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Abstract

We prove a version of the Inverse Function Theorem for continuous weakly differentiable mappings. Namely, a nonconstant
W1,n mapping is a local homeomorphism if it has integrable inner distortion function and satisfies a certain differential inclusion.
The integrability assumption is shown to be optimal.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Throughout this paper Ω is a bounded domain in R
n. The classical Inverse Function Theorem states that if

f :Ω → R
n is continuously differentiable and the differential matrix Df (x) is invertible at some point x, then f is

a homeomorphism in a neighborhood of x. We are interested in a version of the Inverse Function Theorem for con-
tinuous weakly differentiable mappings. In this context the invertibility of the differential matrix is not sufficient. As
an example, consider the winding mapping f : R3 → R

3 written in cylindrical coordinates as f (r, θ, z) = (r,2θ, z).
Although f is Lipschitz and its Jacobian determinant J (x,f ) equals 2 for a.e. x ∈ R

n, this mapping is not a local
homeomorphism.

Let us introduce the following subset of n × n matrices.

M(δ) = {
A ∈ R

n×n: 〈Aξ, ξ 〉 � δ|Aξ ||ξ | for all ξ ∈ R
n
}
,

where −1 � δ � 1. Note that δ = −1 imposes no condition on the matrix. When −1 < δ < 0, the set M(δ) is not
convex and the differential inclusion
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Df (x) ∈ M(δ) for a.e. x ∈ Ω, (1.1)

cannot be integrated to yield a pointwise inequality for f .
The winding mapping does not satisfy (1.1) for any δ > −1. Even so, this differential inclusion does not by itself

guarantee that f is locally invertible, e.g., f (x1, x2) = (x1,0). There are also such examples with strictly positive
Jacobian [14, Example 18]. To quantify the invertibility of a matrix A ∈ R

n×n, we introduce the inner distortion
KI (A) ∈ [1,∞].

KI (A) =

⎧⎪⎨
⎪⎩

‖A�‖n

(detA)n−1 , detA > 0,

1, A = 0,

∞, otherwise.

(1.2)

Here A� stands for the cofactor matrix of A and ‖ ·‖ is the operator norm. To shorten the notation we write KI (x,f ) =
KI (Df (x)) and

KΩ [f ] := 1

|Ω|
∫
Ω

KI (x,f )dx,

where |Ω| is the Lebesgue measure of Ω . If f ∈ W 1,n(Ω,R
n) and KI (x,f ) < ∞ a.e., then f has a logarithmic

modulus of continuity [4,9]; that is,

∣∣f (a) − f (b)
∣∣n �

C(n)
∫

2B
‖Df ‖n

log(e + 2 diamB
|a−b| )

, a, b ∈ B, 2B � Ω.

In this paper we always take f to be its continuous representative.
If moreover KΩ [f ] < ∞ and f is invertible, then the inverse h := f −1 is a W 1,n-mapping and∫

Ω

KI (x,f )dx =
∫

f (Ω)

‖Dh‖n,

see [1, Theorem 9.1]. Thus KΩ [f ] controls the modulus of continuity of f −1, should it exist. Our main result ad-
dresses its existence.

Theorem 1.1. Suppose that f ∈ W
1,n
loc (Ω,R

n) is a nonconstant mapping such that KΩ [f ] < ∞. If there exists δ > −1
such that Df (x) ∈ M(δ) for almost every x ∈ Ω , then f is a local homeomorphism.

This theorem is already known in the planar case n = 2 [14, Theorem 4]. The assumption KΩ [f ] < ∞ cannot be
replaced by

∫
Ω

K
q
I (x, f )dx < ∞ for any q < 1, see [14, Example 18] or [2, Example 1].

Our proof of Theorem 1.1 is based on two results of independent interest. The first step toward proving that a
mapping is a local homeomorphism is to show that it is discrete and open; that is, preimages of points are discrete sets
and images of open sets are open.

Theorem 1.2. Let f :Ω → R
n be a mapping in W

1,n
loc (Ω,R

n) such that J (x,f ) > 0 a.e. If (Df )−1 ∈ L∞(Ω,R
n×n),

then f is discrete and open.

The challenging Iwaniec–Šverák conjecture asserts even more: a nonconstant mapping f ∈ W
1,n
loc (Ω,R

n) with
KΩ [f ] < ∞ is discrete and open. So far this conjecture was proved only for n = 2 in [10]. Partial results in this
direction were recently obtained in [6–8,15,19,20].

Another crucial ingredient of our proof of Theorem 1.1 is an estimate for the multiplicity N(y,f,A) :=
#(f −1(y) ∩ A) of a local homeomorphism f in terms of the integral of KI (·, f ) in dimensions n � 3. This result
(Theorem 5.1) continues the line of development that began in 1967 with the celebrated Global Homeomorphism
Theorem of Zorich [24].

The proof of Theorem 1.1 proceeds as follows. The differential inclusion (1.1) allows us to approximate f by
mappings f λ(x) := f (x) + λx to which Theorem 1.2 can be applied. The results of [14] yield that f λ is a local
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homeomorphism. By virtue of Theorem 5.1 the mappings f λ have uniformly bounded multiplicity, which leads to a
bound for the essential multiplicity of f . This additional information suffices to show that f is discrete and open, see
Proposition 2.2 below. Since f is a limit of local homeomorphisms f λ, the conclusion follows.

Different approaches to the invertibility of Sobolev mappings were pursued in [2,3,5,16,18,22], see also references
therein.

2. Background

In this section we collect necessary notation and preliminaries. An open ball with center a and radius r is denoted
by B(a, r) := {x ∈ R

n: |x −a| < r}. Its boundary is the sphere S(a, r). If λ > 0 and B = B(a, r), then λB = B(a,λr)

and λS = S(a,λr). In addition, B = B(0,1), Br = B(0, r), S = S(0,1) and Sr = S(0, r).
Let Hd stand for the d-dimensional Hausdorff measure which agrees with the Lebesgue measure when d coincides

with the space dimension. The Hausdorff distance dH(E,F ) between nonempty bounded sets E and F is defined as
the infimum of numbers ε > 0 such that the ε-neighborhood of E contains F and vice versa.

Given a continuous mapping f :Ω → R
n and a set E ⊂ Ω , we denote by N(y,f,E) the cardinality (possibly

infinite) of the set f −1(y) ∩ E. If y ∈ R
n \ f (∂Ω), the local degree of f at y with respect to a domain G ⊂ Ω is

denoted by deg(y, f,G). We write f :A
hom−→ B to indicate that f is a homeomorphism from A onto B .

Let Γ be a family of paths (parametrized curves) in R
n, n � 2. The image of γ ∈ Γ is denoted by |γ |. We let ΥΓ

be the set of all Borel functions ρ : Rn → [0,∞] such that∫
γ

ρ ds � 1

for every locally rectifiable path γ ∈ Γ . The functions in ΥΓ are called admissible for Γ . For a given weight ω : Rn →
[0,∞] we define

MωΓ = inf
ρ∈ΥΓ

∫
ρ(x)nω(x)dx,

and call MωΓ the weighted conformal modulus of Γ . Here it suffices to have ω defined on a Borel set containing⋃
γ∈Γ |γ |. When ω ≡ 1 we obtain the conformal modulus MΓ . We will also use the spherical modulus with respect

to a sphere S,

MSΓ = inf
ρ∈ΥΓ

∫
S

ρ(y)n dHn−1(y).

The reader may wish to consult the monographs [21,23] for basic properties of moduli of path families. The following
generalization of the Poletsky inequality relates the moduli of Γ and of its image under f , denoted by f Γ .

Proposition 2.1. (See [12].) Suppose that f ∈ W 1,n(Ω,R
n) is a discrete and open mapping with KΩ [f ] < ∞. If

Γ is a family of paths contained in Ω , then

Mf Γ � MKI (·,f )Γ. (2.1)

We will use the following result, which establishes the Iwaniec–Šverák conjecture under an additional assumption
on the multiplicity of f .

Proposition 2.2. Suppose that f ∈ W
1,n
loc (Ω,R

n) is a nonconstant mapping with KΩ [f ] < ∞. Let B be a ball such
that 2B � Ω . If

ess lim sup
r→0

r1−n

∫
S(a,r)

N(y,f,B)dHn−1(y) < ∞ (2.2)

for every a ∈ R
n, then f is discrete and open in B .



520 L.V. Kovalev et al. / Ann. I. H. Poincaré – AN 27 (2010) 517–528
This proposition is a consequence of [20, Theorem 2.2]. Although [20, Theorem 2.2] requires that

ess sup
0<t<1

∫
∂(tB)

‖D�f (x)‖
|f (x) − a|n−1

dHn−1(x) < ∞,

this condition is only used to obtain (2.2).

3. Preliminary results

For the sake of brevity, the connected component of a set A that contains a point x ∈ A will be called the x-
component of A.

Proposition 3.1. Suppose that f ∈ W
1,n
loc (Ω,R

n) is a mapping such that KΩ [f ] < ∞. Let x ∈ Ω and y = f (x). If
the x-component of f −1(y) is {x}, then f is discrete and open in some neighborhood of x.

Proof. Pick r > 0 such that B(x, r) � Ω and let Uj be the x-component of (f −1B(y,1/j)) ∩ B(x, r), j = 1,2, . . . .
Since the sets Uj ⊂ R

n are nested, compact, and connected, their intersection E is also connected. On the other hand,
x ∈ E ⊂ f −1(y), hence E = {x}. It follows that diam(Uj ) → 0 as j → ∞. Let us fix j such that Uj � Ω . Note that
Uj coincides with the x-component of f −1B(y,1/j).

We claim that f is quasilight in Uj ; that is, the connected components of f −1(w) ∩ Uj are compact for all
w ∈ R

n. If not, then there exists z ∈ Uj such that the z-component of f −1(f (z)) intersects ∂Uj at some point b. Since
f (b) = f (z) ∈ B(y,1/j), there exists t > 0 such that f B(b, t) ⊂ B(y,1/j). This contradicts the definition of Uj .
Therefore, f is quasilight in Uj . By [19, Theorem 1.1] f is discrete and open in Uj . �

For the convenience of the reader we state two preliminary results from [21, III.3].

Lemma 3.2. (See [21, III.3.1].) Let f :Ω → R
n be a local homeomorphism and let Q be a simply connected and

locally pathwise connected set in R
n. Suppose P is a component of f −1Q such that P ⊂ Ω . Then f :P

hom−→ Q. If in

addition Q is relatively locally connected, then f :P
hom−→ Q.

Lemma 3.3. (See [21, III.3.3].) Let f :Ω → R
n be a local homeomorphism and let A,B ⊂ Ω be two sets such that

f is homeomorphic in A and in B . If A ∩ B �= ∅ and if f A ∩ f B is connected, then f is homeomorphic in A ∪ B .

Given a sphere S = S(a, r) ⊂ R
n, and a point p ∈ S, let CS(p,φ) be the open spherical cap of S with center p and

opening angle φ ∈ (0,π],
CS(p,φ) = {

y ∈ S: 〈y − a,p − a〉 > r2 cosφ
}
.

For instance CS(p,π/2) is a hemisphere and CS(p,π) is a punctured sphere. For any φ ∈ (0,π] the cap CS(p,φ)

contains the point p.
The following topological lemma forms the main step of the proof of Zorich Global Homeomorphism Theorem,

see [21, III.3].

Lemma 3.4. Let f :Ω → R
n be a local homeomorphism, Ω ⊂ R

n, n � 3. Suppose we have the following:

(i) G � Ω such that f :G
hom−→ G′ where G′ is convex;

(ii) G ⊂ D � Ω and there is a ∈ ∂G ∩ ∂D;
(iii) a ball B ⊂ R

n that contains a′ = f (a) and such that S = ∂B meets G′ at some point b′.

Let b = f −1(b′) ∩ G and denote by C∗
S(b′, φ) the component of f −1CS(b′, φ) containing b. Then there exists 0 <

φ0 < π such that C∗(b′, φ0) ⊂ D and the closure of C∗(b′, φ0) meets ∂D.
S S
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Proof. Let φ0 be the supremum of all φ such that C∗
S(b′, φ) ⊂ D. First we observe that φ0 > 0. Indeed, since f is a

local homeomorphism, there exists a neighborhood V ⊂ D of b such that f :V
hom−→ f (V ). If φ is sufficiently small,

then CS(b′, φ) � f (V ), hence C∗
S(b′, φ) � V ⊂ D. It remains to show that φ0 < π .

Suppose to the contrary that φ0 = π . Since C∗
S(b′,π) ⊂ D, it follows from Lemma 3.2 that f :C∗

S(b′,π)
hom−→

CS(b′,π) = S (here the assumption n � 3 is used). Since S∗ := C∗
S(b′,π) is homeomorphic to S, it separates R

n into
two components. Let U be the bounded component of R

n \ S∗. Then the boundary of f (U) is contained in S which

implies f (U) = B. Moreover, f :U
hom−→ B by Lemma 3.2. Since b ∈ U ∩ G and since f (U) ∩ f (G) = B ∩ G′ is

convex (hence connected), Lemma 3.3 yields that f is homeomorphic in U ∪ G.
This leads to a contradiction. Since U ∪ G ⊂ D it follows that a lies on the boundary of U ∪ G. On the other hand,

f (a) = a′ ∈ f (U) is an interior point of f (U ∪ G). �
We shall use a geometric lemma which is essentially contained in [13].

Lemma 3.5. Suppose we are given a ball B(y0, r) ⊂ R
n, a point y1 ∈ S(y0, r) and a connected set E that contains y0

and some point y2 ∈ S(y0, r). Then there exist q ∈ B(y0, r) and 0 < σ < 2r such that for every σ < t < 4σ/3,

(i) y1 ∈ B(q, t);
(ii) S(q, t) ∩ E �= ∅;

(iii) S(q, t) ⊂ B(y0,2r) \ B(y0, r/10).

Proof. Let α be the angle at the point (y0 + y1)/2 formed by the line segments from y0 to (y0 + y1)/2 and from
(y0 + y1)/2 to y2. There are two cases possible.

Case 1. 0 � α < π/2, or, equivalently, |y1 − y2| > r . In this case we choose q = (y0 + y1)/2 and σ = 3r/5. For
σ < t < 4σ/3 we have B(y0, r/10) ⊂ B(q, t) and y1 ∈ B(q, t). At the same time, y2 /∈ B(q, t) because

|y2 − q| >
√

3

2
r = 5

2
√

3
σ >

4

3
σ.

Thus, all conditions (i)–(iii) are satisfied.

Case 2. π/2 � α � π , or, equivalently, |y1 − y2| � r . This time we choose q = (y1 + y2)/2 and σ = |y1 − y2|/2.
Since |y0 − q| � (

√
3/2)r , it follows that B(q, t) ∩ B(y0, r/10) = ∅ provided that

t <

(√
3

2
− 1

10

)
r.

This is indeed the case, because

4

3
σ � 2

3
r <

(√
3

2
− 1

10

)
r.

All conditions (i)–(iii) are met. �
4. Proof of Theorem 1.2

Let ‖(Df )−1‖∞ = L. First we observe that the inner distortion of f is locally integrable because

KI (x,f ) = ∥∥(
Df (x)

)−1∥∥n
J (x,f ) � Ln‖Df ‖n for a.e. x ∈ Ω. (4.1)

We may assume that B4 = B(0,4) � Ω . It suffices to show that f is discrete and open in B. We will do this
by proving that (2.2) holds. Without loss of generality, a in (2.2) equals 0. Fix 1 < t < 2 and 3 < T < 4 so that
Hn−1(f St ) < ∞ and Hn−1(f ST ) < ∞. By the area formula we have
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∫
Rn

N(y,f,BT )dy =
∫

BT

J (x,f )dx < ∞.

Therefore, for almost every 0 < R < ∞ we have∫
SR

N(y,f,BT )dHn−1(y) < ∞ and Hn−1(f (ST ) ∩ SR

) = 0. (4.2)

We fix such R < 1/(2L) so that (4.2) holds, and let

M := R1−n

∫
SR

N(y,f,BT )dHn−1(y).

Our goal is to prove that

r1−n

∫
Sr

N(y,f,B)dHn−1(y) � M for a.e. 0 < r < R. (4.3)

Let r < R be such that Hn−1(f (St ) ∩ Sr ) = 0, and denote by E ⊂ S the set of unit vectors v for which

deg(Rv,f,BT ) < deg(rv, f,Bt ). (4.4)

Let Iv : [r,R] → R
n be the parametrized line segment Iv(s) = sv. By Proposition 3.1, either f −1(sv) has a nontrivial

component for some r � s � R, or f is discrete and open in a neighborhood of f −1(Iv[r,R]), denoted by Uv . By
using the co-area formula as in [20, Lemma 2.4], we see that the former possibility only occurs for v ∈ F1 where
Hn−1(F1) = 0. The mapping f is discrete and open in the open set U := ⋃{Uv: v ∈ E \ F1}. It follows from (4.4)
and basic properties of path lifting [21, Section II.3] that for each v ∈ E \F1 the segment Iv has a maximal f -lifting I ∗

v

starting at Bt and leaving BT .
Denote

�f (x) := lim inf
z→x

|f (z) − f (x)|
|z − x| .

By our assumption on (Df )−1 there exists a Borel null set F ⊂ Ω such that �f (x) � 1/L for x ∈ Ω \F . Let F2 be the
set of v ∈ E \F1 such that either I ∗

v is unrectifiable or H1(|I ∗
v |∩F) > 0. Since the measure of F is zero, it follows that

the family of curves ΓF := {I ∗
v : v ∈ F2} has zero weighted modulus for any locally integrable weight. In particular,

MKI
ΓF = 0. Since ΓF ⊂ U we can apply (2.1) and obtain M{Iv: v ∈ F2} = 0, which implies Hn−1(F2) = 0.

For v ∈ E \ (F1 ∪ F2) we have

H1(I ∗
v

)
� LH1(Iv) < LR <

1

2
, (4.5)

which contradicts the fact that I ∗
v begins at Bt and leaves BT . Thus E ⊂ F1 ∪ F2. As a consequence, Hn−1(E) = 0,

which means deg(rv, f,Bt ) � deg(Rv,f,BT ) for Hn−1-a.e. v ∈ S. Since deg(y, f,Bt ) = N(y,f,Bt ) for a.e. y ∈ R
n

[8, Proposition 2], inequality (4.3) follows. This completes the proof of Theorem 1.2 via Proposition 2.2.

5. Multiplicity of local homeomorphisms

In 1967 Zorich [24] proved that a local homeomorphism f : Rn → R
n, n � 3, with KI (·, f ) ∈ L∞(Rn) must be a

global homeomorphism. Martio, Rickman and Väisälä [16] gave a local version of this result. Namely, if f : 2B → R
n,

n � 3, is a local homeomorphism with bounded distortion KI , then its radius of injectivity in B is bounded from
below by a constant depending only on n and ess supKI . As a consequence, the multiplicity N(y,f,B) is bounded
by C(n, ess supKI ) for all y ∈ R

n.
The boundedness of KI can be replaced by the condition

exp
(
λK

1/(n−1)) ∈ L1(2B),
I
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but this cannot be relaxed any further [13,17]. Surprisingly, the multiplicity bound remains true under a much weaker
condition, namely KI ∈ L1. Example 7.2 below shows that K

q
I ∈ L1 with q < 1 does not suffice. The mappings

fj (z) = ejz show that all results discussed here fail when n = 2.

Theorem 5.1. Let f ∈ W
1,n
loc (Ω,R

n), n � 3, be a local homeomorphism such that KΩ [f ] < ∞. If B is a ball such
that 4B � Ω , then N(y,f,B) � C(n,K4B [f ]) for all y ∈ R

n.

Proof. We may assume that B is the unit ball B. Let x1, . . . , xm ∈ f −1(y)∩B. Moreover, let rj be the largest radius r

so that the xj -component U(xj , r) of f −1B(y, r) satisfies U(xj , r) ⊂ B3. By Lemma 3.2 f is a homeomorphism
from U(xj , rj ) onto B(y, rj ). We denote by sj the largest radius s such that B(xj , s) ⊂ U(xj , rj ). Then f B(xj , sj )

intersects both y and S(y, rj ). We notice that since xj ∈ B and since the balls B(xj , sj ) are pairwise disjoint, there
exist at most N(n) indices j for which sj � 1. Thus we may assume that B(xj , sj ) ⊂ B2 for every 1 � j � m.

We now fix 1 � j � m and a point aj ∈ U(xj , rj )∩S3. We apply Lemma 3.5 with B(y0, r) = B(y, rj ), y1 = f (aj )

and E = f (B(xj , sj )), obtaining a point qj and a number σj > 0. For σj < t < 4σj/3 choose wt ∈ B(xj , sj ) such
that f (wt ) ∈ S(qj , t). We apply Lemma 3.4 with G = U(xj , rj ), D = B3, a = aj , B = B(qj , t) and b′ = f (wt ). As
a result we obtain 0 < φt < π such that the spherical cap Ct := CS(qj ,t)(f (wt ),φt ) satisfies C ∗

t ⊂ B3 and C ∗
t ∩ S3

contains some point ct . Consequently, for every path γ joining f (wt ) and f (ct ) in Ct , the maximal f -lifting γ ∗ of γ

starting at wt starts from B2 and leaves B3. Following [23, 10.2], we will choose a particular family Γt of such paths.
Let us say that a circular arc is short if it is contained in a half-circle. The family Γt will consist of all short circular

arcs that connect f (wt ) to f (ct ) within Ct . More precisely, let h be a Möbius transformation that maps f (wt ) to
infinity and S(qj , t) \ {f (wt )} to R

n−1. Observe that h(Ct ) is the complement of a ball in R
n−1. The convexity of

R
n−1 \ h(Ct ) implies that there exists an (n − 2)-hemisphere V such that h(f (ct )) + sv ∈ h(Ct ) for every s > 0 and

v ∈ V .
Introduce a family of curves Iv : [0,∞) → Ct , defined by

Iv(s) = h−1(h(
f (ct )

) + s−1v
)
,

and denote by I ∗
v the maximal f -lifting of Iv starting at wt . Now let 0 < �(v) < ∞ be the smallest number such that

I ∗
v (�(v)) ∈ S3. Let

Γt = {
I ∗
v |[0,�(v)]: v ∈ Vt

}
.

We write f Γt for the image of Γt under f .
There is a lower bound for the spherical modulus of f Γt , namely [23, Theorem 10.2]

MS(f Γt ) � C(n)

t
. (5.1)

Let

Γ ′
j = {γ : γ ∈ f Γt for some σj < t < 4σj/3},

and let Γ ∗
j be the family of the corresponding lifts γ ∗ starting at wt . Then integrating (5.1) we obtain

MΓ ′
j �

4σj /3∫
σj

C(n)

t
dt � C(n). (5.2)

As observed earlier, every γ ∈ Γ ∗
j starts at B2 and leaves B3. We denote by Ej the smallest closed subset of B3 \ B2

that contains |γ | ∩ (B3 \ B2) for all γ ∈ Γ ∗
j . Note that

Ej ⊂ f −1(B(y,2rj ) \ B(y, rj /10)
)

(5.3)

by part (iii) of Lemma 3.5. Since the characteristic function χEj
is an admissible function for Γ ∗, we have
j
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MKI
Γ ∗

j �
∫
Ej

KI (x,f )dx. (5.4)

The generalized Poletsky inequality MΓ ′
j � MKI

Γ ∗
j [14, Theorem 4.1], together with (5.2) and (5.4) yield

mC(n) �
m∑

j=1

MΓ ′
j �

m∑
j=1

∫
Ej

KI (x)dx �
(

sup
x∈B3\B2

m∑
j=1

χEj
(x)

)
×

∫
3B

KI (x,f )dx. (5.5)

Claim 1. There exists M = M(n,K4B [f ]) such that

m∑
j=1

χEj
(x) � M for every x ∈ B3 \ B2. (5.6)

By virtue of (5.5), Theorem 5.1 follows from Claim 1. In the rest of this section we prove (5.6).
Let x ∈ B3 \ B2 be a point covered by M of the sets Ej . After relabeling we have x ∈ Ej for 1 � j � M , and

r1 � r2 � · · · � rM . Since disjoint sets have disjoint preimages, (5.3) implies rM � 20r1.
Choose τ > 0 such that B(x, τ) ⊂ B3 and f is injective in B(x, τ). For 1 � j � M there exists γ ∗

j ∈ Γ ∗
j which

meets B(x, τ). Let wj be the starting point of γ ∗
j , and let γj be the subcurve of γ ∗

j that begins at wj and ends once it

meets B(x, τ).

Claim 2. For 1 � j � M there is a curve τj that joins y to f (wj ) within B(y, rj ) in such a way that the union of |τj |
and |f ◦ γj | can be mapped onto a line segment by an L-biLipschitz mapping g : Rn → R

n. Here L is a universal
constant.

Proof. Note that the image f ◦ γj is a short circular arc contained in the sphere S(q, t) of Lemma 3.5. Part (iii) of
Lemma 3.5 implies

dist
(
y, |f ◦ γj |

)
� dist

(
y,S(q, t)

)
� 1

10
rj � 1

40
diam |f ◦ γj |. (5.7)

There are two cases. If y ∈ B(q, t), then τj is the line segment connecting y to f (wj ). By virtue of (5.7), the distance
from y to S(q, t) is comparable to t . Therefore, the angle between τj and the sphere S(q, t) is bounded from below
by a universal constant, and the claim follows.

Suppose that y /∈ B(q, t). Let ρj := |f (wj ) − y|. Note that rj /10 � ρj � rj . Let p be the point of the sphere
S(y,ρj ) that is farthest from q , namely

p = y − ρj

q − y

|q − y| .
We choose τj as the union of the line segment connecting y to p and the geodesic arc on S(y,ρj ) from p to f (wj ).
Once again, the angle between τj and the sphere S(q, t) is bounded from below by a universal constant. �

Let ηj , 1 � j � M , be the curve obtained by concatenating −(f ◦ γj ) with −τj , where − indicates the reversal of
orientation. Note that ηj begins in f B(x, τ ), proceeds along a circular arc to f (wj ), and ends at y. Its f -lifting η∗

j

starting in B(x, τ) is contained in B3 and ends at xj .

Claim 3. There exists ε = ε(n,M) such that ε → 0 as M → ∞, and

min
1�i<j�M

dH
(|ηi |, |ηj |

)
� εr1/L. (5.8)

Proof. We begin our proof of Claim 3 by observing that |ηj | ⊂ B(y,2rM) ⊂ B(y,40r1). For ε > 0 let Z =
{z1, . . . , zN } be an (εr1/L)-net in B(y,40r1), where N = N(ε,n). The set of all nonempty subsets of Z is an (εr1/L)-
net in the set of all nonempty closed subsets of B(y,40r1) equipped with the Hausdorff metric. If M > 2N , then by
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the pigeonhole principle there exist i < j such that |ηi | and |ηj | are within the distance (εr1/L) from the same subset
of Z. Claim 3 follows. �

Fix i, j , and ε as in Claim 3, and let g : Rn → R
n be the L-biLipschitz mapping from Claim 2. By replacing f

with g ◦ f , which has a comparable distortion function KI , we may assume that |ηj | is a line segment. For δ > 0 we
denote by W(δ) the open δ-neighborhood of |ηj |. Let W ∗(δ) be the xj -component of f −1W(δ).

Claim 4. If δ > εr1, then W ∗(δ) ∩ S4 �= ∅.

Proof. Since δ > εr1, we have |ηi | ⊂ W(δ). Suppose to the contrary that W ∗(δ) ⊂ B4. Then W ∗(δ) � Ω , which by
Lemma 3.2 implies that f :W ∗(δ) → W(δ) is a homeomorphism. This contradicts the fact that the f -liftings of ηi

and ηj starting in B(x, τ) end at different points, namely xi and xj . �
Let δ0 be the supremum of all numbers δ such that W ∗(δ) ⊂ B4. Since f is a local homeomorphism, δ0 > 0.

By Lemma 3.2, f :W ∗(δ) hom−→ W(δ) for every 0 < δ < δ0. By Claim 4 we have δ0 � εr1.
Choose a point a ∈ ∂W ∗(δ0) ∩ S4. Let a′ = f (a). Since a′ ∈ ∂W(δ0), there exists p ∈ |ηj | such that |a′ − p| = δ0.

For δ0 < t < 1
2 diam |ηj | choose b′

t ∈ |ηj | ∩ S(p, t). We apply Lemma 3.4 with G = W ∗(δ0), D = B4, a = a, B =
B(p, t) and b′ = b′

t . As a result we obtain 0 < φt < π such that the spherical cap Ct := CS(p,t)(b
′
t , φt ) satisfies

C ∗
t ⊂ B4 and C ∗

t ∩ S4 contains some point ct . Consequently, for every path γ joining b′
t and f (ct ) in Ct , the maximal

f -lifting γ ∗ of γ starting at f −1(b′
t ) ∩ |η∗

j | starts from B3 and leaves B4. Let Γ be the family of all such paths γ and
let Γ ∗ be the family of the lifts γ ∗. From [23, Theorem 10.2] we have

MΓ � C(n)

diam(ηj )/2∫
εr1

dt

t
� C(n) log

diam(ηj )

2εr1
.

By (5.7) we have diam |ηj | � cr1 with a universal constant c > 0. Therefore,

MΓ � C(n) log
1

ε
. (5.9)

On the other hand, since the characteristic function χB4\B3 is an admissible function for Γj , we obtain

MKI
Γ ∗ �

∫
B4\B3

KI (x,f )dx.

Combining this with (5.9) and using the Poletsky inequality again, we have ε � C(n,K4B [f ]), hence M �
C(n,K4B [f ]). This gives (5.6). The proof of Theorem 5.1 is complete. �
6. Proof of Theorem 1.1

Denote f λ(x) = f (x) + λx, λ > 0. Then f λ ∈ W
1,n
loc (Ω,R

n). Moreover, by [14, Lemma 10],

KI

(
x,f λ

)
� C(δ,n)KI (x,f ) and

∥∥(
Df λ

)−1
(x)

∥∥ � C(δ,λ) (6.1)

for almost every x ∈ Ω . Thus f λ is discrete and open for every λ > 0 by Theorem 1.2. Furthermore, by [14,
Lemma 13] f λ is a local homeomorphism. (Although [14, Lemma 13] imposes a stronger condition on the dis-
tortion of f , this condition is only used to ensure that f is discrete and open.) Since f λ → f locally uniformly, the
following proposition implies that f is a local homeomorphism, completing the proof of Theorem 1.1.

Proposition 6.1. Suppose that a mapping f ∈ W
1,n
loc (Ω,R

n) with KΩ [f ] < ∞ can be uniformly approximated by

local homeomorphisms fj ∈ W
1,n

(Ω,R
n) such that supj KΩ [fj ] < ∞. Then f is a local homeomorphism.
loc
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Proof. By [14, Proposition 7] it suffices to show that f is discrete and open. If n = 2, this is due to Iwaniec and
Šverák [10]. Thus we assume that n � 3. Let B = B(x0,R) be a ball such that 8B � Ω . We will show that

N(y,f,B) � C for a.e. y ∈ R
n, (6.2)

where C < ∞ does not depend on y. Proposition 2.2 will then imply that f is discrete and open in B .
Applying Theorem 5.1 to fj , we obtain

N(y,fj ,2B) � C for every y ∈ R
n,

where C depends only on supj KΩ [fj ] and n.
We fix R < t < 2R so that Hn−1(f S(x0, t)) < ∞, and a point y ∈ f B \ f S(x0, t). Let d = dist(y, f S(x0, t)).

Since fj → f locally uniformly, there exists j0 such that |fj (x) − f (x)| < d/2 for all j � j0 and all x ∈ S(x0, t).
Consequently, the restrictions of fj and f to S(x0, t) are homotopic via the straight-line homotopy that takes values
in R

n \ {y}. It follows that

deg
(
y,f,B(x0, t)

) = deg
(
y,fj ,B(x0, t)

)
� N(y,fj ,2B) � C

for all j � j0. Since N(y,f,B) � N(y,f,B(x0, t)) = deg(y, f,B(x0, t)) for almost every y ∈ R
n, we conclude that

(6.2) indeed holds. The proof is complete. �
7. Concluding remarks

Corollary 7.1. Suppose that f ∈ W
1,n
loc (Rn,R

n) is a nonconstant mapping such that KI (·, f ) ∈ L1
loc(R

n). If there
exists δ > −1 such that Df (x) ∈ M(δ) for almost every x ∈ R

n, then f is a homeomorphism.

Proof. As in the proof of Theorem 1.1 we have that f λ(x) = f (x) + λx is a local homeomorphism for all λ > 0.
Since (Df λ)−1 ∈ L∞(Rn), it follows from [14, Lemma 12] that

lim inf
x→a

|f λ(x) − f λ(a)|
|x − a| � λ

2
> 0 (7.1)

for all a ∈ R
n. By a theorem of John [11, p. 87], f λ is a homeomorphism. Since f is discrete and open by Theorem 1.1,

we can apply [14, Proposition 7] and conclude that f is a homeomorphism. �
Sharpness of Theorem 5.1 is demonstrated by the following example which combines the ideas from [2] and [13].

Example 7.2. For any q < 1 there exists a sequence of mappings fj ∈ W 1,3(B,R
3) such that

sup
j

∫
B

K
q
I (x,fj )dx < ∞ and N

(
0, fj ,B(0,1/4)

) → ∞.

Proof. By a version of Zorich’s construction (see [9,21]) there exists a mapping φ ∈ W 1,3(R3,R
3) such that

KI (·, φ) ∈ L∞(R3), φ is a local homeomorphism outside of R × (2Z + 1)2, and φ is 4-periodic in the last two
variables. Therefore, it suffices for us to construct biLipschitz homeomorphisms fj : B → R

3 such that

(i) supj

∫
B

K
q
I (x,fj )dx < ∞;

(ii) fj (B) ⊂ D × R (here D ⊂ R
2 is the unit disc);

(iii) fj (B1/4) contains a line segment {0} × [−L,L] ⊂ R
2 × R where L → ∞ as j → ∞.

The compositions φ ◦ fj will be mappings with large multiplicity.

For y ∈ R
3 let s(y) =

√
y2

1 + y2
2 . For α > 2 we define a mapping x = g(y) by

xi = s(y)α−1yi, i = 1,2;
x3 = s(y)y3.
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Since s(x) = s(y)α , the inverse mapping y = f (x) outside the set {s(x) = 0} is given by

yi = s(x)1/α−1xi, i = 1,2;
y3 = s(x)−1/αx3, s(x) �= 0.

Let Ω = {x ∈ R
3: s(x) < 1, |x3| < 1} and Ω ′ = f (Ω). We restrict our attention to y ∈ Ω ′, where in particular

s(y) < 1. Elementary computations show that∥∥Dg(y)
∥∥ � C max

(
s(y), |y3|

)
and

J (y, g) � Cs(y)2(α−1)+1.

Therefore,

‖Dg(y)‖3

J (y, g)
� Cs(y)2(1−α)−1 max

(
s(y)3, |y3|3

)
. (7.2)

Since

‖Dg(y)‖3

J (y, g)
= KI (x,f ),

inequality (7.2) can be used to estimate KI (x,f ) as follows.

KI (x,f ) � Cs(x)(2(1−α)−1)/α max
(
s(x)3/α, s(x)−3/α|x3|3

)
� Cs(x)−(2α+2)/α,

where at the last step we used |x3| < 1. We achieve
∫
Ω

KI (x,f )q dx < ∞ by choosing α large enough so that

2α + 2

α
q < 2.

The mapping f constructed thus far is not in W 1,3, and is not even continuous. However, this can be corrected by

replacing s(y) with sj (y) =
√

y2
1 + y2

2 + 1/j2. The mapping x = gj (y) given by

xi = sj (y)α−1yi, i = 1,2;
x3 = sj (y)y3,

is biLipschitz; we denote the inverse by fj . The computation of ‖Dgj‖ and J (·, gj ) goes through exactly as before
and shows that the integral of K

q
I (·, fj ) is bounded independently of εj . Since gj (0,0, y3) = (0,0, y3/j), we have

fj (0,0, x3) = (0,0, jx3). Thus, this mapping fj fulfills the requirements (i)–(iii). �
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