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Abstract

We prove existence and regularity of periodic in time solutions of completely resonant nonlinear forced wave equations with
Dirichlet boundary conditions for a large class of non-monotone forcing terms. Our approach is based on a variational Lyapunov–
Schmidt reduction. It turns out that the infinite dimensional bifurcation equation exhibits an intrinsic lack of compactness. We solve
it via a minimization argument and a-priori estimate methods related to the regularity theory of [P. Rabinowitz, Periodic solutions
of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math. 20 (1967) 145–205].

Résumé

On prouve l’existence et la régularité de solutions périodiques en temps d’équations des ondes non linéaires forcées, complè-
tement résonnantes, avec des conditions au bord de Dirichlet, pour une grande classe de termes forcants non-monotones. Notre
approche est basée sur une réduction de Lyapunov–Schmidt variationnelle. L’équation de bifurcation en dimension infinie présente
un manque intrinsèque de compacité. Nous la résolvons par un argument de minimisation et à l’aide d’estimations a priori inspirées
de la théorie de la régularité de [P. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential equations, Comm.
Pure Appl. Math. 20 (1967) 145–205].
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1. Introduction

In this paper we consider the problem of finding nontrivial time-periodic solutions of the completely resonant
nonlinear forced wave equation

�u = εf (t, x,u; ε) (1.1)

with Dirichlet boundary conditions

u(t,0) = u(t,π) = 0 (1.2)

where � := ∂tt −∂xx is the D’Alembertian operator, ε is a small parameter and the nonlinear forcing term f (t, x,u; ε)
is T -periodic in time. We consider the case when T is a rational multiple of 2π and, for simplicity of exposition, we
shall assume

T = 2π.

We look for nontrivial 2π -periodic in time solutions u(t, x) of (1.1), (1.2), i.e. satisfying

u(t + 2π,x) = u(t, x). (1.3)

For ε = 0, (1.1), (1.2) reduces to the linear homogeneous wave equation{
�u = 0,

u(t,0) = u(t,π) = 0
(1.4)

which possesses an infinite dimensional space of solutions which are 2π -periodic in time and of the form v(t, x) =
v̂(t + x)− v̂(t − x) for any 2π -periodic function v̂(·). For this reason equation (1.1), (1.2) is called completely
resonant.

The main difficulty for proving existence of solutions of (1.1)–(1.3) for ε �= 0 is to find from which periodic orbits
of the linear equation (1.4) the solutions of the nonlinear equation (1.1) branch off. This requires to solve an infinite
dimensional bifurcation equation (also called kernel equation) with an intrinsic lack of compactness.

The first breakthrough regarding problem (1.1)–(1.3) was achieved by Rabinowitz in [18] where existence and
regularity of solutions was proved for nonlinearities satisfying the strongly monotone assumption (∂uf )(t, x,u) �
β > 0. Using methods inspired by the theory of elliptic regularity, [18] proved the existence of a unique curve of
smooth solutions for ε small. Other existence results of weak and classical solutions have been obtained, still in the
strongly monotone case, in [10,12,16].

Subsequently, Rabinowitz [19] was able to prove existence of weak solutions of (1.1)–(1.3) for a class of weakly
monotone nonlinearities like f (t, x,u) = u2k+1 + G(t, x,u) where G(t, x,u2) � G(t, x,u1) if u2 � u1. Actually, in
[19] bifurcation of a global continuum branch of weak solutions is proved. For other local existence results in the
weakly monotone case we mention [14,20].

In all the quoted papers the monotonicity assumption (strong or weak) is the key property for overcoming the lack
of compactness in the infinite dimensional kernel equation.

We underline that, in general, the weak solutions obtained in [19] are only continuous functions. Concerning
regularity, Brezis and Nirenberg [10] proved – but only for strongly monotone nonlinearities – that any L∞-solution
of (1.1)–(1.3) is smooth, even in the nonperturbative case ε = 1, whenever the nonlinearity f is smooth.

On the other hand, very little is known about existence and regularity of solutions if we drop the monotonicity
assumption on the forcing term f . Willem [21], Hofer [15] and Coron [11] have considered the class of equations
(1.1), (1.2) where f (t, x,u) = g(u) + h(t, x), ε = 1, and g(u) satisfies suitable linear growth conditions. Existence
of weak solutions is proved, in [15,21], for a set of h dense in L2, although explicit criteria that characterize such h

are not provided. The infinite dimensional bifurcation problem is overcome by assuming non-resonance hypotheses
between the asymptotic behavior of g(u) and the spectrum of �. On the other side, Coron [11] finds weak solu-
tions assuming the additional symmetry h(t, x) = h(t + π,π − x) and restricting to the space of functions satisfying
u(t, x) = u(t + π,π − x), where the Kernel of the d’Alembertian operator � reduces to 0. Actually [11] also deals
with the autonomous case h ≡ 0, proving for the first time existence of nontrivial solutions for non-monotone nonlin-
earities. For some more recent results see for example [3].

In the present paper we prove existence and regularity of solutions of (1.1)–(1.3) for a large class of non-monotone
forcing terms f (t, x,u), including, for example,
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f (t, x,u) = ±u2k + h(t, x), see Theorem 1;
f (t, x,u) = ±u2k + u2k+1 + h(t, x), see Theorem 2;
f (t, x,u) = ±u2k + f̃ (t, x, u) with (∂uf̃ )(t, x, u) � β > 0, see Theorem 3.

The precise results were announced in [4] and will be stated in the next Subsection 1.1, see Theorems 1, 2 and 3.
Their proof is based on a variational Lyapunov–Schmidt reduction, minimization arguments and a-priori estimate
methods inspired to regularity theory of [18]. We anticipate that our approach – explained in Subsection 1.2 – is not
merely a sharpening of the ideas of [18,19], which, to deal with non-monotone nonlinearities, require a significant
change of perspective.

We mention that in the last years several results on bifurcation of free vibrations for completely resonant au-
tonomous wave equations have been proved in [2,5–8,13]. The main differences with respect to the present case are
that: a “small divisor” problem in solving the “range equation” appears (here no small divisor problem is present due
to the assumption T = 2π , see Remark 1.7), but the infinite dimensional “bifurcation equation” – whose solutions is
the main problem of the present paper – gains crucial compactness properties, see Remark 1.8.

1.1. Main results

We look for solutions u :Ω → R of (1.1) in the Banach space

E := H 1(Ω) ∩ C
1/2
0

(�Ω )
, Ω := T × (0,π),

where H 1(Ω) is the usual Sobolev space and C
1/2
0 ( �Ω) is the space of all the 1/2-Hölder continuous functions

u : �Ω → R satisfying (1.2), endowed with norm1

‖u‖E := ‖u‖H 1(Ω) + ‖u‖C1/2(Ω).

Critical points of the Lagrangian action functional Ψ ∈ C1(E,R)

Ψ (u) := Ψ (u, ε) :=
∫
Ω

[
u2

t

2
− u2

x

2
+ εF (t, x,u; ε)

]
dt dx, (1.5)

where F(t, x,u; ε) := ∫ u

0 f (t, x, ξ ; ε)dξ , are weak solutions of (1.1)–(1.3).
For ε = 0, the critical points of Ψ in E reduce to the solutions of the linear equation (1.4) and form the subspace

V := N ∩ H 1(Ω) where

N :=
{

v(t, x) = v̂(t + x) − v̂(t − x)

∣∣∣∣ v̂ ∈ L2(T) and

2π∫
0

v̂(s)ds = 0

}
. (1.6)

Note that V := N ∩ H 1(Ω) = {v(t, x) = v̂(t + x) − v̂(t − x) ∈ N | v̂ ∈ H 1(T)} ⊂ E, since any function v̂ ∈ H 1(T) is
1/2-Hölder continuous.

Let N⊥ := {h ∈ L2(Ω) | ∫
Ω

hv = 0, ∀v ∈ N} denote the L2(Ω)-orthogonal of N .
We prove the following theorem:

Theorem 1. Let f (t, x,u) = βu2k + h(t, x) and h ∈ N⊥ satisfies h(t, x) > 0 (or h(t, x) < 0) a.e. in Ω . Then, for
ε small enough, there exists at least one weak solution u ∈ E of (1.1)–(1.3) with ‖u‖E � C|ε|. If, moreover, h ∈
Hj(Ω) ∩ Cj−1( �Ω), j � 1, then u ∈ Hj+1(Ω) ∩ C

j

0 (Ω) with ‖u‖Hj+1(Ω) + ‖u‖Cj ( �Ω) � C|ε| and therefore, for
j � 2, u is a classical solution.

1 Here ‖u‖2
H1(Ω)

:= ‖u‖2
L2(Ω)

+ ‖ux‖2
L2(Ω)

+ ‖ut‖2
L2(Ω)

and

‖u‖
C1/2( �Ω)

:= ‖u‖
C0(Ω)

+ sup
(t,x)�=(t1,x1)

|u(t, x) − u(t1, x1)|
(|t − t1| + |x − x1|)1/2

.
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Theorem 1 is a corollary of the following more general result which enables to deal with non-monotone nonlinear-
ities like, for example, f (t, x,u) = ±(sinx)u2k + h(t, x), f (t, x,u) = ±u2k + u2k+1 + h(t, x).

Theorem 2. Let f (t, x,u) = g(t, x,u) + h(t, x), h(t, x) ∈ N⊥ and

g(t, x,u) := β(x)u2k +R(t, x,u)

where R, ∂tR, ∂uR ∈ C( �Ω × R,R) satisfy2∥∥R(·, u)
∥∥

C( �Ω)
= o

(
u2k

)
,

∥∥∂tR(·, u)
∥∥

C( �Ω)
= O

(
u2k

)
,

∥∥∂uR(·, u)
∥∥

C( �Ω)
= o

(
u2k−1), (1.7)

and β ∈ C([0,π],R) verifies, for x ∈ (0,π), β(x) > 0 (or β(x) < 0) and β(π − x) = β(x).

(i) (Existence) Assume there exists a weak solution H ∈ E of �H = h such that

H(t, x) > 0 (or H(t, x) < 0) ∀(t, x) ∈ Ω. (1.8)

Then, for ε small enough, there exists at least one weak solution u ∈ E of (1.1)–(1.3) satisfying ‖u‖E � C|ε|.
(ii) (Regularity) If, moreover, h ∈ Hj(Ω) ∩ Cj−1( �Ω), β ∈ Hj((0,π)), R, ∂tR, ∂uR ∈ Cj ( �Ω × R), j � 1, then

u ∈ Hj+1(Ω) ∩ C
j

0 ( �Ω) and, for j � 2, u is a classical solution.

Note that Theorem 2 does not require any growth condition on g at infinity. In particular it applies for any analytic
function g(u) satisfying g(0) = g′(0) = · · · = g2k−1(0) = 0 and g2k(0) �= 0.

We now collect some comments on the previous results.

Remark 1.1. The assumption h ∈ N⊥ is not of technical nature both in Theorem 1 and in Theorem 2 (at least if
g = g(x,u) = g(x,−u) = g(π − x,u)). Indeed, if h /∈ N⊥, periodic solutions of problem (1.1)–(1.3) do not exist in
any fixed ball {‖u‖L∞ � R}, R > 0, for ε small; see Remark 4.5.

We also note that the vector space of the h ∈ L2(Ω) verifying h(t, x) = h(t + π,π − x), introduced in [11], is a
subspace of N⊥.

Remark 1.2. In Theorem 2 hypotheses (1.8) and β > 0 (or β < 0) are assumed to prove the existence of a minimum
of the “reduced action functional” Φ , see (1.16). A sufficient condition implying (1.8) is h > 0 a.e. in Ω , see the
“maximum principle” Proposition 4.11. This is also the key step to derive Theorem 1 from Theorem 2.

We also note that hypotheses (1.8) can be weakened, see Remark 4.4.

Remark 1.3 ((Regularity)). It is quite surprising that the weak solution u of Theorems 1, 2 is actually smooth. Indeed,
while regularity always holds true for strictly monotone nonlinearities (see [10,18]), yet for weakly monotone f it is
not proved in general, unless the weak solution u verifies ‖ΠNu‖L2 � C > 0 (see [19]). Note, on the contrary, that
the weak solution u of Theorem 2 satisfies ‖ΠNu‖L2 = O(ε).

Moreover, assuming∥∥∂l
t ∂

m
x ∂n

uR
∥∥

C( �Ω)
= O

(
u2k−n

)
, ∀0 � l, n � j + 1, 0 � m � j, l + m + n � j + 1 (1.9)

we can also prove the estimate (see Remark 4.10)

‖u‖Hj+1(Ω) + ‖u‖Cj ( �Ω) � C|ε|. (1.10)

Remark 1.4 ((Multiplicity)). For non-monotone nonlinearities f one can NOT in general expect uniqueness of the
solutions. Actually, for f (t, x,u) = g(x,u) + h(t, x) with g(x,u) = g(x,−u), g(π − x,u) = g(x,u), there exist
infinitely many h ∈ N⊥ for which problem (1.1)–(1.3) has (at least) 3 solutions, see Remark 4.6.

Remark 1.5 ((Minimal period)). If h(t, x) has minimal period 2π w.r.t. time, then also the solution u(t, x) has minimal
period 2π , see Remark 4.7.

2 The notation f (z) = o(zp), p ∈ N, means that f (z)/|z|p → 0 as z → 0. f (z) = O(zp) means that there exists a constant C > 0 such that
|f (z)| � C|z|p for all z in a neighborhood of 0.
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Finally, we extend the result of [18] proving existence of periodic solutions for non-monotone nonlinearities
f (t, x,u) obtained adding to a nonlinearity f̃ (t, x, u) as in [18] (i.e. ∂uf̃ � β > 0) any non-monotone term a(x,u)

satisfying

a(x,−u) = a(x,u), a(π − x,u) = a(x,u) (1.11)

or

a(x,−u) = −a(x,u), a(π − x,u) = −a(x,u). (1.12)

A prototype nonlinearity is f (t, x,u) = ±u2k + f̃ (t, x, u) with ∂uf̃ � β > 0.

Theorem 3. Let f (t, x,u) = f̃ (t, x, u) + a(x,u) where f , ∂tf , ∂uf are continuous, ∂uf̃ � β > 0 and a(x,u) satisfy
(1.11) or (1.12). Then, for ε small enough, (1.1)–(1.3) has at least one weak solution u ∈ E. If moreover f , ∂tf ,
∂uf ∈ Cj(Ω × R), j � 1, then u ∈ Hj+1(Ω) ∩ C

j

0 (Ω).

In the next subsection we describe our method of proof.

1.2. Scheme of the proof

In order to find critical points of the Lagrangian action functional Ψ :E → R defined in (1.5) we perform a varia-
tional Lyapunov–Schmidt reduction, decomposing the space E := H 1(Ω) ∩ C

1/2
0 (Ω) as

E = V ⊕ W

where

V := N ∩ H 1(Ω) and W := N⊥ ∩ H 1(Ω) ∩ C
1/2
0

(�Ω )
.

Setting u = v + w with v ∈ V , w ∈ W and denoting by ΠN and ΠN⊥ the projectors from L2(Ω) onto N and N⊥
respectively, problem (1.1)–(1.3) is equivalent to solve the kernel equation

ΠNf (v + w,ε) = 0 (1.13)

and the range equation

w = ε�−1ΠN⊥f (v + w,ε) (1.14)

where �−1 :N⊥ → N⊥ is the inverse of � and f (u, ε) denotes the Nemitski operator associated to f , namely[
f (u, ε)

]
(t, x) := f (t, x,u, ε).

Remark 1.6. The usual approach (see [12,18–20]) is to find, first, by the monotonicity of f , the unique solution
v = v(w) of the kernel equation (1.13) and, next, to solve the range equation (1.14). On the other hand, for non-
monotone forcing terms, one can not in general solve uniquely the kernel equation – recall by Remark 1.4 that in
general uniqueness of solutions does not hold. Therefore we must solve first the range equation and thereafter the
kernel equation. For other applications of this approach to perturbation problems in critical point theory, see e.g. the
forthcoming monograph by Ambrosetti and Malchiodi [1].

We solve, first, the range equation by means of a quantitative version of the Implicit Function Theorem, finding a
solution w := w(v, ε) ∈ W of (1.14) with ‖w(v, ε)‖E = O(ε), see Proposition 3.2. Here no serious difficulties arise
since �−1 acting on W is a compact operator, due to the assumption T = 2π , see (2.2).

Remark 1.7. More in general, �−1 is compact on the orthogonal complement of ker(�) whenever T is a rational
multiple of 2π . On the contrary, if T is an irrational multiple of 2π , then �−1 is, in general, unbounded (a “small
divisor” problem appears), but the kernel of � reduces to 0 (there is no bifurcation equation). For existence of periodic
solutions in the case T/2π is irrational see [17].
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Once the range equation (1.14) has been solved by w(v, ε) ∈ W it remains the infinite dimensional kernel equation
(also called bifurcation equation)

ΠNf
(
v + w(v, ε), ε

)= 0. (1.15)

We note (see Lemma 3.3) that (1.15) is the Euler–Lagrange equation of the reduced Lagrangian action functional

Φ :V −→ R, Φ(v) := Φ(v, ε) := Ψ
(
v + w(v, ε), ε

)
. (1.16)

Φ lacks compactness properties and to find critical points of Φ we cannot rely on critical point theory.

Remark 1.8. Implementing an analogue Lyapunov–Schmidt reduction in the autonomous case (see [5]) it turns out
that, in the corresponding reduced Lagrangian action functional, a further term proportional to ‖v‖2

H 1 is present.
Therefore it is possible to apply critical point theory (e.g. the Mountain Pass Theorem) to find existence and multi-
plicity of solutions, see [6]. The elliptic term ‖v‖2

H 1 helps also in proving regularity results for the solutions.

We attempt to minimize Φ .
We do not try to apply the direct methods of the calculus of variations. Indeed Φ , even though it could possess some

coercivity property, will not be convex (being f non-monotone). Moreover, without assuming any growth condition
on the nonlinearity f , the functional Φ could neither be well defined on any Lp-space.

Therefore we minimize Φ in any BR := {v ∈ V,‖v‖H 1 � R}, ∀R > 0, as in [18]. By standard compactness argu-
ments Φ attains minimum at, say, v̄ ∈ BR . Since v̄ could belong to the boundary ∂BR , v̄ could not be a solution of
(1.15) and we can only conclude the variational inequality

DvΦ(v̄)[ϕ] =
∫
Ω

f
(
v̄ + w(v̄, ε), ε

)
ϕ � 0 (1.17)

for any admissible variation ϕ ∈ V , i.e. if v̄ + θϕ ∈ BR , ∀θ < 0 sufficiently small.
The heart of the existence proof of the weak solution u of Theorems 1, 2 and 3 is to obtain, choosing suitable

admissible variations like in [18], the a-priori estimate ‖v̄‖H 1 < R for some R > 0, i.e. to show that v̄ is an inner
minimum point of Φ in BR .

The strong monotonicity assumption (∂uf )(t, x,u) � β > 0 would allow here to get such a-priori estimates by
arguments similar to [18]. On the contrary, the main difficulty for proving Theorems 1, 2 and 3 which deal with
non-monotone nonlinearities is to obtain such a-priori-estimates for v̄.

The most difficult cases are the proof of Theorems 1 and 2. To understand the problem, let consider the particular
nonlinearity f (t, x,u) = u2k + h(t, x) of Theorem 1. The even term u2k does not give any contribution into the
variational inequality (1.17) at the 0th-order in ε, since the right-hand side of (1.17) reduces, for ε = 0, to∫

Ω

(
v̄2k + h(t, x)

)
ϕ = 0, ∀ϕ ∈ V

by (2.18) and h ∈ N⊥.
Therefore, for deriving, if ever possible, the required a-priori estimates, we have to develop the variational inequal-

ity (1.17) at higher orders in ε. We obtain

0 �
∫
Ω

2kv̄2k−1ϕw(ε, v̄) + O
(
w2(ε, v̄)

)=
∫
Ω

ε2kv̄2k−1ϕ�−1(h + v̄2k
)+ O

(
ε2) (1.18)

because w(v̄, ε) = ε�−1(v̄2k + h) + o(ε) (recall that v̄2k , h ∈ N⊥).
We now sketch how the ε-order term in the variational inequality (1.18) allows to prove an L2k-estimate for v̄.

Inserting the admissible variation ϕ := v̄ in (1.18) we get∫
Hv̄2k + v̄2k�−1v̄2k � O(ε) (1.19)
Ω
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where H is a weak solution of �H = h which verifies H(t, x) > 0 in Ω (H exists by the “maximum principle”
Proposition 4.11). The crucial fact is that the first term in (1.19) satisfies the coercivity inequality∫

Ω

Hv2k � c(H)

∫
Ω

v2k, ∀v ∈ V (1.20)

for some constant c(H) > 0, see Proposition 4.2. The second term
∫
Ω

v̄2k�−1v̄2k will be negligible, ε-close to the
origin, with respect to

∫
Ω

Hv2k and (1.19), (1.20) will provide the L2k-estimate for v̄.
We remark that the inequality (1.20) is not trivial because H vanishes at the boundary (H(t,0) = H(t,π) = 0).

Actually, the proof of (1.20) relies on the form v(t, x) = v̂(t + x) − v̂(t − x) of the functions of V .
Next, we can obtain, choosing further admissible variations ϕ in (1.18) and using inequalities similar to (1.20),

an L∞-estimate for v̄ and, finally, the required H 1-estimate, proving the existence of a weak solution u ∈ E, see
Section 4.

Moreover, using similar techniques inspired to regularity theory and further suitable variations, we can also obtain
a-priori estimates for the L∞-norm of the higher order derivatives of v̄ and for its Hj -Sobolev norms. In this way we
can prove the regularity of the solution u – fact quite surprising for non-monotone nonlinearities –, see Subsection 4.5.

Theorem 2 is proved developing such ideas and a careful analysis of the further term R.
The proof of Theorem 3 is easier than for Theorems 1 and 2. Indeed the additional term a(x,u) does not contribute

into the variational inequality (1.17) at the 0-order in ε, because
∫
Ω

a(x, v̄)ϕ ≡ 0, ∀ϕ ∈ V , by (2.19). Therefore the
dominant term in the variational inequality (1.17) is provided by the monotone forcing term f̃ and the required a-priori
estimates are obtained with arguments similar to [18], see Section 5.

Notations. Ω := T × (0,π) where T := R/2πZ. We denote by Cj ( �Ω) the Banach space of functions u : �Ω → R

with j derivatives in Ω continuous up to the boundary ∂Ω , endowed with the standard norm ‖ · ‖Cj . C
j

0 (Ω) :=
Cj ( �Ω) ∩ C0( �Ω) where C0( �Ω) is the space of real valued continuous functions satisfying u(t,0) = u(t,π) = 0.
Moreover Hj(Ω) := Wj,2(Ω) are the usual Sobolev spaces with scalar product 〈·, ·〉Hj and norm ‖‖2

Hj (Ω)
. Here

Cj (T) denotes the Banach space of periodic functions u : T → R with j continuous derivatives. Finally, Hj(T) is the
usual Sobolev space of 2π -periodic functions.

2. Preliminaries

We first collect some important properties on the D’Alembertian operator �.

Definition 2.1. Given f (t, x) ∈ L2(Ω), a function u ∈ L2(Ω) is said to be a weak solution of �u = f in Ω satisfying
the boundary conditions u(t,0) = u(t,π) = 0, iff∫

Ω

u�ϕ =
∫
Ω

f ϕ ∀ϕ ∈ C2
0

(�Ω )
.

It is easily verified that, if u ∈ C2( �Ω) is a weak solution of �u = f according to Definition 2.1, then u is a classical
solution and u(t,0) = u(t,π) = 0.

The kernel N ⊂ L2(Ω) of the D’Alembertian operator �, i.e. the space of weak solutions of the homogeneous
linear equation �v = 0 verifying the Dirichlet boundary conditions v(t,0) = v(t,π) = 0, is the subspace N defined
in (1.6). N coincides with the closure in L2(Ω) of the classical solution of �v = 0 verifying Dirichlet boundary
conditions which, as well known, are of the form v(t, x) = v̂(t + x) − v̂(t − x), v̂ ∈ C2(T).

Using Fourier series we can also characterize N as

N =
{
v(t, x) ∈ L2(Ω)

∣∣∣v(t, x) =
∑
j∈Z

aj eij t sin jx with
∑
j∈Z

|aj |2 < ∞
}
.

The range of � in L2(Ω) is
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N⊥ :=
{
f ∈ L2(Ω)

∣∣∣ ∫
Ω

f v = 0, ∀v ∈ N

}

=
{
f (t, x) ∈ L2(Ω)

∣∣∣f (t, x) =
∑

l∈Z, j�1
j �=|l|

flj eilt sin jx with
∑

l∈Z, j�1
j �=|l|

|flj |2 < ∞
}
,

i.e. ∀f (t, x) ∈ N⊥ there exists a unique weak solution u = �−1f ∈ N⊥ of �u = f .
Furthermore �−1 is a bounded operator such that

�−1 :N⊥ −→ N⊥ ∩ H 1(Ω) ∩ C
1/2
0

(�Ω )
, (2.1)

i.e. there exists a suitable constant c � 1 such that∥∥�−1f
∥∥

E
� c‖f ‖L2 ∀f ∈ L2(Ω) (2.2)

where ‖u‖E := ‖u‖H 1 + ‖u‖C1/2 . By (2.2) and the compact embedding H 1(Ω) ↪→ L2(Ω), the operator �−1 :N⊥ →
N⊥ is compact.

These assertions follow easily from the Fourier series representation (see e.g. [10])

f (t, x) :=
∑

j�1, j �=|l|
flj eilt sin jx ⇒ u = �−1f :=

∑
j�1, j �=|l|

flj

−l2 + j2
eilt sin jx

noting that u is a weak solution of (1.1) (according to Definition 2.1) iff ulj = flj /(−l2 + j2) ∀l ∈ Z, j � 1, see e.g.
[12,15].

To continue, �−1 is a bounded operator also between the spaces

L∞(Ω) −→ C0,1(�Ω )
, Hk(Ω) −→ Hk+1(Ω), Ck

(�Ω )−→ Ck+1(�Ω )
(2.3)

as follows by the integral formula for u = �−1f = ΠN⊥ψ where (see e.g. [9,16])

ψ(t, x) := −1

2

π∫
x

t−x+ξ∫
t+x−ξ

f (ξ, τ )dτ dξ + c
π − x

π
,

ΠN⊥ :L2(Ω) → N⊥ is the orthogonal projector onto N⊥ and

c := 1

2

π∫
0

t+ξ∫
t−ξ

f (ξ, τ )dτ dξ ≡ 1

2

π∫
0

ξ∫
−ξ

f (ξ, τ )dτ dξ ≡ const (2.4)

is a constant independent of t , because3 f ∈ N⊥.

3 We have that 2c = ∫
T (t) f = limn→∞

∫
T (t) fn where T (t) := {(τ, ξ) ∈ Ω s.t. t − ξ < τ < t + ξ , 0 < ξ < π} and

fn(t, x) :=
∑

|l|, j�n

j �=|l|

fl,j eilt sin jx
L2−→

∑
j �=|l|

fl,j eilt sin jx = f (t, x) ∈ N⊥.

The claim follows since
∫
T (t) fn is, for any n, independent on t :

∫
T (t)

fn =
π∫

0

∑
|l|, j�n

j �=|l|

fl,j sin jξ

t+ξ∫
t−ξ

eilt dτ dξ

=
∑

1�j�n

f0,j

π∫
0

2ξ sin jξ dξ +
∑

|l|, j�n

j �=|l|, l �=0

2
fl,j

l
eilt

π∫
0

sin jξ sin lξ dξ =
∑

1�j�n

f0,j

π∫
0

2ξ sin jξ dξ.
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We also have, since ∂
j
t H is a weak solution of �(∂

j
t H) = ∂

j
t h and (2.1) applies,

h ∈ Hj(Ω) �⇒ ∂
j
t H ∈ C

1/2
0

(�Ω )
. (2.5)

Finally, the projector ΠN :L2(Ω) → N can be written as ΠNu = p(t + x) − p(t − x) where

p(y) := 1

2π

π∫
0

[
u(y − s, s) − u(y + s, s)

]
ds

and therefore, since u ∈ Cj ( �Ω) ⇒ p ∈ Cj (T) and u ∈ Hj(Ω) ⇒ p ∈ Hj(T),

ΠN,ΠN⊥ :Cj( �Ω) → Cj
(�Ω )

are bounded, (2.6)

ΠN,ΠN⊥ :Hj(Ω) → Hj(Ω) are bounded. (2.7)

2.1. Kernel properties and technical lemmata

Let define, for 0 � α < 1/2,

Ωα := T × (απ,π − απ) ⊆ Ω. (2.8)

Lemma 2.2. Let a ∈ L1(Ω).∫
Ωα

a(t, x)dt dx = 1

2

2π∫
0

s+−2απ∫
−2π+s++2απ

a

(
s+ + s−

2
,
s+ − s−

2

)
ds− ds+. (2.9)

In particular for p,q ∈ L1(T)∫
Ωα

p(t + x)q(t − x)dt dx = 1

2

2π∫
0

p(s)ds

2π∫
0

q(s)ds − 1

2

2απ∫
−2απ

2π∫
0

p(y)q(z + y)dy dz (2.10)

and ∫
Ωα

p(t + x)dt dx =
∫

Ωα

p(t − x)dt dx = π(1 − 2α)

2π∫
0

p(s)ds. (2.11)

Moreover, given f,g : R → R continuous,∫
Ωα

f
(
p(t + x)

)
g
(
p(t − x)

)
dt dx =

∫
Ωα

f
(
p(t − x)

)
g
(
p(t + x)

)
dt dx. (2.12)

Proof. In Appendix A. �
Lemma 2.3. For any v = v̂(t + x) − v̂(t − x) := v+ − v− ∈ N

‖v‖2
L2(Ω)

= 2π‖v̂‖2
L2(T)

= 2π

2π∫
0

v̂2. (2.13)

Moreover

‖vt‖2
L2(Ω)

= ‖vx‖2
L2(Ω)

= 2π‖v̂′‖2
L2(T)

∀v ∈ N ∩ H 1(Ω), (2.14)

‖v̂‖L∞(T) � ‖v‖L∞(Ω) � 2‖v̂‖L∞(T) ∀v ∈ N ∩ L∞(Ω), (2.15)

‖v‖L∞(Ω) � ‖v‖H 1(Ω) ∀v ∈ N ∩ H 1(Ω). (2.16)
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Proof. In Appendix A. �
Lemma 2.4. Let ϕ1, . . . , ϕ2k+1 ∈ N and ϕ1 · · ·ϕ2k+1 ∈ L1(Ω). Then∫

Ωα

ϕ1 · · ·ϕ2k+1 = 0. (2.17)

In particular ϕ1 · · ·ϕ2k ∈ N⊥.
Moreover, if a :Ω → R satisfies (i) a(x,u) = a(π − x,u) and a(x,u) = a(x,−u) or (ii) a(x,u) = −a(π − x,u)

and a(x,u) = −a(x,−u), then∫
Ωα

a(x, v)ϕ = 0 ∀v ∈ N ∩ L∞, ϕ ∈ N (2.18)

and ∫
Ωα

(∂ua)(x, v)ϕ1ϕ2 = 0 ∀v ∈ N ∩ L∞, ϕ1, ϕ2 ∈ N. (2.19)

Proof. In Appendix A. �
Lemma 2.5. The following inequalities hold:

(a − b)2k � 22k−1(a2k + b2k
) ∀a, b ∈ R, (2.20)

(a − b)2k � a2k + b2k − 2k
(
a2k−1b + ab2k−1) ∀a, b ∈ R, k ∈ N, k � 2, (2.21)

(a + b)2k−1 − a2k−1 � 41−kb2k−1 ∀a ∈ R, b > 0, k ∈ N
+. (2.22)

Proof. In Appendix A. �
2.2. Generalities about the difference quotients

For f ∈ L2(Ω) we define the difference quotient of size h ∈ R \ {0}

(Dhf )(t, x) := f (t + h,x) − f (t, x)

h

and the h-translation

(Thf )(t, x) := f (t + h,x)

with respect to time.
The following lemma collects some elementary properties of the difference quotient.

Lemma 2.6. Let f,g ∈ L2(Ω), h ∈ R \ {0}. The following holds

(i) Leibnitz rule:

Dh(fg) = (Dhf )g + Thf Dhg, (2.23)

Dhf
m = (Dhf )

m−1∑
j=0

f m−j−1Thf
j = m(Dhf )f m−1 + (Dhf )

m−1∑
j=0

f m−j−1(Thf
j − f j

)
, (2.24)

∫
Ω

Dh(fg) =
∫
Ω

(Dhf )g + f (D−hg); (2.25)
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(ii) integration by parts:∫
Ω

f (D−hg) = −
∫
Ω

(Dhf )g; (2.26)

(iii) weak derivative: If there exists a constant C > 0 such that ∀h small

‖Dhf ‖L2 � C ⇒ then f has a weak derivative ft and ‖ft‖L2 � C. (2.27)

Moreover, if f has a weak derivative ft ∈ L2(Ω), then

(iv) estimate on the difference quotient:

‖Dhf ‖L2(Ω) � ‖ft‖L2(Ω); (2.28)

(v) convergence:

Dhf
L2−→ ft as h −→ 0. (2.29)

Proof. In Appendix A. �
3. The Lyapunov–Schmidt decomposition

3.1. The range equation

We first solve the range equation (1.14) applying the following quantitative version of the Implicit Function Theo-
rem, whose standard proof is omitted.

Proposition 3.1. Let X,Y,Z be Banach spaces and x0 ∈ X, y0 ∈ Y . Fix r, ρ > 0 and define Xr := {x ∈ X s.t.
‖x − x0‖X < r} and Yρ := {y ∈ Y s.t.‖y − y0‖Y < ρ}. Let F ∈ C1(U,Z) where Yρ × Xr ⊂ U ⊂ Y × X is an open set.
Suppose that

F(y0, x0) = 0 (3.1)

and that DyF(y0, x0) ∈ L(Y,Z) is invertible. Let T := (DyF(y0, x0))
−1 and ‖T ‖ := ‖T ‖L(Z,Y ) be its norm. If

sup
Xr

∥∥F(y0, x)
∥∥

Z
� ρ

2‖T ‖ , (3.2)

sup
Yρ×Xr

∥∥IdY −T DyF(y, x)
∥∥
L(Y,Y )

� 1

2
, (3.3)

then there exists y ∈ C1(Xr,Yρ) such that F(y(x), x) ≡ 0.

Applying Proposition 3.1 to the range equation (1.14) we derive:

Proposition 3.2. Let f = f (t, x,u, ε), fu := ∂uf and ε∂εf be continuous on Ω × R × [−1,1]. Then ∀R > 0 there
exists a unique function

w = w(v, ε) ∈ C1({‖v‖L∞ < 2R
}× {|ε| < ε0(R)

}
,
{‖w‖E � C0(R)|ε|}) (3.4)

solving the range equation (1.14), where ε0(R) := 1/2C0(R) and 4

C0(R) := 1 + √
2πc max�Ω×{|u|�3R+1}×{|ε|�1}

[∣∣f (t, x,u, ε)
∣∣+ ∣∣fu(t, x,u, ε)

∣∣]. (3.5)

4 c is defined in (2.2).
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Proof. Let X := V ×R, Y = Z := W (namely x := (v, ε) and y := w) and ‖x‖X := ‖v‖L∞ + R
ε0(R)

|ε|. Let also x0 :=
(0,0), y0 := 0, r := 3R, ρ := 1, F(y, x) := F(w,v, ε) := w − ε�−1ΠN⊥f (v + w,ε) and U := W × V × (−1,1).
Note that F(·, ·) ∈ C1 since the Nemitski operator εf ∈ C1(E × (−1,1),L2(Ω)) and (2.1) holds. Moreover (3.1)
holds and T = IdW (hence ‖T ‖ = 1).

If ‖v‖L∞ � 3R and ‖w‖L∞ � ‖w‖E � 1, then∣∣v(t, x) + w(t, x)
∣∣� 3R + 1, ∀(t, x) ∈ Ω. (3.6)

Using (2.2), Bessel inequality ‖ΠN⊥f ‖L2 � ‖f ‖L2 , ‖f ‖L2(Ω) �
√

2π‖f ‖L∞(Ω) and estimate (3.6), we obtain,
∀|ε| � ε0(R) and ‖v‖L∞ � 3R,∥∥F(0, v, ε)

∥∥
E

� |ε|c∥∥f (v, ε)
∥∥

L2 � |ε|√2πc
∥∥f (v, ε)

∥∥
L∞ � C0(R)|ε| � 1

2
(3.7)

where C0(R) is defined in (3.5). Hence (3.2) follows from (3.7).
Since

DwF(w,v, ε)[w̃] = w̃ − ε�−1ΠN⊥
(
fu(v + w,ε)w̃

) ∀w̃ ∈ W,

we deduce, arguing as before, ∀‖v‖L∞ � 3R, ∀‖w‖E � 1, ∀|ε| � ε0(R),

sup
‖w̃‖E=1

∥∥w̃ − DwF(w,v, ε)[w̃]∥∥
E

� |ε|√2πc
∥∥fu(v + w,ε)

∥∥
L∞ � ε0(R)C0(R) = 1

2
(3.8)

and (3.3) follows. Now we can apply Proposition 3.1 finding a function w = w(v, ε) ∈ C1({‖x‖X < r},W 1) satisfying
the range equation (1.14). Finally, note that{‖v‖L∞ < 2R

}× {|ε| < ε0(R)
}⊂ {‖x‖X < r = 3R

}
and, arguing as above,∥∥w(v, ε)

∥∥
E

= ∥∥ε�−1ΠN⊥f
(
v + w(v, ε); ε)∥∥

E
� |ε|√2πc

∥∥f (v + w; ε)∥∥
L∞ � |ε|C0(R),

whence (3.4) follows. �
3.2. The kernel equation

Once the range equation (1.14) has been solved by w(v, ε) ∈ W there remains the infinite dimensional kernel
equation (1.15).

Since V is dense in N with the L2-norm, Eq. (1.15) is equivalent to∫
Ω

f
(
v + w(v, ε), ε

)
ϕ = 0 ∀ϕ ∈ V (3.9)

which is the Euler–Lagrange equation of the reduced Lagrangian action functional Φ : V → R, Φ(v) := Φ(v, ε) :=
Ψ (v + w(v, ε), ε), defined in (1.16). Actually:

Lemma 3.3. Φ ∈ C1({‖v‖H 1 < 2R},R) and a critical point v̄ of Φ is a weak solution of the kernel equation (1.15).
Moreover Φ can be written as

Φ(v) = ε

∫
Ω

[
F
(
v + w(v); ε)− 1

2
f
(
v + w(v); ε)w(v)

]
dt dx (3.10)

and

‖vn‖H 1,‖v̄‖H 1 � R, vn
L∞−→ v̄ �⇒ Φ(vn) −→ Φ(v̄). (3.11)

Proof. Since Ψ (·, ε) ∈ C1(E,R) and, by Proposition 3.2, w(·, ε) ∈ C1({‖v‖H 1 < 2R},R) (note that {‖v‖H 1 < 2R} ⊂
{‖v‖L∞ < 2R} by (2.16)), then Φ ∈ C1({‖v‖H 1 < 2R},R) and

DΦ(v)[ϕ] = DΨ
(
v + w(v)

)[
ϕ + dw(v)[ϕ]] ∀ϕ ∈ V. (3.12)
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We claim that, since w = w(v) ∈ E is a weak solution of the range equation (1.14) and w̃ := dw(v)[ϕ] ∈ W , then

DΨ
(
v + w(v)

)[
dw(v)[ϕ]]= 0. (3.13)

Indeed, since vt , vx ∈ N and w̃t , w̃x ∈ N⊥,

DΨ (v + w)[w̃] =
∫
Ω

(v + w)t w̃t − (v + w)xw̃x + εf (v + w,ε)w̃

=
∫
Ω

wtw̃t − wxw̃x + εΠN⊥f (v + w,ε)w̃ = 0 (3.14)

because w ∈ E is a weak solution of the range equation �w = εΠN⊥f (v + w,ε) and w(t,0) = w(t,π) = 0.
By (3.12), (3.13) and since wt,wx ∈ N⊥ and ϕt , ϕx ∈ N

DΦ(v)[ϕ] = DΨ (v + w)[ϕ] =
∫
Ω

(v + w)tϕt − (v + w)xϕx + εf (v + w,ε)ϕ

=
∫
Ω

vtϕt − vxϕx + εf (v + w,ε)ϕ = ε

∫
Ω

f (v + w,ε)ϕ = ε

∫
Ω

ΠN⊥f (v + w,ε)ϕ (3.15)

where in (3.15) we used
∫
Ω

vtϕt − vxϕx = 0 since v,ϕ ∈ V .
Now we prove (3.10) as in [5]. Since vt , vx ∈ N , wt,wx ∈ N⊥ and (2.14)

Φ(v) =
∫
Ω

(v + w(v))2
t

2
− (v + w(v))2

x

2
+ εF

(
v + w(v); ε)=

∫
Ω

(w(v))2
t

2
− (w(v))2

x

2
+ εF

(
v + w(v); ε)

and since
∫
Ω

(w(v))2
t − (w(v))2

x = − ∫
Ω

εf (v + w(v); ε)w(v) we deduce (3.10).
Finally let us prove (3.11). Setting wn := w(vn, ε) and �w := w(v̄, ε), we have∣∣∣∣∫

Ω

F(vn + wn) − F(v̄ + �w )

∣∣∣∣� max�Ω×{|u|�R+1}×{|ε|�1}
∣∣f (t, x,u, ε)

∣∣ ∫
Ω

|vn − v̄ + wn − �w|

� C0(R)
(‖vn − v̄‖L1 + ‖wn − �w‖L1

)−→ 0

as n → ∞, by the fact that ‖vn − v̄‖L∞ → 0 and (3.4). An analogous estimate holds for the second term in the integral
in (3.10). �

By standard compactness argument the functional Φ attains minimum (resp. maximum) in BR := {v ∈ V,

‖v‖H 1 � R}, ∀R > 0. Indeed, let vn ∈ BR be a minimizing (resp. maximizing) sequence Φ(vn) → infBR
Φ . Since

{vn}n∈N is bounded in N ∩ H 1, up to a subsequence vn
H 1

⇀ v̄ for some v̄ = v̄(R, ε) ∈ BR . Moreover by the com-

pact embedding H 1(T) ↪→ L∞(T) we can also assume vn
L∞−→ v̄ (since v̂n

L∞(T)−→ ˆ̄v) and therefore, by (3.11), v̄ is a
minimum (resp. maximum) point of Φ restricted to BR .

Since v̄ could belong to the boundary ∂BR we only have the variational inequality (1.17) for any admissible vari-
ation ϕ ∈ V , namely for any ϕ ∈ V such that v̄ + θϕ ∈ BR , ∀θ < 0 sufficiently small. As proved by Rabinowitz [18],
a sufficient condition for ϕ ∈ V to be an admissible variation is the positivity of the scalar product

〈v̄, ϕ〉H 1 > 0. (3.16)

The heart of the existence proof of Theorems 1, 2 and 3 is to obtain, choosing suitable admissible variations, the
a-priori estimate ‖v̄‖H 1 < R for some R > 0, i.e. to show that v̄ is an inner minimum (resp. maximum) point of Φ

in BR .

4. Proof of Theorems 1 and 2

The main difficulty for proving Theorems 1 and 2 is to obtain the fore mentioned a-priori-estimate for v̄.
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4.1. Proof of Theorem 2

As anticipated in Subsection 1.2, we look for small amplitude solutions of (1.1) with forcing term f (t, x,u) =
g(t, x,u) + h(t, x) where g(t, x,u) = β(x)u2k +R(t, x,u), h(t, x) ∈ N⊥ and R(t, x,u) satisfies (1.7).

Perform the change of variables u = ε(H + ũ) and set ε̃ := ε2k

�ũ = g
(
t, x, ε(H + ũ)

)= ε2k
[
β(x)(H + ũ)2k + ε−2kR

(
t, x, ε(H + ũ)

)]
= ε̃

[
β(x)(H + ũ)2k + ε̃−1R

(
t, x, ε̃1/(2k)(H + ũ)

)]
.

Recalling ũ → u, ε̃ → ε, we look for solutions of the problem⎧⎨⎩
�u = εf (t, x,u; ε),
u(t,0) = u(t,π) = 0,

u(t + 2π,x) = u(t, x)

(4.1)

where the nonlinear forcing term is

f (t, x,u; ε) := β(x)(H + u)2k +R∗(t, x,u; ε) (4.2)

and

R∗(t, x,u; ε) := ε−1R
(
t, x, ε1/(2k)

(
H(t, x) + u

))
. (4.3)

Moreover, eventually substituting ε → −ε and β → −β we can always suppose

β(x)H(t, x) > 0, ∀(t, x) ∈ Ω. (4.4)

By (1.7), R∗, ∂uR∗, ε∂εR∗ are continuous in �Ω × R × [−1,1] (recall that H ∈ E) and

∀R0 > 0,
∥∥R∗(·; ε)∥∥

C( �Ω×{|u|�R0}),
∥∥∂uR∗(·; ε)∥∥

C(Ω×{|u|�R0})
ε→0−→ 0. (4.5)

Moreover, since H ∈ H 1(Ω), ∂tR∗ = ε−1∂tR+ ε1/(2k)−1∂uRHt and (1.7), then∥∥∂tR∗(·, u(·); ε)∥∥
L2(Ω)

� C∗(‖u‖L∞(Ω)

) ∀u ∈ L∞(Ω),

for a suitable increasing function C∗(·).
In order to find solutions of problem (4.1) we perform the Lyapunov–Schmidt reduction of the previous section.

We fix R > 0 to be chosen later (large enough!). Since f, ∂uf, ε∂εf are continuous on �Ω × R × [−1,1], using
Proposition 3.2 we solve the range equation (1.14) finding w = w(v, ε) for ‖v‖L∞ < 2R and |ε| < ε0(R). Now we
look for minimum or maximum points of the corresponding reduced action functional Φ in BR according to whether
ε > 0 or ε < 0. Since Φ attains minimum or maximum at some point v̄ := v̄(ε) := v̄(t, x; ε) in BR , to conclude the
existence proof of Theorem 2(i) we need to show that v̄ is an interior point in BR , i.e. ‖v̄‖H 1 < R, for a suitable choice
of R large enough. Let �w := �w(t, x; ε) := w(v̄(ε), ε)(t, x) ∈ E and ū := ū(t, x; ε) := v̄ + �w ∈ E. By (3.4) and the
definitions of C0(·), ε0(·) given in Proposition 3.2, we have

‖�w‖E � C0(R)|ε| � 1

2
, ‖ū‖C( �Ω) � R + 1

2
, (4.6)

since, by (2.16), ‖v̄‖C( �Ω) � ‖v̄‖H 1(Ω) � R. Let

R∗(t, x; ε) := R∗(t, x, ū(t, x; ε); ε). (4.7)

We have R∗ ∈ C( �Ω) and, choosing R0 := R + 1/2 in (4.5),∥∥R∗(·; ε)
∥∥

C( �Ω)

ε→0−→ 0. (4.8)

Moreover, since ∂tR∗ = ∂tR∗(ū) + ∂uR∗(ū)(v̄t + �wt), we have ∂tR∗ ∈ L2(Ω) with∥∥∂tR∗(·; ε)
∥∥

2 � C∗
(‖v̄‖L∞(Ω)

)+ o(1)‖v̄t‖L2(Ω), (4.9)

L (Ω)
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for a suitable increasing function C∗(·). By (4.2), (4.3) and (4.7), the variational inequality (1.17) yields, for any
admissible variation ϕ ∈ V ,

0 � ε

∫
Ω

β(x)(H + v̄ + �w )2kϕ +R∗ϕ ∀ε > 0

if v̄ is a minimum point, respectively

0 � ε

∫
Ω

β(x)(H + v̄ + �w )2kϕ +R∗ϕ ∀ε < 0

if v̄ is a maximum point. However, in both cases we get, dividing by ε,∫
Ω

β(x)(H + v̄ + �w )2kϕ �
∫
Ω

−R∗ϕ. (4.10)

The required a-priori estimate for the H 1-norm of v̄ will be proved in several steps inserting into the variational
inequality (4.10) suitable admissible variations. We shall derive, first, an L2k-estimate for v̄ (it is needed at least when
k � 2), see (4.19), next, an L∞-estimate, see (4.33), and, finally, the H 1-estimate, see (4.45).

The following key estimates will be heavily exploited.

Lemma 4.1. Let v ∈ N ∩ L2k(Ω) and k ∈ N
+. Then∫

Ω

v2k � π4k

2π∫
0

v̂2k. (4.11)

Moreover, for k = 1∫
Ωα

v2 � 2π [1 − 4α]
2π∫

0

v̂2 � π

2π∫
0

v̂2

if 0 � α � 1/8. For k � 2,∫
Ωα

v2k � 2π
[
1 − 2(1 + 2k)α

] 2π∫
0

v̂2k � π

2π∫
0

v̂2k

if 0 � α � 1/4(1 + 2k).

Proof. From the inequality (2.20) we obtain∫
Ω

v2k =
∫
Ω

(v+ − v−)2k � 22k−1
∫
Ω

v2k+ + v2k− = 22k−1
∫
Ω

v̂2k(t + x) + v̂2k(t − x)dt dx,

which, using (2.11), proves (4.11).
We now prove the second part of the lemma in the case k � 2. Using the inequality (2.21), (2.11) and (2.12), we

obtain∫
Ωα

v2k =
∫

Ωα

(v+ − v−)2k �
∫

Ωα

v2k+ + v2k− − 2k

∫
Ωα

v2k−1+ v− + v+v2k−1−

= 2π(1 − 2α)

2π∫
0

v̂2k − 4k

∫
Ωα

v2k−1+ v−. (4.12)

By (2.10) and since v̂ has zero average
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∣∣∣∣ ∫
Ωα

v2k−1+ v−
∣∣∣∣= 1

2

∣∣∣∣∣
2πα∫

−2πα

2π∫
0

v̂2k−1(y)v̂(y + z)dy dz

∣∣∣∣∣� 1

2

2πα∫
−2πα

2π∫
0

∣∣v̂(y)
∣∣2k−1∣∣v̂(y + z)

∣∣dy dz. (4.13)

By Hölder inequality with p := 2k/(2k − 1) and q := 2k (1/p + 1/q = 1),

2π∫
0

∣∣v̂(y)
∣∣2k−1∣∣v̂(y + z)

∣∣dy �
( 2π∫

0

∣∣v̂(y)
∣∣2k dy

)(2k−1)/(2k)( 2π∫
0

∣∣v̂(y + z)
∣∣2k dy

)1/(2k)

=
2π∫

0

∣∣v̂(y)
∣∣2k dy,

where, in the equality, we have used the periodicity of v̂ to conclude that
∫ 2π

0 |v̂(y + z)|2k dy = ∫ 2π

0 |v̂(y)|2k dy.
Inserting the last inequality in (4.13), we obtain∣∣∣∣∫

Ωα

v2k−1+ v−
∣∣∣∣� 2πα

2π∫
0

∣∣v̂(y)
∣∣2k dy. (4.14)

Inserting (4.14) in (4.12) the proposition follows in the case k � 2. The case k = 1 is similar:∫
Ωα

v2 =
∫

Ωα

v2+ + v2− − 2v+v− = 2π(1 − 2α)

2π∫
0

v̂2 − 2
∫

Ωα

v+v−

and we conclude by (4.14). �
We get as corollary the following key proposition.

Proposition 4.2. Let k ∈ N
+ and B ∈ C( �Ω) with B � 0 in Ω . Define

ck(B) := 1

4k
min�Ωαk

B where α1 := 1

8
, αk := 1

4(1 + 2k)
for k � 2. (4.15)

Then ∀v ∈ N ∩ L2k(Ω)∫
Ω

Bv2k � ck(B)

∫
Ω

v2k. (4.16)

Proof. Since B � 0 in Ω and using Lemma 4.1∫
Ω

Bv2k � min�Ωαk

B

∫
Ωαk

v2k � π min�Ωαk

B

2π∫
0

v̂2k � 1

4k
min�Ωαk

B

∫
Ω

v2k. �

Remark 4.3. We stress that estimate (4.16) is not trivial (in the case ck(B) > 0) since B could vanish on ∂Ω (in
particular, in this case, (4.16) does not hold true in the whole L2k(Ω)).

Remark 4.4. In light of Proposition 4.2 we can prove Theorem 2 requiring only H � 0 in Ω and H > 0 in Ωαk
,

instead of (1.8).

In the following κi will denote positive constants depending only on H , β , R, k but not on R, ε. We also recall the
notation o(1) for a function tending to 0 as ε → 0 (possibly depending on R).

4.2. The L2k-estimate

Take ϕ := v̄ in the variational inequality (4.10); ϕ is an admissible variation since 〈v̄, ϕ〉H 1 = ‖v̄‖2
1 > 0.
H
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By (4.10), (4.8) and ‖w(v̄, ε)‖E � C0(R)|ε| (recall (4.6)), we get∫
Ω

β(v̄ + H)2kv̄ �
∫
Ω

|R∗v̄| + ∣∣β(H + v̄ + �w )2k − β(H + v̄)2k
∣∣|v̄| � o(1)‖v̄‖L1 � o(1)R

and therefore there exists 0 < ε1(R) � ε0(R) such that∫
Ω

β(v̄ + H)2kv̄ � 1 for |ε| � ε1(R). (4.17)

Noting that,
∫
Ω

βv̄2k+1 = 0 by (2.18) with a(x,u) = β(x)u2k , β(π − x) = β(x), and using Proposition 4.2, we derive∫
Ω

β(v̄ + H)2kv̄ =
∫
Ω

β
[
(v̄ + H)2k − v̄2k

]
v̄ =

∫
Ω

2kβHv̄2k + β

2k−2∑
j=0

(
2k

j

)
v̄j+1H 2k−j

� 2kck(βH)‖v̄‖2k
L2k − κ1‖v̄‖2k−1

L2k − κ2‖v̄‖L2k , (4.18)

where ck(βH) > 0 was defined in (4.15) (recall that βH > 0 by (4.4)) and we have used Hölder inequality to estimate
‖v̄‖Li � Ci,k‖v̄‖L2k (i � 2k − 1).

Finally, by (4.17) and (4.18) we deduce

‖v̄‖L2k � κ3 for |ε| � ε1(R). (4.19)

4.3. The L∞-estimate

To obtain the L∞-estimate for v̄ we consider an admissible variation ϕ constructed as in [18]. Let, for M > 0,

q(λ) := qM(λ) :=
⎧⎨⎩

0, if |λ| � M,

λ − M, if λ � M,

λ + M, if λ � M.

(4.20)

For v̄(t, x) = v̄+(t, x) − v̄−(t, x) = ˆ̄v(t + x) − ˆ̄v(t − x), we define

ϕ := q+ − q− := q(v̄+) − q(v̄−) ∈ V.

We take

M := 1

2

∥∥ ˆ̄v∥∥
L∞(T)

and we can assume M > 0, i.e. v̄ is not identically zero.
In [18] it is proved that such ϕ is an admissible variation. We report the proof for completeness. By (3.16), it is

sufficient to prove that 〈v̄, ϕ〉H 1 > 0.
Using (2.10), (2.11) and (2.12)〈

v̄+ − v̄−, q(v̄+) − q(v̄−)
〉
H 1 =

∫
Ω

v̄+q(v̄+) + v̄−q(v̄−) + 2
∫
Ω

q ′(v̄+)
[
(v̄+)2

t + (v̄+)2
x

]
. (4.21)

Since q is a monotone odd function of its argument and by our choice of M , v̄±q(v̄±) > 0 in a positive measure set,
and, since q ′ � 0, the second term in (4.21) is non-negative.

We also have, since q is a monotone function,

v̄ϕ = (v̄+ − v̄−)(q+ − q−) = (v̄+ − v̄−)
(
q(v̄+) − q(v̄−)

)
� 0. (4.22)

Insert such ϕ in the variational inequality (4.10). Here the dominant term is
∫

β(v̄ + H)2kϕ, in the sense that, by
‖w(v, ε)‖E � C0(R)|ε| (recall (4.6)), (4.8) and ‖v̄‖L∞ � R, we obtain that there exists 0 < ε2(R) � ε1(R) such that∫

β(v̄ + H)2kϕ � ‖ϕ‖L1 for |ε| � ε2(R). (4.23)
Ω
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Since
∫
Ω

βv̄2kϕ = 0 by (2.18) and β(π − x) = β(x), we have (recall β > 0)∫
Ω

β(v̄ + H)2kϕ =
∫
Ω

β
[
(v̄ + H)2k − v̄2k

]
ϕ �

∫
Ω

2kβHv̄2k−1ϕ − κ4
(‖v̄‖2k−2

L∞ + 1
)‖ϕ‖L1 . (4.24)

We now estimate the dominant term 2k
∫
Ω

βHv̄2k−1ϕ. Since v̄ϕ � 0 and minΩ1/4 βH > 0 (by (4.4))∫
Ω

2kv̄2k−1βHϕ = 2k

∫
Ω

βH(v̄ϕ)v̄2k−2 � κ5

∫
Ω1/4

(v̄ϕ)v̄2k−2. (4.25)

By (4.23), (4.24) and (4.25), we have∫
Ω1/4

v̄2k−1ϕ � κ6
(‖v̄‖2k−2

L∞(Ω) + 1
)‖ϕ‖L1(Ω). (4.26)

We have to give a lower bound of the positive integral
∫
Ω1/4

v̄2k−1ϕ = ∫
Ω1/4

(v̄ϕ)v̄2k−2 = ∫
Ω1/4

(v̄ϕ)(v̄+ − v̄−)2k−2.

We first consider the (more difficult) case k � 2, in which the L2k-estimate for v̄ obtained in the previous subsection
is needed, the (simpler) case k = 1 will be treated later.

Using (2.21) we obtain∫
Ω1/4

v̄2k−1ϕ �
∫

Ω1/4

v̄ϕ
[
v̄2k−2+ + v̄2k−2− − (2k − 2)

(
v̄2k−3+ v̄− + v̄+v̄2k−3−

)]
= 2

∫
Ω1/4

v̄2k−1+ q+ − v̄2k−1+ q− + v̄2k−2+ v̄−q− − v̄2k−2+ v̄−q+

+ (2k − 2)
[−v̄2k−2+ v̄−q+ + v̄2k−2+ v̄−q− − v̄2k−3+ v̄2−q− + v̄2k−3+ v̄2−q+

]
� 2

∫
Ω1/4

v̄2k−1+ q+ (4.27)

− 2
∫

Ω1/4

v̄2k−1+ q− + (2k − 1)v̄2k−2+ v̄−q+ + (2k − 2)v̄2k−3+ v̄2−q− (4.28)

where in the equality we have used (2.12) and in the last inequality the fact that v̄+q+, v̄−q− � 0 (since λq(λ) � 0)
and so v̄2k−2+ v̄−q−, v̄2k−3+ v̄2−q+ � 0.

The dominant term is (4.27). Since λ2k−1q(λ) � M2k−1|q(λ)|, by (2.11) we obtain

2
∫

Ω1/4

v̄2k−1+ q+ = 2π

(
1 − 2

4

) 2π∫
0

ˆ̄v2k−1
(s)q

( ˆ̄v(s)
)

ds � πM2k−1
∥∥q( ˆ̄v)

∥∥
L1(T)

. (4.29)

We now give an upper estimate of the three terms in (4.27). By (2.10)∣∣∣∣2 ∫
Ω1/4

v̄2k−1+ q−
∣∣∣∣� 2

∫
Ω

∣∣v̄2k−1+
∣∣|q−| � ∥∥ ˆ̄v∥∥2k−1

L2k−1(T)

∥∥q( ˆ̄v)
∥∥

L1(T)
,

∣∣∣∣2 ∫
Ω1/4

(
v̄2k−2+ q+

)
v̄−
∣∣∣∣� ∥∥ ˆ̄v2k−2q

( ˆ̄v)∥∥
L1(T)

∥∥ ˆ̄v∥∥
L1(T)

� (2M)2k−2
∥∥q( ˆ̄v)∥∥

L1(T)

∥∥ ˆ̄v∥∥
L1(T)

,

∣∣∣∣2 ∫
Ω

v̄2k−3+
(
v̄2−q−

)∣∣∣∣� ∥∥ ˆ̄v2k−3
∥∥

L1(T)

∥∥ ˆ̄v2q
( ˆ̄v)∥∥

L1(T)
� (2M)2

∥∥ ˆ̄v∥∥2k−3
L2k−3(T)

∥∥q( ˆ̄v)∥∥
L1(T)

.

1/4
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By the previous inequalities, (4.29), Hölder inequality5 and using the L2k-estimate (4.19) for v̄ obtained in the previous
subsection, we finally have∫

Ω1/4

v̄2k−1ϕ � πM2k−1
∥∥q( ˆ̄v)∥∥

L1(T)
− κ7

(
M2k−2 + 1

)∥∥q( ˆ̄v)∥∥
L1(T)

. (4.30)

Now we note that by (2.11)∫
Ω

|ϕ| �
∫
Ω

∣∣q(v+)
∣∣+ ∣∣q(v−)

∣∣= 2π
∥∥q( ˆ̄v)∥∥

L1(T)
. (4.31)

We collect (4.26) and (4.30) using (4.31) in order to obtain

M2k−1
∥∥q( ˆ̄v)∥∥

L1(T)
� κ8

(‖v̄‖2k−2
L∞(Ω) + M2k−2 + 1

)∥∥q( ˆ̄v)∥∥
L1(T)

. (4.32)

Since M := ‖ˆ̄v‖L∞(T)/2 hence ‖q( ˆ̄v)‖L∞(T) = M , ‖v̄‖L∞(Ω) � 2‖ˆ̄v‖L∞(T) = 4M and ‖ˆ̄v‖L∞(T) �= 0. Hence,
by (4.32),

M2k−1
∥∥q( ˆ̄v)∥∥

L1(T)
� κ9

(
M2k−2 + 1

)∥∥q( ˆ̄v)∥∥
L1(T)

and, dividing by ‖q( ˆ̄v)‖L1(T) �= 0, we finally obtain M2k−1 � κ9(M
2k−2 + 1).

By our choice of M the L∞-estimate follows for k � 2,

‖v̄‖L∞ � κ10 for |ε| � ε2(R). (4.33)

We now briefly discuss the case k = 1, which is simpler and where a previous L2-estimate for v̄ is not necessary
to obtain (4.33). In fact by (4.23) and (4.24) (with k = 1), we obtain∫

Ω

βHv̄ϕ � κ11‖ϕ‖L1 . (4.34)

For 0 < α < 1/2 to be chosen later, we have∫
Ω

βHv̄ϕ � min
Ωα

(βH)

∫
Ωα

v̄ϕ. (4.35)

We have to give a lower bound of∫
Ωα

v̄ϕ =
∫

Ωα

v̄+q+ + v̄−q− −
∫

Ωα

v̄+q− + v̄−q+. (4.36)

By (2.11) and λq(λ) � M|q(λ)|∫
Ωα

v̄+q+ =
∫

Ωα

v̄−q− = π(1 − 2α)

2π∫
0

ˆ̄v(s)q
( ˆ̄v(s)

)
ds � π(1 − 2α)M

∥∥q( ˆ̄v)∥∥
L1(T)

. (4.37)

Moreover, since ˆ̄v has zero average, by (2.10), we have∣∣∣∣∫
Ωα

v̄+q−
∣∣∣∣= ∣∣∣∣∫

Ωα

v̄−q+
∣∣∣∣� 1

2

2απ∫
−2απ

2π∫
0

∣∣q( ˆ̄v(y)
) ˆ̄v(z + y)

∣∣dy dz � 2απM
∥∥q( ˆ̄v)∥∥

L1(T)
. (4.38)

Collecting (4.36), (4.37) and (4.38) we obtain∫
Ωα

v̄ϕ � 2π(1 − 6α)M
∥∥q( ˆ̄v)∥∥

L1(T)
� 1

2
πM

∥∥q( ˆ̄v)∥∥
L1(T)

, (4.39)

5 To estimate ‖ˆ̄v‖ j � Cj,k‖ˆ̄v‖ 2k for j < 2k.

L (T) L (T)
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choosing α := 1/8. Collecting (4.34), (4.35) and (4.39), we obtain

M
∥∥q( ˆ̄v)∥∥

L1(T)
� κ12‖ϕ‖L1(Ω).

Using (4.31) and dividing by ‖q( ˆ̄v)‖L1(T) �= 0 in the previous inequality we finally obtain (4.33) also in the case k = 1.

4.4. The H 1-estimate

We note that ϕ := −D−hDhv̄ is an admissible variation, since using (2.26),

〈−D−hDhv̄, v̄〉H 1 = 〈Dhv̄,Dhv̄〉H 1 > 0.

Since ∂t [β(H + v̄ + �w )2k], ∂tR∗ ∈ L2(Ω) (see (4.9)), we have, as h → 0,∫
Ω

β(H + v̄ + �w )2kϕ
(2.26)=

∫
Ω

βDh

[
(H + v̄ + �w )2k

]
Dhv̄

(2.29)−→
∫
Ω

β
[
(H + v̄ + �w )2k

]
t
v̄t ,

∫
Ω

R∗ϕ
(2.26)=

∫
Ω

DhR∗Dhv̄
(2.29)−→

∫
Ω

∂tR∗v̄t ,

and, by the variational inequality (4.10), we obtain∫
Ω

β
[
(H + v̄ + �w )2k

]
t
v̄t �

∫
Ω

−∂tR∗v̄t . (4.40)

By the L∞-estimate on v̄ given in (4.33), the Cauchy–Schwartz inequality and (4.9) we obtain∣∣∣∣∫
Ω

∂tR∗v̄t

∣∣∣∣� κ13‖v̄t‖L2 + o(1)‖v̄t‖2
L2 . (4.41)

Since ‖�w‖E = ‖w(v̄, ε)‖E � C0(R)|ε| (recall (4.6)), again by (4.33) and the Cauchy–Schwartz inequality, we find∫
Ω

β
[
(H + v̄ + �w )2k

]
t
v̄t = 2k

∫
Ω

β(H + v̄ + �w )2k−1(Ht + v̄t + �wt)v̄t

� 2k

∫
Ω

β(v̄ + H)2k−1v̄2
t − o(1)‖v̄t‖2

L2 − κ14‖v̄t‖L2 . (4.42)

Collecting (4.40), (4.41) and (4.42), we obtain∫
Ω

β(v̄ + H)2k−1v̄2
t � κ15‖v̄t‖L2 + o(1)‖v̄t‖2

L2 . (4.43)

Since v̄, v̄t ∈ N and v̄2k−1v̄2
t ∈ L1(Ω), it results

∫
Ω

βv̄2k−1v̄2
t = 0 by (2.19). Using the inequality (2.22) we obtain∫

Ω

β(v̄ + H)2k−1v̄2
t =

∫
Ω

β
[
(v̄ + H)2k−1 − v̄2k−1]v̄2

t � 41−k

∫
Ω

βH 2k−1v̄2
t � 41−kc1

(
βH 2k−1)∫

Ω

v̄2
t (4.44)

where c1(·) was defined in (4.15) and βH 2k−1 > 0 by (4.4). By (4.43) and (4.44) we get

‖v̄t‖2
L2 � κ16‖v̄t‖L2 + o(1)‖v̄t‖2

L2

and we finally deduce that there exists a 0 < ε3(R) � ε2(R) such that

‖v̄‖H 1 < κ17 ∀|ε| � ε3(R). (4.45)

Proof of Theorem 2(i) completed. Defining R∗ := κ17 and ε∗ := ε3(R∗) we obtain, by (4.45), that∥∥v̄(ε)
∥∥

1 < R∗ ∀|ε| � ε∗
H
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and v̄(ε) is an interior minimum or maximum point of Φ in BR∗ := {‖v‖H 1 < R∗}. By Lemma 3.3 ū = v̄ + �w =
v̄(ε) + w(v̄(ε), ε) is a weak solution of (4.1) and

u := ε
(
H + v̄

(
ε2k

)+ w
(
v̄
(
ε2k

)
, ε2k

)) ∈ E (4.46)

is a weak solution of (1.1)–(1.3) satisfying ‖u‖E � C|ε|. �
Remark 4.5. Let u := uε = vε + wε , vε ∈ V , wε ∈ W , be a weak solution of �uε = ε(g(x,uε) + h(t, x)) where
g ∈ C([0,π]× R), g(x,u) = g(x,−u) = g(π − x,u). Suppose uε satisfies ‖uε‖L∞ � R, ∀ε small. We claim this im-
plies h ∈ N⊥. Indeed, wε satisfies the range equation wε = ε�−1ΠN⊥(g(x,uε) + h(t, x)) and therefore ‖wε‖L∞ �
C(R)|ε|. Moreover, by the kernel equation ΠN(g(x, vε + wε) + h(t, x)) = 0, and noting that ΠNg(x, vε) = 0
by (2.18), we derive∥∥ΠNh(t, x)

∥∥
L2 = ∥∥ΠN

(
g(x, vε + wε) − g(x, vε)

)∥∥
L2 �

∥∥g(x, vε + wε) − g(x, vε)
∥∥

L2 → 0

as ‖wε‖L∞ → 0 because g is uniformly continuous on any compact set [0,π] × {|u| � C}. Therefore ΠNh = 0 and
h ∈ N⊥.

Remark 4.6 ((Multiplicity)). By (2.18), any forcing term h(t, x) := −g(x, v0(t, x)), v0 ∈ V \ {0}, is in N⊥, if
g(x,u) = g(x,−u) = g(π − x,u). Therefore the equation �u = ε(g(x,u) + h(t, x)) possesses, beyond the ε-small
solution u of Theorem 2, also the other two (not small) solutions ±v0.

Remark 4.7 ((Minimal period)). By (4.46) it is sufficient to prove that ΠN⊥u = ε(�−1h + w) has minimal period
2π w.r.t. time. Note, first, that if h has minimal period 2π then so has �−1h. Therefore, since w is small with ε, also
�−1h + w has minimal period 2π for ε small. This follows by the characterization (see Appendix A for a proof)

f ∈ L2(Ω) has minimal period 2π ⇐⇒ ∃p0,p1, . . . , pk ∈ D with gcd(p0,p1, . . . , pk) = 1 (4.47)

where D := {l ∈ N
+ | fl(x) �≡ 0} and f (t, x) =∑

l∈Z
fl(x) eilt .

4.5. Higher regularity and classical solutions

We now prove Theorem 2(ii) obtaining more regularity for the weak solution u ∈ E of (1.1)–(1.3) defined in (4.46).
Since v̄ ∈ V := N ∩ H 1 is a critical point of Φ :V → R∫

Ω

(
β(H + ū)2k +R∗

)
ψ = 0 ∀ψ ∈ N ∩ H 1, (4.48)

which actually holds for any ψ ∈ N since N ∩ H 1 is dense in N with the L2-topology6. Hence, taking ψ := ϕt for
any ϕ ∈ N ∩ H 1 in (4.48) and integrating by parts, we find

0 =
∫
Ω

∂t

(
β(H + v̄ + �w )2k +R∗

)
ϕ =

∫
Ω

[
2kβ(H + ū)2k−1(Ht + v̄t + �wt) + ∂tR∗

]
ϕ (4.49)

for any ϕ ∈ N ∩ H 1. Since the term into square brackets [·] in (4.49) is in L2(Ω) then, again by the L2-density of
N ∩ H 1 in N , (4.49) actually holds for any ϕ ∈ N .

Setting for brevity

z := z(t, x; ε) := (
t, x, ε1/(2k)

(
H(t, x) + ū(t, x; ε))),

we can write, from (4.7), (4.3),

R∗(t, x; ε) = ε−1R(z) and ∂tR∗ = ε−1+1/(2k)∂uR(z)v̄t + A

where

A(t, x; ε) := ε−1∂tR(z) + ε−1+1/(2k)∂uR(z)
(
Ht(t, x) + �wt(t, x; ε)). (4.50)

6 Recall that [β(H + ū)2k +R∗] ∈ L2(Ω) since β , H , ū, R∗ are continuous functions.
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Then (4.49) becomes∫
Ω

[
2kβ(H + ū)2k−1(Ht + v̄t + �wt) + ε−1+1/(2k)∂uR(z)v̄t + A

]
ϕ = 0 ∀ϕ ∈ N. (4.51)

For the remainder of this subsection we shall take ε �= 0, and Ki will denote suitable positive constants possibly
depending7 also on ε.

Since we are assuming that h ∈ Hj ∩ Cj−1, j � 1, then, by (2.3), H ∈ Hj+1 ∩ Cj . Hence, to prove that u ∈
Hj+1 ∩ Cj , by (4.46), it is sufficient to show that v̄, �w ∈ Hj+1 ∩ Cj .

We first prove that

Lemma 4.8. ū ∈ C1( �Ω) ∩ H 2(Ω).

Proof. We shall divide the proof in three steps.
Step 1: �w ∈ C1( �Ω) ∩ H 2(Ω) and

‖�w‖C1 + ‖�w‖H 2 � K1|ε|. (4.52)

We have ū = v̄+�w ∈ C( �Ω)∩H 1(Ω), H ∈ H 2(Ω)∩C1( �Ω) and β ∈ H 1((0,π)). Moreover, since R ∈ C1( �Ω ×R)

and z(·; ε) ∈ C ∩ H 1, then R∗(·; ε) ∈ C ∩ H 1 and ‖R∗(·; ε)‖C + ‖R∗(·; ε)‖H 1 � K2. Hence f (t, x, ū(t, x; ε); ε) =
β(x)(H(t, x) + ū(t, x; ε))2k +R∗(t, x; ε) ∈ C ∩ H 1 and ‖f ‖C + ‖f ‖H 1 � K3.

Therefore, since �w solves the range equation �w = ε�−1ΠN⊥f , ΠN⊥ satisfies (2.6), (2.7) and �−1 satisfies (2.3),
we deduce that �w ∈ C1( �Ω) ∩ H 2(Ω) and (4.52).

Step 2: v̄t ∈ L∞(Ω).
Let define

κ18 := k4−k min
Ω1/8

(
βH 2k−1) (4.53)

and 0 < ε4 � ε3 such that, ∀|ε| � ε4

|ε|−1+1/(2k)
∥∥∂uR(z)

∥∥
L∞(Ω)

� κ18

2
, 4k

∣∣β(H + v̄ + �w )2k−1 − β(H + v̄)2k−1
∣∣
L∞ � π

κ18

2
(4.54)

(such ε4 exists by (1.7) and since ‖w‖E = O(ε)). We claim that∫
Ω

[
2kβ(H + ū)2k−1 + ε−1+1/(2k)∂uR(z)

]
vϕ �

(
10πκ18M − κ19‖v̂‖L2(T)

)∥∥q(v̂)
∥∥

L1(T)

∀|ε| � ε4, ∀v = v+ − v− ∈ N, v±(t, x) = v̂(t ± x), ϕ := q(v+) − q(v−) ∈ N, (4.55)

where q = qM (M > 0) was defined in (4.20). Noting that
∫
Ω

βv̄2k−1vϕ = 0 by (2.19), vϕ � 0 and using (2.22),∫
Ω

2kβ(H + v̄)2k−1vϕ =
∫
Ω

2kβ
(
(H + v̄)2k−1 − v̄2k−1)vϕ �

∫
Ω

2k41−kβH 2k−1vϕ

� 2k41−k min
Ω1/8

(
βH 2k−1) ∫

Ω1/8

vϕ = 8κ18

∫
Ω1/8

vϕ. (4.56)

Using (2.11), (2.12) we obtain the lower bound∫
Ω1/8

vϕ �
∫

Ω1/8

v+q+ + v−q− −
∫
Ω

|v−||q+| + |v+||q−|

� 2π

(
1 − 2

1

8

) 2π∫
0

v̂(s)q
(
v̂(s)

)
ds − 2

∫
Ω

∣∣v̂(t − x)
∣∣∣∣q(v̂(t + x)

)∣∣
7 However, such Ki can be taken independently of ε if we assume the further hypothesis (1.9) on R, see Remarks 1.3 and 4.10.
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� 3π

2

2π∫
0

v̂(s)q
(
v̂(s)

)
ds − √

2π‖v̂‖L2(T)

∥∥q(v̂)
∥∥

L1(T)
,

and, by (4.56), we get∫
Ω

2kβ(H + v̄)2k−1vϕ � 12πκ18

2π∫
0

v̂(s)q
(
v̂(s)

)
ds − κ19‖v̂‖L2(T)

∥∥q(v̂)
∥∥

L1(T)
. (4.57)

Since
∫
Ω

|vϕ| = ∫
Ω

vϕ = 2π
∫ 2π

0 v̂(s)q(v̂(s))ds and using (4.54), we get, ∀|ε| � ε4,∣∣∣∣∫
Ω

ε−1+1/(2k)∂uR(z)vϕ

∣∣∣∣� |ε|−1+1/(2k)
∥∥∂uR(z)

∥∥
L∞(Ω)

∫
Ω

vϕ � πκ18

2π∫
0

v̂(s)q
(
v̂(s)

)
ds. (4.58)

Therefore, using (4.57), (4.58), the second inequality in (4.54) and since vϕ � 0, we obtain∫
Ω

[
2kβ(H + ū)2k−1 + ε−1+1/(2k)∂uR(z)

]
vϕ

=
∫
Ω

2kβ(H + v̄)2k−1vϕ + ε−1+1/(2k)∂uR(z)vϕ + 2kβ
[
(H + v̄ + �w )2k−1 − (H + v̄)2k−1]vϕ

� 10πκ18

2π∫
0

v̂(s)q
(
v̂(s)

)
ds − κ19‖v̂‖L2(T)

∥∥q(v̂)
∥∥

L1(T)
, ∀|ε| � ε4. (4.59)

Since λq(λ) � M|q(λ)|
2π∫

0

v̂(s)q
(
v̂(s)

)
ds � M

2π∫
0

∣∣q(v̂(s)
)∣∣ds = M

∥∥q(v̂)
∥∥

L1(T)
,

and, by (4.59), we finally get (4.55). We now conclude the proof that v̄t ∈ L∞(Ω). Taking v := v̄t in (4.55) and
ϕ := q(∂t v̄+) − q(∂t v̄−) we obtain8 (recall that | ˆ̄v′|L2(T) � R∗ which is fixed)∫

Ω

[
2kβ(H + ū)2k−1 + ε−1+1/(2k)∂uR(z)

]
v̄tϕ � (10πκ18M − κ20)

∥∥q( ˆ̄v′)∥∥
L1(T)

, ∀|ε| � ε4. (4.60)

Note that, since H, �w ∈ C1, by (1.7) (A is defined in (4.50))

‖A‖L∞ � K4. (4.61)

From (4.51), (4.52), (4.61), we get∣∣∣∣∫
Ω

[
2kβ(H + ū)2k−1 + ε−1+1/(2k)∂uR(z)

]
v̄tϕ

∣∣∣∣= ∣∣∣∣∫
Ω

[
2kβ(H + ū)2k−1(Ht + �wt) + A

]
ϕ

∣∣∣∣� K5‖ϕ‖L1(Ω)

and, by (4.60), we deduce

(10πκ18M − κ20)
∥∥q( ˆ̄v′)∥∥

L1(T)
� K5‖ϕ‖L1(Ω), ∀|ε| � ε4.

Finally, recalling ‖ϕ‖L1 � 2π‖q( ˆ̄v′)‖L1(T) (see (4.31)), we find

M
∥∥q( ˆ̄v′)∥∥

L1(T)
� K6

∥∥q( ˆ̄v′)∥∥
L1(T)

. (4.62)

8 Here v̄(t, x) = ˆ̄v(t + x) − ˆ̄v(t − x) and so v̄t (t, x) = ˆ̄v′(t + x) − ˆ̄v′(t − x).
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We claim that (4.62) implies ˆ̄v′ ∈ L∞(T). Indeed, if ˆ̄v′ /∈ L∞(T), then for any M > 0, ‖q( ˆ̄v′)‖L1(T) > 0 and

(4.62) yields M � K6; hence ˆ̄v′ ∈ L∞(T). Taking M := ‖ˆ̄v′‖L∞(T)/2 we obtain, by (4.62), ‖ˆ̄v′‖L∞(T) � 2K6 and
‖v̄t‖L∞(Ω) � 4K6 by (2.15).

Step 3: v̄t ∈ H 1(Ω) (and hence v̄ ∈ N ∩ C1(Ω) ∩ H 2(Ω)).
We claim that∫

Ω

[
2kβ(H + ū)2k−1 + ε−1+1/(2k)

(
∂uR(z)

)]
v2 � κ18‖v‖2

L2, ∀v ∈ N, |ε| � ε4, (4.63)

where κ18 is defined in (4.53) and ε4 is defined in (4.54). Arguing as before, using
∫
Ω

βv̄2k−1v2 = 0 (recall (2.19)),
(2.22) and (4.16), (4.15)∫

Ω

2kβ(H + v̄)2k−1v2 =
∫
Ω

2kβ
(
(H + v̄)2k−1 − v̄2k−1)v2 �

∫
Ω

2k41−kβH 2k−1v2

� 2k41−kc1
(
βH 2k−1)∫

Ω

v2 = 2κ18‖v‖2
L2 . (4.64)

Since, by (4.54),∣∣∣∣∫
Ω

ε−1+1/(2k)
(
∂uR(z)

)
v2
∣∣∣∣� |ε|−1+1/(2k)

∥∥∂uR(z)
∥∥

L∞‖v‖2
L2 � κ18

2
‖v‖2

L2,

and ∣∣∣∣∫
Ω

2kβ
[
(H + ū)2k−1 − (H + v̄)2k−1]v2

∣∣∣∣� ∣∣2kβ
[
(H + ū)2k−1 − (H + v̄)2k−1]∣∣

L∞‖v‖2
L2 � κ18

2
‖v‖2

L2

using (4.64) we prove (4.63).
Take ϕ = −D−hDhv̄t ∈ N in (4.51). Integrating by part (recall (2.26) and (2.23)) equality (4.51), we obtain

0 =
∫
Ω

Dh

[
2kβ(H + ū)2k−1(Ht + v̄t + �wt) + ε−1+1/(2k)∂uR(z)v̄t + A

]
Dhv̄t

=
∫
Ω

[
2kβ(H + ū)2k−1 + ε−1+1/(2k)

(
∂uR(z)

)]
(Dhv̄t )

2

+ [
2kβ

(
Dh

(
(H + ū)2k−1))(Thv̄t ) + 2kβ

(
Dh

(
(H + ū)2k−1(Ht + �wt)

))
+ ε−1+1/(2k)

(
Dh

(
∂uR(z)

))
(Thv̄t ) + DhA

]
Dhv̄t . (4.65)

The dominant term here is (4.65). Using (4.63) with v := Dhv̄t , we estimate (4.65) by∫
Ω

[
2kβ(H + ū)2k−1 + ε−1+1/(2k)

(
∂uR(z)

)]
(Dhv̄t )

2 � κ18‖Dhv̄t‖2
L2, ∀|ε| � ε4. (4.66)

We now estimate all the other terms. Since ‖Thv̄t‖L∞(Ω) = ‖v̄t‖L∞(Ω) � K7 and∥∥Dh

(
(H + ū)2k−1)∥∥

L2 �
∥∥∂t

(
(H + ū)2k−1)∥∥

L2 = (2k − 1)
∥∥(H + ū)2k−2(Ht + ūt )

∥∥
L2 � κ21, (4.67)

we obtain∣∣∣∣∫
Ω

[
2kβ

(
Dh

(
(H + ū)2k−1))(Thv̄t )

]
Dhv̄t

∣∣∣∣� K8‖Dhv̄t‖L2 . (4.68)

Since H ∈ C1 ∩ H 2, v̄t ∈ L∞, �w ∈ C1 ∩ H 2, we have∥∥Dh

(
(H + ū)2k−1(Ht + �wt)

)∥∥
L2 �

∥∥∂t

(
(H + ū)2k−1(Ht + �wt)

)∥∥
L2

= ∥∥(2k − 1)(H + ū)2k−2(Ht + ūt )(Ht + �wt) + (H + ū)2k−1(Htt + �wtt )
∥∥

2 � K9,
L



M. Berti, L. Biasco / Ann. I. H. Poincaré – AN 23 (2006) 439–474 463
and we deduce∣∣∣∣∫
Ω

[
2kβ

(
Dh

(
(H + ū)2k−1(Ht + �wt)

))]
Dhv̄t

∣∣∣∣� K9‖Dhv̄t‖L2 . (4.69)

From

ε−1+1/(2k)∂t

(
∂uR(z)

)= ε−1+1/(2k)∂2
tuR(z) + ε−1+1/k∂2

uuR(z)(Ht + ūt )

we derive∥∥ε−1+1/(2k)Dh

(
∂uR(z)

)∥∥
L2 �

∥∥ε−1+1/(2k)∂t

(
∂uR(z)

)∥∥
L2 � K10 (4.70)

and (recall v̄t ∈ L∞)∣∣∣∣∫
Ω

[
ε−1+1/(2k)

(
Dh

(
∂uR(z)

))
v̄t

]
Dhv̄t

∣∣∣∣� K10‖v̄t‖L∞‖Dhv̄t‖L2 = K11‖Dhv̄t‖L2 . (4.71)

We finally estimate the term∣∣∣∣∫
Ω

(DhA)(Dhv̄t )

∣∣∣∣� ‖DhA‖L2‖Dhv̄t‖L2

(2.28)

� ‖∂tA‖L2‖Dhv̄t‖L2

(A is defined in (4.50)). Since

∂tA = ε−1∂2
t tR(z) + ε−1+1/(2k)∂2

tuR(z)(2Ht + v̄t + 2�wt)

+ ε−1+1/k∂2
uuR(z)(Ht + ūt )(Ht + �wt) + ε−1+1/(2k)∂uR(z)(Htt + �wtt ),

by (1.7), and using that v̄t ∈ L∞(Ω), �w,H ∈ H 2(Ω) ∩ C1(Ω), then ‖∂tA‖L2 � K12 and∣∣∣∣∫
Ω

(DhA)(Dhv̄t )

∣∣∣∣� K12‖Dhv̄t‖L2 . (4.72)

Recollecting (4.65), (4.66), (4.68), (4.69), (4.71) and (4.72) we obtain

κ18‖Dhv̄t‖2
L2 � K13‖Dhv̄t‖L2(Ω)

and so ‖Dhv̄t‖L2(Ω) � K14 for all h. By (2.27) we conclude that v̄t ∈ N ∩ H 1 and ‖v̄t t‖L2(Ω) � K14. �
We now prove Theorem 2(ii) by induction over j � 1.

Lemma 4.9. Assuming v̄, �w ∈ Cj−1( �Ω) ∩ Hj(Ω), then v̄, �w ∈ Cj ( �Ω) ∩ Hj+1(Ω).

Proof. Again we divide the proof in three steps.
Step 1: �w ∈ Cj( �Ω) ∩ Hj+1(Ω) and

‖�w‖Cj + ‖�w‖Hj+1 � K
(j)

1 |ε|. (4.73)

By hypotheses H ∈ Cj ( �Ω) ∩ Hj+1(Ω) (since h ∈ Cj−1( �Ω) ∩ Hj(Ω)), β ∈ Hj((0,π)), R ∈ Cj ( �Ω × R) and
z(·; ε) ∈ Cj−1( �Ω) ∩ Hj(Ω). Hence R∗(·; ε) ∈ Cj−1(Ω) ∩ Hj(Ω) and ‖R∗(·; ε)‖Cj−1 + ‖R∗(·; ε)‖Hj � K

(j)

2 .
Hence f (t, x, ū(t, x; ε); ε) = β(x)(H(t, x) + ū(t, x; ε))2k + R∗(t, x; ε) ∈ Cj−1(Ω) ∩ Hj(Ω) and ‖f ‖Cj−1 +
‖f ‖Hj � K

(j)

3 .
Since �w solves the range equation �w = ε�−1ΠN⊥f , ΠN⊥ satisfies (2.6), (2.7) and �−1 satisfies (2.3), we conclude

that �w ∈ Cj( �Ω) ∩ Hj+1(Ω) and that (4.73) holds.
Step 2: ∂

j
t v̄ ∈ L∞(Ω).

Reasoning as for (4.49), we get

0 =
∫

∂
j
t

(
β(H + v̄ + �w )2k +R∗

)
ϕ =

∫ [
2kβ(H + ū)2k−1 + ε−1+1/(2k)∂uR(z)

](
∂

j
t v̄
)
ϕ +F (j)ϕ (4.74)
Ω Ω
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for any ϕ ∈ N . Here F (j) depends polynomially on k,β and

ε−1+n/(2k)∂l
t ∂

n
uR(z), l + n = j, ∂l

t H, ∂l
t �w, l � j, ∂l

t v̄, l � j − 1,

but not on ∂
j
t v̄.

Choosing in (4.55) v = ∂
j
t v̄ and so ϕ := q(∂

j
t v̄+) − q(∂

j
t v̄−), we get (recall that v̄ ∈ Hj ), ∀|ε| � ε4,∫

Ω

[
2kβ(H + ū)2k−1 + ε−1+1/(2k)∂uR(z)

](
∂

j
t v̄
)
ϕ � (10πκ18M − κ24)

∥∥q( ˆ̄v(j)
)∥∥

L1(T)
, (4.75)

where ˆ̄v(j)(ξ) := dj

dξj
ˆ̄v. On the other hand, by (4.74) we get∫

Ω

[
2kβ(H + ū)2k−1 + ε−1+1/(2k)∂uR(z)

](
∂

j
t v̄
)
ϕ �

∥∥F (j)
∥∥

L∞‖ϕ‖L1 � K
(j)

4 ‖ϕ‖L1 . (4.76)

Since ‖ϕ‖L1 � 2π‖q( ˆ̄v(j))‖L1(T) (see (4.31)), from (4.75) and (4.76) we get

(10πκ18M − κ24)
∥∥q( ˆ̄v(j)

)∥∥
L1(T)

� K
(j)

5

∥∥q( ˆ̄v(j)
)∥∥

L1(T)
, ∀|ε| � ε4.

Then

M
∥∥q( ˆ̄v(j)

)∥∥
L1(T)

� K
(j)

6

∥∥q( ˆ̄v(j)
)∥∥

L1(T)
, ∀|ε| � ε4.

Arguing as in (4.62) we get ˆ̄v(j) ∈ L∞(T). Finally ∂
j
t v̄ ∈ L∞(Ω) and ‖∂j

t v̄‖L∞(Ω) � 4K
(j)

6 .

Step 3: We now prove that ∂
j
t v̄ ∈ H 1 (and hence v̄ ∈ N ∩ Cj ∩ Hj+1).

Choosing ϕ := −D−hDh∂
j
t v̄ in (4.74), integrating by parts (recall (2.26) and (2.23))

0 =
∫
Ω

[
2kβ(H + ū)2k−1 + ε−1+1/(2k)∂uR(z)

](
Dh

(
∂

j
t v̄
))2

+ [(
Dh

(
2kβ(H + ū)2k−1 + ε−1+1/(2k)∂uR(z)

))(
Th

(
∂

j
t v̄
))+ (

Dh

(
F (j)

))](
Dh

(
∂

j
t v̄
))

. (4.77)

Using (4.63) we get∫
Ω

[
2kβ(H + ū)2k−1 + ε−1+1/(2k)∂uR(z)

](
Dh

(
∂

j
t v̄
))2 � κ18

∥∥Dh

(
∂

j
t v̄
)∥∥2

L2 , ∀|ε| � ε4. (4.78)

From (4.67), (4.70) and since ∂
j
t v̄ ∈ L∞(Ω),∣∣∣∣∫

Ω

(
Dh

(
2kβ(H + ū)2k−1 + ε−1+1/(2k)∂uR(z)

))(
Th

(
∂

j
t v̄
))(

Dh

(
∂

j
t v̄
))∣∣∣∣

� 4K
(j)

6

∥∥Dh

(
2kβ(H + ū)2k−1 + ε−1+1/(2k)∂uR(z)

)∥∥
L2

∥∥Dh

(
∂

j
t v̄
)∥∥

L2

� K
(j)
7

∥∥Dh

(
∂

j
t v̄
)∥∥

L2 . (4.79)

We note that ∂tF (j) is a polynomial in k,β ,

ε−1+n/(2k)∂l
t ∂

n
uR(z), l + n = j + 1, ∂l

t H, ∂l
t �w, l � j + 1, ∂l

t v̄, l � j,

and that the terms ∂
j+1
t H , ∂

j+1
t �w ∈ L2(Ω) (recall that �w,H ∈ Hj+1(Ω) by Step 1) appear only linearly (with no

powers). Hence, using that ∂l
t H , ∂l

t �w, ∂l
t v̄ ∈ L∞(Ω), ∀l � j ,∣∣∣∣∫

Ω

(
Dh

(
F (j)

))(
Dh

(
∂

j
t v̄
))∣∣∣∣� ∥∥Dh

(
F (j)

)∥∥
L2

∥∥Dh

(
∂

j
t v̄
)∥∥

L2

(2.28)

�
∥∥∂t

(
F (j)

)∥∥
L2

∥∥Dh

(
∂

j
t v̄
)∥∥

L2

� K
(j)∥∥Dh

(
∂

j
t v̄
)∥∥

2 . (4.80)
8 L
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Finally, by (4.77)–(4.80) we get

κ18
∥∥Dh

(
∂

j
t v̄
)∥∥2

L2 � K
(j)

9

∥∥Dh

(
∂

j
t v̄
)∥∥

L2,

and therefore∥∥Dh

(
∂

j
t v̄
)∥∥

L2 � K
(j)

10 .

By (2.27), we conclude the proof obtaining ∂
j+1
t v̄ ∈ L2(Ω) and ‖∂j+1

t v̄‖L2 � K
(j)

10 . �
Remark 4.10. If H , ū ∈ Hi(Ω) ∩ Ci−1(Ω) (0 � i � j ) and (1.9) holds, then R∗ and ∂tR∗ are bounded in
Hi(Ω) ∩ Ci−1( �Ω) by some constant κi independent of ε. In this case, the constants Ki of this section can be taken
independently of ε, obtaining the estimates (1.10).

4.6. Proof of Theorem 1

The following proposition is a sort of “maximum principle” for the wave equations (1.1)–(1.3).

Proposition 4.11. Let h ∈ N⊥, h > 0 (or h � 0) a.e. in Ω . Then there exists a weak solution H ∈ E of �H = h

satisfying H > 0 (or H � 0). In particular we can choose

H(t, x) := 1

2

κ∫
0

t−x+ξ∫
t−x−ξ

h(τ, ξ)dτ dξ − 1

2

x∫
κ

t+x−ξ∫
t−x+ξ

h(τ, ξ)dτ dξ (4.81)

for a suitable κ ∈ (0,π). Moreover h ∈ Cj−1 ⇒ H ∈ Cj and h ∈ Hj ⇒ H ∈ Hj+1, for j � 1.

Proof. We consider the case h > 0, the case h � 0 being similar.
Step 1: H defined in (4.81) belongs to H 1(Ω) ∩ C1/2( �Ω) for any κ ∈ (0,π) and

2(∂tH)(t, x) =
κ∫

0

(
h(t − x + ξ, ξ) − h(t − x − ξ, ξ)

)
dξ

−
x∫

κ

(
h(t + x − ξ, ξ) − h(t − x + ξ, ξ)

)
dξ ∈ L2(Ω), (4.82)

2(∂xH)(t, x) =
κ∫

0

(−h(t − x + ξ, ξ) + h(t − x − ξ, ξ)
)

dξ

−
x∫

κ

(
h(t + x − ξ, ξ) + h(t − x + ξ, ξ)

)
dξ ∈ L2(Ω). (4.83)

We shall prove that the first addendum in the r.h.s. of (4.81)

H1(t, x) := 1

2

κ∫
0

t−x+ξ∫
t−x−ξ

h(τ, ξ)dτ dξ

belongs to C1/2( �Ω) ∩ H 1(Ω), the second addendum being analogous. Defining

T (t, x) := T (t, x;κ) := {
(τ, ξ) ∈ Ω | t − x − ξ < τ < t − x + ξ, 0 < ξ < κ

}
we can write H1(t, x) := (1/2)

∫
h(τ, ξ)dτ dξ .
T (t,x)
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Since meas(T (t, x;κ)) = κ2 � π2 we derive that H1 is uniformly bounded by∣∣H1(t, x)
∣∣� 1

2

∫
Ω

1T (t,x)(τ, ξ)
∣∣h(τ, ξ)

∣∣dτ dξ � π

2
‖h‖L2(Ω)

using Cauchy–Schwartz inequality.
For i = 1,2 and (ti , xi) ∈ Ω , let define Ti := T (ti , xi). It results

meas(T1 \ T2) = meas(T2 \ T1) � π
(|t1 − t2| + |x1 − x2|

)
and, using again Cauchy–Schwartz inequality,∣∣H1(t1, x1) − H1(t2, x2)

∣∣� 1

2

∫
T1\T2

|h| + 1

2

∫
T2\T1

|h| � √
π
(|t1 − t2| + |x1 − x2|

)1/2‖h‖L2(Ω).

Therefore we have proved H1 ∈ C1/2( �Ω).
We now prove that H1 ∈ H 1(Ω) and that ∂tH1 = −∂xH1 = f1 where

f1(t, x) := 1

2

κ∫
0

(
h(t − x + ξ, ξ) − h(t − x − ξ, ξ)

)
dξ ∈ L2(Ω).

We first justify that f1 ∈ L2(Ω). Since∣∣h(t − x + ξ, ξ)
∣∣2 + ∣∣h(t − x − ξ, ξ)

∣∣2 � 1

2

∣∣h(t − x + ξ, ξ) − h(t − x − ξ, ξ)
∣∣2,

by periodicity w.r.t. t we obtain that, ∀x ∈ (0,π),

‖h‖2
L2(Ω)

�
κ∫

0

2π∫
0

∣∣h(t, ξ)
∣∣2 dt dξ � 1

4

κ∫
0

2π∫
0

∣∣h(t − x + ξ, ξ) − h(t − x − ξ, ξ)
∣∣2 dt dξ.

Integrating the previous inequality in the variable x between 0 and π , applying Fubini Theorem and Cauchy–Schwartz
inequality, we deduce

π‖h‖2
L2(Ω)

� 1

4

π∫
0

κ∫
0

2π∫
0

∣∣h(t − x + ξ, ξ) − h(t − x − ξ, ξ)
∣∣2 dt dξ dx

= 1

4

∫
Ω

κ∫
0

∣∣h(t − x + ξ, ξ) − h(t − x − ξ, ξ)
∣∣2 dξ dt dx

� 1

4κ

∫
Ω

( κ∫
0

∣∣h(t − x + ξ, ξ) − h(t − x − ξ, ξ)
∣∣dξ

)2

dt dx

� 1

κ

∫
Ω

f 2
1 (t, x)dt dx = 1

κ
‖f1‖2

L2 .

Finally, we prove that ∂xH1 = −f1, being ∂tH1 = f1 analogous. By Fubini Theorem

2
∫
Ω

H1ϕx =
2π∫

0

κ∫
0

π∫
0

t−x+ξ∫
t−x−ξ

h(τ, ξ)ϕx(t, x)dτ dx dξ dt

=
2π∫ κ∫ ( t+ξ∫

h

t+ξ−τ∫
ϕx dx dτ +

t+ξ−π∫
h

π∫
ϕx dx dτ +

t−ξ∫
h

π∫
ϕx dx dτ

)
dξ dt
0 0 t+ξ−π 0 t−ξ 0 t−ξ−π t−ξ−τ
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=
2π∫

0

κ∫
0

( t+ξ∫
t+ξ−π

h(τ, ξ)ϕ(t, t + ξ − τ)dτ −
t−ξ∫

t−ξ−π

h(τ, ξ)ϕ(t, t − ξ − τ)dτ

)
dξ dt

=
2π∫

0

κ∫
0

(
−

0∫
π

h(t + ξ − x, ξ)ϕ(t, x)dx +
0∫

π

h(t − ξ − x, ξ)ϕ(t, x)dx

)
dξ dt = 2

∫
Ω

f1ϕ.

With analogue computations for the second addendum of H in (4.81) we derive (4.82) and (4.83).
Step 2: There exists κ ∈ (0,π) such that H(t, x) verifies the Dirichlet boundary conditions H(t,0) = H(t,π) = 0

∀t ∈ T.
By (4.81), the function H satisfies, for any κ ∈ (0,π), H(t,0) = 0 ∀t ∈ T. It remains to find κ imposing

H(t,π) = 0. Taking x = π in (4.81) we obtain

H(t,π) := 1

2

κ∫
0

t−π+ξ∫
t−π−ξ

h(τ, ξ)dτ dξ − 1

2

π∫
κ

t+π−ξ∫
t−π+ξ

h(τ, ξ)dτ dξ

= 1

2

π∫
0

t−π+ξ∫
t−π−ξ

h(τ, ξ)dτ dξ − 1

2

π∫
κ

t+π−ξ∫
t−π−ξ

h(τ, ξ)dτ dξ

= 1

2

π∫
0

ξ∫
−ξ

h(τ, ξ)dτ dξ − 1

2

π∫
κ

π∫
−π

h(τ, ξ)dτ dξ =: c − χ(κ), (4.84)

where in the last line we have used the periodicity of h(·, ξ) and (2.4).
In order to prove that H(t,π) = 0, ∀t ∈ T, we need only to solve χ(κ) = c. By the absolute continuity of the

integral (with respect to the two-dimensional measure dτ dξ ) χ(κ) is a continuous function. Moreover, since h > 0
a.e. in Ω , χ(0) > c > 0. Finally χ(π) = 0 and therefore, by continuity, there exists κ ∈ (0,π) solving χ(κ) = c.

Step 3: H ∈ E is a weak solution of �H = h, namely∫
Ω

ϕtHt − ϕxHx + ϕh = 0, ∀ϕ ∈ C1
0

(�Ω )
. (4.85)

By Fubini Theorem and periodicity we get∫
Ω

(
ϕt (t, x)

κ∫
0

h(t − x + ξ, ξ)dξ + ϕx(t, x)

κ∫
0

h(t − x + ξ, ξ)dξ

)
dt dx

=
π∫

0

κ∫
0

2π∫
0

(
ϕt (t, x)h(t − x + ξ, ξ) + ϕx(t, x)h(t − x + ξ, ξ)

)
dt dξ dx

=
π∫

0

κ∫
0

2π∫
0

(
ϕt (t + x − ξ, x) + ϕx(t + x − ξ, x)

)
h(t, ξ)dt dξ dx

=
κ∫

0

2π∫
0

h(t, ξ)

π∫
0

d

dx

(
ϕ(t + x − ξ, x)

)
dx dt dξ = 0 (4.86)

by Dirichlet boundary conditions. Analogously,

−
∫ (

ϕt (t, x)

κ∫
h(t − x − ξ, ξ)dξ + ϕx(t, x)

κ∫
h(t − x − ξ, ξ)dξ

)
dt dx = 0. (4.87)
Ω 0 0
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Moreover, again by Fubini Theorem,∫
Ω

(
−ϕt (t, x)

x∫
κ

h(t + x − ξ, ξ)dξ + ϕx(t, x)

x∫
κ

h(t + x − ξ, ξ)dξ

)
dt dx

=
π∫

0

x∫
κ

2π∫
0

(−ϕt (t, x)h(t + x − ξ, ξ) + ϕx(t, x)h(t + x − ξ, ξ)
)

dt dξ dx

=
π∫

0

x∫
κ

2π∫
0

(−ϕt (t − x + ξ, x) + ϕx(t − x + ξ, x)
)
h(t, ξ)dt dξ dx

=
2π∫

0

π∫
0

h(t, ξ)

π∫
ξ

d

dx

(
ϕ(t − x + ξ, x)

)
dx dt dξ −

2π∫
0

κ∫
0

h(t, ξ)

π∫
0

d

dx

(
ϕ(t − x + ξ, x)

)
dx dt dξ = −

∫
Ω

hϕ

and, analogously,∫
Ω

(
ϕt (t, x)

x∫
κ

h(t − x + ξ, ξ)dξ + ϕx(t, x)

x∫
κ

h(t − x + ξ, ξ)dξ

)
dt dx = −

∫
Ω

hϕ. (4.88)

Summing (4.86)–(4.88) and recalling (4.82), (4.83) we get (4.85).
Step 4: H(t, x) > 0 in Ω .
First case: 0 < x � κ . By (4.81) and geometrical considerations on the domains of the integrals, we derive that, for

0 < x < κ , H(t, x) = ∫
Θ

h(τ, ξ)dτ dξ where Θ := Θt,x is the trapezoidal region in Ω with a vertex in (τ, ξ) = (t, x)

and delimited by the straight lines τ = t − x + ξ , τ = t + x − ξ , ξ = κ and τ = t − x − ξ . Since h > 0 a.e. in Ω we
conclude that H(t, x) > 0.

Second case: κ < x < π . Since H(t + π − x,π) = 0 we have, by (4.81),

κ∫
0

t−x+ξ∫
t−x−ξ

h(τ, ξ)dτ dξ =
π∫

κ

t−x−ξ+2π∫
t−x+ξ

h(τ, ξ)dτ dξ.

Therefore, substituting in (4.81), we get, for κ < x < π , the expression H(t, x) = ∫
Θ

h(τ, ξ)dτ dξ where, now, Θ :=
Θt,x is the trapezoidal region in Ω with a vertex in (τ, ξ) = (t, x) and delimited by the straight lines τ = t − x + ξ ,
τ = t −x − ξ +2π , ξ = κ and τ = t +x − ξ . Since h > 0 a.e. in Ω we conclude also in this case that H(t, x) > 0. �
Proof of Theorem 1. Since h > 0 a.e. in Ω , by Proposition 4.11 there exists a weak solution H ∈ E of �H = h

verifying (1.8) (i.e. H > 0 in Ω). Therefore existence of a weak solution u ∈ E satisfying ‖u‖E � C|ε| follows from
Theorem 2(i) with β(x) ≡ β and R ≡ 0. The higher regularity for u and the estimate ‖u‖Hj+1(Ω) + ‖u‖Cj ( �Ω) � C|ε|
follow from Theorem 2(ii) and (1.10) in Remark 1.3 since assumption (1.9) is trivially verified (R ≡ 0). �
5. Proof of Theorem 3

In order to prove Theorem 3 we perform the Lyapunov–Schmidt reduction of Section 3 and we minimize the
reduced action functional Φ in BR := {‖v‖H 1 � R}. To conclude the existence of a solution, we have to prove that the
minimum v̄ ∈ BR is an interior minimum point in BR for some R > 0.

This case is easier that the previous one since the required a-priori estimates can be deduced directly by the
0th-order variational inequality (1.17) which does not vanish for ε = 0.

Step 1: The L∞-estimate. Since a(x,u) satisfies (1.11) or (1.12), by (2.18),
∫
Ω

a(x, v̄)ϕ = 0, ∀ϕ ∈ V (as v̄ ∈ V )
and hence∫

f (v̄)ϕ =
∫

f̃ (v̄)ϕ + a(x, v̄)ϕ =
∫

f̃ (v̄)ϕ. (5.1)
Ω Ω Ω
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Since ‖w(v̄, ε)‖E � C0(R)|ε|, by the variational inequality (1.17) and (5.1), we find∫
Ω

f̃ (v̄)ϕ � o(1)C1
(‖v̄‖L∞

)‖ϕ‖L1 � o(1)C1(R)‖ϕ‖L1 ,

where C1(·) is a suitable increasing function depending on f . Then there exists a decreasing function 0 < ε1(·) � ε0(·)
such that∫

Ω

f̃ (v̄)ϕ � ‖ϕ‖L1 for |ε| � ε1(R). (5.2)

We now choose, as in Subsection 4.3, the admissible variation ϕ = q(v̄+) − q(v̄−) where q is defined in (4.20). By
the mean value theorem

f̃ (t, x, v̄) = f̃ (t, x,0) + f̃u(intermediate point)v̄

and, by (5.2), since f̃u � β > 0 and v̄ϕ � 0 (recall (4.22)), we obtain

β

∫
Ω

v̄ϕ � κ1‖ϕ‖L1 . (5.3)

Arguing as at the end of Subsection 4.3 (see inequality (4.39), recall (4.31) and M := ‖ˆ̄v‖L∞(T)/2) we deduce∫
Ω

v̄ϕ � κ2‖v̄‖L∞‖ϕ‖L1

and, by (5.3), we deduce

‖v̄‖L∞ � κ3 for |ε| � ε1(R). (5.4)

Step 2: The H 1-estimate. The H 1-estimate is carried out as in Subsection 4.4 taking the admissible variation
ϕ := −D−hDhv̄ in the variational inequality (1.17). By Lemma 2.6, denoting �w := w(v̄),

0 �
∫
Ω

f (v̄ + �w )ϕ =
∫
Ω

Dhf (v̄ + �w )Dhv̄
h→0−→

∫
Ω

(
ft (v̄ + �w ) + fu(v̄ + �w )(v̄t + �wt)

)
v̄t . (5.5)

Using the L∞-estimate (5.4) for v̄, ‖�w‖E � C0(R)|ε| and (5.5)∫
Ω

fu(v̄ + �w )v̄2
t �

∣∣∣∣∫
Ω

(
ft (v̄ + �w ) + fu(v̄ + �w )�wt

)
v̄t

∣∣∣∣� κ4‖v̄t‖L2 (5.6)

for |ε| � ε2(R) � ε1(R).
Since f̃u � β > 0,

∫
Ω

au(x, v̄)v̄2
t = 0 by (2.19), and ‖�w‖E � C0(R)|ε|, we get∫

Ω

fu(v̄ + �w )v̄2
t =

∫
Ω

f̃u(v̄ + �w )v̄2
t + au(x, v̄ + �w )v̄2

t �
∫
Ω

βv̄2
t +

∫
Ω

(
au(x, v̄ + �w ) − au(x, v̄)

)
v̄2
t

�
∫
Ω

βv̄2
t − o(1)

∫
Ω

v̄2
t � β

2

∫
Ω

v̄2
t (5.7)

for |ε| � ε3(R) � ε2(R). From (5.6) and (5.7) we deduce

‖v̄‖H 1 < κ5 ∀|ε| � ε3(R).

Proof of Theorem 3 completed. For R∗ := κ5 and ε∗ := ε3(R∗), v̄ is an interior point in BR∗ and ū := v̄ +w(v̄, ε) is
a weak solution of (1.1)–(1.3). Regularity of the solution ū is proved as in Subsection 4.5 and Theorem 3 follows. �
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Appendix A

Proof of Lemma 2.2. By the periodicity of a(t, x) with respect to t∫
Ωα

a(t, x)dt dx =
∫

Ω̃α

a(t, x)dt dx

where Ω̃α := {απ < x < π(1 − α), −x < t < −x + 2π}. Under the change of variables s+ := t + x, s− := t − x the
domain Ω̃α transforms into the domain{

0 < s+ < 2π, s+ − 2π(1 − α) < s− < s+ − 2πα
}

and we get (2.9).
For p,q ∈ L1(T), by (2.9) we have∫

Ωα

p(t + x)q(t − x)dt dx = 1

2

2π∫
0

ds+ p(s+)

s+−2απ∫
−2π+s++2απ

q(s−)ds−

= 1

2

2π∫
0

ds+ p(s+)

( 2π∫
0

q(s)ds −
s++2απ∫

s+−2απ

q(s−)ds−

)

= 1

2

2π∫
0

p(s)ds

2π∫
0

q(s)ds − 1

2

2π∫
0

ds+ p(s+)

2απ∫
−2απ

q(s+ + z)dz

and we obtain (2.10) by Tonelli’s Theorem (calling s+ = y).
Formula (2.11) follows by (2.10) setting q ≡ 1.
We now prove (2.12). Since the change of variables (t, x) �→ (t,π − x) leaves the domain Ωα unchanged∫

Ωα

a(t, x)dt dx =
∫

Ωα

a(t,π − x)dt dx,

and, using also the periodicity of p,∫
Ωα

f
(
p(t + x)

)
g
(
p(t − x)

)
dt dx =

∫
Ωα

f
(
p(t + π − x)

)
g
(
p(t − π + x)

)
dt dx

=
π−απ∫
απ

2π∫
0

f
(
p(t + π − x)

)
g
(
p(t + π + x)

)
dt dx

=
π−απ∫
απ

2π∫
0

f
(
p(t − x)

)
g
(
p(t + x)

)
dt dx

proving (2.12). �
Proof of Lemma 2.3. (2.13) follows from the equality v2 = v2+ + v2− − 2v+v−, (2.11) (with p = v2+, v2− and α = 0)
and (2.10) (taking p,q = v̂, α = 0 and recalling that v̂ has zero average).
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(2.14) follows form (2.13) since vt (t, x) = v̂′(t + x) − v̂′(t − x) (and similarly for vx ).
Next, the first inequality of (2.15) follows from v(t, x) = v̂(t +x)− v̂(t −x) recalling that, since v̂ has zero average,

there exist two positive measure sets in which v̂ � 0 and v̂ � 0. The second inequality of (2.15) is trivial.
We finally prove (2.16). Since v̂ is continuous (v̂ ∈ H 1(T)) there exists ξM such that ‖v̂‖L∞(T) = |v̂(ξM)|. Being∫ 2π

0 v̂ = 0, there exists |ξ0 − ξM | � π such that v̂(ξ0) = 0. Hence

‖v̂‖L∞(T) = ∣∣v̂(ξM)
∣∣= ∣∣∣∣∣

ξM∫
ξ0

v̂′(s)ds

∣∣∣∣∣� √
π‖v̂′‖L2(T) = 1√

2
‖vt‖L2(Ω)

by the Cauchy–Schwartz inequality and (2.14). Finally by (2.15),

‖v‖L∞(Ω) � 2‖v̂‖L∞(T) �
√

2‖vt‖L2(Ω) = 1√
2

(‖vt‖L2(Ω) + ‖vx‖L2(Ω)

)
� ‖v‖H 1(Ω),

where ‖v‖2
H 1(Ω)

:= ‖v‖2
L2(Ω)

+ ‖vx‖2
L2(Ω)

+ ‖vt‖2
L2(Ω)

. �
Proof of Lemma 2.4. By the change of variables (t, x) �→ (t,π − x) and periodicity,∫

Ωα

ϕ1 · · ·ϕ2k+1 =
π−απ∫
απ

2π∫
0

2k+1∏
j=1

(
ϕ̂j (t + x) − ϕ̂j (t − x)

)
dt dx

=
π−απ∫
απ

2π∫
0

2k+1∏
j=1

(
ϕ̂j (t + π − x) − ϕ̂j (t − π + x)

)
dt dx

=
π−απ∫
απ

2π∫
0

2k+1∏
j=1

(
ϕ̂j (t − x) − ϕ̂j (t + x)

)
dt dx

= (−1)2k+1
∫

Ωα

ϕ1 · · ·ϕ2k+1,

which implies (2.17).
With similar arguments we can prove (2.18) and (2.19). �

Proof of Lemma 2.5. The inequality (2.20) follows by the convexity of t → t2k .
We next prove (2.21). If b = 0 it is trivially true. If b �= 0 let us divide for b2k and set x := a/b ∈ R. (2.21) is

equivalent to prove

f (x) := (x − 1)2k − x2k − 1 + 2kx2k−1 + 2kx � 0. (A.1)

It results f (0) = 0, f ′(x) = 2k[(x − 1)2k−1 − x2k−1 + (2k − 1)x2k−2 + 1] and so f ′(0) = 0. Therefore to prove (A.1)
it is sufficient to show that f is convex. We have f ′′(x) = 2k(2k − 1)g(x) where gk(x) := (x − 1)2k−2 − x2k−2 +
(2k − 2)x2k−3, k � 2.

We now show by induction on k � 2 that gk(x) > 0. It is true for k = 2 since g2(x) = (x − 1)2 − x2 + 2x = 1 > 0.
Supposing now gk(x) > 0, let us prove that gk+1(x) > 0.

We claim that

gk+1(x) = (x − 1)2k − x2k + 2kx2k−1

is a strictly convex function. Indeed

g′
k+1(x) = 2k

[
(x − 1)2k−1 − x2k−1 + (2k − 1)x2k−2] and g′′

k+1(x) = 2k(2k − 1)gk(x).

By the inductive hypothesis gk(x) > 0 and therefore g′′
k+1(x) > 0. Moreover, being

gk+1(x) ≈ costx2k−2, lim gk+1(x) = +∞

x→±∞
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and gk+1(x) possesses a unique point of global minimum x̄ that is also the unique critical point. Now it is sufficient
to show that gk+1(x̄) > 0.

g′
k(x̄) = 2k

[
(x̄ − 1)2k−1 − x̄2k−1 + (2k − 1)x̄2k−2]= 0

implies that (x̄ − 1)2k−1 = x̄2k−1 − (2k − 1)x̄2k−2. Substituting this equality in the expression for gk+1(x̄), we have

gk+1(x̄) = (x̄ − 1)
[
x̄2k−1 − (2k − 1)x̄2k−2]− x̄2k + 2kx̄2k−1

= x̄2k − x̄2k−1 − (2k − 1)x̄2k−1 + (2k − 1)x̄2k−2 − x̄2k + 2kx̄2k−1

= (2k − 1)x̄2k−2 > 0

(we use that x̄ �= 0, in fact g′
k+1(0) = −2k �= 0).

Proof of (2.22). The case k = 1 is trivial. For k � 2, we divide by b2k−1 and define x := a/b ∈ R. We have to prove
that

f (x) := (x + 1)2k−1 − x2k−1 � 41−k, ∀x ∈ R.

Since

f ′(x) = (2k − 1)
[
(x + 1)2k−2 − x2k−2]= 0 ⇐⇒ (x + 1)2k−2 = x2k−2 ⇐⇒ x = −1

2
and f (x) → ∞ as |x| → ∞, we conclude that x = −1/2 is the unique minimum point of f (x) and therefore f (x) �
f (−1/2) = 41−k . �
Proof of Lemma 2.6. Formula (2.23) follows from

Dh(fg)(t, x) = f (t + h,x)g(t + h,x) − f (t, x)g(t, x)

h

= f (t + h,x) − f (t, x)

h
g(t, x) + f (t + h,x)

g(t + h,x) − g(t, x)

h
.

We prove (2.24) by induction. It is obvious for m = 1. We suppose (2.24) holds for m and prove it for m+1: by (2.23)
we have

Dh

(
f m · f )= (

Dhf
m
)
f + Thf

mDhf = (Dhf )

[
m−1∑
j=0

f m−j Thf
j + Thf

m

]
= (Dhf )

m∑
j=0

f (m+1)−j−1Thf
j .

Formula (2.25) follows by (2.23) performing the change of variables s = t + h,∫
Ω

Dh(fg)(t, x) =
∫
Ω

(Dhf )g +
∫
Ω

f (t + h,x)
g(t + h,x) − g(t, x)

h
dt dx

=
∫
Ω

(Dhf )g +
∫
Ω

f (s, x)
g(s, x) − g(s − h,x)

h
ds dx.

We now prove formula (2.26) for integration by parts. Due to the periodicity of f and g with respect to t∫
Ω

f (D−hg) = − 1

h

∫
Ω

f (t, x)
[
g(t − h,x) − g(t, x)

]
dt dx

= − 1

h

∫
Ω

[
f (t + h,x) − f (t, x)

]
g(t, x)dt dx = −

∫
Ω

(Dhf )g.

The proof of (2.27) is standard. Let ϕ ∈ C1(Ω). By (2.26)∫
(Dhf )ϕ = −

∫
f (D−hϕ). (A.2)
Ω Ω
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Now the sequence f (D−hϕ) converges to f ϕt a.e. and, since∣∣f (t, x)(D−hϕ)(t, x)
∣∣� ‖ϕ‖C1(Ω)

∣∣f (t, x)
∣∣ ∈ L1(Ω),

we can use the Lebesgue Theorem to obtain∫
Ω

f (D−hϕ)
h→0−→

∫
Ω

f ϕt . (A.3)

Since, by hypothesis, Dhf is bounded in L2(Ω), Dhf
L2

⇀ g, up to a subsequence. Passing to the limit in (A.2) for
h → 0 we find

∫
Ω

gϕ = − ∫
Ω

f ϕt . Therefore f has a weak derivative ft = g and by the weakly lower semicontinuity
of the norm

‖ft‖L2 � lim inf‖Dhf ‖L2 � C.

In order to prove (2.28) assume temporarily f is smooth. From the fundamental theorem of calculus

(Dhf )(t, x) = f (t + h,x) − f (t, x)

h
=

1∫
0

ft (t + hs, x)ds.

By Cauchy–Schwartz inequality, Fubini Theorem and periodicity we obtain∫
Ω

∣∣Dhf (t, x)
∣∣2 dt dx =

π∫
0

2π∫
0

∣∣∣∣∣
1∫

0

ft (t + hs, x)ds

∣∣∣∣∣
2

dt dx �
π∫

0

2π∫
0

1∫
0

∣∣ft (t + hs, x)
∣∣2 ds dt dx

=
π∫

0

1∫
0

2π∫
0

∣∣ft (t + hs, x)
∣∣2 dt ds dx =

π∫
0

1∫
0

2π∫
0

∣∣ft (t, x)
∣∣2 dt ds dx

=
1∫

0

π∫
0

2π∫
0

∣∣ft (t, x)
∣∣2 dt dx ds = ‖ft‖2

L2(Ω)
.

Inequality (2.28) is valid, for any f having a weak derivative ft ∈ L2(Ω), by approximation.
In order to prove (2.29) we first show the weak L2-convergence. Let ϕ ∈ C1(Ω). By (2.26), applying as before the

Lebesgue Theorem, and since f has a weak derivative ft∫
Ω

(Dhf )ϕ = −
∫
Ω

f (D−hϕ)
h→0−→ −

∫
Ω

f ϕt =
∫
Ω

ftϕ, ∀ϕ ∈ C1(Ω). (A.4)

Since, by (2.28), Dhf is bounded in L2, and (A.4) holds in the dense subset C1(Ω) ⊂ L2(Ω), we conclude the weak

L2-convergence Dhf
L2

⇀ ft .
By the weakly lower semicontinuity of the norm and (2.28)

‖ft‖L2(Ω) � lim inf‖Dhf ‖L2(Ω) � ‖ft‖L2(Ω) �⇒ lim‖Dhf ‖L2(Ω) = ‖ft‖L2(Ω). (A.5)

Since L2(Ω) is a Hilbert space, weak convergence Dhf
L2

⇀ ft and (A.5) imply the strong convergence Dhf
L2→ ft . �

Proof of (4.47). (⇒) If 1 ∈ D then we choose p0 := 1 and k := 0. If not, there exists p ∈ D, p = q
a1
1 · · ·qam

m

for qj prime numbers and m,aj ∈ N
+. Since, by hypothesis, u is not 2π/qj periodic, ∃nj ∈ D such that

nj /∈ qjN. In this case we choose p0 := p, pj := nj , k := m and we claim that the greatest common divisor
γ := gcd(p0,p1, . . . , pk) = 1. If not, since γ |p0, there exists j0 ∈ {1, . . . , k} such that qj0 |γ . Therefore qj0 |pj0 = nj0

which is a contradiction.
(⇐) If false, there exists n � 2 such that f is 2π/n periodic and then D ⊆ nN. Hence n|gcd(p0,p1, . . . , pk) = 1

which is a contradiction. �
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