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Abstract

We prove existence and regularity of periodic in time solutions of completely resonant nonlinear forced wave equations with
Dirichlet boundary conditions for a large class of non-monotone forcing terms. Our approach is based on a variational Lyapunov—
Schmidt reduction. It turns out that the infinite dimensional bifurcation equation exhibits an intrinsic lack of compactness. We solve
it via a minimization argument and a-priori estimate methods related to the regularity theory of [P. Rabinowitz, Periodic solutions
of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math. 20 (1967) 145-205].
© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

On prouve ’existence et la régularité de solutions périodiques en temps d’équations des ondes non linéaires forcées, comple-
tement résonnantes, avec des conditions au bord de Dirichlet, pour une grande classe de termes forcants non-monotones. Notre
approche est basée sur une réduction de Lyapunov—Schmidt variationnelle. L’ équation de bifurcation en dimension infinie présente
un manque intrinseque de compacité. Nous la résolvons par un argument de minimisation et a 1’aide d’estimations a priori inspirées
de la théorie de la régularité de [P. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential equations, Comm.
Pure Appl. Math. 20 (1967) 145-205].
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1. Introduction

In this paper we consider the problem of finding nontrivial time-periodic solutions of the completely resonant
nonlinear forced wave equation

Uu=cf(t,x,u;e) (1.1)
with Dirichlet boundary conditions
u(t,0)=u(t,7)=0 (1.2)

where [ := 9;; — dy is the D’ Alembertian operator, ¢ is a small parameter and the nonlinear forcing term f (¢, x, u; €)
is T -periodic in time. We consider the case when T is a rational multiple of 27 and, for simplicity of exposition, we
shall assume

T =2m.
We look for nontrivial 277 -periodic in time solutions u(z, x) of (1.1), (1.2), i.e. satisfying
u(t +2m,x)=u(t,x). (1.3)
For ¢ =0, (1.1), (1.2) reduces to the linear homogeneous wave equation

Ou =0,
{u(t,O):u(t,r[):O (1.4
which possesses an infinite dimensional space of solutions which are 27 -periodic in time and of the form v(z, x) =
0(t + x)— 0(t — x) for any 27 -periodic function 0(-). For this reason equation (1.1), (1.2) is called completely
resonant.

The main difficulty for proving existence of solutions of (1.1)—(1.3) for € # 0 is to find from which periodic orbits
of the linear equation (1.4) the solutions of the nonlinear equation (1.1) branch off. This requires to solve an infinite
dimensional bifurcation equation (also called kernel equation) with an intrinsic lack of compactness.

The first breakthrough regarding problem (1.1)—(1.3) was achieved by Rabinowitz in [18] where existence and
regularity of solutions was proved for nonlinearities satisfying the strongly monotone assumption (9, f)(t, x, u) >
B > 0. Using methods inspired by the theory of elliptic regularity, [18] proved the existence of a unique curve of
smooth solutions for ¢ small. Other existence results of weak and classical solutions have been obtained, still in the
strongly monotone case, in [10,12,16].

Subsequently, Rabinowitz [19] was able to prove existence of weak solutions of (1.1)—(1.3) for a class of weakly
monotone nonlinearities like f (7, x,u) = w2kt G(t,x,u) where G(t,x,u2) = G(t,x,uy) if up > uy. Actually, in
[19] bifurcation of a global continuum branch of weak solutions is proved. For other local existence results in the
weakly monotone case we mention [14,20].

In all the quoted papers the monotonicity assumption (strong or weak) is the key property for overcoming the lack
of compactness in the infinite dimensional kernel equation.

We underline that, in general, the weak solutions obtained in [19] are only continuous functions. Concerning
regularity, Brezis and Nirenberg [10] proved — but only for strongly monotone nonlinearities — that any L°-solution
of (1.1)—(1.3) is smooth, even in the nonperturbative case ¢ = 1, whenever the nonlinearity f is smooth.

On the other hand, very little is known about existence and regularity of solutions if we drop the monotonicity
assumption on the forcing term f. Willem [21], Hofer [15] and Coron [11] have considered the class of equations
(1.1), (1.2) where f(t,x,u) =g() + h(t,x), e =1, and g(u) satisfies suitable linear growth conditions. Existence
of weak solutions is proved, in [15,21], for a set of & dense in L?, although explicit criteria that characterize such h
are not provided. The infinite dimensional bifurcation problem is overcome by assuming non-resonance hypotheses
between the asymptotic behavior of g(u) and the spectrum of [J. On the other side, Coron [11] finds weak solu-
tions assuming the additional symmetry A (¢, x) = h(t 4+ 7, m — x) and restricting to the space of functions satisfying
u(t,x) =u(t + m, 7 — x), where the Kernel of the d’ Alembertian operator [ reduces to 0. Actually [11] also deals
with the autonomous case i = 0, proving for the first time existence of nontrivial solutions for non-monotone nonlin-
earities. For some more recent results see for example [3].

In the present paper we prove existence and regularity of solutions of (1.1)—(1.3) for a large class of non-monotone
forcing terms f (¢, x, u), including, for example,
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ft,x,u)= 4%k + h(t,x), see Theorem 1;
F(t,x,u) = +u® +u® ' L h(t,x), see Theorem 2;
Ft, x,u)=4u® + f(t,x,u) with (8, /)(t,x,u) =B >0, see Theorem 3.

The precise results were announced in [4] and will be stated in the next Subsection 1.1, see Theorems 1, 2 and 3.
Their proof is based on a variational Lyapunov—Schmidt reduction, minimization arguments and a-priori estimate
methods inspired to regularity theory of [18]. We anticipate that our approach — explained in Subsection 1.2 — is not
merely a sharpening of the ideas of [18,19], which, to deal with non-monotone nonlinearities, require a significant
change of perspective.

We mention that in the last years several results on bifurcation of free vibrations for completely resonant au-
tonomous wave equations have been proved in [2,5-8,13]. The main differences with respect to the present case are
that: a “small divisor” problem in solving the “range equation” appears (here no small divisor problem is present due
to the assumption 7' = 27, see Remark 1.7), but the infinite dimensional “bifurcation equation” — whose solutions is
the main problem of the present paper — gains crucial compactness properties, see Remark 1.8.

1.1. Main results

We look for solutions u : 2 — R of (1.1) in the Banach space
E:=H'(@)NC)*(2), 2:=Tx©On),

where H'(£2) is the usual Sobolev space and Cé/ 2([7) is the space of all the 1/2-Holder continuous functions
u: 82 — R satisfying (1.2), endowed with norm!

lulle == Null i) + lullcrzg)-

Critical points of the Lagrangian action functional ¥ € C!(E, R)

u?  u?
U (u) =W (u,ze) ::/[7’—7x+8F(Z,x,u;s)i| dt dx, (1.5)
2
where F(t,x,u;¢) := f(;‘ f(t, x,&; e)d&, are weak solutions of (1.1)—(1.3).
For ¢ =0, the critical points of ¥ in E reduce to the solutions of the linear equation (1.4) and form the subspace
V:=NnNH(£2) where
2
9 € L*(T) and /ﬁ(s)ds:O}. (1.6)
0
Note that V := NN H'(£2) ={v(t,x) =0(t +x) —0(t —x) € N | b € H'(T)} C E, since any function o € H'(T) is
1/2-Holder continuous.

Let Nt :={he L*() | f_Q hv =0, Yv € N} denote the L?(£2)-orthogonal of N.
We prove the following theorem:

N = {v(t,x) =0 +x)—0( —x)

Theorem 1. Let f(t, x,u) = Bu** + h(t,x) and h € N* satisfies h(t,x) > 0 (or h(t,x) < 0) a.e. in 2. Then, for
& small enough, there exists at least one weak solution u € E of (1.1)—(1.3) with ||ul|lg < Cle|. If, moreover, h €
HI(@2)NCI7N82), j 2 1, then u € HITY(2) N CL(2) with |ull yj+1(q) + lull i) < Clel and therefore, for
Jj =2 2,u is a classical solution.

U Here (lull?,, o= lul?y o+ luxl?y A+ lul?

HY(2)® L2(2) L2(2) L2(R2) and

sup lu(t, x) —u(ty, x1)|
0 (=1l +1x —x D172

lull ez, = lullcog) +
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Theorem 1 is a corollary of the following more general result which enables to deal with non-monotone nonlinear-
ities like, for example, f (¢, x,u) = +(sinx)u* + h(t, x), £, x,u) = +u?* + 2+ L p, x).

Theorem 2. Let f(t,x,u) =g(t,x,u) + h(t, x), h(t,x) € N+ and

glt,x,u):= BOu* +R(t, x,u)
where R, 3R, 3,R € C(2 x R, R) satisfy’

IRC 0@ =0™).  [aRCW e =00"), [0.RC.0]eg=o0u"""), (17
and B € C([0, ], R) verifies, for x € (0, ), B(x) >0 (or B(x) <0) and B(wr — x) = B(x).

(i) (Existence) Assume there exists a weak solution H € E of JH = h such that
H(,x)>0 (orH(t,x) <0) V(t,x)e€s2. (1.8)

Then, for ¢ small enough, there exists at least one weak solution u € E of (1.1)—(1.3) satlsﬁmg lullg < Clel.
(ii) (Regularity) If. moreover, h € HI(2) N CI=1(2), B € H/((0, 7)), R, &R, 3,R € C/(2 x R), j > 1, then
ue HH(2)n C0 (2) and, for j =2, uis a classical solution.

Note that Theorem 2 does not require any growth condition on g at infinity. In particular it applies for any analytic
function g(u) satisfying g(0) =g’ (0)=--- = ng_l (0)=0and ng(O) #0.
We now collect some comments on the previous results.

Remark 1.1. The assumption 2 € N is not of technical nature both in Theorem 1 and in Theorem 2 (at least if
g=gx,u)=gx,—u)=g(m —x,u)). Indeed, if h ¢ N+, periodic solutions of problem (1.1)—(1.3) do not exist in
any fixed ball {||u||L~ < R}, R > 0, for ¢ small; see Remark 4.5.

We also note that the vector space of the i € L2(2) verifying h(t,x) = h(t + m, m — x), introduced in [11], is a
subspace of N1

Remark 1.2. In Theorem 2 hypotheses (1.8) and 8 > 0 (or 8 < 0) are assumed to prove the existence of a minimum
of the “reduced action functional” @, see (1.16). A sufficient condition implying (1.8) is 4 > 0 a.e. in §2, see the
“maximum principle” Proposition 4.11. This is also the key step to derive Theorem 1 from Theorem 2.

We also note that hypotheses (1.8) can be weakened, see Remark 4.4.

Remark 1.3 ((Regularity)). It is quite surprising that the weak solution u of Theorems 1, 2 is actually smooth. Indeed,
while regularity always holds true for strictly monotone nonlinearities (see [10,18]), yet for weakly monotone f it is
not proved in general, unless the weak solution u verifies |[[Tyull;2 > C > 0 (see [19]). Note, on the contrary, that
the weak solution u of Theorem 2 satisfies |[[Tyul|;2 = O(e).

Moreover, assuming

2k— . . .
|91 iR | o) = O™ ™), YOI n<j+1,0<m<j, [+m+n<j+1 (1.9)

we can also prove the estimate (see Remark 4.10)
”u”HJ‘H(_Q) + ”u”CJ(_Q) Cle|. (1.10)
Remark 1.4 ((Multiplicity)). For non-monotone nonlinearities f one can NOT in general expect uniqueness of the

solutions. Actually, for f(¢,x,u) = g(x,u) + h(t,x) with g(x,u) = g(x, —u), g(r — x,u) = g(x, u), there exist
infinitely many h € N L for which problem (1.1)—(1.3) has (at least) 3 solutions, see Remark 4.6.

Remark 1.5 ((Minimal period)). If h(t, x) has minimal period 27 w.r.t. time, then also the solution u (¢, x) has minimal
period 27, see Remark 4.7.

2 The notation f(z) =0(zP), p € N, means that f(z)/|z|” — 0 as z = 0. f(z) = O(z”) means that there exists a constant C > 0 such that
| f(2)| < C|z|P for all z in a neighborhood of 0.
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Finally, we extend the result of [18] proving existence of periodic solutions for non-monotone nonlinearities
f(t, x,u) obtained adding to a nonlinearity f (¢, x,u) as in [18] (i.e. 9, f = B > 0) any non-monotone term a(x, u)
satisfying

a(x,—u)=a(x,u), a(m —x,u)=a(x,u) (1.11)
or
alx,—u)=—a(x,u), a(m —x,u)=—a(x,u). (1.12)

A prototype nonlinearity is f(, x, u) = +u + f(t, x,u) with 8uf =B >0.

Theorem 3. Let f(t,x,u) = f(t, x,u)+a(x,u) where f, 0; f, 0, f are continuous, Buf > B > 0and a(x, u) satisfy

(1.11) or (1.12). Then, for ¢ small enough, (1.1)~(1.3) has at least one weak solution u € E. If moreover f, 0; f,
dufeCH(2xR), j>1, thenue HT(2)NC)(R2).

In the next subsection we describe our method of proof.
1.2. Scheme of the proof

In order to find critical points of the Lagrangian action functional ¥ : E — R defined in (1.5) we perform a varia-

tional Lyapunov—Schmidt reduction, decomposing the space E := H Liyn Cé/ 2(.5) as

E=VoWw
where
. 1 . 1 1 12/
V:i=NNH'(2) and W:=N-NH'(2)NC)/ (2).

Setting u = v + w with v € V, w € W and denoting by ITy and ITy. the projectors from L?(£2) onto N and N+
respectively, problem (1.1)—(1.3) is equivalent to solve the kernel equation

Oy f@+w,e) =0 (1.13)
and the range equation

w=¢e0 ys f(v+w,e) (1.14)
where 07! : N- — N1 is the inverse of (] and f (i, €) denotes the Nemitski operator associated to f, namely

[f(u, 8)](t,x) = f(t,x,u,ce).

Remark 1.6. The usual approach (see [12,18-20]) is to find, first, by the monotonicity of f, the unique solution
v = v(w) of the kernel equation (1.13) and, next, to solve the range equation (1.14). On the other hand, for non-
monotone forcing terms, one can not in general solve uniquely the kernel equation — recall by Remark 1.4 that in
general uniqueness of solutions does not hold. Therefore we must solve first the range equation and thereafter the
kernel equation. For other applications of this approach to perturbation problems in critical point theory, see e.g. the
forthcoming monograph by Ambrosetti and Malchiodi [1].

We solve, first, the range equation by means of a quantitative version of the Implicit Function Theorem, finding a
solution w := w(v, &) € W of (1.14) with ||w(v, €)||g = O(e), see Proposition 3.2. Here no serious difficulties arise
since (™! acting on W is a compact operator, due to the assumption T = 277, see (2.2).

Remark 1.7. More in general, (0~! is compact on the orthogonal complement of ker(CJ) whenever T is a rational
multiple of 2. On the contrary, if T is an irrational multiple of 27, then O~ !is, in general, unbounded (a “small
divisor” problem appears), but the kernel of [J reduces to O (there is no bifurcation equation). For existence of periodic
solutions in the case T /2 is irrational see [17].
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Once the range equation (1.14) has been solved by w (v, ¢) € W it remains the infinite dimensional kernel equation
(also called bifurcation equation)

HNf(v+w(v,s),s)=0. (1.15)
We note (see Lemma 3.3) that (1.15) is the Euler—Lagrange equation of the reduced Lagrangian action functional
®:V— R, D) =P, e) =¥ (v+w,e),e). (1.16)

@ lacks compactness properties and to find critical points of @ we cannot rely on critical point theory.

Remark 1.8. Implementing an analogue Lyapunov—Schmidt reduction in the autonomous case (see [5]) it turns out
that, in the corresponding reduced Lagrangian action functional, a further term proportional to ||v||z, is present.
Therefore it is possible to apply critical point theory (e.g. the Mountain Pass Theorem) to find existence and multi-
plicity of solutions, see [6]. The elliptic term || v||§11 helps also in proving regularity results for the solutions.

We attempt to minimize @.

We do not try to apply the direct methods of the calculus of variations. Indeed @, even though it could possess some
coercivity property, will not be convex (being f non-monotone). Moreover, without assuming any growth condition
on the nonlinearity f, the functional @ could neither be well defined on any L”-space.

Therefore we minimize @ in any Bg :={v € V, |[v||y1 < R}, VR > 0, as in [18]. By standard compactness argu-
ments @ attains minimum at, say, v € Bg. Since ¥ could belong to the boundary dBg, v could not be a solution of
(1.15) and we can only conclude the variational inequality

Dv<1>(17)[g0]=/f(ﬁ+w(6,e),e)<p<0 (1.17)
2

for any admissible variation ¢ € V,i.e.if v+ 0¢p € Br, V8 <0 sufficiently small.

The heart of the existence proof of the weak solution u of Theorems 1, 2 and 3 is to obtain, choosing suitable
admissible variations like in [18], the a-priori estimate ||v]| ;1 < R for some R > 0, i.e. to show that v is an inner
minimum point of @ in Bg.

The strong monotonicity assumption (9, f)(¢, x,u) > B > 0 would allow here to get such a-priori estimates by
arguments similar to [18]. On the contrary, the main difficulty for proving Theorems 1, 2 and 3 which deal with
non-monotone nonlinearities is to obtain such a-priori-estimates for v.

The most difficult cases are the proof of Theorems 1 and 2. To understand the problem, let consider the particular
nonlinearity f(f,x,u) = u** + h(t, x) of Theorem 1. The even term u>* does not give any contribution into the
variational inequality (1.17) at the Oth-order in ¢, since the right-hand side of (1.17) reduces, for ¢ =0, to

/(52" +h(t,x)p=0, VYpeV
2

by (2.18) and h € N*.
Therefore, for deriving, if ever possible, the required a-priori estimates, we have to develop the variational inequal-
ity (1.17) at higher orders in &. We obtain

0> /2k172k_1g0w(8, 0) +O(w?(e, ) = / e2kv* o0~ (h + v%) + 0(e?) (1.18)
2 2

because w(D, &) = e~ 1@ + h) + o(e) (recall that 92, h € N-1).
We now sketch how the e-order term in the variational inequality (1.18) allows to prove an L**-estimate for ©.
Inserting the admissible variation ¢ := v in (1.18) we get

/H{)Z" + 207152 < O(e) (1.19)
2



M. Berti, L. Biasco /Ann. I. H. Poincaré — AN 23 (2006) 439—474 445

where H is a weak solution of [JH = h which verifies H(z,x) > 0 in §£2 (H exists by the “maximum principle”
Proposition 4.11). The crucial fact is that the first term in (1.19) satisfies the coercivity inequality

/Hvzk >c(H)/v2’<, YoeV (1.20)
2 2

for some constant ¢(H) > 0, see Proposition 4.2. The second term |, o 92k~ 152% will be negligible, e-close to the

origin, with respect to f oH v2* and (1.19), (1.20) will provide the L% -estimate for o.

We remark that the inequality (1.20) is not trivial because H vanishes at the boundary (H(¢,0) = H(¢,7) = 0).
Actually, the proof of (1.20) relies on the form v(¢, x) = 0(¢ + x) — 0(¢ — x) of the functions of V.

Next, we can obtain, choosing further admissible variations ¢ in (1.18) and using inequalities similar to (1.20),
an L*-estimate for v and, finally, the required H _estimate, proving the existence of a weak solution u € E, see
Section 4.

Moreover, using similar techniques inspired to regularity theory and further suitable variations, we can also obtain
a-priori estimates for the L°°-norm of the higher order derivatives of © and for its H/-Sobolev norms. In this way we
can prove the regularity of the solution u — fact quite surprising for non-monotone nonlinearities —, see Subsection 4.5.

Theorem 2 is proved developing such ideas and a careful analysis of the further term R.

The proof of Theorem 3 is easier than for Theorems 1 and 2. Indeed the additional term a(x, ) does not contribute
into the variational inequality (1.17) at the O-order in ¢, because f oa(x,0)p=0,Vp eV, by (2.19). Therefore the
dominant term in the variational inequality (1.17) is provided by the monotone forcing term f and the required a-priori
estimates are obtained with arguments similar to [18], see Section 5.

Notations. 2 := T x (0, 7) where T := R/277Z. We denote by C/(£2) the Banach space of functions u: 2 — R
with j derivatives in 2 continuous up to the boundary 92, endowed with the standard norm || - ||;. Cé (2) :=
C/(£2) N Cp(£2) where Co(£2) is the space of real valued continuous functions satisfying u(¢,0) = u(t,w) = 0.
Moreover H/(£2) := W/2(£2) are the usual Sobolev spaces with scalar product (-, -) g and norm || ||§1 @) Here
C/(T) denotes the Banach space of periodic functions u : T — R with j continuous derivatives. Finally, H/(T) is the
usual Sobolev space of 27 -periodic functions.

2. Preliminaries
We first collect some important properties on the D’ Alembertian operator [.

Definition 2.1. Given f (¢, x) € L2(£2), a function u € L?(£2) is said to be a weak solution of (Ju = f in £2 satisfying
the boundary conditions u(t, 0) = u(t, 7) =0, iff

/MD¢=/f<p Vg € C3(2).

2 2

It is easily verified that, if u € C 2(§ ) is a weak solution of [u = f according to Definition 2.1, then u is a classical
solution and u(¢,0) = u(t, ) = 0.

The kernel N C L?(£2) of the D’ Alembertian operator ], i.e. the space of weak solutions of the homogeneous
linear equation (v = 0 verifying the Dirichlet boundary conditions v(¢,0) = v(¢, ) = 0, is the subspace N defined
in (1.6). N coincides with the closure in L2(£2) of the classical solution of (v = 0 verifying Dirichlet boundary
conditions which, as well known, are of the form v(z, x) = 0(¢ 4+ x) — 0(t — x), 0 € C*(T).

Using Fourier series we can also characterize N as

N= {v(t,x) e L*(£2) ( v(t,x) =Y aje sin jx with Y |a;|* < oo}.
JEZ JEZ

The range of 0 in L(£2) is
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1. 2 _
._{feL (.Q)’ /fv_O, VUEN}
2

= {f(t,x) eL*(2) \ faexy= > fyelsinjxwith Y |fi;P <oo},
leZ, j>1 leZ, j21
J#I J#N

i.e. Vf(t,x) € N there exists a unique weak solution u =0~ f € N+ of Ou = f.
Furthermore [J~! is a bounded operator such that

0Nt — NN H' @) N (R), @2.1)
i.e. there exists a suitable constant ¢ > 1 such that
|07 g <cllflz VFeL*) 2.2)

where |[u| g := |lull g1 + [lu]lc1/2. By (2.2) and the compact embedding H'(§2) < L?(£2), the operator (1~': N+ —
N~ is compact.
These assertions follow easily from the Fourier series representation (see e.g. [10])

ft,x):= Z fljei” sinjx = wu=07'f:= Z 712]?_ > it
=1, I =1, I I

noting that u is a weak solution of (1.1) (according to Definition 2.1) iff u;; = ﬁj/(—l2 +j)VIeZ, j>1,seee.g.
[12,15].
To continue, [J~! is a bounded operator also between the spaces

sin jx

L®(2) — C"Y(2), HYQ)— H*'(Q), c2)— c(2) (2.3)
as follows by the integral formula for u = (0~ f = [Ty, 1  where (see e.g. [9,16])
7w t—x+&
1 T —
ven=— [ [ senaare
X t4x—§&

My :L?(2) — N+t is the orthogonal projector onto N+ and

7 t+& T €
c =%//f(g,r)drdgE%//f(é,r)drdézconst (2.4)
01—¢§ 0-¢

is a constant independent of ¢, because® f € Nt.

3 We have that 2¢ = fT(z) f=lim;— o0 fT([) fanwhere T(t) :={(t,6) e 2st.t—&E<t<t+£& 0<&<m}and

fu(t,x):= Z flj s1n1x—> Z flj sin jx = f(t, x)eNJ‘
I, j<n J#l
J#l

The claim follows since f’T(t) fn is, for any n, independent on ¢:

t+&
fn:/ » fzjsm/sf ellt 4z dg
T 0 Ml jsn
J#Il

T T T
=y fo,jfzgsinjgd@r > 2%e“’/smjssinzgdg= > foyjfog‘sinjEdé.
I<jsn 0 11, j<n 0 1<j<n 0
L. 10
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We also have, since af H is a weak solution of D(af H)= B,j h and (2.1) applies,
heHI(2) = a/HeC)*(2).

Finally, the projector Iy : L%(£2) — N can be written as ITyu = p(t +x) — p(t — x) where

e

P(y) ::%/[u@—s,s) —u(y+s,9)]ds

0
and therefore, since u € C/(2) = pe C/(T) andu € H/ (2) = p € H/ (T),

My, My, :C/(2)— C/(2) are bounded,
HN,HNJ_:Hj(Q)—)H'j(Q) are bounded.

2.1. Kernel properties and technical lemmata

Let define, for 0 <« < 1/2,

2¢:=Tx (awr,m —am) C 2.

Lemma 2.2. Let a € L1(£2).

2 s+—2am

/a(t x)drdx = = / / <S++S, Shu 5 )dst+.

—2m+s4+2am

In particular for p,q € L'(T)

2 2 20w 2w
1 1
fp(t+x)q(t—x)dtdx=Efp(s)ds/q(s)ds—i / fp(y)q(ery)dde
24 0 0 —2amx 0

and

/p(t+x)dtdx—/p(t—x)dtdx—n(l—2a)/p(s)ds
Q4 Q4

Moreover, given f, g:R — R continuous,

[ £+ 0)e(p ) drax = [ 7ot —0)g(pe-+n)dras.

24
Proof. In Appendix A. O

Lemma 2.3. Forany v=10(t +x) —0(t —x) :=vy —v_€N

2
1720y =27 18172, = 27 / 0%,
0
Moreover
vl 72y = I0xl132 gy = 2718172, Yo ENNH'(82),
10/l oe(my < llzoe2y <200l ery Yv e NNLY(£2),

<
lvllzeo) < vl YveNNH' ().

447

(2.5)

2.6)
Q@.7)

2.8)

(2.9)

(2.10)

@2.11)

(2.12)

(2.13)

(2.14)
(2.15)
(2.16)
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Proof. In Appendix A. O

Lemma 2.4. Let ¢1, ..., p+1 € N and @1 - - - @241 € LI(Q). Then
/</)1-"§02k+1 =0. .17
Q0

In particular @1 - - - o € N*.

Moreover, if a: 2 — R satisfies (1) a(x,u) =a(xr — x,u) and a(x,u) =a(x, —u) or (ii) a(x,u) = —a(x — x,u)
and a(x,u) = —a(x, —u), then
/a(x,v)<p=0 Yoe NNL®, g€ N (2.18)
Qg
and
/(8ua)(x,v)(p1<p2=0 Yve NNL*®, @1, €N. (2.19)
Qg

Proof. In Appendix A. O

Lemma 2.5. The following inequalities hold:

(@ —b)* <221 (a®* + %) Va,beR, (2.20)
(@—b)* >a* +b* —2k(a®* "o +ab™") Va,beR, keN, k>2, (2.21)
(a+b)y* 1 g%l > 41-kp2k=1 vy eR, b>0, ke NT. (2.22)

Proof. In Appendix A. O
2.2. Generalities about the difference quotients
For f € L?(£2) we define the difference quotient of size & € R \ {0}

D )t x) = L0 +h’x; — f(t.x)

and the h-translation

(Tn f)(t,x) == f(t+h,x)

with respect to time.
The following lemma collects some elementary properties of the difference quotient.

Lemma 2.6. Let f, g € L>(£2), h € R\ {0}. The following holds

(1) Leibnitz rule:

Dy(fg) = (D f)g + T f Dag. (2.23)
m—1 m—1

Dyf™=Duf) Y " T =mDu ) Onf) Y TN (T = £, (2.24)
j=0 Jj=0

[ oatror= [@ug+ s (2.25)

2 2
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(ii) integration by parts:

ff(D—hg)=—/(th)g;
2 2

(iii) weak derivative: If there exists a constant C > 0 such that Yh small

IDpfll;2 < C = then f has a weak derivative f; and || fi||;2 < C.
Moreover, if f has a weak derivative f; € L*>(82), then

(iv) estimate on the difference quotient:

I1Dn fll22y < I fell2oys

(V) convergence:
L2
Dnf— fi ash—0.
Proof. In Appendix A. O
3. The Lyapunov-Schmidt decomposition

3.1. The range equation

449

(2.26)

(2.27)

(2.28)

(2.29)

We first solve the range equation (1.14) applying the following quantitative version of the Implicit Function Theo-

rem, whose standard proof is omitted.

Proposition 3.1. Let X, Y, Z be Banach spaces and xy € X, yo € Y. Fix rp > O_and define X, := {x € X s.t.
lx —xollx <r}and ¥, :={y eYs.t|y—yolly <p} Let F € CY(U, Z) where Y, x X, CUCY x X is an open set.

Suppose that

F(y0,x0) =0 G.D
and that Dy F (yo, x0) € L(Y, Z) is invertible. Let T := (DyF (yo, x0)) " and T := T g(z,y) be its norm. If
P
sup||F (o, ¥) ||, < ——, 3.2)
1
sup [[Idy =TDyF (3,2 | £y, < > (33)

Yo x Xy

then there exists y € C' (X, Y_p) such that F(y(x),x)=0.

Applying Proposition 3.1 to the range equation (1.14) we derive:

Proposition 3.2. Let f = f(t,x,u,¢), fu =0, f and €d; f be continuous on 2 x R x [—1, 1]. Then YR > 0 there

exists a unique function

w=w(v,e) el ({llvlie <2R} x {lel < eo(R)}. {lwlle < Co(R)lel})
solving the range equation (1.14), where ¢o(R) := 1/2Co(R) and*

Co(R) :=1+\/§ng max }[|f(t,x,u,8)|+|fu(t,x,u,8)|].

2x{|u|<3R+1}x{le|<1

4 ¢is defined in (2.2).

34

(3.5)
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Proof. Let X :=V xR, Y =Z:= W (namely x := (v, ¢) and y := w) and ||x| x := ||v|lr~ + ﬁhﬂ- Let also xg :=
0,0), yo:=0,7r:=3R, p:=1, F(y,x) :=F(w,v,¢) :=w — SD_lHNLf(U +w,e)and U : =W x V x (—1,1).
Note that F(-,-) € C! since the Nemitski operator ef € C1(E x (=1, 1), L?(£2)) and (2.1) holds. Moreover (3.1)
holds and T = Idw (hence ||T|| = 1).

If lullzee < 3R and [|wllze < lwlg < 1, then

v, x) +w, x)|<3R+1, V(t,x)ef. (3.6)

Using (2.2), Bessel inequality [[[Ty1 fliz2 < | fll2 1flL2@) < \/§7T||f||LOO(_Q) and estimate (3.6), we obtain,
Vle| < eo(R) and [[v]|L~ < 3R,

|70.0,0)] ; < lele] £, )] 2 < lelvZre] £ v, )] < CoRONel < 5 37
where Co(R) is defined in (3.5). Hence (3.2) follows from (3.7).
Since
Dy F(w,v,)[@] =% — 0 My (fu(v+w, )W) Vb eW,
we deduce, arguing as before, V||v| L~ < 3R, V|w| g < 1, V]|e| < go(R),
Sup &= DuFw v, )] ; < lelV2me|| fuw +w, &) | o < 20(R)Co(R) = % (3.8)
=

and (3.3) follows. Now we can apply Proposition 3.1 finding a function w = w(v, €) € C'{lxllx <r}, W1 satisfying
the range equation (1.14). Finally, note that

{Ivlize < 2R} x {le] < eo(R)} C {lIxllx <r =3R}
and, arguing as above,

||w(v, £) HE = ||8D7117le(v + w(v, &); 8) ||E < |£|x/§ng||f(v + w; e) ||Loo < e|Co(R),
whence (3.4) follows. 0O

3.2. The kernel equation
Once the range equation (1.14) has been solved by w(v, ) € W there remains the infinite dimensional kernel

equation (1.15).
Since V is dense in N with the L?-norm, Eq. (1.15) is equivalent to

/f(v—l—w(v,e),s)(p:O YoeV (3.9)
2

which is the Euler—Lagrange equation of the reduced Lagrangian action functional @ : V — R, @ (v) := D (v,¢) :=
U+ w,e),e),defined in (1.16). Actually:

Lemma 3.3. @ € C' ({||v] ;1 < 2R}, R) and a critical point v of ® is a weak solution of the kernel equation (1.15).
Moreover @ can be written as

D(v) = 8/[F(U + w(v); 8) — %f(v + w(v); 8)w(v):| dr dx (3.10)
2
and
ol Bl SR, va 25 = ®(v,) — (D). 3.11)

Proof. Since ¥ (-, &) € CH(E,R) and, by Proposition 3.2, w(-, &) € Cl({||v||H1 < 2R}, R) (note that {||v] g1 <2R} C
{llvllL < 2R} by (2.16)), then @ € Cl({||v||H1 < 2R}, R) and

D® (v)[p]=D¥ (v+w®))[p +dw)g]] VYeeV. (3.12)
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We claim that, since w = w(v) € E is a weak solution of the range equation (1.14) and w := dw(v)[¢] € W, then
DY (v+ w(®))[dw(v)[e]] =0. (3.13)

Indeed, since v, vy € N and W, Wy € N+,

DY (v+w)[w] = /(v +w)w; — (v +w), Wy +ef (v+w, e)w
2

=/wtﬁ,—wxﬁxjtsﬂ,\uf(v—i—w,a)ﬁ:o (3.14)
2

because w € E is a weak solution of the range equation Jw = elTy1 f(v+ w, ) and w(t,0) = w(t, 7) =0.
By (3.12), (3.13) and since w;, w, € N+ and ¢;, ¢, € N

DO W)[g] = DY (v + w)[p] = f(v b W) — U+ )y + £ (0 + w, )
2

=/v,(p,—vxfpx+8f(v+w,8)<p=8/f(v+w,8)<p=8/17NLf(v+w,s)<p (3.15)
Q Q Q

where in (3.15) we used fQ Vr@r — Uy =0 since v, p e V.
Now we prove (3.10) as in [5]. Since vy, vy € N, wy, wy € N+ and (2.14)

2 2 2 2
<D(v):/ (v—i—z;)(v)), _ (+w)y +8F(U+w(v);8)=/ (u)(zv)), ~ (w)y 4 eF(v+w(v)e)
2 2

2 2

and since [, (w(v))? — (W) =— [, ef (v + w(v); &)w(v) we deduce (3.10).
Finally let us prove (3.11). Setting w, := w(v,, ¢) and w := w(v, €), we have

‘/F(vn—i-wn)—F(f)'i‘w) < s s [ -
J 2 x{lu|<R+1}x{le|<1} o

< Co(R) (v = Bll 1 + lwn = Wl p1) —> 0

as n — oo, by the fact that ||v, — v||z~ — 0 and (3.4). An analogous estimate holds for the second term in the integral
in (3.10). O

By standard compactness argument the functional @ attains minimum (resp. maximum) in Bg := {v € V,

lvll g1 < R}, YR > 0. Indeed, let v, € Bg be a rninimizing1 (resp. maximizing) sequence @ (v,) — inflTR @. Since
. . H" _ _ _ —

{vy}nen is bounded in N N H!, up to a subsequence v, — v for some v = v(R, ¢) € Bg. Moreover by the com-

pact embedding H L(T) — L°°(T) we can also assume v, L—oo> v (since Uy, Lﬂp {7) and therefore, by (3.11), visa
minimum (resp. maximum) point of @ restricted to Bg.

Since ¥ could belong to the boundary d B we only have the variational inequality (1.17) for any admissible vari-
ation ¢ € V, namely for any ¢ € V such that v + 6¢ € Bg, V6 < 0 sufficiently small. As proved by Rabinowitz [18],
a sufficient condition for ¢ € V to be an admissible variation is the positivity of the scalar product

(v, )1 > 0. (3.16)
The heart of the existence proof of Theorems 1, 2 and 3 is to obtain, choosing suitable admissible variations, the
a-priori estimate ||v||y1 < R for some R > 0, i.e. to show that v is an inner minimum (resp. maximum) point of @
in Bg.
4. Proof of Theorems 1 and 2

The main difficulty for proving Theorems 1 and 2 is to obtain the fore mentioned a-priori-estimate for v.
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4.1. Proof of Theorem 2

As anticipated in Subsection 1.2, we look for small amplitude solutions of (1.1) with forcing term f (¢, x,u) =

g(t, x,u) + h(t,x) where g(t, x,u) = B(x)u?l + R(t, x,u), h(t,x) € N+ and R(z, x, u) satisfies (1.7).

Perform the change of variables u = e(H + it) and set & := &%f

Oit = g(t, x, e(H + it)) = e*[BC)(H + i) + e *R(t,x, e (H + )]
=[BC)(H + ) +E'R(t, x, 8/ (H +i))].
Recalling it — u, &€ — &, we look for solutions of the problem
Uu=cef(t,x,u;e),
u(t,0)=u(t,7)=0,
u(t+2m,x)=u(t,x)
where the nonlinear forcing term is
f(t,x,u; €)== BO)(H +u)* + R*(t,x,u; €)
and
R¥(t, x,u; €)= silR(t, x, /(@0 (H(t,x)+u)).
Moreover, eventually substituting ¢ - —e and B — —f we can always suppose

B(x)H(t,x)>0, V(t,x)eSf.

By (1.7), R*, 8, R*, €3, R* are continuous in §2 x R x [—1, 1] (recall that H € E) and

e—0

VRo > 0, ||R* 0.

GOl c@xgugron 10RO | e @xqu<ron
Moreover, since H € H! (£2), 0, R* = g1, R +&/@-13 RH, and (1.7), then
18R (-, u(-); €) Umm < C*(llullpeo)) Yu e L2(£2),

for a suitable increasing function C*(-).

@.1)

4.2)

4.3)

4.4)

4.5)

In order to find solutions of problem (4.1) we perform the Lyapunov—Schmidt reduction of the previous section.
We fix R > 0 to be chosen later (large enough!). Since f, d, f, €9, f are continuous on 2 xR x[-1,1], using
Proposition 3.2 we solve the range equation (1.14) finding w = w(v, ¢) for ||v||z~ < 2R and |¢| < &9g(R). Now we
look for minimum or maximum points of the corresponding reduced action functional @ in Bg according to whether
e > 0ore <0. Since @ attains minimum or maximum at some point v := v(¢) := v(¢, x; €) in Bg, to conclude the
existence proof of Theorem 2(i) we need to show that v is an interior point in B, i.e. [|[V]| g1 < R, for a suitable choice
of R large enough. Let w :=w(¢, x;¢) := w(v(e),e)(t,x) € E and u :=u(t,x;¢) :=v+ w € E. By (3.4) and the

definitions of Co(-), €o(-) given in Proposition 3.2, we have

_ 1 _ 1
||w||E<C0(R)|3|<§, ||M||c(§)<R+§,
since, by (2.16), IVllez) < IVl g1 ey < R. Let
Ra(t, x; 8) :=R*(1,x, u(t, x; )5 ).

We have R, € C(£2) and, choosing Ry := R + 1/2 in (4.5),
—0
R (5 ) ||C(§) —0.
Moreover, since ;R = 8, R*(it) + 3, R*(it) (v, + w;), we have 3, R, € L>(£2) with

|9 R )] 20y < CoITlLoe(2)) + 0D IT 2(2).

(4.6)

4.7)

(4.8)

4.9)
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for a suitable increasing function C,(-). By (4.2), (4.3) and (4.7), the variational inequality (1.17) yields, for any
admissible variation ¢ € V,

o>g/ﬂ(x)(H+ﬁ+w)2k<p+R*¢ Ve >0
2

if v is a minimum point, respectively

0<8/ﬂ(x)(H+ﬁ+W)2k<p+R*(p Ve <0
2
if v is a maximum point. However, in both cases we get, dividing by ¢,

/ﬁ(x)(H+ﬁ+w)2k<p</—R*¢. (4.10)
2 2
The required a-priori estimate for the H'-norm of v will be proved in several steps inserting into the variational
inequality (4.10) suitable admissible variations. We shall derive, first, an L% _estimate for o (it is needed at least when
k > 2), see (4.19), next, an L°°-estimate, see (4.33), and, finally, the H 1 _estimate, see (4.45).
The following key estimates will be heavily exploited.

Lemma 4.1. Let v e N N L2*(2) and k e N*. Then

27
/v2k<n4k/f)2k. 4.11)
Q 0
Moreover, for k =1
2 21
/v2>2n[1—4a]/ﬁ2>n/ﬁ2
Q4 0 0

fOo<a<1/8 Fork =22,

2 2
vk > 271[1 —2(1+ 2k)a] / 2k > 7 / p2k
0 0

Q

o

if0 <a <1/4(1+2k).

Proof. From the inequality (2.20) we obtain

/v2k=/(v+—v,)2k <22k_1fvik—i—v%k=22k—1/ﬁ2k(t+x)+f)2k(t—x)dtdx,
2 2

which, using (2.11), proves (4.11).
We now prove the second part of the lemma in the case £ > 2. Using the inequality (2.21), (2.11) and (2.12), we
obtain

/v2k = f(v+ —v) > / vik +uk - 2k/ v%_k_lv_ + v+v%k_1
24

.Qa Qo{ ‘QO(

2 2

2
=27(1 —2a)fﬁzk—4k/vi"*1u_. (4.12)
0 R4

By (2.10) and since 9 has zero average
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1 2ra 2w 1 2o 2w

_ ADf— N ~ 2k—1 A

‘/vik T =5 / /v2’< Yoy +2)dydz <3 / /|v(y)| |0(y +2)| dydz. (4.13)
R4 —2na 0 —2na 0

By Holder inequality with p :=2k/(2k — 1) and ¢ :=2k (1/p+1/g = 1),

o 2 Qk—1)/(k) , 2w 1/ 27
[l i+ < ( [ |a<y>|2kdy) ( / |a<y+z>|”‘dy) = [l as
0 0 0 0

where, in the equality, we have used the periodicity of ? to conclude that f02” [0(y + 2)|**dy = 02” [5(y)|*k dy.
Inserting the last inequality in (4.13), we obtain

2k—1
‘/v+ v_
L0

Inserting (4.14) in (4.12) the proposition follows in the case k > 2. The case k = 1 is similar:

2
/v2=/vf_+vz—2v+v_=2n(l—2a)/ﬁ2—2/v+v_
R4 R4 0 R4

and we conclude by (4.14). O

2
<2naf|ﬁ(y)|2kdy. (4.14)
0

We get as corollary the following key proposition.

Proposition 4.2. Let k € Nt and B € C(2) with B > 0 in §2. Define

1 1 1
B):=—minB wh =, o= ————— k>2. 4.15
cr(B) = 7 If%il where =g, ok = g for (4.15)
Then Vv € N N L?*(£2)
/BUZk >ck(3)/v2k. (4.16)
2 Q
Proof. Since B > 0 in £2 and using Lemma 4.1
2 !
/Bv2k>rginB/v2k>nrginB/f)2k>—kn_linB/v2k. O
2u; 2u, 4 2,

Yk

Remark 4.3. We stress that estimate (4.16) is not trivial (in the case cx(B) > 0) since B could vanish on 92 (in
particular, in this case, (4.16) does not hold true in the whole L2k (£2)).

Remark 4.4. In light of Proposition 4.2 we can prove Theorem 2 requiring only H > 0 in 2 and H > 0 in £2,,,
instead of (1.8).

In the following «; will denote positive constants depending only on H, 8, R, k but not on R, . We also recall the
notation o(1) for a function tending to 0 as ¢ — 0 (possibly depending on R).

4.2. The L* -estimate

Take ¢ := v in the variational inequality (4.10); ¢ is an admissible variation since (v, @) 41 = ||1")||12ql > 0.
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By (4.10), (4.8) and ||w(v, &) || < Co(R)|e]| (recall (4.6)), we get

/ﬂ(ﬁ + H)*5 < f IR8|+ |BH + 5+ w)* — B(H + 0)*][5] <o(D)|D]l 1 <o(D)R
2 22
and therefore there exists 0 < £1(R) < g9(R) such that

/ﬂ(ﬁ+H)2’<a<1 for |¢| < &1(R). (4.17)
2

Noting that, [, Bo**! =0 by (2.18) with a(x, u) = B(x)u®*, B(r —x) = B(x), and using Proposition 4.2, we derive

2k—2

2k . .
/ﬁ(a+H)2’<-:/5[(a+H)2k—ﬁ2k]a:f2k,3m2k+ﬁ > < .)W“H”‘—f
Q Q 2 j=o N/
> 2kee (BH1D112% — i 19135 — kall B 2+, (4.18)

where ¢, (B H) > 0 was defined in (4.15) (recall that 8 H > 0 by (4.4)) and we have used Holder inequality to estimate
lvllzi < Cikllvllgae (0 <2k —1).
Finally, by (4.17) and (4.18) we deduce

ol p2x < k3 for |e] < e1(R). (4.19)
4.3. The L®°-estimate

To obtain the L°°-estimate for v we consider an admissible variation ¢ constructed as in [18]. Let, for M > 0,

0, if M| <M,
g i=quO) =1 r—M, ifr>M, (4.20)
A+M, ifA<M.

For 0(t, x) = 04 (, x) — U_(t,x) = 0(f + x) — v(t — x), we define

¢:=q+ —q-:=q(4) —q-)€V.
We take

12
M= EHUHLOO(T)

and we can assume M > 0, i.e. v is not identically zero.

In [18] it is proved that such ¢ is an admissible variation. We report the proof for completeness. By (3.16), it is
sufficient to prove that (v, ¢) ;1 > 0.

Using (2.10), (2.11) and (2.12)

(s —0-.q(0) —q(@), = / U4q(04) +0-q(0-) +2 / q' GO[E7 + @7 4.21)
2 2

Since ¢ is a monotone odd function of its argument and by our choice of M, v1g(v+) > 0 in a positive measure set,
and, since ¢’ > 0, the second term in (4.21) is non-negative.
We also have, since ¢ is a monotone function,

U = (V4 — 0-)(g+ —q-) = (04 — 1-)(q(04) — q(v-)) = 0. (4.22)

Insert such ¢ in the variational inequality (4.10). Here the dominant term is [ 8(0 + H )**@, in the sense that, by
[w, &)||lg < Co(R)|e| (recall (4.6)), (4.8) and ||v]|z~ < R, we obtain that there exists 0 < &2(R) < &1(R) such that

f B+ H) ¥ o <llgl,1 forle| <ex(R). (4.23)
2
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Since [, % = 0 by (2.18) and B(r — x) = B(x), we have (recall B > 0)

/ﬂ(v+H)2k /ﬂ [+ H)* - '2"]</>>/2kﬂH'2" Lo —iea(IB1245% + 1) @l 11 (4.24)

2

We now estimate the dominant term 2kf BH**~1¢. Since ¢ >0 and ming, , BH > 0 (by (4.4))
/ 2k X' BHp =2k / BH (59)2F % > / (D)% 2. (4.25)
2 2 Qi
By (4.23), (4.24) and (4.25), we have
/ 0o ke (13175 ) + Dl o) (4.26)
214

We have to give a lower bound of the positive integral f91/4 p2h-ly = f91/4(17<p)52k_2 = f91/4(5<ﬂ)(5+ —p_)%=2,

We first consider the (more difficult) case k > 2, in which the L*-estimate for v obtained in the previous subsection
is needed, the (simpler) case k = 1 will be treated later.
Using (2.21) we obtain

2174 £21/4

=2k—1 2k 1 =2k—2 ~ ~2k—2 ~
:2/U+ g+ —Vy q-+VT Vg — VT TU_gy

214
+(2k 2)[ 2k 2U R —|—U3_k 2= v_q_ — 2k 3v2q +U2k 3= %qu]
>2 / T (4.27)
2174
—2/ 2+ k= D)% 20_gy + 2k —2)0%* P2 g (4.28)
174

where in the equality we have used (2.12) and in the last inequality the fact that v, g, v_g— > 0 (since Ag(X) = 0)
and so 92 20_q_, v 352 g4 > 0.
The dominant term is (4.27). Since A%~ 1g (1) > M?*~1|g (1), by (2.11) we obtain

2
2 / p2k= 1q+:2n<1 — %)/52k_1(s)q(3(s))ds>7TM2k1||q({7)HL1(T). (4.29)
0

21/4

We now give an upper estimate of the three terms in (4.27). By (2.10)

s <1< bl
21/4
2 / (vik 2q+)177 < ”ﬁz}c_zq(ﬁ)HLl(T)HﬁHLI(T)g(ZM)Zk_ZHq({_))”LI(T)”{_)HLI(’]I‘)’
214

~y A

v

2%-3 N
(T) ()HLI('JT) 2Mm)? L2k73(1r)||‘1(v) (T)*

2/ 2k3(vq)‘

214
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By the previous inequalities, (4.29), Holder inequality” and using the L**-estimate (4.19) for © obtained in the previous
subsection, we finally have

[ #= adE aE)y — o2+ ) g Ol 20
2174

Now we note that by (2.11)
/|<o| </|q(v+)| +lg@o) =27 ]g(0) | 11 - (4.31)
2 2

We collect (4.26) and (4.30) using (4.31) in order to obtain

M* g (@) 1oy < ks (101755, + M2+ 1) [4(0) ] 11 ry- (4.32)
Since M := [|v]|o(r)/2 hence [lg(®)[rocry = M, [[llo) < 20BllLeem = 4M and [[v]|r=cr) # 0. Hence,
by (4.32),

M H‘](’i’) HLI(T) < "9(M2k_2 + 1) H‘I(ﬁ) ”L'(’ﬂ‘)

and, dividing by IIq(ﬁ)IlLl(T) # 0, we finally obtain M2*~1 < kg(M*~2 4 1).
By our choice of M the L*°-estimate follows for k > 2,
lvllLe < k1o for [e] < e2(R). (4.33)

We now briefly discuss the case k = 1, which is simpler and where a previous L2-estimate for ¥ is not necessary
to obtain (4.33). In fact by (4.23) and (4.24) (with k = 1), we obtain

/ﬁHﬁwémllwllu. (4.34)
Q
For 0 < o < 1/2 to be chosen later, we have

/,BHﬁgo}nlin(,BH)/f)(p. (4.35)
2 g 20

We have to give a lower bound of

/ RS f U4q+ +0_q— — / Vyq— +V_qg4+. (4.36)
24 R4 4
By (2.11) and Aq (%) > Mg (V)|
2
/ Uyqy = / b_qg_=m(l —2a) / 1(5)g(9(s)) ds = 7 (1 — 2a)M || q(v) s 4.37)
ko 24 0

2m 2w

Moreover, since v has zero average, by (2.10), we have
1 2 z A
S 2 / /!q(ﬁ(y))ﬁ(z + y)]dy dz < ZanM”q({;) HLI(T)' (4.38)

‘/EMI‘ = ’/ﬁfh
Qot -Qot —2am 0

Collecting (4.36), (4.37) and (4.38) we obtain

A A

[ 50> 270 = 6Mg ()] 15, > 57 M0 )] 3oy (439
Q0

5 To estimate ||§||Lj(T) < Cj,k\|§\|L2k(T) for j < 2k.
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choosing o :=1/8. Collecting (4.34), (4.35) and (4.39), we obtain
Mlq(v )“Ll(’]I‘) Skrllelg)-

Using (4.31) and dividing by ||g (V) | 1Ty # O in the previous inequality we finally obtain (4.33) also in the case k = 1.
4.4. The H'-estimate

We note that ¢ := —D_j, Dy, v is an admissible variation, since using (2.26),
(=D_pDpv, v) g1 = (Dpv, Dpv) g1 > 0.
Since 8;[B(H + v + w)*], 3; R+ € L%(£2) (see (4.9)), we have, as h — 0,

226 _ (.29
/ﬂ(H+v+ )2 )/,BDh [(H + 5+ )% Dy )/ﬂ (H+ 7 +w)*] .,
2
/R*‘P (226)/DhR*DhD(2_29>) 0 R Vy,

2
and, by the variational inequality (4.10), we obtain

/,3 [(H +5+w)*],5 < / O Ry (4.40)
2
By the L°°-estimate on v given in (4.33), the Cauchy—Schwartz inequality and (4.9) we obtain

‘/ 0 R0y

Since ||[w||g = lw(v, &)||E < Co(R)|e] (recall (4.6)), again by (4.33) and the Cauchy—Schwartz inequality, we find

w3l 2 + o137 (4.41)

/ﬁ[(H+ﬁ+E)2k]lﬁ,:Zk/ﬂ(H—i-ﬁ—i-w)zk_l(H,+z7t+w,)z7t
2 2

> 2k f B+ HY* 157 — oI5 72 — k1all Bl 2. (4.42)

Collecting (4.40), (4.41) and (4.42), we obtain

[ 86+ B sl + oDl (4.43)

Since 7, §; € N and 9%*~! 2 e L1(£2), it results f ,3v2k 1 2 =0 by (2.19). Using the inequality (2.22) we obtain

/,3(5+H)2k—113[2 =/,3[(l7+H)2k—1 _ l—)2k—1]1—)t2 >4l—k/ﬂH2k—15% >4l_k61(ﬂH2k_l)/l7t2 (4-44)
2 2 2 2
where ¢ (-) was defined in (4.15) and BH?*~! > 0 by (4.4). By (4.43) and (4.44) we get
15,117 > < k161191l 12 + (D15 ]13 2
and we finally deduce that there exists a 0 < e3(R) < €2(R) such that
[Vl <k17 Vel <e3(R). (4.45)

Proof of Theorem 2(i) completed. Defining R, := k17 and ¢, := £3(R,) we obtain, by (4.45), that
5@ | 1 < Re Vel < ex
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and v(e) is an interior minimum or maximum point of @ in Bg, := {||[v||z1 < R«}. By Lemma 33 u=v+4+w =
v(e) + w(v(e), &) is a weak solution of (4.1) and

U= 8(H + D(sZk) + w(D(stk), £2k)) ek (4.46)
is a weak solution of (1.1)—(1.3) satisfying |lu||g < Cle|. O

Remark 4.5. Let u :=u, = v + wg, v € V, w, € W, be a weak solution of Uu, = e(g(x, u;) + h(t,x)) where
g€ C(0,7] xR), g(x,u) =g, —u) = g(w —x,u). Suppose u. satisfies ||ugz||r~ < R, Ve small. We claim this im-
plies & € N*. Indeed, w, satisfies the range equation w, = 8D_1HNL (g(x,uy) + h(t, x)) and therefore ||wg| po <
C(R)|e|. Moreover, by the kernel equation ITy(g(x,ve + we) + h(t,x)) = 0, and noting that ITyg(x,v.) =0
by (2.18), we derive

[N, )| 2= [N (8Cx. ve +we) — g(x, ve)) | 2 < [ 8 (x, ve + we) — g(x, ve) | ;2 = O
as ||lwg ||z~ — 0 because g is uniformly continuous on any compact set [0, 7] x {|u| < C}. Therefore IT1yh = 0 and
heN*t.

Remark 4.6 ((Multiplicity)). By (2.18), any forcing term h(z, x) := —g(x, vo(t,x)), vo € V \ {0}, is in N2+, if
g(x,u) =g(x,—u) = g(w — x, u). Therefore the equation [lu = e(g(x, u) + h(t, x)) possesses, beyond the e-small
solution u of Theorem 2, also the other two (not small) solutions +vy.

Remark 4.7 ((Minimal period)). By (4.46) it is sufficient to prove that [Ty u = e(0"'h 4+ w) has minimal period
2 w.r.t. time. Note, first, that if # has minimal period 27 then so has 0~ !h. Therefore, since w is small with &, also
(0~'h 4+ w has minimal period 27 for & small. This follows by the characterization (see Appendix A for a proof)

fe L*(£2) has minimal period 2nr <= 3dpo, p1, ..., pk € D with gcd(po, p1,..., px) =1 4.47)
where D :={l e NT | fi(x) 20} and f(t,x) =Y,z fi(x)el.

4.5. Higher regularity and classical solutions

We now prove Theorem 2(ii) obtaining more regularity for the weak solution u € E of (1.1)—(1.3) defined in (4.46).
Since v € V := N N H! is a critical point of & :V — R
/(ﬁ(H+12)2"+R*)¢=O Yy e NNH', (4.48)
Q
which actually holds for any v € N since N N H! is dense in N with the L2-topology®. Hence, taking v := ¢, for
any ¢ € N N H' in (4.48) and integrating by parts, we find
0= f H(BH+0+w)* +Ri)p = /[Zkﬁ(H + )T Hy 4 U+ W) + Ry (4.49)
Q 2

for any ¢ € N N H'. Since the term into square brackets [-] in (4.49) is in L?(£2) then, again by the L>-density of
NN H'"in N, (4.49) actually holds for any ¢ € N.
Setting for brevity

z:=z(t,x;¢€):= (t, X, gl/(2k) (H(t, x) 4 u(t, x; 8))),
we can write, from (4.7), (4.3),

Ru(t,x;6) = "R(z) and 9R.=¢e TV, R0, + A
where

At x; ) = "9 R(2) + e TV R(2) (Hi (1, x) + Wi (8, x; 8)). (4.50)

6 Recall that [B(H + ﬂ)zk + Ry € L2 (§2) since B, H, u, Ry are continuous functions.
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Then (4.49) becomes

/[Zkﬂ(H + ) N H, + O+ W) + e TV R@)T + Ale =0 VpeN. 4.51)
2

For the remainder of this subsection we shall take ¢ # 0, and K; will denote suitable positive constants possibly
depending’ also on .

Since we are assuming that & € H/ N C/=!, j > 1, then, by (2.3), H € H/™! N C/. Hence, to prove that u €
HI*t1 N CJ, by (4.46), it is sufficient to show that v, w € H/T! N CJ.

We first prove that

Lemma 4.8. i € CL(2) N H2(R).

Proof. We shall divide the proof in three steps.
Step I: w e C'(£2) N H*(£2) and

lwllct + lwll g2 < Kilel. (4.52)

Wehaveii = 1+w € C(2)NH'(£2), H e H*(£2)NC'(£2) and B € H' ((0, 7r)). Moreover, since R € C! (2 xR)
and z(-;6) e CN H', then Ry (i) e CN H' and | R« (: &)llc + |R«(; )|l g1 < K. Hence f (¢, x,i(t, x; €); &) =
BO)(H (t,x) + ii(t, x;€)* + Ru(t, x;6) e CNH and || fllc + | fll g1 < K3.

Therefore, since w solves the range equation w = ED_IHNL f, Iy satisfies (2.6), (2.7) and O~ ! satisfies (2.3),
we deduce that w € C'(£2) N H2(£2) and (4.52).

Step 2: U, € L®(£2).

Let define

Kig := k4 * min(BH*T) (4.53)

2178

and 0 < g4 < &3 such that, V|e| < &4

—14+1/(2 k18 - —\2k—1 — 2k—1 K18
le| 711/ )||8uR(z)HLOO(_Q) <7 4k|BH +v+w)* T — pH +9)* 7 < T (4.54)
(such &4 exists by (1.7) and since ||w| g = O(e)). We claim that
/[Zkﬂ(H +i)H T e, R() Jvp = (10m15M — 191181 20m)) [¢ D | 1 )
2
Vie| <e4, Vv=vy —v_ €N, vi(t,x) =0(t £ x), ¢ :=q(vy) —q(v_) €N, 4.55)

where g = gp (M > 0) was defined in (4.20). Noting that fg B lvp=0 by (2.19), vp > 0 and using (2.22),

/Zkﬁ(H +0)* g = /Zkﬁ((H + o) % g > /2k4]’k,3H2"*'U(p
2 Q 2

>2k41_kglin(ﬂH2k_1) / vy = 8k1g / V. (4.56)
1/8
2178 218

Using (2.11), (2.12) we obtain the lower bound

/w; f v+q++v_q_—/|v_l|q+|+|U+||CI—|
2

218 £21/8
2
1 . . . .
> 27‘[<1 — 2§) / v(s)q(v(s)) ds — 2/|v(t - x)| |q(v(t +x))|
0 2

7 However, such K i can be taken independently of ¢ if we assume the further hypothesis (1.9) on R, see Remarks 1.3 and 4.10.
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2

5 ) A . .

> 7” / 0(s)g(0(s))ds — x/ﬂllvlle(T) 4@ HU(T)’
0

and, by (4.56), we get
2

/ 2kB(H +0)* v > 127k13 / 9(5)q (89)) ds — 19119l 20m) [ ¢ D) | 1 - (4.57)
2 0

Since [, lvp| = [, vp =27 fozn 9(s)g(0(s)) ds and using (4.54), we get, V|g| < &4,

2
‘/8]+1/(2k)8u73(z)v(p < Je|” 11/ ||3MR(Z)||LM(Q)/v¢<m<18/ﬁ(s)q(ﬁ(s))ds. (4.58)
Q2 0

Therefore, using (4.57), (4.58), the second inequality in (4.54) and since vy > 0, we obtain

f [2kB(H + i) =" 4+ 7 T1/@05, R (2) v

2
=/2k,B(H + ) g 4 eV, R(2)ve + 2kB[(H + 5+ 3) ' — (H + )% g
2
2
> 1013 / 0(5)q (0(s)) ds — k19110l 2¢m) [ D) 1y Vel < ea (4.59)
0

Since Ag(A) = M|g(L)|

21 21
[ s1a@0)as = [la(@0) s =M@ ],
0 0

and, by (4.59), we finally get (4.55). We now cAonclude the proof that v, € L°°(£2). Taking v := v, in (4.55) and
@ :=q(0;v4) —q(d;v_) we obtain® (recall that |17’|L2(T) < R, which is fixed)

/ [2kB(H + )™~ + 7 FV/CY9,R(D)oip > (10mic18M — 120) g (V)| 1y Vel < 4 (4.60)
2

Note that, since H, w € C!, by (1.7) (A is defined in (4.50))
lAllLe < Ky. 4.61)

From (4.51), (4.52), (4.61), we get

V[zmwwﬁ"* +8_1+1/(2k)8u72(z)i|1‘),¢ = ‘/[2kﬂ(H+zZ)2k—l(H, +w;) + Alo| < Ksloll Lo
2 2

and, by (4.60), we deduce
(10718 M — K20) ”4(5/) HLI(T) < K5||¢||L1(Q)v Vlgl < &4.
Finally, recalling ||¢|;1 <27 ||q(13/)||L1(rﬂ-) (see (4.31)), we find

M q(@) 1 ry < Kella (@) 1 y- (4.62)

8 Here (¢, x) = 0(f +x) — v(t — x) and s0 ¥; (£, x) = V' (t +x) — V' (t — x).
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We claim that (4.62) implies o' € L*(T). Indeed, if v’ ¢ L°(T), then for any M > 0, |¢(¥")ll1¢p) > O and
(4.62) yields M < Kg; hence v' € L%(T). Taking M := ||0/|| .o (T)/2 we obtain, by (4.62), [|v/[|L=T) < 2K¢ and
lvs ]l Lo (2) < 4Kg by (2.15).
Step 3: v, € H'(£2) (and hence v € N N C1(£2) N H2(£2)).
We claim that
/[Zkﬂ(H + i)+ TG R@) v = kislvli,. YveN, lel e, (4.63)
2

where «1g is defined in (4.53) and ¢4 is defined in (4.54). Arguing as before, using fn B3 ~1v2 =0 (recall (2.19)),
(2.22) and (4.16), (4.15)

/2kﬂ(H+l_))2k_1 2:/2kﬁ((1_1+1—))2k—1 —172k_1)?)2>/2k41_k/31‘12k_1v2
2 2 )

> 2k41_kc1(,3H2k_1)/v2 =2k18|v]|3 . (4.64)
2
Since, by (4.54),

‘/ 8714’1/(2/{) (auR(Z))U2

_ K18
< el V0 R@| g 01172 < S 0N,

and

<|2kB[(H + )™ ™' — (H + 5)* ]| I0]175 < %

9}

using (4.64) we prove (4.63).
Take ¢ = —D_; Dy, € N in (4.51). Integrating by part (recall (2.26) and (2.23)) equality (4.51), we obtain

0= [ DAk + 0t +5, 4+ )+ VW8, RE@)5, + A]DAT
2

= /[Zkﬂ(H + i) 4 7R (5, R(2)) | (Dhv,)?

2
+ [2kB(Dw ((H + @)%~ (T1,0,) + 2kB(Dn ((H + )** 1 (H, + 1)) )
+ &~ V@ (D) (3,R(2)) ) (Th ) + Dy A Dy (4.65)
The dominant term here is (4.65). Using (4.63) with v := Djv,, we estimate (4.65) by
/ [2kB(H + i)~ + 711/ (3, R(2)) |(Dr9)? = k18| D125, Viel < ea. (4.66)
2

We now estimate all the other terms. Since || T, v; || Lo (2) = V¢l L (2) < K7 and

1D (CH + ") | 2 < 3 ((H + 1) || 2 = @k = D||(H + D) 2(H, 4+ 1)|| ;2 < k21, (4.67)
we obtain
f [2kB(Dy ((H + @)** ")) (T, 5,) | D | < K3l Dyl 2. (4.68)

Since H e C' N H?%, 5, € L™, w e C' N H?, we have

| Da(CH + )" (Hy + wp) || 2 < [0 ((H + >~ (H, +wp) |2
= | @k — )(H + i) > (H; + ity) (H, + ;) + (H + @)** ™ (Hy + ) | 2 < Ko,
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and we deduce

/ [2k8(Dy ((H + )\ (H, + 0)))] Du| < Koll Dyl 2. 4.69)

From

e TVCY (3,R(2) =TTV R(2) + &7 FVEGE, R(2)(H, +ity)

we derive
=109 b, (R 2 < [P0, (3R @) | 2 < Ko (@70
and (recall v; € L)
/ [e71+1/C0 (Dyy (9, R(2))) 0 | Dite | < Kol ll oo | Diiell 2 = K1 | Dull 2 @71)
2

We finally estimate the term

29 B
SIDnAll21Drveli2 < 110 All 2| Davyll 2

/(Dh A)(Dyvr)
2

(A is defined in (4.50)). Since
FA=e""4R@) + e TV R()QH, + v, +2w;)
+ &7 VRS2 R(2)(H; + i) (H; + ;) + &~ V08, R(2) (Hyt + rr),
by (1.7), and using that 3, € L>°(£2), w, H € H*>(£2) N C'(£2), then ||3, A ;> < K2 and

‘ / (DhAY(Di)| < Kiall Dai 2. 4.72)
2

Recollecting (4.65), (4.66), (4.68), (4.69), (4.71) and (4.72) we obtain
K18l Due 1125 < K13l Dui |l 12

and so ||Dh5t||L2(:2) < K4 for all 4. By (2.27) we conclude that v; € N N H! and ||17,t||Lz(_Q) <Ki. O
We now prove Theorem 2(ii) by induction over j > 1.
Lemma 4.9. Assuming v, w € C/~1(2) N HI (2), then v, w € C/(2) N HIT1(2).

Proof. Again we divide the proof in three steps.
Step I: w e C/(2) N H/1(£2) and

IWlles + 1 g1 < K lel. 4.73)

By hypotheses H € C/(2) N H/T1(£2) (since h € C/I~1(2) N HI(22)), p € HI((0, 7)), R € C/ (2 x R) and
z2(5€) € CI7Y(2) N HI(2). Hence Ru(5¢) € C/71(2) N HI(2) and [Ru(8)lci + IRuCi o)l < Ky
Hence f(f,x,ii(t,x;€);e) = B(x)(H(t,x) + i(t, x; €)% + Ru(t,x;8) € C/71(2) N HI(2) and ||f|cjm1 +
Il <K

Since w solves the range equation w = eO0~'11 yL f, Iy satisfies (2.6), (2.7) and 0! satisfies (2.3), we conclude
that w € C/(£2) N H/™1(£2) and that (4.73) holds.

Step 2: 3] v € L®(£2).

Reasoning as for (4.49), we get

0= f O (BH+T+w)*+R)p= /[Zkﬂ(H )l 4 TV R ()] (8] 0)9 + FPg (4.74)
2 2
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for any ¢ € N. Here ) depends polynomially on k, 8 and
e YR, 14n=j, 8H, dw, 1<j, dlv, 1<j—1,

but not on 3,j v.
Choosing in (4.55) v = 8,] v and so ¢ := q(atj vy) — q(a,f v_), we get (recall that v € H), Vel < &4,

/[2k,3(H + ) 4270, R ()] (5] 0)p > (10mr1sM — 120) | ¢ (09) | 11 oy 4.75)
2

where U V(€)= %5. On the other hand, by (4.74) we get

/ [2kB(H + D)%~ + 703, R@)] (3 8)0 < | FD| ol < K§ Ml (4.76)
2

Since ¢l 1 <27 llg(@)]| L1 qy (see (4.31)), from (4.75) and (4.76) we get

(107 k18 M — K24) “‘1(50)) ”Ll('ﬂ‘) < Ks(j) |}‘1(’i’(j)) ”Ll('[[‘)’ Viel < es.
Then
Mg(GO) | iy < K6 [ ()

||L1(T)’ V|8| <84'

” LI(T)
Arguing as in (4.62) we get 0) € L%(T). Finally 8/ € L>(£2) and ||/ 3| 1) < 4K
Step 3: We now prove that 3/t € H' (and hence v e NN C/ N H/t).
Choosing ¢ := —D_j, D3] ¥ in (4.74), integrating by parts (recall (2.26) and (2.23))

0= / [2kB(H + i)~ + 71 7V/03, R ()] (D1 (3] 7))

2
+[(Dh (2kB(H + D> 4 6703, R(2))) (10 (8] 8)) + (D (F)) (D1 (8] ). 4.77)
Using (4.63) we get
/ [2kB(H + @)~ 4 e~V @09, R ()| (D4 (8/))* = w15 | Dn (37 9) 7. Viel < ea. (4.78)

2

From (4.67), (4.70) and since 8,j1') € L°(£2),

‘/(Dh (2kB(H + )~ + 71+ 05, R(2))) (T (3] 7)) (Dw (3] 7))
ko)

4K | Dy (2kB(H + D!+ 7TV, R(2)|| 2] Da (3] 9) |,
<Ky | Da (8] 9) | 2. (4.79)
We note that 3, FV) is a polynomial in &, 8,
e OO R(), I4+n=j+1, OH, 3w, I<j+1, v, 1<},

and that the terms B,j g , 8,j Hwe L2(£2) (recall that w, H € H/t1(£2) by Step 1) appear only linearly (with no
powers). Hence, using that 3/ H, 8w, 3/v € L>®(2), VI < j,

TG R LGN O e IGRI M EACLT

< K| D (8/9)]) .. (4.80)
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Finally, by (4.77)—(4.80) we get

s Dn(8/9) |72 < K57 | D (8/9) | 2
and therefore

| 0w (8! 9)] - < K15-

By (2.27), we conclude the proof obtaining 3; 7' 5 € L2(2) and 3/ 7' 9)l,. < K. O

Remark 4.10. If H, i € H'(£2) N C=1(£2) (0 <i < j) and (1.9) holds, then R, and 8;R, are bounded in
H(£2) N C~1(£2) by some constant «; independent of ¢. In this case, the constants K; of this section can be taken
independently of ¢, obtaining the estimates (1.10).

4.6. Proof of Theorem 1
The following proposition is a sort of “maximum principle” for the wave equations (1.1)—(1.3).

Proposition 4.11. Let h € N+, h > 0 (or h > 0) a.e. in 2. Then there exists a weak solution H € E of OH = h
satisfying H > 0 (or H > 0). In particular we can choose

K t—x+& x t+x—&
H(t,x) ;:%/ / h(t,£)dr dé — %/ / h(t,£)dr dé 4.81)
0t—x—§& K t—x+&

1 j=1 i i j+1 i
ki . ) = .
for a suitable k € (0, ). Moreoverhe C'~™' = H e C/andhe H = He H for j>1

Proof. We consider the case & > 0, the case & > 0 being similar.
Step I1: H defined in (4.81) belongs to H'(£2) N CY/2(2) for any k € (0, ) and

K

208, H)(t,x) = /(h(r X HEE) —h(—x—£5)dE

0

X

—/(h(t+x—g,s)—h(t—x+s,s))dg:eLZ(Q), (4.82)

200, H)(t,x) = /(—h(r —Xx+&E+h(t—x—§§))dE

0
x
—/(h(t+x—§,$)+h(t—x+§,$))d$eLz(SZ). (4.83)
K
We shall prove that the first addendum in the r.h.s. of (4.81)
K t—x+&
H(t,x):= %f / h(t,&)dr dé
0t—x—§&

belongs to C/2(£2) N H'(£2), the second addendum being analogous. Defining
T(t,x):=T@t,x;)={(r.§)eR|t—x—E<t<t—x+§ 0<& <k}
we can write Hy (¢, x) 1= (1/2) fT(t’x) h(t,&)dr dE.
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Since meas(7T (¢, x; «x)) = k2 < 72 we derive that Hj is uniformly bounded by

1 T
|Hy(t,x)] < E/IT(t,x)(Ta€)|h(fa§)|dt d§ < 5||h||L2(.rz)
2

using Cauchy—Schwartz inequality.
Fori =1,2and (¢, x;) € §2, let define T; := T (¢, x;). It results

meas(T; \ T») = meas(T> \ T1) < 7 (|11 — ta] + [x1 — x2])

and, using again Cauchy—Schwartz inequality,

|Hi (11, x1) — Hy (2, x2)| < /|h|+ /Ihl |t1—t2|+IX1—X2|) ||h||L2(Q)'
T1\T2 D\

Therefore we have proved H; € C 12(82).
We now prove that H, € H'(£2) and that 9, H; = —d, H; = fi where

K

1
file.x) =2 /(h(t —XHEE) —h(t —x —E,§))dE € LX(R).

0
We first justify that f; € L?(£2). Since

|h(t—x+é,%‘)|2+|h(t—x—§,§)|2>%|h(t—x+“§,$)—h(t—x—

by periodicity w.r.t. # we obtain that, Vx € (0, ),

K 2w K 2m

1
MMMD>fme9Pm@>Zf/%a—x+a9—mww—aafm@.
00 00

Integrating the previous inequality in the variable x between 0 and r, applying Fubini Theorem and Cauchy—Schwartz
inequality, we deduce

T oKk 27w

71||h||L2(_Q) ///|h(t—x+§ £)—h(t —x —&, g)| dr d& dx

:i//|h(t—x+§,§)—h(t—x—§,$)|2d§dtdx
20

P 2
>Z%/(/Ma—x+$£)—h0—x—&éﬂ@)<hm
2 0

1 2 1 2
>— | f2 0 dede =~ fi12,.
K K
2

Finally, we prove that o, H] = — f1, being d; H] = f} analogous. By Fubini Theorem
2w k mwt—x+&

/Hupx_/// / h(t, &)gx(t, x)dr dx d& dt

0t—x—§&
2k t+& t+E—1

I ///

00 t+E—m

/h / <pxdxdr>d$dt

t—&—m t—-&—1
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2« t+£& —k
://( f h(t,&)pt, t+& —1)dr — / h(ﬁé)‘ﬁ(hl‘—%‘—r)df) de dr

00 t+&—m P

21 Kk 0 0
://(—/h(t-l-E—Lé)‘/’(t,x)dx—i-/h(t—é—x,“g‘)(p(t,x)dx) d&dt:Z/flgg,

00 T p J

With analogue computations for the second addendum of H in (4.81) we derive (4.82) and (4.83).

Step 2: There exists k € (0, w) such that H(t, x) verifies the Dirichlet boundary conditions H(¢,0) = H(t,7) =0
Vi eT.

By (4.81), the function H satisfies, for any « € (0,7), H(t,0) = 0 V¢ € T. It remains to find « imposing
H(t,7) =0. Taking x = 7 in (4.81) we obtain

Kk t—m+E& T t+m—&
H(t, ) :=%/ / h(r,E)drdé—%/ / h(z,&)dr de
0t—n—& K t—m+§&
T t—m7+& T t+m—§
Z%/ / h(r,é)drdé—%/ / h(z,&)dr d&
0 t—nm—-& K t—m—§&
T & T
- %//h(r,é)drdé - %//h(t,é)drdé =c— x(k), (4.84)
0 —-& K —1

where in the last line we have used the periodicity of A (-, §) and (2.4).

In order to prove that H(t,w) =0, Vt € T, we need only to solve x (k) = c. By the absolute continuity of the
integral (with respect to the two-dimensional measure dr d§) x (k) is a continuous function. Moreover, since i > 0
a.e.in £2, x(0) > ¢ > 0. Finally x () = 0 and therefore, by continuity, there exists x € (0, ) solving x (k) =c.

Step 3: H € E is a weak solution of JH = h, namely

/ga,H,—(prx—{—goh:O, Vo e CH($2). (4.85)
2
By Fubini Theorem and periodicity we get

/(q),(t,x)/h(t—x+E,§)dE+g0x(t,x)/h(t—x+é‘,‘§)d$)dtdx
2 0 0

T oKk 2w

=/f/(<pz<r,x>h<r—x+s,s>+wx<z,x>h(r—x+s,s>)drdsdx
000

T ok 2w

Z/f/(wr(tﬂ—é,x)+gox(t+x—s,x))h(r,s)dtdgdx
000

K 21 b4

=//h(t,$)/%(<p(t+x—é,x))dxdtdé:O (4.86)
00 0

by Dirichlet boundary conditions. Analogously,

—/ ((pt(t,x)/h(t—x—E,S)dé+g0x(t,x)/h(t—x—é,$)d§> drdx =0. (4.87)
0 0

2
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Moreover, again by Fubini Theorem,

/(—wz(t,x)/h(ﬂrx—S,S)dé+<px(t,x)/h(t+x—S,E)d5> drdx
2 K K

T ox 2w

:///(_¢t(t’x)h(t+x—5’§)+<ﬂx(l,x)h(t+x—E,S))dldgdx
0« 0

T ox 2w

=//f(—<ﬂz(f—X+S,x)+<px(t—x+é,x))h(t,s)dzdgdx
0k 0

2n 7w b4 21 k b4
://h(t,g)/%(go(z—x+é,x))dxdtd§—//h(t,g)/%(go(t—x+é,x))dxdtd§=—/h<p
00 3 00 0 2
and, analogously,
/(go,(t,x)/h(t—x+€,$)d$+<px(t,x)/h(t—x+é,$)d§> dtdx:—/hgo. (4.88)
Q K K Q

Summing (4.86)—(4.88) and recalling (4.82), (4.83) we get (4.85).

Step 4: H(t,x) >0 in 2.

First case: 0 < x < k. By (4.81) and geometrical considerations on the domains of the integrals, we derive that, for
O<x<k,H(t,x)= f@ h(t,&)dr d§ where ©® := O , is the trapezoidal region in £2 with a vertex in (7, &) = (¢, x)
and delimited by the straightlinest =t —x+ &, 1=r+x—&,E=kandt=t—x —£&.Since h > 0 a.e. in £2 we
conclude that H (¢, x) > 0.

Second case: k <x < m. Since H(t +m — x, ) =0 we have, by (4.81),

K t—x+& mt—x—&+2m
/ / h(t,é)drdé:f / h(z,&)dr d§.
0t—x—§& kK t—x+&

Therefore, substituting in (4.81), we get, for x < x < 7, the expression H (f, x) = f@ h(t, &) dr d& where, now, ® :=
O , is the trapezoidal region in §2 with a vertex in (t,§) = (¢, x) and delimited by the straight lines t =¢ — x + &,
t=t—x—§&+4+2n,E§=kand Tt =t+x—&. Since h > 0 a.e. in £2 we conclude also in this case that H(¢,x) > 0. O

Proof of Theorem 1. Since & > 0 a.e. in §2, by Proposition 4.11 there exists a weak solution H € E of JH = h
verifying (1.8) (i.e. H > 0 in §2). Therefore existence of a weak solution u € E satisfying |lu||g < C|e| follows from
Theorem 2(i) with B(x) = B and R = 0. The higher regularity for u and the estimate [|u zj+1 (o) + lullcigy < Clel
follow from Theorem 2(ii) and (1.10) in Remark 1.3 since assumption (1.9) is trivially verified (R =0). O

5. Proof of Theorem 3

In order to prove Theorem 3 we perform the Lyapunov—Schmidt reduction of Section 3 and we minimize the
reduced action functional @ in Bg := {||v|| ;1 < R}. To conclude the existence of a solution, we have to prove that the
minimum v € Bg is an interior minimum point in Bg for some R > 0.

This case is easier that the previous one since the required a-priori estimates can be deduced directly by the
Oth-order variational inequality (1.17) which does not vanish for € = 0.

Step 1: The L°°-estimate. Since a(x, u) satisfies (1.11) or (1.12), by (2.18), fg a(x,v)p=0,YVpeV (asveV)
and hence

/ f)e= f F@e+alx, v)p = / f@®)e. (5.1)
2 2 2
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Since ||w(v, €)||g < Co(R)|e|, by the variational inequality (1.17) and (5.1), we find

/f(ﬁ)w <o(MCi(I9lL=)llgllr <o(MC1R) @l 1,

where C1(-) is a suitable increasing function depending on f. Then there exists a decreasing function 0 < €1(-) < &o(-)
such that

ff(@qoé el for |e] < &1 (R). (5.2)

We now choose, as in Subsection 4.3, the admissible variation ¢ = g(v4+) — g(v—) where g is defined in (4.20). By
the mean value theorem

f (t,x,v) = f (t,x,0) + fu (intermediate point)v
and, by (5.2), since fu B > 0and vy > 0 (recall (4.22)), we obtain

ﬂ/ﬁcp <killellipr. (5.3)
2

Arguing as at the end of Subsection 4.3 (see inequality (4.39), recall (4.31) and M := ||§|| 10(T)/2) we deduce

/ﬁfﬂ Z 2|0l L flell

Q
and, by (5.3), we deduce

lollLe < k3 for |e] < e1(R). (5.4)

Step 2: The H'-estimate. The H'-estimate is carried out as in Subsection 4.4 taking the admissible variation
¢ := —D_j, Dy in the variational inequality (1.17). By Lemma 2.6, denoting w := w(v),

0> / f+)p= / Dy f (5 + ) Dy =2 /(f,(ﬁ + W)+ fuld + W)(D, + D). (5.5)
2 22
Using the L*°-estimate (5.4) for v, ||w|| g < Co(R)|¢| and (5.5)

< Kallvell g2 (5.6)

/fu(f) + )07 < ’/(ﬁ(ﬁ + W)+ fu(D+ W)Wy )0,
2 22

for le] < &2(R) < &1(R).
Since f, > B >0, Jo au(x, )2 =0 by (2.19), and ||w|| g < Co(R)|e], we get

/fu(f)+w)af=/fu(a+w)a,2+au(x,ﬁ+w)ﬁ,2>/ﬂﬁ%+/(au(x,a+w)—au(x,a))ﬁf

Q 2 2 2
> [ -0 [0 [ 57)
2 Q Q
for |e| < e3(R) < &2(R). From (5.6) and (5.7) we deduce
IVl gt <ks  Vie| < e3(R).

Proof of Theorem 3 completed. For R, :=«s5 and ¢, := £3(Ry), v is an interior pointin Bg, and i := v+ w(v, €) is
a weak solution of (1.1)—(1.3). Regularity of the solution u is proved as in Subsection 4.5 and Theorem 3 follows. O
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Appendix A

Proof of Lemma 2.2. By the periodicity of a(z, x) with respect to ¢

/a(t,x)dtdx:/a(t,x)dtdx
24 24

where ﬁa ={awr <x <nw(l —a), —x <t < —x + 2w }. Under the change of variables s :=1¢ + x, s_
domain £2, transforms into the domain

{O<s+<27r, s+—27r(1—ot)<s_<s+—2mx}

and we get (2.9).
For p,q € L'(T), by (2.9) we have
g sy+—2am
1
/p(t +x)g(t —x)dtdx = E/ds+ p(s+) / q(s—)ds_
24 0 —2m4s4+2am
. 2 2 s++2am
= E/ dS+p(S+)(/61(S)ds— / q(S—)dS—>
0 0 s+ —2am
] 2 2 ] 2 2am
=§fp(S)deq(S)ds—§/ dsy p(s4) / q(s++z)dz
0 0 0 —2am

and we obtain (2.10) by Tonelli’s Theorem (calling s, = y).
Formula (2.11) follows by (2.10) setting g = 1.

=t — x the

We now prove (2.12). Since the change of variables (¢, x) — (¢, 7 — x) leaves the domain 2, unchanged

/a(t,x)dtdx:/a(t,n—x)dtdx,
24 20

and, using also the periodicity of p,

/f(p(t+x))g(p(t—x))dtdx:/f(p(H—rr—x))g(p(t—n+x))dtdx
24 o

T—amn 2w

/ ff(p(t+n—x))g(p(t+7r+x))dzdx

ar 0

T—om 2w

/f(P(t —x))g(p(t +x))drdx

o 0

proving (2.12). O

Proof of Lemma 2.3. (2.13) follows from the equality v* = v + v2 — 2vqv_, (2.11) (with p =v%, v

and (2.10) (taking p, g = 9, @ = 0 and recalling that 0 has zero average).

and o =0)
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(2.14) follows form (2.13) since v;(f, x) = v'(t + x) — v’ (t — x) (and similarly for vy).

Next, the first inequality of (2.15) follows from v (¢, x) = 0(¢ +x) — 0(t — x) recalling that, since 0 has zero average,
there exist two positive measure sets in which 0 > 0 and 9 < 0. The second inequality of (2.15) is trivial.

We finally prove (2.16). Since © is continuous (9 € H!(T)) there exists &y such that 101l Loocmy = |0(Em)|. Being

fzn v = 0, there exists |y — &y| < 7 such that v(&y) = 0. Hence

0
Em 1
161l = |5(En)| = / 0 ds| < VAT 2y = 5o
&

by the Cauchy—Schwartz inequality and (2.14). Finally by (2.15),
R V2 1
ol < 200lm < V2wl = 5 (1l + lorlli) < W)

= vll72 o) + 10ell2 g + el o

where ||v|| L2(92) L2(£2) L2(22)

2 .
HY(2) "
Proof of Lemma 2.4. By the change of variables (¢, x) — (¢, 7 — x) and periodicity,
n—om2ﬂ2k+l
/fﬂl'-~<ﬂ2k+1= / /H(@j(t+X)—¢j(t—X))dtdx
fo ar o J=1
nfom27r2k+]
= / /1_[((Z)j(t—f-n—x)—g?Jj(t—n+x))dtdx
ar j=1
n—om2712k+1
= / /1_[(¢j(t—x)—¢j(t+x))dtdx
o /=1

om

= (—1)%*+! / Pl P2kt
2y

which implies (2.17).
With similar arguments we can prove (2.18) and (2.19). O

Proof of Lemma 2.5. The inequality (2.20) follows by the convexity of r — 1.

We next prove (2.21). If b = 0 it is trivially true. If b # 0 let us divide for b* and set x :==a/b € R. (2.21) is
equivalent to prove

Fx) = — DF —xZ* — 14 2kx? 1 4 2kx > 0. (A.1)

Itresults £(0) =0, f/(x) = 2k[(x — 1)k~1 — x2k=1 1 2k — 1)x%~2 4 1] and so f’(0) = 0. Therefore to prove (A.1)
it is sufficient to show that f is convex. We have f”(x) = 2k(2k — 1)g(x) where gi(x) := (x — 1)2k=2 — x2k=2 4
2k —2)x%k=3 k> 2.

We now show by induction on k > 2 that g (x) > 0. It is true for k = 2 since gr(x) = (x — D2—x242x=1>0.
Supposing now g (x) > 0, let us prove that g1 (x) > 0.

We claim that

g1 (1) = (o = D — x4 2
is a strictly convex function. Indeed

S () =2k[(x = D*71 — x4 @k — Dx*72] and g, (¥) = 2k(2k — D ge(x).
By the inductive hypothesis gi (x) > 0 and therefore g;’ +1(x) > 0. Moreover, being

Lr+1(x) & costka*Z, lim ggy1(x) =400
x—+o00
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and gi+1(x) possesses a unique point of global minimum X that is also the unique critical point. Now it is sufficient
to show that gg41(x) > 0.

g (8) = 2k[(x — D* ! — #7142k — DF* 2] =0
implies that (¥ — 1)2~1 = ¥2=1 — (2k — 1)x?¥=2. Substituting this equality in the expression for gi 11 (X), we have
g1 (B) = (F — D[F*71 — 2k — 1)x%*2] — 22 4 2kx2!
= 7% g2k ok — 1R 4 2k — DE2 — g2 4 ogpk!
=Q2k—Dx*?%>0
(we use that x # 0, in fact g,’(Jrl 0) = -2k #£0).
Proof of (2.22). The case k = 1 is trivial. For k > 2, we divide by »?*~! and define x := a/b € R. We have to prove
that
FO) =+ DFT g7k vy e R

Since
1
f/(x) — (2k _ 1)[(x + 1)2k—2 _ x2k—2] — 0 ()C + 1)2/{—2 =x2k—2 x = _E
and f(x) — oo as |x| — oo, we conclude that x = —1/2 is the unique minimum point of f(x) and therefore f(x) >

f(=1/2)=4"k" g

Proof of Lemma 2.6. Formula (2.23) follows from

_ f(t+h7x)g(t+h’x) B f(tsx)g(tvx)

N h

_ fa+hx)— f(t,x) gt +h,x)—g(t x)
B h h '

We prove (2.24) by induction. It is obvious for m = 1. We suppose (2.24) holds for m and prove it for m 4 1: by (2.23)
we have

Dy (f)(t, x)

gt,x)+ f(t+h,x)

m—1 m
Dy(f™ - f) = (Duf") f +Tuf" Dif = (Dnf) [Z ST+ Thf"’} =D f) Y fUOIT £

Jj=0 j=0
Formula (2.25) follows by (2.23) performing the change of variables s =t + h,

gt+h,x)—g(t, x) d
h

=/(th>g+/f(s,x>g(s”‘)_g(‘_’”) ds dx.
2 2

tdx

/Dh(fg)a,x)=f(th>g+ff(t+h,x)
2 22

2

h

We now prove formula (2.26) for integration by parts. Due to the periodicity of f and g with respect to ¢

1
/f(D—hg)=—E/f(1»x)[8(f—h,x)—g(f,x)]dfdx
2 22

1
:_Z/[f(t+h,x) —f(t,x)]g(t,x)dtdxZ—/(th)g-
2

2
The proof of (2.27) is standard. Let ¢ € cl(). By (2.26)

/ Dy f)g = — / F(D_np). (A2)
22 2
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Now the sequence f(D_p¢) converges to f¢; a.e. and, since

| £t ) D) (0, )| < Nl 1oy | £ (2. 0)| € L' (82),

we can use the Lebesgue Theorem to obtain

/ F(D_pp) =2 f for. (A3)
2 22

L2
Since, by hypothesis, Dy, f is bounded in L?(£2), Dy, f = g, up to a subsequence. Passing to the limit in (A.2) for
h — 0 we find 089 =— /, o fo:. Therefore f has a weak derivative f; = g and by the weakly lower semicontinuity
of the norm

I £ill 12 < liminf || Dy £l 2 < C.

In order to prove (2.28) assume temporarily f is smooth. From the fundamental theorem of calculus

1
(D) = LD Z IO =fft(t+hs,x)ds.
0
By Cauchy-Schwartz inequality, Fubini Theorem and periodicity we obtain
T 2m, 1 2 w27 1
/|th(t,x)|2dtdx=ff /ﬁ(t+hs,x)ds dtdxg//f|f,(t+hs,x)|2dsdtdx
2 00 '0 00
7 127 127

0
:///|ft(t+hs,x)|2dldsdx:///|ft(t’x)|2dtdsdx
000 000

1 727
2
=///|ft(t,x>| drdxds = [ fill3 -
000

Inequality (2.28) is valid, for any f having a weak derivative f; € L%(£2), by approximation.
In order to prove (2.29) we first show the weak L?-convergence. Let ¢ € C!(£2). By (2.26), applying as before the
Lebesgue Theorem, and since f has a weak derivative f;

/(th)(/’:_/f(D—h(P)}:g)—/fﬁﬁt=/ft</), Vo e C1(2). (A.4)
2 2

2 2
Since, by (2.28), Dy, f is bounded in L?, and (A.4) holds in the dense subset C!(£2) C L?(£2), we conclude the weak
2

L
Lz—convergence Dy f— f;.
By the weakly lower semicontinuity of the norm and (2.28)

I fell 2y SHminf ([ Dp fll 2y < 1 fillp2ey = ImlIDnfli20) = il 120)- (A.5)

Since L?(£2) is a Hilbert space, weak convergence Dy, f Li fr and (A.5) imply the strong convergence Dy, f i fi. O
Proof of (4.47). (=) If 1 € D then we choose po := 1 and k := 0. If not, there exists p € D, p =gq;" -+ qu"
for ¢; prime numbers and m,a; € N*. Since, by hypothesis, u is not 27 /q; periodic, Inj € D such that
nj ¢ q;N. In this case we choose pg := p, p; :=nj, k := m and we claim that the greatest common divisor
y :=gcd(po, p1, ..., pr) = L. If not, since y | po, there exists jo € {1, ..., k} such that g, |y . Therefore q,|pj, =n;j,
which is a contradiction.

(<) If false, there exists n > 2 such that f is 27 /n periodic and then D C nN. Hence n|gcd(po, p1,..., pr) =1
which is a contradiction. O
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