sym , 1 � k � n, (2.18)

for some constant C depending only on n and ‖D2A‖L∞(Tn).
We address first (2.13). To do so, as before, setting ϕ := |Dwε|2/2, we obtain

εϕt + DpH
(
x,Dwε

) · Dϕ � aij
(
ϕxixj

− wε
xixk

wε
xj xk

) + ε4(�ϕ − ∣∣D2wε
∣∣2) + a

ij
xk

wε
xixj

wε
xk

+ C.

The key term to estimate is a
ij
xk

wε
xixj

wε
xk

, as all the others do not pose any further problem. This is done as follows
with help of (2.18):

a
ij
xk

wε
xixj

wε
xk

= tr
(
Axk

D2wε
)
wε

xk
� 1

2
tr
(
D2wεAD2wε

) + C = 1

2
aijwε

xixk
wε

xj xk
+ C.

Then the proof follows exactly as before.
Concerning estimate (2.14), as before we subtract (2.15) from (2.16) and differentiate with respect to xk to get

ε
(
vε − wε

)
xkt

+ DpH
(
x,Dvε

) · Dvε
xk

− DpH
(
x,Dwε

) · Dwε
xk

+ Hxk

(
x,Dvε

) − Hxk

(
x,Dwε

) − (
ε4δij + aij

)((
vε − wε

)
xk

)
xixj

− a
ij
xk

(
vε − wε

)
xixj

= 0,

where δij is the Kronecker delta. We multiply the previous equation by all(vε −wε)xk
and set ψ = all |D(vε −wε)|2/2.

After some tedious computations we conclude that the main order term from which (2.14) follows is

aij all
(
vε − wε

)
xixk

(
vε − wε

)
xj xk

= tr(A) tr
(
D2(vε − wε

)
AD2(vε − wε

))
=

(∑
l

dl

)∑
k,m

(∑
i

√
dmpmi

(
vε − wε

)
xixk

)2

, (2.19)

where A is diagonalized as A = P T DP with D = diag{d1, . . . , dn} with di � 0, and P T P = In. As before, a number
of error terms need to be controlled. The procedure is completely analogous, except for two error terms which need
to be addressed in a slightly different way. These are

aij all
x

(
vε − wε

) (
vε − wε

)
and a

ij
xk

all
(
vε − wε

) (
vε − wε

)
.

i xj xk xk xixj xk
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The first term is handled in the following way: using (2.17) we have

aij all
xi

(
vε − wε

)
xj xk

(
vε − wε

)
xk

= all
xi

pmipmjdm
(
vε − wε

)
xj xk

(
vε − wε

)
xk

� C

(∑
l

√
dl

)∑
k,m

dm
∣∣pmj

(
vε − wε

)
xj xk

∣∣∣∣D(
vε − wε

)∣∣

� 1

4

(∑
l

dl

)∑
k,m

(∑
j

√
dmpmj

(
vε − wε

)
xj xk

)2

+ C
∣∣D(

vε − wε
)∣∣2

.

Concerning the second term, using (2.18) we obtain

a
ij
xk

all
(
vε − wε

)
xixj

(
vε − wε

)
xk

= tr(A) tr
(
Axk

D2(vε − wε
))(

vε − wε
)
xk

� 1

4
tr(A) tr

(
D2(vε − wε

)
AD2(vε − wε

)) + C
∣∣D(

vε − wε
)∣∣2

.

This shows therefore that the two error terms are well controlled by (2.19).

3. Weakly coupled systems of Hamilton–Jacobi equations

In this section, we prove Theorem 1.2. Our proof follows along the lines of the scalar case, together with additional
estimates for the coupling terms. To simplify the presentation we start first with the following weakly coupled system
of first order Hamilton–Jacobi equations:

(SC)

⎧⎨
⎩

(u1)t + H1(x,Du1) + u1 − u2 = 0 in T
n × (0,∞),

(u2)t + H2(x,Du2) + u2 − u1 = 0 in T
n × (0,∞),

ui(x,0) = u0i (x) on T
n for i = 1,2.

Throughout this section we always assume that u0i ∈ C(Tn) and that the pairs (Hi,0) ∈ C(θ,C) for i = 1,2.
We observe that almost all results we prove for (SC) are valid with trivial modifications for general weakly coupled

systems with possibly degenerate diffusion terms. Indeed, if we combine the arguments in Section 2 and Section 3
below, then we can immediately get the result on the large-time behavior for weakly coupled systems of degenerate
viscous Hamilton–Jacobi equations (1.7). We present the simplest case here since we want to concentrate on the
difficulty coming from the coupling terms of the system. We derive new estimates for the coupling terms (see part (ii)
of Lemma 3.7 and Subsection 3.4), which help us to control the large time average on the coupling terms and achieve
the desired results.

We first state the basic existence results for (SC) and for the associated stationary problem. The proofs of the next
three propositions are standard, hence omitted.

Proposition 3.1. Let (u01, u02) ∈ C(Tn)2. There exists a unique solution (u1, u2) of (SC) which is uniformly contin-
uous on T

n × [0,∞). Furthermore, if u0i ∈ Lip(Tn), then ui ∈ Lip(Tn × [0,∞)) for i = 1,2.

We refer to [5, Section 4] for the following results.

Proposition 3.2. There exists a unique constant c ∈R such that the ergodic problem:

(SE)

{
H1(x,Dv1) + v1 − v2 = c in T

n,

H2(x,Dv2) + v2 − v1 = c in T
n,

has a solution (v1, v2) ∈ Lip(Tn)2. We call c the ergodic constant of (SE).

Proposition 3.3. For every ε > 0 sufficiently small there exists a unique Hε ∈ R such that the following ergodic
problem:

(SE)ε

{
H1(x,Dvε

1) + vε
1 − vε

2 = ε4�vε
1 + Hε in T

n,

H2(x,Dvε) + vε − vε = ε4�vε + Hε in T
n,
2 2 1 2
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has a unique solution (vε
1, v

ε
2) ∈ Lip(Tn)2 up to additional constants. In addition,

|Hε − c|� Cε2,
∥∥Dvε

i

∥∥
L∞(Tn)

� C, for i = 1,2,

for some positive constant C independent of ε. Here c is the ergodic constant of (SE).

Without loss of generality, we may assume c = 0 as in Section 2 henceforth.

3.1. Regularizing process and proof of Theorem 1.2

In the following we will assume that (u1, u2) is Lipschitz on T
n × [0,∞), as it was done in Section 2. Once again,

we will follow the method stated in Introduction.
We perform a change of time scale. For ε > 0, let us set uε

i (x, t) = ui(x, t/ε), which is the solution of

(SC)ε

⎧⎪⎨
⎪⎩

ε
(
uε

1

)
t
+ H1

(
x,Duε

1

) + uε
1 − uε

2 = 0 in T
n × (0,∞),

ε
(
uε

2

)
t
+ H2

(
x,Duε

2

) + uε
2 − uε

1 = 0 in T
n × (0,∞),

uε
i (x,0) = u0i (x) on T

n for i = 1,2,

and we approximate (SC) by adding viscosity terms to the equations:

(SA)ε

⎧⎪⎨
⎪⎩

ε
(
wε

1

)
t
+ H1

(
x,Dwε

1

) + wε
1 − wε

2 = ε4�wε
1 in T

n × (0,∞),

ε
(
wε

2

)
t
+ H2

(
x,Dwε

2

) + wε
2 − wε

1 = ε4�wε
2 in T

n × (0,∞),

wε
i (x,0) = u0i (x) on T

n for i = 1,2.

We can conclude the proof of Theorem 1.2 with the following two results.

Lemma 3.4. Let (wε
1,w

ε
2) be the solution of (SA)ε . There exists C >0 independent of ε such that ‖wε

i (·,1)‖C1(Tn)�C,
‖uε

i (·,1) − wε
i (·,1)‖L∞(Tn) � Cε for i = 1,2.

Theorem 3.5. We have

lim
ε→0

max
i=1,2

ε
∥∥(

wε
i

)
t
(·,1)

∥∥
L∞(Tn)

= 0.

3.2. Convergence mechanisms: Weakly coupled systems

The adjoint system corresponding to (SA)ε is

(SAJ)ε

⎧⎪⎨
⎪⎩

−ε
(
σε

1

)
t
− div

(
DpH1

(
x,Dwε

1

)
σε

1

) + σε
1 − σε

2 = ε4�σε
1 in T

n × (0,1),

−ε
(
σε

2

)
t
− div

(
DpH2

(
x,Dwε

2

)
σε

2

) + σε
2 − σε

1 = ε4�σε
2 in T

n × (0,1),

σ ε
i (x,1) = δikδx0 on T

n for i = 1,2,

where δik = 1 if i = k and δik = 0 if i �= k, and x0 ∈ T
n and k ∈ {1,2} are to be chosen later. Notice that for any choice

of k, either σε
1 (·,1) = 0 or σε

2 (·,1) = 0. Let us record some elementary properties of (σ ε
1 , σ ε

2 ) first.

Lemma 3.6 (Elementary properties of (σ ε
1 , σ ε

2 )). We have σε
i � 0 for i = 1,2 and

2∑
i=1

∫
Tn

σ ε
i (x, t) dx = 1 for all t ∈ [0,1].

We next derive key integral bounds for (wε
1,w

ε
2), (vε

1, v
ε
2) and their derivatives on the supports of (σ ε

1 , σ ε
2 ).

Lemma 3.7 (Key estimates for weakly coupled systems). The following hold true:

(i)
∫ 1

0

∫
Tn

∑2
i=1(

1
ε
|D(wε

i − vε
i )|2 + ε7|D2(wε

i − vε
i )|2)σ ε

i dx dt � C,

(ii)
∫ 1 ∫

n [(wε − vε) − (wε − vε)]2(σ ε + σε) dx dt � Cε.
0 T 1 1 2 2 1 2
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Lemma 3.7(ii) is a new observation on the study of weakly coupled systems, which gives us the large time av-
erage control on the coupling terms. This is actually the key point in the derivation of the main result for systems
(Theorem 1.2 and Theorem 3.5) as one can see in the proof of Lemma 3.8.

Proof of Lemma 3.7. We will only prove (ii), since part (i) can be derived by repeating the proof of Lemma 2.8.
Thanks to Lemma 3.4, we can always add to the pair (vε

1, v
ε
2) an arbitrarily large constant C (independent of ε)

such that

2C � vε
i � wε

i in T
n, for i = 1,2. (3.1)

Let ϕi = (vε
i − wε

i )
2/2 for i = 1,2. Subtract the first equation of (SA)ε from the first equation of (SE)ε , and

multiply the result by vε
1 − wε

1 to get

ε
(
vε

1 − wε
1

)(
vε

1 − wε
1

)
t
+ (

vε
1 − wε

1

)(
H1

(
x,Dvε

1

) − H1
(
x,Dwε

1

)) + (
vε

1 − wε
1

)2 − (
vε

1 − wε
1

)(
vε

2 − wε
2

)
= ε4(vε

1 − wε
1

)
�

(
vε

1 − wε
1

) + Hε

(
vε

1 − wε
1

)
.

We employ the convexity of H1 and (3.1) to deduce that

ε(ϕ1)t + DpH1
(
x,Dwε

1

) · Dϕ1 + ϕ1 − ϕ2 + 1

2

[(
vε

1 − wε
1

) − (
vε

2 − wε
2

)]2

� ε4�ϕ1 − ε4
∣∣D(

vε
1 − wε

1

)∣∣2 + C|Hε|. (3.2)

Similarly,

ε(ϕ2)t + DpH2
(
x,Dwε

2

) · Dϕ2 + ϕ2 − ϕ1 + 1

2

[(
vε

1 − wε
1

) − (
vε

2 − wε
2

)]2

� ε4�ϕ2 − ε4
∣∣D(

vε
2 − wε

2

)∣∣2 + C|Hε|. (3.3)

Multiplying (3.2), (3.3) by σε
1 , σε

2 respectively, and integrating by parts

1

2

1∫
0

∫
Tn

[(
vε

1 − wε
1

) − (
vε

2 − wε
2

)]2(
σε

1 + σε
2

)
dx dt

�−
2∑

i=1

ε

[ ∫
Tn

ϕiσ
ε
i dx

]t=1

t=0
+ C|Hε| − ε4

∑
i=1,2

∫
Tn

∣∣D(
vε
i − wε

i

)∣∣2
σε

i dx � Cε,

which implies (ii). �
3.3. Averaging action and Proof of Theorem 3.5

For each i ∈ {1,2}, setting j = 3 − i we have {i, j} = {1,2}. The following result concerning conservation of
energy and averaging action is analogous to Lemma 2.9 and therefore we omit the proof.

Lemma 3.8 (Conservation of energy for weakly coupled systems). The following hold:

(i) d
dt

∫
Tn

∑2
i=1(Hi(x,Dwε

i ) + wε
i − wε

j − ε4�wε
i )σ

ε
i dx = 0.

(ii) −(k − 1)ε
(
wε

1

)
t
(x0,1) − (2 − k)ε

(
wε

2

)
t
(x0,1) = ∫ 1

0

∫
Tn

∑2
i=1

(
Hi

(
x,Dwε

i

) + wε
i − wε

j − ε4�wε
i

)
σε

i dx dt ,

where k = 1,2.

Proof of Theorem 3.5. Without loss of generality, we assume that there exists x0 ∈ T
n such that

ε
∣∣(wε

1

)
t
(x0,1)

∣∣ = ε max
∥∥(

wε
i

)
t
(·,1)

∥∥
L∞(Tn)

.

i=1,2



198 F. Cagnetti et al. / Ann. I. H. Poincaré – AN 32 (2015) 183–200
We then choose k = 1 in (SAJ)ε and use Lemma 3.8 to get

ε max
i=1,2

∥∥(
wε

i

)
t
(·,1)

∥∥
L∞(Tn)

=
∣∣∣∣∣

1∫
0

∫
Tn

2∑
i=1

(
Hi

(
x,Dwε

i

) + wε
i − wε

j − ε4�wε
i

)
σε

i dx dt

∣∣∣∣∣
�

∣∣∣∣∣
1∫

0

∫
Tn

2∑
i=1

{(
Hi

(
x,Dwε

i

) + wε
i − wε

j − ε4�wε
i

)

− (
Hi

(
x,Dvε

i

) + vε
i − vε

j − ε4�vε
i

)}
σε

i dx dt

∣∣∣∣∣ + |Hε|

�
1∫

0

∫
Tn

2∑
i=1

[
C

∣∣D(
wε

i − vε
i

)∣∣ + ε4
∣∣�(

wε
i − vε

i

)∣∣]σε
i dx dt

+
1∫

0

∫
Tn

∣∣[(wε
1 − vε

1

) − (
wε

2 − vε
2

)](
σε

1 − σε
2

)∣∣dx dt + |Hε|.

Thus, ∣∣∣∣∣
1∫

0

∫
Tn

2∑
i=1

(
Hi

(
x,Dwε

i

) + wε
i − wε

j − ε4�wε
i

)
σε

i dx dt

∣∣∣∣∣
� C

2∑
i=1

{[ 1∫
0

∫
Tn

∣∣D(
wε

i − vε
i

)∣∣2
σε

i dx dt

] 1
2

+ ε4

[ 1∫
0

∫
Tn

∣∣D2(wε
i − vε

i

)∣∣2
σε

i dx dt

] 1
2
}

+
2∑

i=1

[ 1∫
0

∫
Tn

∣∣(wε
1 − vε

1

) − (
wε

2 − vε
2

)∣∣2
σε

i dx dt

]1/2

+ |Hε|� C
√

ε,

where the last inequality follows by using Lemma 3.7. �
3.4. General case

We address now the general case of systems of m-equations of the form

(ui)t + Hi(x,Dui) +
m∑

j=1

cijuj = 0 in T
n × (0,∞),

with (Hi,0) ∈ C(θ,C) and cij satisfying (H4) for any 1 � i, j � m. As stated before, the key point is to generalize the
coupling terms as in part (ii) of Lemma 3.7. More precisely, we show that

lim
ε→0

1∫
0

∫
Tn

m∑
j=1

|cij |
[(

wε
j − vε

j

) − (
wε

i − vε
i

)]2
σε

i dx dt = 0. (3.4)

Set ϕi = (vε
i − wε

i )
2/2 for i = 1, . . . ,m. Then we can compute that

ε
(
vε
i − wε

i

)(
vε
i − wε

i

)
t
+ (

vε
i − wε

i

)(
Hi

(
x,Dvε

i

) − Hi

(
x,Dwε

i

)) +
m∑

j=1

cij

(
vε
i − wε

i

)(
vε
j − wε

j

)
= ε4(vε

i − wε
i

)
�

(
vε
i − wε

i

) + Hε

(
vε
i − wε

i

)
.
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The last term in the right hand side of the above identity can be written as

m∑
j=1

cij

(
vε
i − wε

i

)(
vε
j − wε

j

) =
∑
j �=i

|cij |
{(

vε
i − wε

i

)2 − (
vε
i − wε

i

)(
vε
j − wε

j

)}

=
∑
j �=i

|cij |
{

1

2

(
vε
i − wε

i

)2 − 1

2

(
vε
j − wε

j

)2 + 1

2

[(
vε
i − wε

i

) − (
vε
j − wε

j

)]2
}

=
m∑

j=1

cijϕj + 1

2

m∑
j=1

|cij |
[(

vε
j − wε

j

) − (
vε
i − wε

i

)]2
.

Hence

ε(ϕi)t + DpHi

(
x,Dwε

i

) · Dϕi +
m∑

j=1

cijϕj + 1

2

m∑
j=1

|cij |
[(

vε
j − wε

j

) − (
vε
i − wε

i

)]2

� ε4�ϕi − ε4
∣∣D(

vε
i − wε

i

)∣∣2 + C|Hε|.
Then (3.4) follows immediately.
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