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Abstract

In this paper we study low energy sign changing solutions of the critical exponent problem (Pλ): −�u = u5 + λu in Ω , u = 0
on ∂Ω , where Ω is a smooth bounded domain in R

3 and λ is a real positive parameter. We make a precise blow-up analysis of this
kind of solutions and prove some comparison results among some limit values of the parameter λ which are related to the existence
of positive or of sign changing solutions.

Résumé

Dans cet article, nous étudions les solutions changeant de signe et à énergie minimale du problème avec exposant critique
(Pλ) : −�u = u5 + λu dans Ω , u = 0 sur ∂Ω , où Ω est un domaine borné et régulier de R

3 et λ est un paramètre réel strictement
positif. Nous faisons une analyse précise du ‘blow-up’ de ce type de solutions et nous prouvons des résultats de comparaisons pour
certaines valeurs limites du paramètre λ qui sont liées à l’existence des solutions positives ou des solutions changeant de signe.
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1. Introduction

In this paper we study low energy sign changing solutions of the problem known as the Brezis–Nirenberg problem
in smooth bounded domains in R

3. We get two kind of results. First with simple arguments we prove some comparison
results among some limit values of the parameter λ which are connected with the existence of certain kind of positive
or sign changing solutions. Second we make a precise blow-up analysis of sign changing solutions whose energy
converges to the value 2S3/2, S being the best Sobolev constant for the embedding of H 1

0 (Ω) into L6(Ω).
To be more precise we need some notations and recall previous results.
Let us consider the Brezis–Nirenberg problem which is the following elliptic problem with critical nonlinearity{

−�u = |u|2∗−2u + λu in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in R
n, n � 3, λ is a real positive parameter and 2∗ = 2n/(n − 2) is the critical

Sobolev exponent for the embedding of H 1
0 (Ω) into L2∗

(Ω).
About twenty years ago Brezis and Nirenberg in the celebrated paper [8] proved that if n � 4 there exists a positive

solution of (1.1) for every λ ∈ (0, λ1(Ω)), λ1(Ω) being the first eigenvalue of −� on Ω . Such a positive solution is a
minimizer of the functional

Jλ(u) =
∫
Ω

|∇u|2 − λ
∫
Ω

|u|2
(
∫
Ω

|u|2∗
)2/2∗ (1.2)

in the space H 1
0 (Ω). The three-dimensional case is quite different. In this case let us rewrite problem (1.1) as

(Pλ)

{
−�u = u5 + λu in Ω,

u = 0 on ∂Ω.

Unlike the case of higher dimensions, when Ω is a ball B in R
3 Brezis and Nirenberg [8] proved that a positive

solution of (Pλ) exists if and only if λ ∈ (
λ1(B)

4 , λ1(B)). In view of [1] the positive solution is unique and is indeed
the minimum of (1.2). For more general bounded domains they proved that if Ω is strictly starshaped about the origin
then, defining

λ0(Ω) = inf
{
λ ∈ R | (1.1) has a positive solution

}
, (1.3)

it results λ0(Ω) > 0.
Another important number connected with the existence of positive solutions is the following

λ∗(Ω) = inf
{
λ ∈ R | a minimizer for (1.2) exists

}
. (1.4)

Note that, by Remark 2.3 in Section 2, we have

λ∗(Ω) = inf
{
λ ∈ R | (Pλ) has a positive solution uλ with ‖uλ‖2

λ � S3/2},
where S denotes the Sobolev constant, that is, S = infu∈H 1

0 (Ω), u �≡0(‖u‖2/‖u‖2
L6(Ω)

), with ‖u‖2 = ∫
Ω

|∇u|2 and where

‖uλ‖2
λ =

∫
Ω

|∇u|2 − λ

∫
Ω

u2.

As recalled before, by [8], we have that λ∗(B) = λ0(B) = λ1(B)/4 in the case of the ball.
Obviously for general domains λ0(Ω) � λ∗(Ω) and, as far as we know, is not yet clear in which cases λ0(Ω) =

λ∗(Ω).
A recent interesting result which states the equivalence between the existence of a minimizer for (1.2) and the fact

that the infimum is strictly smaller than S and as well relates the existence of a minimizer to the fact that the regular
part of the Green function of the operator (−� − λ) becomes negative at some point of the domain Ω is contained
in [11].

Concerning the existence of sign changing solutions of (1.1), several results have been obtained if n � 4. As
expected, in this case one can get sign changing solutions for every λ ∈ (0, λ1(Ω)) or even for λ > λ1(Ω). For details
one can see the papers by Atkinson, Brezis and Peletier [2,3], Clapp and Weth [10] and the references therein.
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Obviously the case n = 3 presents the same difficulties enlightened in [8] for positive solutions.
In the first part of this paper, with a simple argument, we prove that there cannot exist sign changing solutions with

low energy in correspondence to a value of the parameter λ smaller than λ∗(Ω).
More precisely, let us define

λ̄(Ω) = inf
{
λ ∈ R | (Pλ) has a sign changing solution uλ with ‖uλ‖2

λ � 2S3/2}. (1.5)

Note that sign changing solutions with energy smaller than 2S3/2 always exist if Ω is a ball as it can be easily seen
by considering the positive solution in the half ball which minimizes (1.2) and extending it by oddness to the whole
ball.

It should also be pointed out that solutions to (1.1) are smooth as a consequence of a result due to Brezis and
Kato [7] (see also [6]).

Now, we state our comparison results:

Theorem 1.1. Let λ be such that there exists a nontrivial solution uλ of (Pλ) satisfying:
there exists a connected component Ω1 of Ω \ {x ∈ Ω | uλ(x) = 0} such that∫

Ω1
|∇uλ|2 − λ

∫
Ω1

|uλ|2
(
∫
Ω1

|uλ|2∗
)2/2∗ � S. (1.6)

Then we have

λ � λ∗(Ω).

In the case of sign changing solutions this theorem essentially claims that if λ < λ∗(Ω) there cannot exist a sign
changing solution uλ with a nodal region Ω1 in which the energy of uλ|Ω1 is smaller than or equal to S3/2.

Corollary 1.2. We have that

λ̄(Ω) � λ∗(Ω).

Corollary 1.3. If λ̄(Ω) is achieved, then we have an alternative:
either

λ̄(Ω) > λ∗(Ω)

or

λ̄(Ω) = λ∗(Ω) and hence λ∗(Ω) is achieved.

In particular, if Ω is a ball B then

λ̄(B) > λ1(B)/4.

Another result that is obtained with same proof as for Theorem 1.1 is the following

Corollary 1.4. Assume that Ω is symmetric with respect to the plane T = {x = (x1, x2, x3) ∈ R
3 | x1 = 0} and let D1

be the set D1 = {x ∈ Ω | x1 < 0}. Then we have

λ̄(Ω) � λ∗(D1) and λ∗(D1) � λ∗(Ω).

Though it applies only to symmetric domains, the result of Corollary 1.4 indicates a kind of monotonicity of the
parameter λ∗(Ω) with respect to the domain Ω as it happens for the first Dirichlet eigenvalue of −� on Ω . In view
of the result of [11] it also gives a relation between the sign of the regular part of the Green function of the operator
(−� − λ) in Ω and in D1.

Theorem 1.1 and Corollaries 1.2 and 1.3 are also related to the following question raised by H. Brezis
If Ω is a ball B in R

3, could exist sign changing solutions of (Pλ) when λ is smaller than λ∗(B) = λ1(B)/4?



570 M. Ben Ayed et al. / Ann. I. H. Poincaré – AN 23 (2006) 567–589
Obviously the above results give a very partial answer to the above question since they only concern the case of
sign changing solutions uλ with a nodal region Ω1 in which the energy ‖uλ‖2

λ is not bigger than S3/2.
Note that if λ̄(Ω) was achieved by a sign changing solution uλ then either the energy of uλ should be less than

2S3/2 and uλ should be degenerate otherwise it could be continued to a solution uλ′ , λ′ < λ̄(Ω), contradicting the
definition of λ̄(Ω), or the energy of uλ should be equal to 2S3/2.

In the case when λ̄(Ω) is not achieved it is possible to prove (see Lemma 4.2 below) that there exists a family of
solutions uλ such that ‖uλ‖2 → 2S3/2 and uλ ⇀ 0 in H 1

0 (Ω), as λ → λ̄(Ω), i.e. the solutions uλ concentrate. Hence
it is an interesting question to analyze the concentration phenomenon of these solutions.

Indeed the second part of the paper is devoted to analyze the behavior of sign changing solutions of (Pλ) which
converge weakly to zero and whose energy converges to 2S3/2 as λ → λ̄(Ω). More precisely we prove that these
solutions blow-up at two points ā1 and ā2 which are the limit of the concentration points aλ,1 and aλ,2 of the positive
and negative part of the solutions. Moreover the distance between aλ,1 and aλ,2 is bounded from below by a positive
constant depending only on Ω and the speeds of concentrations of the positive and negative part are comparable.
We think that these results, whose precise statements are contained in Theorems 3.1 and 4.1 below, are interesting
in theirselves and important to face the study of sign changing solutions of problems with critical Sobolev exponent.
They were also difficult to get since we could not always exploit the same arguments used in the study of positive
solutions blowing up at two points.

It is also interesting that, once the blow-up analysis is carried out, we can give an alternative proof of Corollary 1.2,
in the case when λ̄(Ω) is not achieved, which relies on Pohozaev’s identity and on the sign of the regular part of the
Green function of (−� − λ̄(Ω)) as deduced by the result of [11].

A final comment is that one expects that results analogous to those of Theorems 3.1 and 4.1 below should also
hold in higher dimensions and with similar or even simpler proof. Surprisingly our proof only works in dimension
3 because in applying Pohozaev’s identity and getting the convergence of certain integrals the role of the dimension
is crucial. We think that other arguments could be used for n � 4 and a further investigation in this direction is in
progress.

The outline of the paper is the following. In Section 2 we prove Theorem 1.1 and its corollaries and we also show
a qualitative result which gives the connection between the energy of a solution and the number of its nodal regions.
Section 3 is devoted to state and prove Theorem 3.1. In Section 4 we state and prove Theorem 4.1 and we then give
another proof of Corollary 1.2 in the case when λ̄(Ω) is not achieved. Finally, Appendix A is devoted to the local
blow-up analysis needed in Sections 3 and 4.

2. Proof of Theorem 1.1 and its corollaries

We start by proving Theorem 1.1.

Proof of Theorem 1.1. First, if uλ does not change sign we deduce that Ω1 = Ω . In this case, it is easy to see that

Jλ(uλ) � S.

Assume that

inf
u∈H 1

0 (Ω), u �=0
Jλ(u) = S,

then uλ is a minimizer for Jλ which contradicts the result of [11] according to which the infimum is achieved if and
only if it is smaller than S. Thus

inf
u∈H 1

0 (Ω), u �=0
Jλ(u) < S

and hence again by the result of [11], Jλ has a minimizer vλ. Thus λ � λ∗(Ω).
Now, we analyze the case when uλ changes sign. In this case, we define wλ as

wλ = uλ in Ω1, wλ = 0 in Ω \ Ω1.

Without loss of generality, we can assume that wλ � 0. Since uλ = 0 on ∂Ω1, we have wλ ∈ H 1
0 (Ω). Now, multiplying

(Pλ) by wλ and integrating on Ω , we obtain
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‖wλ‖2
λ :=

∫
Ω

|∇wλ|2 − λ

∫
Ω

w2
λ =

∫
Ω

w6
λ. (2.1)

Observe that, because of the assumption (1.6)

Jλ(wλ) := ‖wλ‖2
λ

(
∫
Ω

w6
λ)

1/3
� S. (2.2)

Assume that

inf
u∈H 1

0 (Ω), u �=0
Jλ(u) = S,

then wλ is a minimizer for Jλ, which is a contradiction since, by [11], the infimum can only be achieved if it is strictly
smaller than S. Thus

inf
u∈H 1

0 (Ω), u �=0
Jλ(u) < S

and hence by the result of [11], Jλ has a minimizer vλ. Thus λ � λ∗(Ω). Theorem 1.1 is thereby proved. �
Next, we are going to give the proofs of Corollaries 1.2–1.4.

Proof of Corollary 1.2. Let λ � λ̄(Ω) be such that there exists a sign changing solution uλ of (Pλ) with ‖uλ‖2
λ �

2S3/2. Since ‖uλ‖2
λ = ‖u+

λ ‖2
λ + ‖u−

λ ‖2
λ, we have that ‖u+

λ ‖2
λ � S3/2 or ‖u−

λ ‖2
λ � S3/2. Then the assumptions of Theo-

rem 1.1 are satisfied and therefore λ � λ∗(Ω). Hence the corollary follows. �
Proof of Corollary 1.3. By Theorem 1.1, we know that λ̄(Ω) � λ∗(Ω). If λ(Ω) is achieved then as in the proof
of Corollary 1.2, we obtain ‖u+

λ̄(Ω)
‖2
λ̄(Ω)

� S3/2 or ‖u−
λ̄(Ω)

‖2
λ̄(Ω)

� S3/2. So, following the proof of Theorem 1.1, we

derive that Jλ̄(Ω) has a minimizer. Now, if we assume that λ̄(Ω) = λ∗(Ω) we derive that Jλ∗(Ω) has a minimizer and
therefore λ∗(Ω) is achieved.

Since when Ω is a ball B we know by [8] that λ∗(B) = λ1(B)/4 is not achieved we get λ̄(Ω) > λ1(B)/4. �
Proof of Corollary 1.4. Let λ > λ∗(D1) such that there exists a positive solution uλ of the problem (Pλ) on D1 with∫
D1

|∇uλ|2 − λ
∫
D1

u2
λ � S3/2. Extending uλ by oddness with respect to T , we can construct a sign changing solution

vλ of (Pλ) which satisfies∫
Ω

|∇vλ|2 − λ

∫
Ω

v2
λ = 2

( ∫
D1

|∇uλ|2 − λ

∫
D1

u2
λ

)
� 2S3/2.

Thus λ � λ̄(Ω) and therefore

λ∗(D1) � λ̄(Ω). (2.3)

Corollary 1.4 follows immediately from (2.3) and Corollary 1.2. �
We now state and prove a general result on the relation between the energy of a sign changing solution of (Pλ) and

the number of its nodal regions.

Proposition 2.1. Assume that μ < λ1(Ω) and let uλ be a sign changing solution of (Pλ) such that

uλ ⇀ 0 as λ → μ.

Then, we have∫
Ω

|∇uλ|2 � kS3/2(1 + o(1)
)
,

where k is the number of the connected components of Ω \ Zλ, with Zλ = {x ∈ Ω | uλ(x) = 0}.
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Proof. Let Ω1 be a connected component of Ω \ Zλ. We observe that{ −�uλ = u5
λ + λuλ in Ω1,

uλ = 0 on ∂Ω1.
(2.4)

Multiplying (2.4) by uλ and integrating on Ω1, we obtain∫
Ω1

|∇uλ|2 =
∫
Ω1

u6
λ + λ

∫
Ω1

u2
λ � 1

S3

( ∫
Ω1

|∇uλ|2
)3

+ λ

λ1(Ω1)

∫
Ω1

|∇uλ|2, (2.5)

where λ1(Ω1) is the first Dirichlet eigenvalue of −� on Ω1.
Notice that λ1(Ω1) � λ1(Ω) and therefore (2.5) implies that(

1 − λ

λ1(Ω)

)∫
Ω1

|∇uλ|2 � 1

S3

( ∫
Ω1

|∇uλ|2
)3

.

Hence∫
Ω1

|∇uλ|2 � c > 0 when λ is close to μ, (2.6)

where c is a positive constant which depends only on μ and λ1(Ω).
On the other hand, since uλ ⇀ 0 in Ω as λ → μ, we have that

∫
Ω1

u2
λ → 0 and hence

(
1 + o(1)

) ∫
Ω1

|∇uλ|2 � 1

S3

( ∫
Ω1

|∇uλ|2
)3

.

Thus, by (2.6)∫
Ω1

|∇uλ|2 � S3/2(1 + o(1)
)
.

Therefore∫
Ω

|∇uλ|2 � kS3/2(1 + o(1)
)
,

where k is the number of the connected components of Ω \ Zλ. Therefore our proposition is established. �
Clearly, Proposition 2.1 implies the following:

Corollary 2.2. Assume that λ̄(Ω) < λ1(Ω) and let uλ be a sign changing solution of (Pλ) such that∫
Ω

|∇uλ|2 → 2S3/2 and uλ ⇀ 0 as λ → λ̄(Ω).

Then the set Ω \ {x ∈ Ω | uλ(x) = 0} has exactly two connected components.

Before ending this section, let us mention the following remark:

Remark 2.3. Let

λ′(Ω) = inf
{
λ ∈ R | (Pλ) has a positive solution uλ with ‖uλ‖2

λ � S3/2},
with ‖uλ‖2

λ = ∫
Ω

|∇uλ|2 − λ
∫
Ω

u2
λ. Then we have

λ′(Ω) = λ∗(Ω),

where λ∗(Ω) is defined by (1.4).

Proof. It follows from the same proof as for the case of Theorem 1.1 when uλ is a positive solution. �
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3. Blow-up analysis

This section is devoted to the proof of the following result:

Theorem 3.1. Assume that λ̄(Ω) < λ1(Ω) and let (uλ) be a family of sign changing solutions of (Pλ) which satisfies

‖uλ‖2 :=
∫
Ω

|∇uλ|2 → 2S3/2 and uλ ⇀ 0 as λ → λ̄(Ω).

Then, there exist two local extremum points aλ,1, aλ,2 of uλ and a positive constant α, which depends only on Ω , such
that

‖uλ − Pδ(aλ,1,μλ,1) + Pδ(aλ,2,μλ,2)‖ → 0, as λ → λ̄(Ω),

μλ,i := 3−1/2uλ(aλ,i)
2 → +∞, as λ → λ̄(Ω), for i ∈ {1,2},

d(aλ,i , ∂Ω) � α, for i ∈ {1,2} and |aλ,1 − aλ,2| � α for λ close to λ̄(Ω),

where Pδ(a,μ) denotes the projection of δ(a,μ) on H 1
0 (Ω), that is,

�Pδ(a,μ) = �δ(a,μ) in Ω, Pδ(a,μ) = 0 on ∂Ω, and δ(a,μ)(x) = 31/4μ1/2

(1 + μ2|x − a|2)1/2
.

To prove Theorem 3.1, we need some preliminary results. In the sequel we denote by (uλ) the family of solutions
which satisfies the assumption of Theorem 3.1.

Lemma 3.2. We have that

(i)
∫
Ω

∣∣∇u+
λ

∣∣2 → S3/2,

∫
Ω

∣∣∇u−
λ

∣∣2 → S3/2 as λ → λ̄(Ω),

(ii)
∫
Ω

(
u+

λ

)6 → S3/2,

∫
Ω

(
u−

λ

)6 → S3/2 as λ → λ̄(Ω),

where u+
λ = max(uλ,0) and u−

λ = max(0,−uλ).

Proof. Multiplying (Pλ) by u±
λ and integrating on Ω , we obtain∫

Ω

∣∣∇u+
λ

∣∣2 =
∫
Ω

(
u+

λ

)6 + λ

∫
Ω

(
u+

λ

)2 and
∫
Ω

∣∣∇u−
λ

∣∣2 =
∫
Ω

(
u−

λ

)6 + λ

∫
Ω

(
u−

λ

)2
. (3.1)

On the other hand, since uλ ⇀ 0 in Ω as λ → λ(Ω), we have∫
Ω

(
u+

λ

)2 → 0 and
∫
Ω

(
u−

λ

)2 → 0 as λ → λ̄(Ω). (3.2)

Therefore, arguing as in the proof of Proposition 2.1, we find∥∥u+
λ

∥∥2 � S3/2(1 + o(1)
)

and
∥∥u−

λ

∥∥2 � S3/2(1 + o(1)
)
.

Clearly

‖uλ‖2 = ∥∥u+
λ

∥∥2 + ∥∥u−
λ

∥∥2 = 2S3/2(1 + o(1)
)
.

Therefore claim (i) of Lemma 3.2 follows. Claim (ii) follows from (3.1), (3.2) and claim (i). �
Lemma 3.3. We have that

Mλ,+ := max
Ω

u+
λ → +∞, Mλ,− := max

Ω
u−

λ → +∞ as λ → λ̄(Ω).
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Proof. Arguing by contradiction, we assume that Mλ,+ � c as λ → λ(Ω). Therefore u+
λ ∈ L∞(Ω) and u+

λ → 0 a.e.
Thus (u+

λ )6 → 0 in L1(Ω) which contradicts Lemma 3.2. Hence Mλ,+ → ∞ as λ → λ̄(Ω).
In the same way, we prove that Mλ,− → +∞ as λ → λ̄(Ω). �
Without loss of generality, we can assume in the sequel that

Mλ,+ � Mλ,−. (3.3)

Let Ωλ := M2
λ,+(Ω − aλ,1), where aλ,1 ∈ Ω such that Mλ,+ = uλ(aλ,1), and we denote by vλ the function defined

on Ωλ by

vλ(y) = M−1
λ,+uλ

(
aλ,1 + M−2

λ,+y
)
. (3.4)

It is easy to see that vλ satisfies

(Qλ)

⎧⎨⎩−�vλ = v5
λ + λM−4

λ,+vλ in Ωλ,

vλ = 0 on ∂Ωλ,

vλ(0) = 1, |vλ| � 1 in Ωλ.

(Recall that, we have assumed Mλ,+ � Mλ,−.)
Using the assumptions of Theorem 3.1, we see that∫

Ωλ

|∇vλ|2 =
∫
Ω

|∇uλ|2 → 2S3/2,

∫
Ωλ

|vλ|6 =
∫
Ω

|uλ|6 → 2S3/2 as λ → λ̄(Ω).

Let us prove the following lemma.

Lemma 3.4. We have that

M2
λ,+d(aλ,1, ∂Ω) → +∞ as λ → λ̄(Ω).

Proof. As in the proof of Lemma 2.3 of [5], we can show that

l := lim
λ→λ̄(Ω)

M2
λ,+d(aλ,1, ∂Ω) > 0.

Arguing by contradiction, we suppose that l < ∞. Then it follows from (Qλ) and standard elliptic theories that there
exists some function v, such that vλ → v in C2

loc(Π), where Π is a half space of R
3, and v satisfies⎧⎪⎪⎨⎪⎪⎩

−�v = v5, |v| � 1 in Π,

v = 0 on ∂Π,

v(0) = 1, ∇v(0) = 0,

‖v‖2 � 2S3/2, ‖v‖L6 � c.

But if Π is a half space of R
3, by Pohozaev Identity, v has to vanish identically. Thus, we derive a contradiction and

our lemma follows. �
From Lemma 3.4, we derive that there exists some function v, such that, vλ → v in C2

loc(R
3), and v satisfies⎧⎨⎩−�v = v5, |v| � 1 in R

3,

v(0) = 1, ∇v(0) = 0,

‖v‖2 � 2S3/2, ‖v‖L6 � c.

(3.5)

But, we know that if v is a sign changing solution, then ‖v‖2 > 2S3/2 (see p. 170 of [17]). Then v has to be positive
and therefore, it follows from [9] that

v(y) = δ(0,α0)(y), with α0 = 1/
√

3.

Thus

M−1 uλ

(
aλ,1 + M−2 y

) − δ(0,α )(y) → 0 in C2 (
R

3) as λ → λ̄(Ω).
λ,+ λ,+ 0 loc
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Observe that

M−1
λ,+uλ

(
aλ,1 + M−2

λ,+y
) − δ(0,α0)(y) = M−1

λ,+
(
uλ(x) − δ(aλ,1,μλ,1)(x)

)
,

where μλ,1 = 3−1/2M2
λ,+.

Lemma 3.5. Let uλ,1(x) = uλ(x) − Pδ(aλ,1,μλ,1)(x). Then we have

(i)
∫
Ω

|∇uλ,1|2 =
∫
Ω

|∇uλ|2 − S3/2 + o(1) as λ → λ̄(Ω),

(ii)
∫
Ω

|uλ,1|6 =
∫
Ω

|uλ|6 − S3/2 + o(1) as λ → λ̄(Ω).

Proof. We have∫
Ω

|∇uλ,1|2 =
∫
Ω

|∇uλ|2 +
∫
Ω

|∇Pδ(aλ,1,μλ,1)|2 − 2
∫
Ω

∇uλ∇Pδ(aλ,1,μλ,1). (3.6)

According to Bahri [4] (see also Rey [14]), we have thanks to Lemma 3.4∫
Ω

|∇Pδ(aλ,1,μλ,1)|2 = S3/2 + o(1) as λ → λ̄(Ω). (3.7)

We also have∫
Ω

∇uλ∇Pδ(aλ,1,μλ,1) =
∫
Ω

uλδ
5
(aλ,1,μλ,1)

=
∫
Ω

(uλ − δ(aλ,1,μλ,1))δ
5
(aλ,1,μλ,1)

+
∫
Ω

δ6
(aλ,1,μλ,1)

=
∫
Ωλ

(vλ − δ(0,α0))δ
5
(0,α0)

+
∫
Ω

δ6
(aλ,1,μλ,1)

.

Using Lemma 3.4 and Bahri [4] (see also Rey [14]), we have∫
Ω

δ6
(aλ,1,μλ,1)

= S3/2 + o(1) as λ → λ̄(Ω).

We now notice that∫
R3\B(0,R)

(vλ − δ(0,α0))δ
5
(0,α0)

= o(1), for R large enough,

and ∫
B(0,R)

(vλ − δ(0,α0))δ
5
(0,α0)

= o(1), because of vλ → δ(0,α0) in C2
loc

(
R

3).
Then ∫

Ω

∇uλ∇Pδ(aλ,1,μλ,1) = S3/2 + o(1). (3.8)

Therefore claim (i) follows from (3.6), (3.7) and (3.8). The proof of claim (ii) is similar to the proof of claim (i), so
we will omit it. �

Now, let us introduce the following notations:
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hλ := max
x∈Ω

(|x − aλ,1|1/2
∣∣uλ(x)

∣∣), (3.9)

Zλ := {
x ∈ Ω | uλ(x) = 0

}
, (3.10)

Ωλ,+ := the connected component of Ω \ Zλ which contains aλ,1, (3.11)

dλ,1 := d(aλ,1, ∂Ωλ,+). (3.12)

Proposition 3.6. We have that

hλ := max
x∈Ω

(|x − aλ,1|1/2
∣∣uλ(x)

∣∣) → +∞ as λ → λ̄(Ω).

Proof. First, we recall that the function vλ, defined in (3.4), converges to δ(0,α0) in C2
loc(R

3). Therefore dλ,1M
2
λ,+ →

+∞ as λ → λ̄(Ω). Secondly, we are going to prove the following crucial claim:

hλ � c �⇒ dλ,1 � 0 as λ → λ̄(Ω), (3.13)

where c is a positive constant independent of λ, for λ close to λ̄(Ω).
Arguing by contradiction, we assume that hλ � c and dλ,1 → 0 as λ → λ̄(Ω). We set

wλ(y) = d
1/2
λ,1 uλ(aλ,1 + dλ,1y), y ∈ Ω̃λ,+ := d−1

λ,1(Ωλ,+ − aλ,1). (3.14)

Observe that B(0,1) ⊂ Ω̃λ,+, and we have{ |y|1/2wλ(y) � c, for all y ∈ B(0,1),

wλ(0) = d
1/2
λ,1 uλ(aλ,1) = d

1/2
λ,1 Mλ,+ → +∞ as λ → λ̄(Ω).

(3.15)

Therefore 0 is an isolated blow-up point of wλ (see Appendix A for definition). Notice that wλ satisfies{−�wλ = w5
λ + λd2

λ,1wλ, wλ > 0 in Ω̃λ,+,

wλ = 0 on ∂Ω̃λ,+.

Then it follows from Proposition A.9 in Appendix A that 0 is an isolated simple blow-up point in B(0,1). By Propo-
sitions A.6 and A.7 of Appendix A, we know that there exist positive constants c1 and c2 such that

c1wλ(0)
(
1 + α2

0w4
λ(0)|y|2)−1/2 � wλ(y) � c2w

−1
λ (0)|y|−1 for y ∈ B(0,1/2) \ {0}. (3.16)

Observe that

�wλ + Vλwλ = 0, with Vλ = w4
λ + λd2

λ,1.

Notice that, since hλ is bounded, we have

Vλ(y) � c for all y ∈ Ω̃λ,+ \ B(0,1/4).

By Harnack Inequality (see Corollary 8.21 of [12]), we deduce that, for any compact set K of Ω̃λ,+ \ {0}, we have

wλ(y) � cKwλ(0)−1 for all y ∈ K. (3.17)

Now, we set

w̃λ(y) = wλ(0)wλ(y).

It is easy to see that w̃λ satisfies{−�w̃λ = w̃λ(0)−4w̃5
λ + λd2

λ,1w̃λ, w̃λ > 0 in Ω̃λ,+,

w̃λ = 0 on ∂Ω̃λ,+.

By (3.17), w̃λ is bounded in any compact set of Ω̃λ,+ \{0}. It follows from standard elliptic theories that w̃λ converges
in C2

loc(Π \ {0}) to some positive function w̃ ∈ C2(Π \ {0}), where Π is the limit domain of Ω̃λ,+ when λ → λ̄(Ω).
Since dλ,1 → 0, we see that w̃ satisfies
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{−�w̃ = 0, w̃ � 0 in Π \ {0},
w̃ = 0 on ∂Π.

It follows from (3.16) that 0 is a nonremovable singularity of w̃. Therefore

w̃λ → αGΠ(0, ·) in C2
loc(Π \ {0}),

where GΠ(0, ·) is the Green function of the Laplacian operator with Dirichlet boundary condition defined on the limit
domain and α is a positive constant. Such a Green function can be written as

GΠ(0, y) = |y|−1 − H(0, y),

where by the maximum principle H(0, y) > 0.
Applying Pohozaev Identity in the form of Theorem 1.1 of [13], we derive that, for 0 < r < 1/2

λd2
λ,1

∫
Br

w2
λ − r

6

∫
∂Br

w6
λ − r

2
λd2

λ,1

∫
∂Br

w2
λ =

∫
∂Br

B(r, x,wλ,∇wλ)dx, (3.18)

where Br = B(0, r) and where

B(r, x,u,∇u) = 1

2
u

∂u

∂ν
− r

2
|∇u|2 + r

(
∂u

∂ν

)2

. (3.19)

Multiplying (3.18) by w2
λ(0) and using the homogeneity of the operator B , we obtain

λd2
λ,1

∫
Br

w̃2
λ − r

6
w−4

λ (0)

∫
∂Br

w̃6
λ − r

2
λd2

λ,1

∫
∂Br

w̃2
λ =

∫
∂Br

B(r, x, w̃λ,∇w̃λ)dx. (3.20)

Using (3.16), we derive that

rw−4
λ (0)

∫
∂Br

w̃6
λ � cw−4

λ (0)r−3 → 0 as λ → λ̄(Ω),

λd2
λ,1

∫
Br

w̃2
λ � cλd2

λ,1

∫
Br

dy

|y|2 � cλd2
λ,1 → 0 as λ → λ̄(Ω),

λd2
λ,1

∫
∂Br

w̃2
λ � cλd2

λ,1 → 0 as λ → λ̄(Ω).

Therefore the left-hand side of (3.20) tends to zero as λ → λ(Ω).
Now, since

w̃λ → αGΠ(0, ·) in C2
loc(∂Br) for 0 < r < 1/2

and for r small

GΠ(0, x) = |x|−1 − H(0,0) + o
(|x|), with |x| = r,

we deduce that

lim
λ→λ̄(Ω), r→0

∫
∂Br

B(r, x, w̃λ,∇w̃λ)dx = 1

2
α2ω3H(0,0) > 0,

where ω3 is the area of the unit sphere in R
3. This leads a contradiction and therefore claim (3.13) follows.

Now, we are going to prove Proposition 3.6. Arguing by contradiction, we suppose that

hλ � c, with c is a positive constant independent of λ.

By claim (3.13), we have dλ,1 � c > 0 as λ → λ(Ω). Observe that |aλ,1 − xλ,−| � dλ,1, where xλ,− ∈ Ω such that
|uλ(xλ,−)| = maxu−

λ . Thus, using Lemma 3.3, we obtain

|aλ,1 − xλ,−|1/2
∣∣uλ(xλ,−)

∣∣ → +∞ as λ → λ̄(Ω).
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This implies that hλ → +∞ as λ → λ̄(Ω). Therefore we obtain a contradiction and our proposition follows. �
Now, let xλ,2 ∈ Ω and Mλ,2 > 0 such that

hλ = |aλ,1 − xλ,2|1/2Mλ,2,

where hλ is defined by (3.9). We set

ũλ(y) = M−1
λ,2uλ

(
xλ,2 + M−2

λ,2y
)

for y ∈ Ωλ,2 := M2
λ,2(Ω − xλ,2).

Recall that, for any x ∈ Ω , we have

|x − aλ,1|1/2
∣∣uλ(x)

∣∣ � |xλ,2 − aλ,1|1/2
∣∣uλ(xλ,2)

∣∣.
Notice that, for x ∈ B(xλ,2, |xλ,2 − aλ,1|/2), we have |x − aλ,1| � |xλ,2 − aλ,1|/2. Hence

M−1
λ,2

∣∣uλ(x)
∣∣ �

√
2 for any x ∈ B

(
xλ,2, |xλ,2 − aλ,1|/2

) ∩ Ω.

Thus, we obtain∣∣ũλ(y)
∣∣ �

√
2 for any y ∈ B

(
0,M2

λ,2|xλ,2 − aλ,1|/2
) ∩ Ωλ,2.

As in Lemma 3.4, we can prove that

M2
λ,2d(xλ,2, ∂Ω) → +∞ as λ → λ̄(Ω),

and therefore ũλ converges in C2
loc(R

3) to some function ϕ such that⎧⎪⎨⎪⎩
−�ϕ = ϕ5 in R

3,∣∣ϕ(0)
∣∣ = 1,

∣∣ϕ(x)
∣∣ �

√
2,

‖ϕ‖2 � 2S3/2.

Thus ϕ does not change sign and therefore two cases may occur:
Case 1: uλ(xλ,2) > 0. In this case ϕ > 0 and therefore there exist b ∈ R

3 and μ > 0 such that ϕ = δ(b,μ). Using
Proposition 3.6, we see that∥∥u+

λ

∥∥2 � 2S3/2 + o(1) as λ → λ̄(Ω)

which contradicts Lemma 3.2. Thus this case cannot happen.
Case 2: uλ(xλ,2) < 0. Thus ϕ < 0 and therefore there exist b ∈ R

3 and μ > 0 such that ϕ = −δ(b,μ). Since b is
a nondegenerate critical point of δ(b,μ), there exists bλ → b as λ → λ̄(Ω), such that ∇ũλ(bλ) = 0 and ũλ(bλ) →
31/4μ1/2. We see that

ũλ + δ(bλ,3−1/2ũλ(bλ)2) → 0 in C2
loc

(
R

3) as λ → λ̄(Ω).

Thus we have found a second blow-up point aλ,2 of uλ with the concentration μλ,2 defined by

aλ,2 = xλ,2 + M−1
λ,2bλ and μλ,2 = 3−1/2uλ(aλ,2)

2.

Clearly, we have

∇uλ(aλ,2) = 0 and
∫
Ω

∇Pδ(aλ,1,μλ,1) · ∇Pδ(aλ,2,μλ,2) → 0 as λ → λ̄(Ω).

Therefore, as in Lemma 3.5, we obtain

‖uλ − Pδ(aλ,1,μλ,1) + Pδ(aλ,2,μλ,2)‖ → 0 as λ → λ̄(Ω). (3.21)

Now, we are in position to prove Theorem 3.1.

Proof of Theorem 3.1. We have already proved the existence of two local extremum points aλ,1, aλ,2 of uλ satisfying
(3.21) and

μλ,i := 3−1/2uλ(aλ,i)
2 → +∞, μλ,id(aλ,i , ∂Ω) → +∞ as λ → λ̄(Ω), for i ∈ {1,2}.
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It remains to prove that there exists α > 0 such that

d(aλ,i , ∂Ω) � α, for i ∈ {1,2}, and |aλ,1 − aλ,2| � α, as λ → λ̄(Ω). (3.22)

Let S = {aλ,1, aλ,2}. We first prove that there exists c > 0 such that

hλ,2 := max
Ω

(
d(x,S)1/2

∣∣uλ(x)
∣∣) � c for λ close to λ̄(Ω). (3.23)

Arguing by contradiction, we assume that

hλ,2 → +∞ as λ → λ̄(Ω).

Thus, as before, we can build a new blow-up point which ignores aλ,1 and aλ,2, that is, the image under the new
scaling of aλ,1 and aλ,2, will escape to infinity when λ tends to λ̄(Ω). Clearly, this implies that

‖uλ‖2 � 3S3/2 + o(1) as λ → λ̄(Ω)

which contradicts the assumption of Theorem 3.1. Hence (3.23) follows.
Now, let

Ωλ,− be the connected component of Ω \ Zλ which contains aλ,2, (3.24)

where Zλ is defined by (3.10). Set

dλ,2 := d(aλ,2, ∂Ωλ,−). (3.25)

We distinguish two cases:
Case 1: dλ,1 � dλ,2. In this case, let us prove that

dλ,1 � 0 as λ → λ̄(Ω). (3.26)

Arguing by contradiction, we assume that dλ,1 → 0 as λ → λ(Ω). Since hλ,2 is bounded, 0 is an isolated blow-up point
of the function wλ, defined in (3.14), and thus arguing as in the proof of Proposition 3.6, we derive a contradiction.

Case 2: dλ,2 � dλ,1. As in case 1, we prove that dλ,2 � 0 as λ → λ̄(Ω).
Now, since d(aλ,i , ∂Ω) � dλ,i , for i ∈ {1,2} and |aλ,1 − aλ,2| � dλ,1 + dλ,2, we deduce (3.22) and therefore our

theorem is proved. �
4. Study of concentration speeds

Here we prove that the speeds of the two blow-up points aλ,1 and aλ,2, constructed in Theorem 3.1, are of the same
order.

Theorem 4.1. Under the assumptions of Theorem 3.1, there exists a constant c̄ > 0 such that

1

c̄
� −uλ(aλ,1)

uλ(aλ,2)
� c̄ for λ close to λ̄(Ω),

where aλ,1 and aλ,2 are the blow-up points defined in Theorem 3.1.

Proof. By Theorem 3.1, we know that ā1 = limλ→λ̄(Ω) aλ,1, and ā2 = limλ→λ̄(Ω) aλ,2 are isolated simple blow-up
points of (uλ). Thus, there exist r0 > 0, c1 > 0 and c2 > 0 such that

0 <
c1uλ(aλ,1)

(1 + α2
0u4

λ(aλ,1)|x − aλ,1|2)1/2
� uλ(x) � c2u

−1
λ (aλ,1)

|x − aλ,1| , ∀x ∈ B(aλ,1, r0) \ {aλ,1}, (4.1)

c2u
−1
λ (aλ,2)

|x − aλ,2| � uλ(x) � c1uλ(aλ,2)

(1 + α2
0u4

λ(aλ,2)|x − aλ,2|2)1/2
< 0, ∀x ∈ B(aλ,2, r0) \ {aλ,2}, (4.2)

where α0 = 1/
√

3.
We also know that (see Section 3)

hλ,2 := max
(
d(x,S)1/2

∣∣uλ(x)
∣∣) � c for λ close to λ̄(Ω),
x∈Ω
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where S = {aλ,1, aλ,2}.
Thus, we derive that uλ is bounded in each compact set K of Ω \ S . We now consider

L := (−� − �Vλ), with �Vλ = (|uλ|4 + λ
)
Id.

We know that �Vλ is bounded in each compact set of Ω \ {aλ,1, aλ,2} and Luλ = 0. Thus for any compact set K+ of
Ωλ,+ \ {aλ,1}, we have by (4.1) and Harnack Inequality

0 < uλ(x) � CK+u−1
λ (aλ,1) ∀x ∈ K+, (4.3)

where Ωλ,+ is defined by (3.11) and CK+ is a positive constant. In the same way, we have for any compact set K− of
Ωλ,− \ {aλ,2}

CK−u−1
λ (aλ,2) � uλ(x) < 0 ∀x ∈ K−, (4.4)

where Ωλ,− is defined by (3.24) and CK− is a positive constant.
Now we need to estimate uλ in D± := {x ∈ Ωλ,± | d(x, ∂Ωλ,±) < d0} where d0 is a fixed positive constant. For this

fact, observe that uλ is bounded in Ω0 := Ω \ ⋃
B(aλ,i , r0/2) which implies that �uλ is bounded in Ω0. Thus, since

uλ = 0 on ∂Ωλ,±, we derive that |∇uλ| � c in D± and therefore |uλ| � cd0 in D±, where c is a constant independent
of λ. Using also (4.3), (4.4) for K± := Ωλ,± \ (D± ∪ B(aλ,±, r0/2)) and Corollary 2.2, we can choose d0 such that

|uλ|4L∞(Ω0)
+ λ � c′ < λ1(Ω) for λ close to λ̄(Ω),

where c′ is a positive constant independent of λ and where we have used the fact that λ̄(Ω) < λ1(Ω).
Therefore the operator L satisfies the maximum principle in Ω0. We deduce that

− sup
∂Ω0

u−
λ � uλ(x) � sup

∂Ω0

u+
λ ∀x ∈ Ω0.

Hence, using (4.1) and (4.2), we obtain

c′
1u

−1
λ (aλ,2) � uλ(x) � c′

2u
−1
λ (aλ,1) ∀x ∈ Ω0, (4.5)

where c′
1 and c′

2 are positive constants independent of λ and Ω0 := Ω \ ⋃
B(aλ,i , r0/2).

To prove Theorem 4.1, we argue by contradiction and we will prove that the ratio −uλ(aλ,1)

uλ(aλ,2)
cannot tend to zero nor

to +∞ when λ → λ̄(Ω).
Step 1: −uλ(aλ,1)

uλ(aλ,2)
→ 0 cannot occur. Assume that it tends to zero when λ → λ̄(Ω). By (4.1), (4.2) and (4.5), we

have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c′
1
uλ(aλ,1)

uλ(aλ,2)
� uλ(aλ,1)uλ(x) � c′

2 ∀x ∈ Ω0,

c1u
2
λ(aλ,1)

(1 + α2
0u4

λ(aλ,1)|x − aλ,1|2)1/2
� uλ(aλ,1)uλ(x) � c2

|x − aλ,1| ∀x ∈ B(aλ,1, r0) \ {aλ,1},
c2uλ(aλ,1)

|x − aλ,2|uλ(aλ,2)
� uλ(aλ,1)uλ(x) � c1uλ(aλ,1)uλ(aλ,2)

(1 + α2
0u4

λ(aλ,2)|x − aλ,2|2)1/2
∀x ∈ B(aλ,2, r0) \ {aλ,2}.

(4.6)

Thus, we derive that Wλ := uλ(aλ,1)uλ is bounded in each compact set K ⊂ Ω \ S . It follows from standard elliptic
theories that Wλ → �w in C2

loc(Ω \ �S), where �S = {ā1, ā2} is the limit set of the concentration points aλ,1 and aλ,2 and
where �w satisfies{−��w = λ̄(Ω)�w, w � 0 in Ω \ �S,

�w = 0 on ∂Ω.

From (4.6) and the fact that −uλ(aλ,1)

uλ(aλ,2)
→ 0, it is easy to see that ā1 is a nonremovable singularity of �w but not ā2. Thus

�w(y) = ᾱGλ̄(ā1, y), ᾱ > 0, (4.7)

where G¯ is the Green function of (−� − λ̄(Ω)) in Ω with Dirichlet boundary condition, that is,
λ



M. Ben Ayed et al. / Ann. I. H. Poincaré – AN 23 (2006) 567–589 581
∀x ∈ Ω

{(−� − λ̄(Ω)
)
Gλ̄(x, ·) = ω3 δx in Ω,

Gλ̄(x, ·) = 0 on ∂Ω,
(4.8)

where ω3 is the area of the unit sphere of R
3. Now, since uλ(aλ,1) > 0 and uλ(aλ,2) < 0, we see that uλ has to vanish

at some point xλ. Let x̄ = limλ→λ(Ω) xλ. Then x̄ belongs to some compact set of Ω \S and therefore �w(x̄) = 0 which

contradicts (4.7) because of Gλ̄ > 0 in Ω , since we have assumed that λ̄(Ω) < λ1(Ω). Step 1 is thus proved.

Step 2. −uλ(aλ,2)

uλ(aλ,1)
→ +∞ cannot occur. Step 2 can be proved in exactly the same way as Step 1, we just multiply

by uλ(aλ,2) instead of uλ(aλ,1). �
Next we are going to give an alternative proof of Corollary 1.2 in the case when λ̄(Ω) is not achieved. Let us start

by the following lemma:

Lemma 4.2. Assume that λ̄(Ω) < λ1(Ω). If λ̄(Ω) is not achieved and uλ is a family of sign changing solutions of
(Pλ) which satisfies ‖uλ‖2

λ � 2S3/2 with λ → λ̄(Ω), then

‖uλ‖2 → 2S3/2 and uλ ⇀ 0 in H 1
0 (Ω) as λ → λ̄(Ω).

Proof. Let u be such that uλ ⇀ u as λ → λ̄(Ω). Thus u is a solution of (Pλ̄(Ω)). Since λ̄(Ω) is not achieved we derive
that u does not change sign. We can assume that u � 0.

We argue by contradiction and we assume that u �= 0. Thus by the maximum principle we deduce that u < 0. It is
clear that the connected components of u+

λ will degenerate as λ → λ(Ω).
It is easy to see that u+

λ ⇀ 0 and therefore as in the proof of Proposition 2.1 we derive that ‖u+
λ ‖2 � S3/2(1 + o(1))

and therefore, since ‖uλ‖2
λ � 2S3/2, we obtain ‖u−

λ ‖2
λ � S3/2.

Now let M+ = max|uλ| = |uλ(a+)|. It is easy to see that M+ → +∞ (if not, we obtain |u+
λ |L∞ � c and we have

uλ ⇀ 0 thus ‖u+
λ ‖ → 0 which is not true).

Thus we can prove that

vλ(X) = 1

M+
uλ

(
a+ + X

M2+

)
, for X ∈ M+(Ω − a+)

converges in C1
loc(R

3) to sign(uλ(a+))δ(0,α0). Furthermore, uλ(a+) has to be positive. Indeed, the function δ(0,α0)

cannot be in the description of u−
λ (since u−

λ ⇀ u < 0 and ‖u−
λ ‖2

λ � S3/2). Thus a+ is a concentration point with the
speed M2+.

Now we introduce hλ as in (3.9). Two cases may occur.
1st case. hλ → +∞. In this case, we can construct another concentration point a2 with the speed λ2 that means the

function ±δ(a2,λ2) appears in the description of uλ. Since we assumed that u < 0 we derive that ‖uλ‖2
λ is bigger than

2S3/2 which is a contradiction with ‖uλ‖2
λ � 2S3/2. Thus this case cannot occur.

2nd case. hλ � c. In this case, we can use the claim (3.13) and we deduce that dλ,+ := d(a+, ∂Ωλ,+) � 0 where
Ωλ,+ is defined by (3.11). (In the proof of this claim we used only the set Ωλ,+ thus the proof remains unchanged if
u−

λ ⇀ 0 is not satisfied.)
Now it is easy to see that Ωλ,+ has to degenerate (because uλ converges weakly to a negative function in the whole

domain) and therefore dλ,+ has to tend to 0 which is a contradiction with the claim (3.13). Thus this case cannot occur
neither.

The proof is thereby completed. �
Proof of Corollary 1.2 when λ̄(Ω) is not achieved. Let Gλ̄ be the Green function of (−�− λ̄(Ω)) defined by (4.8).
Arguing by contradiction, we assume that λ̄(Ω) < λ∗(Ω). Thus (Pλ) has no positive solution uλ such that ‖uλ‖2

λ �
S3/2, where ‖uλ‖2

λ = ∫
Ω

|∇uλ|2 − λ
∫
Ω

u2
λ. Therefore, using the result of [11], we derive that

∀x ∈ Ω Hλ̄(x, x) � 0, (4.9)

where Hλ̄ is the regular part of Gλ̄, that is,

G¯ (a, x) = |x − a|−1 − H¯ (a, x).
λ λ
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Now, using Lemma 4.2, we see that the assumptions of Theorem 3.1 are satisfied and therefore we can use the
assertions of Theorems 3.1 and 4.1. To this aim, we introduce the following function

Wλ(x) = uλ(aλ,1)uλ(x), x ∈ Ω.

Using (4.6) and Theorem 4.1, we derive that Wλ is bounded in each compact set K of Ω \ {a1, ā2}, where āi =
limλ→�λ(Ω) aλ,i . Thus Wλ converges to some function �w in C2

loc(Ω \ {ā1, ā2}) and �w satisfies⎧⎪⎨⎪⎩
−��w = λ̄(Ω)�w in Ω \ {ā1, ā2},
�w = 0 on ∂Ω,

ā1 and ā2 are two nonremovable singularities of �w.

Therefore there exist M1 > 0 and M2 > 0 such that

�w(x) = M1Gλ̄(ā1, x) − M2Gλ̄(ā2, x). (4.10)

For x close to ā1, we have

−M1Hλ̄(ā1, x) − M2Gλ̄(ā2, x) = −M1Hλ̄(ā1, a1) − M2Gλ̄(ā2, ā1) + γ (x), (4.11)

where γ is a C1-function defined in the neighborhood of a1 and satisfies γ (ā1) = 0.
Observe that, by (4.9) and the fact that Gλ̄ > 0 we have

γ0 := −M1Hλ̄(ā1, ā1) − M2Gλ̄(ā2, ā1) < 0. (4.12)

Applying now Pohozaev Identity, see Theorem 1.1 of [13], we have for r small and Br = B(aλ,1, r)

λ

∫
Br

u2
λ − r

∫
∂Br

(
u6

λ

6
+ λu2

λ

2

)
=

∫
∂Br

B(r, x,uλ,∇uλ), (4.13)

where B is the operator defined by (3.19).
Multiplying (4.13) by u2

λ(aλ,1), we obtain

λ

∫
Br

W 2
λ − r

6u4
λ(aλ,1)

∫
∂Br

W 6
λ − rλ

2

∫
∂Br

W 2
λ =

∫
∂Br

B(r, x,Wλ,∇Wλ). (4.14)

Using (4.6), we derive that∫
Br

W 2
λ �

∫
Br

c2

|y − aλ,1|2 � c′
2r, (4.15)

r

∫
∂Br

W 2
λ � c′

2r, (4.16)

r

u4
λ(aλ,1)

∫
∂Br

W 6
λ � c

r3u4
λ(aλ,1)

→ 0 as λ → λ̄(Ω). (4.17)

Thus, passing to the limit when λ → λ̄(Ω) and using (4.15)–(4.17), (4.14) becomes∫
∂Br

B(r, x,w,∇w) = O(r). (4.18)

We now observe that, since �w(x) = M1|x − ā1|−1 + γ0 + γ (x), with γ (ā1) = 0 by direct computation we get

B(r, x,w,∇w) = −M2
1γ0

2
+ O

(
1
)

.

2r r
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Thus, using (4.12), we see that

lim
r→0

∫
∂Br

B(r, x,w,∇w) = −M2
1 γ0ω3

2
> 0

which contradicts (4.18). This ends the proof of Corollary 1.2 when λ̄(Ω) is not achieved. �
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Appendix A

In this appendix, we give the definition of isolated and isolated simple blow-up points, which were first introduced
by Schoen [15,16] and used extensively by Li [13]. We also provide the main local blow-up analysis giving first sharp
pointwise estimates to a sequence (wλ), defined by (3.14), near 0. Then we prove that 0 is in fact an isolated simple
blow-up point of (wλ), ruling out the possibility of bubbles on top of bubbles. The proof follows the same scheme as
in [13]. Moreover, we need some convenient additional arguments. First, we recall some notations and assumptions
stated in Section 2.

We set

wλ(y) = d
1/2
λ,1 uλ(aλ,1 + dλ,1y), for y ∈ Ω̃λ,+ := d−1

λ,1(Ωλ,+ − aλ,1), (A.1)

where dλ,1 = d(aλ,1, ∂Ωλ,+), Ωλ,+ is defined by (3.11), and aλ,1 is defined in Theorem 3.1.
Throughout this appendix, we assume that dλ,1 → 0 as λ → λ̄(Ω) and wλ satisfies (3.15), that is{ |y|1/2wλ(y) � c, for y ∈ B(0,1),

wλ(0) = d
1/2
λ,1 uλ(aλ,1) → +∞ as λ → λ̄(Ω).

(A.2)

We also denote by Π the limit domain of Ω̃λ,+ when λ → λ̄(Ω). Recall that wλ satisfies{−�wλ = w5
λ + λd2

λ,1wλ, wλ > 0 in Ω̃λ,+,

wλ = 0 on ∂Ω̃λ,+.
(A.3)

Let us now give the definition of isolated and isolated simple blow-up points.

Definition A.1. ȳ ∈ Π is called an isolated blow-up point of (wλ) if there exist 0 < r̄ < d(ȳ, ∂Π), C ∈ R and a
sequence (yλ) in Ω̃λ,+, converging to ȳ, such that yλ is a local maximum of wλ, wλ(yλ) → +∞, as λ → λ̄(Ω), and

|y − yλ|1/2wλ(y) � C for all y ∈ B(yλ, r̄).

Remark A.2. (A.2) implies that 0 is an isolated blow-up point of (wλ).

To describe the behavior of blowing up solutions near an isolated blow-up point, we define spherical averages of
wλ centered at yλ as follows

wλ(r) = 1

|∂B(yλ, r)|
∫

∂B(yλ,r)

wλ, 0 < r < r̄. (A.4)

Now we define the notion of isolated simple blow-up point.

Definition A.3. ȳ ∈ Π is called an isolated simple blow-up point of (wλ) if ȳ is an isolated blow-up point, such that,
for some positive constant ρ (independent of λ) the function r1/2wλ(r) has exactly one critical point in (0, ρ) for λ

close to λ̄(Ω).
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Now, we start giving some pointwise estimates to a sequence (wλ) near 0. Hence forward we use c to denote
positive constants which may vary from formula to formula and which may depend only on r̄ .

Lemma A.4. For any 0 < r < 1/3, we have

max
B2r\Br/2

wλ(y) � c min
B2r\Br/2

wλ(y),

where c is some positive constant independent of λ and r . Here and in the sequel, for R > 0, BR denotes the ball
B(0,R).

Proof. Set

w̃λ(y) = r1/2wλ(ry), for y ∈ B3.

It is easy to see that w̃λ satisfies{
−�w̃λ = w̃5

λ + λr2d2
λ,1w̃λ in B3,

0 < w̃λ(y) < c|y|−1/2 for y ∈ B3 \ {0}.
Lemma A.4 follows immediately from Theorem 8.20 of [12]. �
Proposition A.5. For any Rλ → +∞, ελ > 0, ελ → 0 as λ → λ(Ω), we have∥∥w−1

λ (0)wλ

(
w−2

λ (0)y
) − (

1 + 3−1|y|2)−1/2∥∥
C2(B2Rλ

)
< ελ,

Rλw
−2
λ (0) → 0 as λ → λ̄(Ω).

Proof. It follows immediately from the fact that w−1
λ (0)wλ(w

−2
λ (0)y) = vλ, where vλ is the function defined

by (3.4). �
The following proposition gives a nice property of the isolated blow-up point, which proof is contained in Propo-

sition 2.2 of [13], up to some minor modifications.

Proposition A.6. There exists some positive constant c, such that,

wλ(y) � cwλ(0)
(
1 + 3−1w4

λ(0)|y|2)−1/2
for all |y| � 1/2.

Now, we state the main estimate on isolated simple blow-up points.

Proposition A.7. Assume that 0 is an isolated simple blow-up point of (wλ). Then for some positive constant c

independent of λ, we have

wλ(y) � cw−1
λ (0)|y|−1 for all 0 < |y| < 1/2.

Before giving the proof of Proposition A.7, we first establish the following lemma:

Lemma A.8. Assume that 0 is an isolated simple blow-up point of (wλ). Then, there exists αλ > 0, αλ → 0, c′R−2
λ �

αλ � c′′ log−1(wλ(0)) for some positive constants c′ and c′′, such that

wλ(y) � Cwλ(0)−1+2αλ |y|−1+αλ for all rλ � |y| � 1/2,

where rλ = Rλw
−2
λ (0) and C is some positive constant independent of λ.

Proof of Lemma A.8. It follows from Proposition A.5 that

wλ(y) � cwλ(0)R−1
λ for all |y| = rλ. (A.5)

Let wλ(r) be defined in (A.4), it follows from the assumption of isolated simple blow-up and Proposition A.5 that
there exists ρ > 0 such that
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r1/2wλ(r) is strictly decreasing for rλ < r < ρ. (A.6)

It follows from (A.5), (A.6) and Lemma A.4 that for rλ < |y| < ρ, we have

|y|1/2wλ(y) � c|y|1/2wλ

(|y|) � cr
1/2
λ wλ(rλ) � cR

−1/2
λ .

Therefore

w4
λ(y) � cR−2

λ |y|−2 for all rλ � |y| � ρ. (A.7)

Consider the following second order elliptic operator

Lλϕ := �ϕ + w4
λϕ + λd2

λ,1ϕ.

Notice that Lλwλ = 0 and wλ > 0. It follows that the maximum principle holds for Lλ.
For 0 < α < 1, a direct computation yields

Lλ

(|y|−α
(
1 − λd2

λ,1|y|2)) � −α(1 − α)|y|−2−α + w4
λ(y)|y|−α � |y|−2−α

(−α(1 − α) + cR−2
λ

)
,

where we have used (A.7) in the last inequality.
Choosing α := αλ � cR−2

λ , we obtain

Lλ

(|y|−αλ
(
1 − λd2

λ,1|y|2)) � 0. (A.8)

Another straightforward computation taking into account (A.7) shows that

Lλ

(|y|−1+αλ
(
1 − λd2

λ,1|y|2)) � 0. (A.9)

Set Mλ := max∂Bρ wλ and for rλ � |y| � ρ, we also set

ϕλ(y) := 2
(
Mλρ

αλ |y|−αλ + Awλ(0)−1+2αλ |y|−1+αλ
)(

1 − λd2
λ,1|y|2),

where A > 1 will be chosen later.
First, it follows from (A.8) and (A.9) that ϕλ satisfies Lλϕλ � 0 in the annulus rλ � |y| � ρ. Secondly, by the

choice of Mλ and the fact that dλ,1 → 0 as λ → λ̄(Ω), we derive that

ϕλ(y) � Mλ � wλ(y) for all |y| = ρ.

We also have

ϕλ(y) � Awλ(0)−1+2αλ |y|−1+αλ � Awλ(0)R−1
λ for all |y| = rλ.

According to (A.5), we can choose A to be sufficiently large and have

ϕλ(y) � wλ(y).

Applying the maximum principle in the annulus, we obtain

wλ(y) � ϕλ(y) for all rλ � |y| � ρ. (A.10)

It follows from (A.6), (A.10) and Lemma A.4 that for any r < θ < ρ, we have

ρ1/2Mλ � cρ1/2wλ(ρ) � cθ1/2wλ(θ) � 2cθ1/2(Mλρ
αλθ−αλ + Awλ(0)−1+2αλθ−1+αλ

)
.

Thus

ρ1/2Mλ

(
1 − 2cθ−αλ+1/2ραλ−1/2) � 2cAθαλ−1/2wλ(0)−1+2αλ .

Choose θ such that

2c(θ/ρ)−αλ+1/2 � 1/2 and c′ρ � θ � ρ,

for some positive constant c′ independent of λ, we derive that

Mλρ
αλ |y|−αλ � Cwλ(0)−1+2αλ |y|−1+αλ, for all rλ � |y| � ρ. (A.11)

Lemma A.8 follows from (A.10), (A.11) and Lemma A.4. �
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Now, we are able to give the proof of Proposition A.7.

Proof of Proposition A.7. The inequality in Proposition A.7 for |y| < rλ follows immediately from Proposition A.5.
Let e ∈ R

3, |e| = 1/2 and set

wλ(y) = w−1
λ (e)wλ(y) for y ∈ B2/3.

It is easy to see wλ satisfies

−�wλ = w4
λ(e)w

5
λ + d2

λ,1λwλ in B2/3.

It follows from Lemma A.4 and standard elliptic theories that wλ converges in C2
loc(B2/3 \ {0}) to some positive

function w ∈ C2
loc(B2/3 \ {0}). Notice that wλ(e) → 0 due to Lemma A.8. Now, since dλ,1 → 0, we see that w satisfies

−�w = 0 in B2/3 \ {0}.
In addition, w has to have a singularity at y = 0. Indeed Lemma A.4 and standard elliptic theories imply that, for
0 < r < 2/3, we have

lim
λ→λ̄(Ω)

w−1
λ (e)r1/2�wλ(r) = r1/2�w1(r),

where �w1(r) = |∂Br |−1
∫
∂Br

w. Therefore it follows from the definition of isolated simple blow-up that r1/2�w1(r) is
nonincreasing for 0 < r < ρ, which is impossible if w is regular near the origin. We derive that

w(y) = a1|y|−1 + b1(y), (A.12)

where a1 > 0 and b1 is some regular harmonic function in B2/3. We first establish the inequality in Proposition A.7
for |y| = 1/2. Namely, we prove that

wλ(e) � cw−1
λ (0). (A.13)

Arguing by contradiction, we suppose that (A.13) does not hold. Then, we can assume that

wλ(e)wλ(0) → +∞ as λ → λ̄(Ω). (A.14)

Multiply (A.3) by w−1
λ (e) and integrate on B1/2, we have

−
∫

∂B1/2

∂

∂ν
(wλ) = −w−1

λ (e)

∫
B1/2

�wλ = w−1
λ (e)

∫
B1/2

w5
λ + w−1

λ (e)

∫
B1/2

λd2
λ,1wλ. (A.15)

On one hand, it follows from Lemma A.4, standard elliptic theories and the harmonicity of b1 that

lim
λ→λ̄(Ω)

∫
∂B1/2

∂

∂ν
(wλ) =

∫
∂B1/2

∂

∂ν

(
a1|y|−1 + b1(y)

)
< 0. (A.16)

On the other hand, it follows from Proposition A.5 that∫
|y|�rλ

w5
λ � cw−1

λ (0) and
∫

|y|�rλ

wλ � cr2
λw−1

λ (0). (A.17)

It follows from Lemma A.8 that∫
rλ�|y|�1/2

w5
λ � c

∫
rλ�|y|�1/2

((
wλ(0)

)−1+2αλ |y|−1+αλ
)5 � cw−1

λ (0)R5αλ−2 (A.18)

and ∫
rλ�|y|�1/2

wλ � c
(
wλ(0)

)−1+2αλ � cwλ(0)−1, (A.19)

if we choose αλ such that w
αλ(0) � c.
λ
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Clearly (A.14)–(A.19) lead to a contradiction. Inequality (A.13) is thus established and therefore by Lemma A.4,
the inequality in Proposition A.7 follows for ρ � |y| � 1/2. To establish the inequality in Proposition A.7 for rλ �
|y| � ρ, we only need to scale the problem and reduce it to the case |y| = 1/2. Arguing by contradiction, we suppose
that there exists ỹ such that rλ � |ỹ| � ρ and

lim
λ→λ̄(Ω)

wλ(ỹ)wλ(0)|ỹ| = +∞.

Set

w̃λ(y) = (
2|ỹ|)1/2

wλ

(
2|ỹ|y)

.

Then w̃λ satisfies

−�w̃λ = w̃5
λ + 4λd2

λ,1|ỹ|2w̃λ in B2/3

and we have that 0 is an isolated simple blow-up point of w̃λ. It follows from (A.13) that

w̃λ(0)w̃λ

((
2|ỹ|)−2

ỹ
)
� c.

Thus

lim
λ→λ̄(Ω)

wλ(ỹ)wλ(0)|ỹ| < +∞.

This is a contradiction. Hence our proposition follows. �
Now, we can prove that 0 is in fact an isolated simple blow-up point.

Proposition A.9. We have that

0 is an isolated simple blow-up point of (wλ).

Proof. From Proposition A.5, it follows that r1/2�wλ(r) has precisely one critical point in the interval 0 < r < rλ,
where rλ = Rλw

−2
λ (0). Arguing by contradiction, we suppose that 0 is not an isolated simple blow-up point of (wλ)

and let lλ be the second critical point of r1/2�wλ(r) which is the nearest to the one in the interval 0 < r < rλ. We know
that

lλ � rλ, lim
λ→λ̄(Ω)

lλ = 0. (A.20)

Set

ξλ(y) = l
1/2
λ wλ(lλy), |y| < (2lλ)

−1.

It is easy to see that ξλ satisfies⎧⎪⎨⎪⎩
−�ξλ = ξ5

λ + λd2
λ,1l

2
λξλ in B1/(2lλ),

|y|1/2ξλ(y) � c in B1/(2lλ),

limλ→λ̄(Ω) ξλ(0) = +∞.

(A.21)

Notice that r1/2ξ̄λ(r) has precisely one critical point in 0 < r < 1 and

d

dr

(
r1/2ξ̄λ(r)

)
|r=1 = 0, with ξ̄λ(r) = |∂Br |−1

∫
∂Br

ξλ.

It follows that 0 is an isolated simple blow-up point of (ξλ). As in the proof of (A.12), it follows that there exist some
positive constant and some regular harmonic function b ∈ R

3, such that,

ξλ(0)ξλ(y) → h(y) = a|y|−1 + b(y) in C2
loc

(
R

3 \ {0}). (A.22)

Notice that h is positive and we have lim|y|→+∞b(y) � 0. It follows from the maximum principle that b(y) is non-
negative and hence b(y) = b � 0 is a constant.
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Since
d

dr

(
r1/2ξλ(0)ξ̄λ(r)

)
|r=1 = ξλ(0)

d

dr

(
r1/2ξ̄λ(r)

)
|r=1 = 0,

we have, by (A.22), that

d

dr

(
r1/2h(r)

)
|r=1 = 0.

It follows that

b = a > 0. (A.23)

Applying now Pohozaev Identity, see Theorem 1.1 of [13], we have for 0 < r < 1/2

λd2
λ,1l

2
λ

∫
Br

ξ2
λ − r

∫
∂Br

(
ξ6
λ

6
+ λd2

λ,1l
2
λξ

2
λ

2

)
=

∫
∂Br

B(r, x, ξλ,∇ξλ), (A.24)

where B is the operator defined by (3.19).
Notice that, by Proposition A.7, we have for 0 < r < 1/2

d2
λ,1l

2
λξ2

λ (0)

∫
Br

ξ2
λ � crd2

λ,1l
2
λ → 0 as λ → λ̄(Ω), (A.25)

ξ2
λ (0)r

∫
∂Br

ξ6
λ � cr−3ξ−4

λ (0) → 0 as λ → λ̄(Ω), (A.26)

d2
λ,1l

2
λξ2

λ (0)

∫
∂Br

ξ2
λ � cl2

λd2
λ,1 → 0 as λ → λ̄(Ω). (A.27)

Multiplying (A.24) by ξ2
λ (0) and using (A.25)–(A.27) and the homogeneity of the operator B , we obtain∫

∂Br

B(r, x,h,∇h) = 0. (A.28)

On the other hand, using (A.22), (A.23) and a direct computation, we find

lim
r→0

∫
∂Br

B(r, x,h,∇h) = −b3ω3

2
< 0

which contradicts (A.28). Proposition A.9 is thus proved. �
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