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Abstract

We prove existence of finitely many ergodic equilibrium states for a large class of non-uniformly expanding local homeomor-
phisms on compact metric spaces and Hölder continuous potentials with not very large oscillation. No Markov structure is assumed.
If the transformation is topologically mixing there is a unique equilibrium state, it is exact and satisfies a non-uniform Gibbs prop-
erty. Under mild additional assumptions we also prove that the equilibrium states vary continuously with the dynamics and the
potentials (statistical stability) and are also stable under stochastic perturbations of the transformation.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Nous prouvons l’existence d’un nombre fini d’états d’ équilibre ergodiques pour une classe assez grande d’homéomorphismes
locaux non-uniformément dilatants sur des espaces métriques compacts et pour les potentiels de Hölder continus à oscillation pas
trop grande. Aucune structure de Markov n’est supposée. Si la transformation est topologiquement mélangeante alors il existe
un unique état d’ équilibre, il est une mesure exacte et vérifie une propriété de Gibbs non-uniforme. Avec quelques hypothèses
supplémentaires, nous prouvons aussi que les états d’ équilibre varient de façon continue avec la dynamique et le potentiel (stabilité
statistique) et sont également stables sous des perturbations stochastiques de la transformation.
© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

The theory of equilibrium states of smooth dynamical systems was initiated by the pioneer works of Sinai, Ruelle,
Bowen [51,7,6,47]. For uniformly hyperbolic diffeomorphisms and flows they proved that equilibrium states exist and
are unique for every Hölder continuous potential, restricted to every basic piece of the non-wandering set. The basic
strategy to prove this remarkable fact was to (semi)conjugate the dynamics to a subshift of finite type, via a Markov
partition.
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Several important difficulties arise when trying to extend this theory beyond the uniformly hyperbolic setting and,
despite substantial progress by several authors, a global picture is still far from complete. For one thing, existence
of generating Markov partitions is known only in a few cases and, often, such partitions can not be finite. Moreover,
equilibrium states may actually fail to exist if the system exhibits critical points or singularities (see Buzzi [13]).

A natural starting point is to try and develop the theory first for smooth systems which are hyperbolic in the
non-uniform sense of Pesin theory, that is, whose Lyapunov exponents are non-zero “almost everywhere”. This was
advocated by Alves, Bonatti, Viana [3], who assume non-uniform hyperbolicity at Lebesgue almost every point and
deduce existence and finiteness of physical (Sinai–Ruelle–Bowen) measures. In this setting, physical measures are
absolutely continuous with respect to Lebesgue measure along expanding directions.

It is not immediately clear how this kind of hypothesis may be useful for the more general goal we are addressing,
since one expects most equilibrium states to be singular with respect to Lebesgue measure. Nevertheless, in a series
of recent works, Oliveira, Viana [37–39] managed to push this idea ahead and prove existence and uniqueness of
equilibrium states for a fairly large class of smooth transformations on compact manifolds, inspired by [3]. Roughly
speaking, they assumed that the transformation is expanding on most of the phase space, possibly with some relatively
mild contracting behavior on the complement. Moreover, the potential should be Hölder continuous and its oscillation
supφ − infφ not too big. On the other hand, they need a number of additional conditions on the transformation, most
notably the existence of (non-generating) Markov partitions, that do not seem natural.

Important contributions to the theory of equilibrium states outside the uniformly hyperbolic setting have been
made by several other authors: Denker, Keller, Nitecki, Przytycki, Urbański [25,21,23,26,27,52], Bruin, Keller, Todd
[8,10,9], and Pesin, Senti, Zhang [42,43], for one-dimensional maps, real and complex. Wang, Young [55] for Hénon-
like maps. Buzzi, Maume, Paccaut, Sarig, [11,16,15,18] for piecewise expanding maps in higher dimensions. Buzzi,
Sarig [18,48–50,58] for countable Markov shifts. Denker, Urbański [20,22,24] and Yuri [56–58] for maps with indif-
ferent periodic points. Leplaideur, Rios [32,33] for horsehoes with tangencies at the boundary of hyperbolic systems.
This list is certainly not complete. Some results, including [17] and [38] are specific for measures of maximal entropy.
An important notion of entropy-expansiveness was introduced by Buzzi [12], which influenced [14,38] among other
papers.

In this paper we carry out the program set by Alves, Bonatti, Viana towards a theory of equilibrium states for
the class of non-uniformly expanding maps originally proposed in [3, Appendix]. We improve upon previous results
of [39] in a number of ways. For one thing, we completely remove the need for a Markov partition (generating or
not). In fact, one of the technical novelties with respect to previous recent works in this area is that we prove, in an
abstract way inspired by Ledrappier [31], that every equilibrium state must be absolutely continuous with respect
to a certain conformal measure. When the map is topologically mixing, the equilibrium state is unique, and a non-
lacunary Gibbs measure. In this regard let us mention that Pinheiro [44] has recently announced an inducing scheme
for constructing (countable) Markov partitions for a class of non-invertible transformations closely related to ours.
Another improvement is that our results are stated for local homeomorphisms on compact metric spaces, rather than
local diffeomorphisms on compact manifolds (compare [39, Remark 2.6]). In addition, we also prove stability of the
equilibrium states under random noise (stochastic stability) and continuity under variations of the dynamics (statistical
stability).

Our basic strategy to prove these results goes as follows. First we construct an expanding conformal measure ν as
a special eigenmeasure of the dual of the Ruelle–Perron–Frobenius operator. Then we show that every accumulation
point μ of the Cesaro sum of the push-forwards f n∗ ν is an invariant probability measure that is absolutely continuous
with respect to ν with density bounded away from infinity, and that there are finitely many distinct such ergodic
measures. In addition, we prove that these absolutely continuous invariant measures are equilibrium states, and that
any equilibrium state is necessarily an expanding measure. Finally, we establish an abstract version of Ledrappier’s
theorem [31] and characterize equilibrium states as invariant measures absolutely continuous with respect to ν.

This paper is organized as follows. The precise statement of our results is given in Section 2. We included in
Section 3 preparatory material that will be necessary for the proofs. Following the approach described above, we
construct an expanding conformal measure and prove that there are finitely many invariant and ergodic measures
absolutely continuous with respect it through Sections 4 and 5. In Section 6 we prove Theorems A and B. Finally, in
Section 7 we prove the stochastic and statistical stability results stated in Theorems D and E.
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2. Statement of the results

2.1. Hypotheses

We say that X is a Besicovitch metric space if it is a metric space where the Besicovitch covering lemma
(see e.g. [19]) holds. These metric spaces are characterized in [28] and include e.g. any subsets of Euclidean met-
ric spaces and manifolds.

We consider N to be compact Besicovitch metric space of topological dimension m with distance d . Let M ⊂ N

be a compact set, f : M → N be a local homeomorphism and assume that there exists a bounded function x �→ L(x)

such that, for every x ∈ M there is a neighborhood Ux of x so that fx : Ux → f (Ux) is invertible and

d
(
f −1

x (y), f −1
x (z)

)
� L(x)d(y, z), ∀y, z ∈ f (Ux).

Assume also that every point has finitely many preimages and that the level sets for the degree {x: #{f −1(x)} = k}
are closed. Given x ∈ M set degx(f ) = #f −1(x). Define hn(f ) = minx∈M degx(f

n) for n � 1, and consider the limit

h(f ) = lim inf
n→∞

1

n
loghn(f ).

It is clear that

log
(

max
x∈M

#
{
f −1(x)

})
� h(f ) � log

(
min
x∈M

#
{
f −1(x)

})
.

If M is connected, every point has the same number deg(f ) of preimages by f , which coincides with the spectral
radius for the Ruelle–Perron–Frobenius operator. Hence, if this is the case, h(f ) = log deg(f ) is the topological
entropy of f (see Lemma 6.5 below). The limit above also exists e.g. when the dynamics is (semi)conjugated to
a subshift of finite type. By definition, there exists N � 1 such that degx(f

n) � eh(f )n for every x ∈ M and every
n � N . Up to consider the iterate f N instead of f we will assume that every point in M has at least eh(f ) preimages
by f .

For all our results we assume that f and φ satisfy conditions (H1), (H2), and (P) stated in what follows. Assume
that there exist constants σ > 1 and L > 0, and an open region A ⊂ M such that

(H1) L(x) � L for every x ∈ A and L(x) � σ−1 for all x ∈ M \ A, and L is close to 1: the precise conditions are
given in (3.2) and (3.3) below.

(H2) There exists k0 � 1 and a covering P = {P1, . . . ,Pk0} of M by domains of injectivity for f such that A can be
covered by q < eh(f ) elements of P .

The first condition means that we allow expanding and contracting behavior to coexist in M : f is uniformly expanding
outside A and not too contracting inside A. The second one requires essentially that in average every point has at least
one preimage in the expanding region. The interesting part of the dynamics is given by the restriction of f to the
compact metric space

K =
⋂
n�0

f −n(M),

that can be connected or totally disconnected. We give some examples below where K = M is a manifold and where
K ⊂ M is a Cantor set.

In addition we assume that φ : M → R is Hölder continuous and that its variation is not too big. More precisely,
assume that:

(P) supφ − infφ < h(f ) − logq .

Notice this is an open condition on the potential, relative to the uniform norm, and it is satisfied by constant functions.
It can be weakened somewhat. For one thing, all we need for our estimates is the supremum of φ over the union of
the elements of P that intersect A. With some extra effort (replacing the q elements of P that intersect A by the same
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number of smaller domains), one may even consider the supremum over A, that is, supφ|A − infφ < h(f ) − logq .
However, we do not use nor prove this fact here.

Let us comment on this hypothesis. A related condition, Ptop(f,φ) > supφ, was introduced by Denker, Ur-
bański [21] in the context of rational maps on the sphere. Another related condition, P(f,φ, ∂Z) < P (f,φ), is used
by Buzzi, Paccaut, Schmitt [16], in the context of piecewise expanding multidimensional maps, to control the map’s
behavior at the boundary ∂Z of the domains of smoothness: without such a control, equilibrium states may fail to
exist [13]. Condition (P) seems to play a similar role in our setting.

2.2. Examples

Here we give several examples and comment on the role of the hypotheses (H1), (H2) and (P), specially in connec-
tion with the supports of the measures we construct, the existence and finitude of equilibrium states.

Example 2.1. Let f0 : T
d → T

d be a linear expanding map. Fix some covering P for f0 and some P1 ∈ P containing
a fixed (or periodic) point p. Then deform f0 on a small neighborhood of p inside P1 by a pitchfork bifurcation in
such a way that p becomes a saddle for the perturbed local homeomorphism f . By construction, f coincides with
f0 in the complement of P1, where uniform expansion holds. Observe that we may take the deformation in such a
way that f is never too contracting in P1, which guarantees that (H1) holds, and that f is still topologically mixing.
Condition (P) is clearly satisfied by φ ≡ 0. Hence, Theorems A and B imply that there exists a unique measure of
maximal entropy, it is supported in the whole manifold T

d and it is a non-lacunary Gibbs measure.

Now, we give an example where the union of the supports of the equilibrium states does not coincide with the
whole manifold.

Example 2.2. Let f0 be an expanding map in T
2 and assume that f0 has a periodic point p with two complex

conjugate eigenvalues σ̃ ei� , with σ̃ > 3 and k� /∈ 2πZ for every 1 � k � 4. It is possible to perturb f0 through
a Hopf bifurcation at p to obtain a local homeomorphism f , C5-close to f0 and such that p becomes a periodic
attractor for f (see e.g. [29] for details). Moreover, if the perturbation is small then (H1) and (H2) hold for f . Thus,
there are finitely many ergodic measures of maximal entropy for f . Since these measures are expanding their support
do not intersect the basin of attraction the periodic attractor p.

An interesting question concerns the restrictions on f imposed by (P). For instance, if φ = − log |detDf | satisfies
(P) then there can be no periodic attractors. In fact, the expanding conformal measure ν coincides with the Lebesgue
measure which is an expanding measure and positive on open sets. An example where the potential φ = − log |detDf |
satisfies (P) is given by Example 2.1 above, since condition (P) can be rewritten as

supx∈T2 |detDf (x)|
infx∈T2 |detDf (x)| < deg(f ), (2.1)

and clearly satisfied if the perturbation is small enough.
The next example shows that some control on the potential φ is needed to have uniqueness of the equilibrium state:

in absence of the hypothesis (P), uniqueness may fail even if we assume (H1) and (H2).

Example 2.3 (Manneville–Pomeau map). If α ∈ (0,1), let f : [0,1] → [0,1] be the local homeomorphism given by

fα(x) =
{

x(1 + 2αxα) if 0 � x � 1
2 ,

2x − 1 if 1
2 < x � 1.

Observe that conditions (H1) and (H2) are satisfied. It is well known that f has a finite invariant probability measure
μ absolutely continuous with respect to Lebesgue. Using Pesin formula and Ruelle inequality, it is not hard to check
that both μ and the Dirac measure δ0 at the fixed point 0 are equilibrium states for the potential φ = − log |detDf |.
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Thus, uniqueness fails in this topologically mixing context. For the sake of completeness, let us mention that in this
example f is not a local homeomorphism, but one can modify it to a local homeomorphisms in S1 = [0,1]/∼ by

fα(x) =
{

x(1 + 2αxα) if 0 � x � 1
2 ,

x − 2α(1 − x)1+α if 1
2 < x � 1,

where ∼ means that the extremal points in the interval are identified. Note that the potential φ is not (Hölder) contin-
uous.

The previous phenomenon concerning the lack of uniqueness of equilibrium states can appear near the boundary
of the class of maps and potentials satisfying (H1) and (H2) and (P).

Example 2.4. Let fα be the map given by the previous example and let (φβ)β>0 be the family of Hölder continuous
potentials given by φβ = − log(det |Df | + β). On the one hand, observe that φβ converge to φ = − log(|detDf |) as
β → 0. On the other hand, similarly to (2.1), one can write condition (P) as

β + 2 + α

β + 1
< 2, or simply β > α.

For every α > 0, since fα is topologically mixing and satisfies (H1),(H2) and φ2α satisfies (P) for every α > 0 there
is a unique equilibrium state μα for fα with respect to φ2α . Moreover, φ2α approaches φ, which seems to indicate
that the condition (P) on the potential should be close to optimal in order to get uniqueness of equilibrium states.
Furthermore, the potential ψt = −t log |Dfα| satisfies (P) if and only if ψt(0) − ψt(1/2) < log 2 or, equivalently,
t <

log 2
log(2+α)

.
Since htop(f ) = log 2, condition (P) can be rewritten also as supφ − infφ < htop(f ). In [9, Proposition 2], the

authors proved that for every Hölder continuous potential that does not satisfy (P) has no equilibrium state obtained
from some ‘natural’ inducing schemes.

The next example illustrates that our results also apply when the set K is totally disconnected.

Example 2.5. Let N denote the unit interval [0,1] and let f : N → R be the unimodal map f (x) = −8x(x − 1) ×
(x + 1/8). Since the critical value is outside of the unit interval [0,1], K = ⋂

n f −n([0,1)] is clearly a Cantor set.
Although the existence of a critical point, the restriction of f to the set M = f −1[0,1]) is a local homeomorphism.
It is not hard to check that (H1) and (H2) hold in this setting and that f | K is topologically mixing. As a consequence
of the results below we show that there is a unique measure of maximal entropy for f , whose support is K .

2.3. Existence of equilibrium states

Throughout the paper we assume, with some abuse of notation, that K coincides with M . There is no restriction
in this since M ⊂ N was taken as an arbitrary compact set such that f |M is a local homeomorphism. We say that f

is topologically mixing if, for each open set U there is a positive integer N so that f N(U) = M . Let B denote the
Borel σ -algebra of M . An f -invariant probability measure η is exact if the σ -algebra B∞ = ⋂

n�0 f −nB is η-trivial,
meaning that it contains only zero and full η-measure sets. Given a continuous map f : M → M and a potential
φ : M → R, the variational principle for the pressure asserts that

Ptop(f,φ) = sup

{
hμ(f ) +

∫
φ dμ: μ is f -invariant

}
where Ptop(f,φ) denotes the topological pressure of f with respect to φ and hμ(f ) denotes the metric entropy. An
equilibrium state for f with respect to φ is an invariant measure that attains the supremum in the right-hand side
above.

Theorem A. Let f : M → M be a local homeomorphism with Lipschitz continuous inverse and φ : M → R

a Hölder continuous potential satisfying (H1), (H2), and (P). Then, there is a finite number of ergodic equilibrium
states μ1,μ2, . . . ,μk for f with respect to φ such that any equilibrium state μ is a convex linear combination of
μ1,μ2, . . . ,μk . In addition, if the map f is topologically mixing then the equilibrium state is unique and exact.
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Our strategy for the construction of equilibrium states is, first to construct a certain conformal measure ν which
is expanding and a non-lacunary Gibbs measure. Then we construct the equilibrium states, which are absolutely
continuous with respect to this reference measure ν. Both steps explore a weak hyperbolicity property of the system.
In what follows we give precise definitions of the notions involved.

A probability measure ν, not necessarily invariant, is conformal if there exists some function ψ : M → R such that

ν
(
f (A)

) =
∫
A

e−ψ dν

for every measurable set A such that f | A is injective.
Let Snφ = ∑n−1

j=0 φ ◦ f j denote the nth Birkhoff sum of a function φ. The dynamical ball of center x ∈ M , radius
δ > 0, and length n � 1 is defined by

B(x,n, δ) = {
y ∈ M: d

(
f j (y), f j (x)

)
� δ, ∀0 � j � n

}
.

An integer sequence (nk)k�1 is non-lacunary if it is increasing and nk+1/nk → 1 when k → ∞.

Definition 2.6. A probability measure ν is a non-lacunary Gibbs measure if there exist uniform constants K > 0,
P ∈ R and δ > 0 so that, for ν-almost every x ∈ M there exists some non-lacunary sequence (nk)k�1 such that

K−1 � ν(B(x,nk, δ))

exp(−Pnk + Snk
φ(y))

� K

for every y ∈ B(x,nk, δ) and every k � 1.

The weak hyperbolicity property of f is expressed through the notion of hyperbolic times, which was introduced
in [1,3] for differentiable transformations. We say that n is a c-hyperbolic time for x ∈ M if

n−1∏
j=n−k

L
(
f j (x)

)
< e−ck for every 1 � k � n. (2.2)

Often we just call them hyperbolic times, since the constant c will be fixed, as in (3.2). We denote by H the set of
points x ∈ M with infinitely many hyperbolic times and by Hj the set of points having j � 1 as hyperbolic time.
A probability measure ν, not necessarily invariant, is expanding if ν(H) = 1.

The basin of attraction of an f -invariant probability measure μ is the set B(μ) of points x ∈ M such that

1

n

n−1∑
j=0

δf j (x) converges weakly to μ when n → ∞.

Theorem B. Let f : M → M be a local homeomorphism and φ : M → R be a Hölder continuous potential satisfying
(H1), (H2), and (P). Let μ1,μ2, . . . ,μk be the ergodic equilibrium states of f for φ. Then every μi is absolutely
continuous with respect to some conformal, expanding, non-lacunary Gibbs measure ν. The union of all basins of
attraction B(μi) contains ν-almost every point x ∈ M . If, in addition, f is topologically mixing then the unique
absolutely continuous invariant measure μ is a non-lacunary Gibbs measure.

As a byproduct of the previous results we can obtain the existence of equilibrium states for continuous potentials
satisfying (P). Without some extra condition no uniqueness of equilibrium states is expected to hold even if f is
topologically mixing.

Corollary C. Let f : M → M be a local homeomorphism satisfying (H1) and (H2). If φ : M → R is a continuous
potential satisfying (P) then there exists an equilibrium state for f with respect to φ. Moreover, there is a residual
set R of potentials in C(M) that satisfy (P) such that there is unique equilibrium state for f with respect to φ.
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2.4. Stability of equilibrium states

Let F be a family of local homeomorphisms with Lipschitz inverse and W be some family of continuous potentials
φ. A pair (f,φ) ∈ F × W is statistically stable (relative to F × W ) if, for any sequences fn ∈ F converging to f in
the uniform topology, with Ln converging to a L in the uniform topology, and φn ∈ W converging to φ in the uniform
topology, and for any choice of an equilibrium state μn of fn for φn, every weak∗ accumulation point of the sequence
(μn)n�1 is an equilibrium state of f for φ. In particular, when the equilibrium state is unique, statistical stability
means that it depends continuously on the data (f,φ).

Theorem D. Suppose every (f,φ) ∈ F × W satisfies (H1), (H2), and (P), with uniform constants (including the
Hölder constants of φ). Assume that the topological pressure Ptop(f,φ) varies continuously in the parameters (f,φ) ∈

F × W . Then every pair (f,φ) ∈ F × W is statistically stable relative to F × W .

The assumption on continuous variation of the topological pressure might hold in great generality in this setting.
See the comment at the end of Section 7.1 for a discussion.

Now let F be a family of local homeomorphisms satisfying (H1) and (H2) with uniform constants. A random
perturbation of f ∈ F is a family θε , 0 < ε � 1 of probability measures in F such that there exists a family Vε(f ),
0 < ε � 1 of neighborhoods of f , depending monotonically on ε and satisfying

supp θε ⊂ Vε(f ) and
⋂

0<ε�1

Vε(f ) = {f }.

Consider the skew product map

F : F N × M → F × M,

(f, x) �→ (
σ(f), f1(x)

)
where f = (f1, f2, . . .) and σ : F N → F N is the shift to the left. For each ε > 0, a measure με on M is stationary
(respectively, ergodic) for the random perturbation if the measure θN

ε × με on F N × M is invariant (respectively,
ergodic) for F .

We assume the random-perturbation to be non-degenerate, meaning that, for every ε > 0, the push-forward of the
measure θε under any map

F � g �→ g(x)

is absolutely continuous with respect to some probability measure ν, with density uniformly (on x) bounded from
above, and its support contains a ball around f (x) with radius uniformly (on x) bounded from below. The first
condition implies that any stationary measure is absolutely continuous with respect to ν. In Theorem 7.3 we shall
use also the second condition to conclude that, assuming ν is expanding and conformal, for any ε > 0 there exists
a finite number of ergodic stationary measures με

1,μ
ε
2, . . . ,μ

ε
l . We say that f is stochastically stable under random

perturbation if every accumulation point, as ε → 0, of stationary measures (με)ε>0 absolutely continuous with respect
to ν is a convex combination of the ergodic equilibrium states μ1,μ2, . . . ,μk of f for φ.

A Jacobian of f with respect to a probability measure η is a measurable function Jηf such that

η
(
f (A)

) =
∫
A

Jηf dη (2.3)

for every measurable set A (in some full measure subset) such that f | A is injective. A Jacobian may fail to exist,
in general, and it is essentially unique when it exists. If f is at most countable-to-one and the measure η is invariant,
then Jacobians do exist (see [40]).

Theorem E. Let (θε)ε be a non-degenerate random perturbation of f ∈ F and ν be the reference measure in The-
orem B. Assume ν admits a Jacobian for every g ∈ F , and the Jacobian varies continuously with g in the uniform
norm. Then f is stochastically stable under the random perturbation (θε)ε .
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The conditions on the Jacobian are automatically satisfied in some interesting cases, for instance when ν is the
Riemannian volume or f is an expanding map. This is usually associated to the potential φ = − log |det(Df )|. Exam-
ple 2.1 describes a situation where this potential satisfies the condition (P).

3. Preliminary results

Here, we give a few preparatory results needed for the proof of the main results. The content of this section may
be omitted in a first reading and the reader may choose to return here only when necessary.

3.1. Combinatorics of orbits

Since the region A is contained in q elements of the partition P we can assume without any loss of generality that
A is contained in the first q elements of P . Given γ ∈ (0,1) and n � 1, let us consider the set I (γ,n) of all itineraries
(i0, . . . , in−1) ∈ {1, . . . , k0}n such that #{0 � j � n − 1: ij � q} > γn. Then let

cγ = lim sup
n→∞

1

n
log #I (γ,n). (3.1)

Lemma 3.1. Given ε > 0 there exists γ0 ∈ (0,1) such that cγ < logq + ε for every γ ∈ (γ0,1).

Proof. It is clear that

#I (γ,n) �
n∑

k=[γ n]

(
n

k

)
pn−kqk �

n∑
k=[γ n]

(
n

k

)
p(1−γ )nqn,

where p = k0 − q denotes the number of elements in P that do not intersect A. Assume that γ > 1/2. A standard
computation using Stirling’s formula implies that

n∑
k=[γ n]

(
n

k

)
� n

2

(
n

[γ n]
)

� C1e
2t (1−γ )n

for some uniform constants C1 > 0 and t > 0. Hence cγ < logq + ε provided that γ is sufficiently close to 1, which
proves the lemma. �

We are in a position to state our precise condition on the constant L in assumption (H1) and the constant c in
the definition of hyperbolic time. By (P), we may find ε0 > 0 small such that supφ − infφ + ε0 < h(f ) − logq . By
Lemma 3.1, we may find γ < 1 such that cγ < logq + ε0/4. Assume L is close enough to 1 and c is close enough to
zero so that

σ−(1−γ )Lγ < e−2c < 1 (3.2)

and

supφ − infφ < h(f ) − logq − ε0 − m logL. (3.3)

3.2. Hyperbolic times

The next lemma, whose proof is based on a lemma due to Pliss (see e.g. [36]), asserts that, for points satisfying a
certain condition of asymptotic expansion, there are infinitely many hyperbolic times: even more, the set of hyperbolic
times has positive density at infinity.

Lemma 3.2. Let x ∈ M and n � 1 be such that

1

n

n∑
j=1

logL
(
f j (x)

)
� −2c < 0.

Then, there is θ > 0, depending only on f and c, and a sequence of hyperbolic times 1 � n1(x) < n2(x) < · · · <

nl(x) � n for x, with l � θn.
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Proof. Analogous to Corollary 3.2 of [3]. �
Corollary 3.3. Let η be a probability measure relative to which

lim sup
n→∞

1

n

n∑
j=1

logL
(
f j (x)

)
� −2c < 0

holds almost everywhere. If A is a positive measure set then

lim inf
n→∞

1

n

n−1∑
j=0

η(A ∩ Hj)

η(A)
� θ

2
.

Proof. By Lemma 3.2, for η-almost every point x ∈ M there is N(x) ∈ N so that n−1 ∑n−1
j=0 χHj

(x) � θ for every

n � N(x). Fix an integer N � 1 and choose Ã ⊂ A so that η(Ã) � η(A)/2 and N(x) � N for every x ∈ Ã. If we
integrate the expression above with respect to η on A we obtain that

1

n

n−1∑
j=0

η(Hj ∩ A) � θη(Ã) � θ

2
η(A)

for every integer n larger than N , completing the proof of the lemma. �
Lemma 3.4. There exists δ = δ(c, f ) > 0 such that, whenever n is a hyperbolic time for a point x, the dynamical ball
Vn(x) = B(x,n, δ) is mapped homeomorphically by f n onto the ball B(f n(x), δ), with

d
(
f n−j (y), f n−j (z)

)
� e− c

2 j d
(
f n(y), f n(z)

)
for every 1 � j � n and every y, z ∈ Vn(x).

Proof. Analogous to the proof of [3, Lemma 2.7], just replacing log‖Df (·)−1‖ by logL(·), and using the definition
of hyperbolic time and the Lipschitz property of the inverse branches of f . �

If n is a hyperbolic time for a point x ∈ M , the neighborhood Vn(x) given by the lemma above is called hyperbolic
pre-ball. As a consequence of the previous lemma we obtain the following property of bounded distortion on pre-balls.

Corollary 3.5. Assume Jηf = eψ for some Hölder continuous function ψ . There exists a constant K0 > 0 so that, if
n is a hyperbolic time for x then

K−1
0 � Jηf

n(y)

Jηf n(z)
� K0

for every y, z ∈ Vn(x).

Proof. Let n be a hyperbolic time for a point x in M and (C,α) be the Hölder constants of ψ . Using Lemma 3.4 it is
not hard to see that

∣∣Snψ(y) − Snψ(z)
∣∣ � C

+∞∑
j=0

e−cα/2j d
(
f n(x), f n(y)

)α � Cδα

+∞∑
j=0

e−cαj/2

for any given y, z ∈ Vn(x). Choosing K0 as the exponential of this last term and noting Jηf
n is the exponential

of Snψ , the result follows immediately. �
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3.3. Non-lacunary sequences

The set H of points with infinitely many hyperbolic times plays a central role in our strategy. We are going to see
that for such a point the sequence of hyperbolic times has some special properties. The first one is described in the
following remark:

Remark 3.6. If n is a hyperbolic time for x then, clearly, n − s is a hyperbolic time for f s(x), for any 1 � s < n. The
following converse is a simple consequence of (2.2): if k < n is a hyperbolic time for x and there exists 1 � s � k

such that n − s is a hyperbolic time for f s(x) then n is a hyperbolic time for x. Thus, if nj (x), j � 1 denotes the
sequence of values of n for which x belongs to Hn then, for every j and l

nj (x) + nl

(
f nj (x)(x)

) = nj+l(x).

We will refer to this property as concatenation of hyperbolic times. Moreover, if n is a hyperbolic time for x and k is
a hyperbolic time for f n(x), the intersection Vn(x)∩f −k(Vk(f

k(x))) coincides with the hyperbolic pre-ball Vn+k(x).

The next lemma, which we borrow from [39], provides an abstract criterium for non-lacunarity at almost every
point of certain sequences of functions.

Lemma 3.7. (See [39, Proposition 3.8].) Let T : M → N and Ti : M → N, i ∈ N be measurable functions and η be a
probability measure such that

T
(
f Ti(x)(x)

)
� Ti+1(x) − Ti(x)

at η-almost every x ∈ M . Assume η is invariant under f and T is integrable for η. Then (Ti(x))i is non-lacunary for
η-almost every x.

The application we have in mind is when Ti = ni is the sequence of hyperbolic times, with T = n1. In this case the
assumption of the lemma follows from the concatenation property in Remark 3.6. Thus, we obtain

Corollary 3.8. If η is an invariant expanding measure and n1(·) is η-integrable then the sequence nj (·) is non-
lacunary at η-almost every point.

3.4. Relative pressure

We recall the notion of topological pressure on non-necessarily compact invariant sets, and quote some useful
properties. In fact, we present two alternative characterizations of the relative pressure, both from a dimensional point
of view. See Chapter 4 §11 and Appendix II of [41] for proofs and more details.

Let M be a compact metric space, f : M → M be a continuous transformation, φ : M → R be a continuous
function, and Λ be an f -invariant set.

Relative pressure using partitions. Given any finite open covering U of Λ, denote by In the space of all n-strings
i = {(U0, . . . ,Un−1): Ui ∈ U } and put n(i) = n. For a given string i set

U = U(i) = {
x ∈ M: f j (x) ∈ Uij , for j = 0, . . . , n(i)

}
to be the cylinder associated to i and n(U) = n to be its depth. Furthermore, for every integer N � 1, let SN U be the
space of all cylinders of depth at least N . Given α ∈ R define

mα(f,φ,Λ, U ,N) = inf
G

{ ∑
U∈G

e−αn(U)+Sn(U)φ(U)

}
,

where the infimum is taken over all families G ⊂ SN U that cover Λ and we write Snφ(U) = supx∈U Snφ(x). Let

mα(f,φ,Λ, U ) = lim mα(f,φ,Λ, U ,N)

N→∞
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(the sequence is monotone increasing) and

PΛ(f,φ, U ) = inf
{
α: mα(f,φ,Λ, U ) = 0

}
.

Definition 3.9. The pressure of (f,φ) relative to Λ is

PΛ(f,φ) = lim
diam(U )→0

PΛ(f,φ, U ).

Theorem 11.1 in [41] states that the limit does exist, that is, given any sequence of coverings Uk of L with diameter
going to zero, PL(f,φ, Uk) converges and the limit does not depend on the choice of the sequence.

Relative pressure using dynamical balls. Fix ε > 0. Set In = M × {n} and I = M × N. For every α ∈ R and N � 1,
define

mα(f,φ,Λ, ε,N) = inf
G

{ ∑
(x,n)∈G

e−αn+Snφ(B(x,n,ε))

}
, (3.4)

where the infimum is taken over all finite or countable families G ⊂ ⋃
n�N In such that the collection of sets

{B(x,n, ε): (x,n) ∈ G} cover Λ. Then let

mα(f,φ,Λ, ε) = lim
N→∞mα(f,φ,Λ, U ,N)

(once more, the sequence is monotone increasing) and

PΛ(f,φ, ε) = inf
{
α: mα(f,φ,Λ, ε) = 0

}
.

According to Remark 1 in [41, p. 74] there is a limit when ε → 0 and it coincides with the relative pressure:

PΛ(f,φ) = lim
ε→0

PΛ(f,φ, ε).

Remark 3.10. Since φ is uniformly continuous, the definition of the relative pressure is not affected if one replaces,
in (3.4), the supremum Snφ(B(x,n, ε)) by the value Snφ(x) at the center point.

The following properties on relative pressure, will be very useful later. See Theorem 11.2 and Theorem A2.1
in [41], and also [54, Theorem 9.10].

Proposition 3.11. Let M be a compact metric space, f : M → M be a continuous transformation, φ : M → R be a
continuous function, and Λ be an f -invariant set. Then

(1) PΛ(f,φ) � sup{hμ(f )+ ∫
φ dμ} where the supremum is over all invariant measures μ such that μ(Λ) = 1. If Λ

is compact, the equality holds.
(2) Ptop(f,φ) = sup{PΛ(f,φ),PM\Λ(f,φ)}.

The next proposition is probably well-known. We include a proof since we could not find one in the literature.

Proposition 3.12. Let M be a compact metric space, f : M → M be a continuous transformation, φ : M → R be a
continuous function, and Λ be an f -invariant set. Then PΛ(f �, S�φ) = �PΛ(f,φ) for every � � 1.

Proof. Fix � � 1. By uniform continuity of f , given any ρ > 0 there exists ε > 0 such that d(x, y) < ε implies
d(f j (x), f j (y)) < ρ for all 0 � j < �. It follows that

Bf (x, �n, ε) ⊂ Bf �(x,n, ε) ⊂ Bf (x, �n,ρ), (3.5)

where Bg(x,n, ε) denotes the dynamical ball for a map g. This is the crucial observation for the proof.
First, we prove the � inequality. Given N � 1 and any family G� ⊂ ⋃

n�N In such that the balls Bf �(x, j, ε) with
(x, j) ∈ G� cover Λ, denote

G = {
(x, j�): (x, j) ∈ G�

}
.
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The second inclusion in (3.5) ensures that the balls Bf (x, k,ρ) with (x, k) ∈ G cover Λ. Clearly,∑
(x,j)∈G�

e−α�j+∑j−1
i=0 S�φ(f i�(x)) =

∑
(x,k)∈G

e−αk+∑k−1
i=0 φ(f i (x)).

Since G� is arbitrary, and recalling Remark 3.10, this proves that

mα�

(
f �, S�φ,Λ, ε,N

)
� mα(f,φ,Λ,ρ,N�).

Therefore, mα�(f
�, S�φ,Λ, ε) � mα(f,φ,Λ,ρ). Then PΛ(f �, S�φ, ε) � �PΛ(f,φ,ρ). Since ε → 0 when ρ → 0, it

follows that PΛ(f �, S�φ) � �PΛ(f,φ).
For the � inequality, we observe that the definition of the relative pressure is not affected if one restricts the infimum

in (3.4) to families G of pairs (x, k) such that k is always a multiple of �. More precisely, let m�
α(f,φ,Λ, ε,N) be the

infimum over this subclass of families, and let m�
α(f,φ,Λ, ε) be its limit as N → ∞.

Lemma 3.13. We have m�
α(f,φ,Λ, ε) � mα−ρ(f,φ,Λ, ε) for every ρ > 0.

Proof. We only have to show that, given any ρ > 0,

m�
α(f,φ,Λ, ε,N) � mα−ρ(f,φ,Λ, ε,N) (3.6)

for every large N . Let ρ be fixed and N be large enough so that Nρ > �(α + sup |φ|). Given any G ⊂ ⋃
n�N In

such that the balls Bf (x, k, ε) with (x, k) ∈ G cover Λ, define G′ to be the family of all (x, k′), k′ = �[k/�] such that
(x, k) ∈ G . Notice that

−αk′ + Sk′φ(x) � −αk + α� + Skφ(x) + � sup |φ| � (−α + ρ)k + Skφ(x)

given that k � N . The claim follows immediately. �
Let G′ be any family of pairs (x, k) with k � N� and such that every k is a multiple of �. Define G� to be the family

of pairs (x, j) such that (x, j�) ∈ G′. The first inclusion in (3.5) ensures that if the balls Bf (x, k, ε) with (x, k) ∈ G′
cover Λ then so do the balls Bf �(x, j, ε) with (x, j) ∈ G�. Clearly,∑

(x,k)∈G′
e−αk+∑k−1

i=0 φ(f i (x)) =
∑

(x,j)∈G�

e−α�j+∑j−1
i=0 S�φ(f i�(x)).

Since G� is arbitrary, and recalling Remark 3.10, this proves that

m�
α(f,φ,Λ, ε,N�) � mα�

(
f �, S�φ,Λ, ε,N

)
.

Taking the limit when N → ∞ and using Lemma 3.13,

mα−ρ(f,φ,Λ, ε) � m�
α(f,φ,Λ, ε) � mα�

(
f �, S�φ,Λ, ε

)
.

It follows that �(PΛ(f,φ, ε) + ρ) � PΛ(f �, S�φ, ε). Since ρ is arbitrary, we conclude that �PΛ(f,φ, ε) �
PΛ(f �, S�φ, ε) and so PΛ(f �, S�φ) � �PΛ(f,φ). �

The next lemma will be used later to reduce some estimates for the relative pressure to the case when φ ≡ 0. Denote
hΛ(f ) = PΛ(f,0) for any invariant set Λ.

Lemma 3.14. PΛ(f,φ) � hΛ(f ) + supφ.

Proof. Let U be any open covering of M and N � 1. By definition,

mα(f,φ,Λ, U ,N) = inf
G

{ ∑
U∈G

e−αn(U)+Sn(U)φ(U)

}
,

where the infimum is taken over all families G ⊂ SN U that cover Λ. Therefore,

mα(f,φ,Λ, U ,N) � inf
G

{ ∑
U∈,G

e(−α+supφ)n(U)

}
= mα−supφ(f,0,Λ, U ,N).

Since N and U are arbitrary, this gives that PΛ(f,φ) � hΛ(f ) + supφ, as we wanted to prove. �
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3.5. Natural extension and local unstable leaves

Here we present the natural extension associated to a non-invertible transformation and recall some results on the
existence of local unstable leaves in the context of non-uniform hyperbolicity.

Let (M, B, η) be a probability space and let f denote a measurable non-invertible transformation. Consider the
space

M̂ = {
(. . . , x2, x1, x0) ∈ MN: f (xi+1) = xi, ∀i � 0

}
,

endowed with the metric d̂(x,y) = ∑
i�0 2−i d(xi, yi), x,y ∈ M̂ and with the sigma-algebra B̂ that we now describe.

Let πi : M̂ → M denote the projection in the ith coordinate. Note also that f −i (B) ⊂ B for every i � 0, because f i

is a measurable transformation. Let B̂0 be the smallest sigma-algebra that contain the elements π−1
i (f −i (B)). The

measure η̂ defined on the algebra
⋃∞

i=0 π−1
i (f −i B) by

η̂(Ei) = η
(
πi(Ei)

)
for every Ei ∈ π−1

i

(
f −i (B)

)
,

admits an extension to the sigma-algebra B̂0. Let B̂ denote the completion of B̂0 with respect to η̂. The natural
extension of f is the transformation

f̂ : M̂ → M̂, f̂ (. . . , x2, x1, x0) = (
. . . , x2, x1, x0, f (x0)

)
,

on the probability space (M̂, B̂, η̂). The measure η̂ is the unique f̂ -invariant probability measure such that π∗η̂ = η.
Furthermore, η̂ is ergodic if and only if η is ergodic, and its entropy hη̂(f̂ ) coincides with hη(f ). We refer the
reader to [46] for more details and proofs. For simplicity reasons, when no confusion is possible we denote by π the
projection in the zeroth coordinate and by x0 the point π(x̂).

Given a local homeomorphism f as above, the natural extension f̂ −1 is Lipschitz continuous: every x̂ admits
a neighborhood Ux̂ such that

d
(
f̂ −1(ŷ), f̂ −1(ẑ)

)
� L̂(x̂) d(ŷ, ẑ), ∀ŷ, ẑ ∈ f̂ (Ux̂),

where L̂ = L ◦ π . In the presence of asymptotic expanding behavior it is possible to prove the existence of local
unstable manifolds passing through almost every point and varying measurably. In fact, since L is continuous bounded
away from zero and infinity, given an f̂ -invariant probability measure η̂, Birkhoff’s ergodic theorem asserts that the
limits

lim
n→∞

1

n

n−1∑
j=0

log L̂
(
f̂ ±j x̂

)

exist and coincide η̂-almost everywhere. Given λ > 0, denote by B̂λ the set of points such that the previous limit is
well defined and smaller than −λ.

Proposition 3.15. Assume that η is an f -invariant probability measure such that

lim sup
n→∞

1

n

n−1∑
j=0

logL
(
f j (x)

)
< −λ < 0

almost everywhere. Given ε > 0 small, there are measurable functions δε and γ from B̂λ to R+ and, for every x̂ ∈ B̂λ,
there exists an embedded topological disk Wu

loc(x̂) that varies measurably with the point x̂ and

(1) For every y0 ∈ Wu
loc(x̂) there is a unique ŷ ∈ M̂ such that π(ŷ) = y0 and

d(x−n, y−n) � γ (x̂)e−(λ−ε)n, ∀n � 0;
(2) If a point ẑ ∈ M̂ satisfies d(x, z) � δε(x̂)/γ (f̂ −1(x̂)) and

d(x−n, z−n) � δε(x̂)e−(λ−ε)n, ∀n � 0

then z0 belongs to Wu (x̂);
loc
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(3) If Ŵu
loc(x̂) is the set of points ŷ ∈ M̂ given by (2) above then it holds that

d(y−n, z−n) � γ (x̂)e−(λ−ε)nd(y, z)

for every ŷ, ẑ ∈ Ŵu
loc(x̂) and every n � 0.

Proof. Let ε > 0 be small enough such that the restriction of f to any ball of radius ε is injective. Given x̂ ∈ B̂λ,
consider the local unstable set

Wu
loc(x̂) = {

y ∈ M: ∃ŷ ∈ M̂, π(ŷ) = y, d(y−n, x−n) � ε, ∀n � 0
}
.

By construction Wu
loc(x̂) is non-empty, since it contains x. Moreover, define Ŵu

loc(x̂) as the set of points ŷ considered

in the definition of Wu
loc(x̂). It is clear that f̂ −1(Ŵ u

loc(x̂)) ⊂ Ŵu
ε (f̂ −1(x̂)). We claim that Wu

loc(x̂) contains an open
neighborhood of x in M and that there exists a constant γ (x̂) > 0 such that

d(y−n, z−n) � γ (x̂)e−(λ−ε)n, ∀n � 1,

for every ŷ, ẑ ∈ Ŵu
loc(x̂). By hypothesis, there exists N = Nx̂ � 1 such that

n−1∏
j=0

L̂
(
f̂ −j (x̂)

)
� e−λn, ∀n � N.

Take 0 < δε(x̂) < ε such that f N is invertible in a neighborhood of x−N and that B(x, δε(x̂)) ⊂ f N(B(x−N, ε)).
Moreover, by uniform continuity, there exists 0 < ε1 < ε such that L(z) � L(z′)eε for every z′ ∈ B(z, ε1). So, given
y, z ∈ B(x, δε(x̂)) there are ŷ, ẑ ∈ M̂ such that d(y−n, z−n) � ε for every n � 0, since

d(y−n, z−n) � e−(λ−ε)nd(y, z)

for every n � N . This shows that Wu
ε (x̂) contains the ball B(x, δε(x̂)) of radius δε(x̂) around x in M and that

d(y−n, z−n) � γ (x̂)e−(λ−ε)nd(y, z)

for every ŷ, ẑ ∈ Wu
ε (x̂) and n � 0, where γ (x̂) = LNx̂ . Our choice on ε guarantees that any y ∈ Wu

ε (x̂) admits a unique
ŷ ∈ Ŵu

ε (x̂) such that π(ŷ) = y. This shows that the projection πx̂ : Ŵu
loc(x̂) → Wu

ε (x̂) is an homeomorphism between
topological disks and completes the proof of items (1) and (3) in the proposition. On the other hand, if ẑ satisfies the
requirements in (2) then clearly d(x−n, z−n) � ε for all n � 00, which imply that z ∈ Wu

loc(x̂). Since the measurability
of γ and δε follows from the one of Nx̂ , the proof of the proposition in now complete. �

We shall omit the dependence of Wu
loc(x̂) on λ and ε for notational simplicity. Since local unstable leaves vary

measurably with the point, there are compact sets of arbitrary large measure, referred as hyperbolic blocks, restricted
to which the local unstable leaves passing through those points vary continuously. More precisely,

Corollary 3.16. There are countably many compact sets (Λ̂i)i∈N whose union is a η̂-full measure set and such that
the following holds: for every i � 1 there are positive numbers εi � 1, λi , ri , γi and Ri such that for every x̂ ∈ Λ̂i

there exists an embedded submanifold Wu
loc(x̂) in M of dimension m, and

(1) If y0 ∈ Wu
loc(x̂) then there is a unique ŷ ∈ M̂ such that for every n � 1

d(x−n, y−n) � rie
−εin and d(x−n, y−n) � γie

−λin;
(2) For every 0 < r � ri the set Wu

loc(ŷ) ∩ B(x0, r) is connected and the map

B(x̂, εir) ∩ Λ̂i � ŷ �→ Wu
loc(ŷ) ∩ B(x0, r)

is continuous (in the Hausdorff topology);
(3) If ŷ and ẑ belong to B(x̂, εir)∩ Λ̂i then either Wu

loc(ŷ)∩B(x0, r) and Wu
loc(ẑ)∩B(x0, r) coincide or are disjoint;

in the later case, if ŷ ∈ Ŵu(ẑ) then d(y0, z0) > 2ri ;
(4) If ŷ ∈ Λ̂i ∩ B(x̂, εir) then Wu

loc(ŷ) contains the ball of radius Ri around Wu
loc(ŷ) ∩ B(x0, r).
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4. Conformal measures

The Ruelle–Perron–Frobenius transfer operator Lφ : C(M) → C(M) associated to f : M → M and φ : M → R

is the linear operator defined on the space C(M) of continuous functions g : M → R by

Lφg(x) =
∑

f (y)=x

eφ(y)g(y).

Notice that Lφg is indeed continuous if g is continuous, because f is a local homeomorphism. It is also easy to see
that Lφ is a bounded operator, relative to the norm of uniform convergence in C(M):

‖Lφ‖ � max
x∈M

#f −1(x)esup |φ|.

The dual operator L∗
φ acts on the Borel measures of M by Consider the dual operator L∗

φ : M(M) → M(M) acting
on the space M(M) of Borel measures in M by∫

g d
(

L∗
φη

) =
∫

(Lφg)dη

for every g ∈ C(M). Let λ0 = r(Lφ) be the spectral radius of Lφ . In this section we prove the following result:

Theorem 4.1. There exists k � 1, r(Lφ) = λ0 � λ1 � · · · � λk � eh(f )+infφ real numbers and expanding conformal
probability measures ν0, ν1, . . . , νk such that

L∗
φνi = λiνi, ∀0 � i � k, and

k⋃
i=0

supp(νi) = H.

Moreover, each νi is a non-lacunary Gibbs measure and has a Jacobian with respect to f given by Jνi
f = λie

−φ . If
f is topologically mixing then ν0 is an expanding conformal measure such that suppν0 = H = M .

4.1. Eigenmeasures of the transfer operator

The following lemma asserts that any positive eigenmeasure for the dual of the Ruelle–Perron–Fröbenius operator
is a conformal measure. Its proof is quite standard: see, for instance, [39, Lemma 4.1].

Lemma 4.2. Suppose ν is a Borel probability such that L∗
φν = λν for some λ > 0. Then the Jacobian of ν with respect

to f exists and is given by Jνf = λe−φ .

The proof of the next lemma is analogous to [39, Lemma 4.2].

Lemma 4.3. The spectral radius λ0 of the operator Lφ is at least eh(f )+infφ and it is an eigenvalue for the dual
operator L∗

φ .

Proof. Observe that, for every positive integer n and every x ∈ M ,

Ln
φ1(x) =

∑
f n(y)=x

eSnφ(y) � degx

(
f n

)
en infφ.

So, the spectral radius is at least eh(f )+infφ , as claimed in the first part of the lemma. The second part follows from
general results in functional analysis. Let C+ be the open convex cone of positive continuous functions on M and
consider the linear subspace

N = {
Lφg − λ0g: g ∈ C(M)

}
.

Notice that these sets are disjoint. Indeed, assuming otherwise then there exists some continuous function g ∈ C(M)

such that Lφg −λ0g is a strictly positive continuous function. By compactness and continuity, there is ε > 0 such that
Lφg � (λ0 + ε)g. Since Lφ is a positive operator, it is clear that

Ln
φg � (λ0 + ε)ng for every n � 1.
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This shows that the spectral radius of Lφ is at least λ0 + ε, contradicting the definition of λ0. This contradiction
proves that C+ ∩ N = ∅, as we claimed. Then, as a consequence of geometric Hahn–Banach theorem there exists
some continuous linear functional ν0 : C(M) → R such that∫

g dν0 > 0 for every g ∈ C+ and
∫

g dν0 = 0 for every g ∈ N.

The first property means that ν0 is a measure and so, up to normalization, we may suppose it is a probability. The
second property means that∫

g d
(

L∗
φν0

) =
∫

Lφg dν0 = λ0

∫
g dν0 for every g ∈ C(M),

that is, L∗
φν = λ0ν0. Thus, λ0 is indeed an eigenvalue for the dual operator L∗

φ . �
Throughout, let λ denote a fixed eigenvalue of L∗

φ larger than eh(f )+infφ , let ν be any eigenmeasure of L∗
φ associated

to λ and set P = logλ. The only property of λ that we shall use is that λ > elogq+supφ+ε0 . From Lemma 4.2 we get
that

Jνf (x) = λ0e
−φ(x) > elogq+ε0 > q for all x ∈ M . (4.1)

This property will allow us to prove that ν-almost every point spends at most a fraction γ of time inside the domain
A where f may fail to be expanding. As we will see later, in Lemma 6.5, logλ = Ptop(f,φ). This determines com-
pletely the spectral radius of Lφ as the unique eigenvalue of L∗

φ larger than the lower bound above. Consequently

all the eigenvalues λi given by Theorem 4.1 are equal and coincide with λ0 = r(Lφ) and 1
k

∑k
j=0 νi is an expanding

conformal measure whose support coincides with the closure of the set H . The later is the conformal measure referred
at Theorem B.

4.2. Expanding structure

Here we prove that any eigenmeasure ν as above is expanding and has integrable first hyperbolic time. Given n � 1,
let B(n) denote the set of points x ∈ M whose frequency of visits to A up to time n is at least γ , that is,

B(n) =
{
x ∈ M:

1

n
#

{
0 � j � n − 1: f j (x) ∈ A

}
� γ

}
.

Proposition 4.4. The measure ν(B(n)) decreases exponentially fast as n goes to infinity. Consequently, ν-almost every
point belongs to B(n) for at most finitely many values of n.

Proof. The strategy is to cover B(n) by elements of the covering P (n) = ∨n−1
j=0 f −j P which, for convenience, will be

referred to as cylinders. Then, the estimate relies on an upper bound for the measure of each cylinder, together with
an upper bound on the number of cylinders corresponding to large frequency of visits to A.

Since f n is injective on every P ∈ P (n) then we may use (4.1) to conclude that

1 � ν
(
f n(P )

) =
∫
P

Jνf
n dν =

∫
P

n−1∏
j=0

(
Jνf ◦ f j

)
dν � e(logq+ε0)nν(P ).

This proves that ν(P ) � e−(logq+ε0)n for every P ∈ P n. Since B(n) is contained in the union of cylinders P ∈ P n

associated to itineraries in I (γ,n), we deduce from our choice of γ after Lemma 3.1 that

ν
(
B(n)

)
� #I (γ,n)e−(logq+ε0)n � e−ε0n/2,

for every large n. This proves the first statement in the lemma. The second one is a direct consequence, using the
Borel–Cantelli lemma. �
Corollary 4.5. The measure ν is expanding and satisfies

∫
n1 dν < ∞.
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Proof. By Proposition 4.4, almost every point x is outside B(n) for all but finitely many values of n. Then, in view
of our choice (3.2),

n−1∑
j=0

logL
(
f j (x)

)
� γ logL + (1 − γ ) logσ−1 � −2c

if n is large enough. In view of Lemma 3.2, this proves that ν-almost every point has infinitely many hyperbolic times
(positive density at infinity). In other words, ν is expanding. Moreover, using Proposition 4.4 once more,∫

n1 dν =
∞∑

n=0

ν
({

x: n1(x) > n
})

� 1 +
∞∑

n=1

ν
(
B(n)

)
< ∞,

as we claimed. �
4.3. Gibbs property

Now we prove that ν satisfies a Gibbs property at hyperbolic times. Later we shall see that hyperbolic times form
a non-lacunary sequence, almost everywhere, and then it will follow that ν is a non-lacunary Gibbs measure.

Lemma 4.6. The support of ν is an f -invariant set contained in the closure of H . For any ρ > 0 there exists ξ > 0
such that ν(B(x,ρ)) � ξ for every x ∈ supp(ν).

Proof. Since ν is expanding, it is clear supp(ν) ⊂ H . Let x ∈ M . Since f is a local homeomorphism, the relation
V = f (W) is a one-to-one correspondence between small neighborhoods W of x and small neighborhood V of f (x).
Moreover,

ν(V ) =
∫
W

Jνf dν.

is positive if and only if ν(W) > 0, because the Jacobian is bounded away from zero and infinity. This proves that
the support is invariant by f . The second claim in the lemma is standard. Assume, by contradiction, that there exists
ρ > 0 and a sequence (xn)n�1 in supp(ν) such that ν(B(xn,ρ)) → 0 as n → ∞. Since supp(ν) is compact set, the
sequence must accumulate at some point z ∈ supp(ν). Then

ν
(
B(z,ρ)

)
� lim inf

n→∞ ν
(
B(xn,ρ)

) = 0,

which contradicts z ∈ supp(ν). This completes the proof of the lemma. �
Lemma 4.7. There exists K > 0 such that, if n is a hyperbolic time for x ∈ supp(ν) then

K−1 � ν(B(x,n, δ))

e−Pn+Snφ(y)
� K,

for every y ∈ B(x,n, δ).

Proof. Since f n | B(x,n, δ) is injective, we get from the previous lemma that

ξ(δ) � ν
(
B

(
f n(x), δ

)) =
∫

B(x,n,δ)

Jνf
n dν � 1

for every x ∈ supp(ν). Then, the bounded distortion property in Corollary 3.5 applied to the Hölder continuous func-
tion Jνf = λe−φ gives that

K−1
0 ξ(δ) � ν

(
B(x,n, δ)

)
λne−Snφ(y) � K0

for every y ∈ B(x,n, δ). Recalling that P = logλ, this gives the claim with K = K0ξ(δ)−1. �
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Remark 4.8. The same proof gives a somewhat stronger result: for ν-almost every x and any 0 < ε � δ, there exists
K(ε) > 0 such that

K−1(ε) � ν(B(x,n, ε))

e−Pn+Snφ(x)
� K(ε)

if n is a hyperbolic time for x. It suffices to take K(ε) = K0ξ(ε)−1.

We proceed with the proof of Theorem 4.1. We have proven that any eigenmeasure ν for Lφ associated to an
eigenvalue λ � eh(f )+infφ is necessarily expanding, satisfies the Gibbs property at hyperbolic times and has a Jacobian
Jνf = λe−φ . Furthermore, Lemma 4.3 guarantees that the spectral radius λ0 is an eigenvalue of the operator Lφ . Let
ν0 denote any such eigenmeasure. If f is topologically mixing then suppν0 = H = M . Indeed, given an open set
U there exists N � 1 such that f N(U) = M . Since Jν0f is bounded from zero and infinity then clearly ν0(U) > 0,
which proves our claim. Hence, to prove Theorem 4.1 we are left to show that there are finitely many eigenmeasures
of L∗

φ associated to eigenvalues greater or equal to eh(f )+infφ whose union of their supports coincide with H . Given
an f -invariant compact set Λ we denote by LΛ : C(Λ) → C(Λ) the restriction of the operator Lφ to the space of
continuous functions C(Λ).

Lemma 4.9. There are finitely many λ0 � λ1 � · · · � λk � eh(f )+infφ and probability measures ν0, ν1, . . . , νk such
that L∗

φνi = λiνi , for every 0 � i � k, and that the union of their supports coincides with the closure of the set H .

Proof. We obtain the desired finite sequence of conformal measures using the ideas involved in the proof of
Lemma 4.3 recursively. Indeed, Lemma 4.3, Corollary 4.5 and Lemma 4.7 assert that there exists an expanding con-
formal measure ν0 such that L∗

φν0 = λ0ν0 and satisfies the Gibbs property at hyperbolic times. Clearly supp(ν0) is an

invariant set contained in H .
If supp(ν0) = H then we are done. Otherwise we proceed as follows. As we shall see in Lemma 5.3, the interior of

the support of any expanding conformal measure ν is non-empty and contains almost every point in a ball of radius δ

(depending only on f and c). Consider the non-empty compact invariant set K1 = M \ interior(supp(ν0)) and set
λ1 = r(LK1) � λ0. It is easy to check that λ1 � eh(f )+infφ . Then we may argue as in the proof of Lemma 4.3: the
cone of strictly positive functions in K1 is disjoint from the subspace {Lφg − λg: g ∈ C(K1)} and so there exists a
probability measure ν1 such that L∗

φν1 = λ1ν1 whose support supp(ν1) is contained in K1. Since λ1 � eh(f )+infφ then
ν1 is also expanding and its support must also contain a ball of radius δ in its interior.

Since M is compact this procedure will finish after a finite number of times. Hence there are finitely many compact
sets K0, . . . ,Kk and expanding measures ν0, . . . , νk such that supp(νi) ⊂ Ki and H = ⋃

i supp(νi). This completes
the proof of the lemma. �

For any conformal measure νi as above, we prove in Proposition 5.1 that there are finitely many invariant ergodic
measures that are absolutely continuous with respect to νi , that their densities are bounded from above and that
their basins cover νi -almost every point. Hence, the non-lacunarity of the sequence of hyperbolic times will be a
consequence of Lemma 3.7. So, up to the proof of Proposition 5.1, this shows that each νi is a non-lacunary Gibbs
measure and completes the proof of Theorem 4.1.

5. Absolutely continuous invariant measures

In this section we analyze carefully the Cesaro averages

νn = 1

n

n−1∑
j=0

f
j∗ ν,

and prove that every weak∗ accumulation point is absolutely continuous with respect to ν. It is well known, and easy
to check, that the accumulation points are invariant probabilities. In the topologically mixing setting we also prove
that there is a unique absolutely continuous invariant measure and that it satisfies the non-lacunar Gibbs property. The
precise statement is
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Proposition 5.1. There are finitely many invariant, ergodic probability measures μ1,μ2, . . . ,μk that are absolutely
continuous with respect to ν and such any absolutely continuous invariant measure is a convex linear combination of
μ1,μ2, . . . ,μk . In addition, the measures μi are expanding and the densities dμi/dν are bounded away from infinity.
Moreover, the union of the basins B(μi) cover ν-almost every point in M . If f is topologically mixing then there is a
unique absolutely continuous invariant measure and it is a non-lacunary Gibbs measure.

5.1. Existence and finitude

First we prove that every accumulation point of (νn)n�1 is absolutely continuous invariant measure with bounded
density. For every n ∈ N it holds that

Hc
n ⊂ {

n1(·) > n
} ∪

[
n−1⋃
k=0

Hk ∩ f −k
({

n1(·) > n − k
})]

.

In particular, we can use the inclusion above to write

νn � μn + 1

n

n−1∑
j=0

ηj ,

where

μn = 1

n

n−1∑
j=0

f
j∗ (ν | Hj) and ηj =

∞∑
l=0

f l∗
(
f

j∗ (ν | Hj)
∣∣ {n1 > l}).

Lemma 5.2. There exists C2 > 0 such that for every positive integer n the measures f n∗ (ν | Hn), μn and νn are
absolutely continuous with respect to ν with densities bounded from above by C2. Moreover, the same holds for every
weak∗ accumulation point μ of (νn)n�1.

Proof. Let A be any measurable set of small diameter, say diam(A) < δ/2, and such that ν(A) > 0. First we claim
that there is C2 > 0 such that

f n∗ (ν | Hn)(A) � C2ν(A), ∀n � 1.

Observe that either f n∗ (ν | Hn)(A) = 0, or A is contained in a ball B = B(f n(x), δ) of radius δ for some x ∈ Hn. In
the first case we are done. In the later situation we compute

f n∗ (ν | Hn)(A) = ν
(
f −n(A) ∩ Hn

) =
∑

i

ν
(
f −n

i (A ∩ B)
)
,

where the sum is over all hyperbolic inverse branches f −n
i : B → Vi for f n. Recall that the ν-measure of any positive

measure ball of radius δ is at least ξ(δ) > 0 by Lemma 4.6. Thus, by bounded distortion

f n∗ (ν | Hn)(A) � K0

∑
i

ν(A)

ν(B)
ν(Vi) � K0ξ(δ)−1ν(A),

which proves our claim with C2 = K0ξ(δ)−1. It follows from the arbitrariness of A that both f n∗ (ν | Hn) and μn are
absolutely continuous with respect to ν with density bounded from above by C2.

Similar estimates on the density of ηn hold using that {n1 > n} ⊂ B(n), there are at most ecγ n cylinders in B(n),
and that Jνf

n > e(logq+ε0)n on each of one of them. Indeed,((
f l∗ν

) ∣∣ {n1 > l})(A) �
∑

P∈P (l)

P∩B(l) �=∅

ν
(
f −l(A) ∩ P

)
� #B(l)e−(logq+ε0)lν(A)

for every l � 1 and every measurable set A. Using that df n∗ (ν | Hn)/dν � K0ξ(δ)−1 and summing up the previous
terms one concludes that

ηj (A) � K0ξ(δ)−1
∞∑

e− ε0
4 lν(A), ∀j � 1.
l=0
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This shows that (up to replace C2 by a larger constant) the measures νn are also absolutely continuous with respect to
ν and that dνn/dν is bounded from above by C2. The second assertion in the lemma is an immediate consequence by
weak∗ convergence. �

The following lemma, whose proof explores the generating property of hyperbolic pre-balls, plays a key role in
proving finitude of equilibrium states.

Lemma 5.3. If G is an f -invariant set such that ν(G) > 0 then there is a disk � of radius δ/4 so that ν(� \ G) = 0.

Proof. In the case that ν coincides with the Lebesgue measure this corresponds to [3, Lemma 5.6]. Since the argument
will be used later on, we give a brief sketch of the proof.

Let ε > 0 be small. Take a compact K and an open set O such that K ⊂ G ∩ H ⊂ O and ν(O \ K) < εν(K). Set
n0 ∈ N such that B(x,n, δ) ⊂ O for any x ∈ K ∩ Hn. If n(x) denotes the first hyperbolic time of x larger than n0 then

K ⊂
⋃
x∈K

B
(
x,n(x), δ/4

) ⊂ O.

Set V (x) = B(x,n(x), δ) and W(x) = B(x,n(x), δ/4). Since K is compact it is covered by finite open sets (W(x))x∈X

for some family X = {x1, . . . , xk}. Now we proceed recursively and define

n1 = inf
{
n(x): x ∈ X

}
and X1 = {

x ∈ X: n(x) = n1
}

and, assuming that ni and Xi are well defined for 1 � i � m − 1, set

nm = inf
{
n(x): x ∈ X \ (X1 ∪ · · · ∪ Xm−1)

}
and Xm = {

x ∈ X: n(x) = nm

}
up to some finite positive integer s. Let X̃1 ⊂ X1 be a maximal family of points with pairwise disjoint W(·) elements.
Moreover, given X̃i ⊂ Xi for 1 � i � m − 1 let X̃m ⊂ Xm maximal such that every W(x), x ∈ X̃m, does not intersect
any element W(y) for some y ∈ X̃1 ∪ · · · ∪ X̃m. If X̃ = ⋃{X̃i : 1 � i � s} then the dynamical balls W(x), x ∈ X̃, are
pairwise disjoint (by construction). It is also easy to see that for every y ∈ X there exists x ∈ X̃ such that W(y) ⊂ V (x).
Hence

ν

( ⋃
x∈X̃

W(x) \ K

)
� ν(O \ K) < εν(K)

and, by the bounded distortion property,

ν

( ⋃
x∈X̃

W(x)

)
� τν

( ⋃
x∈X̃

V (x)

)

for some τ > 0. We conclude immediately that there exists x ∈ X̃ such that

ν(W(x) \ G)

ν(W(x))
� ν(W(x) \ K)

ν(W(x))
< τ−1ε.

Using the bounded distortion of f n restricted to the dynamical ball W(x) once more it follows that

ν
(
B \ f n(G)

)
< τ−1K0ε,

where B is a ball of radius δ/4 around f n(x). Since ε was arbitrary and G is invariant then there exists a sequence
�n of balls of radius δ/4 such that ν(�n \ G) → 0 as n → ∞. By compactness, the sequence (�n)n accumulate on a
ball � that satisfies the requirements of the lemma. �

We are now in a position to show that there are finitely many distinct ergodic measures μ1,μ2, . . . ,μk absolutely
continuous with respect to ν. Indeed, let μ be any invariant measure that is absolutely continuous. Then, either μ

is ergodic or there are disjoint invariant sets I1 and I2 of positive ν-measure such that μ(·) = a1μ(· ∩ I1)/μ(I1) +
a2μ(· ∩ I2)/μ(I2), where ai = μ(Ii). In the later case it is also clear that each of the measures involved in the sum
is absolutely continuous with respect to ν. Repeating the process one obtains that μ can be written as linear convex
combination of ergodic absolutely continuous invariant measures μ1,μ2, . . . ,μk . Indeed, since M is compact the
previous lemma implies that this process will stop after a finite number of steps (depending only on δ) with each μi

ergodic. It is also clear from the construction that each μi is expanding and that their basins cover almost every point.
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5.2. Invariant non-lacunary Gibbs measure

Through the rest of this section assume that f is topologically mixing. Here we prove that there is a unique invariant
measure μ absolutely continuous with respect to ν and that it is a non-lacunary Gibbs measure. This will complete the
proof of Proposition 5.1. We begin with a couple of auxiliary lemmas. Let θ > 0 and δ > 0 be given by Lemmas 3.2
and 3.4.

Lemma 5.4. There exists a constant τ0 > 0, and for any n there is a finite subset Ĥn of Hn such that the dynamical
balls B(x,n, δ/4), x ∈ Ĥn, are pairwise disjoint and their union Wn satisfies ν(Wn) � τ0ν(Hn).

Proof. This lemma is a direct consequence of Lemma 3.4 in [3]. Indeed, if ω = f n∗ (ν | ⋃{B(n,x, δ/4): x ∈ Hn}),
Ω = f n(Hn) = M and r = δ in that lemma then there exists a finite set I ⊂ f n(Hn) such that the pairwise disjoint
union �n of balls of radius δ/4 around points in I satisfies

ω
(
�n ∩ f n(Hn)

)
� τ0ω

(
f n(Hn)

)
.

Set Ĥn = Hn ∩ f −n(I ). As the restriction of f n to any dynamical ball B(x,n, δ/4), x ∈ Ĥn is a bijection it is easy
to see that these dynamical balls are pairwise disjoint. Furthermore, their union Wn satisfies ν(Wn) � τ0ν(Hn). This
completes the proof of the lemma. �

In the remaining of the section, let μ be an arbitrary accumulation point of the sequence (νn)n and (nk)k be a
subsequence of the integers such that

μ = lim
k→∞νnk

.

In the next lemmas we prove that the density dμ/dν is bounded away from zero in some small disk and use this to
deduce the uniqueness of the equilibrium state and the non-lacunar Gibbs property.

Lemma 5.5. There exists C1 > 0 and a small disk D(x) around a point x in M such that the density dμ/dν in the
disk D(x) is bounded from below by C1.

Proof. Given a small ε > 0 we construct a disk D(x) of radius smaller than ε where the assertion above holds. Let
Wj and Ĥj be given by the previous lemma and let Wj,ε ⊂ Wj denote the preimages by f j of the disks �j,ε of radius
δ/4 − ε around points in f j (Ĥj ). Lemma 3.5 implies that

ν(Wj,ε)

ν(Wj )
� K−1

0
ν(�j,ε)

ν(�j )
,

where the right-hand side is larger than some uniform positive constant τ1 that depends only on the radius of the
disks �j,ε (recall Lemma 4.6). Observe also that Corollary 3.3 with A = M implies that

1

n

n−1∑
j=0

ν(Hj ) � θ/2

for every large n. This shows that there is a positive constant τ2 such that the measures νε
n satisfy νε

n(M) � τ2 for
every large n, where

νε
n = 1

n

n−1∑
j=0

f
j∗ (ν | Wj,ε).

Thus, there exists a subsequence of (νε
nk

)k that converge to some measure νε∞ and

supp
(
νε∞

) ⊂
⋂(⋃

�j,ε

)
.

n�1 j�n
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Choose x ∈ supp(νε∞) and a disk D(x) of radius smaller than ε around x such that νε∞(∂D(x)) = 0. By construction,
D(x) is contained in every disk of �j such that the corresponding disk of �j,ε intersects D(x). Let �̃j denote the
pairwise disjoint union of disks in �j that contain D(x) and W̃j be defined accordingly as the preimages of �̃j . It is
clear that νn � ν0

n , where

ν0
n = 1

n

n−1∑
j=0

f
j∗ (ν | W̃j ).

Moreover, since df
j∗ (ν | W̃j )/dν is Hölder continuous, the bounded distortion at Lemma 3.5 implies that it is bounded

from below by its L1 norm up to the multiplicative constant K−1
0 . So,

dν0
n

dν
(y) = 1

n

n−1∑
j=0

df
j∗ (ν | W̃j )

dν
(y) = 1

n

n−1∑
j=0

[ ∑
f j (z)=y

z∈W̃j

λ−j eSj φ(z)

]
� K−1

0
1

n

n−1∑
j=0

ν(W̃j )

for every y ∈ D(x). Furthermore, by construction the set Wj,ε ∩ f −j (D(x)) is contained in W̃j . This guarantees that

dν0
n

dν
(y) � K−1

0
1

n

n−1∑
j=0

ν(W̃j ) � K−1
0 νε

n

(
D(x)

)
� K−1

0
νε∞(D(x))

2

for every large n � 1 in the subsequence of (nk)k chosen above. By weak∗ convergence it holds that dμ/dν � C1 in
the disk D(x). �

We finish this section by proving the uniqueness of the equilibrium state, which completes the proof of Proposi-
tion 5.1.

Lemma 5.6. If f is topologically mixing there is a unique invariant measure μ absolutely continuous with respect
to ν. Moreover, the density dμ/dν is bounded away from zero and infinity and the sequences of hyperbolic times
{nj (x)} are non-lacunary μ-almost everywhere. Furthermore, μ is a non-lacunary Gibbs measure.

Proof. We have proven that any accumulation point μ of (νn)n is absolutely continuous with respect to ν and that
the density h = dμ/dν is bounded from above by C2 and is bounded from below by C1 on some disk D(x). Since
f is topologically mixing there is N � 1 be such that f N(D(x)) = M , that is, any point has some preimage by f N

in D(x). It is not difficult to check that h ∈ L1(ν) satisfies Lφh = λh. Then

h(y) = λ−N
∑

f N (z)=y

eSNφ(z)h(z) � C1λ
−NeN infφ

for almost every y ∈ M , which allows to deduce that the measures μ and ν are equivalent.
We claim that μ is ergodic. Indeed, if G is any f -invariant set such that μ(G) > 0 then it follows from Lemma 5.3

that there is a disk � of radius δ/4 such that ν(� \ G) = 0. Furthermore, using that Jνf is bounded from above
and from below, the invariance of G and that there is Ñ � 1 such that f Ñ (�) = M it follows that ν(M \ G) = 0, or
equivalently, that μ(G) = 1, proving our claim. So, if μ1 � ν is any f -invariant probability measure then μ1 � μ.
By invariance of dμ1/dμ and ergodicity of μ it follows that dμ1/dμ is almost everywhere constant and that μ1 = μ.
This proves the uniqueness of the absolutely continuous invariant measure. Lemma 5.2 also implies that

C3ν
(
B(x,n, δ)

)
� μ

(
B(x,n, δ)

)
� C2ν

(
B(x,n, δ)

)
for ν-almost every x and every n � 1, where C3 = C1λ

−NeN infφ . In particular μ is expanding and, if n is a hyperbolic
time for x and y ∈ B(x,n, δ) then

K−1C3 � μ(B(x,n, δ))

−Pn+S φ(y)
� KC2.
e n
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Corollary 4.5 implies that the first hyperbolic time map n1 is μi -integrable. Hence, the sequence of hyperbolic times
is almost everywhere non-lacunary (see Corollary 3.8) and both μ and ν are non-lacunary Gibbs measures. This
completes the proof of the lemma. �
6. Proof of Theorems A and B

In this section we manage to estimate the topological entropy of f for the potential φ using the characterizations of
relative pressure given in Section 3.4: PHc(f,φ) < logλ and PH (f,φ) � logλ. Then, using that the measure theoreti-
cal pressure Pμ(f,φ) = hμ(f )+ ∫

φ dμ of every absolutely continuous invariant measure given by Proposition 5.1 is
at least logλ, we deduce that Ptop(f,φ) = logλ and that equilibrium states do exist. Finally, the variational property
of equilibrium states yields that they coincide with the absolutely continuous invariant measures. This will complete
the proofs of Theorems A and B.

6.1. Existence of equilibrium states

We give two estimates on the relative pressure and deduce the existence of equilibrium states for f with respect
to φ.

Proposition 6.1. PHc(f,φ) < logλ.

Since we deal with a potential φ whose oscillation is not very large, the main point in the proof of Proposition 6.1
is to control the relative entropy hHc(f ). The key idea is that hHc(f ) can be bounded above using the maximal
distortion and growth rate of the inverse branches that cover Hc . We will begin with some preparatory lemmas.

Lemma 6.2. Let M be a compact Besicovitch metric space of dimension m. There exists C > 0 and a sequence of
finite open coverings (Qk)k�1 of M such that diam(Qk) → 0 as k → ∞, and every set E ⊂ M satisfying diam(E) �
D diam Qk intersects at most CDm elements of Qk .

Proof. First we construct a special family Tk of partitions in M . Let (rk) be a decreasing sequence of positive num-
bers converging to zero. Given k � 1, let Xk be a maximal rk separated set: any two balls of radius rk centered at
distinct points in Xk are pairwise disjoint and Xk is a maximal set with this property. In particular, it follows that
{B(x,2rk): x ∈ Xk} is a covering of M . Since there exists no covering of M by a smaller number of balls as above, by
Besicovitch covering lemma there exists a constant C1 (depending only on the dimension m) that any point in M is
contained in at most C1 balls. Consider a partition Tk in M such that every element Tk ∈ Tk contains a ball of radius rk
and such that diam(Tk) � 2rk .

Fix a sequence of positive numbers (εk)k�1 such that 0 < εk � rk for every k � 1. We claim that the family Qk

of open neighborhoods of size εk around elements of Tk satisfies the requirements of the lemma. It is immediate that
diam(Qk) → 0 as k → ∞. Since, by construction, every point in M is contained in at most C1 elements of Tk , any
set E ⊂ M satisfying diam(E) < D diam(Qk) � 2D(rk + εk) can intersect at most [2C1D(1 + εk/rk))]m elements
of Qk . This shows that E can intersect at most CDm elements of Qk for some constant C depending only on the
dimension m, completing the proof of the lemma. �

The next result is the most technical lemma in the article and provides the key estimate to prove Proposition 6.1.

Lemma 6.3. Given any � � 1 the following property holds:

hHc

(
f �

)
� (logq + m logL + ε0/2)� + logC.

Proof. Fix � � 1 and let (Qk)k be the family of finite open coverings given by the previous lemma. Since
diam(Qk) → 0 as k → ∞ then

PHc(f,φ) = lim PHc(f,φ, Qk),

k→∞
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by Definition 3.9. Recall P is the finite covering given by (H2) and B(n,γ ) is the set of points whose frequency of
visits to A up to time n is at least γ . The starting point is the next observation:

Claim 1. For every 0 < ε < γ there exists j0 � 1 such that for every j � j0 the following holds:

B(n,γ ) ⊂ B(�j, γ − ε) for every j� � n < (j + 1)�.

Proof of Claim 1. Given ε > 0, let j0 be a positive integer larger than (1 − γ )/ε. Given an arbitrary large n we
can write n = �j + r , where 0 � r < � and j � j0. Moreover, if x belongs to B(n,γ ) then # {0 � i � n − 1:
f i(x) ∈ A} � γ n and consequently

1

�j
#

{
0 � i � �j − 1: f i(x) ∈ A

}
� γ + γ r − r

�j
.

Our choice of j0 implies that the right-hand side above is bounded from below by γ − ε. This shows that x belongs
to B(�j, γ − ε) and proves the claim. �

We proceed with the proof of the lemma. Observe that the set Hc is covered by⋃
n�N

⋃
P∈P (n)

{
P ∈ P (n): P ∩ B(n,γ ) �= ∅}

for every N � 1. Let ε > 0 be small such that #I (n, γ − ε) � exp(logq + ε0/2)n for every large n. Such an ε do exist
because cγ varies monotonically on γ (see the proof of Lemma 3.1). Then, the previous claim allow us to cover Hc

using only cylinders whose depth is a multiple of �: for any N � 1

Hc ⊂
⋃

j� N
�

⋃
P∈P (�j)

{
P ∈ P (�j): P ∩ B(�j, γ − ε) �= ∅}

. (6.1)

Thus, from this moment on we will only consider iterates n = j�. Denote by R(n) the collection of cylinders in P (n)

that intersect B(n,γ −ε). Our aim is now to cover any element in R(n) by cylinders relatively to the transformation f �.
Given k � 1, denote by Sf �,j Qk the set of j -cylinders of f � by elements in Qk , that is

Sf �,j Qk = {
Q0 ∩ f −�(Q1) ∩ · · · ∩ f −�(j−1)(Qj−1): Qi ∈ Qk, i = 0, . . . , j − 1

}
.

Furthermore, let Gn,k be the set of cylinders in Sf �,j Qk that intersect any element of R(n).

Claim 2. Let k � 1 be large and fixed. Then

#Gj�,k � #Qk × [
CL�m

]j × e(logq+ε0/2)j�

for every large j .

Proof of Claim 2. Recall n = j� and fix Pn ∈ R(n). Since f is a local homeomorphism then the inverse branch
f −n : f n(Pn) → Pn extends to the union of all Q ∈ Qk so that Q ∩ f n(Pn) �= ∅, provided that k is large. Notice
that diam(f −�(Q)) � L� diam(Q) for every Q ∈ Qk because log‖Df (x)−1‖ � L for every x ∈ M . By Lemma 6.2,
f −�(Q) intersects at most CL�m elements of the covering Qk . This proves that there are at most #Qk × [CL�m]j
cylinders in Sf �,j Qk that intersect Pn. The claim is a direct consequence of our choice of ε since #R(n) � e(logq+ε0/2)n

for large n. �
Finally we complete the proof of the lemma. Indeed, it is immediate from (6.1) that

mα

(
f �,0,Hc, Qk,N

)
�

∑
j�N/�

∑
U∈G�j,k

e−αn(U) =
∑

j�N/�

e−αj # G�j,k

for every large k. Moreover, Claim 2 implies that the sum in the right-hand side above converges to zero as
N → ∞ (independently of k) whenever α > (logq + ε0/2 + m logL), � + logC. This shows that hHc(f �) �
(logq + m logL + ε0/2)� + logC and completes the proof of the lemma. �
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Proof of Proposition 6.1. Recall that hHc(f �) = �hHc(f ), by Proposition 3.12. Then, as a consequence of the
previous lemma we obtain

hHc(f ) � logq + m logL + ε0/2 + logC

�

for every � � 1. Finally, it follows from (3.3) and Lemma 3.14 that

PHc(f,φ) � logq + m logL + supφ + ε0 < h(f ) + infφ � logλ. �
In the present lemma we give an upper bound on the relative pressure of φ relative to the set H . More precisely,

Lemma 6.4. PH (f,φ) � logλ.

Proof. Recall the characterization of relative pressure using dynamical balls in Section 3.4. Pick α > logλ. For any
given N � 1, H is contained in the union of the sets Hn over n � N . Thus, given 0 < ε � δ

H ⊂
⋃

n�N

⋃
x∈Hn

B(x,n, ε).

Now we claim that there exists D > 0 (depending only on m = dim(M)) so that for every n � N there is a family
Gn ⊂ Hn in such a way that every point in Hn is covered by at most D dynamical balls B(x,n, ε) with x ∈ Gn. In fact,
Besicovitch’s covering lemma asserts that there is a constant D > 0 (depending on m) and an at most countable family

Gn ⊂ Hn such that every point of f n(Hn) is contained in at most D elements of the family {B(f n(x), ε): x ∈ Gn}.
Using that each dynamical ball B(x,n, ε), x ∈ Hn, is mapped homeomorphically onto B(f n(x), ε), it follows that
every point in Hn is contained in at most D dynamical balls B(x,n, ε) with x ∈ Gn, proving our claim. Given any
positive integer N � 1, it follows by bounded distortion and the Gibbs property of ν at hyperbolic times that

mα(f,φ,H, ε,N) � K(ε)
∑
n�N

e−(α−P)n

{ ∑
x∈Gn

ν
(
B(x,n, ε)

)}
.

Consequently mα(f,φ,H, ε,N) � K(ε) D

1−e−(α−P ) e
−(α−P)N , which tends to zero as N → ∞ independently of ε. This

shows that PH (f,φ) � logλ and completes the proof of the lemma. �
We know that every ergodic component of an absolutely continuous invariant measure is also absolutely continuous.

Now we prove that the absolutely continuous invariant measures are indeed an equilibrium states.

Lemma 6.5. If μ is an ergodic measure absolutely continuous with respect to ν then Pμ(f,φ) � logλ. Moreover, μ is
an equilibrium state for f with respect to φ and the following equalities hold

Ptop(f,φ) = PH (f,φ) = logλ.

Proof. The previous estimates and Proposition 3.11 guarantee that

Ptop(f,φ) = sup
{
PH (f,φ),PHc(f,φ)

}
� logλ.

Using that dμ/dν � C2, that ν satisfies the Gibbs property at hyperbolic times and μ-almost every point x admits
a sequence {nk(x)} of hyperbolic times then

μ
(
B(x,nk, ε)

)
� C2K(ε)e−Pnk+Snk

φ(y)

for every 0 < ε � δ, every k � 1 and every y ∈ B(x,nk, ε). Thus, Brin–Katok’s local entropy formula for ergodic
measures and Birkhoff’s ergodic theorem (see e.g. [36]) immediately imply that

hμ(f ) = lim
ε→0

lim sup
n→∞

−1

n
logμ

(
B(x,n, ε)

)
� P −

∫
φ dμ,

where the first equality holds μ-almost everywhere. In particular

logλ � Ptop(f,φ) � PH (f,φ) � sup

{
hμ(f ) +

∫
φ dμ

}
� logλ,
μ(H)=1
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which proves that μ is an equilibrium state and that the three quantities in the statement of the lemma do coincide.
This completes the proof of the lemma. �
6.2. Finitude of ergodic equilibrium states

In this subsection we will complete the proof of Theorems A and B and Corollary C. First we combine that every
equilibrium state is an expanding measure with some ideas involved in the proof of the variational properties of SRB
measures in [31] to deduce that every equilibrium state is absolutely continuous with respect to some conformal
measure supported in the closure of the set H , and to obtain finitude of ergodic equilibrium states. Finally, we show
that under the topologically mixing assumption there is a unique equilibrium state, and that it is exact and a non-
lacunary Gibbs measure. We begin with the following abstract result:

Theorem 6.6. Let f : M → M be a local homeomorphism, φ : M → R be a Hölder continuous potential and ν be
a conformal measure such that Jνf = λe−φ , where λ = exp(Ptop(f,φ)). Assume that η is an equilibrium state for f

with respect to φ gives full weight to supp(ν) and that

lim
n→∞

1

n

n−1∑
j=0

L
(
f j (x)

)
< 0

almost everywhere. Then η is absolutely continuous with respect to ν.

Let us stress out that this theorem holds in a more general setting. Since this fact will not be used here, we will
postpone the discussion to Remark 6.15 near the end of the section. The finitude of equilibrium states is a direct
consequence of the previous result. Indeed,

Corollary 6.7. Let f be a local homeomorphism and let φ be a Hölder continuous potential satisfying (H1), (H2)
and (P). There exists an expanding conformal probability measure ν such that every equilibrium state for f with re-
spect to φ is absolutely continuous with respect to ν with density bounded from above. If, in addition, f is topologically
mixing then there is unique equilibrium state and it is a non-lacunary Gibbs measure.

Proof. Let ν be the expanding conformal measure given by Theorem 4.1 and η be an ergodic equilibrium state for f

with respect to φ. We claim that η is an expanding measure. Indeed, assume by contradiction that one can decompose
η as a linear convex combination of two measures η = tη1 + (1 − t)η2 with η2(H

c) = 1 for some 0 � t < 1. But
Lemma 6.5, the first part of Proposition 3.11 and the convexity of the pressure yield

Pη(f,φ) = tPη1(f,φ) + (1 − t)Pη2(f,φ) � tPtop(f,φ) + (1 − t)PHc(f,φ) < Ptop(f,φ),

which contradicts that η is an equilibrium state and proves our claim. Moreover, η(supp(ν)) = 1 because the support
of ν coincides with the closure of H . Finally, since

lim sup
n→∞

1

n

n−1∑
j=0

logL
(
f j (x)

)
� −2c < 0

at η-almost every point (Corollary 6.7), the assumptions of Theorem 6.6 are verified. This result is a direct conse-
quence of the previous theorem and Proposition 5.1. �

In the sequel we prove Theorem 6.6. Since f is a non-invertible transformation we use the natural extension,
introduced in Section 3.5, to deal with unstable manifolds.

Proof of Theorem 6.6. It is easy to check, using the variational principle, that almost every ergodic component of an
equilibrium state is an equilibrium state. Thus, by ergodic decomposition it is enough to prove the result for ergodic
measures.
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Let η be an ergodic equilibrium state and (f̂ , η̂) be the natural extension of η introduced in Section 3.5. Then
π∗η̂ = η and that

lim
n→∞

1

n

n−1∑
j=0

log L̂
(
f̂ j (x̂)

)
< 0

η̂-almost everywhere.
We proceed with the construction of a special partition Q̂ of M̂ that is closely related with Ledrappier’s geometric

construction in Proposition 3.1 of [31] and provides a key ingredient for the proof of Theorem 6.6. The main differ-
ences from the original result due to Ledrappier are that the natural extension M̂ is not in general a manifold and that
there is no well defined unstable foliation in M . Given a partition Q̂ denote by Q̂(x̂) the element of Q̂ that contains
x̂ ∈ M̂ . We say that Q̂ is an increasing partition if (f̂ −1 Q̂)(x̂) ⊂ Q̂(x̂) for η̂-almost every x̂, in which case we write
f̂ −1 Q̂ � Q̂.

Proposition 6.8. There exists an invariant and full η̂-measure set Ŝ ⊂ M̂ , and a measurable partition Q̂ of Ŝ such
that:

(1) f̂ −1 Q̂ � Q̂,
(2)

∨+∞
j=0 f̂ −j Q̂ is the partition into points,

(3) The sigma-algebras Mn generated by the partitions f̂ −nQ̂, n � 1, generate the σ -algebra in Ŝ, and
(4) For almost every x̂ the element Q̂(x̂) ⊂ Ŵu(x̂) contains a neighborhood of x̂ in Ŵu(x̂) and the projection

π(Q̂(x̂)) contains a neighborhood of x0 in M .

Proof. Since η̂ is an expanding measure, Proposition 3.15 guarantees the existence of local unstable manifolds at
η̂-almost every point. Take i � 1 such that η̂(Λ̂i) > 0 and let ri , εi , γi and Ri be given by Corollary 3.16. Fix
also 0 < r � ri and x̂ ∈ supp(η̂|

Λ̂i
). Recall that ŷ �→ Wu

loc(ŷ) ∩ B(x0, r) is a continuous function on B(x̂, εir) ∩ Λ̂i .
Consider the sets

V̂ (ŷ, r) = {
ẑ ∈ Ŵu

loc(ŷ): z0 ∈ B(x0, r)
}
,

defined for any ŷ ∈ B(x̂, εir) ∩ Λ̂i . Define also

Ŝ(x̂, r) =
⋃{

V̂ (ŷ, r): ŷ ∈ B(x̂, εir) ∩ Λ̂i

}
and the partition Q̂0(r) of M̂ whose elements are the connected components V̂ (ŷ, r) of unstable manifolds just
constructed and their complement M̂ \ Ŝ(x̂, r). Furthermore, consider the set Ŝr and the partition Q̂(r) given by

Ŝr =
+∞⋃
n=0

f̂ n
(
Ŝ(x̂, r)

)
and Q̂(r) =

+∞∨
n=0

f̂ n
(
Q̂0(r)

)
.

Then, the partition Q̂ coincides with the partition Q̂(r) and the set Ŝ is given by
⋂

j�0 f̂ −j (Ŝr ) for a particular choice
of the parameter r . In what follows, for notational convenience and when no confusion is possible we shall omit the
dependence of the partition Q̂ on r .

It is clear from the construction that every partition Q̂(r) is increasing, that is the content of (6.8). In addition, since
η̂ is ergodic and η̂(Ŝ(x̂, r)) > 0 then the set of points that return infinitely often to Ŝ(x̂, r), which we called Ŝr , is a full
measure set by Poincaré’s Recurrence Theorem. In other words, if a point ŷ belongs to Ŝr there are positive integers
(nj )j such that f̂ nj (ŷ) ∈ V̂ (f̂ nj (ŷ), r). Hence, the backward distance contraction along unstable leaves guarantees
that the diameter of the partition

∨n
n=0 f̂ −j Q̂ tend to zero as n → ∞, proving (6.8). By construction, there is a full

measure set such that any two distinct points ŷ and ẑ lie in different elements of f̂ −nQ̂ for some n ∈ N. Indeed, if
f̂ −nQ̂(ŷ) = f̂ −nQ̂(ẑ) for every n � 0 then f̂ n(ŷ) and f̂ n(ẑ) lie infinitely often in the same local unstable manifold.
But (6.8) implies that ŷ and ẑ should coincide, which is a contradiction and proves our claim. In particular, the
decreasing family of σ -algebras Mn, n � 1, generate the σ -algebra in Ŝr , which proves (6.8).
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We proceed to show that the partition Q̂(r) satisfies (6.8) for Lebesgue almost every parameter r . Given 0 < r � ri
and ŷ ∈ Ŝr define

βr(ŷ) = inf
n�0

{
Ri,

r

γi

,
1

2γi

eλind
(
y−n, ∂B(x0, r)

)}
,

that it clearly non-negative. It is enough to obtain the following:

(a) If z0 ∈ Wu
loc(ŷ) and d(y0, z0) < βr(ŷ) then there exists ẑ ∈ Q̂(ŷ) such that π(ẑ) = z0;

(b) There exists a full Lebesgue measure set of parameters 0 < r � ri such that the function βr(·) is strictly positive
almost everywhere and η̂(∂Q̂(r)) = 0.

Take ŷ ∈ Ŝr and assume that z0 ∈ Wu
loc(ŷ) is such that d(y0, z0) < βr(ŷ). If ŷ ∈ Ŝ(x̂, r) then there exists ŵ ∈

B(x̂, εir) such that ŷ ∈ Ŵu
loc(ŵ). Furthermore, since d(y0, z0) < βr(ŷ) < Ri then there exists ẑ ∈ Ŵu

loc(ŵ) such that
π(ẑ) = z0. Hence

d(y−n, z−n) � γie
−nλi d(y0, z0), ∀n ∈ N,

which implies that d(y−n, z−n) � r and d(y−n, z−n) � 1/2d(y−n, ∂B(x0, r)) for every n ∈ N. Together with Corol-
lary 3.16, this shows that y−n and z−n belong to the same element of the partition Q̂0 for every n � 1 and, assuming (b)
for the moment, that π(Q(ŷ)) contains a neighborhood of y0 in Wu

loc(ŷ). On the other hand, if ŷ ∈ Ŝr \ Ŝ(x̂, r) then

there exists k � 1 such that f̂ −k(ŷ) ∈ Ŝ(x̂, r) and consequently the projection of the set

Q̂(ŷ) = f̂ k
(

Q̂
(
f̂ −k(ŷ)

))
contains an open neighborhood of y0 in Wu

loc(ŷ). This completes the proof of (a).
The proof of (b) is slightly more involving. We begin with the following remark from measure theory: if r0 > 0, ϑ

is a Borel measure in [0, r0] and 0 < a < 1 then Lebesgue almost every r ∈ [0, r0] satisfies

∞∑
k=0

ϑ
([

r − ak, r + ak
])

< ∞. (6.2)

Indeed, the set

Ba,k =
{
r ∈ [0, r0]: ϑ

([
r − ak, r + ak

])
>

ϑ([0, r0])
k2

}

can be covered by a family Ik of balls of radius ak centered at points of Ba,k in such a way that any point is contained
in at most two intervals of Ik . Since

#Ik

ϑ([0, r0])
k2

�
∑
I∈Ik

ϑ(I ) � 2ϑ
([0, r0]

)

then #Ik � 2k2 and it is clear that Leb(Ba,k) � 2ak # Ik is summable. Borel–Cantelli’s lemma implies that Lebesgue
almost every r ∈ [0, r0] belongs to finitely many sets Ba,k , which proves the summability condition in (6.2).

Back to the proof of (b), let ϑ be the measure of the interval [0, ri] defined by ϑ(E) = η̂(ŷ ∈ M̂: d(x0, y0) ∈ E).
The previous assertion guarantees that for Lebesgue almost every r ∈ [0, ri] it holds

∞∑
k=0

η̂
(
ŷ ∈ M̂:

∣∣d(x0, y0) − r
∣∣ < e−λik

)
< ∞. (6.3)

On the other hand, there exists D > 0 such that |d(z0, x0) − r| < Dτ whenever d(z0, ∂B(x0, r)) < τ and 0 < τ <

r � ri . Therefore

∞∑
η̂
(
ŷ ∈ M̂:

∣∣d(
y−n, ∂B(x0, r)

)∣∣ < D−1e−λik
)
�

∞∑
η̂
(
ŷ ∈ M̂:

∣∣d(x0, y−n) − r
∣∣ < e−λik

)
,

k=0 k=0
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which is finite because of the invariance of η̂ and the former condition (6.3). Using Borel–Cantelli’s lemma once more
it follows that η̂-almost every ŷ satisfies∣∣d(

y−n, ∂B(x0, r)
)∣∣ < D−1e−λik

for at most finitely many positive integers k, proving that βr(ŷ) > 0. Furthermore, since η(
⋃

n�0 f n(∂B(x0, r))) = 0

for all but a countable set of parameters 0 < r � ri then Q̂(ŷ) contains a neighborhood of ŷ in Ŵu
loc(ŷ) for η̂-almost

every ŷ ∈ M̂ . This shows that (b) holds and, in consequence, for Lebesgue almost every r ∈ [0, ri] the partition Q̂(r)

satisfies the requirements of the proposition. �
Let (η̂x)x be the disintegration of the measure η̂ on the measurable partition Q̂, given by Rokhlin’s theorem. Recall

that for η̂-almost every x̂ the map π |
Ŵu

loc(x̂)
: Ŵu

loc(x̂) → Wu
loc(x̂) is a bijection. For any such x̂ let ν̂x be the measure

on Ŵu
loc(x̂) obtained as the pull-back of ν|Wu

loc(x̂) by the bijection π |
Ŵu

loc(x̂)
. Let ν̂ denote the measure defined on M̂ by

the disintegration (ν̂x̂ )x̂ , that is to say that

ν̂(Ê) =
∫

ν̂x̂ (Ê) dη̂(x̂)

for every measurable set Ê in M̂ . As a byproduct of the previous result we obtain

Corollary 6.9. 0 < ν̂x̂(Q̂(x̂)) < ∞, for η̂-almost every x̂.

Proof. For every x̂ in a full η̂-measure set one has that

ν̂x̂

(
Q̂(x̂)

) = ν
(
π

(
Q̂(x̂)

) ∩ Wu
loc(x̂)

)
.

Since η̂ is an expanding measure then Ŵu
loc(x̂) is a neighborhood x̂ and Wu

loc(x̂) ∩ π(Q̂(x̂)) contains a neighborhood
of x0 in M . In addition, since η(suppν) = 1, for every x̂ in a full η̂-measure set it holds that x0 ∈ supp(ν). Then it is
clear that 0 < ν̂x̂(Q̂(x̂)) < ∞, η̂-almost everywhere, which proves the corollary. �

The next preparatory lemma shows that ν̂ has a Jacobian with respect to f̂ and establishes Rokhlin’s formula for
the natural extension.

Lemma 6.10. The measure ν̂ has a Jacobian Jν̂ f̂ = Jνf ◦ π with respect to f̂ . In addition,

hη̂(f̂ ) =
∫

logJν̂ f̂ dη̂.

Furthermore, for η̂-almost every x̂ and every ŷ ∈ Q̂(x̂) the product

�(x̂, ŷ) =
∞∏

j=1

Jν̂ f̂ (f̂ −j (x̂))

Jν̂ f̂ (f̂ −j (ŷ))

is positive and finite.

Proof. Since the sigma-algebra B̂ is the completion of the sigma-algebra generated by the cylinders π−1
i (f −i B),

i � 1, then the first claim in the lemma is a consequence from the fact that

ν̂
f̂ (x̂)

(
f̂ (Ê)

) =
∫

Ê∩(f̂ −1 Q̂)(x̂)

Jνf ◦ π dν̂x̂ (6.4)

for almost every x̂ and every small cylinder Ê = π−1(E). Indeed, if Ê is a small cylinder then it is clear that

ν̂
(
f̂ (Ê)

) =
∫

ν̂
f̂ (x̂)

(
f̂ (Ê)

)
dη̂(x̂) =

∫ ∫
ˆ ˆ−1 ˆ

Jνf ◦ π dν̂x̂ dη̂(x̂). (6.5)
E∩(f Q)(x̂)
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Let ν̃x̂ denote the restriction of the measure ν̂x̂ to the set (f̂ −1 Q̂)(x̂) ⊂ Q̂(x̂). Then ν̂ has a disintegration ν̂ = ∫
ν̃x̂ dη̂

with respect to the measurable partition f̂ −1 Q̂. Together with (6.5) this gives

ν̂
(
f̂ (Ê)

) =
∫ ∫

Ê

Jνf ◦ π dν̃x̂ dη̂(x̂) =
∫
Ê

Jνf ◦ π dν̂,

which proves that ν̂ has a Jacobian and Jν̂ f̂ = Jνf ◦π . Hence, to prove the first assertion in the lemma we are reduced
to prove (6.4) above. If f | E is injective and Ê = π−1(E) then

ν̂
f̂ (x̂)

(
f̂ (Ê)

) = ν̂
f̂ (x̂)

(
f̂

[
Ê ∩ (

f̂ −1 Q̂
)
(x̂)

]) = ν
(
f

(
E ∩ π

((
f̂ −1 Q̂

)
(x̂)

)))
=

∫
E∩π((f̂ −1 Q̂)(x̂))

Jνf dν =
∫

Ê∩(f̂ −1 Q̂)(x̂)

Jνf ◦ π dν̂x̂ ,

which proves (6.4). On the other hand, hη(f ) = ∫
Jνf dη because η is an equilibrium state, Ptop(f,φ) = logλ and

Jνf = λe−φ . So, using π∗η̂ = η we obtain

hη̂(f̂ ) = hη(f ) =
∫

logJνf dη =
∫

log(Jνf ◦ π)dη̂ =
∫

logJν̂ f̂ dη̂,

which proves the second assertion in the lemma. Finally, the Hölder continuity of the Jacobian Jν̂ f̂ = Jνf ◦ π , the
fact that Q̂ is subordinated to unstable leaves and the backward distance contraction for points in the same unstable
leaf yield that the product

�(x̂, ŷ) =
∞∏

j=1

Jν̂ f̂ (f̂ −j (x̂))

Jν̂ f̂ (f̂ −j (ŷ))

is convergent for almost every x̂ and every ŷ ∈ Q̂(x̂). The proof of the lemma is now complete. �
The last main ingredient to the proof of Theorem 6.6 is the following generating property of the partition Q̂.

Proposition 6.11. hη̂(f̂ ) = Hη̂(f̂
−1 Q̂ | Q̂).

The proof of this result involves two preliminary lemmas. Let i � 1 and Λ̂i be given as in the proof of Proposi-
tion 6.8 and ri given by Corollary 3.16. The following lemma gives a dynamical characterization of the local unstable
manifolds.

Lemma 6.12. Given ε > 0 there is a measurable function D̂ε : B̂λ → R+ satisfying log D̂ε ∈ L1(η̂) and such that, if
d(x−n, y−n) � D̂ε(f̂

−n(x̂)) ∀n � 0 then ŷ ∈ Ŵu
loc(x̂) and d(x0, y0) < 2ri .

Proof. Since η̂(Λ̂i) > 0 and η̂ is assumed to be ergodic then some iterate of almost every point will eventually belong
to Λ̂i by Poincaré’s recurrence theorem. So, the first hitting time R(x̂) is well defined almost everywhere in Λ̂i and∫
Λ̂i

R dη̂ = 1/η̂(Λ̂i), by Kac’s lemma. This proves that the logarithm of the function D̂ε : M̂ → R given by

D̂ε(x̂) =
{

min{2ri , δi, δi/γi}e−(λ+ε)R(x̂), if x̂ ∈ Λ̂i,

min{2ri , δi, δi/γi}, otherwise

is η̂-integrable. On the other hand, if x̂ ∈ Λ̂i then R(f̂ −n(x̂)) = n. Any ŷ ∈ M̂ such that d(x−n, y−n) � D̂ε(f̂
−n(x̂))

for every n � 0 clearly satisfies d(x0, y0) < 2ri and, by Proposition 3.15(2), belongs to Wu
loc(x̂). This concludes the

proof of the lemma. �
This result allow us to construct an auxiliary measurable partition of finite entropy that will be useful to compute

the metric entropy hη̂(f̂ ).
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Lemma 6.13. There exists a measurable partition P̂ of Ŝ such that Hη̂(P̂ ) < ∞, diam(P̂(x̂)) � D̂ε(x̂) at η̂-almost
every x̂, and that the partition

P̂ (∞) =
+∞∨
n=0

f̂ nP̂

is finer than Q̂.

Proof. Let D̂ε be the measurable function given by the previous lemma. By Lemma 2 in [35], there exists a measur-
able and countable partition P̂0 such that Hη̂(P̂0) < ∞ and diam P̂(x̂) � D̂ε(x̂) for a.e. x̂ ∈ M̂ . Let P̂ be the finite

entropy partition obtained as the refinement of P̂0 and {M̂ \ Ŝ(x̂, r), Ŝ(x̂, r)}. Notice that there is a full measure set
where any two points x̂ and ŷ belong to the same element of f̂ nP̂ for every n � 0 if and only

d(x−n, y−n) � D̂ε

(
f̂ −nx̂

)
for every n � 0.

In particular, Lemma 6.12 above implies that each element of P̂ is a piece of some local unstable manifold. Hence,
since P̂ was chosen to refine {M̂ \ Ŝ(x̂, r), Ŝ(x̂, r)} then it is easy to see that⋂

n�0

f̂ nP̂
(
f̂ −n(x̂)

) ⊂ Q̂(x̂)

for almost every x̂. So, the partition P̂ just constructed satisfies the conclusions of the lemma. �
Proof of Proposition 6.11. Let ε > 0 be arbitrary small. Up to a refinement of the partition P̂ we may assume without
loss of generality that hη̂(f̂ , P̂) � hη̂(f̂ ) − ε. Since the partition P̂ (∞) is finer than Q̂ then

hη̂(f̂ , P̂ ) = hη̂

(
f̂ , P̂ (∞)

) = hη̂

(
f̂ , P̂ (∞) ∨ Q̂

) = hη̂

(
f̂ , f̂ nP̂ (∞) ∨ Q̂

)
for every n � 1. Using that hη̂(f̂ , ξ̂ ) = Hη̂(f̂

−1ξ̂ , ξ̂ ) for every increasing partition ξ̂ , the right-hand side term in the

previous equalities coincides with the relative entropy Hη̂(f̂
nP̂ (∞) ∨ Q̂ | f̂ n+1 P̂ (∞) ∨ f̂ Q̂) and, consequently,

hη̂(f̂ , P̂ ) = Hη̂

(
Q̂

∣∣ f̂ Q̂ ∨ f̂ nP̂ (∞)
) + Hη̂

(
P̂ (∞)

∣∣ f̂ −nQ̂ ∨ f̂ P̂ (∞)
)
.

The second term in the right-hand side above is bounded by Hη̂(P̂ ), which is finite. Then Proposition 6.8(3) implies

that it tends to zero as n → ∞. On the other hand, the diameter of almost every element in f̂ −n+1 Q̂ tend to zero
as n → ∞, proving that there exists a sequence of sets (D̂n)n�1 in M̂ satisfying limn η̂(D̂n) = 1 and such that
f̂ Q(x̂) ⊂ f̂ nP̂ (∞)(x̂) for every x̂ ∈ D̂n. Then

Hη̂

(
Q̂

∣∣ f̂ Q̂ ∨ f̂ nP̂ (∞)
) =

∫
− log η̂

(f̂ Q̂∨f̂ n P̂ (∞))(x̂)

(
Q̂(x̂)

)
dη̂(x̂)

�
∫

D̂n(x̂)

− log η̂
(f̂ Q̂)(x̂)

(
Q̂(x̂)

)
dη̂(x̂),

where the measures η̂
f̂ Q̂∨f̂ n P̂ (∞) and η̂

f̂ Q̂ denote respectively the conditional measures of η with respect to the

partitions f̂ Q̂ ∨ f̂ nP̂ (∞) and f̂ Q̂. This proves that limn Hη̂(Q̂ | f̂ Q̂ ∨ f̂ nP̂ (∞)) � Hη̂(Q̂ | f̂ Q̂). Since the other

inequality is always true we deduce that hη̂(f̂ , P̂ ) = Hη̂(Q̂ | f̂ Q̂). Since ε > 0 was chosen arbitrary this proves that

hη̂(f̂ ) = Hη̂(Q̂ | f̂ Q), as claimed. �
It follows from Lemma 6.10 and Proposition 6.11 that

Hη̂

(
f̂ −1 Q̂

∣∣ Q̂
) =

∫
logJν̂ f̂ dη̂. (6.6)

With this in mind we obtain the following:
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Lemma 6.14. η̂ admits a disintegration (η̂x̂ )x̂ along the measurable partition Q̂ such that

η̂x̂ (B) = 1

Z(x̂)

∫
Q̂(x̂)∩B

�(x̂, ŷ) dν̂x̂ (ŷ), where Z(x̂) =
∫

Q̂(x̂)

�(x̂, ŷ) dν̂x̂ (ŷ) (6.7)

for every measurable set B and η̂-almost every x̂. In consequence η̂x̂ is absolutely continuous with respect to ν̂x̂ for
almost every x̂.

Proof. Recall that �(x̂, ŷ) is well defined for almost every x̂ and every ŷ ∈ Q̂(x̂) according to Lemma 6.10. In
particular Corollary 6.9 implies that 0 < Z(x̂) < ∞ almost everywhere. Let ρx̂ denote the measure in the right-hand
side of the first equality in (6.7). Since f̂ −1 Q̂ � Q̂ a simple computation involving a change of coordinates gives that

ρx̂

((
f̂ −1 Q̂

)
(x̂)

) = 1

Z(x̂)

∫
(f̂ −1 Q̂)(x̂)

�(x̂, ŷ) dν̂x̂ (ŷ) = Z(f̂ (x̂))

Z(x̂)Jν̂ f̂ (x̂)
.

We claim that

−
∫

logρx̂

((
f̂ −1 Q̂

)
(x̂)

)
dη̂ =

∫
logJν̂ f̂ dη̂.

Since ρx̂ is a probability measure then − logρx̂((f̂
−1 Q̂)(x̂)) is a positive function and clearly the negative part of this

function belongs to L1(η̂). Using that Jνf is bounded away from zero and infinity the same is obviously true also for

log Z(f̂ (x̂))

Z(x̂)
. So, Birkhoff’s ergodic theorem yields that the limit

ω(x̂) := lim
n→∞

1

n
logZ

(
f̂ n(x̂)

) = lim
n→∞

1

n
log

Z(f̂ n(x̂))

Z(x̂)
= lim

n→∞
1

n

n−1∑
j=0

log
Z ◦ f̂ (f̂ j (x̂))

Z(f̂ j (x̂))

do exist (although possibly infinite) and that∫
ω(x̂) dη̂(x̂) =

∫
log

Z(f̂ (x̂))

Z(x̂)
dη̂(x̂).

Since Z is almost everywhere positive and finite, the sequence 1/n logZ(f̂ n(x̂)) converge to zero in probability and,
consequently, it is almost everywhere convergent to zero along some subsequence (nj )j . This shows that ω(x̂) = 0
for η̂-almost every x̂ and proves our claim. On the other hand using relation (6.6) and the equality

Hη̂

(
f̂ −1 Q̂

∣∣ Q̂
) = −

∫
log η̂x̂

(
f̂ −1 Q̂(x̂)

)
dη̂(x̂)

we obtain∫
log

(
dρ̂

dη̂

∣∣∣∣
f̂ −1 Q̂

)
dη̂ = 0.

Since the logarithm is a strictly concave function then

0 =
∫

log

(
dρ̂x̂

dη̂x̂

∣∣∣∣
f̂ −1 Q̂

)
dη̂ � log

( ∫
dρ̂x̂

dη̂x̂

∣∣∣∣
f̂ −1 Q̂

dη̂

)
= 0,

and the equality holds if and only if the Radon–Nykodym derivative dρ̂x̂

dη̂x̂
restricted to the sigma-algebra generated by

f̂ −1 Q̂ is almost everywhere constant and equal to one. Replacing f̂ by any power f̂ n in the previous computations it
is not difficult to check that η̂x̂ and ρ̂x̂ coincide in the increasing family of sigma-algebras generated by the partitions
f̂ −n(Q̂), n � 1. Proposition 6.8(3) readily implies that η̂x̂ = ρx̂ at η̂-almost every x̂, which completes the proof of the
lemma. �

We know from the previous lemma that η̂x̂ � ν̂x̂ almost everywhere. Then, using that Wu
loc(x̂) is a neighborhood

of x0 in M and the bijection

π | ˆ u : Ŵu
loc(x̂) → Wu

loc(x̂)

Wloc(x̂)
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it follows that π∗η̂x̂ � ν for η̂-almost every x̂. Since (η̂x̂ ) is a disintegration of η̂ and π∗η̂ = η it is immediate that
η � ν. This completes proof of the theorem. �
Remark 6.15. We point out there is an analogous version of Theorem 6.6 that holds for piecewise differentiable
maps f that behave like a power of the distance to a possible critical or singular locus, as considered in [3]. Indeed,
assume that φ is an Hölder continuous potential and ν is an expanding conformal measure such that Jνf = λe−φ is
Hölder continuous, where λ = expPtop(f,φ). Assume also that η is an equilibrium state for f with respect to φ and
η(suppν) = 1. If η has non-uniform expansion and satisfies a slow recurrence condition then there is a local unstable
leaf passing through almost every point, in the same way as in Proposition 3.15. The construction of an increasing
partition as in Proposition 6.8 and the proof of the absolute continuity of η with respect to ν remains unaltered.
This is of independent interest and can be applied, e.g. when f is a quadratic map with positive Lyapunov exponent,
φ = − log |detDf | and ν is the Lebesgue measure to prove the uniqueness of the SRB measure. Some of these ideas
can be traced back to [30,34,45] but since these papers do not use hyperbolic times, the results are less precise than
here.

Through the remaining of the section assume that f is topologically mixing. Since equilibrium states coincide with
the invariant measures that are absolutely continuous with respect to ν then there is only one equilibrium state μ for
f with respect to φ. Thus, Theorem B is a direct consequence of Proposition 5.1 and the previous statement. To finish
the proof of Theorem A it remains only to show exactness of the equilibrium state:

Lemma 6.16. μ is exact.

Proof. Let E ∈ B∞ be such that μ(E) > 0 and let ε > 0 be arbitrary. There are measurable sets En ∈ B such that
E = f −n(En). On the other hand, since μ is regular there exists a compact set K and an open set O such that
K ⊂ E ∩H ⊂ O and μ(O \K) < εμ(K), where H denotes as before the set of points with infinitely many hyperbolic
times and ε > 0 is small. The same argument used in the proof of Lemma 5.3 shows that there exists τ > 0 n � 1 and
x ∈ Hn such that

μ(B(x,n, δ/4) \ E)

μ(B(x,n, δ/4))
< τ−1ε.

Since n is a hyperbolic time then f n|B(x,n,δ) is a homeomorphism that satisfies the bounded distortion property. Hence

μ(B(f n(x), δ/4) \ f n(E))

μ(B(f n(x), δ/4))
< K0τ

−1ε.

The topologically mixing assumption guarantees the existence of a uniform N � 1 (depending only on δ) such that
every ball of radius δ/4 is mapped onto M by f N . Furthermore, since μ � ν with density h = dμ

dν
bounded away from

zero and infinity then Jμf = Jνf (h ◦ f )/h satisfies C−1 � Jμf � C for some constant C > 1. In particular, since
dN is an upper bound for the number of inverse branches of f N , C bounds the maximal distortion of the Jacobian at
each iterate and μ is f -invariant we obtain that

μ(M \ E) = μ(M \ En+N) < K0d
NCNτ−1ε.

The arbitrariness of ε > 0 shows that μ(E) = 1. This proves that μ is exact. �
We finish this section with the

Proof of Corollary C. If φ is a continuous potential satisfying (P), the existence of an equilibrium state for f with
respect to φ will follow from upper semi-continuity of the metric entropy. Let {φn} be a sequence of Hölder continuous
potentials satisfying (P) and converging to φ in the uniform topology. Take μn to be an equilibrium state for f with
respect to φn, given by Theorem B, and let μ be an accumulation point of the sequence (μn)n. Note that the constants
c and δ given by Lemma 3.4 are uniform for every μn. So, any partition R of diameter smaller than δ that satisfies
μ(∂R) = 0 is generating with respect to μn, and

hμ(f, R) � lim suphμn(f, R).
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Using the continuity of φ �→ Ptop(f,φ) and φ �→ ∫
φ dμ it follows that

hμ(f, R) = lim sup
n→∞

[
Ptop(f,φn) −

∫
φn dμn

]
= Ptop(f,φ) −

∫
φ dμ � hμ(f ).

This proves that μ is an equilibrium state for f with respect to φ. Furthermore, the function

(η,φ) �→ hη(f ) +
∫

φ dη

is upper-semicontinuous on the product space of c-expanding measures and convex set of continuous potentials satis-
fying (P). Hence, proceeding as in [54, Corollary 9.15.1] there exists a residual R ⊂ C(M) of potentials satisfying (P)
such that there is a unique equilibrium state for f with respect to φ. The proof of the corollary is now complete. �
7. Stability of equilibrium states

7.1. Statistical stability

Here we prove upper semi-continuity of the metric entropy and use the continuity assumption on the topological
pressure to prove that the equilibrium states vary continuously with respect to the data f and φ.

Proof of Theorem D. Let W be the set of Hölder continuous potentials and F the set of local homeomorphisms
introduced in Section 2.4. The strategy is to construct a generating partition for all maps in F . A similar argument
was considered in [4]. Fix (f,φ) ∈ F × W and arbitrary sequences F � fn → f in the uniform topology, with Ln → L

in the uniform topology, and W � φn → φ in the uniform topology, let μn be an equilibrium state for fn with respect
to φn and η be an f -invariant measure obtained as an accumulation point of the sequence (μn)n.

We begin with the following observation. Since the constants c and δ given by Lemma 3.4 are uniform in F , any
partition R of diameter smaller than δ/2 satisfying η(∂R) = 0 generates the Borel sigma-algebra for every g ∈ F .
Then, Kolmogorov–Sinai theorem implies that hμn(fn) = hμn(fn, R) and hη(f ) = hη(f, R), that is,

hμn(fn) = inf
k�1

1

k
Hμn

(
R(k)

n

)
and hη(f ) = inf

k�1

1

k
Hη

(
R(k)

)
,

where Hη(R) = ∑
R∈R −η(R) logη(R) and we considered the dynamically defined partitions

R(k)
n =

k−1∨
j=0

f
−j
n (R) and R(k) =

k−1∨
j=0

f −j (R).

Since η gives zero measure to the boundary of R then Hμn(R(k)
n ) converge to Hη(R(k)) as n → ∞ by weak∗ conver-

gence. Furthermore, for every ε > 0 there is N � 1 such that

hμn(fn) � 1

N
Hμn

(
R(N)

n

)
� 1

N
Hη

(
R(N)

) + ε � hη(f ) + 2ε.

Recalling the continuity assumption of the topological pressure Ptop(f,φ) on the data (f,φ), that μn is an equilibrium
state for fnwith respect to φn, and that

∫
φn dμn → ∫

φ dη as n → ∞, it follows that

hη(f ) +
∫

φ dη � Ptop(f,φ).

This shows that η is an equilibrium state for f with respect to φ. Since every equilibrium state belongs to the convex
hull of ergodic equilibrium states and these coincide with finitely many ergodic measures absolutely continuous with
respect to ν (recall Theorem B), this completes the proof of Theorem D. �

We finish this subsection with some comments on the assumption involving the continuity of the topological pres-
sure. The map φ �→ Ptop(f,φ) varies continuously, provided that f is a continuous transformation (see for instance
[54, Theorem 9.5]). On the other hand, in this setting the topological pressure Ptop(f,φ) coincides with logλf,φ ,
where λf,φ is the spectral radius of the transfer operator Lf,φ , for every f ∈ F and every φ ∈ W . Moreover, the
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operators Lf,φ vary continuously with the data (f,φ). So, the continuous variation of the topological pressure should
be a consequence of the most likely spectral gap for the transfer operator Lf,φ in the space of Hölder continuous
observables. Some spectral gap properties were obtained by Arbieto, Matheus [5] and Varandas [53] in a related
context.

7.2. Stochastic stability

The results in this section are inspired by some analogous in [2]. First we introduce some definitions and notations.
Given f ∈ F N, define fj = fj ◦ · · · ◦ f2 ◦ f1. Let (θε)0<ε�1 be a family of probability measures in F . Given a (not
necessarily invariant) probability measure ν, we say that (f, ν) is non-uniformly expanding along random orbits if
there exists c > 0 such that

lim sup
n→∞

1

n

n∑
j=1

log
∥∥Df

(
fj (x)

)−1∥∥ � −2c < 0

for (θN
ε × ν)-almost every (f, x) ∈ F N × M . If this is the case, Pliss’s lemma guarantees the existence of infinitely

many hyperbolic times for almost every point where, in this setting, n ∈ N is a c-hyperbolic time for (f, x) ∈ F N × M

if
n−1∏

j=n−k

∥∥Df
(
fj (x)

)−1∥∥ < e−ck for every 0 � k � n − 1.

We refer the reader to [2, Proposition 2.3] for the proof. Given ε > 0, let nε
1 : F N ×M → N denote the first hyperbolic

time map. Set also Hn(f) = {x ∈ M: n is a c-hyperbolic time for (f, x)}. In the remaining of the section let f ∈ F and
ν be an expanding conformal measure such that suppν = H . The next result shows that f has random non-uniform
expansion. More precisely,

Lemma 7.1. Let (θε)0<ε�1 be a family of probability measures in F such that supp θε is contained in a small neigh-
borhood Vε(f ) of f and

⋂
ε Vε(f ) = {f }. If F � g �→ Jνg is a continuous function and ε is small enough then (f, ν)

is non-uniformly expanding along every random orbit of (f̂ , θε). Furthermore,(
θN

ε × ν
)({

(f, x) ∈ F N × M: nε
1(f, x) > k

})
decays exponentially fast and, consequently,

∫
nε

1 d(θN
ε × ν) < ∞.

Proof. Given g ∈ F , let Ag ⊂ M be the region described in (H1) and (H2). Denote by Ã the enlarged set obtained
as the union of the regions Ag taken over all g ∈ supp θε . If ε > 0 is small enough then we can assume that Ã is
contained in the same q elements of the covering P as the set Af .

Now we claim that, if γ is chosen as before and f ∈ F N the measure of the set

B(n, f) =
{
x ∈ M:

1

n
#

{
0 � j � n − 1: fj (x) ∈ Ã

}
� γ

}

decays exponentially fast. Indeed, the same proof of Lemma 3.1 yields that B(n, f) is covered by at most e(logq+ε0/2)n

elements of P (n)(f) = ∨n−1
j=0 f−j (P ), for every large n. On the other hand, since supp(θε) is compact the function

supp θε � g �→ Jνg is uniformly continuous: for every ε > 0 there exists a(ε) > 0 (that tends to zero as ε → 0) such
that

e−a(ε) � Jνf (x)

Jνg(x)
� ea(ε)

for every g ∈ supp(θε) and every x ∈ M . As in the proof of Proposition 4.4, this implies that

1 � ν
(
fn(P )

) =
∫ n−1∏

j=0

Jνfj ◦ fj dν � e−a(ε)n

∫
Jνf

n dν > e(logq+ε0−a(ε))nν(P )
P P
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and, consequently, ν(P ) � e−(logq+ε0−a(ε))n for every P ∈ P (n)(f) and every large n. Hence

ν
(
B(n, f)

)
� #

{
P ∈ P (n)(f): P ∩ B(n, f) �= ∅} × e−(logq+ε0−a(ε))n

which decays exponentially fast and proves the claim. Then, the set

B(n) =
{
(f, x) ∈ F N × M:

1

n
#

{
0 � j � n − 1: fj (x) ∈ Ã

}
� γ

}

is such that (θε × ν)(B(n)) = ∫
ν(B(n, f)) dθN

ε (f) also decays exponentially fast. Borel–Cantelli guarantee that the
frequency of visits of the random orbit {fj (x)} to Ã is smaller than γ for θN

ε × ν-almost every (f, x). Moreover,
since every g ∈ F satisfy (H1) and (H2) with uniform constants this proves that f is non-uniformly expanding along
random orbits. Moreover, the first hyperbolic time map nε

1 is integrable because∫
n1 d

(
θN

ε × ν
) =

∑
n�0

(
θN

ε × ν
)({n1 > n}) �

∑
n�0

(
θN

ε × ν
)(

B(n)
)
< ∞.

This completes the proof of the lemma. �
Remark 7.2. Before proceeding with the proof, let us discuss briefly the continuity assumption on F � g → Jνg.
First notice that in our setting this is automatically satisfied when ν coincides with the Lebesgue measure since it
reduces to the continuity of g �→ log |detDg|. Given g ∈ F , let νg denote the expanding conformal measure and set
Pg = Ptop(f,φ). Observe that if k is a c-hyperbolic time for x with respect to f then it is a c/2-hyperbolic time for x

with respect to every g sufficiently close to f . Consequently

K(c/2, δ)−2e−|Pf −Pg |k � νg(B(x, k, δ))

νf (B(x, k, δ))
� K(c/2, δ)2e|Pf −Pg |k,

which proves that the conformal measures νf and νg are comparable at hyperbolic times and that Jνg = d(g−1∗ ν)/dν

is a well defined object in the domain of each inverse branch g−1. So, in general, the relation above indicates that the
continuity of the topological pressure should play a crucial role to obtain the continuity of the Jacobian F � g → Jνg.

Given n � 1 define f n
x : F N → M given by f n

x (g) := gn(x). Since f is non-uniformly expanding and non-
uniformly expanding along random orbits then there are finitely many ergodic stationary measures absolutely con-
tinuous with respect to ν. More precisely,

Theorem 7.3. Let (θε)ε be a non-degenerate random perturbation of f ∈ F . Given ε > 0 there are finitely many
ergodic stationary measures με

1,μ
ε
2, . . . ,μ

ε
l that are absolutely continuous with respect to the conformal measure ν

and

με
i = lim

n→∞
1

n

n−1∑
j=0

∫
fj∗

(
ν

∣∣ B
(
με

i

))
dθN

ε (f), (7.1)

for every 1 � i � l. In addition, l � 1 can be taken constant for every sufficiently small ε.

Proof. This proof follows closely the one of Theorem C in [2]. For that reason we give a brief sketch of the proof
and refer the reader to [2] for details. It is easy to check that any accumulation point με of the sequence of probability
measures

1

n

n−1∑
j=0

(
f

j
x

)
∗θ

N

ε (7.2)

on M is a stationary measure. Moreover, any stationary measure με is absolutely continuous with respect to ν because
of the non-degeneracy of the random perturbation and

με(E) =
∫

με
(
g−1(E)

)
dθε(g) =

∫
1E

(
g(x)

)
dθε(g) dμε(x) =

∫ (
(fx)∗θN

ε

)
(E)dμε

for every measurable set E.
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On the other hand, by the ergodic decomposition of the F -invariant probability measure θN
ε × με there are ergodic

stationary measures. We prove that there can be at most finitely many of them. Indeed, a point x belongs to the basin
of attraction B(με) of an ergodic stationary measure με if and only if

1

n

n−1∑
j=0

ψ
(
fj (x)

) →
∫

ψ dμε (7.3)

for every ψ ∈ C(M) and θN
ε -almost every f ∈ F N. In addition, if x ∈ B(με) then g(x) ∈ B(με) for every g ∈ supp(θε).

Furthermore, the non-degeneracy of the random perturbation implies that B(με) contains the ball of radius rε centered
at f (x). Then, the compactness of M implies that there are finitely many ergodic absolutely continuous stationary
measures με

1, . . . ,μ
ε
l , with 1 � l � l(ε). Since ν(B(με

i )) > 0, integrating (7.3) with respect to ν and using the domi-
nated convergence theorem one obtains

∫
ψ dμε

i = lim
n

1

n

n−1∑
j=0

∫
B(με

i )

ψ ◦ fj dν = lim
n

1

n

n−1∑
j=0

∫
ψ dfj∗

(
ν

∣∣ B
(
με

i

))

for every ψ ∈ C(M) and θN
ε -almost every f ∈ F . This proves the first statement of the theorem.

It remains to show that l = l(ε) can be chosen constant for every sufficiently small ε. The support of each stationary
measure με

i is an invariant set with non-empty interior (see [2]). Since f is non-uniformly expanding then supp(με
i )

contains some hyperbolic pre-ball Vn(x) associated to f and, by invariance, a ball of radius δ. This proves that
l(ε) � l0 for every small ε > 0. On the other direction, since the set supp(με

i ) has positive ν-measure and is forward

invariant by f it must be contained in the support of some ergodic stationary measure με′
i for every ε′ smaller than ε.

This proves the l can be taken constant for small ε and completes sketch of the proof of the theorem. �
Now we are in a position to prove that the equilibrium states constructed in Theorem A are stochastically stable.

Proof of Theorem E. Let (με)ε>0 be a sequence of stationary measures absolutely continuous with respect to ν

and let η be any weak∗ accumulation point. Theorem 7.3 implies that there is l � 1 such that there are exactly l

ergodic stationary measures με
1, . . . ,μ

ε
l that are absolutely continuous with respect to ν, for every sufficiently small ε.

Furthermore,

με
i = lim

n→∞νε
n,i where νε

n,i = 1

n

n−1∑
j=0

∫
fj∗

(
ν

∣∣ B(με
i )

)
dθN

ε (f).

Proceed as in the beginning of Subsection 5.1 and write νε
n � ξε

n + 1
n

∑n−1
j=0 ηε

j with

ξε
n,i = 1

n

n−1∑
j=0

∫
B(με

i )

fj∗
(
ν

∣∣ Hj(f)
)
dθN

ε (f)

and

ηε
n,j =

∑
k>0

∫
B(με

i )

fk∗
([

fj∗
(
ν

∣∣ Hj(f)
)] ∣∣ {

nε
1

(·, σ j (f)
)
> k

})
dθN

ε (f).

The arguments from Section 5 and the uniform integrability of ε �→ nε
1 ∈ L1(θN

ε × ν) yield that each measure νε
n,i

is absolutely continuous with respect to ν with density bounded from above by a constant depending only on ε. By
weak∗ convergence it follows that η is also absolutely continuous with respect to ν and, consequently, η belongs to
the convex hull of finitely many ergodic equilibrium states μ1, . . . ,μk for f with respect to φ. This completes the
proof of the theorem. �
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