
Ann. I. H. Poincaré – AN 27 (2010) 471–501
www.elsevier.com/locate/anihpc

Regularity of solutions for the critical N -dimensional
Burgers’ equation

Chi Hin Chan a,∗, Magdalena Czubak b,1

a Department of Mathematics, The University of Texas at Austin, 1 University Station C1200 Austin, TX 78712-0257, USA
b Department of Mathematics, University of Toronto, 40 St. George St. Toronto, Ontario, M5S 2E4, Canada

Received 4 March 2009; received in revised form 20 August 2009; accepted 20 August 2009

Available online 10 November 2009

Abstract

We consider the fractional Burgers’ equation on R
N with the critical dissipation term. We follow the parabolic De-Giorgi’s

method of Caffarelli and Vasseur and show existence of smooth solutions given any initial datum in L2(RN).
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons l’équation de Burgers avec diffusion fractionnelle dans R
N . Nous montrons l’existence de solutions globales

regulières pour toute donnée initiale dans L2(RN), en utilisant une version parabolique de la méthode de De Giorgi introduite par
Caffarelli et Vasseur.
© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper we investigate the regularity of the solutions to the critical N -dimensional Burgers’ equation. The
equation is given by

∂t θ +
N∑

j=1

θ · ∂j θ = −(−�)
1
2 θ, (1.1)

where θ : [0,∞)×R
N → R. (1.1) is called critical, because of the invariance with respect to the scaling transformation

given by

θλ(t, x) = θ(λt, λx),
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and is a special case of

∂t θ +
N∑

j=1

θ · ∂j θ = −(−�)αθ,

where 0 < α < 1. In a recent paper Kiselev, Nazarov and Shterenberg [16] have done an extensive study for the 1-
dimensional Burgers’ equation in the periodic setting, which covers the subcritical case 1

2 < α < 1, the critical case
α = 1

2 , and also the supercritical case 0 < α < 1
2 . Among the results obtained in [16], the authors prove the global in

time existence of locally Hölder continuous solutions for the critical case α = 1
2 with respect to periodic initial datum

θ0 ∈ Lp(R) with 1 < p < ∞. On the other hand, Dong, Du and Li [11] consider wellposedness questions also for
all the values of α, but both with and without the periodic setting, and with the emphasis on the finite time blow up
in the supercritical case. Finite time blow up for the supercritical case is also established by Alibaud, Droniou and
Vovelle [2]. Asymptotics for the subcritcal case are investigated by Karch, Miao and Xu [14], and for the critical and
supercritcal by Alibaud, Imbert and Karch [3]. Uniqueness of weak solutions for the subcritical equation is addressed
by Droniou, Gallouët and Vovelle [13] and of nonuniqueness in the supercritical case by Alibaud and Andreainov [1].
In another recent work, Miao and Wu [17] show global wellposedness of the critical Burgers’ equation in critical Besov
spaces Ḃ

1/p

p,1 (R). For further background and motivation for the fractional Burgers’ equation we refer our readers to
[16,11,2,14,3,13,1,17], and references therein. The main goal of this paper is to establish the following theorem.

Theorem 1. Given any initial datum u0 ∈ L2(RN) there exists a global weak solution ∈ L∞(0,∞;L2(RN)) ∩
L2(0,∞; Ḣ 1

2 (RN)) of the critical Burgers’ equation (1.1) such that

• θ(0, ·) = θ0 in the L2(RN)-sense.
• For every t > 0, we have θ(t, ·) ∈ L∞(RN).
• θ is locally Hölder continuous.

Corollary 1. The solution θ obtained in Theorem 1 is smooth.

As far as we know, this is the first result for the regularity of the N -dimensional critical Burgers’ equation as well
as the first regularity result in non-periodic setting for initial data in L2. Although we are aware of the 1-dimensional
regularity results in the periodic setting in [16], we do not know whether their method of modulus of continuity can
be readily generalized to the N -dimensional and non-periodic setting.

We would like to emphasize that the method of our proof relies on the methods of Caffarelli and Vasseur [5]. In [5]
authors develop a very delicate parabolic De-Giorgi’s method, which leads them to the global smooth solutions for the
critical quasi-geostrophic equation in the N -dimensional setting. We add here that Kiselev, Nazarov, and Volberg [15]
also obtain the same existence result as [5] in 2-dimensional setting by using the method of modulus of continuity.
Moreover the method of modulus of continuity is also employed in [16] and [17].

Before we explain the way in which our paper originates from [5], we briefly remark on the regularity problem
of solutions for the quasi-geostrophic equation, which is a question parallel to the regularity problem of solutions
for the Burgers’ equation. Since the finding of the global weak solutions by Resnick in his thesis [18], there has
been a significant amount of work devoted to addressing the existence and uniqueness of smooth solutions. See for
example [6,7,9,10,12]. Of course, we have to mention that the existence of global smooth solutions for the critical
quasi-geostrophic equation with respect to initial datum ∈ L2(RN) has recently been established independently by [5]
and [15].

We are now ready to clarify the relationship between our work and the work of Caffarelli and Vasseur [5]. As we
have mentioned, the purpose of this paper is to perform suitable modifications on the parabolic De-Giorgi’s method
developed in [5], so that, after our modifications, the method will give the existence of locally Hölder continuous
solutions to the critical N -dimensional Burgers’ equation with respect to the initial datum θ0 ∈ L2(RN). We would
like to bring to the readers’ attention the following main issue.

In [5] the authors study the following critical N -dimensional quasi-geostrophic equation

∂t θ + v · ∇θ = −(−�)
1
2 θ,
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divv = 0,

vj = Rj [θ ],
where θ : (0,∞)×R

N → R is a scalar-valued solution and v is the velocity field related to θ by some selected singular

integral operators Rj . Besides characterizing the fractional Laplacian (−�)
1
2 via harmonic extension of functions to

the upper half plane (see [4] for more on the harmonic extension), one of the key stepping stones in [5] is the following
local energy inequality appearing in Section 3 of [5].

Proposition 1.1. (See Caffarelli and Vasseur [5].) Let θ : (0, T ) × R
N → R be a weak solution for the critical N -

dimensional quasi-geostrophic equation for which the respective velocity field v : (0, T ) × R
N → R

N verifies

‖v‖L∞(0,T ;BMO(RN )) + sup
t∈[0,T ]

∣∣∣∣
∫
B2

v(t, x) dx

∣∣∣∣ � Cv.

Then it follows that θ satisfies the following local energy inequality for some universal constant Φv depending only
on Cv

1

2

t∫
σ

∫
B∗

2

∣∣∇(
ηθ∗+

)∣∣2
dx dzds + 1

2

∫
B2

(ηθ+)2(t, x) dx

� 1

2

∫
B2

(ηθ+)2(σ, x) dx + Φv

t∫
σ

∫
B2

|∇η|2θ2+ dx ds +
t∫

σ

∫
B∗

2

|∇η|2(θ∗+
)2

dx dzds, (1.2)

where (σ, t) ∈ (0, T ), B2 = {x ∈ R
N : |x| < 2}, B∗

2 = B2 × [0,2], θ∗ is the harmonic extension of θ to R
N × [0,∞),

θ∗+ = θ∗χ{θ∗>0}, θ+ = θχ{θ>0}, and η is some cut off function supported in B∗
2 .

In order to use the above local energy inequality (1.2) freely Caffarelli and Vasseur make the key observation that:
if θ is a solution of the critical quasi-geostrophic equation, then any other function u = β{θ − L}, with arbitrary
constants β > 0 and L ∈ R, gives another solution of the same quasi-geostrophic equation. Such an observation is
of crucial importance since this allows the authors to use the above local energy inequality with the same universal
constant Φv for any functions in the form of u = β{θ − L} (that is, not just for the solution θ itself). This provides
a lot of advantage whenever it is necessary to shift the focus from the solution θ to some appropriate u = β{θ − L}.
Unfortunately, in the case of the critical Burgers’ equation such a key observation is no longer valid. This is the
main obstacle we are facing in borrowing the parabolic De-Giorgi’s method from [5]. However, we can overcome
this difficulty by making the following important observation: after the local energy inequality (1.2) was established
in [5], the authors actually relied only on the local energy inequality (1.2), rather then the critical quasi-geostrophic
equation itself.

Because of this observation, when we are dealing with a solution θ of the critical Burgers’ equation, we are
motivated to focus on the more general function u = β{θ − L}, with constants |β| > 0 and L ∈ R, and we try to
obtain the corresponding local energy inequality satisfied by u = β{θ − L}. Indeed, we will find that: if θ solves the
N -dimensional critical Burgers’ equation, then, u = β{θ − L} will satisfy the following local energy inequality

1

2

t∫
σ

∫
B∗

2

∣∣∇(
ηu∗+

)∣∣2
dx dzds + 1

2

∫
B2

(ηu+)2(t, x) dx

� 1

2

∫
B2

(ηu+)2(σ, x) dx + 2NCN

[|L| + ‖θ‖L∞([−4,0]×R3)

]2
t∫

σ

∫
B2

|∇η|2u2+ dx ds

+
t∫

σ

∫
B∗

|∇η|2(u∗+
)2

dx dzds, (1.3)
2
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where u∗ is the harmonic extension of u, u∗+ = u∗χ{u∗>0}, u+ = uχ{u>0}, and η is some cut off function supported
in B∗

2 .
Now, let us compare inequalities (1.2) and (1.3). In the case of the critical Burgers’ equation, the constant

2NCN [|L| + ‖θ‖L∞([−4,0]×R3)]2 plays the same role as the universal constant Φv appearing in (1.2). However, the
universal constant Φv in (1.2) remains unchanged while we replace the solution θ by β{θ − L}. In contrast, inequal-
ity (1.3) does not enjoy this stability property, since the quantity 2NCN [|L|+‖θ‖L∞([−4,0]×R3)]2 might become large
compared with ‖θ‖L∞([−4,0]×R3) when the shifting-level L is changing. Because of this, we have to make sure that
the constant 2NCN [|L|+‖θ‖L∞([−4,0]×R3)]2 is under control by a certain integer multiple of ‖θ‖L∞([−4,0]×R3) at any
time we need to employ (1.3) in our paper.

In fact, once we succeed in applying inequality (1.3) to β{θ − L} the main obstacle we are facing disappears and
the parabolic De-Giorgi’s method as developed in [5] leads to the proof of Theorem 1.

The set up of the paper is as follows. In Section 2 we show existence of the L∞ bounded weak solution. Section 3
is devoted to the proof of the local energy inequality. In Section 4 we have some fundamental lemmas, which when
combined together with Theorem 2 (see below) result in the proof of Theorem 1. In Section 5 we discuss how to extend
the Hölder continuity to higher regularity. Finally, in Appendix A we provide proofs of the two technical lemmas from
Section 4.

2. Existence of L∞-bounded weak solutions

To prove the existence of Hölder continuous solutions for the N -dimensional critical Burgers’ equation (1.1) it
is necessary for us to establish the existence of L∞-bounded solutions first. To that end, we provide a proof for the
following theorem.

Theorem 2. For any given initial datum θ0 ∈ L2(RN), there exists a weak solution θ ∈ L∞(0,∞;L2(RN)) ∩
L2(0,∞; Ḣ 1

2 (RN)) of the critical Burgers’ equation (1.1) which satisfies the following two properties

• θ(0, ·) = θ0 in the L2(RN)-sense.
• For every t > 0, we have ‖θ(t, ·)‖L∞(RN) � CN

t
N
2

‖θ0‖L2(RN), where CN is some universal constant depending only

on N .

Proof. We start by considering the following modified critical Burgers’ equation,

∂t θ +
N∑

j=1

ψR(θ) · ∂j θ = −(−�)
1
2 θ + ε�θ. (2.1)

In the above, an artificial diffusion term ε�θ is included, and the nonlinear term θ ·∂j θ is now replaced by ψR(θ) ·∂j θ ,
where R > 1 is an arbitrarily chosen quantity, and ψR : R → R is the continuous piecewise linear function given by

ψR(λ) = λ · χ{−R<λ<R} + R · χ{|λ|�R}.

Due to the addition of the artificial diffusion term ε�θ , it is not hard to convince ourselves that the existence of
(Leray–Hopf) weak solutions for the above modified Burgers’ equation (2.1) can easily be established through an
application of the standard Galerkin approximation. Because of this, for the rest of this proof we freely employ the
weak solutions of the modified Burgers’ equation (2.1).

Now, given an initial datum θ0 ∈ L2(RN), we consider a weak solution θ of (2.1) in the Leray–Hopf class

L∞(0,∞;L2(RN)) ∩ L2(0,∞; Ḣ 1
2 (RN)) satisfying θ(0, ·) = θ0 in the L2(RN)-sense. We will employ the stan-

dard De-Giorgi’s method to prove that θ is L∞-bounded over [t0,∞) × R
N , for every t0 > 0. Before this can be

done, it is necessary to show that our solution θ of (2.1) verifies the following vanishing property for almost every
t ∈ (0,∞), and at every truncation level L > 0∫

N

ψR(θ) · ∂j θ · {θ − L}+ dx = 0, (2.2)
R
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where {θ − L}+ = {θ − L}χ{θ>L}. For the sake of convenience, we write θL = {θ − L}+. We then observe

ψR(θ) · ∂j θ · θL = 1

2

{
∂j

[
ψR(θ)θ2

L

] − θ2
L∂j

[
ψR(θ)

]} = 1

2

{
∂j

[
ψR(θ)θ2

L

] − θ2
Lχ{−R<θ<R}∂j θ

}
.

By taking the integral over R
N of the above identity, we yield∫

RN

ψR(θ) · ∂j θ · θL dx = −1

2

{ ∫
RN

θ2
Lχ{−R<θ<0}∂j θ dx +

∫
RN

θ2
Lχ{0<θ<R}∂j θ dx

}
,

so we will succeed in justifying (2.2), if we can show∫
RN

θ2
Lχ{−R<θ<0}∂j θ dx =

∫
RN

θ2
Lχ{0<θ<R}∂j θ dx = 0.

Start with the second term. Without the loss of generality2 we assume that 0 � L � R. We note

θ2
Lχ{0<θ<R}∂j θ = θ2

Lχ{θL<R−L}∂j θL = −θ2
L∂j [R − L − θL]+.

Then a computation shows

θ2
Lχ{0<θ<R}∂j θ = −(R − L)2∂j [R − L − θL]+ + (R − L)∂j

[
(R − L − θL)2+

]
− 1

3
∂j

[
(R − L − θL)3+

]
. (2.3)

Next

[R − L − θL]+ = (R − L) − {
θLχ{θL<R−L} + (R − L)χ{θL�R−L}

}
.

Observe

θLχ{θL<R−L} ∈ L1(
R

N
)

and (R − L)χ{θL�R−L} ∈ L1(
R

N
)
,

and since these functions are also in L∞(RN), they are in Lp(RN),1 < p < ∞, so it follows from (2.3) that we must
have ∫

RN

θ2
Lχ{0<θ<R}∂j θ dx = 0.

In exactly same way, we can also show that∫
RN

θ2
Lχ{−R<θ<0}∂j θ dx = 0.

Hence the validity of property (2.2) is established.
We are now ready to apply the De-Giorgi’s method to the solution θ : (0,∞) × R

N → R of the modified critical
Burgers’ equation (2.1). To begin, let M > 1 be an arbitrary large positive number (to be chosen later). We consider
the following sequence of truncations

θk =
[
θ − M

(
1 − 1

2k

)]
+
, k � 0.

By multiplying (2.1) by θk , and then taking integral over R
N , we obtain

1

2

∫
RN

∂t

(
θ2
k

)
dx + ε

∫
RN

|∇θk|2 dx = −
∫

RN

(−�)
1
2 θ · θk dx, (2.4)

in which we no longer see the term
∑N

j=1

∫
RN ψR(θ)(∂j θ)θk dx, thanks to the vanishing property (2.2).

2 This is because θ2
L
χ{0<θ<R}∂j θ automatically vanishes if L > R.
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To manage the term − ∫
RN (−�)

1
2 θ · θk dx, it is necessary to use a recent result of Córdoba and Córdoba [8], which

states that for any convex function φ : R → R, we have

−φ′(θ) · (−�)
1
2 θ � −(−�)

1
2
(
φ(θ)

)
. (2.5)

To employ such a result, we consider the convex function

φk(λ) =
[
λ − M

(
1 − 1

2k

)]
+

with φ′
k(λ) = χ{λ>M(1− 1

2k )}.

Then it follows from (2.5)

−[
(−�)

1
2 θ

] · θk = −φ′
k(θ) · (−�)

1
2 θ · θk � −[

(−�)
1
2 θk

] · θk.

We use this in (2.4) to get

1

2

∫
RN

∂t

(
θ2
k

)
dx + ε

∫
RN

|∇θk|2 dx � −
∫

RN

θk · (−�)
1
2 θk dx. (2.6)

Recall we wish to prove θ is L∞-bounded over [t0,∞] × R
N for every t0 > 0. Let t0 > 0 be fixed, and consider the

increasing sequence

Tk = t0

(
1 − 1

2k

)
, k � 0,

which approaches the limiting value t0 as k → +∞. Also fix σ and t verifying Tk−1 � σ � Tk � t < ∞. We then
integrate (2.6) over [σ, t] to obtain

1

2

∫
RN

θ2
k (t, ·) dx +

t∫
σ

∫
RN

θk · (−�)
1
2 θk dx ds � 1

2

∫
RN

θ2
k (σ, ·) dx, (2.7)

in which we purposely drop the artificial energy term ε
∫ t

σ

∫
RN |∇θk|2 dx ds, since we should not use it in estimating

‖θ‖L∞([t0,∞)×RN ). Next, by taking the average over σ ∈ [Tk−1, Tk] among the terms in the above inequality and then
taking the sup over t ∈ [Tk,∞), we have

1

2
sup

t∈[Tk,∞)

∫
RN

θ2
k (t, ·) dx +

∞∫
Tk

∫
RN

θk · (−�)
1
2 θk dx ds � 2k

2t0

Tk∫
Tk−1

∫
RN

θ2
k (σ, ·) dx dσ.

We now consider the following sequence of quantities

Uk = sup
t∈[Tk,∞)

∫
RN

θ2
k (t, ·) dx + 2

∞∫
Tk

∫
RN

θk · (−�)
1
2 θk dx ds.

Then, our last inequality tells us that

Uk � 2k

t0

∞∫
Tk−1

∫
RN

θ2
k (σ, ·) dx dσ. (2.8)

Our goal is to build up a nonlinear recurrence relation for Uk, k � 0 by relying on the above inequality. By employing
Sobolev embedding, interpolation and Hölder’s inequality we know that our solution θ of (2.1) satisfies the following
inequality for all k � 1

‖θk−1‖ 2(1+ 1 ) N
� CU

1
2
k−1,
L N ([Tk−1,∞)×R )
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for some constant C depending only on N . Because of this, we can raise up the index for
∫ ∞
Tk−1

∫
RN θ2

k (σ, ·) dx dσ as
follows

∞∫
Tk−1

∫
RN

θ2
k dx dσ �

∞∫
Tk−1

∫
RN

θ2
k χ{θk−1>

M

2k } �
(

2k

M

) 2
N

∞∫
Tk−1

∫
RN

θ2
k θ

2
N

k−1 �
(

2k

M

) 2
N

CU
1+ 1

N

k−1 .

Hence (2.8) together with our last inequality gives

Uk � 2k(1+ 2
N

)

t0M
2
N

CU
1+ 1

N

k−1 . (2.9)

We can now choose M = ( 1
t0

)
N
2 so that t0M

2
N = 1. Hence

Uk � 2k(1+ 2
N

)CU
1+ 1

N

k−1 , k � 1. (2.10)

From the nonlinear recurrence relation (2.10), we know that there exists some constant δN ∈ (0,1), depending only
on N , such that Uk → 0 as k → ∞, provided we have U1 < δN . Due to this observation, if the initial datum θ0 = θ(0, ·)
verifies

‖θ0‖L2(RN) <

(
δN

21+ 2
N C

) N
N+1

,

then, we must have that

U1 � 21+ 2
N CU

1+ 1
N

0 � 21+ 2
N C‖θ0‖1+ 1

N

L2(RN)
< δN .

Note we use U0 � ‖θ0‖2
L2(RN )

, which holds because of the energy inequality that can be obtained in a standard way for

the Leray–Hopf solutions of (2.1). For such a θ0, we have limk→∞ Uk = 0, and hence θ � M = ( 1
t0

)
N
2 is valid almost

everywhere on [t0,∞) × R
N . By applying the same De-Giorgi’s method to −θ , we should also get −θ � M = ( 1

t0
)

N
2

almost everywhere on [t0,∞) × R
N . At this point, let us summarize what we have done so far:

• If θ : (0,∞) × R
N → R is a weak solution of the modified critical Burgers’ equation with initial datum

θ(0, ·) = θ0 ∈ L2(RN) verifying ‖θ0‖L2(RN) < (
δN

21+ 2
N C

)
N

N+1 , then it follows that ‖θ‖L∞([t0,∞)×RN) � ( 1
t0

)
N
2 for

every t0 > 0.

Next, we need to remove the smallness condition imposed on ‖θ0‖L2(RN) in the above statement. To this end, let
θ : (0,∞) × R

N → R be a given weak solution of the modified critical Burgers’ equation (2.1), and let λ > 0 be the
unique positive number such that

1

λ
N
2

‖θ0‖L2(RN) = 1

2

(
δN

21+ 2
N C

) N
N+1

. (2.11)

For such a λ > 0, we consider the rescaled function θλ(t, x) = θ(λt, λx), which solves the following rescaled modified
Burgers’ equation in the weak sense

∂t θλ +
N∑

j=1

ψR(θλ) · ∂j θλ = −(−�)
1
2 θλ + ε

λ
�θλ.

At first glance, it seems to be troublesome that θλ no longer solves the original equation (2.1). However, this is
not problematic at all since the energy term ε

∫
RN |∇θk|2 dx is purposely dropped from inequality (2.6) before we

apply the De-Giorgi’s method to θk . This means that all the estimates starting from (2.7) in the above process are
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independent of the artificial diffusion term ε�θ . This tells us, in particular that if θk is replaced by {θλ −M(1 − 1
2k )}+

in inequality (2.7), all the estimates thereafter remain unchanged. This observation, together with the fact that by (2.11)

∥∥θλ(0, ·)∥∥
L2(RN)

<
1

2

(
δN

21+ 2
N C

) N
N+1

,

give us

‖θλ‖L∞([ t0
λ

,∞)×RN )
� 1

(
t0
λ
)

N
2

, t0 > 0.

Since ‖θλ‖L∞([ t0
λ

,∞)×RN)
= ‖θ‖L∞([t0,∞)×RN), it follows from (2.11) that the following inequality is valid for every

t0 > 0

‖θ‖L∞([t0,∞)×RN) � 2

(
21+ 2

N C

δN

) N
N+1 ‖θ0‖L2(RN)

t
N
2

0

.

In summary, we have established:

• There exists some universal constant CN ∈ (0,∞), depending only on N , such that for every weak solution
θ(ε,R) : (0,∞) × R

N → R of the modified critical Burgers’ equation (2.1) with initial datum θ(ε,R)(0, ·) = θ0 ∈
L2(RN), we have ‖θ(ε,R)‖L∞([t0,∞)×RN) � CN · ‖θ0‖L2(RN )

t
N
2

0

, for every t0 > 0.

Now, the solution θ(ε,R) of the modified critical Burgers’ equation (2.1) satisfies the uniform bound CN

‖θ0‖L2(RN )

t
N
2

0

. By

passing to the limit, as ε → 0+ and R → +∞, it follows that θ(ε,R) converges to some weak solution θ : (0,∞) ×
R

N → R of the critical Burgers’ equation (1.1), which must also satisfy the same uniform bound CN

‖θ0‖L2(RN )

t
N
2

0

. So,

we are finished with the proof of Theorem 2. �
3. Harmonic extension to RRR

N × [0,∞) and the local energy inequality

We begin by introducing the harmonic extension (see [5] and [4] for more details). Operator (−�)
1
2 θ is not a local

operator. However it can be localized. Indeed, define the harmonic extension operator H : C∞
0 (RN) �→ C∞

0 (RN ×R
+)

by

−�H(θ) = 0 in R
N × (0,∞),

H(θ)(x,0) = θ(x), x ∈ R
N.

Then it can be shown we can view (−�)
1
2 θ as the normal derivative of H(θ) on the boundary {(x,0): x ∈ R

N } i.e.,

(−�)
1
2 θ(x) = −∂νH(θ)(x).

From now on we use θ∗ to denote the harmonic extension of θ or more precisely

θ∗(t, x, z) = H
(
θ(t, ·))(x, z).

Now we are ready to proceed to the local energy inequality and its proof, which closely follows [5].

Proposition 3.1 (Local energy inequality). Let θ : [−4,0] × R
N → R be a weak solution of the Burgers’ equa-

tion (1.1). Then, for any function u in the form of u = β{θ − L}, with β > 0, and L ∈ R we have

1

2

t∫
σ

∫
B∗

∣∣∇(
ηu∗+

)∣∣2
dx dzds + 1

2

∫
B4

(ηu+)2(t, x) dx
4
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� 1

2

∫
B4

(ηu+)2(σ, x) dx + 2NCN

(|L| + ‖θ‖L∞([−4,0]×R3)

)2
t∫

σ

∫
B4

|∇η|2u2+ dx ds

+
t∫

σ

∫
B∗

4

|∇η|2(u∗+
)2

dx dzds,

where η can be any cut off function supported in B∗
4 = B4 × [0,4], B4 = [−4,4]N , and CN = 8C̃N where C̃N is the

constant appearing in the Sobolev inequality ‖f ‖2

L
2N

N−1 (RN)

� C̃N‖f ‖2

Ḣ
1
2 (RN)

.

Proof. Start with

0 =
∫
B∗

4

η2u∗+�u∗ dx dz

= −
∫
B∗

4

∇(
η2u∗+

) · ∇u∗ dx dz +
∫
B4

η2u∗+∂zu
∗ dx

∣∣∣∣
4

0

= −
∫
B∗

4

∇(
η2u∗+

) · ∇u∗ dx dz +
∫
B4

η2(x,0)u+(−�)
1
2 udx, (3.1)

where we use

(−�)
1
2 u = −∂zu

∗(·,0).

A calculation shows that (3.1) is equivalent to

0 = −
∫
B∗

4

∣∣∇(
ηu∗+

)∣∣2
dx dz +

∫
B∗

4

|∇η|2(u∗+
)2

dx dz +
∫
B4

η2(x,0)u+(−�)
1
2 udx. (3.2)

Now if θ solves (1.1), u solves

∂tu +
N∑

j=1

1

β
(u + Lβ)∂ju = −(−�)

1
2 u. (3.3)

Also observe

3
∫
B4

η2u+
1

β
(u + Lβ)∂judx = −

∫
B4

∂j

(
η2)u2+

1

β
(u + Lβ)dx + L

∫
B4

η2u+∂judx.

Hence for the third term on the RHS in (3.2) we have

−
∫
B4

η2u+(−�)
1
2 u = ∂t

( ∫
B4

η2 u2+
2

dx

)
− 1

3

N∑
j=1

∫
B4

∂j

(
η2)u2+

1

β
(u + Lβ)dx

+ L

3

N∑
j=1

∫
B4

η2u+∂judx. (3.4)

Substitute (3.4) into (3.2), integrate between σ and t , and take the absolute value of the RHS to obtain
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t∫
σ

∫
B∗

4

∣∣∇(
ηu∗+

)∣∣2
dx dzds +

∫
B4

η2 u2+(t)

2
dx

�
t∫

σ

∫
B∗

4

|∇η|2(u∗+
)2

dx dzds +
∫
B4

η2 u2+(σ )

2
dx

+ 1

3

∣∣∣∣∣
N∑

j=1

t∫
σ

∫
B4

∂j

(
η2)u2+

1

β
(u + Lβ)dx ds

∣∣∣∣∣ +
∣∣∣∣∣L3

N∑
j=1

t∫
σ

∫
B4

η2u+∂judx ds

∣∣∣∣∣. (3.5)

We examine the last two terms. Both can be written as a constant multiple of∣∣∣∣∣
N∑

j=1

t∫
σ

∫
B4

η∂jηu2+v dx ds

∣∣∣∣∣,
where v = 1

β
(u + Lβ) = θ and the constant equal to 2

3 for the first term, and v = L and the constant equal to 1
3 for the

second. Following [5] by Hölder’s inequality in space and Cauchy’s inequality with ε in time we obtain∣∣∣∣∣
N∑

j=1

t∫
σ

∫
B4

η∂jηu2+v dx ds

∣∣∣∣∣ � ε

t∫
σ

‖ηu+‖2

L
2N

N−1
ds + N

ε

t∫
σ

‖∇ηvu+‖2

L
2N

N+1
ds.

By Sobolev embedding and the energy minimization property of H(χB4ηθ+), it is not difficult to see3

ε

t∫
σ

‖ηu+‖2

L
2N

N−1 (RN)

ds � εC̃N

t∫
σ

∫
B∗

4

∣∣∇(
ηu∗+

)∣∣2
dx dzds,

which means it can be combined with the LHS of (3.5) if ε is small enough, say ε = 1
2C̃N

. Next, since 2N
N+1 < 2 and η

has compact support within B∗
4 we have

N

ε

t∫
σ

‖∇ηvu+‖2

L
2N

N+1
ds � 2NCN

t∫
σ

∫
B4

|∇ηvu+|2 dx ds

� 2NCN‖v‖2
L∞

t∫
σ

∫
B4

|∇ηu+|2 dx ds

� 2NCN

(|L| + ‖θ‖L∞
)2

t∫
σ

∫
B4

|∇ηu+|2 dx ds

as needed. �
4. Proof of Theorem 1

Theorem 2 proven in Section 2 gives us the first part of Theorem 1. What remains is to establish the Hölder
continuity for solutions of Eq. (1.1). For this purpose, we need the following three lemmas. In what follows, we use
the abbreviations that Q∗

r = [−r,0] × B∗
r and Qr = [−r,0] × Br .

3 See Section 3 of [5] for more details.
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Lemma 4.1. Given any Cθ ∈ (0,∞), there exists some ε0 > 0 (depending only on N and Cθ ), and some λ ∈ (0, 1
2 )

(depending only on N ), such that for every solution θ : [− 1
4 ,0] × R

N → R of Eq. (1.1) which verifies
‖θ‖

L∞([− 1
4 ,0]×RN)

� Cθ , we have the following implication for every function u in the form of u = β{θ − L}, with

|β| � min{1, 1
Cθ

}, and |L| � 6Cθ :

• If u∗ = β{θ∗ − L} verifies u∗ � 2 on [− 1
4 ,0] × B∗

1
4
, and

0∫
− 1

4

∫
B∗

1
4

(
u∗+

)2 +
0∫

− 1
4

∫
B 1

4

u2+ � ε0,

then it follows that u � 2 − λ on [− 1
16 ,0] × B 1

16
.

Lemma 4.2. Given any Cθ ∈ (0,∞), and any sufficiently small ε1 > 0, there exists some δ1 > 0, and also some con-
stant Dθ ∈ (0,∞) (depending only on Cθ and N ), such that for every solution θ : [−1,0] × R

N → R of Eq. (1.1)
which verifies ‖θ‖L∞([−1,0]×RN ) � Cθ , we have the following implication for all function u in the form of u =
β{θ − L}, with |β| � 1

Cθ
, and |L| � 6Cθ :

• If u∗ = β{θ∗ − L} verifies the following three conditions:
i) u∗ � 2 on Q∗

1 = [−1,0] × B∗
1 ,

ii) |{(t, x, z) ∈ Q∗
1: u∗(t, x, z) � 0}| � |Q∗

1|
2 ,

iii) |{(t, x, z) ∈ Q∗
1: 0 < u∗(t, x, z) < 1}| � δ1,

then it follows that∫
Q 1

4

(u − 1)2+ dx dt +
∫

Q∗
1
4

(
u∗ − 1

)2
+ dx dzdt � Dθε

1
2
1 . (4.1)

Lemma 4.3 (Oscillation Lemma). Given any Cθ ∈ (0,∞), there exists some λ∗ > 0 (depending only on N and Cθ ),
such that for every solution θ : [−1,0] × R

N → R of Eq. (1.1), which verifies ‖θ‖L∞([−1,0]×RN) � Cθ , we have the

following implication for any function u in the form of u = β{θ − L}, with |β| � 1
Cθ

, and |L| � 3Cθ :

• If it happens that u∗ � 2 on Q∗
1 , and |{(t, x, z) ∈ Q∗

1: u∗ � 0}| � |Q∗
1|

2 , then it follows that u∗ � 2 − λ∗ on Q∗
1
32

.

Remark 1. The above lemmas correspond to Lemma 6, Lemma 8 and Proposition 9 in [5] respectively. However, here
they are not stated for the solution θ of the equation, but for the function u = β{θ − L} since this is the function that
we actually apply the lemmas to. Most of all, the above lemmas require restrictions for the constants β and L, which
were not needed in [5]. This is a result of the main difficulties of dealing with the Burgers’ equation explained in the
introduction.

Remark 2. The proof of Lemma 4.1 and Lemma 4.2 relies on the local energy inequality as established in Proposi-
tion 3.1. The two lemmas are technical tools needed to establish the Oscillation Lemma and are proved in Appendix A.

Remark 3. The Oscillation Lemma gives us the Hölder continuity. We describe this next, and then give the proof
of the Oscillation Lemma. It is very important to observe that the universal constant λ∗ in the Oscillation Lemma is
invariant under the natural scaling θλ(t, x) = θ(λt, λx) for solutions of the N -dimensional critical Burgers’ equation.
This observation is of crucial importance since it allows us to employ the Oscillation Lemma at different scales in the
proof of Hölder continuity (see below). The scale-invariant property of the Oscillation Lemma is due to the invariance
of solutions for the N -dimensional critical Burgers’ equation under above scaling. This in particular explains why our
method works in the critical case.
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Proof of Hölder continuity. Set r = 1
32 . Let θ : [−1,0]×R

N → R be a solution of (1.1) with ‖θ‖L∞([−1,0]×RN ) � Cθ

for some Cθ ∈ (0,∞). In order to use Lemma 4.3, it is necessary to consider the function u0 = β0{θ − L0}, where the
constants β0 and L0 are given by

β0 = 2

supQ∗
1
θ∗ − infQ∗

1
θ∗ and L0 =

supQ∗
1
θ∗ + infQ∗

1
θ∗

2
.

Note β0 � 1
Cθ

, and |L0| � Cθ . Now, we are going to construct a sequence of functions uk = βk{θ − Lk} inductively
in a way that is dependent on u0.

To begin the inductive process, we observe that u0 = β0{θ − L0} verifies the condition that |u∗
0| � 2 on Q∗

1. To
construct a suitable u1 = β1{θ − L1} from u0, we split our discussion into two cases:

Case 1: |{(t, x, z) ∈ Q∗
1: u∗

0 � 0}| � |Q∗
1|

2 . We apply Lemma 4.3 to u∗
0 over Q∗

1 and deduce that −2 � u∗
0 � 2 − λ∗

on Q∗
r , where r = 1

32 and λ∗ is the constant in Lemma 4.3. Hence, we have∣∣∣∣ 2

2 − λ∗
2

{
u∗

0 + λ∗

2

}∣∣∣∣ � 2 on Q∗
r .

Let a = 2
2− λ∗

2

, and define u1 to be

u1 = a

{
u0 + λ∗

2

}
= aβ0

{
θ − L0 + λ∗

2β0

}
.

Case 2: |{(t, x, z) ∈ Q∗
1: −u∗

0 � 0}| � |Q∗
1|

2 . In this case, we apply Lemma 4.3 to −u∗
0 over Q∗

1 and deduce that
−2 � −u∗

0 � 2 − λ∗ on Q∗
r . Hence, we have∣∣∣∣ 2

2 − λ∗
2

{
u∗

0 − λ∗

2

}∣∣∣∣ � 2 on Q∗
r .

As before, we write a = 2
2− λ∗

2

, and define in this case that

u1 = a

{
u0 − λ∗

2

}
= aβ0

{
θ − L0 − λ∗

2β0

}
.

We observe that in either case

• u1 = aβ0
{
θ − L0 + (−1)σ1 λ∗

2β0

}
, σ1 ∈ {0,1}.

• |u∗
1| � 2 on Q∗

r .
• |aβ0| � 1

Cθ
, and

∣∣L0 − (−1)σ1 λ∗
2β0

∣∣ � Cθ + λ∗
2β0

� 3
2Cθ .

This means that we can apply Lemma 4.3 to u∗
1 over Q∗

r in order to construct u2 = a{u1 + (−1)σ2 λ∗
2 } in exactly the

same way.
For the reasons of transparency and completeness we describe now the inductive step. Suppose that at step k ∈ N

+,
we have a function uk given by

uk = akβ0

{
θ − L0 + λ∗

2β0

k∑
s=1

(−1)σs

(
1

a

)s−1
}

,

which verifies the required condition that∣∣u∗
k

∣∣ � 2 on Q∗
rk .

Here, let us make the crucial observation that

• akβ0 � β0 � 1 .

Cθ
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• ∣∣L0 − λ∗
2β0

∑k
s=1(−1)σs ( 1

a
)s−1

∣∣ � Cθ + λ∗
2β0

1
(1− 1

a
)
= Cθ + λ∗

2β0

4
λ∗ � 3Cθ ,

where in the second term, we have implicitly used the fact that 1
(1− 1

a
)
= 4

λ∗ . The above two inequalities simply tell us

that we can apply Lemma 4.3 to u∗
k over Q∗

rk in either one of the following two cases:

Case 1: |{(t, x, z) ∈ Q∗
rk : u∗

k � 0}| �
|Q∗

rk
|

2 . We apply Lemma 4.3 to u∗
k over Q∗

rk and deduce that −2 � u∗
k � 2 − λ∗

on Q∗
rk+1 . Hence we have

∣∣ 2
2− λ∗

2

{u∗
k + λ∗

2 }∣∣ � 2 on Q∗
rk+1 . We define uk+1 as uk+1 = a{uk + λ∗

2 }. So, we have

uk+1 = ak+1β0

{
θ − L0 + λ∗

2β0

k∑
s=1

(−1)σs

(
1

a

)s−1

+ λ∗

2β0

(
1

a

)k
}

.

Case 2: |{(t, x, z) ∈ Q∗
rk : −u∗

k � 0}| � |Q∗
rk

|
2 . We can apply Lemma 4.3 to −u∗

k over Q∗
rk , and deduce that −2 � −u∗

k �
2 − λ∗ over Q∗

rk+1 . Hence, we have
∣∣ 2

2− λ∗
2

{u∗
k − λ∗

2 }∣∣ � 2 on Q∗
rk+1 . Because of this, we define uk+1 = a{u∗

k − λ∗
2 }.

So, we have

uk+1 = ak+1β0

{
θ − L0 + λ∗

2β0

k∑
s=1

(−1)σs

(
1

a

)s−1

− λ∗

2β0

(
1

a

)k
}

.

From the above inductive process, we have a sequence of functions

uk = akβ0

{
θ − L0 + λ∗

2β0

k∑
s=1

(−1)σs

(
1

a

)s−1
}

,

which verify the following conditions

• |u∗
k | � 2 on Q∗

rk , for any k � 1.

• akβ0 � 1
Cθ

, for any k � 1.

• ∣∣L0 − λ∗
2β0

∑k
s=1(−1)σs ( 1

a
)s−1

∣∣ � 3Cθ , for any k � 1.

Therefore we can deduce for all k � 1

akβ0

(
sup
Q∗

rk

θ∗ − inf
Q∗

rk

θ∗) = sup
Q∗

rk

u∗
k − inf

Q∗
rk

u∗
k � 4.

Thus

sup
Q∗

rk

θ∗ − inf
Q∗

rk

θ∗ � 4

β0

(
1

a

)k

� 4Cθ

(
1

a

)k

.

At this point, we note that the above inequality and the shift-invariant property of solutions of (1.1) give us the
conclusion that θ∗ is Cα at any (t, x, z), and hence θ itself must be Cα . This completes the proof of Theorem 1. �
4.1. Proof of the Oscillation Lemma

The proof closely follows [5]. Assume Lemmas 4.1 and 4.2 hold, and let θ : [−1,0] × R
N → R be a solution

to Eq. (1.1) with ‖θ‖L∞([−1,0]×RN ) � Cθ for some Cθ ∈ (0,∞), as well as let ε0 (depending only on N and Cθ ),
and λ ∈ (0,2) (depending only on N ) be the two constants appearing in Lemma 4.1. Also, consider the constant

Dθ (depending only on Cθ ), which appears in Lemma 4.2. We choose ε1 = { 1
4Dθ

ε0
2 }2, so that we have 4Dθ(ε1)

1
2 =

ε0
2 < ε0. With such an ε1, we have a small number δ1 (depending only on ε1) as it appears in the statement of

Lemma 4.2.
With these preparations, let u = β{θ − L}, with |β| � 1 , and |L| � 3Cθ , and suppose that u verifies
Cθ
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• u∗ � 2 on Q∗
1.

• |{(t, x, z) ∈ Q∗
1: u∗ � 0}| � |Q∗

1|
2 .

Now, let us define K+ ∈ N
+ to be the largest nonnegative integer for which K+ � 1 + 1

δ1
. We then define a list of

functions wk , for 1 � k � K+ by

wk = 2(wk−1 − 1), 1 � k � K+, with w0 = u.

Then for every 1 � k � K+ we have

wk = 2k{u − 2} + 2 = 2kβ

{
θ − L − 2

β
+ 1

2k−1β

}
.

Now, it is easy to see that for each 1 � k � K+, u∗ � 2 on Q∗
1 implies w∗

k = 2k{u∗ − 2} + 2 � 2 on Q∗
1. More-

over, since {(t, x, z) ∈ Q∗
1: u∗ � 0} is always a subset of {(t, x, z) ∈ Q∗

1: w∗
k � 0}, we always have |{(t, x, z) ∈ Q∗

1:

w∗
k � 0}| � |Q∗

1|
2 .

Besides these, we also have to make the crucial observation that, for every 1 � k � K+, we have

• |2kβ| � |β| � 1
Cθ

, and |L + 2
β

− 1
2k−1β

| � 6Cθ .

This means that we can apply Lemma 4.1 and Lemma 4.2 to wk if we find that such an application is needed. At this
point, we need to separate our discussion into two cases in the following way.

First, if it happens that, for every 1 � k � K+, we have |{(t, x, z) ∈ Q∗
1: 0 < w∗

k < 1}| � δ1, we then observe that
we must have∣∣{(t, x, z) ∈ Q∗

1: w∗
k � 0

}∣∣ = ∣∣{(t, x, z) ∈ Q∗
1: w∗

k−1 � 1
}∣∣

� δ1 + ∣∣{(t, x, z) ∈ Q∗
1: w∗

k−1 � 0
}∣∣,

for every 1 � k � K+. Because of the above estimate, we can deduce inductively that |{(t, x, z) ∈ Q∗
1: w∗

K+ � 0}| �
K+δ1 � |Q∗

1|, which in turn tells us that w∗
K+ = 2K+{u∗ − 2} + 2 � 0 almost everywhere on Q∗

1. Hence we have

• u∗ � 2 − 2
2K+ , almost everywhere on Q∗

1.

So, we are done in the first case.
Second, let us suppose the case in which there exists some k0 ∈ N with 1 � k � K+, such that |{(t, x, z) ∈ Q∗

1:
0 < w∗

k0
< 1}| < δ1. We can then apply Lemma 4.2 to wk0 and deduce∫

Q∗
1
4

(
w∗

k0
− 1

)2
+ +

∫
Q 1

4

(wk0 − 1)2+ � Dθ(ε1)
1
2 ,

which simply means∫
Q∗

1
4

(
w∗

k0+1

)2
+ +

∫
Q 1

4

(wk0+1)
2+ � 4Dθ(ε1)

1
2 < ε0.

Now, the above inequality tells us that we can apply Lemma 4.1 directly to wk0+1 over Q∗
1
4
, and deduce that wk0+1 �

2 − λ on Q 1
16

, which implies

• u � 2 − λ

2k0+1 on Q 1
16

.

To finish the argument, we consider the barrier function b3 : B∗
1 → R characterized by the following conditions

16
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• �b3 = 0, on B∗
1
16

.

• b3 = 2 on all the sides of B∗
1
16

except the one for z = 0.

• b3 = 2 − λ

2k0+1 , on the side for z = 0.

Then, by a simple application of the maximum principle, we know that there exists some constant λ∗, with 0 < λ∗ <
1

2K0+1 min{1, λ}, such that b3 � 2 − λ∗ on B∗
1
32

. Since u∗ = β{θ∗ − L} is harmonic and that u∗ is bounded above by

b3 along the sides of the cube B∗
1
16

, it must follow that u∗ � b3 � 2 − λ∗ on B∗
1
32

. So we are done in the second case.

5. Higher regularity: Proof of Corollary 1

Extending Hölder continuity to higher regularity is not very difficult. Indeed what is done in [5, Appendix B] can
be applied here as well. Therefore we only show how to set up the proof. However, since some technical details are
omitted in [5] for showing the solution is Cα for all α < 1, we illuminate them here.

Let θ : (0,∞) × R
N → R be a solution of the N -dimensional critical Burgers’ equation which is essentially

bounded and locally Holder’s continuous on [τ,∞) × R
N . That is,

θ ∈ L∞([τ,∞) × R
N

) ∩ Cα
loc

([τ,∞) × R
N

)
for some 0 < α < 1.

Fix y0 = (t0, x0) ∈ (τ,∞) × R
N . Without the loss of generality, we may assume4

θ(y0) = 0.

Consider now the Poisson kernel

P(t, x) = CN

t

(t2 + |x|2)N+1
2

,

which is the fundamental solution for the operator ∂t + (−�)
1
2 . If θ0 = θ(0, ·) is the initial datum for our solution θ ,

using Duhamel’s principle we have

θ(t, x) = P(t, ·) ∗ θ0(x) −
t∫

0

P(t − t1, ·) ∗
N∑

j=1

(θ · ∂j θ)(t1, ·)(x) dt1

= P(t, ·) ∗ θ0(x) − 1

2

N∑
j=1

t∫
0

∫
RN

∂jP (t − t1, x − x1)θ
2(t1, x1) dx1 dt1.

Since P(t, ·) ∗ θ0 is known to be C∞, we just need to examine

g(t, x) = −1

2

N∑
j=1

t∫
0

∫
RN

∂jP (t − t1, x − x1)θ
2(t1, x1) dx1 dt1.

For convenience, we now extend P(t, x) to the whole space-time R × R
N by requiring that P(t, ·) = 0, whenever

t < 0. With such an extension

g(t, x) = −1

2

N∑
j=1

∞∫
−∞

∫
RN

χ{0�t−t1�t}∂jP (t − t1, x − x1)θ
2(t1, x1) dx1 dt1

= −1

2

N∑
j=1

∫
RN+1

χ{t1�0}∂jP (t − t1, x − x1)θ
2(t1, x1) dx1 dt1.

4 Otherwise replace the solution by w(t, x) = θ(t, x + u(t − t0)) − θ(y0), where u is a vector in R
N with each entry equal to θ(y0).
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Our first task is to estimate the difference g(y0 + he) − g(y0), where e ∈ R
N+1 with |e| = 1, and h is some

sufficiently small positive number. We observe that

g(y0 + he) − g(y0) = −1

2

N∑
j=1

∫
RN+1

χ{t1�0}
{
∂jP (y0 + he − y1) − ∂jP (y0 − y1)

}
θ2(y1) dy1.

Therefore, we need to estimate the following two terms for each 1 � j � N

A1 =
∫

B(y0,10h)

χ{t1�0}∂jP (y0 + he − y1)θ
2(y1) dy1 −

∫
B(y0,10h)

χ{t1�0}∂jP (y0 − y1)θ
2(y1) dy1,

A2 =
∫

RN+1−B(y0,10h)

χ{t1�0}
{
∂jP (y0 + he − y1) − ∂jP (y0 − y1)

}
θ2(y1) dy1,

where B(y0,10h) = {y1 ∈ R
N+1: |y1 − y0| < 10h}. Start with A1. Since∣∣θ(y1)

∣∣ = ∣∣θ(y1) − θ(y0)
∣∣ � C|y1 − y0|α,

and ∣∣∇xP (t, x)
∣∣ � CN(N + 1)

2

1

(t2 + |x|2)N+1
2

= CN(N + 1)

2yN+1
,

we recognize that the second integral in the expression for A1 can be controlled by∣∣∣∣
∫

B(y0,10h)

χ{t1�0}∂jP (y0 − y1)θ
2(y1) dy1

∣∣∣∣ � C

∫
B(y0,10h)

1

|y1 − y0|N+1−2α
dy1

= C

10h∫
0

r(N+1)−1

rN+1−2α
dr = C(N,α)h2α. (5.1)

Next, to control the first term in the expression for A1, we need the following observation

• For every t > 0, ∂jP (t, ·) is an odd function in the x-variable. Hence, the average value of ∂jP (t, ·) over any disc
{t} × {x ∈ R

N : |x| < R} centered at the t -axis must be zero.

By the virtue of the above observation, it is easy to see∫
B(y0+he,10h)

χ{t1�0}∂jP (y0 + he − y1) dy1 = 0.

Then observe we can write∫
B(y0,10h)

χ{t1�0}∂jP (y0 + he − y1)
(
θ(y1)

)2
dy1 = A11 + A12 − A13,

where

• A11 = ∫
B(y0,10h)−B(y0+he,10h)

χ{t1�0}∂jP (y0 + he − y1)(θ(y1))
2 dy1.

• A12 = ∫
B(y0,10h)∩B(y0+he,10h)

χ{t1�0}∂jP (y0 + he − y1){(θ(y1))
2 − (θ(y0 + he))2}dy1.

• A13 = ∫
B(y0+he,10h)−B(y0,10h)

χ{t1�0}∂jP (y0 + he − y1)(θ(y0 + he))2 dy1.

We first look at A12. By the Holder’s continuity of θ , we have
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∣∣(θ(y0 + he)
)2 − (

θ(y1)
)2∣∣ �

∣∣θ(y0 + he)
{
θ(y0 + he) − θ(y1)

}∣∣ + ∣∣θ(y1)
{
θ(y0 + he) − θ(y1)

}∣∣
� C

(
hα + |y1 − y0|α

)|y0 + he − y1|α.

If we further use that y1 ∈ B(y0,10h) ∩ B(y0 + he,10h), the above inequality tells us∣∣(θ(y0 + he)
)2 − (

θ(y1)
)2∣∣ � C

{
1 + 10α

}
hα|y0 + he − y1|α.

Thus

|A12| � C

∫
B(y0+he,10h)

hα

|y0 + he − y1|N+1−α
dy1 = Ch2α. (5.2)

On the other hand, the terms A11 and A13 can be handled in the following way

|A11| � C

∫
B(y0,10h)−B(y0+he,10h)

∣∣∂jP (y0 + he − y1)
∣∣ · |y1 − y0|2α dy1

� (10h)2αC

∫
B(y0,10h)−B(y0+he,10h)

1

|y0 + he − y1|N+1
dy1

� Ch2α

∫
{10h�|y0+he−y1|�11h}

1

|y0 + he − y1|N+1
dy1

= Ch2α log

(
11

10

)
, (5.3)

and

|A13| �
∫

B(y0+he,10h)−B(y0,10h)

∣∣∂jP (y0 + he − y1)
∣∣(θ(y0 + he)

)2
dy1

� Ch2α

∫
{9h�|y0+he−y1|�10h}

1

|y0 + he − y1|N+1
dy1

= Ch2α log

(
10

9

)
. (5.4)

By combining (5.2), (5.3), (5.4), we can conclude∫
B(y0,10h)

χ{t1�0}∂jP (y0 + he − y1)
(
θ(y1)

)2
dy1 � Ch2α,

which with (5.1) implies

|A1| � Ch2α.

To complete the estimate for |g(y0 + he) − g(y0)|, we also need to control |A2|. For this purpose, we first recall the
derivatives of ∂jP

• ∂i∂jP (t, x) = −CN(N + 1)t
{ δij

(t2+|x|2) N+3
2

− (N+3)xixj

(t2+|x|2) N+3
2 +1

}
.

• ∂t ∂jP (t, x) = −CN(N + 1)xj

{ 1

(t2+|x|2) N+3
2

− (N+3)t2

(t2+|x|2) N+3
2 +1

}
.

Then, it follows directly from the above two identities that∣∣∇∂jP (y)
∣∣ � C

N+2
, ∀y = (t, x) ∈ R

N+1 − (0,0).
|y|
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Therefore for all y1 ∈ R
N+1 − B(y0,10h)

∣∣∂jP (y0 + he − y1) − ∂jP (y0 − y1)
∣∣ �

h∫
0

∣∣∇∂jP (y0 + λe − y1)
∣∣dλ

�
h∫

0

C

|y0 + λe − y1|N+2
dλ

�
h∫

0

C

9
10 |y1 − y0|N+2

dλ = C
h

|y1 − y0|N+2
,

where use the fact that for any y1 ∈ R
N+1 − B(y0,10h), we have |y1 + λe − y0| � |y1 − y0| − h � 9

10 |y1 − y0|. As a
result, we can control |A2| as follows if we have 2α < 1

|A2| �
∫

{|y1−y0|�10h}

∣∣∂jP (y0 + he − y1) − ∂jP (y0 − y1)
∣∣(θ(y1)

)2
dy1

�
∫

{|y1−y0|�10h}

Ch

|y1 − y0|N+2−2α
dy1

= Ch

∞∫
10h

r−2+2α dr = h2α.

So we conclude that if α satisfies 2α < 1, then, we must have∣∣g(y0 + he) − g(y0)
∣∣ � Ch2α,

for all sufficiently small h > 0. This means that θ must be of class C2α also, provided θ is of class Cα . By bootstrap-
ping the above argument, we may now conclude that our locally Holder’s continuous function θ is of class Cγ , for
any 0 < γ < 1.

To go beyond Lipschitz and obtain the C1,β regularity for θ , we just need to follow the argument in the second part
of [5, Appendix B].
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Appendix A

A.1. Proof of Lemma 4.1

The proof closely follows [5] except when the local energy inequality is employed. Also we provide more details in
Step Two below (step 7 in [5]). For convenience, the following proof is given in the setting in which the L∞ solution
θ of the N -dimensional critical Burgers’ equation is defined on [−4,0] × R

N . The desired conclusion of Lemma 4.1
can be obtained by rescaling.

Step One: Determination of the constant λ and of the sequence of truncated energy terms Ak .
We begin by constructing the universal constant λ. For this purpose, we consider the barrier function b1 : B∗

4 → R

which verifies the following conditions

• �b1 = 0 on B∗.
4
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• b1 = 2, on all the sides of the cube B∗
4 , except for the one with z = 0.

• b1 = 0, on the side of B∗
4 specified by z = 0.

Since b1 is harmonic on B∗
4 , we use the maximum principle to deduce that there exists some sufficiently small λ with

0 < λ < 1
2 , such that 0 � b1 � 2 − 4λ is valid over B∗

2 . We note that λ depends only on N .
Next, let θ : [−4,0]×R

N → R be a solution of (1.1), which verifies ‖θ‖L∞([−4,0]×RN ) � Cθ . We set u = β{θ −L},
with |β| � 1

Cθ
, and |L| � 6Cθ , and define for each k � 1

uk = {u − Ck}+, and u∗
k = {

u∗ − Ck

}
+,

where Ck = 2 − λ(1 + 1
2k ). We now consider the following quantity for each k � 1

Ak =
0∫

Tk

δk∫
0

∫
RN

∣∣∇(
ηku

∗
k

)∣∣2
dx dzdt + ‖ηkuk‖2

L∞(Tk,0;L2(RN))
, (A.1)

where Tk = −1 − 1
2k , and {ηk}∞k=1 is a (fixed) sequence of functions in C∞

c (RN) such that

χ
B(1+ 1

2
k+ 1

2
)
� ηk � χ

B(1+ 1
2k )

, and |∇ηk| � C2k, k � 0.

The integral along the z-direction in (A.1) is taken over [0, δk], for some sufficiently small δ. We will select such δ, in
a way depending only on λ. We choose δ in Step Four.

Now, we observe that the conclusion of Lemma 4.1 follows at once, provided we succeed in building up a non-
linear recurrence relation on Ak by using the De-Giorgi’s technique. We are now going to build up such a nonlinear
recurrence relation for Ak under the assumption that the following two conditions are valid

ηku
∗
k = 0, ∀z ∈ [

δk,2
]
, (A.2)

ηk+1u
∗
k+1 �

[
(ηkuk) ∗ P(z)

]
ηk+1, ∀(x, z) ∈ B

(
1 + 1

2k

)
× [

0, δk
]
. (A.3)

The symbol P(z) appearing in condition (A.3) stands for the Poisson kernel P(·, z).
Step Two: Establishing the nonlinear recurrence relation for Ak by assuming the validity of conditions (A.2)

and (A.3).
To begin, we observe that for each k � 1, we may express the function u − Ck as

u − Ck = β

{
θ − L − Ck

β

}
,

with |β| � 1
Cθ

, and |L+ Ck

β
| � {6 +Ck}Cθ � 8Cθ . This means that we can apply Proposition 3.1 directly to u−Ck =

β{θ − L − Ck

β
}, and deduce that the following inequality is valid for every k � 0

t∫
σ

∫
B∗

2

∣∣∇(
ηu∗

k

)∣∣2
dx dzds +

∫
B2

(ηuk)
2(t, x) dx

�
∫
B2

(ηuk)
2(σ, x) dx + Φ

t∫
σ

∫
B2

|∇η|2u2
k dx ds +

t∫
σ

∫
B∗

2

|∇η|2(u∗
k

)2
dx dzds, (A.4)

where, in the above inequality, we have Φ = 2NCN {8Cθ + Cθ }2 and η is some smooth cut off function compactly
supported inside B∗

2 .
By assuming the validity of condition (A.2) at step k, that is

ηku
∗
k = 0,
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for all z ∈ [δk,2], we know that the function

ηku
∗
kχ{0�z�δk} = ηku

∗
kχ{0�z�2}

has no jump-discontinuity at z = δk . We now choose some smooth function ψ : [0,∞) → R which verifies the
following conditions

• 0 � ψ(z) � 1, for all z ∈ [0,∞).
• ψ(z) = 1, for all z ∈ [0,1].
• ψ(z) = 0, for all z ∈ [2,∞).
• | dψ

dz
| � 2, for all z ∈ [0,∞).

We then apply inequality (A.4) with the cut off function ηkψ and deduce that the following inequality is valid for all
σ , t with Tk−1 � σ � Tk � t � 0 (where Tk = −1 − 1

2k )

t∫
σ

∫
B∗

2

∣∣∇(
ηkψu∗

k

)∣∣2 +
∫
B2

(ηkuk)
2(t, x) dx

�
∫
B2

(ηkuk)
2(σ, x) dx + Φ

t∫
σ

∫
B2

|∇ηk|2u2
k dx ds +

t∫
σ

∫
B∗

2

∣∣∇(ηkψ)
∣∣2(

u∗
k

)2
dx dzds. (A.5)

We next notice that ηkψu∗
k = ηku

∗
kχ{0�z�δk} = ηku

∗
kχ{0�z�2}, and this implies that

t∫
σ

∫
B∗

2

∣∣∇(
ηkψu∗

k

)∣∣2 =
t∫

σ

2∫
0

∫
RN

∣∣∇(
ηku

∗
kχ{0�z�2}

)∣∣2 =
t∫

σ

δk∫
0

∫
RN

∣∣∇(
ηku

∗
k

)∣∣2
.

Next, let us recall that according to the definition of ηk we have

• ηk � χ
B(1+ 1

2k )
� χ

B(1+ 1

2
k− 1

2
)
� ηk−1 � χ

B(1+ 1
2k−1 )

.

• |∇ηk| � C2kχ
B(1+ 1

2k )
.

So, it follows that

• |∇(ηkψ)| � |∇ηk|ψ + ηk| dψ
dz

| � (C2k + 2)χ
B(1+ 1

2k )
� (C2k + 2)ηk−1.

• |∇ηk| � C2kχ
B(1+ 1

2k )
� C2kηk−1.

Combining all these, it follows from (A.5) that the following inequality is valid for all σ , t with Tk−1 � σ � Tk � t � 0

t∫
σ

δk∫
0

∫
RN

∣∣∇(
ηku

∗
k

)∣∣2 +
∫

RN

(ηkuk)
2(t, x) dx

�
∫

RN

(ηkuk)
2(σ, x) dx + Φ

t∫
σ

∫
RN

C22k(ηk−1uk)
2 dx ds +

t∫
σ

2∫
0

∫
RN

C22k
(
ηk−1u

∗
k

)2
dx dzds.

By taking the average among all the terms appearing in the above inequality over the variable σ ∈ [Tk−1, Tk], and then
taking the sup over t ∈ [Tk,0], we yield the following
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Ak � 2k

Tk∫
Tk−1

∫
RN

(ηkuk)
2(σ, x) dx dσ

+ C(1 + Φ)22k

{ 0∫
Tk−1

∫
RN

(ηk−1uk)
2 dx ds +

0∫
Tk−1

2∫
0

∫
RN

(
ηk−1u

∗
k

)2
dx dzds

}
.

Our goal is to raise up the index for the three terms appearing in the right-hand side of the above inequality. We just
focus on

∫ 0
Tk−1

∫ 2
0

∫
RN (ηk−1u

∗
k)

2 (which is the most difficult among the three), and we remember our lucky number

2(N+1
N

) from the process of applying the De-Giorgi’s method in Section 2.

Now, by using the facts χ{u∗
k>0} � χ{u∗

k−1>
λ

2k } � 2k

λ
u∗

k−1, and ηk−1 � χ
B(1+ 1

2k−1 )
� ηk−2, we can deduce that

(
ηk−1u

∗
k

)2 � χ
B(1+ 1

2k−1 )

(
u∗

k

)2
χ{u∗

k>0}

� χ
B(1+ 1

2k−1 )

(
u∗

k

)2
(

2k

λ
u∗

k−1

) 2
N

� χ
B(1+ 1

2k−1 )

(
2k

λ

) 2
N (

u∗
k−1

)2( N+1
N

)

�
(

2k

λ

) 2
N (

ηk−2u
∗
k−1

)2( N+1
N

)

Hence, it follows at once from the above inequality that

0∫
Tk−1

2∫
0

∫
RN

(
ηk−1u

∗
k

)2
dx dzds �

0∫
Tk−1

2∫
0

∫
RN

(
2k

λ

) 2
N (

ηk−2u
∗
k−1

)2( N+1
N

)

�
(

2k

λ

) 2
N

0∫
Tk−1

2∫
0

∥∥ηk−2u
∗
k−2

∥∥2( N+1
N

)

L
2( N+1

N
)
(RN)

dz dt

=
(

2k

λ

) 2
N

0∫
Tk−1

δk−2∫
0

∥∥ηk−2u
∗
k−2

∥∥2( N+1
N

)

L
2( N+1

N
)
(RN)

dz dt. (A.6)

In the last line of the above estimate, we implicitly employ (A.2) at step k − 2. Now, by assuming the validity of
(A.2) at step k − 3, that is, ηk−3u

∗
k−3 = 0, for all z ∈ [δk−3,2], we know that the function ηk−3u

∗
k−3χ{0�z�δk−3} =

ηk−3u
∗
k−3χ{0�z�2} has no jump-discontinuity at z = δk−3 and has the same trace as (ηk−3uk−3)

∗ at z = 0. Therefore,
we can use the energy minimization property of harmonic extension to deduce that the following estimate is valid at
step k − 3

δk−3∫
0

∫
RN

∣∣∇(
ηk−3u

∗
k−3

)∣∣2
dx dz =

∞∫
0

∫
RN

∣∣∇(
ηk−3u

∗
k−3χ{0�z�δk−3}

)∣∣2
dx dz

�
∞∫

0

∫
RN

∣∣∇{
(ηk−3uk−3)

∗}∣∣2
dx dz

=
∫
N

ηk−3uk−3 · (−�)
1
2 (ηk−3uk−3) dx.
R
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Because of this last inequality, we can use the Sobolev embedding and Hölder’s inequality to obtain

‖ηk−3uk−3‖
L

2( N+1
N

)
([Tk−3,0]×RN)

� A
1
2
k−3.

By comparing the above inequalities, we see that we need a passage from the term ‖ηk−2u
∗
k−2‖

L
2( N+1

N
)
(RN)

to the

term ‖ηk−3uk−3‖
L

2( N+1
N

)
(RN)

, and such a passage is provided to us by condition (A.3) (at step k − 3). Indeed, by

assuming the validity of condition (A.3) at step k − 3, Young’s inequality tells us that, for every t ∈ [−2,0] and every
z ∈ (0, δk−2), we have∥∥ηk−2u

∗
k−2

∥∥
L

2( N+1
N

)
(RN)

�
∥∥P(z)

∥∥
L1(RN)

‖ηk−3uk−3‖
L

2( N+1
N

)
(RN)

= ∥∥P(1)
∥∥

L1(RN)
‖ηk−3uk−3‖

L
2( N+1

N
)
(RN)

,

where the last equality is valid just because we always have ‖P(z)‖L1(RN) = ‖P(1)‖L1(RN). So, it follows from (A.6)
that

0∫
Tk−1

2∫
0

∫
RN

(
ηk−1u

∗
k

)2
dx dzds �

(
2k

λ

) 2
N

0∫
Tk−1

δk−2∫
0

∥∥ηk−2u
∗
k−2

∥∥2( N+1
N

)

L
2( N+1

N
)
(RN)

dz dt

�
(

2k

λ

) 2
N

0∫
Tk−1

δk−2∫
0

∥∥P(1)
∥∥2( N+1

N
)

L1(RN)
‖ηk−3uk−3‖2( N+1

N
)

L
2( N+1

N
)
(RN)

dz dt

� δk−2
∥∥P(1)

∥∥2( N+1
N

)

L1(RN)

(
2k

λ

) 2
N ‖ηk−3uk−3‖2( N+1

N
)

L
2( N+1

N
)
([Tk−3,0]×RN )

�
∥∥P(1)

∥∥2( N+1
N

)

L1(RN)

(
2k

λ

) 2
N

A
1+ 1

N

k−3 .

So, we have raised up the index for
∫ 0
Tk−1

∫ 2
0

∫
RN (ηk−1u

∗
k)

2 dx dzds. The other two terms, namely∫ Tk

Tk−1

∫
RN (ηkuk)

2(σ, x) dx dσ and
∫ 0
Tk−1

∫
RN (ηk−1uk)

2 dx ds can be treated in a similar way. As a result, with the
assistance of condition (A.2) and condition (A.3), we are able to obtain the following nonlinear recurrence relation at
step k.

Ak � Ck
0A

1+ 1
N

k−3 , (A.7)

where, in the above nonlinear recurrence relation, C0 stands for some constant depending only on Cθ and N . More
precisely, we can summarize what we have done in the following way

• For every k � 3, if condition (A.2) is valid at steps k − 3, k − 2, k, and condition (A.3) is valid at step k − 3, then
it follows that the nonlinear recurrence relation (A.7) is valid at step k also.

Step Three: Establishing condition (A.3) at step k by assuming the validity of condition (A.2) at step k.
We need to introduce another barrier function b2 : [0,∞) × [0,1] → R, which verifies

• �b2 = 0 on (0,∞) × (0,1).
• b2(0, z) = 2, for z ∈ (0,1).
• b2(x,0) = b2(x,1) = 0, for x ∈ (0,∞).

Now, by assuming the validity of (A.2) at step k, we are ready to establish condition (A.3) at step k by controlling
the behavior of u∗

k over B(1 + 1

2k+ 1
2
) × [0, δk], where the suitable δ will be chosen (once and for all, and in a way

depending only on N ) during this procedure.
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Indeed, a direct application of the maximum principle (together with (A.2) at step k) yields the following expression
on B

(
1 + 1

2k+ 1
2

) × [0, δk]

u∗
k � (ηkuk) ∗ P(z) +

N∑
i=1

b2

(
x+ − xi

δk
,

z

δk

)
+ b2

(
xi − x−

δk
,

z

δk

)
,

where x+ = (
1 + 1

2k+ 1
2

)
, x− = −x+, and that b2 verifies b2(x, z) � 2(2)

1
2 e

−x
2 . Hence, when the scaling factor 1

δk gets

involved in the variables of b2, we yield the following inequality which is valid over the same set B
(
1+ 1

2k+ 1
2

)×[0, δk].

b2

(
x+ − xi

δk
,

z

δk

)
+ b2

(
xi − x−

δk
,

z

δk

)
� 2(2)

1
2
[
e

−(x+−xi )

2δk + e
−(xi−x−)

2δk
]
.

Now, if we restrict x to be in B(1 + 1
2k+1 ), we have min{|x+ − xi |, |xi − x−|} � 1

2(2
1
2 +1)2k

, for all x ∈ B(1 + 1
2k+1 ).

So, the above inequality implies that the following holds over the smaller set B(1 + 1
2k+1 ) × [0, δk]

b2

(
x+ − xi

δk
,

z

δk

)
+ b2

(
xi − x−

δk
,

z

δk

)
� 2

(
2
(
2

1
2
))

e

−1

4(2
1
2 +1)2kδk .

Hence, the following inequality is also valid over B(1 + 1
2k+1 ) × [0, δk]

u∗
k � (ηkuk) ∗ P(z) + 2N

(
2
(
2

1
2
))

e

−1

4(2
1
2 +1)2kδk .

Since u∗
k+1 � [u∗

k − λ

2k+1 ]+, the above inequality implies that we have over B(1 + 1
2k+1 ) × [0, δk]

u∗
k+1 �

[
(ηkuk) ∗ P(z) + 2N

(
2
(
2

1
2
))

e

−1

4(2
1
2 +1)2kδk − λ

2k+1

]
+
. (A.8)

Here, let us discuss what we have done. The above way of arriving at inequality (A.8) is just a simple application
of the maximum principle with the participation of the barrier function b2 with its width in the z-direction being

compressed by the scaling factor 1
δk . However, (A.8) eventually forces us to compare 2N(2(2

1
2 ))e

−1

4(2
1
2 +1)2kδk with λ

2k+1 .
This motivates us to choose δ to be sufficiently small so that the following holds for all k � 1

2N
(
2(2)

1
2
)
e
− 1

4{(2)
1
2 +1}(2δ)k � λ

2k+2
. (A.9)

Observe that δ, which makes (A.9) valid for all k � 1, depends only on N . Once δ is chosen and fixed, (A.8) (at step k)
together with the assistance of (A.9) give u∗

k+1 � [(ηkuk) ∗ P(z) − λ

2k+2 ]+ over B(1 + 1
2k+1 ) × [0, δk], and this in turn

gives us the validity of condition (A.3) at step k. Now, let us summarize what we have achieved in this step

• We can always select a sufficiently small δ > 0 for which condition A.9 is valid for all k � 1. For such δ > 0, the
validity of condition (A.2) at step k directly implies the validity of condition (A.3) at step k.

Step Four : Propagation of condition (A.2).
Now, let δ > 0 be the fixed, sufficiently small constant which makes condition (A.9) valid for all k � 1. Now, we

attempt to derive condition (A.2) at step k + 1 by assuming the validity of (A.2) at step k.
To do this, let us recall that inequality (A.8) at step k and condition A.9 together give u∗

k+1 � [(ηkuk) ∗ P(z) −
λ

2k+2 ]+ over B(1 + 1
2k+1 ) × [0, δk]. In order to obtain (A.2) at step k + 1, we may just take advantage of the inequality

we just mentioned and deduce that

∥∥(ηkuk) ∗ P(z)
∥∥

L∞(RN)
� ‖ηkuk‖L2(RN)

∥∥P(z)
∥∥

L2(RN)
� (Ak)

1
2

1
N

∥∥P(1)
∥∥

L2(RN)
,

z 2
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where the second inequality comes from the definition of Ak and the fact that ‖P(z)‖L2(RN) = 1

z
N
2

‖P(1)‖L2(RN). But

this eventually tells us that over B(1 + 1
2k+1 ) × [δk+1, δk] we have

u∗
k+1 �

[
(Ak)

1
2

1

z
N
2

∥∥P(1)
∥∥

L2(RN)
− λ

2k+2

]
+

�
[
(Ak)

1
2

1

δ
N
2 (k+1)

∥∥P(1)
∥∥

L2(RN)
− λ

2k+2

]
+
. (A.10)

We note that the second inequality is valid because δk+1 � z � δk . Here, we have to keep in mind that condition (A.2)
at step k + 1 is what we want. So, by taking a closer look at (A.10), it is natural that we want to have the following
inequality (because we want u∗

k+1 = 0 on B(1 + 1
2k+1 ) × [δk+1, δk])

(Ak)
1
2

1

δ
N
2 (k+1)

∥∥P(1)
∥∥

L2(RN)
� λ

2k+2
. (A.11)

But this simply forces us to admit that the following two conditions should be true for any sufficiently large M

(M should be greater than
{ 2

δ
N
2

}2)

Ak � 1

Mk
, (A.12)

1

M
k
2 δ

N
2 (k+1)

∥∥P(1)
∥∥

L2(RN)
� λ

2k+2
, ∀k � 1. (A.13)

The reason is that we have already seen a sequence {( δ
N
2

2 )k}∞k=1 appearing in inequality (A.11), which is a sequence

decaying to 0 as k increases. If we would like to construct another sequence decaying in a rate faster than {( δ
N
2

2 )k}∞k=1,
the best thing to do is to choose some { 1

Mk }∞k=1, with M to be large when compared with 2

δ
N
2

. Hence { 1
Mk }∞k=1

will decay faster than {( δ
N
2

2 )k}∞k=1. This observation more or less explains the origins of conditions (A.12) and (A.13).
However, it is important to observe that condition (A.13) automatically becomes valid for any sufficiently large M > 1,
while condition (A.12) and condition (A.2) mutually depend on each other in a delicate way, just as we will see in our
next step. But now, let us summarize the result we have obtained in this step

• For the fixed choice of sufficiently small δ as selected in Step Three, and for any sufficiently large M > 1 as
selected in Step Four, condition (A.2) at step k, together with condition (A.12) at step k, will imply the validity of
condition (A.2) at step k + 1.

Step Five : Propagation of condition (A.12) and its relation to the nonlinear recurrence relation (A.7) for the
truncated energy terms Ak .

In this step, by assuming condition (A.2) at step k − 3 and also condition (A.12) at steps k − 3, k − 2, k − 1, we
attempt to deduce the validity of condition (A.12) at step k. In our present circumstance, by applying the conclusion
of Step Four to conditions (A.2) and (A.12) at steps k − 3, k − 2, and k − 1 successively, we can deduce that our
assumptions will imply the validity of condition (A.2) at steps k − 2, k − 1, and k also. Hence, we can invoke the

conclusion obtained in Step Two to deduce that Ak � Ck
0A

1+ 1
N

k−3 is valid at step k. This, together with the validity of
condition (A.12) at step k − 3, will in turns imply that we have the following inequality to be valid

Ak � Ck
0A

1+ 1
N

k−3 � Ck
0

{
1

Mk−3

}1+ 1
N

.

Because of the above inequality, we will have the validity of condition (A.12) at step k, provided if M is chosen to
be sufficiently large so that the following condition becomes valid for all k � 12N (for more details about this, see
Lemma 7 of [5]).

1

Mk
� Ck

0

{
1

Mk−3

}1+ 1
N

. (A.14)

More precisely, we obtain the following conclusion in this step



C.H. Chan, M. Czubak / Ann. I. H. Poincaré – AN 27 (2010) 471–501 495
• If M is chosen to be large enough, condition (A.14) will become valid for all k � 12N (for a formal proof of this
fact, see Lemma 7 of [5]). For any such sufficiently large M being selected, condition (A.2) at step k − 3, together
with condition (A.12) at steps k − 3, k − 2, k − 1, will give the validity of condition (A.12) at step k.

Step Six : Completing the argument by taking the initial steps.
Before we complete the proof of Lemma (4.1), let us summarize what we have achieved from Step One to Step

Five.
We recall that after the universal constant λ ∈ (0, 1

2 ) is chosen in Step One, we have determined δ > 0 (which
depends only on N ), and some sufficiently large M > 1 (which depends only on N and Cθ ) such that the following
three conditions (which are conditions (A.9), (A.13), and (A.14) respectively) are valid at the same time for all k � 1.

• 2N(2(2)
1
2 )e

− 1

4{(2)
1
2 +1}(2δ)k � λ

2k+2 .

• 1

M
k
2 δ

N
2 (k+1)

‖P(1)‖L2(RN) � λ

2k+2 .

• 1
Mk � Ck

0 { 1
Mk−3 }1+ 1

N .

With the technical support of the three conditions listed as above, we have also demonstrated that the propagation
of condition (A.2) and the propagation of condition (A.12) mutually rely on each other in the following way.

• Condition (A.2) at step k, together with condition (A.12) at step k, will give condition (A.2) at step k + 1.
• Condition (A.2) at step k − 3, together with condition (A.12) at steps k − 3, k − 2, k − 1, will give condition

(A.12) at step k.

Because of this, we can conclude our proof for Lemma 4.1 by selecting some sufficiently small ε0 (in a way
depending only on N and the given constant Cθ ) such that the following two statements are true. (This is sufficient
because the validity of condition (A.12) for all k � 1 immediately gives the desired conclusion of Lemma 4.1.)

• Ak � 1
Mk , for every 0 � k � 12N .

• η0u
∗
0 = 0, for all z ∈ [1,2].

To see the way in which the ε0 is selected, we just recall that the function u = β{θ − L} (with |β| � 1
Cθ

, and
|L| � 6Cθ ) under consideration is required to satisfy the hypothesis that

• u∗ = β{θ∗ − L} verifies u∗ � 2 on [−4,0] × B∗
4 , and that∫ 0

−4

∫
B∗

4
(u∗+)2 dx dzds + ∫ 0

−4

∫
B4

u2+ dx ds � ε0.

So, we may invoke inequality (A.5), which we obtained in Step Two, to deduce that u∗ = β{θ∗ − L} must satisfy
the following inequality for every 0 � k � 12N .

Ak �
0∫

Tk

∫
B∗

2

∣∣∇(
ηkψu∗

k

)∣∣2 + sup
t∈[Tk,0]

∫
B2

(ηkuk)
2(t, x) dx � C224N(1 + Φ)ε0,

where, in the above inequality, C stands for some constant depending only on N , and we have implicitly use the fact
that |∇ηk| � C2k , and 0 � k � 12N .

Because of the above inequality, we know that if ε satisfies

0 < ε <
{
M12N 224NC(1 + Φ)

}−1
,

then it follows at once that condition (A.12) is valid for 1 � k � 12N . On the other hand, we also need to control
the behavior of u∗ over B2 × [1,2] by the upper bound 2 − 2λ (because this will give u∗ = {u∗ − (2 − 2λ)}+ � 0 on
0
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B2 × [1,2], and hence the validity of condition (A.2) at step 0). To achieve this, we use the local energy inequality to
observe that the following estimate is valid for all z ∈ [1,2]

• ‖u+χB2 ∗ P(z)‖L∞(RN) � C̃θ‖P(z)‖L2(RN)(ε0)
1
2 ,

where, in the above estimate, C̃θ stands for some constant depending on N and Cθ . We now recall that the barrier
function b1 as constructed in Step 1 verifies 0 � b1 � 2−4λ on B∗

2 . So, a simple application of the maximum principle
to u∗ will give the following bound for u∗ over B2 × [1,2].

• u∗ � 2 − 4λ + C̃θ‖P(1)‖L2(RN)(ε0)
1
2 on B2 × [1,2].

This means that if we select any ε0 with 0 < ε0 < { 2λ

C̃θ‖P(1)‖
L2(RN )

}2, it will follow at once that u∗
0 = {u∗ −(2−2λ)}+ �

0 on B2 × [1,2], and hence the validity of condition (A.2) at step 0. So finally, we conclude that the ε0 required in
Lemma 4.1 can be any positive number less than

min

((
M12N 224NC(1 + Φ)

)−1
,

(
2λ

C̃θ‖P(1)‖L2(RN)

)2)

and we have completed the proof for Lemma 4.1.

A.2. Proof of Lemma 4.2

The proof uses the following lemma, the proof of which can be found in Appendix A of [5].

Lemma A.1. (See De-Giorgi Isoperimetric Lemma [5].) Let ω ∈ Ḣ 1([−1,1]N+1), and

A = {x: ω(x) � 0},
B = {x: ω(x) � 1},
C = {x: 0 < ω(x) < 1},

then

|A||B| � CN‖ω‖Ḣ 1 |C| 1
2 .

We now present the proof of Lemma 4.2. The proof is the same as the proof of Lemma 8 in [5]. However, we
make changes to its presentation, which we believe make it easier to follow. For convenience, the following proof is
also given in the setting in which the L∞ solution θ of the N -dimensional critical Burgers’ equation is defined on
[−4,0] × R

N . The desired conclusion of Lemma 4.2 can be obtained by rescaling.
Start with choosing ε1  1. Next, since u∗ � 2 on Q∗

4, by the local energy inequality there exists some constant C

such that
0∫

−4

∫
B∗

1

∣∣∇u∗+
∣∣2

dx dzdt � C1. (A.15)

Now we make two observations. First, since u∗ � 2 on Q∗
4, then(

u∗ − 1
)
+ � 1.

Second, if we let

U = {
(t, x, z) ∈ Q∗

1: u∗(t, x, z) � 1
}
,

then ∫
Q∗

(
u∗ − 1

)2
+ dt dx dz =

∫
U

(
u∗ − 1

)2
+ dt dx dz. (A.16)
1
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It follows that if we can show that the measure of the set U satisfies |U | � ε1
2 (1 + √

C1), then∫
Q∗

1

(
u∗ − 1

)2
+ dt dx dz =

∫
U

(
u∗ − 1

)2
+ dt dx dz

�
∫
U

1dt dx dz � ε1

2
(1 + √

C1), (A.17)

which gives the first part of (4.1) for ε1 small enough and Dθ chosen as below in (A.25). The second part follows
from this one since following exactly [5], for t, x fixed

u+(t, x) = u∗+(t, x, z) −
z∫

0

∂zu
∗+(t, x, z)dz̄, (A.18)

and

(u − 1)2+ � 2

((
u∗(z) − 1

)2
+ +

{ z∫
0

∂zu
∗+ dz̄

}2)
. (A.19)

Now take the average in z on [0,
√

ε1] to get

(u − 1)2+ � 2√
ε1

( √
ε1∫

0

(
u∗(z) − 1

)2
+ dz +

√
ε1∫

0

{ z∫
0

∂zu
∗+ dz̄

}2

dz

)
(A.20)

� 2√
ε1

( √
ε1∫

0

(
u∗(z) − 1

)2
+ dz + √

ε1

{ √
ε1∫

0

∣∣∂zu
∗+
∣∣dz̄

}2)
(A.21)

� 2√
ε1

1∫
0

(
u∗(z) − 1

)2
+ dz + 2

√
ε1

1∫
0

∣∣∇u∗+
∣∣2

dz. (A.22)

Therefore on Q1 we obtain∫
Q1

(u − 1)2+ dx ds � 2√
ε1

∫
Q∗

1

(
u∗(z) − 1

)2
+ dx dzds + 2

√
ε1

∫
Q∗

1

∣∣∇u∗+
∣∣2

dx dzds (A.23)

� (1 + √
C1)

√
ε1 + 2

√
ε1C1, by (A.17), (A.15). (A.24)

Then we let

Dθ = 1 + √
C1 + 2C1 (A.25)

and we would be finished. Now, to establish |U | � ε1 note

|U | =
0∫

−1

∣∣B(t)
∣∣dt, (A.26)

where B(t) = {(x, z) ∈ B∗
1 : u∗(t, x, z) � 1}. Define

K =
4|B∗

1 | ∫ 0
−4

∫
B∗

1
|∇u∗+|2 dx dzdt

ε1
. (A.27)

We write

[−4,0] = I ∪ I c,
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with

I =
{
t ∈ [−4,0]: ∣∣C(t)

∣∣ 1
2 � ε3

1 and
∫
B∗

1

∣∣∇u∗+
∣∣2

dx dz � K

}
.

If we can show |I c| � ε1
2|B∗

1 | then (A.26) would become

|U | =
0∫

−1

∣∣B(t)
∣∣dt =

∫
I c∩[−1,0]

∣∣B(t)
∣∣dt +

∫
I∩[−1,0]

∣∣B(t)
∣∣dt

� ε1

2
+ sup

t

∣∣B(t)
∣∣. (A.28)

To estimate |B(t)| on I ∩ [−1,0] we use the De-Giorgi’s Isoperimetric Lemma to obtain

∣∣B(t)
∣∣ � C(t)

1
2 K

1
2

|A(t)| . (A.29)

If we could show |A(t)| � 1
4 on I ∩ [−1,0], (A.29) would imply∣∣B(t)

∣∣ �
√

C1
ε1

2
on I ∩ [−1,0],

for ε1 small enough. Therefore (A.28) would give us |U | � ε1
2 (1 + √

C1). What is left to show is that |I c| � ε1
2|B∗

1 | and

that on I ∩ [−1,0], |A(t)| � 1
4 . Start with the former and write I c = I c

1 ∪ I c
2 where

I c
1 =

{
t ∈ [−4,0]:

∫
B∗

1

∣∣∇u∗+
∣∣2

dx dz > K

}
and I c

2 = {
t ∈ [−4,0]: ∣∣C(t)

∣∣ 1
2 > ε3

1

}
.

First

K
∣∣I c

1

∣∣ =
∫
I c

1

K dt <

∫
I c

1

∫
B∗

1

∣∣∇u∗+
∣∣2

dx dzdt

�
0∫

−4

∫
B∗

1

∣∣∇u∗+
∣∣2

dx dzdt

= K

4|B∗
1 |ε1 by (A.27).

Now set

δ1 = ε8
1

|B∗
1 | .

Then for I c
2 we have

|I c
2 | <

∫ 0
−4 |C(t)|dt

ε6
1

= |{(t, x, z) ∈ Q∗
4: 0 < u∗ < 1}|
ε6

1

<
δ1

ε6
1

= ε2
1

|B∗
1 | � ε1

4|B∗
1 | if ε1 small enough.

Hence |I c| � ε1
2|B∗

1 | as needed. Next we show |A(t)| � 1
4 for t ∈ I ∩ [−1,0]. We construct a sequence satisfying

0 � tn � t0 + n
δ∗
2
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such that∣∣A(t)
∣∣ � 1

4
on

[
tn, tn + δ∗] ∩ I ⊃ [tn, tn+1] ∩ I. (A.30)

We continue till tn + δ∗ � 1, because then we can conclude |A(t)| � 1
4 . To pick the first element of the sequence we

use the hypothesis that

∣∣{(t, x, z) ∈ Q∗
1: u∗(t, x, z) � 0

}∣∣ �
|Q∗

1|
2

.

Moreover, since |I c| � ε1
2|B∗

1 | we can find some t0 ∈ I ∩ [−4,−1] such that |A(t0)| � 1
4 . Next we would like to show∫

B1

u2+(t) dx � 1

64
(A.31)

for every t ∈ I and t � t0 sufficiently close to t0. First, we consider (u∗+)2(t0) on B∗
1∫

B∗
1

(
u∗+

)2
(t0) dx dz =

∫
B(t0)∪C(t0)

(
u∗+

)2
(t0) dx dz

� 4
(∣∣B(t0)

∣∣ + ∣∣C(t0)
∣∣)

� 4
(
ε2

1 + ε6
1

)
since t ∈ I

� 8ε2
1 . (A.32)

Second, for any t and z

∫
B1

u2(t) dx =
∫
B1

u∗+
2
(t, x, z) dx − 2

z∫
0

∫
B1

u∗+(t)∂zu
∗ dx dz̄,

which once integrated in z on [0,1] gives for t = t0∫
B1

u2(t0) dx �
∫
B∗

1

u∗+
2
(t0, x, z) dx dz + 2

∥∥u∗+(t0)
∥∥

L2(B∗
1 )

∥∥∇u∗+(t0)
∥∥

L2(B∗
1 )

(A.33)

� 8ε2
1 + 4

√
2K

1
2 ε1 by (A.32) and t ∈ I (A.34)

� C

√
ε2

1 by (A.27). (A.35)

Now choosing an η so that η|B∗
1

� 1, η � r outside of B∗
1 and such that |∇η| ∼ 1

r
, (where r is to be chosen shortly)

from the local energy inequality we have∫
B1

u2(t) dx �
∫
B1

u∗+
2
(t0) dx + Cr + C(t − t0)

r
� C

√
ε2

1 + Cr + C(t − t0)

r
.

Let r be chosen so that

Cr + C
√

ε1 � 1

128
,

then for t − t0 � δ∗ = r
128C

(A.31) follows.
Next we use (A.31) to get some preliminary lower bounds on the measure of A(t). To begin with for t ∈ I ,

t − t0 � δ∗ and z � ε2
1 write

u∗+(t, x, z) = u+(t, x) +
z∫
∂zu∗+(t, x, z̄) dz̄ � u+(t, x) +

(
ε2

1

1∫ ∣∣∂zu∗+
∣∣2

dz̄

) 1
2

.

0 0
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Hence

u∗+
2
(t, x, z) � 2

(
u2+(t, x) + ε2

1

1∫
0

∣∣∂zu∗+
∣∣2

dz̄

)
,

and ∫
B1

u∗+
2
(t, x, z) dx � 2

( ∫
B1

u2+(t, x) dx + ε2
1

∫
B∗

1

∣∣∂zu
∗+
∣∣2

dz̄ dx

)

� 2

(
1

64
+ ε2

1K

)

� 2

(
1

64
+ 4Cε1

)

� 1

4
.

Then by Chebyshev’s inequality, for every fixed z � ε1 we have∣∣{x ∈ B1: u∗+(t, x, z) � 1
}∣∣ � 1

4
,

which we now integrate in z on [0, ε2
1 ] to obtain

∣∣{z � ε2
1 , x ∈ B1: u∗+(t, x, z) � 1

}∣∣ �
ε2

1

4
.

By definition of A(t) and C(t) we have

B1 × [
0, ε2

1

] ⊂ A(t) ∪ {
z � ε2

1 , x ∈ B1: u∗+(t, x, z) � 1
} ∪ C(t).

Therefore∣∣A(t)
∣∣ � |B1|ε2

1 − ∣∣{z � ε2
1 , x ∈ B1: u∗+(t, x, z) � 1

}∣∣ − ∣∣C(t)
∣∣

� ε2
1 − ε2

1

4
− ε6

1 �
ε2

1

2
.

Using (A.29) we have∣∣B(t)
∣∣ � C̃

√
ε1,

and ∣∣A(t)
∣∣ � 1 − ∣∣B(t)

∣∣ − ∣∣A(t)
∣∣, (A.36)

� 1 − 2
√

ε1 − ε6
1 � 1

4
(A.37)

as needed. To pick the next element of the sequence we look at the interval [t0 + δ∗
2 , t0 + δ∗] and observe that there

must be some t1 in that interval so that t1 ∈ I . We automatically also have |A(t1)| � 1
4 , so we can repeat the argument.

Again, we continue till tn + δ∗ � 1 and since at each step (A.30) holds, we can conclude |A(t)| � 1
4 as needed.
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