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Abstract

We consider the reactive Boussinesq equations in a slanted cylinder, with zero stress boundary conditions and arbitrary Rayleigh
number. We show that the equations have non-planar traveling front solutions that propagate at a constant speed. We also establish
uniform upper bounds on the burning rate and the flow velocity for general front-like initial data for the Cauchy problem.

1. Introduction

The existence of traveling fronts for reaction–diffusion equations and their stability has been extensively studied
since the pioneering work of Kolmogorov et al. [26] and Fisher [17]. A large number of results have been obtained
during the last decade on the generalization of the notion of a traveling front to reaction–diffusion–advection equations
in a prescribed flow. These include non-planar traveling fronts in shear flows [9,10,12], and pulsating traveling fronts
in periodic flows [6,39,40], as well as results for monotonic systems in a unidirectional flow [35–37]. One of the main
qualitative effects of a flow is the speed-up of front propagation due to front stretching. Various bounds have been
obtained for the speed of propagation of fronts in prescribed flows [1–3,7,13,22,25,23,24,30], including variational
principles for the front speed [7,8,18,19,21,22]. The homogenization limit in a periodic flow has also been studied [27].
Extensive recent overviews can be found in [5,31,41].

However, those results have been obtained under the assumption that the flow is imposed from outside, and that it is
not affected by the evolution of the solution of the reaction–diffusion–advection equation, that is, by the temperature
or concentration of the reactant. This is known as the constant density approximation in the combustion literature [42].
A first step in the coupling of the temperature and fluid flow evolution is via the Boussinesq approximation: the density
mismatch is so small that the density difference is accounted by a buoyancy force in the equation for an incompressible
flow. Recently a number of works considered systems of a reaction–diffusion–advection equation coupled to a flow
equation of the Boussinesq type. Global existence and regularity of solutions in two dimensions was studied in [28]. It
has been shown that non-planar convective traveling fronts may not exist in a vertical cylinder if the Rayleigh number
is too small while for large Rayleigh numbers the planar fronts become unstable [14,32,33]. Moreover, there exists a
bifurcation at a critical value ρc > 0 – non-trivial convective fronts may exist for the Rayleigh numbers close to ρc
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[32,33]. Numerical computations [34] show that non-planar convective fronts exist and are stable for a large range of
Rayleigh numbers ρ > ρc. The fingering instability in this regime was investigated in [15].

One of the difficulties in the analysis of the Boussinesq problem at large Rayleigh numbers in a vertical cylinder is
the presence of unstable planar fronts that make uniform lower bounds on the front speed quite difficult. However, it
has been observed in [4] that such planar fronts cannot exist in a horizontal cylinder. One of the main results of [4] is
that non-planar fronts in a horizontal cylinder exist for small Rayleigh numbers. A purpose of the present paper is to
extend this result to all positive Rayleigh numbers; we use an approach that is different from [4] and is based on the a
priori bounds developed in [14].

The reactive Boussinesq equations for the temperature T and flow u have the dimensional form

Tt + u · ∇T = κ�T + v2
0

κ
f (T ), (1)

ut + u · ∇u − ν�u + ∇p = gT ez,

∇ · u = 0.

Here ez is the unit vector in the vertical direction, g is the strength of gravity, the speed v0 is proportional to the
traveling front speed in the absence of gravity, κ is the thermal diffusivity and ν is the fluid viscosity. The temperature
is normalized so that 0 � T � 1. The nonlinearity f (T ) is assumed to be a Lipschitz function of the ignition type

f (T ) = 0 for 0 � T � θ0 with θ0 > 0, f (T ) > 0 for T ∈ (θ0,1) and f (1) = 0. (2)

We consider Eqs. (1) in a slanted two-dimensional cylinder x ∈ R, αx � z � αx + H with a finite slope α < ∞. It
is convenient to rotate the cylinder in order to make it horizontal to simplify the notation. Then (1) becomes

Tt + u · ∇T = κ�T + v2
0

κ
f (T ), (3)

ut + u · ∇u − ν�u + ∇p = gT ê,

∇ · u = 0,

where u is the flow velocity measured relative to the new coordinate system. The gravity on the right points in a
direction ê that is non-parallel to the x-axis, as the original cylinder was assumed to be non-vertical (α < ∞). The
new rotated problem is posed in a cylinder D = Rx × [0,L]z, L = H/

√
1 + α2. The boundary conditions for the

temperature T are set to be front-like:

T → 1 as x → −∞, T → 0 as x → +∞,
∂T

∂z
= 0 at z = 0,L. (4)

The flow u = (v,w) satisfies the no stress boundary conditions:

u,ω → 0 as x → ±∞ and w,ω = 0 at z = 0,L. (5)

Here ω = wx − vz is the flow vorticity so that

�v = −ωz, �w = ωx.

In order to pass to the non-dimensional variables we introduce the laminar front width δ = κ/v0 and reaction time
tc = κ/v2

0 and rescale the space and time variables: xnew = xold/δ and tnew = told/tc . We also rescale the flow unew =
uold/v0. Then the Boussinesq equations become

Tt + u · ∇T = �T + f (T ), (6)

ut + u · ∇u − σ�u + ∇p = ρT ê,

∇ · u = 0,

where σ = ν/κ is the Prandtl number and ρ = gδ3/κ2 is the Rayleigh number. The problem is now posed in the strip
D = Rx × [0, λ]z, λ = L/δ, with the boundary conditions that come from (4) and (5).

The traveling front solutions of (6) are solutions of the form T (x − ct, z), u(x − ct, z) with the speed c to be
determined. They satisfy
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−cTx + u · ∇T = �T + f (T ), (7)

−cux + u · ∇u − σ�u + ∇p = ρT ê,

∇ · u = 0,

with the boundary conditions

T → θ− as x → −∞, T → 0 as x → +∞,
∂T

∂z
= 0 at z = 0, λ (8)

and

w,ω = 0 at z = 0, λ. (9)

Here θ− is a constant that is not a priori prescribed. We recall that, as has been observed in [4], if the direction of
gravity ê is not parallel to the x-axis, any traveling front solution of (7) must be non-planar, that is, it must depend on
both variables x and z. This is the main difference between the cases of a vertical and slanted cylinder: planar fronts
exist in the former case but not in the latter. Our main result is the following theorem.

Theorem 1. Let the nonlinearity f (T ) be of the ignition type (2). Then a traveling front solution (c, T ,u) of (7) exists
such that it is non-planar: Tz �≡ 0, the flow u �≡ 0 and the reaction rate f (T ) �≡ 0. Moreover, the solution satisfies the
following properties: c > 0, T ∈ C2,α(D), ∇T ∈ L2(D), u ∈ H 1(D) ∩ C2,α(D). If we assume in addition that

f (T ) � (T − θ0)
2+/λ2, (10)

then the left limit is θ− = 1.

The assumption (10) is of technical nature. It does not involve the Rayleigh number ρ, it is rather a restriction on
the channel width λ. We do not address the question of the uniqueness of the traveling front speed or profile in this
paper – this problem requires an additional study. Our results can be generalized to the no-slip boundary conditions
u = 0 on ∂D at the expense of a more technical proof – we leave this problem for a future publication.

The general idea of the proof follows the method developed in [11] and is as follows. We first consider the problem
(7) on a finite domain Da = [−a, a]x × [0, λ]z. Solutions (T c

a ,uc
a) of the restricted problem exist for all c ∈ R. We

normalize them by the requirement that

max
x�0, z∈[0,λ]

T c
a (x, z) = θ0. (11)

This imposes a restriction on the speed c. In order to show that there exists a speed ca so that (11) holds we first obtain
some a priori bounds on c, T and u under the condition (11). Then we use the Leray–Schauder topological degree
theory and the above a priori bounds to show that ca exists. The a priori bounds allow us to pass to the limit a → ∞.
Finally we show that the right limit of T as x → +∞ is equal to zero, and that the left limit is equal to one under
the additional assumption on f (T ) in Theorem 1. This general strategy is similar to that in the proof of existence of
traveling fronts in a prescribed decoupled flow, as in, for example, [9,12]. The main difficulty and novelty are in the a
priori bounds for the solution of the coupled problem in a bounded domain.

Our second result shows that the solution of the Cauchy problem for (6) propagate with a finite speed and that this
speed is close to the speed of the laminar front c0 when the Rayleigh number is small. Recall that there exists a unique
speed c0 so that a traveling front solution of

−c0Φx = Φxx + f (Φ), Φ(−∞) = 1, Φ(+∞) = 0

exists.
In order to make this precise we define the bulk burning rate �V (t), the Nusselt number �N(t) and the average

horizontal flow �U(t) by

�V (t) = 1

t

t∫
V (s)ds, V (t) =

∫
f (T )

dx dz

λ
, (12)
0
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�N(t) = 1

t

t∫
0

N(s)ds, N(t) =
∫

|∇T |2 dx dz

λ
, (13)

�U(t) = 1

t

t∫
0

∥∥v(s)
∥∥∞ ds. (14)

The following theorem provides uniform bounds on these bulk quantities. It also shows that the coupled problem (6)
is in a sense a “regular perturbation” of the single reaction–diffusion equation with ρ = 0.

Theorem 2. Assume that there exists R so that T0(x, z) = 0 for x > R and T0(x, z) = 1 for x < −R and that the
initial vorticity ω0 ∈ L2(D). There exists a constant C > 0 so that under the above assumptions on the initial data T0,
u0 we have the following bounds

c0 − C[ρ + ρ2] + o(1) � �V (t) � c0 + C[ρ + ρ2] + o(1), (15)

�N(t) �
[
Cρ +

√
c0

2
+ C2ρ2

]2

+ o(1),

�U(t) � Cρ[1 + ρ] + o(1)

as t → +∞.

This theorem may be interpreted as a stability result for a perturbation of a homogeneous reaction–diffusion equa-
tion by the buoyancy coupling. The proof is based on the construction of super- and sub- solutions, and a bound on
the decay of the solutions of advection–diffusion equations that is uniform in the advection flow.

The third result of this paper deals with the Boussinesq system in a narrow domain. It has been shown in [14] that if
a vertical strip is sufficiently narrow and gravity is sufficiently weak then solutions of the Cauchy data become planar
as t → +∞. The following theorem generalizes this result to inclined cylinders.

Theorem 3. Let ê = (e1, e2) be the unit vector in the direction of gravity and let ρj = ρej , j = 1,2, and let the initial
data (T0,u0) be as in Theorem 2. There exist two constants λ0 and ρ0 so that if the domain is sufficiently narrow:
λ � λ0 and gravity is sufficiently small: ρ � ρ0, then the burning rate is bounded by

�V (t) � c0 + Cρ2 + o(1) as t → +∞. (16)

Moreover, the front is nearly planar in the sense that

�Nz(t) = 1

t

t∫
0

∥∥Tz(s)
∥∥2

2 ds � Cρ2
2 + o(1) as t → +∞. (17)

The main observation of this theorem is that only the gravity strength in the direction perpendicular to the strip
enters in the upper bounds (16) and (17).

The paper is organized as follows: Theorem 1 is proved in Sections 2 and 3. Theorems 2 and 3 are proved in
Section 4.

2. The finite domain problem

We consider in this section the approximating problem

−cTx + u · ∇T = �T + f (T ), (18)

−cux + u · ∇u − σ�u + ∇p = ρT ê,

∇ · u = 0,
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in a finite domain Da = [−a, a]x × [0, λ]z, a > 0, with the boundary conditions

T (−a, z) = 1, T (a, z) = 0,
∂T

∂z
= 0 at z = 0, λ (19)

and

w = 0, ω = 0 at z = 0, λ and v(±a, z) = ω(±a, z) = 0 at x = ±a, z ∈ [0, λ]. (20)

One can show with the techniques of the present section that a solution Ta , ua of (18) in Da with the boundary
conditions (19) and (20) exists for all c ∈ R. However, given an arbitrary c there is no way to control the limit of Ta

and ua as a → ∞. Hence, following the standard procedure, we impose an additional constraint (11). This ensures
that the non-trivial part of the solution does not escape to infinity when we pass to the limit a → ∞.

Proposition 1. There exists a speed ca ∈ R so that there exists a solution (Ta,ua) of (18) in Da with the boundary
conditions (19) and (20) such that

max
x�0,z∈[0,λ]

Ta(x, z) = θ0. (21)

We denote the corresponding solution as (ca, Ta,ua). There exists a0 > 0 and a constant C > 0 that is independent
of a, so that for all a > a0:

|ca| � C, (22)

and ∫
Da

|∇Ta|2 dx dz +
∫
Da

|∇ua|2 dx dz + ‖ua‖∞ � C. (23)

Moreover, the uniform Hölder estimates hold: there exists a0 > 0 and a constant C > 0 independent of a so that for
all a > a0 we have

‖ωa‖C1,α(Da) + ‖ua‖C1,α(Da) + ‖Ta‖C1,α(Da) � C (24)

provided that 0 < α < 1.

Proof. The proof consists of two parts. First, we introduce a family of problems depending on a parameter τ ∈ [0,1]
so that at τ = 0 we have a simple linear problem without advection or coupling and at τ = 1 we have the full problem
(18) with the correct boundary conditions. The normalization condition (21) is imposed for all τ ∈ [0,1]. We obtain
the a priori bounds as in (22), (23) and (24) for such solutions that are uniform in τ ∈ [0,1]. In the second step we
use the a priori bounds, the Leray–Schauder topological degree argument and the information on the linear problem
at τ = 0 to show that solutions of the nonlinear coupled problem at τ = 1 exist. We drop the subscript a throughout
the proof to make the notation less cumbersome.

Step 1. A priori bounds for solutions. Let us first define a one-parameter (homotopy) family of finite domain Boussi-
nesq problems in the vorticity formulation

−cτT τ
x + τuτ · ∇T τ = �T τ + τf (T τ ), (25)

−cτωτ
x + uτ · ∇ωτ − σ�ωτ = τρê · ∇⊥T := ρτ [e2T

τ
x − e1T

τ
z ],

ωτ = wτ
x − vτ

z , ∇ · uτ = 0.

As mentioned above, τ is the homotopy parameter: τ ∈ [0,1], with τ = 0 corresponding to the linear problem, and
τ = 1 to the full problem (18)–(20). The problem (25) is posed in Da with the same boundary conditions

∂T τ

∂z
= 0, wτ = ωτ = 0 for z = 0, λ (26)

and

T τ (−a, z) = 1, T τ (a, z) = 0, vτ (±a, z) = ωτ = (±a, z) = 0 for x = ±a, (27)
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as (18). We also require that

max
x�0,z

T τ (x, z) = θ0 (28)

and obtain a priori bounds on cτ , T τ and ωτ . We drop the superscript τ below wherever it causes no confusion. The
general plan is as follows. First, we bound the speed c above and below by a linear function of ‖v‖∞ in Lemma 1.
Next we bound ‖u‖∞ from above by a linear function of ‖∇T ‖2 in Lemma 3. The inequality in the other direction,
a bound on ‖∇T ‖2

2 in terms of a linear function of ‖u‖∞ is established in Lemmas 4 and 5. Since the latter bound is
quadratic in ‖∇T ‖2, the last estimates allow to obtain a uniform bound on this quantity, from which all other a priori
bounds follow in a fairly straightforward manner: see Corollary 1 and Lemma 6.

We begin with a lemma that bounds the speed c in terms of the horizontal flow velocity ‖v‖L∞(Da).

Lemma 1. Let (c, T ,u) satisfy (25)–(27) with the normalization (28) and let u = (v,w). Then there exists a0 > 0 so
that for all a � a0 we have

−1 − τ‖v‖∞ � c � 1 + Mτ + τ‖v‖∞. (29)

Proof. First, we observe that the function ψA(x) = A e−α(x+a) is a super-solution for the reaction–diffusion–
advection equation (with the flow u fixed) if A > 1 and

c � α + Mτ

α
+ τ‖v‖∞, (30)

that is,

−c
∂ψA

∂x
+ τu · ∇ψA � �ψA + τf (ψA), (31)

provided that (30) holds with

M = sup
0�T �1

f (T )

T
.

Furthermore, we have

T (−a, z) = 1 < A = ψA(−a), T (a, z) = 0 < ψA(a) (32)

at the two ends of the domain Da . We now show that this together with (31) implies that

T (x, z) � ψA(x) (33)

for all (x, z) ∈ Da and A > 1. Indeed, consider the family of functions ψA(x). Then all ψA are super-solutions in
the sense that the inequality (31) holds. Moreover, as the maximum principle implies that 0 � T � 1, for A > 5 e2αa

sufficiently large we have ψA(x) > 5 > T (x, z) for all (x, z) ∈ Da . We define

A0 = inf
{
A ∈ R: ψA(x) � T (x, z) for all (x, z) ∈ Da

}
.

The previous argument implies that A0 is finite, A0 � 5 e2αa and, moreover, clearly A0 > 0. Observe that since the
domain Da is compact, we should have ψA0(x) � T (x, z) – otherwise this inequality would be violated for A slightly
larger than A0 at some point in Da . Moreover, the equation ψA0(x) = T (x, z) should have a solution. We claim that
A0 = 1. Indeed, otherwise the point (x0, z0) that solves ψA0(x0) = T (x0, z0) cannot be at the boundary of Da because
of the boundary conditions on the function T . Hence this point has to lie in the interior of Da . The continuity of ψA(x)

with respect to A implies that the graphs of ψA0(x) and T (x, z) are tangent at (x0, z0). Then the strong maximum
principle implies that ψA0(x) ≡ T (x, z) which is a contradiction, as they differ on the boundary. Hence, we conclude
that A0 = 1 and (33) holds for all A > 1 and thus for A = 1, so that

T (x, z) � e−α(x+a). (34)

However, the existence of such a super-solution contradicts the normalization condition (28) if α � ln(θ−1
0 )/a

because (28) implies that there exists z0 so that T (0, z0) = θ0. Therefore, the existence of a solution T that satisfies
(28) implies
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c � inf
α�ln(θ−1

0 )/a

(
α + Mτ

α

)
+ τ‖v‖∞ � 1 + Mτ + τ‖v‖∞ (35)

provided that a � ln(1/θ0). This proves the upper bound in (29). In order to prove the lower bound we observe that
the function φ = 1 − eα(x−a) is a sub-solution for T with the flow u fixed if

c � −α − τ‖v‖∞. (36)

That is, if (36) holds, then T (x, z) � 1 − eα(x−a). This is shown in a way similar to the proof of (34) under the
assumption (30) above. However, φ(0) = 1 − e−αa > θ0 for

a >
ln((1 − θ0)

−1)

α
. (37)

This implies that maxx�0 T (x, z) � φ(0) > θ0 provided that both (36) and (37) hold. Hence, in order for (28) to be
possible we need

c � sup
α>(ln((1−θ0)

−1))/a

[−α − τ‖v‖∞
]
� −1 − τ‖v‖∞ (38)

provided that a � ln((1 − θ0)
−1). This is the lower bound in (29) and the proof of Lemma 1 is complete. �

Next, we establish a bound on ‖u‖L∞(Da) and ‖ω‖L∞(Da) in terms of ‖∇T ‖L2(Da). These bounds are all obtained
from the following type of estimates.

Lemma 2. Let Sa = [−a, a]x × Ωy be a finite cylinder with a smooth bounded cross-section Ω ∈ R
d , d = 1,2.

Let φ be a function that satisfies one of the following three conditions: (i) φ(x, y) = 0 on the whole boundary ∂Sa ,
(ii) φ(x, y) = 0 for y ∈ ∂Ω and ∂φ(x,y)

∂x
= 0 for x = −a, a, or (iii) ∂φ(x,y)

∂n
= 0 for y ∈ ∂Ω , and φ(x, y) = 0 for

x = −a, a. Then there exists a constant C that depends only on the domain Ω , but not on the cylinder length a, so
that we have

‖φ‖L∞(Sa) � C
[‖�φ‖L2(Sa) + ‖φ‖L2(Sa)

]
. (39)

Proof. Let Q be any cylinder of the form [x0, x0 + 1] × Ω ⊂ Sa with −a � x0 � a − 1. The standard interior elliptic
estimates up to the boundary [20] can be applied to Q in all the three cases (i)–(iii). The corners at x = ±a are not an
obstacle. Indeed, both in the case of the Dirichlet and Neumann boundary conditions prescribed on the lines x = ±a,
one can extend the solution to a larger cylinder [−a − 1, a + 1]× Ω by reflecting the solution across the line x = ±a,
either in the even or odd way, respectively. Hence the usual elliptic estimates up to the boundary can be applied to all
such cylinders Q to obtain

‖φ‖H 2(Q) � C
[‖�φ‖L2(Sa) + ‖φ‖L2(Sa)

]
(40)

in all three cases (i)–(iii). Then the Sobolev embedding theorem in dimensions d = 2,3 implies that

‖φ‖L∞(Q) � C‖φ‖H 2(Q) � C
[‖�φ‖L2(Q) + ‖φ‖L2(Q)

]
� C

[‖�φ‖L2(Sa) + ‖φ‖L2(Sa)

]
with the constant C that only depends on the domain Ω . �

This lemma can be easily extended to higher dimensions using the appropriate Sobolev embeddings. It implies
immediately the following bounds on ‖u‖∞ and ‖ω‖∞ in terms of ‖∇T ‖L2(Da).

Lemma 3. Let (c, T ,u) satisfy (25)–(27) with the normalization (28). There exists a0 > 0 and a constant C > 0 so
that, for all a > a0, the following estimates hold:

‖u‖L∞(Da) � C‖∇T ‖L2(Da) (41)

and

‖ω‖L∞(Da) � C‖∇T ‖L2(Da)

[
1 + ‖∇T ‖L2(Da)

]
. (42)

Moreover, ∇u satisfies the same bound:

‖∇u‖L∞(Da) � C‖∇T ‖L2(Da)

[
1 + ‖∇T ‖L2(Da)

]
. (43)
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Proof. We use the vorticity equation

−cωx + u · ∇ω − σ�ω = ρτ(ê · ∇⊥T ), ω = 0 on ∂Da . (44)

Case (i) of Lemma 2 implies that

‖ω‖L∞(Da) � C
[‖∇T ‖L2(Da) + (|c| + ‖u‖∞

)‖∇ω‖L2(Da) + ‖ω‖L2(Da)

]
. (45)

Here, the constant C depends only on ρ and λ. Note that multiplying the vorticity equation by ω and integrating by
parts, using the boundary conditions, we obtain∫

Da

|∇ω|2 dx dz = τρ

∫
(ê · ∇⊥T )ω dx dz � τρ‖∇T ‖2‖ω‖2.

The Dirichlet boundary conditions for ω imply that the Poincaré inequality applies to ω so that ‖ω‖L2(Da) �
(λ/π)‖∇ω‖L2(Da). Hence we obtain

‖∇ω‖2 � λ

π
τρ‖∇T ‖2 (46)

and thus

‖ω‖L2(Da) � C‖∇T ‖L2(Da), (47)

with the constant C independent of the cylinder length a. This, together with (45) and the bound (29) on the speed c,
implies (42), provided that we show (41).

We now prove (41). The horizontal flow component v satisfies the Poisson equation

�v = −ωz, v(±a, z) = 0,
∂v

∂z
= 0, at z = 0, λ. (48)

The boundary conditions at z = 0, λ are obtained from vz = wx − ω = 0 as follows from (26). The third case (iii) of
Lemma 2 implies that

‖v‖L∞(Da) � C
[‖∇ω‖L2(Da) + ‖v‖L2(Da)

]
. (49)

The first term in the right-hand side is bounded by (46). In order to bound the second one, we multiply (48) by v and
integrate to obtain, using the boundary conditions and (46)∫

Da

|∇v|2 dx dz =
∫
Da

ωz(x, z)v(x, z)dx dz � ‖ωz‖2‖v‖2 � C‖∇T ‖2‖v‖2. (50)

Now, observe that (48), the Neumann boundary conditions for v and the Dirichlet boundary condition for ω at z = 0, λ

imply that

d2

dx2

∫
v(x, z)dz = 0.

It follows then from the Dirichlet boundary conditions for v at x = ±a that

λ∫
0

v(x, z)dz = 0 (51)

for all x. One may alternatively deduce (51) from incompressibility of the flow u and the boundary conditions.
Therefore, it follows from the Poincaré inequality that ‖v‖L2(Da) � (λ/2π)‖∇v‖L2(Da). Thus, (50) implies that both
‖∇v‖L2(Da) � C‖∇T ‖L2(Da) and ‖v‖L2(Da) � C‖∇T ‖L2(Da) with a constant independent of a. Hence, (49) implies
(41) for the horizontal flow component.

The vertical flow component satisfies

�w = ωx, w(x,0) = w(x,λ) = 0,
∂w

(±a, z) = 0. (52)

∂x
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The Neumann boundary condition at x = ±a is deduced from the relation wx = ω + vz and the Dirichlet boundary
conditions for v and ω at x = ±a. The case (ii) in Lemma 2 implies that

‖w‖L∞(Da) � C
[‖∇ω‖L2(Da) + ‖w‖L2(Da)

]
. (53)

As before, we use (46) to bound the first term in the right side. In order to bound the second we multiply (52) by w

and integrate, using the boundary conditions and (46) again, to obtain that∫
Da

|∇w|2 dx dz = −
∫
Da

ωx(x, z)w(x, z)dx dz � ‖ωx‖2‖w‖2 � C‖∇T ‖2‖w‖2. (54)

The Dirichlet boundary conditions for w at z = 0, λ imply that ‖w‖L2(Da) � λ/π‖∇w‖L2(Da). Thus, (54) implies that

‖∇w‖L2(Da) � C‖∇T ‖L2(Da), (55)

and hence ‖w‖L2(Da) � C‖∇T ‖L2(Da) with a constant independent of a. Therefore, now (53) implies (41) for the
vertical flow component. Thus, the proof of (41) is complete. We recall that then (42) follows as well, as explained in
the paragraph below (47).

In order to complete the proof of Lemma 3 it remains to bound the derivatives of u. First, we observe that the
function ψ = vz satisfies the boundary value problem

−�ψ = ωzz, ψ = 0 on ∂Da . (56)

Hence, case (i) of Lemma 2 applies to the function ψ . Moreover, the elliptic estimates for ω, as in (40), imply that
‖ωzz‖L2(Da) � ‖�ω‖L2(Da) � C‖∇T ‖L2(Da)(1 + ‖∇T ‖L2(Da)). Hence, the same proof as in the derivation of the
bound (42) applies to ψ and we obtain that

‖vz‖L∞(Da) � C‖∇T ‖L2(Da)

(
1 + ‖∇T ‖L2(Da)

)
.

This, together with (42) implies that

‖wx‖L∞(Da) � C‖∇T ‖L2(Da)

(
1 + ‖∇T ‖L2(Da)

)
.

The other pair of derivatives, vx and wz, do not satisfy a homogeneous boundary condition on the lines x = ±a.
Therefore, one cannot apply the standard elliptic estimates up to the boundary to the function η = wz = −vx (the
second equality follows from the incompressibility of the flow). In order to circumvent this difficulty, we extend
the function w to a larger cylinder Da+1 = [−a − 1, a + 1] × [0, λ] by setting w(−a − x, z) = w(−a + x, z) and
w(a + x, z) = w(a − x, z) for 0 � x � 1. The resulting function is of a class C2(Da+1) since w(x, z) satisfies the
Neumann boundary condition at x = ±a. This also extends the function η = wz to the larger cylinder. Moreover, η

satisfies the Neumann boundary condition along the horizontal lines z = 0, λ:

ηz = wzz = −vzx = 0 on z = 0, λ,

and

�η = ωxz,

with the function ω extended to the larger cylinder by the same reflection. Hence, the interior elliptic estimates up to
the boundary for solutions of the Neumann problem imply that

‖η‖H 2(Q) � ‖�η‖L2(Da) + ‖η‖L2(Da)

for any rectangle Q = [x0, x0 + 1] × [0, λ] that is strictly contained inside the larger cylinder Da+1. Therefore, the
Sobolev embedding theorem together with the above estimates imply that

‖η‖L∞(Da) � C
[‖�η‖L2(Da) + ‖η‖L2(Da)

] = C[‖ωxz‖L2(Da) + ‖η‖L2(Da)]. (57)

However, as the function ω satisfies the Dirichlet boundary conditions in Da , we can apply the estimate (40) to the
function ω up to boundary, to obtain

‖ω‖H 2(D ) � C
[‖�ω‖L2(D ) + ‖ω‖L2(D )

]
.

a a a
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We now use the vorticity equation (44) to bound ‖�ω‖L2(Da) and the estimate (47) to estimate ‖ω‖L2(Da), and con-
clude that

‖ωxz‖L2(Da) � C‖∇T ‖L2(Da)

(
1 + ‖∇T ‖L2(Da)

)
. (58)

Furthermore, the estimate (55) for ‖∇w‖L2(Da) implies that

‖η‖L2(Da) = ‖wz‖L2(Da) � ‖∇w‖L2(Da) � C‖∇T ‖L2(Da). (59)

We infer from the bounds (57), (58) and (59) that

‖η‖L∞(Da) � C‖∇T ‖L2(Da)

(
1 + ‖∇T ‖L2(Da)

)
.

This proves the uniform bound on wz and hence the proof of Lemma 3 is complete. �
Let us now proceed to estimate ‖∇T ‖L2(Da) in terms of ‖v‖L∞(Da), a bound in the direction opposite to that in

Lemma 3. More important, we will bound the square ‖∇T ‖2
2 in terms of a linear function of ‖v‖∞. As we are unable to

obtain such bound by the standard elliptic estimates, we have to proceed with an explicit calculation. As a preliminary
step we show the following.

Lemma 4. Let (c, T ,u) satisfy (25)–(27) with the normalization (28). Then, there exists a constant C > 0 and a
constant a0 > 0 so that we have for all a > a0 and 0 � τ � 1

∫
Da

|∇T |2 dx dz +
λ∫

0

Tx(a, z)dz � C
[
1 + ‖v‖∞

]
. (60)

Proof. Recall that the function T satisfies

−cTx + τu · ∇T = �T + τf (T ) (61)

with the boundary conditions

T (−a, z) = 1, T (a, z) = 0,
∂T

∂z
= 0 at z = 0, λ. (62)

We multiply (61) by (1 − T ) and use the boundary conditions and incompressibility of the flow u to obtain

cλ

2
=

λ∫
0

Tx(a, z)dz +
∫
Da

|∇T |2 dx dz + τ

∫
(1 − T )f (T )dx dz. (63)

Hence, Lemma 1 and the fact that (1 − T )f (T ) � 0 imply that

∫
Da

|∇T |2 dx dz +
λ∫

0

Tx(a, z)dz � cλ

2
� C

[
1 + ‖v‖∞

]
(64)

and Lemma 4 is proved. �
In order to close the bounds (29), (41) and (60) we need to bound the integral of Tx in (60). This is done in the next

Lemma.

Lemma 5. Let (c, T ,u) satisfy (25)–(27) with the normalization (28). There exists a constant C > 0 and a constant
a0 so that we have for all a � a0 and 0 � τ � 1

0 � −
λ∫

0

Tx(a, z)dz � C
[
1 + ‖∇T ‖2

]
. (65)
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Proof. In order to find a bound for
∫ λ

0 Tx(x = ±a, z)dz we introduce

I (x) = 1

λ

λ∫
0

T (x, z)dz

and integrate Eq. (25) for T in z. Using the boundary conditions we obtain

−Ixx = G(x), I (−a) = 1, I (a) = 0, G(x) = τ

λ

∫
f

(
T (x, z)

)
dz −

∫
(τu · ∇T − cTx)

dz

λ
. (66)

This equation can be solved explicitly:

I (x) = −
x∫

−a

(x − s)G(s)ds + Ax + B

with constants

A = − 1

2a
+ 1

2a

a∫
−a

(a − s)G(s)ds, B = 1

2
+ 1

2

a∫
−a

(a − s)G(s)ds

that are determined from the boundary conditions. Thus, we have

Ix(−a) = A, Ix(a) = A −
a∫

−a

G(s)ds.

Using the expression for the function G(x) in (66), we now infer that

0 � −Ix(a) = 1

2a
+ 1

2a

a∫
−a

(a + s)G(s)ds = 1

2a
+ τ

2a

a∫
−a

λ∫
0

(a + x)f
(
T (x, z)

)dz dx

λ

− τ

2a

a∫
−a

λ∫
0

(a + x)u · ∇T (x, z)
dz dx

λ
+ c

2a

a∫
−a

λ∫
0

(a + x)Tx

dz dx

λ
.

Integrating by parts, using the boundary conditions and incompressibility of u, we obtain

0 � −Ix(a) = 1

2a
+ τ

2

a∫
−a

λ∫
0

f
(
T (x, z)

)dz dx

λ
+ τ

2

a∫
−a

λ∫
0

x

a
f

(
T (x, z)

)dz dx

λ

+ τ

2a

a∫
−a

λ∫
0

v(x, z)T (x, z)
dz dx

λ
− c

2a

a∫
−a

λ∫
0

T
dz dx

λ
.

However, the normalization condition (28) implies that f (T (x, z)) = 0 for x � 0 since there is no reaction to the right
of x = 0. Therefore, we can drop the third term above. This is one of the crucial points in the proof of the current
lemma. Hence, we conclude that

0 � −Ix(a) � 1

2a
+ τ

2

a∫
−a

λ∫
0

f
(
T (x, z)

)dz dx

λ
+ τ

2a

a∫
−a

λ∫
0

v(x, z)T (x, z)
dz dx

λ

− c

2a

a∫ λ∫
T

dz dx

λ
� 1

2a
+ τ

2

a∫ λ∫
f

(
T (x, z)

)dz dx

λ
+ τ‖v‖∞ + |c|. (67)
−a 0 −a 0
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We used the fact that 0 � T � 1 to bound the last term above. Next, we look at Ix(−a):

0 � −Ix(−a) = 1

2a
− 1

2a

a∫
−a

(a − s)G(s)ds = 1

2a
− τ

2a

a∫
−a

λ∫
0

(a − x)f
(
T (x, z)

)dz dx

λ

+ τ

2a

a∫
−a

1∫
0

(a − x)u · ∇T (x, z)dz dx − c

2a

a∫
−a

λ∫
0

(a − x)Tx

dz dx

λ
.

We can drop the second term above, as (a − x)f (T ) � 0, so that, after integration by parts, we get

0 � −Ix(−a) � 1

2a
+ τ

2a

a∫
−a

λ∫
0

v(x, z)T (x, z)
dz dx

λ
− c

2a

a∫
−a

λ∫
0

T
dz dx

λ
+ |c|

� 1

2a
+ τ‖v‖∞ + |c|. (68)

Let us now put together (67), (68) and (63). We observe that, with F = τ
∫∫

f (T ) dx dz
λ

, we have the following three
inequalities:

c = Ix(a) − Ix(−a) + F,

0 � −Ix(a) � 1

2a
+ F

2
+ τ‖v‖∞ + |c|,

0 � −Ix(−a) � 1

2a
+ τ‖v‖∞ + |c|.

This implies that

F � 1

a
+ 2τ‖v‖∞ + 4|c| (69)

and thus

−Ix(a) � 3|c| + 1

a
+ 2τ‖v‖∞ for a � a0.

Lemma 1 implies then that

−Ix(a) � C

[
1 + τ‖v‖∞ + 1

a

]
.

Finally, Lemma 3 implies that

−Ix(a) � C

[
1 + ‖∇T ‖2 + 1

a

]
for a � a0.

Thus, Lemma 5 is proved. �
The previous lemmas imply uniform bounds that we summarize as follows.

Corollary 1. Let (c, T ,u) satisfy (25)–(27) with the normalization (28). There exists a constant C > 0 and a0 > 0 so
that we have for all a � a0 and 0 � τ � 1

‖u‖L∞(Da) + ‖∇u‖L∞(Da) + ‖ω‖L2(Da) + |c| + ‖∇T ‖L2(Da) + τ

∫
Da

f (T )dx dz � C. (70)

In particular, as a consequence we also have

‖∇u‖L2(D ) + ‖ω‖L∞(Da) � C. (71)

a
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Proof. Lemmas 5 and 4 imply that∫
|∇T |2 dx dz � C

[
1 + τ‖v‖∞ + ‖∇T ‖L2(Da)

]
.

Then Lemma 3 implies that

‖∇T ‖2
L2(Da)

� C
(
1 + ‖∇T ‖L2(Da)

)
and thus the estimate on ‖∇T ‖L2(Da) in (70) holds. Then Lemma 3 implies the bounds on ‖u‖L∞(Da), ‖∇u‖L∞(Da)

and ‖ω‖L2(Da). The bound on |c| in (70) now follows from Lemma 1. Finally, the estimate on the total reaction rate
follows from the above bounds and (69). One can eliminate the factor τ in front of the total reaction rate in (70):
actually, one can show that it remains bounded as τ → 0. However, unlike the other estimates in (70), we will use the
bound on the total reaction rate only at τ = 1. �

It remains to prove the uniform Hölder C1,α-estimates for T (x, z), ω and u in order to finish the proof of Proposi-
tion 1.

Lemma 6. There exist two constants C > 0 and a0 > 0 so that the following bound holds for all a � a0:

‖ω‖C1,α(Da) + ‖u‖C1,α(Da) + ‖T ‖C1,α(Da) � C (72)

provided that 0 � α < 1.

Proof. The bound for T follows from the standard elliptic local regularity estimates up to the boundary [20], the
C1-bound on the flow u and the uniform bound on the speed c in Corollary 1. The Hölder estimate for ω follows then
from the vorticity equation (44) with the Dirichlet boundary conditions, the above mentioned C1,α-bound on T , the
same uniform estimates in Corollary 1 and the same results of [20]. Finally, the Hölder bounds on u follow from the
Poisson equations (48) and (52) on the horizontal and vertical flow components, respectively, and the Hölder estimates
for ω. �

This completes the proof of the a priori bounds in Proposition 1. We now turn to the proof of the existence part of
this proposition.

Step 2. The degree argument. The a priori bounds proved in the first step of the proof allow us to use the Leray–
Schauder topological degree argument to establish existence of solutions to the problem (25)–(27) with the normal-
ization (28) in the bounded domain Da . This method of construction of traveling wave solutions goes back to [11].
We introduce a map

Kτ : (c,ω,T ) → (θτ ,Ωτ ,Zτ )

as the solution operator of the linear system

−cZτ
x + τu · ∇Zτ = �Zτ + τf (T ), (73)

−cΩτ
x + u · ∇Ωτ − σ�Ωτ = τρ[e2Tx − e1Tz]

in Da with the no stress boundary conditions

∂Zτ

∂z
= 0, w̃τ = Ωτ = 0 at z = 0, λ (74)

and

Zτ (−a, y) = 1, Zτ (a, y) = 0, ũτ = Ωτ = 0 at x = ±a. (75)

Here the unknown flow ũτ = (ũτ , w̃τ ) and the given flow u are the incompressible flows corresponding to the vortic-
ities Ωτ and ω, respectively, and satisfying the no-stress boundary conditions. The number θτ is defined by

θτ = θ0 − maxT (x, z) + c.

x�0



420 H. Berestycki et al. / Ann. I. H. Poincaré – AN 23 (2006) 407–437
The operator Kτ is a mapping of the Banach space X = R × C1,α(Da) × C1,α(Da), equipped with the norm
‖(c,ω,T )‖X = max(|c|,‖ω‖C1,α(Da),‖T ‖C1,α(Da)), into itself. A solution qτ = (cτ ,ωτ , T τ ) of (25)–(27) is a fixed
point of Kτ and satisfies Kτ qτ = qτ , and vice versa: a fixed point of Kτ provides a solution to (25)–(27). Hence, in or-
der to show that (25)–(27) has a traveling front solution, it suffices to show that the kernel of the operator Fτ = Id−Kτ

is not trivial. The standard elliptic regularity results in [20] imply that the operator Kτ is compact and depends continu-
ously on the parameter τ ∈ [0,1]. Thus the Leray–Schauder topological degree theory can be applied. Let us introduce
a ball BM = {‖(c,ω,T )‖X � M}. Then Lemmas 6 and 1 show that the operator Fτ does not vanish on the boundary
∂BM with M sufficiently large for any τ ∈ [0,1]. It remains only to show that the degree deg(F1,BM,0) in �BM is not
zero. However, the homotopy invariance property of the degree implies that deg(Fτ ,BM,0) = deg(F0,BM,0) for all
τ ∈ [0,1]. Moreover, the degree at τ = 0 can be computed explicitly as the operator F0 is given by

F0(c,ω,T ) =
(

max
x�0

T (x, y) − θ0,ω,T − T c
0

)
.

Here the function T0(x) solves

d2T c
0

dx2
+ c

dT c
0

dx
= 0, T c

0 (−a) = 1, T c
0 (a) = 0

and is given by

T c
0 (x) = e−cx − e−ca

eca − e−ca
.

The mapping F0 is homotopic to

Φ(c,ω,T ) =
(

max
x�0

T c
0 (x, y) − θ0,ω,T − T c

0

)
that, in turn, is homotopic to

Φ̃(c,ω,T ) = (
T c

0 (0) − θ0,ω,T − T
c0∗
0

)
,

where c0∗ is the unique number so that T
c∗
0 (0) = θ0. The degree of the mapping Φ̃ is the product of the degrees of

each component. The last two have degree equal to one, and the first to −1, as the function T c
0 (0) is decreasing in c.

Thus degF0 = −1 and hence degF1 = −1 so that the kernel of Id − K1 is not empty. This finishes the proof of
Proposition 1. �
Remark 1. Observe that the C1,α-regularity of T , u and ω can be bootstrapped to C2,α-regularity: we have

‖ω‖C2,α(Da) + ‖u‖C2,α(Da) + ‖T ‖C2,α(Da) � C (76)

provided that 0 � α < 1.

3. Identification of the limit

In order to finish the proof of Theorem 1 we consider the solutions (ca, T a,ua) constructed in Proposition 1 and
pass to the limit a → +∞. The a priori estimates in the same proposition imply that we can choose a subsequence
an → ∞ so that Tn(x, z) = Tan(x, z) converges uniformly on compact sets to a function T (x, z), while the flow
un(x, z) = uan(x, z) converges to a flow u(x, z) = (v,w) and the front speeds also converge: cn = can → c. The
vorticity functions ωn(x, z) = ωan(x, z) converge to the limit ω = wx − vz. The limits satisfy the uniform bounds

|c| + ‖u‖∞ + ‖ω‖∞ +
∫

|∇T |2 dx dz +
∫

f (T )dx dz +
∫

|∇u|2 dx dz � C (77)

that follow from Corollary 1 and the Hölder estimates (24) and (76). The regularity estimates on (T a,ua) imply that
the limit functions T and u satisfy the Boussinesq system

−cTx + u · ∇T = �T + f (T ),

−cωx + u · ∇ω − σ�ω = ρ(ê · ∇⊥T ),

ω = wx − vz. (78)
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Moreover, the boundary conditions on the lateral boundaries hold for T and u:

∂T

∂z
= 0, w = ω = 0 on z = 0, λ. (79)

The normalization condition

max
x�0

T (x, z) = θ0 (80)

is also satisfied.
Therefore, to finish the proof of Theorem 1, it remains only to show that (i) T converges to a constant θ− as

x → −∞ and T → 0 as x → +∞, (ii) u → 0 as x → +∞, and (iii) θ− = 1 if the reaction rate satisfies f (T ) �
(T − θ0)

2+/λ2. First, we note that the uniform L2-bound on ∇T in (77) implies that T converges to two constants θ−
and θ+ as x → ±∞, possibly passing to a subsequence xn → ±∞. The elliptic regularity results imply that actually
T converges to these constants as x → ±∞. Moreover, the bound for the total reaction rate

∫
f (T )dx dz in (77)

implies that f (θ−) = f (θ+) = 0. Furthermore, integrating (78) we obtain

c(θ− − θ+) =
∫

f (T )
dx dz

λ
. (81)

In order to identify the limits θ± we will make use of the following lemmas that provide some additional infor-
mation on solutions on a finite domain before the passage to the limit. The first result describes the behavior near the
right end x = an.

Lemma 7. There exists a sequence an → ∞ so that∣∣∣∣∂Tn(an, z)

∂x

∣∣∣∣ → 0 (82)

as n → ∞, uniformly in z. Moreover, we have limn→∞ Tn(an − x0, z) = 0 for all x0 ∈ R.

Proof. We introduce a shifted solution Φn(x, z) = Tn(x + an, z) , vn = un(x + an, z) defined in the domain −2an �
x � 0. The functions Φn and vn satisfy the same a priori bounds (77) as Tn and un and hence they converge as n → ∞
to some limits Φ and v that satisfy

−cΦx + v · ∇Φ = �Φ, in x � 0, Φ(0, z) = 0. (83)

as f (Φn) = 0 for x > −an and thus in the limit f (Φ) = 0. The function Φ satisfies the Neumann boundary conditions
at z = 0, λ. The uniform upper bound on ‖∇Φn‖2 together with the elliptic regularity results imply that Φ has to
converge to a constant Φ− as x → −∞ along a subsequence. We note that, as 0 � Φ(x, z) � θ0, the constant Φ−
satisfies the same bounds:

0 � Φ− � θ0.

Integrating (83) we obtain

cλΦ− =
∫

Φx(0, z)dz � 0. (84)

Hence, either Φ− = 0 or c � 0. In the former case Φ ≡ 0 and hence Φx(0, z) = 0 for all z. That implies that both
T n

x (an, z) → 0 as n → ∞ and T n
x (an − x0, z) = Φn

x (−x0, z) → 0 as n → ∞, as claimed in Lemma 7. It remains to
rule out the second case, c � 0. This is done in the next lemma that provides a crucial lower bound on the speed cn.
In particular it shows that c > 0 – this will conclude the proof of Lemma 7. �
Lemma 8. The front speed is positive: c > 0.

Proof. Integrating the temperature equation in (78) for Tn, we obtain

cnλ =
λ∫

∂Tn

∂x
(an, z)dz −

λ∫
∂Tn

∂x
(−an, z)dz +

∫
f (Tn)dx dz �

λ∫
∂Tn

∂x
(an, z)dz +

∫
f (Tn)dx dz. (85)
0 0 0
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Observe also that we have a uniform bound(∫
f (Tn)dx dz

)(∫
|∇Tn|2 dx dz

)
� C (86)

that follows from the fact that Tn(0, z) � θ0 and Tn(−an, z) = 1. The proof of (86) is as in [13]: there exists z0 ∈ (0, λ)

such that both
0∫

−an

∣∣∇Tn(x, z0)
∣∣2 dx � 3

∫
Dn

|∇Tn|2 dx dz

λ
, Dn = [−an, an]x × [0, λ]z,

and
0∫

−an

f
(
Tn(x, z0)

)
dx � 3

∫
Dn

f
(
Tn(x, z)

)dx dz

λ
.

Let x1 be the left-most point so that Tn(x1, z0) = 1 − (1 − θ0)/4:

x1 = inf

{
x ∈ (−an,0): Tn(x, z0) = 1 − 1 − θ0

4

}
and x2 > x1 be the left-most point so that Tn(x2, z0) = θ0 + (1 − θ0)/4:

x2 = inf

{
x ∈ (−an,0): Tn(x, z0) = θ0 + 1 − θ0

4

}
.

Existence of x1 and x2 is guaranteed by the fact that Tn(−an, z) = 1 and Tn(0, z) � θ0 for all z ∈ [0, λ]. Then the
reaction rate f (Tn(x, z0)) > C for x1 � x � x2 so that

C|x1 − x2| �
x2∫

x1

f
(
Tn(x, z0)

)
dx � 3

∫
Dn

f
(
Tn(x, z)

)dx dz

λ

and

(1 − θ0)
2

4|x1 − x2| �
x2∫

x1

∣∣∇Tn(x, z0)
∣∣2 dx � 3

∫
Dn

|∇Tn|2 dx dz

λ
.

Multiplying these two inequalities, we arrive at (86).
The estimate (86) and the uniform upper bound on ‖∇Tn‖2 in Corollary 1 imply that∫

Dn

f (Tn)dx dz � C. (87)

Then, passing to the limit in (85), and using (84) we obtain

cλ(1 − Φ−) � C > 0,

as ∫
∂Tn

∂x
(an, z)dz →

∫
Φx(0, z)dz,

with the function Φ as in the proof of Lemma 7. Now, we recall that Φ− � θ0 < 1 and thus the front speed c > 0. This
finishes the proof of Lemma 8 and hence also that of Lemma 7. �

Lemma 8 and (81) imply that θ− � θ+. However, if θ− = θ+ we have f (T ) = 0 everywhere and hence (78) is a
linear equation. The maximum principle implies that T is constant in this case. The last condition in (77) implies that
this constant has to be equal to θ0. Hence, either θ− > θ+ or T ≡ θ0.

Let us now rule out the special case θ− = θ+ = θ0.
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Lemma 9. The left and right limits θ− and θ+ satisfy θ− > θ+.

Proof. We have already shown that θ− � θ+ and, moreover, if θ− = θ+ then

θ− = θ+ = θ0. (88)

Hence, it suffices to show that the latter is impossible. Let us assume that (88) holds. As we have explained above,
then

Tn → θ0, and ∂Tn/∂x → 0 uniformly on compact sets. (89)

Then, integrating the equation

−cn

∂Tn

∂x
+ un · ∇Tn = �Tn + f (Tn)

between x = 0 and x = an we obtain, as f (Tn) = 0 in this region,

cn

λ∫
0

Tn(0, z)dz −
λ∫

0

vn(0, z)Tn(0, z)dz =
λ∫

0

∂Tn

∂x
(an, z)dz −

λ∫
0

∂Tn

∂x
(0, z)dz. (90)

We now pass to the limit n → ∞ in (90). The first term on the left converges to cθ0λ, as we have assumed that T

converges uniformly to θ0 on compact intervals. The second term on the left converges to

λ∫
0

v(0, z)θ0 dz = 0,

as incompressibility of the flow un and the boundary conditions at x = ±a imply that∫
vn(0, z)dz = 0.

The limit (82) in Lemma 7 implies that the first term on the right side of (90) converges to zero. Finally, the last term
on the right side of (90) converges to zero because of (89). Therefore, we obtain

cλθ0 = 0.

However, this implies that c = 0 which contradicts Lemma 8. Hence, the case θ− = θ+ = θ0 is ruled out and thus
θ− > θ+. �

We continue the analysis of the behavior of the solution at the right end of the domain.

Lemma 10. The gradient ∇Tn converges to zero “as x → +∞” uniformly in n, that is, for every ε > 0 there exists
N ∈ N and R so that |∇Tn(x, z)| < ε for all n � N and all R � x � an.

Proof. Let us assume that this is not the case. Then there exists ε0 > 0 and a sequence bn → +∞ so that
|∇Tn(bn, zn)| � ε0 for some zn ∈ [0, λ]. Note that Lemma 7 implies that

|an − bn| → ∞. (91)

Let us define the shifted solution Ψn(x, z) = Tn(x−bn, z), vn(x, z) = un(x−bn, z) on the domain x ∈ [−an −bn, an−
bn]. Then Ψn and vn satisfy the same uniform bounds as Tn and un and thus they converge to a pair of functions Ψ , v
uniformly on compact intervals, together with their derivatives. The functions Ψ and v are defined on the whole real
line because of (91). Moreover, the function Ψ has left and right limits Ψ± as x → ±∞. Hence, the same argument
as in the proof of Lemma 7 shows that Ψ must be equal a constant, as it has left and right limits and satisfies

−cΨx + v · ∇Ψ = �Ψ.

However, this contradicts the fact that maxz |∇Ψ (0, z)| � ε0. �
The decay of the gradient of Tn implies that the flow ahead of the front goes to zero for large x, uniformly in n.
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Lemma 11. The flow un(x, z) converges to zero on the right uniformly in n, that is, for any ε > 0 there exists R > 0
and N ∈ N so that |un(x, z)| < ε for all R < x � an and n � N .

Proof. We choose N and R so that |∇Tn| < ε for all n � N and x ∈ [R,an]. Then, we decompose Tn = T in
n + T out

n

with suppT in
n ⊂ {x � R + 1} and suppT out

n ⊂ {x � R}. We also require that both T in
n and T out

n satisfy the same
uniform gradient bounds as Tn. Moreover, we have |∇T out

n | < ε. We also split ωn = ωin
n + ωout

n and un = uin
n + uout

n

accordingly:

−cnω
in
n + un · ∇ωin

n − σ�ωin
n = ρ

(
e2

∂T in
n

∂x
− e1

∂T in
n

∂z

)
, ωin

n = 0 on ∂Dan,

and similarly for ωout
n .

We now bound |uin
n | and |uout

n | separately for sufficiently large x. First, we look at uin
n = (vin

n ,win
n ). The function

ωin
n satisfies a homogeneous equation

−cn

∂ωin
n

∂x
+ un · ∇ωin

n − σ�ωin
n = 0 (92)

in the rectangle DR+2,an = {R + 2 � x � an, 0 � z � λ}, as T in
n vanishes in DR+2,an . The function ωin

n satisfies
a uniform C2,α-bound – this is shown in the same way as the C2,α-bound for the full vorticity function ω in (76).
This in turn implies that the function ψ(z) = ωin

n (R + 2, z) is uniformly bounded in C2[0, λ]. Let g(x) be a smooth
monotonic and positive cut-off function so that

g(x) = 1 for R + 2 � x � R + 3 and g(x) = 0 for x � R + 4. (93)

Then the function ωin
n can be decomposed as

ωin
n (x, z) = ψ(z)g(x) + ζn.

The function ζn satisfies

−cn

∂ζn

∂x
+ un · ∇ζn − σ�ζn = fn in DR+2,an , ζn = 0 on ∂DR+2,an . (94)

The right side fn is given by

fn := σψ ′′(z)g(x) + σψ(z)g′′(x) − cnψ(z)g′(x) − vnψ(z)g′(x) − wnψ
′(z)g(x).

It is supported in R + 2 � x � R + 4 and is uniformly bounded since ‖ωin
n ‖C2,α(Da) � C. Let us choose α > 0

sufficiently small, then the function ξn(x, z) = ζn(x, z) eαx satisfies

−cn

∂ξn

∂x
+ αcξn + un · ∇ξn − αvnξn − σ�ξn + 2σα

∂ξn

∂x
− σα2ξn = gn in DR+2,an ,

ξn = 0 on ∂DR+2,an (95)

with gn = fn(x) eαx . Multiplying (95) by ξn and integrating by parts, using the boundary conditions, we obtain

σ

∫
DR+2,an

|∇ξn|2 dx dz + (
cα − α‖v‖∞ − σα2) ∫

DR+2,an

|ξn|2 dx dz � ‖gn‖2‖ξn‖2. (96)

However, as the function ξn vanishes at z = 0, λ, the Poincaré inequality implies that∫
DR+2,an

|∇ξn|2 dx dz � π2

λ2

∫
DR+2,an

|ξn|2 dx dz.

Hence, the following upper bound holds∫
D

|ξn|2 dx dz � ‖gn‖2
2 � C,
R+2,an
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provided that α is sufficiently small, since ‖v‖∞ � C. Using (96) once again we conclude that∫
DR+2,an

|∇ξn|2 dx dz � C.

Therefore, the function ζn satisfies∫
DR+2,an

[|∇ζn|2 + |ζn|2
]

e2αx dx dz � C.

This, in turn implies the same bound for the function ωin
n :

an∫
R+2

λ∫
0

∣∣ωin
n

∣∣2 e2αx dx dz +
an∫

R+2

λ∫
0

∣∣∇ωin
n

∣∣2 e2αx dx dz � C. (97)

It follows that the L2-norm of ωin
n decays uniformly in n:

an∫
r0

λ∫
0

∣∣ωin
n

∣∣2 dx dz � e−αr0

an∫
r0

λ∫
0

∣∣ωin
n

∣∣2 e2αx dx dz � Ce−αr0 (98)

for r0 > R + 5, and the same bound holds for ∇ωin
n :

an∫
r0

λ∫
0

∣∣∇ωin
n

∣∣2 dx dz � e−αr0

an∫
r0

λ∫
0

∣∣∇ωin
n

∣∣2 e2αx dx dz � Ce−αr0 . (99)

As the function ωin
n satisfies the homogeneous equation (92) for x � R + 1 with a bounded flow u, the standard

local elliptic estimates now imply that∣∣ωin
n (x, z)

∣∣ � C e−αx for x � R + 5. (100)

The W 2,p elliptic estimates then imply the uniform decay of the gradient of ωin
n :∣∣∇ωin

n (x, z)
∣∣ � C e−αx for x � R + 5. (101)

Now we can bound the flow uin
n = (vin

n ,win
n ) itself. First, we look at the horizontal component vin

n . It satisfies the
following Poisson equation in DR+2,an :

−�vin
n = ∂ωin

n

∂z
in DR+2,an ,

∂vin
n

∂z
= 0 on z = 0, λ, vin

n = 0 on x = an.

Moreover, the C2,α-regularity of un implies that the boundary value φ(z) = vin
n (R + 2, z) is bounded in C2[0, λ].

Therefore, as we did with ωin
n , we represent vin

n (x, z) = φ(z)g(x) + v̄in
n (x, z) with the cut-off function g(x) as in (93).

The function v̄in
n satisfies

−�v̄in
n = f̄n := −φzz(z)g(x) − φ(z)g′′(x) + ∂ωin

n

∂z
in DR+2,an ,

with an exponentially decaying function f̄n, as follows from (101). The boundary conditions are

∂v̄in
n

∂z
= 0 on z = 0, λ, v̄in

n = 0 on x = R + 2, an.

The same argument as we used to obtain (97) implies that

an∫ λ∫
|vin

n |2 e2βx dx dz � C

∫ ∣∣f̄n(x, z)
∣∣2 e2βx dx dz � C (102)
R+2 0
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with a sufficiently small 0 < β < α. Therefore, in the same vein as we have obtained (100) and (101), we conclude
that ∣∣vin

n (x, z)
∣∣ � C e−αx for x � R + 5 (103)

and ∣∣∇vin
n (x, z)

∣∣ � C e−αx for x � R + 5. (104)

The uniform bound on win
n now follows, as it satisfies the Dirichlet boundary condition win

n (x,0) = win
n (x,λ) = 0 and

the derivative ∂win
n /∂z = −∂vin

n /∂x is exponentially decaying (104). We infer that∣∣win
n (x, z)

∣∣ � C e−αx for x � R + 5. (105)

Now we bound uout
n . The corresponding vorticity satisfies

−cn

∂ωout
n

∂x
+ un · ∇ωout

n − σ�ωout
n = ρ

(
ê · ∇⊥T out

n

)
in Dan , ω = 0 on Dan .

However,∣∣∇T out
n

∣∣ � ε (106)

by construction, hence the maximum principle implies that∣∣ωout
n (x, z)

∣∣ � ερq(z) � Cε. (107)

Here the non-negative function q(z) satisfies the boundary value problem

−σq ′′(z) + wn(z)q
′(z) = 1, q(0) = q(λ) = 0.

We infer from the standard local elliptic estimates up to the boundary, (107) and (106) that∣∣∇ωout
n (x, z)

∣∣ � Cε in Dan (108)

as well. The vertical flow component satisfies

�wout
n = ∂ωout

n

∂x
in Dan , wout

n (x,0) = wout
n (x,λ) = 0,

∂wout
n (±an, z)

∂x
= 0.

Therefore, the maximum principle implies once again that

∣∣wout
n (x, z)

∣∣ � Cρε

2
z(λ − z) � Cε in Dan .

Hence, the same local elliptic regularity results allow us to conclude that∣∣∇wout
n (x, z)

∣∣ � Cε in Dan .

In order to bound the horizontal flow component vout
n and conclude the proof of Lemma 11 we observe that ∂vout

n /∂z =
∂wout

n /∂z − ωout
n so that |∂vout

n /∂z| � Cε in Dan . However, vout
n also satisfies the mean-zero condition

λ∫
0

vout
n (x, z) = 0 for all −an � x � an.

Hence, we have |vout
n (x, z)| � Cε in Dan , and the proof of Lemma 11 is now complete. �

The next lemma implies that the right limit satisfies θ+ = 0.

Lemma 12. The right limit is θ+ = 0.
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Proof. Let us choose R independent of n so that can > supx>R |vn(x, z)| for all n. Lemma 8 implies that the speeds
cn are uniformly bounded below by a positive constant, thus it follows from Lemma 11 that we can find such R > 0.
Then the function φ(x) = A e−αx , with a sufficiently small α > 0, satisfies

−cnφx + un · ∇φ � �φ.

An argument as in the proof of Lemma 1 shows that if A is chosen so that A e−αR > 1 then Tn(x, z) � A e−αx on the
domain x ∈ [R,an]. Therefore, the limit T (x, z) obeys the same bound, which in turn implies that θ+ = 0. �

Finally, we show that under the additional assumption (10) the left limit θ− = 1. This is the only place in the proof
where assumption (10) is used.

Lemma 13. Let us assume that f (T ) � (T − θ0)
2+/λ2. Then the left limit is θ− = 1.

Proof. We note that we have for each x ∈ R∫ ∣∣∇T (x, z)
∣∣2 dz � (M(x) − m(x))2

λ

with M(x) = maxz T (x, z) and m(x) = minz T (x, z). It follows from the maximum principle that the function m(x)

is non-increasing. Indeed, the maximum principle implies that m(x) cannot achieve an interior minimum. Moreover,
for each finite a, the function ma(x) attains its maximum (equal to 1) at the point x = −a. Therefore, ma(x) is
decreasing immediately to the right of x = −a. As ma(x) cannot achieve an internal minimum, it follows that ma(x)

is a decreasing function of x for all a > 0. Thus, the function m(x), which is the limit of ma(x) as a → +∞, is also
a decreasing function. Let us assume that θ− � θ0, then monotonicity of m(x) implies that m(x) < θ0 for all x ∈ R.
Then we have∫ ∣∣∇T (x, z)

∣∣2 dx dz �
∫ (

M(x) − m(x)
)2 dx

λ
�

∫ (
T (x, z) − θ0

)2
+

dx dz

λ2
.

We also observe that

cθ− =
∫

f (T )
dx dz

λ
,

cθ2−
2

+
∫

|∇T |2 dx dz

λ
=

∫
Tf (T )

dx dz

λ

so that∫
|∇T |2 dx dz =

∫ (
T − θ−

2

)
f (T )dx dz.

Hence we obtain using (10)∫ (
T − θ−

2

)
(T − θ0)

2+
dx dz

λ2
�

∫ (
T − θ−

2

)
f (T )dx dz �

∫ (
T (x, z) − θ0

)2
+

dx dz

λ2
.

However, the left side is smaller than the right side unless T ≡ θ0, the case that we have already ruled out. �
This finishes the proof of Theorem 1.

4. Bounds for the initial value problem

We consider in this section the solutions of the Cauchy problem with general front-like initial data and obtain the
uniform bounds on the bulk burning rate and other average quantities stated in Theorems 2 and Theorem 3. We prove
the first result, and the proof of the second result is presented in Section 4.2.

4.1. Bounds in an arbitrary strip

We prove in this section Theorem 2. Let T (t, x, z), u(t, x, z) be the solution of the Cauchy problem



428 H. Berestycki et al. / Ann. I. H. Poincaré – AN 23 (2006) 407–437
Tt + u · ∇T = �T + f (T ), (109)

ut + u · ∇u − σ�u + ∇p = ρT ê,

∇ · u = 0, (110)

with initial data T0(x, z), u0(x). We assume that there exists R > 0 so that T0(x, z) = 0 for x > R and T0(x, z) = 1
for x < −R, and that the initial vorticity is bounded in L2:∫ ∣∣ω0(x, z)

∣∣2 dx dz < +∞.

The assumptions on the initial temperature T0 can be relaxed – it simply has to approach one and zero at the two ends
of the domain sufficiently fast.

We recall that the bulk burning rate �V (t), the Nusselt number �N(t) and the average horizontal flow �U(t) are defined
by

�V (t) = 1

t

t∫
0

V (s)ds, V (t) =
∫

f (T )
dx dz

λ
, (111)

�N(t) = 1

t

t∫
0

N(s)ds, N(t) =
∫

|∇T |2 dx dz

λ
, (112)

�U(t) = 1

t

t∫
0

∥∥v(s)
∥∥∞ ds. (113)

The laminar front speed c0 is defined as the unique c so that equation

−cΦ ′ = Φ ′′ + f (Φ), Φ(−∞) = 1, Φ(+∞) = 0

has a solution 0 < Φ < 1. We recall the statement of Theorem 2.

Theorem 4. There exists a constant C > 0 so that under the above assumptions on the initial data T0,u0, the following
bounds hold

c0 − C[ρ + ρ2] + o(1) � �V (t) � c0 + C[ρ + ρ2] + o(1), (114)

�N(t) �
[
Cρ +

√
c0

2
+ C2ρ2

]2

+ o(1),

�U(t) � Cρ[1 + ρ] + o(1)

as t → +∞.

Proof. First, we prove the following bounds on �N(t) and �V (t) in terms of �U(t).

Lemma 14. There exists a constant C0 that depends only on the initial data T0 so that

�N(t) � 1

2
�V (t) + �U(t) + C0

[
1

t
+ 1√

t

]
, (115)

and

�V (t) � c0 + �U(t) + C0

[
1

t
+ 1√

t

]
. (116)

Proof. Define g(T ) = T (1 − T ) and its integral

R(t) =
∫

g(T )
dx dz

.

λ
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The idea of using a concave function g(T ) in a related context is due to B. Winn [38]. We observe that

dR

dt
=

∫
g′(T )�T

dx dz

λ
+

∫
g′(T )f (T )

dx dz

λ
� −

∫
g′′(T )|∇T |2 dx dz

λ
− V (t) (117)

with the burning rate V (t) defined in (111). Thus

dR

dt
+ V (t) � 2

∫
|∇T |2 dx dz

λ
= 2N(t),

which after averaging in time becomes

R(t)

t
+ �V (t) � 2�N(t). (118)

In order to obtain an upper bound for the potentially small term R(t)/t in (118) we construct sub- and super-
solutions for T (t, x, z). This construction follows [40]. We look for a sub-solution for T of the form

ψl(t, x, z) = Φ0
(
x − c0t + x1 + ξ1(t)

) − q1(t, x, z).

Here Φ0 is the traveling wave in the absence of convection, at ρ = 0, normalized so that Φ0(0) = θ0. It is the unique
solution of

−c0Φ
′
0 = Φ ′′

0 + f (Φ0), Φ0(0) = θ0, Φ0(−∞) = 1, Φ0(+∞) = 0.

The functions ξ1(t) and q1(t, x, z) are to be chosen. In order for ψl to be a sub-solution we need

G[ψl] = ∂ψl

∂t
+ u · ∇ψl − �ψl − f (ψl) � 0.

We have

G[ψl] = ξ̇1Φ
′
0 + uΦ ′

0 − ∂q1

∂t
− u · ∇q1 + �q1 + f (Φ0) − f (Φ0 − q1).

With an appropriate choice of x1, that is, by shifting Φ0 sufficiently to the left we can ensure that T0(x, z) � Φ0(x) −
q10(x) with 0 � q10(x) � (1 − θ0)/2 and q10(x) ∈ L1(R). Then we choose q1(t, x, z) to be the solution of

∂q1

∂t
+ u · ∇q1 = �q1, q1(0, x, z) = q10(x),

∂q1

∂z
= 0 at z = 0, λ. (119)

The following lemma from [16] provides a uniform L1–L∞ decay estimate for q1 that is independent of the advection
term.

Lemma 15. There exists a constant C > 0 that is independent of the (incompressible) flow u so that∥∥q1(t)
∥∥∞ � C

λ
√

t
‖q10‖L1(D) (120)

for t � 1.

As mentioned above, the main point of the above result is the independence of the constant in (120) from the
flow u. We also note that this L1–L∞ estimate behaves in a one-dimensional way for large times, as one would expect
for a strip. The factor of λ in the denominator is compensated by the fact that the L1-norm is taken over the strip and
not only in x. We postpone the proof of Lemma 15 till the end of this section.

We can find δ > 0 so that if Φ0 ∈ (1 − δ,1) and q1 ∈ (0, (1 − θ0)/2) then f (Φ0) � f (Φ0 − δ). Hence we have in
this range of Φ0:

G[ψl] � ξ̇1Φ
′
0 + vΦ ′

0. (121)

Furthermore, if Φ0 ∈ (0, δ) then f (Φ0) = f (Φ0 −δ) = 0 and hence in this range of Φ0 we have (121) with the equality
sign. Finally, if Φ0 ∈ (δ,1 − δ) then |f (Φ0) − f (Φ0 − q)| � K|q| and Φ ′

0 � −β . Hence G[ψl] � 0 everywhere
provided that

ξ̇1(t) �
∥∥v(t)

∥∥∞ + K‖q(t)‖∞
. (122)
β
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Thus choose

ξ1(t) = �U(t)t + C
√

t . (123)

Therefore we obtain a lower bound for T :

T (t, x, z) � Φ0(x − c0t + �U(t)t + C
√

t) − q1(t, x, z). (124)

In order to obtain an upper bound we set ψu = Φ0(x − c0t − x2 − ξ2(t))+ q2(t, x, z) and look for ξ2(t) and q2(t, x, z)

so that G[ψu] � 0. The constant x2 is chosen so that

T0(x, z) � Φ0(x − x2) + q2(0, x, z)

with q2(0, x, z) ∈ L1(D) and 0 � q2(0, x, z) � θ0/2, as with q1(0, x, z). The function q2(t, x, z) is then chosen to
satisfy the same advection–diffusion equation (119) similarly to q1. Hence it obeys the same time decay bounds as q1.
With the above choice of q2 we have

G(ψu) = −ξ̇2Φ
′
0 + vΦ ′

0 + f (Φ0) − f (Φ0 + q2).

Once again, we consider three regions of values for Φ0. First, if 1 − δ � Φ0 � 1 with a sufficiently small δ > 0 then
f (Φ0) − f (Φ0 + q2) � 0, as q2 � 0. Hence G[ψu] � 0 in this region provided that ξ̇2 � 0. Second, as q2 � θ0/2 we
have f (Φ0) = f (Φ0 +q2) = 0 if 0 � Φ0 � δ with a sufficiently small δ > 0. Hence G[ψu] � 0 in that region under the
same condition ξ̇2 � 0. Finally, if Φ0 ∈ (δ,1 − δ) then Φ ′

0 � −β with β > 0 and |f (Φ0) − f (Φ0 + q2)| � K‖q2‖∞.
That means that G[ψu] � 0 if we choose ξ2 so that

ξ̇2 �
∥∥v(t)

∥∥∞ + K‖q2‖∞
β

.

Therefore we choose

ξ2(t) = �U(t)t + C
√

t,

as with ξ1(t). Then, we obtain upper and lower bounds

Φ0
(
x − c0t + ξ1(t) + x1

) − q1(t, x, z) � T (t, x, z) � Φ0
(
x − c0t − ξ2(t) − x2

) + q2(t, x, z) (125)

that imply in particular that

Φ0
(
x − c0t + �U(t)t + C0[1 + √

t]) − C0√
t

� T (t, x, z) � Φ0
(
x − c0t − �U(t)t − C0[1 + √

t]) + C0√
t

(126)

with a constant C0 determined by the initial conditions. Hence, using (125)–(126) and the L1-bounds∥∥qj (t)
∥∥

L1(D)
� C0, j = 1,2,

we obtain

R(t) =
∫

T (1 − T )
dx dz

λ
=

c0t−ξ2(t)−x2∫
−∞

∫
T (1 − T )

dz dx

λ
+

c0t+ξ1(t)+x1∫
c0t−ξ2(t)−x2

∫
T (1 − T )

dz dx

λ

+
∞∫

c0t+ξ1(t)+x1

∫
T (1 − T )

dz dx

λ
� C0 +

0∫
−∞

(1 − Φ0)dx + (
ξ1(t) + ξ2(t)

) +
∞∫

0

Φ0(x)dx

� C0(1 + √
t) + 2t �U(t).

This together with (118) implies that

�V (t) + 2�U(t) + C0

[
1

t
+ 1√

t

]
� 2�N(t) (127)

so that (115) holds.
Moreover, we have
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�V (t) = 1

t

t∫
0

(∫
f

(
T (s, x, z)

)dx dz

λ

)
ds = 1

t

t∫
0

(∫
Tt (s, x, z)

)
dx dz

λ
ds (128)

= 1

t

∫ [
T (t, x, z) − T0(x, z)

]dx dz

λ

� 1

t

∫ [
Φ0

(
x − c0t − x2 − ξ2(t)

) + q2(t, x, z) − Φ0(x + x1) + q1(0, x, z)
]dx dz

λ

� C0

t
+ 1

t

c0t+ξ2(t)+x2∫
−∞

(
1 − Φ0(x)

)
dx + 1

t

∞∫
0

Φ0(x)dx � c0 + �U(t) + C0

[
1√
t

+ 1

t

]

as follows from (125), (126). This proves (116) and finishes the proof of Lemma 14. �
On the other hand we have the following upper bound for �U(t) in terms of �N(t).

Lemma 16. There exists a constant C > 0 so that for all t > 0 the following inequality holds

�U(t) � C

[
ρ

√
�N(t) + 1√

t
‖ω0‖L2

]
. (129)

Proof. We multiply the vorticity equation

∂ω

∂t
+ u · ∇ω − σω = ρ(ê · ∇⊥T )

by ω and integrate:

1

2

d

dt

∫ ∣∣ω(t, x, z)
∣∣2 dx dz + σ

∫ ∣∣∇ω(t, x, z)
∣∣2 dx dz = ρ

∫
ω(t, x, z)(ê⊥ · ∇T )dx dz, (130)

with ê⊥ = (e2,−e1).
The Poincaré inequality for ω(t, x, z) implies then that

1

2

d

dt

∫ ∣∣ω(t, x, z)
∣∣2 dx dz + σ

2

∫ ∣∣∇ω(t, x, z)
∣∣2 dx dz � Cρ2

∫ ∣∣∇T (t, x, z)
∣∣2 dx dz.

Integrating this equation in time we conclude that

1

t

t∫
0

∫ ∣∣∇ω(s, x, z)
∣∣2 dx dz ds � C

[
ρ2 �N(t) + 1

t
‖ω0‖2

L2

]
. (131)

However, as in the proof of Lemma 3, we have ‖v(t)‖L∞(D) � C‖∇ω(t)‖L2(D). This, together with (131) implies
(129). �

Putting the bounds (129) and (115), (116) together and using the Cauchy–Schwartz inequality we arrive at

2�N(t) � c0 + C0

[
1

t
+ 1√

t

]
+ Cρ

t

t∫
0

√
N(s)ds � c0 + C0

[
1

t
+ 1√

t

]
+ Cρ

√
�N(t).

Hence we obtain an upper bound

�N(t) �
[
Cρ +

√
c0

2
+ C2ρ2

]2

+ o(1). (132)

This, together with (129) implies that

�U(t) � Cρ
[
1 + ρ

] + o(1).
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It follows then from (128) that

�V (t) � c0 + Cρ
[
1 + ρ

] + o(1).

The lower bound on �V (t) in (114) is proved similarly. This finishes the proof of Theorem 4. It remains only to prove
Lemma 15. �
Proof of Lemma 15. We will show that there exists a universal constant C > 0 so that the solution of

∂ψ

∂t
+ u · ∇ψ = σ�ψ, (133)

ψ(0, x, z) = ψ0(x, z) � 0,

with the Neumann boundary conditions at z = 0 and z = λ, and u sufficiently regular, satisfies∥∥ψ(t)
∥∥

L∞(D)
� Cn2(t)‖ψ0‖L1(D). (134)

Here n(t) is the unique solution of

n4(t)

1 + n3(t)λ3
= C

σλ2t
. (135)

We multiply (133) by ψ and integrate over the domain D to obtain

1

2

d

dt
‖ψ‖2

2 = −σ‖∇ψ‖2
2. (136)

We now prove the following version of the Nash inequality [29] for a strip of width λ in two dimensions:

‖∇ψ‖2
2 � C

λ2‖ψ‖6
2

‖ψ‖4
1 + λ3‖ψ‖1‖ψ‖3

2

. (137)

The proof of (137) is similar to that of the usual Nash inequality. We represent ψ in terms of its Fourier series-integral:

ψ(x, z) =
∑
n�0

∫
R

eikx cos

(
πnz

λ

)
ψ̂n(k)

dk

2π
,

where

ψ̂n(k) = 2

λ

∫
D

e−ikx cos

(
πnz

λ

)
ψ(x, z)dx dz.

Therefore we have∣∣ψ̂n(k)
∣∣ � 2

λ
‖ψ‖L1 . (138)

The Plancherel formula becomes∫
D

∣∣ψ(x, z)
∣∣2

dx dz =
∑

n,m�0

∫
R2

eikx−ipx cos

(
πnz

λ

)
cos

(
πmz

λ

)
ψ̂n(k)ψ̂∗

m(p)
dk dp dx dz

(2π)2

= λ

2

∑
n�0

∫ ∣∣ψ̂n(k)
∣∣2 dk

2π

and similarly∫
D

∣∣∇ψ(x, z)
∣∣2 dx dz = λ

2

∑
n�0

∫
R

(
k2 + π2n2

λ2

)∣∣ψ̂n(k)
∣∣2 dk

2π
.

Let ρ > 0 be a positive number to be chosen later. Then using the above Plancherel formula we write

‖ψ‖2 = I + II,
2
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with the first term that is bounded using (138)

I = λ

2

∑
0�n�ρλ

∫
|k|�ρ

∣∣ψ̂n(k)
∣∣2 dk

2π
� Cλρ([λρ] + 1)

λ2
‖ψ‖2

1 � Cρ(λρ + 1)

λ
‖ψ‖2

1.

The rest is bounded by

II � Cλ

ρ2

∑
n�0

∫
k∈R

(
k2 + 4π2n2

λ2

)∣∣ψ̂n(k)
∣∣2 dk � C

ρ2
‖∇ψ‖2

2.

Therefore we have for all ρ > 0:

‖ψ‖2
2 � Cρ(λρ + 1)

λ
‖ψ‖2

1 + C

ρ2
‖∇ψ‖2

2.

We choose ρ so that

ρ3 = λ‖∇ψ‖2
2

‖ψ‖2
1

and obtain

‖ψ‖2
2 �

C‖∇ψ‖2/3
2

λ2/3‖ψ‖2/3
1

(
λ4/3‖∇ψ‖2/3

2

‖ψ‖2/3
1

+ 1

)
‖ψ‖2

1 + C‖∇ψ‖2
2‖ψ‖4/3

1

λ2/3‖∇ψ‖4/3
2

= C

λ2/3
‖ψ‖4/3

1 ‖∇ψ‖2/3
2 + Cλ2/3‖∇ψ‖4/3

2 ‖ψ‖2/3
1 .

This is a quadratic inequality ax2 + bx − c � 0 with x = ‖∇ψ‖2/3
2 , a = Cλ2/3‖ψ‖2/3

1 , b = (C/λ2/3)‖ψ‖4/3
1 , and

c = ‖ψ‖2
2 and hence

x � −b + √
b2 + 4ac

2a
= 2c

b + √
b2 + 4ac

� c√
b2 + 4ac

.

This implies that

‖∇ψ‖2/3
2 � C‖ψ‖2

2

(‖ψ‖8/3
1

λ4/3
+ λ2/3‖ψ‖2/3

1 ‖ψ‖2
2

)−1/2

and therefore

‖∇ψ‖2
2 � C‖ψ‖6

2

(
4‖ψ‖8/3

1

λ4/3
+ 4λ2/3‖ψ‖2/3

1 ‖ψ‖2
2

)−3/2

� C‖ψ‖6
2

(‖ψ‖4
1

λ2
+ λ‖ψ‖1‖ψ‖3

2

)−1

�
Cλ2‖ψ‖6

2

‖ψ‖4
1 + λ3‖ψ‖1‖ψ‖3

2

.

Hence (137) indeed holds.
We insert (137) into (136) and use the conservation of the L1-norm of ψ (recall that the initial data is non-negative)

obtain

d‖ψ‖2

dt
� − Cσλ2‖ψ‖5

2

‖ψ0‖4
1 + λ3‖ψ0‖1‖ψ‖3

2

. (139)

Integrating (139) in time we have

Cσλ2t �
‖ψ0‖4

1

‖ψ‖4
2

+ λ3‖ψ0‖1

‖ψ‖2
� 1

z(t)

[
λ3 + 1

z3(t)

]
,

where z(t) = ‖ψ(t)‖2/‖ψ0‖1, and thus

z4(t)

3 3
� 1

2
. (140)
1 + λ z (t) Cσλ t
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The function on the left side of (140) is monotonically increasing and hence we have∥∥ψ(t)
∥∥

2 � n(t)‖ψ0‖1, (141)

where n(t) is the solution of (135).
Let us denote by Pt the solution operator for (133): ψ(t) =Ptψ0. Then (141) implies that ‖Pt‖L1→L2 � n(t). The

adjoint operator P∗
t is the solution operator for

∂ψ̃

∂t
− u · ∇ψ̃ = σ�ψ̃, (142)

ψ̃(0, x) = ψ̃0(x), x ∈ D

with the Neumann boundary conditions at z = 0, λ. Note that the preceding estimates rely only on the anti-symmetry
of the convection operator u · ∇ . Therefore we have the bound ‖P∗

t ‖L1→L2 � n(t) and hence ‖Pt‖L2→L∞ � n(t) so
that ∥∥ψ(t)

∥∥
L∞ � n(t/2)

∥∥ψ(t/2)
∥∥

L2 � n2(t/2)‖ψ0‖L1

and thus (134) indeed holds.
The estimate (120) follows from the observation that for large t � 1, when n(t) is small, we have the bound

n2(t) � C

(σ t)1/2λ
.

This finishes the proof of Lemma 15. �
4.2. Bounds on the burning rate in a narrow domain

We recall that no non-planar traveling fronts do exist in the reactive Boussinesq problem in a narrow vertical
strip when gravity is sufficiently small [32,33,14]. Moreover, solutions with general front-like initial data become
asymptotically planar in the long time limit [14]. We extend now this result to the inclined cylinders. More precisely,
we have the following result (this is a re-statement of Theorem 3).

Theorem 5. Let ê = (e1, e2) be the unit vector in the direction of gravity and let ρj = ρej , j = 1,2. There exist two
constants λ0 and ρ0 so that if the domain is sufficiently narrow: λ � λ0 and gravity is sufficiently small: ρ � ρ0 then
the burning rate is bounded by

�V (t) � c0 + Cρ2 + o(1) as t → +∞. (143)

Moreover, the front is nearly planar in the sense that

�Nz(t) = 1

t

t∫
0

∥∥Tz(s)
∥∥2

2 ds � Cρ2
2 + o(1) as t → +∞. (144)

The key point in Theorem 5 is that the bounds in (143) and (144) are independent of the gravity strength ρ1 in the
direction parallel to the cylinder.

Proof. Multiplying the vorticity equation by ω and integrating by parts we obtain

1

2

d

dt

∫
|ω|2 dx dz + σ

∫
|∇ω|2 dx dz = ρ2

∫
Txω dx dz − ρ1

∫
Tzω dx dz. (145)

The Poincaré inequality applies to ω(x, z) with the Poincaré constant proportional to 1/λ. Hence, if λ < λ0 and
ρj < ρ0, (145) implies that

1 d
∫

|ω|2 dx dz + σ
∫

|∇ω|2 dx dz � Cρ2
2

∫
|Tx |2 dx dz + Cρ2

1

∫
|Tz|2 dx dz. (146)
2 dt 2
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We now differentiate the equation for T (t, x, z) in z to get

∂Tz

∂t
+ u · ∇Tz + uz · ∇T = �Tz + f ′(T )Tz.

Multiplying this equation by Tz we obtain

1

2

d

dt

∫
|Tz|2 dx dz +

∫
|∇Tz|2 dx dz +

∫
Tzuz · ∇T dx dz =

∫
f ′(T )T 2

z � M

∫
T 2

z dx dz. (147)

The last integral on the left side is bounded by∣∣∣∣
∫

Tzuz · ∇T dx dz

∣∣∣∣ =
∣∣∣∣
∫

T uz · ∇Tz dx dz

∣∣∣∣ � 2
∫

|uz|2 dx dz + 1

2
|∇Tz|2 dx dz.

This, together with incompressibility of u, the Poincaré inequality for Tz and (147) imply that

1

2

d

dt

∫
|Tz|2 dx dz + 1

4

∫
|∇Tz|2 dx dz � 4

∫
|ω|2 dx dz, (148)

provided that λ < λ0. Combining (146) and (148) and using the Poincaré inequality for ω and Tz once again, we
obtain the following inequalities for Ω(t) = ‖ω(t)‖2

2 and Nz(t) = ‖Tz‖2
2:

1

2

dΩ

dt
+ C

λ2
Ω � Cρ2

2Nx(t) + Cρ2
1Nz(t)

and
1

2

dNz

dt
+ C

λ2
Nz � 4Ω.

Hence, the function Q = Nz + Ω satisfies

1

2

dQ

dt
+

[
C

λ2
− 4 − Cρ2

1

]
Q � Cρ2

2Nx(t).

Therefore, we have

Q(t) � Q0 e−γ t + Cρ2
2

t∫
0

e−γ (t−s)Nx(s)ds

with γ > 0 provided that C/λ2 > 5 and Cρ2
1 < 1. We conclude that

Q̄(t) := 1

t

t∫
0

Q(τ)dτ � Q0

t

t∫
0

e−γ τ dτ + Cρ2

t

t∫
0

τ∫
0

e−γ (τ−s)Nx(s)ds dτ

� C0

t
+ Cρ2

2

t

t∫
0

Nx(s) eγ s

t∫
s

e−γ τ dτ ds � C0

t
+ Cρ2

2

γ
�Nx(t) � Cρ2

2 + C0

t
.

The last inequality above follows from the bound on �N(t) in Theorem 4. Now, the bound (144) in Theorem 5 follows.
Then, (146) together with (144) and the same uniform bound on �N(t) in Theorem 4 yield

1

t

t∫
0

∥∥∇ω(s)
∥∥2

2 ds � Cρ2
2 + C0

t
.

We recall that ‖v(t)‖L∞(D) � C‖∇ω‖L2(D) – this, together with the above, show that

�U(t) � Cρ2 + C0√
t
. (149)

Finally, using (128) and (149) we obtain (143). �
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