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Abstract

We investigate the influence of a perforated domain on the 2D Euler equations. Small inclusions of size ε are uniformly dis-
tributed on the unit segment or a rectangle, and the fluid fills the exterior. These inclusions are at least separated by a distance εα

and we prove that for α small enough (namely, less than 2 in the case of the segment, and less than 1 in the case of the square), the
limit behavior of the ideal fluid does not feel the effect of the perforated domain at leading order when ε → 0.
© 2013

1. Presentation

The homogenization of the Stokes operator and of the incompressible Navier–Stokes equations in a porous medium
is by now a very classical problem [29,31,2,26]. Recently, more attention was given to the homogenization of other
fluid models such as the compressible Navier–Stokes system [10,24], the acoustic system [11,4] and the incompress-
ible Euler system [27,21,16].

The goal of this paper is to study the effect of small inclusions of size ε on the behavior of an ideal fluid governed
by the 2D Euler system. One can expect that for very small holes which are well separated, the effect of the inclusions
disappears at the limit. This is in the spirit of [8,3] where critical sizes of the holes were studied.

1.1. The perforated domain

Let K be a smooth simply-connected compact set of R2, which is the shape of the inclusions. More precisely, we
assume that ∂K is a C1,1 Jordan curve. Without loss of generality, we assume that 0 ∈ ◦

K ⊂ (−1,1)2. Let α > 0 and
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Fig. 1. Geometrical settings.

μ ∈ [0,1] be two parameters which represent how the inclusions fill the square [0,1]2. For i � 1, j � 1 and ε > 0, we
define

z
ε,α
i,j := (

ε + 2(i − 1)
(
ε + εα

)
, ε + 2(j − 1)

(
ε + εα

)) = (ε, ε) + 2
(
ε + εα

)
(i − 1, j − 1), (1.1)

the centers of the inclusions of size ε:

Kε,α
i,j := z

ε,α
i,j + εK. (1.2)

The geometrical setting is represented in Fig. 1 (in the case where K = B(0,1)).
Let Nε,α = [ 1+2εα

2(ε+εα)
] (where [x] denotes the integer part of x) be the number of inclusions, of size ε and separated

by 2εα , that we can distribute on the unit segment [0,1] (see Fig. 1(a)). In vertical axis, we assume that there are
[(Nε,α)μ] inclusions of size ε at distance 2εα (with μ ∈ [0,1]). For shorter, we denote by n1 the number of inclusions
along the horizontal axis and n2 those on the vertical axis:

n1 := Nε,α and n2 := [
(Nε,α)μ

]
.

We denote by Rε,α,μ the rectangle containing all the inclusions:

Rε,α,μ = [
0,2

(
ε + εα

)
n1 − 2εα

] × [
0,2

(
ε + εα

)
n2 − 2εα

]
. (1.3)

Then the total number of inclusions in Rε,α,μ equals

n1n2 � (Nε,α)1+μ �
(

1 + 2εα

2(ε + εα)

)1+μ

� 1

(ε + εα)1+μ
, (1.4)

as soon as ε is small enough.
We notice that if μ = 0, then n2 = 1 and there are just inclusions along a line. If μ = 1, then there are as many

inclusions in both directions and in this case the rectangle Rε,α,μ is almost the square [0,1]2.
We define Ωε,α,μ the domain

Ωε = Ωε,α,μ := R2 \
(

n1⋃
i=1

n2⋃
j=1

Kε,α
i,j

)
. (1.5)

Since the parameters α and μ are fixed and we are interested in the limit ε → 0, the indices α, μ will often be omitted
in the notation for shorter.

1.2. The Euler equations

Let uε = uε(t, x) = (uε
1(t, x), uε

2(t, x)) be the velocity of an incompressible, ideal flow in Ωε . The evolution is
governed by the Euler equations
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu
ε + uε · ∇uε = −∇pε in (0,∞) × Ωε,

divuε = 0 in [0,∞) × Ωε,

uε · n = 0 in [0,∞) × ∂Ωε,

lim|x|→∞
∣∣uε(t, x)

∣∣ = 0 for t ∈ [0,∞),

uε(0, x) = uε
0(x) in Ωε.

(1.6)

Let ωε be the vorticity defined by

ωε := curluε = ∂1u
ε
2 − ∂2u

ε
1.

The velocity and the vorticity satisfy

⎧⎪⎪⎨
⎪⎪⎩

divuε = 0 in [0,∞) × Ωε,

curluε = ωε in [0,∞) × Ωε,

uε · n = 0 in [0,∞) × ∂Ωε,

lim|x|→∞
∣∣uε(t, x)

∣∣ = 0 for t ∈ [0,∞).

(1.7)

The initial velocity in (1.6) has to verify:

divuε
0 = 0 in Ωε, lim|x|→∞

∣∣uε
0(x)

∣∣ = 0, uε
0 · n = 0 on ∂Ωε. (1.8)

As our domain depends on ε, it is standard to give the initial data in terms of an initial vorticity independent of ε.
Physically, it is relevant to consider the following setting: we assume that the fluid is steady uε

0 ≡ 0 at time t < 0
(then ωε(0, ·) ≡ 0 and uε

0 has zero circulation around each inclusion) and at time t = 0 we add, by an exterior force,
a vorticity ω0. More precisely, let ω0 ∈ C∞

c (R2), then we infer that there exists a unique vector field uε
0 verifying (1.8)

which has zero circulation around each inclusion and whose curl is: curluε
0 = ωε

0 := ω0|Ωε (see e.g. [18,20]).
Then, the vorticity allows us to give an initial condition independent of ε, but the main advantage of the vorticity

for the 2D Euler equations comes from the nature of the equations governing the vorticity:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tω
ε + uε · ∇ωε = 0 in (0,∞) × Ωε,

divuε = 0 in [0,∞) × Ωε,

uε · n = 0 in [0,∞) × ∂Ωε,

curluε = ωε in [0,∞) × Ωε,

lim|x|→∞
∣∣uε(t, x)

∣∣ = 0 for t ∈ [0,∞),∮
∂Kε,α

i,j

uε(0, s) · τ ds = 0 for all i, j,

ωε(0, ·) = ω0 in Ωε.

(1.9)

We can show that the two systems (1.6) and (1.9) are equivalent, but we obtain more properties from the second
system because it is a transport equation. Thanks to this structure, for ω0 ∈ C∞

c (R2), Kikuchi establishes in [18] that
there exists a unique global strong solution uε of (1.6), such that ωε belongs to L∞(R+;L1 ∩ L∞(Ωε)). Actually, for
a strong solution uε , the transport nature of (1.9) implies that:

• the Lp norm of the vorticity is conserved for any p ∈ [1,∞]:∥∥ωε(t, ·)∥∥Lp(Ωε)
= ∥∥ωε

0

∥∥
Lp(Ωε)

� ‖ω0‖Lp(R2), ∀t � 0, ∀p ∈ [1,+∞]; (1.10)

• the total mass of the vorticity is conserved:∫
Ωε

ωε(t, x)dx =
∫
Ωε

ω0(x)dx; (1.11)

• at any time t � 0, the vorticity is compactly supported (but the size of the support can grow);
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• the circulation of uε around each inclusion is conserved (Kelvin’s theorem):∮
∂Kε,α

i,j

uε(t, s) · τ ds = 0, ∀t � 0, ∀i, j. (1.12)

1.3. Issue and former results

For (α,μ) ∈ (0,∞) × [0,1), the complementary of Ωε converges, in the Hausdorff sense, to the unit segment
[0,1] × {0} and for (α,μ) ∈ (0,∞) × {1}, it converges to the unit square [0,1]2. Indeed, we check easily that

dH

(
n2⋃

j=1

n1⋃
i=1

Kε,α
i,j ,Rε,α,μ

)
= max

(
sup

x∈⋃
i,j K

ε,α
i,j

d(x,Rε,α,μ), sup
x∈Rε,α,μ

d

(
x,

⋃
i,j

Kε,α
i,j

))
� max

(
0,

√
2
(
ε + εα

))
,

and {
dH

(
Rε,α,1, [0,1]2) � max

(
0,2(ε + εα)

)
for μ = 1,

dH

(
Rε,α,μ, [0,1] × {0})� max

(
2(ε + εα)1−μ,2(ε + εα)

)
for μ ∈ [0,1).

The issue of this article is to determine the limit of (uε,ωε) when ε tends to zero, for different values of α and μ,
and to compare the limit with the solution in the full plane, or in the exterior of a segment, or in the exterior of a
square.

The well-posedness of the Euler equations in the full plane is well known since McGrath [25]. In the exterior of
a sharp domain, let us mention that the existence of a global weak-solution to the Euler equations in the exterior of
the segment, such that ω0 ∈ L∞(R+;L1 ∩ L∞(R2 \ ([0,1] × {0}))), is established in [19]. Such a result is recently
extended to the exterior of any connected compact set in [12], for example outside the unit square.

Physically, we can preview that we do not feel the presence of the inclusions for small α (i.e. εα � ε) and for
small μ, whereas it should appear a wall for μ ∈ [0,1) and α large, and the unit square for μ = 1 and α large.
Moreover, we can think that the critical α should be a decreasing function in terms of μ.

The study of the Euler equations in the exterior of one small obstacle was initiated by Iftimie, Lopes Filho and
Nussenzveig Lopes in [16]. In that paper, the authors consider only one obstacle which shrinks homotetically to a
point, and indeed, if the initial circulation is zero, then their result reads as the solution (uε,ωε) converges to the
solution in the full plane. Later Lopes Filho has treated in [22] the case of several obstacles in a bounded domain
when one of them shrinks to a point. The final result is the same: if initially the circulation is zero, we do not feel
the presence of the point at the limit. Finally the last generalization can be found in [20] where an infinite number of
obstacles is considered. We quote here the theorem in the case where all the initial circulations are equal to zero:

Theorem 1.1. Let ω0 ∈ C∞
c (R2). Let us also fix R0 > 0 such that suppω0 ⊂ B(0,R0). For any sequences {zk

i }i=1···nk
∈

B(0,R0)
nk , there exist a subsequence, again denoted k, and a sequence εk ∈ R+∗ tending to zero such that the solutions

(uk,ωk) of (1.9) in

Ωk := R2 \
(

nk⋃
i=1

B
(
zk
i , εk

))
,

with initial vorticity ω0|Ωk and initial circulations 0 around the balls, verify

(a) uk → u strongly in Lp

loc(R+ ×R2) for any p ∈ [1,2);
(b) ωk ⇀ ω weak ∗ in L∞(R+;Lq(R2)) for any q ∈ [1,∞];
(c) the limit pair (u,ω) is the unique solution of the Euler equations in the full plane, with initial vorticity ω0.

In that theorem, we have extended uk and ωk by zero in (Ωk)c . Therefore, we could consider zε
i,j as in our

configuration (see the first subsection), however there is no control on εk in terms of the distance between the points.
The size of the ball can be very small compare to this distance (i.e. α � 1), and the goal of this article is to get this
control. Let us mention that all the works cited before [12,16,19,20,22] consider also non-zero initial circulations, and
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in particular around small obstacles [16,20,22] the authors find a reminiscent term which appears from the vanishing
obstacles. Removing the assumption of zero initial circulations in the present work could be the subject of a future
research.

Before stating our result, we also mention a work with the opposite result. The third author and Lions have treated
in [21] a case which is close to our configuration with (α,μ) = (1,1). We write “close” because that article considers
bounded domains [0,1]2 \ (

⋃n2
j=1

⋃n1
i=1 K

ε,α
i,j ) and the initial condition is not exactly as ours. Nevertheless, in the spirit

of homogenization and two scale convergence, the authors prove that the limit solution is not the Euler solution in the
unit square but rather a two-scale system that describes the limit behavior. In particular the limit solution depends on
the shape of the obstacles.

1.4. Result

As we can expect, our main result reads as for any μ there exists a critical αc(μ), such that for any α less than
αc(μ), the perforated domain is perfectly permeable, i.e. the presence of the inclusions does not perturb the behavior
of a perfect fluid. More precisely:

Theorem 1.2. Let Ωε defined in (1.1)–(1.5), then for all μ ∈ [0,1], we define

αc(μ) = 2 − μ.

Let ω0 be a smooth function compactly supported in R2, α ∈ (0, αc(μ)) and any sequence ε → 0, then the solutions
(uε,ωε) of (1.9) in Ωε with initial vorticity ω0|Ωε and initial circulations 0 around the inclusions, verify:

(a) uε → u strongly in L2
loc(R

+ ×R2);
(b) ωε ⇀ ω weak ∗ in L∞(R+ ×R2);
(c) the limit pair (u,ω) is the unique global solution to the Euler equations in the full plane R2, with initial vortic-

ity ω0.

Again, in the previous theorem and in all the sequel, we extend (uε,ωε) by zero inside the inclusions.
We note that the function μ �→ αc(μ) is continuous, decreasing, positive, such that αc(0) = 2 and αc(1) = 1.

Finally, this result does not depend on the shape K of the inclusions. This result can be extended to the case where the
inclusions have not the same shape (see Remark 2.3).

Even if zero circulation are treated in the previous theorem, the goal here is to investigate the effect of the ratio
distance/size of the inclusions, an important parameter not controlled in [20]. Such a question is investigated by the
first author on some elliptic problems such that the Laplace and Navier equations in [7,5,6], and we emphasize that the
Euler equations are linked to such a problem. Indeed we already have a good control of the Lp norm of the vorticity,
and the velocity can be deduced from the vorticity by a kernel of the type ∇⊥	−1.

We note that a possible extension can be made considering a less regular ω0, belonging to the space L1 ∩ Lp(R2)

for some p > 2.
An important future work will be to prove that this αc(μ) is indeed critical, in the sense that we note a non-

negligible effect from the inclusions if α � αc(μ). In fact, the result in [21] is already a first hint that it is indeed the
case at least in the case μ = 1 and for any type of obstacles.

Our result should be compared with critical values obtained with other equations. The study of the behavior
of a flow through a porous medium has a long story in the homogenization framework. The most common set-
ting is to consider a bounded domain Ω containing many tiny solid obstacles, distributed in each direction. For
the Stokes equations with Dirichlet boundary condition, Cioranescu and Murat considered the case where the ratio
Rε := (size of the inclusions)/(distance) is e−1/ε2

/ε, and they obtained in [8] that the limit equation contains an addi-
tional term due to the holes. Concerning Stokes and Navier–Stokes, Allaire extensively treated the previous problem,
for e.g. in [3] he showed that if Rε � e−1/ε2

/ε (the rate of Cioranescu–Murat), the limit is the Stokes system (hence
we do not feel the presence of the inclusions). If Rε � e−1/ε2

/ε, we get the Darcy law (which was well known in
the case where the ratio is ε/ε, see references in [2] and also [13] for different ratios). And if Rε = e−1/ε2

/ε, we get
the Brinkman type law. Therefore, the above study has treated every case for the viscous problem, and we note that
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the critical rate e−1/ε2
/ε is very small compared to ε/ε, which is the rate obtained in the case of the square (μ = 1,

α = αc(1) = 1). Even if the Euler equations are related to the Laplace equation via the stream functions, the inclu-
sions can generate different effects: there is no effect in some regimes for the ideal flow whereas there is for the Stokes
equation.

However, an important question is to understand what is the role of the viscosity in the determination of the critical
rate (see [27] for more motivation). For a modified Euler equations, Mikelić and Paoli [27] and Lions and Masmoudi
[21] consider a bounded domain perforated in both direction where the rate is ε/ε, and the limit homogenized system
takes into account of the inclusions. Our result is complementary of these articles.

There are also many works concerning inclusions distributed on the unit segment (through grids, sieves or porous
walls, we refer e.g. to Conca and Sepúlveda [9] and Sánchez-Palenlencia [30]). In this setting, the study of the Stokes
and Navier–Stokes system is performed by Allaire [3], where he obtained the similar result than before, except that
the critical rate is e−1/ε/ε, which is naturally bigger than e−1/ε2

/ε, but which stays to be very small compared to our
rate: ε/ε2 (μ = 0, α = αc(0) = 2).

1.5. Plan of the paper

Thanks to the transport nature of the equation governing the vorticity, we will deduce easily from (1.10) the point
(b) of Theorem 1.2 from the Banach–Alaoglu theorem. In the sequel, we keep the notation ε even if we extract
a subsequence. Indeed, as the limit pair is unique, we will be able to conclude that the limit is the same for any
subsequence, so for the full sequence.

The difficulty is to prove (a), i.e. that uε = uε[ωε] converges to u with

u(x) := KR2 [ω](x) = 1

2π

∫
R2

(x − y)⊥

|x − y|2 ω(y)dy, ∀x ∈R2. (1.13)

This formula is the well-known Biot–Savart law in the full plane, i.e. which gives the unique vector field in R2 which
is divergence free, tending to zero at infinity, and whose curl is ω. We need a strong convergence for the velocity in
order to pass to the limit in the vorticity equation, and to conclude that the limit pair is well a weak solution of the Euler
equations in the full plane. By uniqueness of weak solution (see [17]), it will end the proof of (c) and Theorem 1.2.

The main idea is to introduce an explicit modification of KR2 [ωε], denoted by vε[ωε], in order to have a tangent
vector field in Ωε whose curl is ωε plus a small error term. In Section 2, we recall the explicit formula of the Biot–
Savart law in the exterior of one obstacle K, thanks to the Riemann mapping which sends Kc to B(0,1)c , and we
present a construction of this modification, based on some cut-off functions around each inclusion.

Then we will write the decomposition:

uε − u = (
uε

[
ωε

] − vε
[
ωε

]) + (
vε

[
ωε

] − KR2

[
ωε

]) + KR2

[
ωε − ω

]
=: rε

[
ωε

] − wε
[
ωε

] + KR2

[
ωε − ω

]
. (1.14)

The central part of this article will be Section 3: at time t fixed, we will look for the critical value of α (in terms
of μ), below which the convergence of wε to zero in L2(R2) holds. This will follow from a careful study of the explicit
formula. Next, we will simply note that rε is the Leray projection of wε . As this projector is orthogonal in L2, this
will give the convergence of rε to zero in L2(R2). Thanks to these two convergences, we will prove in Section 4 the
main theorem.

In the sequel, C will denote a constant independent of the underlying parameter (which will often be ε), the value
of which can possibly change from a line to another.

2. Explicit formula of the correction

In Ωε , we note that uε (solving (1.7) and having zero circulation around each inclusion) and KR2 [ωε] (see (1.13))
are divergence free, with the same curl and the same limit at infinity. Moreover, they have the same circulations
because we compute by the Stokes formula that
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∮
∂Kε,α

i,j

KR2

[
ωε

]
(s) · τ ds =

∫
Kε,α

i,j

ωε(x)dx = 0.

The only differences are that KR2[ωε] is not tangent to ∂Kε,α
i,j , and that we do not have an explicit formula of uε in

terms of ωε . The goal of this section is to correct this lack of tangency.
In this section, we fix the time t , i.e. we consider f as a function depending only on x ∈ R2, belonging in L1 ∩

L∞(R2) whose support is bounded.

2.1. The Biot–Savart law in an exterior domain

In the full plane, we know that there is a unique vector field u satisfying in R2:

divu = 0, curlu = f, lim|x|→∞
∣∣u(x)

∣∣ = 0,

which is given by the standard Biot–Savart formula:

u(x) = KR2 [f ](x) := 1

2π

∫
R2

(x − y)⊥

|x − y|2 f (y)dy = 1

2π
∇⊥

∫
R2

ln |x − y|f (y)dy, ∀x ∈R2. (2.1)

It is also well known (see e.g. [23]) that there is a universal constant C such that

∥∥KR2 [f ]∥∥L∞(R2)
� ‖ 1

2π

∫
R2

|f (y)|
|x − y| dy‖L∞(R2) � C‖f ‖1/2

L1(R2)
‖f ‖1/2

L∞(R2)
, (2.2)

and if f is compactly supported, we have the following behavior at infinity:

KR2 [f ](x) =
∫
R2 f (y)dy

2π

x⊥

|x|2 +O
(

1

|x|2
)

.

We note here that considering u0 = KR2[ω0] ∈ L2(R2) is too restrictive because it would imply that
∫

ω0 = 0.
In the exterior of a unit disk in dimension 2, we have again an explicit formula for the Biot–Savart law: there exists

a unique vector field u[f ] solving in R2 \ B(0,1):

div u[f ] = 0, curl u[f ] = f, lim|x|→∞
∣∣u[f ](x)

∣∣ = 0,

u[f ] · n|∂B(0,1) = 0,

∮
∂B(0,1)

u[f ](s) · τ ds = 0.

This vector field u[f ] is given explicitly by:

u[f ](x) = 1

2π

∫
B(0,1)c

(
x − y

|x − y|2 − x − y∗

|x − y∗|2
)⊥

f (y)dy +
∫
B(0,1)c

f (y)dy

2π

x⊥

|x|2

= 1

2π
∇⊥

∫
B(0,1)c

ln
|x − y||x|
|x − y∗| f (y)dy,

with the notation z∗ = z/|z|2 (coming from the image method in order to have a tangent vector field). As we have
mentioned in the introduction, solving the elliptic equation (1.7) is equivalent to solving 	ψ = f , where ψ is con-
stant on the boundary (here, the boundary has only one connected component) and setting u := ∇⊥ψ . Hence, the
previous Biot–Savart law comes from the explicit formula of the Green’s function in B(0,1)c . Another advantage of
the dimension two is that we can extend this formula to the exterior of any simply-connected compact set K: thanks
to the complex analysis (identifying R2 and C) and the fact that holomorphic function is a good change of variable
for the Laplace problem. By the Riemann mapping theorem, there exists a unique biholomorphism T mapping Kc to
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B(0,1)c and verifying T (∞) = ∞ and T ′(∞) ∈ R+. The last condition reads in the Laurent decomposition of T at
infinity:

T (z) = βz + γ +Oz→∞
(

1

z

)
, with β ∈R+.

Then, we will use several times that

T (z) = βz + h(z), (2.3)

where h is a holomorphic function satisfying at infinity h(z) = O(1) and h′(z) = O(1/|z|2). Of course we have a
similar behavior for T −1.

In the sequel, we will need a kind of mean value theorem in a non-convex domain given by the following lemma:

Lemma 2.1. We assume that K is a compact set such that ∂K is a C1,1 Jordan curve. There exists C such that∣∣T (x) − T (y)
∣∣ � C|x − y|, ∀(x, y) ∈ (

Kc
)2

,
∣∣T −1(x) − T −1(y)

∣∣ � C|x − y|, ∀(x, y) ∈ (
B(0,1)c

)2
.

Proof. As long as the boundary is C1,α , we can extend the definition of T and DT continuously up the boundary due
to Kellogg–Warschawski theorem (see [28, Theorem 3.6]). Hence, by the behavior at infinity (see (2.3)), we infer that
DT is uniformly bounded on Kc. The same argument gives also that T −1 is bounded on B(0,1)c .

By the connectivity of Kc, we know that for any x, y ∈Kc, there exists a smooth path γ in Kc joining x and y, and
we have

∣∣T (x) − T (y)
∣∣ =

∣∣∣∣∣
1∫

0

DT
(
γ (t)

)
γ ′(t)dt

∣∣∣∣∣� ‖DT ‖L∞�(γ ).

Therefore, it is sufficient to prove that there exists a � 1 such that Kc is a-quasiconvex, that is, for all points x, y

there exists a rectifiable path γ joining x, y and satisfying

�(γ ) � a|x − y|.
We note easily that B(0,1)c is π

2 -quasiconvex which ends the proof for T −1.
Concerning T , we remark that Kc cannot be quasiconvex if ∂K has a double point or a cusp. Conversely, if ∂K

is a C1 Jordan curve, it is rather classical to show that there exists a � 1 such that Kc is a-quasiconvex. We refer to
Hakobyan and Herron [15] for recent development about quasiconvexity. This kind of problem is although extensively
studied in complex analysis, and Ahlfors shows in [1] the following equivalence in dimension two:

∂K is a quasidisk ⇔ Kc is quasiconvex

where it is known that a Jordan curve, piecewise C1, is a quasidisk iff ∂K has no cusp (see e.g. [14]). �
Next, with the definitions (1.1)–(1.2), we set T ε,α

i,j as

T ε,α
i,j (z) = T

(
z − z

ε,α
i,j

ε

)
, (2.4)

the unique biholomorphism which maps (Kε,α
i,j )c to B(0,1)c and satisfies T ε,α

i,j (∞) = ∞ and (T ε,α
i,j )′(∞) ∈ R+. Let

us note that(
T ε,α

i,j

)−1
(z) = εT −1(z) + z

ε,α
i,j . (2.5)

From these formulas and Lemma 2.1, we will often use the following Lipschitz estimates:

∥∥T ε,α
i,j

∥∥
Lip �

C
and

∥∥(
T ε,α

i,j

)−1∥∥
Lip � Cε. (2.6)
ε
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Then we infer that there exists a unique vector field uε
i,j [f ] solving in R2 \Kε,α

i,j :

div uε
i,j [f ] = 0, curl uε

i,j [f ] = f, lim|x|→∞
∣∣uε

i,j [f ](x)
∣∣ = 0,

uε
i,j [f ] · n|∂Kε,α

i,j
= 0,

∮
∂Kε,α

i,j

uε
i,j [f ](s) · τ ds = 0,

which is given explicitly by:

uε
i,j [f ](x) = 1

2π
∇⊥

∫
(Kε,α

i,j )c

ln
|T ε,α

i,j (x) − T ε,α
i,j (y)||T ε,α

i,j (x)|
|T ε,α

i,j (x) − T ε,α
i,j (y)∗| f (y)dy

= 1

2π
∇⊥

∫
(Kε,α

i,j )c

ln
ε|T ε,α

i,j (x) − T ε,α
i,j (y)| |T ε,α

i,j (x)|
β|T ε,α

i,j (x) − T ε,α
i,j (y)∗| f (y)dy. (2.7)

For more details and literature on this problem, we refer to [16, Section 2].
A useful estimate for the next section is:

Lemma 2.2. There exist C1, C2, C3, C4 four positive numbers such that for all ε > 0, α > 0, μ ∈ [0,1], i ∈ {1, . . . , n1},
j ∈ {1, . . . , n2}, r > 0, we have

T ε,α
i,j

(
∂B

(
z
ε,α
i,j , r

) ∩ (
Kε,α

i,j

)c) ⊂ B

(
0,C1

r

ε

)
\ B

(
0,C2

r

ε

)

and (
T ε,α

i,j

)−1(
∂B(0, r + 1)

) ⊂ B
(
z
ε,α
i,j , εC3(r + 1)

) \ B
(
z
ε,α
i,j , εC4(r + 1)

)
.

Proof. With the definitions of Kε,α
i,j and T ε,α

i,j (see (1.2) and (2.4)) we have to prove that there exist C1, C2, C3, C4
such that for all ε and r we have:

T
(

∂B

(
0,

r

ε

)
∩Kc

)
⊂ B

(
0,C1

r

ε

)
\ B

(
0,C2

r

ε

)

and

T −1(∂B(0, r + 1)
) ⊂ B

(
0,C3(r + 1)

) \ B
(
0,C4(r + 1)

)
.

The second point is obvious, because T −1 is continuous from B(0,1)c to Kc and as T −1(z)/z → 1/β as |z| → ∞,
we can infer that z �→ |T −1(z)|/|z| has an upper and lower positive bounds. Indeed, we have assumed that there is a
small neighborhood of zero inside K.

Actually, the first point is the same. Indeed, we are looking for C1,C2 such that for all s > 0 we have

T
(
∂B(0, s) ∩Kc

) ⊂ B(0,C1s) \ B(0,C2s).

So, the conclusion comes with the same argument applied to z �→ |T (z)|/|z| where T is continuous from Kc to
B(0,1)c . �
Remark 2.3. Even if the shape of K (via the bounds on the conformal map) is taking into account in the convergence
proof, the limit vector field is independent on. Our analysis can be extended to the case where the inclusions have
different shapes Kk if we have uniform bounds (sup |βk| < ∞, infβk > 0, sup‖hk‖L∞ , and uniform constants C1,
C2, C3, C4 in Lemma 2.2). For example, this is the case when we consider a finite number of shapes K1,K2, . . . ,Kp

(smooth simply-connected compact subsets of [−1,1]2).
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2.2. Definition and properties of vε[f ]

A similar modification was introduced in [20] in the case of a finite number of balls, whose centers are fixed and
whose radii tend to zero. Our case is more difficult because the centers change, the shape of the inclusion is more
general than a ball and the number of inclusions tends to infinity. The idea is to define vε such that it is equal to (2.7)
in a neighborhood of Kε,α

i,j and to (2.1) far away.
For this, let us define some cut-off functions ϕε

i,j . Let ϕ ∈ C∞(R) be a positive non-increasing function such that

ϕ(s) =
{

1 if s � 1/2,

0 if s � 1.

We define the cut-off function ϕε
i,j on Ωε by

ϕε
i,j (x) = ϕ

(
1

εα

(∥∥x − z
ε,α
i,j

∥∥∞ − ε
))

.

This function is C∞ almost everywhere and satisfies

0 � ϕε
i,j � 1, ϕε

i,j (x) =
{

1 if ‖x − z
ε,α
i,j ‖∞ � ε + εα

2 ,

0 if ‖x − z
ε,α
i,j ‖∞ � ε + εα,

and we recall that Kε,α
i,j ⊂ {x ∈R2, ‖x − z

ε,α
i,j ‖∞ � ε}. From the definition, we note that

∥∥∇ϕε
i,j

∥∥
L∞(Ωε)

� C

εα
, (2.8)

meas
(
supp∇ϕε

i,j

) = 4
(
ε + εα

)2 − 4

(
ε + εα

2

)2

= 4εα+1 + 3ε2α � 4
(
εα

(
ε + εα

))
. (2.9)

Concerning the support of ϕε
i,j we have

meas
(
suppϕε

i,j

) = 4
(
ε + εα

)2 − ε2meas(K),

so meas(suppϕε
i,j ) =O(εα(ε + εα)) if K = [−1,1]2, and meas(suppϕε

i,j ) =O(ε2α + ε2) if not. In any case, we have

meas
(
suppϕε

i,j

)
� 4

(
ε + εα

)2 � 8
(
ε2 + ε2α

)
. (2.10)

Moreover, we note easily that all the supports are disjoints, i.e. for all α > 0, μ ∈ (0,1], (i, k) ∈ {1, . . . , n1}2 and
(j, l) ∈ {1, . . . , n2}2, we have

ϕε
i,j ϕ

ε
k,l ≡ 0 iff (i, j) �= (k, l). (2.11)

Now, we can simply define our correction as:

vε[f ] := ∇⊥ψε[f ], (2.12)

with

ψε[f ](x) := 1

2π

(
1 −

n2∑
j=1

n1∑
i=1

ϕε
i,j (x)

)∫
Ωε

ln |x − y|f (y)dy

+ 1

2π

n2∑
j=1

n1∑
i=1

ϕε
i,j (x)

∫
ε

ln
ε|T ε,α

i,j (x) − T ε,α
i,j (y)||T ε,α

i,j (x)|
β|T ε,α

i,j (x) − T ε,α
i,j (y)∗| f (y)dy
Ω
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= 1

2π

∫
Ωε

ln |x − y| f (y)dy

− 1

2π

n2∑
j=1

n1∑
i=1

ϕε
i,j (x)

∫
Ωε

ln
β|x − y|

ε|T ε,α
i,j (x) − T ε,α

i,j (y)|f (y)dy

+ 1

2π

n2∑
j=1

n1∑
i=1

ϕε
i,j (x)

∫
Ωε

ln
|T ε,α

i,j (x)|
|T ε,α

i,j (x) − T ε,α
i,j (y)∗|f (y)dy.

From this definition and the previous subsection, it appears obvious that:

divvε[f ] = 0 in Ωε, lim|x|→∞
∣∣vε[f ](x)

∣∣ = 0,

vε[f ] · n|∂Ωε = 0,

∮
∂Kε,α

i,j

vε[f ](s) · τ ds = 0, ∀i, j. (2.13)

We can also note that the curl of vε[f ] is equal to f in Ωε plus some terms localized on the support of ∇ϕε
i,j . In this

article, we do not need to estimate precisely this quantity, so we do not write its expression.

3. Convergence at fixed time

As we have said in the introduction, we want to decompose uε − u as in (1.14) and to pass to limit in each terms.
In this section, we fixed the time, i.e. we consider f as a function in L∞

c (R2). Then, we introduce uε[f ] such that:

divuε[f ] = 0 in Ωε, curluε[f ] = f in Ωε, lim|x|→∞
∣∣uε[f ](x)

∣∣ = 0,

uε[f ] · n|∂Ωε = 0,

∮
∂Kε,α

i,j

uε[f ](s) · τ ds = 0, ∀i, j, (3.1)

and vε[f ] the correction of KR2 [f 1Ωε ], i.e. vε[f ] given by (2.12).
Let M0 > 0 be fixed, the goal here is to prove the convergence of

wε[f ] := KR2[f 1Ωε ] − vε[f ] and rε[f ] := uε[f ] − vε[f ]
to zero uniformly in f verifying

‖f ‖L1∩L∞(R2) � M0,

where we have extended by zero vε[f ] and uε[f ] inside the inclusions.

3.1. Convergence of wε[f ] = KR2 [f 1Ωε ] − vε[f ]

First, in the inclusions, we prove that

Proposition 3.1. For all p ∈ [1,∞),∥∥wε[f ]∥∥Lp(R2\Ωε)
→ 0 as ε → 0, ∀(α,μ) ∈ (0,∞) × [0,1) ∪ (0,1) × {1}, (3.2)

uniformly in f verifying

‖f ‖L1∩L∞(R2) � M0.

Proof. Indeed, we have KR2 [f 1Ωε ] − vε[f ] = KR2[f 1Ωε ] on R2 \ Ωε and by (2.2) we write that∥∥KR2 [f 1Ωε ]∥∥ p 2 ε �
∥∥KR2 [f 1Ωε ]∥∥ ∞ 2

(
meas

(
R2 \ Ωε

))1/p � CM0
(
meas

(
R2 \ Ωε

))1/p
.
L (R \Ω ) L (R )
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Using (1.4), we have

meas
(
R2 \ Ωε

)
� (Nε,α)1+με2meas(K) � meas(K)

ε2

(ε + εα)1+μ
,

which tends to zero when ε → 0 for any α if μ < 1, and only for α < 1 if μ = 1. Its ends the proof of (3.2). �
Now, we are working in Ωε: using the explicit formula (2.12), we decompose as follows

wε[f ] =
4∑

k=1

wε,k[f ], (3.3)

with

wε,1[f ](x) = 1

2π

n2∑
j=1

n1∑
i=1

∇⊥ϕε
i,j (x)

∫
Ωε

ln
β|x − y|

ε|T ε,α
i,j (x) − T ε,α

i,j (y)|f (y)dy,

wε,2[f ](x) = 1

2π

n2∑
j=1

n1∑
i=1

∇⊥ϕε
i,j (x)

∫
Ωε

ln
|T ε,α

i,j (x) − T ε,α
i,j (y)∗|

|T ε,α
i,j (x)| f (y)dy,

wε,3[f ](x) = 1

2π

n2∑
j=1

n1∑
i=1

ϕε
i,j (x)

∫
Ωε

(
(x − y)⊥

|x − y|2 − (
DT ε,α

i,j

)T
(x)

(T ε,α
i,j (x) − T ε,α

i,j (y))⊥

|T ε,α
i,j (x) − T ε,α

i,j (y)|2
)

f (y)dy,

wε,4[f ](x) = 1

2π

n2∑
j=1

n1∑
i=1

ϕε
i,j (x)

(
DT ε,α

i,j

)T
(x)

∫
Ωε

( T ε,α
i,j (x) − T ε,α

i,j (y)∗

|T ε,α
i,j (x) − T ε,α

i,j (y)∗|2 − T ε,α
i,j (x)

|T ε,α
i,j (x)|2

)⊥
f (y)dy.

We prove separately the convergence to 0 of each term in L2.
Let us start by partially dealing with wε,3 and wε,4. Actually, it is very easy if μ < 1, without any condition on α:

Proposition 3.2. Let μ ∈ [0,1) and α > 0 be fixed. Then, for k = 3,4 and any p ∈ [1,∞), we have∥∥wε,k[f ]∥∥Lp(Ωε)
→ 0 as ε → 0,

uniformly in f verifying

‖f ‖L1∩L∞(R2) �M0.

Proof. Changing variables and using the expression (2.4) of T ε,α
i,j in terms of T , we can get that the quantities

w
ε,3
i,j (x) :=

∫
Ωε

(x − y)⊥

|x − y|2 f (y)dy − (
DT ε,α

i,j

)T
(x)

∫
Ωε

(T ε,α
i,j (x) − T ε,α

i,j (y))⊥

|T ε,α
i,j (x) − T ε,α

i,j (y)|2 f (y)dy,

w
ε,4
i,j (x) := (

DT ε,α
i,j

)T
(x)

∫
Ωε

( T ε,α
i,j (x) − T ε,α

i,j (y)∗

|T ε,α
i,j (x) − T ε,α

i,j (y)∗|2 − T ε,α
i,j (x)

|T ε,α
i,j (x)|2

)⊥
f (y)dy,

are uniformly bounded by CM0 where C depends only on K. Indeed, the uniform estimate of
∫
Ωε

(x−y)⊥
|x−y|2 f (y)dy =

2πKR2[f 1Ωε ] comes directly from (2.2). Concerning the other term of w
i,j

3 and w
i,j

4 , all the details are given in [16,
Theorem 4.1].

Hence, as the ϕε
i,j have disjoint supports (see (2.11)), we state that the uniform bound and (2.10) imply that for any

p ∈ [1,∞) and k = 3,4:∥∥wε,k[f ]∥∥Lp(Ωε)
� 3CM0

2π

(
(Nε,α)1+μ4

(
ε + εα

)2)1/p � CM0
(
ε + εα

) 1−μ
p ,

which tends to zero for μ < 1. �
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Notice that Proposition 3.2 holds true for any p ∈ [1,∞). When μ = 1, the proof is more tricky, and we only
establish the convergence in L2 for wε,3 and wε,4 when α < 1, as we make for wε,1,wε,2.

The terms wε,1 and wε,3 will be treated in the same spirit. Indeed, we note that if K = B(0,1) then T = Id (so

β = 1 and h = 0 in (2.3) in this case) and we would have T ε,α
i,j (x) = x−z

ε,α
i,j

ε
hence wε,1 ≡ 0 and wε,3 ≡ 0. In the

general case, the idea is then to use that T behaves as βId at infinity (see (2.3)) that justifies the decomposition of the
integrals in two parts (close and far away).

Convergence of wε,1.

Proposition 3.3. We recall that αc(μ) = 2 − μ. Let μ ∈ [0,1] and α ∈ (0, αc(μ)) be fixed. Then∥∥wε,1[f ]∥∥L2(Ωε)
→ 0 as ε → 0,

uniformly in f verifying

‖f ‖L1∩L∞(R2) � M0.

Proof. We fix i, j and work on the support of ∇⊥ϕε
i,j . For x ∈ supp∇⊥ϕε

i,j fixed, we decompose the integral in two
parts:

Ωε
1 := {

y ∈ Ωε,
∣∣T ε,α

i,j (x) − T ε,α
i,j (y)

∣∣ � ε−1/2},
and Ωε

2 := {
y ∈ Ωε,

∣∣T ε,α
i,j (x) − T ε,α

i,j (y)
∣∣ > ε−1/2}. (3.4)

In the first subdomain Ωε
1 , we set z = εT ε,α

i,j (x) and we change variables η = εT ε,α
i,j (y) and use (2.5):

∫
Ωε

1

∣∣ln(
ε
∣∣T ε,α

i,j (x) − T ε,α
i,j (y)

∣∣)f (y)
∣∣dy �

∫
B(z,ε1/2)

∣∣∣∣ln |z − η|f
((

T ε,α
i,j

)−1
(

η

ε

))∣∣∣∣ |detD(T ε,α
i,j )−1|( η

ε
)

ε2
dη

�
∫

B(z,ε1/2)

∣∣∣∣ln |z − η|f
((

T ε,α
i,j

)−1
(

η

ε

))∣∣∣∣∣∣detDT −1
∣∣(η

ε

)
dη.

Using that DT −1 and f are bounded functions, we compute that:∫
Ωε

1

∣∣ln(
ε
∣∣T ε,α

i,j (x) − T ε,α
i,j (y)

∣∣)f (y)
∣∣dy � M0C

∫
B(0,ε1/2)

∣∣ln |ξ |∣∣dξ � CM0ε| ln ε|. (3.5)

To deal with ln(β|x − y|), we remark first that if y ∈ Ωε
1 , then by (2.6), we have

|x − y| = ∣∣(T ε,α
i,j

)−1(T ε,α
i,j (x)

) − (
T ε,α

i,j

)−1(T ε,α
i,j (y)

)∣∣� εC
∣∣T ε,α

i,j (x) − T ε,α
i,j (y)

∣∣ � Cε1/2.

Then we compute that∫
Ωε

1

∣∣ln(
β|x − y|)f (y)

∣∣dy �
∫

B(x,Cε1/2)

∣∣ln(
β|x − y|)f (y)

∣∣dy

� ‖f ‖L∞
∫

B(0,Cε1/2)

∣∣ln |βξ |∣∣dξ � CM0ε| ln ε|. (3.6)

In the second subdomain Ωε
2 , we have by (2.6)

ε−1/2 �
∣∣T ε,α

i,j (x) − T ε,α
i,j (y)

∣∣ � ε−1C|x − y|,
hence |x − y| � ε1/2

. Therefore, with h defined in (2.3), writing

C
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ln
ε|T ε,α

i,j (x) − T ε,α
i,j (y)|

β|x − y| = ln

∣∣β(x − y) + ε
(
h
( x−z

ε,α
i,j

ε

) − h
( y−z

ε,α
i,j

ε

))∣∣
β|x − y| , (3.7)

we have

ε
∣∣h( x−z

ε,α
i,j

ε

) − h
( y−z

ε,α
i,j

ε

)∣∣
β|x − y| � 2C‖h‖L∞

β
ε1/2,

which is smaller that 1/2 for ε small enough. We note easily that∣∣∣∣ln |b + c|
|b|

∣∣∣∣� 2
|c|
|b| , if

|c|
|b| �

1

2
. (3.8)

Applying this inequality (3.8) with c = h
( x−z

ε,α
i,j

ε

) − h
( y−z

ε,α
i,j

ε

)
and b = β(x−y)

ε
, we compute from (3.7):

∣∣∣∣ln ε|T ε,α
i,j (x) − T ε,α

i,j (y)|
β|x − y|

∣∣∣∣� 2
ε
∣∣h( x−z

ε,α
i,j

ε

) − h
( y−z

ε,α
i,j

ε

)∣∣
β|x − y| � 4ε‖h‖L∞

β|x − y| .

Therefore, using (2.2), we obtain∫
Ωε

2

∣∣∣∣ln β|x − y|
ε|T ε,α

i,j (x) − T ε,α
i,j (y)|f (y)

∣∣∣∣dy �
∫
Ωε

4ε‖h‖L∞

β|x − y|
∣∣f (y)

∣∣dy � Cε‖f ‖1/2
L∞‖f ‖1/2

L1 � CM0ε.

Putting together this last estimate with previous ones (3.5)–(3.6), we get∥∥∥∥
∫
Ωε

ln
β|x − y|

ε|T ε,α
i,j (x) − T ε,α

i,j (y)|f (y)dy

∥∥∥∥
L∞(Ωε)

� CM0ε| ln ε|,

where C is a constant independent of i, j,α,μ,f,β, ε. Hence, by (2.8), (2.9), (2.11) and since ε + εα > ε, we finally
conclude that

∥∥wε,1[f ]∥∥L2(Ωε)
� CM0

ε| ln ε|
εα

(
N1+μ

ε,α εα
(
ε + εα

))1/2 � CM0
ε| ln ε|

εα

(
εα

(ε + εα)μ

)1/2

� CM0
ε| ln ε|

εα

(
εα

εμ

)1/2

= CM0| ln ε|ε 2−α−μ
2 ,

which converges to zero if α < 2 − μ, uniformly in f verifying

‖f ‖L1∩L∞(R2) �M0. �
Convergence of wε,3.

Proposition 3.4. Let μ = 1 and α ∈ (0,1) be fixed. Then∥∥wε,3[f ]∥∥L2(Ωε)
→ 0 as ε → 0,

uniformly in f verifying

‖f ‖L1∩L∞(R2) �M0.

Proof. We fix i, j and work in the support of ϕε
i,j . For x ∈ suppϕε

i,j fixed, we decompose the integral in the two parts
defined in (3.4). Using (2.6), we have for y ∈ Ωε

1

|x − y| = ∣∣(T ε,α
i,j

)−1(T ε,α
i,j (x)

) − (
T ε,α

i,j

)−1(T ε,α
i,j (y)

)∣∣� εC
∣∣T ε,α

i,j (x) − T ε,α
i,j (y)

∣∣ � Cε1/2,

which implies that Ωε ⊂ B(x,Cε1/2). Then we deduce
1
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∣∣∣∣
∫
Ωε

1

(x − y)⊥

|x − y|2 f (y)dy

∣∣∣∣�
∫

B(x,Cε1/2)

|f (y)|
|x − y| dy � Cε1/2‖f ‖L∞ = CM0ε

1/2.

In the same way, we deduce from [16, Theorem 4.1] that

∣∣∣∣(DT ε,α
i,j

)T
(x)

∫
Ωε

1

(T ε,α
i,j (x) − T ε,α

i,j (y))⊥

|T ε,α
i,j (x) − T ε,α

i,j (y)|2 f (y)dy

∣∣∣∣� C‖f 1B(x,Cε1/2)‖1/2
L∞‖f 1B(x,Cε1/2)‖1/2

L1

� Cε1/2‖f ‖L∞ � CM0ε
1/2.

For the second subdomain Ωε
2 , we use the expansion (2.3) of T to write:

(x − y)⊥

|x − y|2 − (
DT ε,α

i,j

)T
(x)

(T ε,α
i,j (x) − T ε,α

i,j (y))⊥

|T ε,α
i,j (x) − T ε,α

i,j (y)|2

= (x − y)⊥

|x − y|2 − 1

ε

(
βId + Dh

(
x − z

ε,α
i,j

ε

))T
(
β

x−y
ε

+ h
( x−z

ε,α
i,j

ε

) − h
( y−z

ε,α
i,j

ε

))⊥
∣∣β x−y

ε
+ h

( x−z
ε,α
i,j

ε

) − h
( y−z

ε,α
i,j

ε

)∣∣2

= (x − y)⊥

|x − y|2 −
(
x − y + ε

β

(
h
( x−z

ε,α
i,j

ε

) − h
( y−z

ε,α
i,j

ε

)))⊥

∣∣x − y + ε
β

(
h
( x−z

ε,α
i,j

ε

) − h
( y−z

ε,α
i,j

ε

))∣∣2

+ 1

β
Dh

(
x − z

ε,α
i,j

ε

)T
(
x − y + ε

β

(
h
( x−z

ε,α
i,j

ε

) − h(
y−z

ε,α
i,j

ε
)
))⊥

∣∣x − y + ε
β

(
h
( x−z

ε,α
i,j

ε

) − h
( y−z

ε,α
i,j

ε

))∣∣2

=: J1(x, y) + J2(x, y).

Due to (2.6), we have for y ∈ Ωε
2

ε−1/2 �
∣∣T ε,α

i,j (x) − T ε,α
i,j (y)

∣∣ � C

ε
|x − y|

and we can deduce that Ωε
2 ⊂ B(x, ε1/2

C
)c . Furthermore ε

β

∣∣h( x−z
ε,α
i,j

ε

) − h
( y−z

ε,α
i,j

ε

)∣∣� Cε, then, for ε small enough, we
have

∣∣J1(x, y)
∣∣ =

∣∣ ε
β

(
h
( x−z

ε,α
i,j

ε

) − h
( y−z

ε,α
i,j

ε

))∣∣
|x − y|∣∣x − y + ε

β

(
h
( x−z

ε,α
i,j

ε

) − h
( y−z

ε,α
i,j

ε

))∣∣ �
Cε

|x − y|( ε1/2

C
− Cε

) � Cε1/2

|x − y| ,

where we have used the relation∣∣∣∣ a

|a|2 − b

|b|2
∣∣∣∣ = |a − b|

|a| |b| . (3.9)

Hence we get by (2.2)∣∣∣∣
∫
Ωε

2

J1(x, y)f (y)dy

∣∣∣∣� Cε1/2
∫
R2

|f (y)|
|x − y| dy � Cε1/2M0.

For J2, we know that there exists C such that |zh′(z)| � C for any z (see (2.3)), so

∣∣J2(x, y)
∣∣ � 1

β

C

|x−z
ε,α
i,j |

1

|x − y| − Cε
� Cε

|x − z
ε,α
i,j |

1

|x − y| ,

ε
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hence∣∣∣∣
∫
Ωε

2

J2(x, y)f (y)dy

∣∣∣∣� Cε

|x − z
ε,α
i,j |

∫
R2

|f (y)|
|x − y| dy � CεM0

|x − z
ε,α
i,j | .

Putting together the previous estimates, we finally obtain that∣∣wε,3
i,j (x)

∣∣ � 3CM0ε
1/2 + CεM0

|x − z
ε,α
i,j | .

The L2 norm is easy to estimate for the first right-hand side term:∥∥∥∥∑
i,j

ϕε
i,j 3CM0ε

1/2
∥∥∥∥

L2(Ωε)

� 3CM0ε
1/2((Nε,α)24

(
ε + εα

)2)1/2 � CM0ε
1/2,

which tends to zero as ε → 0. Concerning the second right-hand side term, we use that x belongs to the support of
ϕε

i,j and that there exists δ such that B(0, δ) ⊂K, hence x ∈ B(z
ε,α
i,j ,

√
2(ε + εα)) \ B(z

ε,α
i,j , δε). So we compute∥∥∥∥∑

i,j

ϕε
i,j (x)

CεM0

|x − z
ε,α
i,j |

∥∥∥∥
L2(Ωε)

� CεM0

(∑
i,j

∫
B(z

ε,α
i,j ,

√
2(ε+εα))\B(z

ε,α
i,j ,δε)

1

|x − z
ε,α
i,j |2 dx

)1/2

� CεM0

(
(Nε,α)2 ln

√
2(ε + εα)

δε

)1/2

� CM0| ln ε|1/2ε1−α,

recalling that ε < εα because we have assumed that α < 1. This ends the estimate of w
ε,3
i,j :∥∥wε,3[f ]∥∥L2(Ωε)

� CM0
(
ε1/2 + | ln ε|1/2ε1−α

)
. �

The general idea to treat wε,2 and wε,4 is the following: if K = B(0,1), then T = Id and T ε,α
i,j (x) = x−z

ε,α
i,j

ε
, so we

note that

ε
∣∣T ε,α

i,j (x) − T ε,α
i,j (y)∗

∣∣ =
∣∣∣∣x − z

ε,α
i,j + ε2

y − z
ε,α
i,j

|y − z
ε,α
i,j |2

∣∣∣∣ ∼ ∣∣x − z
ε,α
i,j

∣∣ = ε
∣∣T ε,α

i,j (x)
∣∣

at least when |y − z
ε,α
i,j | > 2ε. Hence we will also decompose the domains in two subdomains in order to use this hint.

Convergence of wε,2.

Proposition 3.5. We recall that αc(μ) = 2 − μ. Let μ ∈ [0,1] and α ∈ (0, αc(μ)) be fixed. Then∥∥wε,2[f ]∥∥L2(Ωε)
→ 0 as ε → 0,

uniformly in f verifying

‖f ‖L1∩L∞(R2) �M0.

Proof. For x ∈ supp∇⊥ϕε
i,j , we set z = εT ε,α

i,j (x), and changing variables η = εT ε,α
i,j (y), we deduce from (2.5) that

we need to estimate the following quantity:

w
ε,2
i,j (z) := 1

2π

∫
B(0,ε)c

ln
|z − ε2η∗|

|z| f

(
εT −1

(
η

ε

)
+ z

ε,α
i,j

)∣∣detDT −1
∣∣(η

ε

)
dη. (3.10)

From the definition of the cut-off function, we know that x ∈ supp∇⊥ϕε
i,j implies that

ε + εα

�
∣∣x − z

ε,α
i,j

∣∣� √
2
(
ε + εα

)
,

2
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then by Lemma 2.2, we deduce that

C2

(
ε + εα

2

)
� |z| � C1

√
2
(
ε + εα

)
.

Therefore, for any η ∈ B(0, ε)c we have

|ε2η∗|
|z| � ε2

C2(ε + εα

2 ) |η| .

Hence, using (3.8) with b = z and c = −ε2η∗, we infer that we have∣∣∣∣ln |z − ε2η∗|
|z|

∣∣∣∣� 2
ε2|η∗|

|z| � 2ε2

C2(ε + εα

2 ) |η| if
ε2

C2(ε + εα

2 )|η| �
1

2
. (3.11)

Keeping in mind this inequality, we define R = 2/C2 and we split the integral (3.10) in two parts: B(0,Rε)c and
B(0,Rε) \ B(0, ε).

In the first subdomain B(0,Rε)c , we use that ε + εα > ε and

ε2

C2(ε + εα

2 )|η| �
ε2

C2εRε
= 1

2
,

hence by (3.11), we compute∣∣∣∣
∫

B(0,Rε)c

ln
|z − ε2η∗|

|z| f

(
εT −1

(
η

ε

)
+ z

ε,α
i,j

)∣∣detDT −1
∣∣(η

ε

)
dη

∣∣∣∣
�

∫
B(0,Rε)c

2ε2

C2(ε + εα

2 ) |η| |f
(

εT −1
(

η

ε

)
+ z

ε,α
i,j

)
|∣∣detDT −1

∣∣(η

ε

)
dη

� 2ε2

C2ε

∫
R2

|f (εT −1(
η
ε
) + z

ε,α
i,j )||detDT −1|( η

ε
)

|η| dη

� Cε

∥∥∥∥f

(
εT −1

(
η

ε

)
+ z

ε,α
i,j

)
detDT −1

(
η

ε

)∥∥∥∥
1/2

L∞

∥∥∥∥f

(
εT −1

(
η

ε

)
+ z

ε,α
i,j

)
detDT −1

(
η

ε

)∥∥∥∥
1/2

L1

� Cε‖f ‖1/2
L∞‖f ‖1/2

L1 � CM0ε,

where we have applied (2.2) for the function η �→ |f (εT −1(
η
ε
) + z

ε,α
i,j )||detDT −1|( η

ε
) at x = 0, used that DT −1 is

bounded and that ‖f (εT −1(
η
ε
) + z

ε,α
i,j )detDT −1(

η
ε
)‖L1 = ‖f ‖L1 by changing variables back.

In the second subdomain B(0,Rε) \ B(0, ε), we come back to the original variables: by Lemma 2.2, we compute∣∣∣∣
∫

B(0,Rε)\B(0,ε)

ln
|z − ε2η∗|

|z| f

(
εT −1

(
η

ε

)
+ z

ε,α
i,j

)∣∣detDT −1
∣∣(η

ε

)
dη

∣∣∣∣
�

∫
B(0,C3Rε)\Kε,α

i,j

∣∣∣∣ln |T ε,α
i,j (x) − T ε,α

i,j (y)∗|
|T ε,α

i,j (x)|
∣∣∣∣∣∣f (y)

∣∣dy. (3.12)

Now we note that T ε,α
i,j (y)∗ belongs to the unit disk whereas T ε,α

i,j (x) is outside, hence∣∣T ε,α
i,j (x)

∣∣ − 1 �
∣∣T ε,α

i,j (x) − T ε,α
i,j (y)∗

∣∣� ∣∣T ε,α
i,j (x)

∣∣ + 1.

Let X be the point of ∂Kε,α
i,j such that |T ε,α

i,j (x)| − 1 = |T ε,α
i,j (x) − T ε,α

i,j (X)|. Then, since x ∈ supp∇⊥ϕε
i,j , we have

|x − X|� |x − z
ε,α| − |zε,α − X|� εα/2 and then, with (2.6)
i,j i,j
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εα

2
� |x − X|� εC

∣∣T ε,α
i,j (x) − T ε,α

i,j (X)
∣∣,

hence,

εα−1

2C|T ε,α
i,j (x)| �

|T ε,α
i,j (x) − T ε,α

i,j (y)∗|
|T ε,α

i,j (x)| � 1 + 1

|T ε,α
i,j (x)| .

Moreover, Lemma 2.2 yields that C2(ε+εα)
ε

� |T ε,α
i,j (x)| � C1

√
2(ε+εα)
ε

so

εα

2CC1
√

2(ε + εα)
�

|T ε,α
i,j (x) − T ε,α

i,j (y)∗|
|T ε,α

i,j (x)| � 1 + ε

C2(ε + εα)
� 1 + 1

C2
,

which implies that∣∣∣∣ln |T ε,α
i,j (x) − T ε,α

i,j (y)∗|
|T ε,α

i,j (x)|
∣∣∣∣� C

(
1 + | ln

εα

ε + εα
|
)
� C(1 + | ln ε|).

Therefore, using (3.12),∣∣∣∣
∫

B(0,Rε)\B(0,ε)

ln
|z − ε2η∗|

|z| f

(
εT −1

(
η

ε

))∣∣detDT −1
∣∣(η

ε

)
dη

∣∣∣∣� C
(
1 + | ln ε|)‖f ‖L∞π(C3Rε)2.

Putting together the estimates in the two subdomains we get that w
ε,2
i,j (z) is bounded by CεM0 uniformly for

x ∈ ∇⊥ϕε
i,j . Then we conclude as for wε,1:

∥∥wε,2[f ]∥∥L2(Ωε)
� CM0

ε

εα

(
N1+μ

ε,α εα
(
ε + εα

))1/2 � CM0ε
2−α−μ

2 ,

which converges to zero if α < 2 − μ, uniformly in f verifying

‖f ‖L1∩L∞(R2) �M0. �
Convergence of wε,4.

Proposition 3.6. Let μ = 1 and α ∈ (0,1) be fixed. Then∥∥wε,4[f ]∥∥L2(Ωε)
→ 0 as ε → 0,

uniformly in f verifying

‖f ‖L1∩L∞(R2) �M0.

Proof. The idea is the same as for wε,3: we compare T ε,α
i,j (x) − T ε,α

i,j (y)∗ with T ε,α
i,j (x). Let us fix i, j and we work

on the support of ϕε
i,j . We decompose the integral in two parts {y ∈ Ωε, |T ε,α

i,j (y)| � 2} and {y ∈ Ωε, |T ε,α
i,j (y)| > 2}.

If y verifies |T ε,α
i,j (y)| � 2, it implies that there exists ȳ ∈ ∂Kε,α

i,j such that |T ε,α
i,j (y) − T ε,α

i,j (ȳ)| � 1 (we recall that

T ε,α
i,j maps (Kε,α

i,j )c to B̄(0,1)c). Hence, by (2.6)∣∣y − z
ε,α
i,j

∣∣� |y − ȳ| + ∣∣ȳ − z
ε,α
i,j

∣∣� Cε
∣∣T ε,α

i,j (y) − T ε,α
i,j (ȳ)

∣∣ + √
2ε � Cε,

which allows us to estimate in the first subdomain, using [16, Theorem 4.1]:∣∣∣∣(DT ε,α
i,j

)T
(x)

∫
{y∈Ωε, |T ε,α

i,j (y)|�2}

( T ε,α
i,j (x) − T ε,α

i,j (y)∗

|T ε,α
i,j (x) − T ε,α

i,j (y)∗|2 − T ε,α
i,j (x)

|T ε,α
i,j (x)|2

)⊥
f (y)dy

∣∣∣∣
� C‖f 1B(z

ε,α
,Cε)‖1/2

L∞‖f 1B(z
ε,α

,Cε)‖1/2
1 � Cε‖f ‖L∞ � CM0ε.
i,j i,j L
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In the second subdomain, we note that |T ε,α
i,j (y)| > 2 implies that

∣∣T ε,α
i,j (x) − T ε,α

i,j (y)∗
∣∣� ∣∣T ε,α

i,j (x)
∣∣ − 1

|T ε,α
i,j (y)| �

1

2
.

As for wε,2, we set z = εT ε,α
i,j (x), and change variables η = εT ε,α

i,j (y) to obtain with (3.9):

∣∣∣∣(DT ε,α
i,j

)T
(x)

∫
{y∈Ωε, |T ε,α

i,j (y)|>2}

( T ε,α
i,j (x) − T ε,α

i,j (y)∗

|T ε,α
i,j (x) − T ε,α

i,j (y)∗|2 − T ε,α
i,j (x)

|T ε,α
i,j (x)|2

)⊥
f (y)dy

∣∣∣∣

=
∣∣∣∣(DT )T

(
x − z

ε,α
i,j

ε

) ∫
B(0,2ε)c

(
z − ε2η∗

|z − ε2η∗|2 − z

|z|2
)⊥

f

(
εT −1

(
η

ε

)
+ z

ε,α
i,j

)∣∣detDT −1
∣∣(η

ε

)
dη

∣∣∣∣
� C

∫
B(0,2ε)c

ε2|η∗|
|z − ε2η∗| |z|

∣∣∣∣f
(

εT −1
(

η

ε

)
+ z

ε,α
i,j

)∣∣∣∣∣∣detDT −1
∣∣(η

ε

)
dη

� 2Cε

|z|
∫

B(0,2ε)c

|f (εT −1(
η
ε
) + z

ε,α
i,j )||detDT −1|( η

ε
)

|η| dη,

so by (2.2)∣∣∣∣(DT ε,α
i,j

)T
(x)

∫
{y∈Ωε, |T ε,α

i,j (y)|>2}

( T ε,α
i,j (x) − T ε,α

i,j (y)∗

|T ε,α
i,j (x) − T ε,α

i,j (y)∗|2 − T ε,α
i,j (x)

|T ε,α
i,j (x)|2

)⊥
f (y)dy

∣∣∣∣

� Cε

|z|
∥∥∥∥f

(
εT −1

(
η

ε

)
+ z

ε,α
i,j

)
detDT −1

(
η

ε

)∥∥∥∥
1/2

L∞

∥∥∥∥f

(
εT −1

(
η

ε

)
+ z

ε,α
i,j

)
detDT −1

(
η

ε

)∥∥∥∥
1/2

L1

� Cε

|z| ‖f ‖1/2
L∞‖f ‖1/2

L1 � CεM0

|z| ,

where we have changed variables back. Bringing together the estimates in the two subdomains, we conclude that

∣∣wε,4
i,j (x)

∣∣ � CM0ε + CεM0

|εT ε,α
i,j (x)| .

As for |wε,3
i,j (x)|, the first part is easy to estimate in L2:∥∥∥∥∑

i,j

ϕε
i,jCM0ε

∥∥∥∥
L2(Ωε)

� CM0ε
(
(Nε,α)24

(
ε + εα

)2)1/2 = CM0ε.

Concerning the last part, as there exists δ such that suppϕε
i,j ⊂ B(z

ε,α
i,j ,

√
2(ε + εα)) \ B(z

ε,α
i,j , δε), by Lemma 2.2 we

know that εT ε,α
i,j (x) belongs to B(0,C1

√
2(ε + εα)) \ B(0,C2δε). Hence we use that ϕε

i,j have disjoint supports and
we change variable z = εT ε,α

i,j (x):∥∥∥∥∑
i,j

ϕε
i,j (x)

CεM0

|εT ε,α
i,j (x)|

∥∥∥∥
L2(Ωε)

� CεM0

(∑
i,j

∫
supp ϕε

i,j

1

|εT ε,α
i,j (x)|2 dx

)1/2

� CεM0

(∑
i,j

∫
B(0,C1

√
2(ε+εα))\B(0,C2δε)

1

|z|2 dz

)1/2

� CεM0

(
(Nε,α)2 ln

C(ε + εα)
)1/2

� CM0| ln ε|1/2ε1−α.

ε
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Therefore, we have established that∥∥wε,4[f ]∥∥L2(Ωε)
� CM0

(
ε + | ln ε|1/2ε1−α

)
,

which tends to zero as ε → 0, because we are considering the case α < 1. Its ends this proof. �
Bringing together all the propositions of this subsection, we have proved the following theorem:

Theorem 3.7. We recall that αc(μ) = 2 − μ. Let μ ∈ [0,1] and α ∈ (0, αc(μ)) be fixed. Then∥∥wε[f ]∥∥L2(R2)
→ 0 as ε → 0,

uniformly in f verifying

‖f ‖L1∩L∞(R2) �M0.

3.2. Convergence of rε

In the decomposition

uε[f ] − KR2[f 1Ωε ] = rε[f ] − wε[f ],
with

wε[f ] = KR2 [f 1Ωε ] − vε[f ] and rε[f ] := uε[f ] − vε[f ],
we have already dealt with wε . Now we identify rε as the Leray projector of wε on Ωε:

Lemma 3.8. With the above definition, for any α > 0, μ ∈ [0,1] and ε > 0, rε[f ] is the Leray projector of wε[f ]:
rε[f ] = Pε

(
wε[f ]).

Proof. Any u can be decomposed as u = v + ∇p, where v = Pε(u) is the Leray projector on Ωε , i.e. the unique
vector satisfying⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

divv = 0, in Ωε,

curlv = curlu, in Ωε,

v · n = 0, on ∂Ωε,∮
∂Kε,α

i,j

v · τ ds =
∮

∂Kε,α
i,j

u · τ ds, for any j ∈ {1, . . . , n2}, i ∈ {1, . . . , n1}.

In our case, we have according to (2.13) and (3.1):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

div rε[f ] = 0 in Ωε,

curl rε[f ] = f − curlvε[f ] = curlwε[f ] in Ωε,

rε[f ] · n = 0 on ∂Ωε,∮
∂Kε,α

i,j

rε[f ] · τ ds =
∮

∂Kε,α
i,j

wε[f ] · τ ds for any j, i.

The last equality comes from the equality rε[f ] = uε[f ] − KR2[f 1Ωε ] + wε[f ] and the Green formula∮
∂Kε,α

i,j

KR2 [f 1Ωε ] · τ ds =
∫

Kε,α
i,j

f 1Ωε = 0,

because 1Ωε is the characteristic function on Ωε . The uniqueness of the decomposition yields the lemma. �
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The convergence of rε[f ] is now obvious. Indeed, we recall that the Leray projector is orthogonal for the L2 norm,
then for any α, μ, ε and f we have:∥∥rε[f ]∥∥L2(Ωε)

�
∥∥wε[f ]∥∥L2(Ωε)

�
∥∥wε[f ]∥∥L2(R2)

.

So, extending uε[f ] by zero inside the inclusions, we deduce directly from Theorem 3.7:

Theorem 3.9. We recall that αc(μ) = 2 − μ. Let μ ∈ [0,1] and α ∈ (0, αc(μ)) be fixed. Then∥∥uε[f ] − KR2 [f 1Ωε ]∥∥L2(R2)
→ 0 as ε → 0,

uniformly in f verifying

‖f ‖L1∩L∞(R2) � M0.

4. Proof of the main theorem

The way to conclude comes from [19] and we write the main steps for a sake of completeness. In general the
Sobolev and Lebesgue spaces are considered in the full plane, and (uε,ωε) are extended by zero in the obstacles. In
all this section, we fix μ ∈ [0,1] and α ∈ (0, αc(μ)).

4.1. Weak convergence of the vorticity

Thanks to the transport equation (1.10), extracting a subsequence, we have that

ωε ⇀ ω weak- ∗ in L∞(
R+;L1 ∩ L∞(

R2)),
which establishes the point (b) of Theorem 1.2, up to a subsequence.

We introduce

M0 := max
{‖ω0‖L1(R2),‖ω0‖L∞(R2)

}
,

hence for any t and ε∥∥ωε(t, ·)∥∥L1∩L∞(R2)
� M0. (4.1)

4.2. Strong convergence of the velocity

First we begin by a temporal estimate.

Lemma 4.1. There exists a constant C independent of ε and t such that∥∥∂tω
ε
∥∥

H−1(R2)
� C.

Proof. For any ε > 0, as uε is regular enough and tangent to the boundary, we can write the equation verified by ωε

for any test function ϕ ∈ H1(R2):

(
∂tω

ε,ϕ
)

H−1×H1 =
∫
Ωε

uεωε · ∇ϕ =
∫
R2

(
uε − KR2

[
ωε

])
ωε · ∇ϕ +

∫
R2

KR2

[
ωε

]
ωε · ∇ϕ,

which is bounded by C‖∇ϕ‖L2 for the following reason. According to (4.1), Theorem 3.9 states that uε − KR2 [ωε]
is uniformly bounded in L2(R2) which gives the estimate for the first right-hand side term. For the second term, we
know from (2.2) and (4.1) that KR2 [ωε] is uniformly bounded whereas ωε is uniformly bounded in L2. It gives the
desired estimates in H−1. �
Lemma 4.2. There exists a subsequence of ωε (again denoted by ωε) such that ωε(t, ·) ⇀ ω(t, ·) in weak-L4(R2) and

in weak-L
4
3 (R2) for all t .
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Proof. The proof of this lemma is done in [19, Proposition 5.2]. The idea is the following: by Banach–Alaoglu’s

theorem, we can extract, for each t , a subsequence such that ωε(t, ·) ⇀ ω(t, ·) in weak-L4(R2) and in weak-L
4
3 (R2),

but the subsequence depends on the time t , whereas we want a common sequence for each t . For that, we choose
by diagonal extraction a common sequence for each t ∈ Q. Next, for any test function in C∞

0 (R2) and thanks to the
time estimate of the previous lemma, we prove that the sequence works for all t . The desired result is obtained by the
density of C∞

0 (R2) in H1(R2). �
Now, defining u := KR2 [ω], we use this subsequence to pass to the limit in the decomposition

uε − u = (
uε − KR2

[
ωε

]) + KR2

[
ωε − ω

]
. (4.2)

Theorem 4.3. We have uε → u strongly in L2
loc(R

+ ×R2), with u = KR2[ω].

Proof. The first term on the right-hand side of (4.2) converges uniformly in time to zero in L2(R2) (see Theorem 3.9
and (4.1)). Then the dominated convergence theorem gives the limit in L2

loc(R
+ ×R2).

Concerning the last term: for x fixed, the map y �→ (x−y)⊥
|x−y|2 belongs to L4/3(B(x,1)) ∩ L4(B(x,1)c), then

Lemma 4.2 implies that for all t, x, we have

∫
R2

(x − y)⊥

|x − y|2
(
ωε − ω

)
(t, y)dy → 0 as ε → 0.

So, this integral converges pointwise to zero, and it is uniformly bounded by (2.2) with respect of x and t . Applying
the dominated convergence theorem, we obtain the convergence of KR2 [ωε − ω] in L2

loc(R
+ × R2). This ends the

proof. �
This theorem gives the point (a) of Theorem 1.2, up to a subsequence.

4.3. Passing to the limit in the Euler equations

The purpose of the rest of this section is to prove that (u,ω) is the unique solution of the Euler equations in R2.

Theorem 4.4. The pair (u,ω) obtained is a weak solution of the Euler equations in R2.

Proof. The divergence and curl conditions are verified by the expression: u = KR2[ω].
Next, we use that uε and ωε verify (1.9) in the sense of distribution in Ωε and the fact that uε is regular and tangent

to the boundary, to infer that for any test function ϕ ∈ C∞
0 ([0,∞) ×R2), we have

∞∫
0

∫
R2

ϕtω
ε dx dt +

∞∫
0

∫
R2

∇ϕ · uεωε dx dt = −
∫
R2

ϕ(0, x)ω0(x)1Ωε dx,

because we have extended ωε by zero and set ωε(0, ·) = ω01Ωε . By passing to the limit as ε → 0, thanks to the
strong-weak convergence of the pair (uε,ωε), we conclude that (u,ω) verifies the vorticity equation. In the full plane,
this is equivalent to state that u verifies the velocity equation. �

All the results of this section state that for any sequence εk → 0, we can extract a subsequence such that (uε,ωε)

converges to (u,ω), which is a global weak solution to the 2D Euler equations in the full plane, and where ω belongs
to L∞(R+;L1 ∩ L∞(R2)). Such a solution is unique by the celebrated Yudovich’s work [17]. Therefore, this solution
is the strong solution with initial datum ω0, and we deduce from the uniqueness that the convergences hold without
extracting a subsequence. This ends the proof of Theorem 1.2.
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