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Abstract

We consider the weak solutions to the Euler–Fourier system describing the motion of a compressible heat conducting gas.
Employing the method of convex integration, we show that the problem admits infinitely many global-in-time weak solutions for
any choice of smooth initial data. We also show that for any initial distribution of the density and temperature, there exists an initial
velocity such that the associated initial-value problem possesses infinitely many solutions that conserve the total energy.
© 2013

1. Introduction

The concept of weak solution has been introduced in the mathematical theory of systems of (nonlinear) hyperbolic
conservation laws to incorporate the inevitable singularities in their solutions that may develop in a finite time no
matter how smooth and small the data are. As is well known, however, many nonlinear problems are not well posed
in the weak framework and several classes of admissible weak solutions have been identified to handle this issue. The
implications of the Second law of thermodynamics have been widely used in the form of various entropy conditions in
order to identify the physically relevant solutions. Although this approach has been partially successful when dealing
with systems in the simplified 1D-geometry, see Bianchini and Bressan [4], Bressan [5], Dafermos [10], Liu [18],
among others, the more realistic problems in higher spatial dimensions seem to be out of reach of the theory mostly
because the class of “entropies” is rather poor consisting typically of a single (physical) entropy. Recently, De Lellis
and Székelyhidi [12] developed the so-called Baire category method from the theory of differential inclusions (cf.
Bressan and Flores [6], Cellina [7], Dacorogna and Marcellini [9], Kirchheim [16], Müller and Šverák [19]) to identify
a large class of weak solutions to the Euler system violating the principle of well-posedness in various directions.
Besides the apparently non-physical solutions producing the kinetic energy (cf. Shnirelman [22]), a large class of data
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has been identified admitting infinitely many weak solutions that comply with a major part of the known admissibility
criteria, see De Lellis and Székelyhidi [11].

In this paper, we develop the technique of [11] to examine the well-posedness of the full Euler–Fourier system:

∂t� + divx(�u) = 0, (1.1)

∂t (�u) + divx(�u ⊗ u) + ∇xp(�,ϑ) = 0, (1.2)

∂t

(
�e(�,ϑ)

) + divx

(
�e(�,ϑ)u

) + divx q = −p(�,ϑ)divx u, (1.3)

where �(t, x) is the mass density, u = u(t, x) the velocity field, and ϑ(t, x) the (absolute) temperature of a com-
pressible, heat conducting gas, see Wilcox [23]. For the sake of simplicity, we restrict ourselves to the case of perfect
monoatomic gas, for which the pressure p(�,ϑ) and the specific internal energy e(�,ϑ) are interrelated through the
constitutive equations:

p(�,ϑ) = 2

3
�e(�,ϑ), p(�,ϑ) = a�ϑ, a > 0. (1.4)

Although the system (1.1)–(1.3) describes the motion in the absence of viscous forces, we suppose that the fluid is
heat conductive, with the heat flux q determined by the standard Fourier law:

q = −κ∇xϑ, κ > 0. (1.5)

The problem (1.1)–(1.5) is supplemented with the initial data

�(0, ·) = �0, (�u)(0, ·) = �0u0, ϑ(0, ·) = ϑ0 in Ω. (1.6)

In addition, to avoid the effect of the kinematic boundary, we consider the periodic boundary conditions, meaning the
physical domain Ω will be taken the flat torus

Ω = T
3 = ([0,1]|{0,1}

)3
.

The first part of the paper exploits the constructive aspect of convex integration. We present a “variable coefficients”
variant of a result of De Lellis and Székelyhidi [11] (cf. Remark 3.2 below) and show the existence of infinitely many
global-in-time3 weak solutions to the problem (1.1)–(1.6) for any physically relevant choice of (smooth) initial data.
Here, physically relevant means that the initial distribution of the density �0 and the temperature ϑ0 are strictly
positive in Ω . These solutions satisfy also the associated entropy equation; whence they comply with the Second law
of thermodynamics.

Similarly to their counterparts constructed in [11], these “wild” weak solutions violate the First law of thermody-
namics, specifically, the total energy at any positive time is strictly larger than for the initial data. In order to eliminate
the non-physical solutions, we therefore impose the total energy conservation in the form:

E(t) =
∫
Ω

�

(
1

2
|u|2 + e(�,ϑ)

)
(t, x)dx =

∫
Ω

�0

(
1

2
|u0|2 + e(�0, ϑ0)(x)

)
dx

= E0 for (a.a.) t ∈ (0, T ). (1.7)

Following [15] we show that the system (1.1)–(1.6), augmented with the total energy balance (1.7), satisfies the
principle of weak-strong uniqueness. Specifically, the weak and strong solutions emanating from the same initial
data necessarily coincide as long as the latter exists. In other words, the strong solutions are unique in the class of
weak solutions. This property remains valid even if we replace the internal energy equation (1.3) by the entropy
inequality

3 By global-in-time solutions we mean here solutions defined on [0, T ) for any given T > 0. For discussion about solutions defined on [0,∞)

see Section 5.
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∂t

(
�s(�,ϑ)

) + divx

(
�s(�,ϑ)u

) + divx

(
q
ϑ

)
� −q · ∇xϑ

ϑ2
,

ϑDs(�,ϑ) ≡ De(�,ϑ) + p(�,ϑ)D

(
1

�

)
, (1.8)

in the spirit of the theory developed in [14].
Although the stipulation of (1.7) obviously eliminates the non-physical energy producing solutions, we will show

that for any initial data �0, ϑ0 there exists an initial velocity u0 such that the problem (1.1)–(1.6) admits infinitely
many global-in-time weak solutions that satisfy the total energy balance (1.7).

The paper is organized as follows. After a brief introduction of the concept of weak solutions in Section 2, we
discuss the problem of existence of infinitely many solutions for arbitrary initial data, see Section 3. In particular, we
prove a “variable coefficients” variant of a result of De Lellis and Székelyhidi [11] and employ the arguments based
on Baire’s category. In Section 4, we show the weak-strong uniqueness principle for the augmented system and then
identify the initial data for which the associated solutions conserve the total energy. The paper is concluded by some
remarks on possible extensions in Section 5.

2. Weak solutions

To simplify presentation, we may assume, without loss of generality, that

a = κ = 1.

We say that a trio [�,ϑ,u] is a weak solution of the problem (1.1)–(1.6) in the space–time cylinder (0, T ) × Ω if:

• the density � and the temperature ϑ are positive in (0, T ) × Ω ;

•
T∫

0

∫
Ω

(�∂tϕ + �u · ∇xϕ)dx dt = −
∫
Ω

�0ϕ(0, ·)dx (2.1)

for any test function ϕ ∈ C∞
c ([0, T ) × Ω);

•
T∫

0

∫
Ω

(�u · ∂tϕ + �u ⊗ u : ∇xϕ + �ϑ divx ϕ)dx dt = −
∫
Ω

�0u0 · ϕ(0, ·)dx (2.2)

for any test function ϕ ∈ C∞
c ([0, T ) × Ω;R3);

•
T∫

0

∫
Ω

(
3

2
[�ϑ∂tϕ + �ϑu · ∇xϕ] − ∇xϑ · ∇xϕ − �ϑ divx uϕ

)
dx dt = −

∫
Ω

�0ϑ0ϕ(0, ·)dx (2.3)

for any test function ϕ ∈ C∞
c ([0, T ) × Ω).

As a matter of fact, the weak solutions we construct in this paper will be rather regular with the only exception of
the velocity field. In particular, the functions �, ϑ , and even divx u will be continuously differentiable in [0, T ] × Ω ,
and, in addition,

ϑ ∈ Lp
(
0, T ;W 2,p(Ω)

)
, ∂tϑ ∈ Lp

(
0, T ;Lp(Ω)

)
for any 1 � p < ∞.

Thus Eqs. (1.1), (1.3) will be in fact satisfied pointwise a.a. in (0, T ) × Ω . As for the velocity field, we have

u ∈ Cweak
([0, T ];L2(Ω;R3)) ∩ L∞(

(0, T ) × Ω;R3), divx u ∈ C
([0, T ] × Ω

)
.

Here and hereafter, the symbol Cweak([0, T ];X) denotes the space of continuous functions in the t -variable with
respect to the weak topology of the space X.
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3. Second law is not enough

Our first objective is to show the existence of infinitely many solutions to the Euler–Fourier system for arbitrary
(smooth) initial data.

Theorem 3.1. Let T > 0. Let the initial data satisfy

�0 ∈ C3(Ω), ϑ0 ∈ C2(Ω), u0 ∈ C3(Ω;R3),
�0(x) > � > 0, ϑ0(x) > ϑ > 0 for any x ∈ Ω. (3.1)

Then the initial-value problem (1.1)–(1.6) admits infinitely many weak solutions in (0, T )×Ω belonging to the class:

� ∈ C2([0, T ] × Ω
)
, ∂tϑ ∈ Lp

(
0, T ;Lp(Ω)

)
, ∇2

xϑ ∈ Lp
(
0, T ;Lp

(
Ω;R3×3)) for any 1 � p < ∞,

u ∈ Cweak
([0, T ];L2(Ω;R3)) ∩ L∞(

(0, T ) × Ω;R3), divx u ∈ C2([0, T ] × Ω
)
.

Remark 3.1. Using the maximal regularity theory for parabolic equations (see Amann [3], Krylov [17]) we observe
that ϑ is a continuous function of the time variable t ranging in the interpolation space [Lp(Ω);W 2,p(Ω)]α for any
1 � p < ∞ finite and any α ∈ (0,1). Thus it is possible to show that the conclusion of Theorem 3.1 remains valid if
we assume that

ϑ0 ∈ [
Lp(Ω);W 2,p(Ω)

]
α

for sufficiently large 1 � p < ∞ and 0 < α < 1, ϑ0 > 0 in Ω,

where [ , ]α denotes the real interpolation. In particular, the solution ϑ(t, ·) will remain in the same regularity class for
any t ∈ [0, T ].

The rest of this section is devoted to the proof of Theorem 3.1.

3.1. Reformulation

Following Chiodaroli [8], we reformulate the problem in the new variables �, ϑ , and w = �u obtaining, formally

∂t� + divx w = 0, (3.2)

∂tw + divx

(
w ⊗ w

�

)
+ ∇x(�ϑ) = 0, (3.3)

3

2
(�∂tϑ + w · ∇xϑ) = 	ϑ − ϑ divx w + ϑ

∇x�

�
· w. (3.4)

Next, we take the following ansatz for the density:

�(t, x) = �0(x) − h(t)divx

(
�0(x)u0(x)

) ≡ �̃(t, x),

with

h ∈ C2[0, T ], h(0) = 0, h′(0) = 1,

�0(x) − h(t)divx

(
�0(x)u0(x)

)
>

�

2
for all t ∈ [0, T ], x ∈ Ω. (3.5)

Accordingly, we write w in the form of its Helmholtz decomposition

w = v + ∇xΨ, divx v = 0, 	Ψ = h′(t)divx(�0u0) = ∂t �̃,

∫
Ω

Ψ dx = 0.

Obviously, by virtue of the hypotheses (3.1) imposed on the initial data, we have

�̃ ∈ C2([0, T ] × Ω
)
, ∇xΨ ∈ C2([0, T ] × Ω;R3), �̃(0, ·) = �0, w0 = �0u0.
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Moreover, the equation of continuity (3.2) is satisfied pointwise in (0, T ) × Ω , while the remaining two equa-
tions (3.2), (3.3) read

∂tv + divx

(
(v + ∇xΨ ) ⊗ (v + ∇xΨ )

�̃

)
+ ∇x(�̃ϑ + ∂tΨ ) = 0, divx v = 0, (3.6)

v(0, ·) = v0 = �0u0 − ∇x	
−1 divx(�0u0), (3.7)

3

2

(
�̃∂tϑ + (v + ∇xΨ ) · ∇xϑ

) = 	ϑ − ϑ	Ψ + ϑ
∇x�̃

�̃
· (v + ∇xΨ ), ϑ(0, ·) = ϑ0. (3.8)

3.2. Internal energy and entropy equations

For a given vector field v ∈ L∞((0, T ) × Ω;R3), the internal energy equation (3.8) is linear with respect to ϑ

and as such admits a unique solution ϑ = ϑ[v] satisfying the initial condition ϑ(0, ·) = ϑ0. Moreover, the standard
Lp-theory for parabolic equations (see e.g. Krylov [17]) yields

ϑ(t, x) > 0 for all t ∈ [0, T ], x ∈ Ω,

∂tϑ ∈ Lp
(
0, T ;Lp(Ω)

)
, ∇2

xϑ ∈ Lp
(
0, T ;Lp

(
Ω;R3×3)) for any 1 � p < ∞, (3.9)

where the bounds depend only on the data and ‖v‖L∞((0,T )×Ω;R3).
Dividing (3.8) by ϑ we deduce the entropy equation

�̃∂t log

(
ϑ3/2

�̃

)
+ (v + ∇xΨ ) · ∇x log

(
ϑ3/2

�̃

)
= 	 log(ϑ) + ∣∣∇x log(ϑ)

∣∣2
, (3.10)

where we have used the identity −	Ψ = ∂t �̃. We note that, given the regularity of the solutions in Theorem 3.1, the
entropy equation (3.10) and the internal energy equation (3.8) are equivalent. In particular, the weak solutions we
construct are compatible with the Second law of thermodynamics.

3.2.1. Uniform bounds
Introducing a new variable

Z = log

(
ϑ3/2

�̃

)

we may rewrite (3.10) as

�̃∂tZ +
(

v + ∇xΨ − 8

9
∇x log(�̃)

)
· ∇xZ = 2

3
	Z + 4

9
|∇xZ|2 + 2

3
	 log(�̃) + 4

9

∣∣∇x log(�̃)
∣∣2

. (3.11)

Applying the standard parabolic comparison principle to (3.11) we conclude that |Z| is bounded only in terms of the
initial data and the time T . Consequently, the constants ϑ , ϑ can be taken in such a way that

0 < ϑ � ϑ[v](t, x) � ϑ for all t ∈ [0, T ], x ∈ Ω. (3.12)

We emphasize that the constants ϑ , ϑ are independent of v – a crucial fact that will be used in the future analysis.

3.3. Reduction to a modified Euler system

Summing up the previous discussion, our task reduces to finding (infinitely many) solutions to the problem

∂tv + divx

(
(v + ∇xΨ ) ⊗ (v + ∇xΨ )

�̃

)
+ ∇x

(
�̃ϑ[v] + ∂tΨ − 2

3
χ

)
= 0,

divx v = 0, v(0, ·) = v0, (3.13)

with a suitable spatially homogeneous function χ = χ(t). Since ∇xχ = 0, the specific value of χ is irrelevant in the
equations but plays a role when reformulating the problem in terms of differential inclusions.
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Following the strategy (and notation) of De Lellis and Székelyhidi [11], we introduce the linear system

∂tv + divx U= 0, divx v = 0, v(0, ·) = v0, v(T , ·) = vT , (3.14)

together with the function e,

e[v] = χ − 3

2
�̃ϑ[v] − 3

2
∂tΨ, (3.15)

with a positive function χ ∈ C[0, T ] determined below.
Furthermore, we introduce the space R3×3

sym,0 of symmetric traceless matrices, with the operator norm

λmax[U] – the maximal eigenvalue of U ∈ R3×3
sym,0.

Finally, we define the set of subsolutions

X0 =
{

v
∣∣∣ v ∈ L∞(

(0, T ) × Ω;R3) ∩ C1((0, T ) × Ω;R3) ∩ Cweak
([0, T ];L2(Ω;R3)),

v satisfies (3.14) with some U ∈ C1((0, T ) × Ω;R3×3
sym,0

)
,

inf
t∈(ε,T ), x∈Ω

{
e[v] − 3

2
λmax

[
(v + ∇xΨ ) ⊗ (v + ∇xΨ )

�̃
−U

]}
> 0 for any 0 < ε < T

}
. (3.16)

Remark 3.2. Note that X0 is substantially different from its analogue introduced by Chiodaroli [8] and De Lellis and
Székelyhidi [11], in particular, the function e[v] depends on the field v.

As shown by De Lellis and Székelyhidi [11], we have the (pointwise) inequality

1

2
|w|2 � 3

2
λmax[w ⊗ w −U], w ∈ R3, U ∈ R3×3

sym,0,

where the identity holds only if

U= w ⊗ w − 1

3
|w|2I.

Consequently, by virtue of (3.12), there exists a constant c depending only on the initial data [�0, ϑ0,u0] such that

sup
t∈[0,T ]

∥∥v(t, ·)∥∥
L∞(Ω;R3)

< c for all v ∈ X0. (3.17)

Next, we choose the function χ ∈ C[0, T ] in (3.15) so large that

3

2
λmax

[
(v0 + ∇xΨ ) ⊗ (v0 + ∇xΨ )

�̃

]
< χ − 3

2
�̃ϑ[v0] − 3

2
∂tΨ ≡ e[v0] for all (t, x) ∈ [0, T ] × Ω,

in particular, the function v0 = v0(x), together with the associated tensor U≡ 0, belongs to the set X0, where v0 = vT .
We define a topological space X as a completion of X0 in Cweak([0, T ];L2(Ω;R3)) with respect to the metric d

induced by the weak topology of the Hilbert space L2(Ω;R3). This is possible as all functions belonging to X0 range
a bounded ball of L2(Ω;R3), on which the weak topology is metrizable. As we have just observed, the space X0 is
non-empty as v = v0 is in X0.

Finally, we consider a family of functionals

Iε[v] =
T∫

ε

∫
Ω

(
1

2

|v + ∇xΨ |2
�̃

− e[v]
)

dx dt for v ∈ X, 0 < ε < T . (3.18)

As a direct consequence of the parabolic regularity estimates (3.9), we observe that

e[v] → e[w] in C
([0, T ] × Ω

)
whenever v → w in X; (3.19)

therefore each Iε is a compact perturbation of a convex functional; whence lower semi-continuous in X.
In order to proceed, we need the following crucial result that may be viewed as a “variable coefficients” counterpart

of [11, Proposition 3].
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Proposition 3.1. Let v ∈ X0 such that

Iε[v] < −α < 0, 0 < ε < T/2.

There is β = β(α) > 0 and a sequence {vn}∞n=1 ⊂ X0 such that

vn → v in Cweak
([0, T ];L2(Ω;R3)), lim inf

n→∞ Iε[vn]� Iε[v] + β.

We point out that the quantity β = β(α) is independent of ε and v.
Postponing the proof of Proposition 3.1 to the next section, we complete the proof of Theorem 3.1 following the

line of arguments of [11]. It is worth noting that the arguments are based on points of continuity of suitable Baire-1
maps – a method introduced in Kirchheim’s thesis [16]. To begin, we observe that cardinality of the space X0 is
infinite. Secondly, since each Iε is a bounded lower semi-continuous functional on a complete metric space, the points
of continuity of Iε form a residual set in X. The set

C =
⋂
m>1

{
v ∈ X

∣∣ I1/m[v] is continuous
}
,

being an intersection of a countable family of residual sets, is residual, in particular of infinite cardinality, see De Lellis
and Székelyhidi [11] for a more detailed explanation of these arguments.

Finally, we claim that for each v ∈ C we have

I1/m[v] = 0 for all m > 1;
whence

1

2

|v + ∇xΨ |2
�̃

= e[v] ≡ χ − 3

2
�̃ϑ[v] − 3

2
∂tΨ,

U= (v + ∇xΨ ) ⊗ (v + ∇xΨ )

�̃
− 1

3

|v + ∇xΨ |2
�̃

I for a.a. (t, x) ∈ (0, T ) × Ω,

in other words, the function v is a weak solution to the problem (3.13). Indeed, assuming I1/m[v] < −2α < 0, we first
find a sequence {un}∞n=1 ⊂ X0 such that

un → v in Cweak
([0, T ];L2(Ω;R3)), I1/m[un] < −α.

Then for each un we use Proposition 3.1 and together with standard diagonal argument we obtain a sequence
{vn}∞n=1 ⊂ X0 such that

vn → v in Cweak
([0, T ];L2(Ω;R3)), lim inf

n→∞ I1/m[vn]� I1/m[v] + β, β > 0,

in contrast with the fact that v is a point of continuity of I1/m.

3.4. Proof of Proposition 3.1

The proof of Proposition 3.1 is based on a localization argument, where variable coefficients are replaced by con-
stants. The fundamental building block is the following result proved by De Lellis and Székelyhidi [11, Proposition 3],
Chiodaroli [8, Section 6, formula (6.9)]:

Lemma 3.1. Let [T1, T2], T1 < T2, be a time interval and B ⊂ R3 a domain. Let r̃ ∈ (0,∞), Ṽ ∈ R3 be constant fields
such that

0 < r < r̃ < r, |Ṽ| < V .

Suppose that

v ∈ Cweak
([T1, T2];L2(B,R3)) ∩ C1((T1, T2) × B;R3)

satisfies the linear system



232 E. Chiodaroli et al. / Ann. I. H. Poincaré – AN 32 (2015) 225–243
∂tv + divx U= 0, divx v = 0 in (T1, T2) × B

with the associated field U ∈ C1((T1, T2) × B;R3×3
sym,0) such that

3

2
λmax

[
(v + Ṽ) ⊗ (v + Ṽ)

r̃
−U

]
< e in (T1, T2) × B

for a certain function e ∈ C([T1;T2] × B).
Then there exist sequences {wn}∞n=1 ⊂ C∞

c ((T1, T2) × B;R3), {Yn}∞n=1 ⊂ C∞
c ((T1, T2) × B;R3×3

sym,0) such that
vn = v + wn, Un =U+Yn satisfy

∂tvn + divx Un = 0, divx vn = 0 in (T1, T2) × B,

3

2
λmax

[
(vn + Ṽ) ⊗ (vn + Ṽ)

r̃
−Un

]
< e in (T1, T2) × B,

vn → v ∈ Cweak
([T1, T2];L2(B;R3)),

and

lim inf
n→∞

T2∫
T1

∫
B

|vn − v|2 dx dt � Λ
(
r, r,V ,‖e‖L∞((T1,T2)×B)

) T2∫
T1

∫
B

(
e − 1

2

|v + Ṽ|2
r̃

)2

dx dt. (3.20)

Remark 3.3. Note that Ṽ is constant in Lemma 3.1; whence

∂tv = ∂t (v + Ṽ).

Remark 3.4. It is important that the constant Λ depends only on the quantities indicated explicitly in (3.20), in
particular Λ is independent of v, of the length of the time interval, and of the domain B .

3.4.1. Localization principle
The scale invariance encoded in (3.20) can be used for showing a “variable coefficients” variant of Lemma 3.1,

specifically when both r̃ and Ṽ are sufficiently smooth functions of t and x.

Lemma 3.2. Let �̃ ∈ C1([T1, T2] × Ω), V ∈ C1([T1, T2] × Ω;R3), T1 < T2 be functions satisfying

0 < r < �̃(t, x) < r,
∣∣V(t, x)

∣∣ < V for all t, x.

Suppose that

v ∈ Cweak
([T1, T2];L2(Ω,R3)) ∩ C1((T1, T2) × Ω;R3)

solves the linear system

∂tv + divx U= 0, divx v = 0 in (T1, T2) × Ω

with the associated field U ∈ C1((T1, T2) × B;R3×3
sym,0) such that

3

2
λmax

[
(v + V) ⊗ (v + V)

�̃
−U

]
< e − δ in (T1, T2) × Ω (3.21)

for some e ∈ C([T1;T2] × B) and δ > 0.
Then there exist sequences {wn}∞n=1 ⊂ C∞

c ((T1, T2) × Ω;R3), {Yn}∞n=1 ⊂ C∞
c ((T1, T2) × Ω;R3×3

sym,0) such that
vn = v + wn, Un =U+Yn satisfy

∂tvn + divx Un = 0, divx vn = 0 in (T1, T2) × Ω, (3.22)
3

2
λmax

[
(vn + V) ⊗ (vn + V)

�̃
−Un

]
< e in C

(
(T1;T2) × Ω

)
, (3.23)

vn → v ∈ Cweak
([T1, T2];L2(Ω;R3)), (3.24)
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and

lim inf
n→∞

T2∫
T1

∫
Ω

|vn − v|2 dx dt � Λ
(
r, r,V ,‖e‖L∞((T1,T2)×Ω)

) T2∫
T1

∫
Ω

(
e − 1

2

|v + V|2
�̃

)2

dx dt. (3.25)

Remark 3.5. The role of the positive parameter δ in (3.21) is only to say that the inequality (3.21) is strict, otherwise
the conclusion of the lemma is independent of the specific value of δ.

Remark 3.6. In view of (3.24), the convergence formula (3.25) may be equivalently replaced by

lim inf
n→∞

T2∫
T1

∫
Ω

1

2

|vn + V|2
�̃

dx dt

�
T2∫

T1

∫
Ω

1

2

|v + V|2
�̃

dx dt + Λ
(
r, r,V ,‖e‖L∞((T1,T2)×Ω)

) T2∫
T1

∫
Ω

(
e − 1

2

|v + V|2
�̃

)2

dx dt. (3.26)

Proof of Lemma 3.2. We start with an easy observation that there exists ε = ε(δ, |e|) such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3

2

∣∣∣∣λmax

[
(v + V) ⊗ (v + V)

�̃
−U

]
− λmax

[
(v + Ṽ) ⊗ (v + Ṽ)

r̃
−U

]∣∣∣∣ <
δ

4
,

∣∣∣∣1

2

|v + V|2
�̃

− 1

2

|v + Ṽ|2
r̃

∣∣∣∣ <
δ

4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.27)

whenever
3

2
λmax

[
(v + V) ⊗ (v + V)

�̃
−U

]
< e, |�̃ − r̃| < ε, |V − Ṽ| < ε.

For δ appearing in (3.21), we fix ε = ε(δ,‖e‖L∞((T1,T2)×Ω)) as in (3.27) and find a (finite) decomposition of the set
(T1, T2) × Ω such that

[T1, T2] × Ω =
N⋃

i=1

Qi, Qi = (
T i

1 , T i
2

) × Bi, Qi ∩ Qj = ∅ for i �= j,

sup
Qi

�̃ − inf
Qi

�̃ < ε, sup
Qi

∣∣∣∣V − 1

|Qi |
∫
Qi

V dx dt

∣∣∣∣ < ε,

where Qi are suitable cubes and the number N depends on ε and the Lipschitz constants of �̃, V in [T1, T2] × Ω .
Now, we apply Lemma 3.1 on each set Qi with the choice of parameters

r̃ = sup
Qi

�̃, Ṽ = 1

|Qi |
∫
Qi

V dx dt.

In accordance with (3.21), (3.27), we have

3

2
λmax

[
(v + Ṽ) ⊗ (v + Ṽ)

r̃
−U

]
< e − δ

2
in Qi.

Under these circumstances, Lemma 3.1 yields a sequence of smooth functions vi
n, Ui

n, with v − vi
n, U−U

i
n compactly

supported in Qi , such that

∂tvi
n + divx U

i
n = 0, divx vi

n = 0 in Qi,

3

2
λmax

[
(vi

n + Ṽ) ⊗ (vi
n + Ṽ)

r̃
−U

i
n

]
< e − δ

2
, (3.28)

vi
n → v in Cweak

([
T i

1 , T i
2

]
,L2(Bi)

)
,



234 E. Chiodaroli et al. / Ann. I. H. Poincaré – AN 32 (2015) 225–243
and

lim inf
n→∞

∫
Qi

∣∣vi
n − v

∣∣2 dx dt � Λ
(
r, r,V ,‖e‖L∞((T1,T2)×Ω)

)∫
Qi

(
e − 1

2

|v + Ṽ|2
r̃

− δ

2

)2

dx dt. (3.29)

In view of (3.27), we replace r̃ by �̃ and Ṽ by V in (3.28) to obtain

3

2
λmax

[
(vi

n + V) ⊗ (vi
n + V)

�̃
−Un

]
< e in Qi.

As vn, Un are compactly supported perturbations of v, U in Qi , we may define

vn(t, x) = vi
n(t, x), Un =U

i
n for any (t, x) ∈ Qi, i = 1, . . . ,N.

In accordance with the previous discussion, vn, Un satisfy (3.22)–(3.24). In order to see (3.25), use (3.27) to observe
that (

e − 1

2

|v + Ṽ|2
r̃

− δ

2

)
>

(
e − 1

2

|v + V|2
�̃

− 3δ

4

)
> 0 in Qi;

whence, making use of the hypothesis (3.21), specifically of the fact that

e − 1

2

|v + V|2
�̃

> δ,

we may infer that(
e − 1

2

|v + V|2
�̃

− 3δ

4

)
� 1

4

(
e − 1

2

|v + V|2
�̃

)
in Qi.

Thus, summing up the integrals in (3.29) we get (3.25). �
3.4.2. Application to functionals Iε

Fixing ε ∈ (0, T /2) we complete the proof of Proposition 3.1. Given e ∈ C([0, T ] × Ω), we introduce the spaces

X0,e =
{

v
∣∣∣ v ∈ C1((0, T ) × Ω;R3) ∩ Cweak

([0, T ];L2(Ω;R3)),
v satisfies (3.14) with some U ∈ C1((0, T ) × Ω;R3×3

sym,0

)
,

3

2
λmax

[
(v + ∇xΨ ) ⊗ (v + ∇xΨ )

�̃
−U

]
< e for t ∈ (0, T ), x ∈ Ω

}
, (3.30)

along with the associated functionals

Iε,e[v] =
T∫

ε

∫
Ω

(
1

2

|v + ∇xΨ |2
�̃

− e

)
dx dt for v ∈ X, 0 < ε < T/2. (3.31)

The following assertion is a direct consequence of Lemma 3.2.

Lemma 3.3. Let v ∈ X0,e , e ∈ C([0, T ] × Ω), 0 < ε < T/2 be such that

Iε,e[v] < −α < 0.

There is β = β(α,‖e‖L∞((0,T )×Ω)) > 0, independent of ε, and a sequence {vn}n>0 ⊂ X0,e such that

vn ≡ v in [0, ε] × Ω,

vn → v in Cweak
([0, T ];L2(Ω;R3)), lim inf

n→∞ Iε,e[vn]� Iε,e[v] + β.
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Remark 3.7. We have used Lemma 3.2 with (3.26), where, by virtue of Jensen’s inequality,

T∫
ε

∫
Ω

(
e − 1

2

|v + V|2
�̃

)2

dx dt � 1

(T − ε)|Ω|

( T∫
ε

∫
Ω

(
e − 1

2

|v + V|2
�̃

)
dx dt

)2

� α2

(T − ε)|Ω| .

Finally, we show how Lemma 3.3 implies Proposition 3.1. Under the hypotheses of Proposition 3.1 and in accor-
dance with the definition of the space X0, we find δ > 0 and a function e ∈ C([0, T ] × Ω) such that

e � e[v], e ≡ e[v] − δ whenever t ∈ [ε,T ],
and

v ∈ X0,e.

Thus, we have

Iε,e[v] =
T∫

ε

∫
Ω

(
1

2

|v + ∇xΨ |2
�̃

− e[v] + δ

)
dx dt = Iε[v] + (T − ε)|Ω|δ < −α/2 < 0

as soon as δ > 0 was chosen small enough.
Consequently, by virtue of Lemma 3.3, there is a sequence of functions {vn}∞n=1 and β = β(α) > 0 such that

vn ∈ X0,e, vn ≡ v in [0, ε] × Ω,

and

vn → v in Cweak
([0, T ];L2(Ω;R3)), lim inf

n→∞ Iε,e[vn]� Iε,e[v] + β = Iε[v] + β + (T − ε)|Ω|δ.
Moreover, in accordance with (3.19),

Iε,e[vn] − Iε[vn] =
T∫

ε

∫
Ω

e[vn] − e[v] + δ dx dt → (T − ε)|Ω|δ as n → ∞;

whence we may infer that

lim inf
n→∞ Iε[vn] � Iε[v] + β.

Finally, it remains to observe that vn ∈ X0 for all n large enough. To this end, note that

3

2
λmax

[
(vn + ∇xΨ ) ⊗ (vn + ∇xΨ )

�̃
−U

]
= 3

2
λmax

[
(v + ∇xΨ ) ⊗ (v + ∇xΨ )

�̃
−U

]
< e � e[v] = e[vn]

for all t ∈ [0, ε], while

3

2
λmax

[
(vn + ∇xΨ ) ⊗ (vn + ∇xΨ )

�̃
−U

]
< e = e[v] − δ � e[vn] − δ/2 for all t ∈ [ε,T ]

for all n large enough. We have proved Proposition 3.1.

4. Dissipative solutions

The solutions of the Euler–Fourier system constructed in Section 3 suffer an essential deficiency, namely they
do not comply with the First law of thermodynamics, meaning, they violate the total energy conservation (1.7). On
the other hand, the initial data in (3.1) are smooth enough for the problem to possess a standard classical solution
existing on a possibly short time interval (0, Tmax), see e.g. Alazard [1,2]. Note that the Euler–Fourier system fits
also in the general framework and the corresponding existence theory developed by Serre [20,21]. As the classical
solutions are unique (in their regularity class) and obviously satisfy the total energy balance (1.7), the latter can be
added to (2.1)–(2.3) as an admissibility condition. The weak solutions of (1.1)–(1.6) satisfying (1.7) will be called
dissipative solutions.
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4.1. Relative entropy (energy) and weak-strong uniqueness

Following [15] we introduce the relative entropy functional

E(�,ϑ,u|r,Θ,U) =
∫
Ω

(
1

2
�|u − U|2 + HΘ(�,ϑ) − ∂HΘ(r,Θ)

∂�
(� − r) − HΘ(r,Θ)

)
dx, (4.1)

where HΘ is the ballistic free energy,

HΘ(�,ϑ) = �
(
e(�,ϑ) − Θs(�,ϑ)

) = �

(
3

2
ϑ − Θ log

(
ϑ3/2

�

))
.

Repeating step by step the arguments of [15] we can show that any dissipative solution of the problem (1.1)–(1.6)
satisfies the relative entropy inequality:

[
E(�,ϑ,u|r,Θ,U)

]t=τ

t=0 +
τ∫

0

∫
Ω

Θ
|∇xϑ |2

ϑ2
dx dt

�
τ∫

0

∫
Ω

(
�(U − u) · ∂tU + �(U − u) ⊗ u : ∇xU − p(�,ϑ)divx U

)
dx dt

−
τ∫

0

∫
Ω

(
�
(
s(�,ϑ) − s(r,Θ)

)
∂tΘ + �

(
s(�,ϑ) − s(r,Θ)

)
u · ∇xΘ

)
dx dt

+
τ∫

0

∫
Ω

((
1 − �

r

)
∂tp(r,Θ) − �

r
u · ∇xp(r,Θ)

)
dx dt +

τ∫
0

∫
Ω

∇xϑ

ϑ
· ∇xΘ dx dt (4.2)

for any trio of smooth “test” functions

r, Θ, U, r > 0, Θ > 0.

We report the following result [13, Theorem 6.1].

Theorem 4.1 (Weak-strong uniqueness). Let [�,ϑ,u] be a dissipative (weak) solution of the problem (1.1)–(1.6),
emanating from the initial data [�0, ϑ0,u0] satisfying (3.1), such that

0 < � < �(t, x) < �, 0 < ϑ < ϑ(t, x) < ϑ,
∣∣u(t, x)

∣∣ < u for a.a. (t, x) ∈ (0, T ) × Ω.

Suppose that the same problem (with the same initial data) admits a classical solution [�̃, ϑ̃, ũ] in (0, T ) × Ω .
Then

� ≡ �̃, ϑ ≡ ϑ̃, u ≡ ũ.

Remark 4.1. Here, “classical” means that all the necessary derivatives appearing in the equations are continuous
functions in [0, T ] × Ω .

Remark 4.2. The proof of Theorem 4.1 is based on taking r = �̃, Θ = ϑ̃ , U = ũ as test functions in the relative
entropy inequality (4.2) and making use of a Gronwall type argument. This has been done in detail in [13, Section 6]
in the case of a viscous fluid satisfying the Navier–Stokes–Fourier system. However, the same arguments can be used
to handle the inviscid case provided the solutions are uniformly bounded on the existence interval.

Remark 4.3. As the proof of Theorem 4.1 is based on the relative entropy inequality (4.2), the conclusion remains
valid if we replace the internal energy equation (1.3) by the entropy inequality (1.8) as long as we require (1.7).
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4.2. Infinitely many dissipative solutions

Apparently, the stipulation of the total energy balance (1.7) eliminates the non-physical solutions obtained in Theo-
rem 3.1, at least in the case of regular initial data. As we will see, the situation changes if we consider non-smooth ini-
tial data, in particular the initial velocity field u0 belonging only to L∞(Ω;R3). Our final goal is the following result.

Theorem 4.2. Let T > 0 be given. Let the initial data �0, ϑ0 be given, satisfying

�0, ϑ0 ∈ C2(Ω), �0(x) > � > 0, ϑ0(x) > ϑ > 0 for any x ∈ Ω. (4.3)

Then there exists a velocity field u0,

u0 ∈ L∞(
Ω;R3),

such that the problem (1.1)–(1.6) admits infinitely many dissipative (weak) solutions in (0, T ) × Ω , with the initial
data [�0, ϑ0,u0].

Remark 4.4. As we shall see below, the solutions obtained in the proof of Theorem 4.2 enjoy the same regularity as
those in Theorem 3.1, in particular, the equation of continuity (1.1) as well as the internal energy balance (1.3) are
satisfied pointwise (a.a.) in (0, T ) × Ω .

Remark 4.5. In general, the initial velocity u0 depends on the length of the existence interval T . See Section 5 for
more discussion concerning possible extension of the solutions to [0,∞).

The remaining part of this section is devoted to the proof of Theorem 4.2 that may be viewed as an extension of
the results of Chiodaroli [8] and De Lellis and Székelyhidi [11] to the case of a heat conducting fluid.

4.2.1. Suitable initial data
Following the strategy of [11] our goal is to identify suitable initial data u0 for which the associated (weak) solu-

tions of the momentum equation dissipate the kinetic energy. In contrast with [11], however, we have to find the initial
data for which the kinetic energy decays sufficiently fast in order to compensate the associated production of heat.

The velocity field v = �u we look for will be solenoidal, in particular, we focus on the initial data satisfying

divx(�0u0) = 0.

This assumption simplifies considerably the ansatz introduced in Section 3.1, specifically,

� = �̃ = �0(x), v = �u, divx v = 0, Ψ ≡ 0;
whence the problem reduces to solving

∂tv + divx

(
v ⊗ v

�̃

)
+ ∇x

(
�̃ϑ[v] − 2

3
χ

)
= 0, divx v = 0, v(0, ·) = v0, divx v0 = 0, (4.4)

for a suitable spatially homogeneous function χ = χ(t).
Mimicking the steps of Section 3.3 we introduce the quantity

e[v] = χ − 3

2
�̃ϑ[v]. (4.5)

As the anticipated solutions satisfy

1

2

|v|2
�̃

= e[v],
the energy of the system reads

E(t) =
∫ ( |v|2

2�̃
+ 3

2
�̃ϑ[v]

)
(t, ·)dx = χ(t)|Ω| = χ(t). (4.6)
Ω
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Consequently, in accordance with the construction procedure used in Section 3.3, it is enough to find a suitable
constant χ and the initial velocity field v0 such that

divx v0 = 0, E0 =
∫
Ω

( |v0|2
2�̃0

+ 3

2
�̃0ϑ0

)
dx = χ,

and the associated space of subsolutions X0 defined in (3.16) (with ∇xΨ = 0) is non-empty. This is the objective of
the remaining part of this section.

4.2.2. Dissipative data for the Euler system
Similarly to (3.30), we introduce the set of subsolutions

X0,e[T1, T2] =
{

v
∣∣∣ v ∈ C1((T1, T2) × Ω;R3) ∩ Cweak

([T1, T2];L2(Ω;R3)),
v satisfies (3.14) with some U ∈ C1((T1, T2) × Ω;R3×3

sym,0

)
,

3

2
λmax

[
v ⊗ v

�̃
−U

]
< e for t ∈ (T1, T2), x ∈ Ω

}
, (4.7)

where e ∈ C([T1, T2] × Ω).
The following result may be seen as an extension of [11, Proposition 5]:

Lemma 4.1. Suppose that v ≡ v0(x), together with the associated field Uv ≡ 0, belong to the set of subsolutions
X0,e[0, T ].

Then for any τ ∈ (0, T ) and any ε > 0, there exist τ ∈ (0, T ), |τ − τ | < ε and w ∈ X0,e[τ , T ], such that

1

2

|w(τ , ·)|2
�̃

= e(τ , ·), (4.8)

w ≡ v, Uw ≡ 0 in a (left) neighborhood of T .

Remark 4.6. Note that, thanks to (4.8),

w(t, ·) → w(τ , ·) (strongly) in L2(Ω;R3) as t → τ + .

Remark 4.7. The result is probably not optimal; one should be able, with greater effort, to show the same conclusion
with τ = τ .

Proof of Lemma 4.1. We construct the function w as a limit of a sequence {wk}∞k=1 ⊂ X0,e[0, T ],
wk → w in Cweak

([0, T ];L2(Ω;R3)),
where wk will be obtained recursively, with the starting point

w0 = v ≡ v0, τ0 = τ, ε0 = ε.

More specifically, we construct the functions wk , together with τk , εk , k = 1, . . . satisfying:

• wk ∈ X0,e[0, T ], supp[wk − wk−1] ⊂ (τk−1 − εk, τk−1 + εk), where 0 < εk <
εk−1

2
; (4.9)

• d(wk,wk−1) <
1

2k
, sup

t∈(0,T )

∣∣∣∣
∫
Ω

1

�̃
(wk − wk−1) · wm dx

∣∣∣∣ <
1

2k
for all m = 0, . . . , k − 1, (4.10)

recalling that d is the metric induced by the weak topology of the Hilbert space L2(Ω;R3);
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• there exists τk ,

τk ∈ (τk−1 − εk, τk−1 + εk)

such that∫
Ω

1

2

|wk|2
�̃

(τk, ·)dx �
∫
Ω

1

2

|wk−1|2
�̃

(t, ·)dx + λ

ε2
k

α2
k

�
∫
Ω

1

2

|wk−1|2
�̃

(τk−1, ·)dx + λ

2ε2
k

α2
k for all t ∈ (τk−1 − εk, τk−1 + εk), (4.11)

where

αk =
τk−1+εk∫

τk−1−εk

∫
Ω

(
e − 1

2

|wk−1|2
�̃

)
dx dt > 0,

and λ > 0 is constant independent of k.

Supposing we have already constructed w0, . . . ,wk−1 we find wk enjoying the properties (4.9)–(4.11). To this end,
we first compute

αk =
τk−1+εk∫

τk−1−εk

∫
Ω

(
e − 1

2

|wk−1|2
�̃

)
dx dt for a certain 0 < εk <

εk−1

2

and observe that

αk

2εk

= 1

2εk

τk−1+εk∫
τk−1−εk

∫
Ω

(
e − 1

2

|wk−1|2
�̃

)
dx dt →

∫
Ω

(
e − 1

2

|wk−1|2
�̃

)
(τk−1)dx > 0 for εk → 0

as wk−1 is smooth in (0, T ).
Consequently, by the same token, we can choose εk > 0 so small that

1

2εk

τk−1+εk∫
τk−1−εk

∫
Ω

1

2

|wk−1|2
�̃

dx dt + Λ(�̃,‖e‖L∞((0,T )×Ω))

4ε2
k

α2
k

�
∫
Ω

1

2

|wk−1|2
�̃

(t, ·)dx + Λ(�̃,‖e‖L∞((0,T )×Ω))

8ε2
k

α2
k

�
∫
Ω

1

2

|wk−1|2
�̃

(τk−1, ·)dx + Λ(�̃,‖e‖L∞((0,T )×Ω))

16ε2
k

α2
k for all t ∈ (τk−1 − εk, τk−1 + εk), (4.12)

where Λ(�̃,‖e‖L∞((0,T )×Ω)) > 0 is the universal constant from Lemma 3.2.
Applying Lemma 3.2 in the form specified in Remark 3.6 we obtain a function wk ∈ X0,e such that

supp[wk − wk−1] ⊂ (τk−1 − εk, τk−1 + εk),

d(wk,wk−1) <
1

2k
, sup

t∈(0,T )

∣∣∣∣
∫
Ω

1

�̃
(wk − wk−1) · wm dx

∣∣∣∣ <
1

2k
, m = 0, . . . , k − 1 (4.13)

and
τk−1+εk∫

τk−1−εk

∫
Ω

1

2

|wk|2
�̃

dx dt �
τk−1+εk∫

τk−1−εk

∫
Ω

1

2

|wk−1|2
�̃

dx dt + Λ(�̃,‖e‖L∞((0,T )×Ω))

2εk

α2
k , (4.14)

where we have applied Jensen’s inequality to the last integral in (3.26).
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Finally, the relations (4.12), (4.14) yield (4.11) with some τk ∈ (τk−1 − εk, τk−1 + εk), λ = Λ/16.
Now, by virtue of (4.10), there is w such that

wk → w in Cweak
([0, T ];L2(Ω;R3)). (4.15)

Moreover, (4.9) implies

(i) τk → τ ∈ (0, T ), |τ − τ | < ε;
(ii) for any δ > 0 there is k = k0(δ) such that

w(t, ·) = wk(t, ·) = wk0(t, ·) for all t ∈ (0, τ − δ) ∪ (τ + δ, T ), k � k0. (4.16)

In particular, (4.16) yields

w ∈ X0,e[τ , T ], and w ≡ v, Uw ≡ 0 in a (left) neighborhood of T .

Next, in view of (4.11),∫
Ω

1

2

|wk−1|2
�̃

(t, ·)dx ↗ Y uniformly for t ∈ (τk−1 − εk, τk−1 + εk), (4.17)

therefore

αk

εk

= 1

εk

τk−1+εk∫
τk−1−εk

∫
Ω

(
e − 1

2

|wk−1|2
�̃

)
dx dt → 0; (4.18)

whence, finally,∫
Ω

1

2

|wk|2
�̃

(τ , ·)dx ↗
∫
Ω

e(τ , ·)dx. (4.19)

Combining (4.19) with (4.10), (4.15) we get

wk(τ , ·) → w(τ , ·) in L2(Ω;R3)
which implies (4.8). Indeed we have∫

Ω

1

�̃
|wn − wm|2(τ , ·)dx

=
∫
Ω

1

�̃
|wn|2(τ , ·)dx −

∫
Ω

1

�̃
|wm|2(τ , ·)dx − 2

∫
Ω

1

�̃
(wn − wm) · wm(τ , ·)dx for all n > m,

where, by virtue of (4.10),

∫
Ω

1

�̃
(wn − wm) · wm(τ , ·)dx =

n−m−1∑
k=0

∫
Ω

1

�̃
(wk+1 − wk) · wm(τ , ·)dx → 0 for m → ∞. �

4.2.3. Construction of suitable initial data for the Euler–Fourier system
Fixing �0, ϑ0 satisfying (4.3) and � = �̃ ≡ �0 we can use (3.12) to deduce that there is a constant ϑ depending

only on [�0, ϑ0] such that

∣∣ϑ[v]∣∣� ϑ, whence
3

2
p
(
�̃, ϑ[v]) < P on the whole interval [0, T ], (4.20)

with P independent of v.
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Next, we estimate the difference ϑ − ϑ0 satisfying the equation

�̃∂t (ϑ − ϑ0) + v · ∇x(ϑ − ϑ0) − 2

3
	(ϑ − ϑ0) = −v · ∇xϑ0 + 2

3
	ϑ0 + 2

3
ϑv · ∇x�̃

�̃
.

Consequently, using (4.20) and the comparison principle, we deduce that∣∣ϑ[v](t, ·) − ϑ0
∣∣� c

(
1 + ‖v‖L∞((0,T )×Ω;R3)

)
t for all t ∈ [0, T ]. (4.21)

We take v0 ∈ C1(Ω), divx v0 = 0, and a constant χ0 in such a way that

3

2
λmax

(
v0 ⊗ v0

�̃

)
< χ0 − 3

2
�0ϑ0. (4.22)

Moreover, for any χ > 2χ0, K > 0 given, it is easy to construct a function χ ∈ C[0, T ] such that

• χ(0) = χ(T ) = χ0, χ(t) > χ0 for all t ∈ (0, T ), max
t∈(0,T )

χ(t) = χ;

• there is τ ∈ (0, T ) and ε > 0 such that

χ(τ) − χ0 >
χ

2
, χ(t) < χ(τ) − K(t − τ) for all t ∈ (τ , T ) whenever |τ − τ | < ε. (4.23)

Consequently, we have

v ≡ v0 ∈ X0,e[0, T ] (with U ≡ 0)

provided

e(t, x) = χ(t) − 3

2
�0ϑ0.

Applying Lemma 4.1, we find a function w ∈ X0,e[τ , T ], with the corresponding field Uw, such that

1

2

|w(τ , ·)|2
�̃

= χ(τ) − 3

2
�0ϑ0 >

χ

2
+ χ0 − 3

2
�0ϑ0,

w ≡ v0, Uw = 0 in a (left) neighborhood of T ,

and

1

2

|w|2
�̃

<
3

2
λmax

(
w ⊗ w

�̃
−Uw

)
< χ(t) − 3

2
�0ϑ0

� χ(τ) − 3

2
�0ϑ0 − K(t − τ), t ∈ (τ , T ].

Denoting w0 = w(τ , ·) and shifting everything to the origin t = 0, we infer that there is a function w ∈ X0,e(0, T ),
with the following properties:

• w(0, ·) = w0,
1

2

|w0|2
�̃

= χ(τ) − 3

2
�0ϑ0, w(T , ·) = v0, (4.24)

• e(t, x) =
{

χ(τ) − 3
2�0ϑ0 − Kt, t ∈ [0,

χ(τ)−χ0
K

],
χ0 − 3

2�0ϑ0 for t ∈ [χ(τ)−χ0
K

,T ].
(4.25)

Similarly to (3.16), we introduce the set X0, together with the function

e[v] = χ(τ) − 3
�0ϑ[v].
2
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Our ultimate goal is to show that the function w, introduced in (4.24), belongs to X0 as long as we conveniently fix
the parameters χ , K . To this end, it is enough to show that e, defined through (4.25), satisfies

e(t, x) < e[w] = χ(τ) − 3

2
�0ϑ[w] for all t ∈ (0, T ]. (4.26)

For t ∈ (0,
χ(τ)−χ0

K
], this amounts to showing

3

2

(
�0ϑ[w] − �0ϑ0

)
< Kt, t ∈

(
0,

χ(τ ) − χ0

K

]
,

which follows from (4.21) provided K = K(χ) is taken large enough.
Next, for t ∈ [χ(τ)−χ0

K
,T ], we have to check that

3

2

(
�0ϑ[w] − �0ϑ0

)
<

χ(τ)

2
, t ∈

[
χ(τ) − χ0

K
,T

]
,

which follows from (4.20), (4.23) provided we fix χ = χ(�0, ϑ0) large enough.
Having found a suitable subsolution we can finish the proof of Theorem 4.2 exactly as in Section 3.3.

5. Concluding remarks

• In this paper, we focused exclusively on the physically relevant 3D-setting. The reader will have noticed that
exactly the same results may be obtained also in the 2D-case. Note, however, that the method does not apply to
the 1D-system as the conclusion of Lemma 3.1 is no longer available.

• Theorem 4.2 obviously applies to the larger class of dissipative solutions for which the internal energy balance is
replaced by the entropy inequality

∂t

(
� log

(
ϑ3/2

�

))
+ divx

(
� log

(
ϑ3/2

�

)
u
)

− divx

(∇xϑ

ϑ

)
� |∇xϑ |2

ϑ2
. (5.1)

Moreover, we could even construct dissipative solutions with an “artificial” entropy production satisfying (5.1)
with strict inequality and, at the same time, conserving the total energy. On the other hand, a criterion based on
maximality of the entropy production could be possibly used to identify a class of physically relevant solutions.

• The conclusion of Theorem 3.1 can be extended to the time interval [0,∞) by means of continuation. Indeed we
can take the function h in (3.5) such that h(T ) = 0; whence

�̃(T , ·) = �0.

Moreover, as pointed out in Remark 3.1

ϑ(t, ·) ∈ [
Lp(Ω),W 2,p(Ω)

]
α

for all t ∈ [0, T ],
therefore we can apply Theorem 3.1 recursively on the time intervals [nT , (n + 1)T ], n = 1, . . . .
A similar extension of Theorem 4.2 seems possible but technically more complicated.
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