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Abstract

We present a new a priori estimate for discrete coagulation–fragmentation systems with size-dependent diffusion within
a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this
a priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction–
diffusion equations.

In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the
known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic
fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it
proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation
is known to hold true in the space homogeneous case.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We consider the time evolution of a physical system where a set of particles can aggregate into groups of two or
more, called clusters, and where these clusters can diffuse in space with a diffusion constant which depends on their
size. If we represent space by an open bounded set Ω ⊆ R

N with regular boundary, the initial–boundary problem for
the concentrations ci = ci(t, x) � 0 of clusters with integer size i � 1 at position x ∈ Ω and time t � 0 is given by the
discrete coagulation–fragmentation system of equations with spatial diffusion and homogeneous Neumann boundary
conditions:
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∂t ci − di�xci = Qi + Fi for x ∈ Ω, t � 0, i ∈ N
∗, (1a)

∇xci · n = 0 for x ∈ ∂Ω, t � 0, i ∈ N
∗, (1b)

ci(0, x) = c0
i (x) for x ∈ Ω, i ∈ N

∗, (1c)

where n = n(x) represents a unit normal vector at a point x ∈ ∂Ω , di is the diffusion constant for clusters of size i,
and

Qi ≡ Qi[c] := Q+
i − Q−

i := 1

2

i−1∑
j=1

ai−j,j ci−j cj −
∞∑

j=1

ai,j cicj ,

Fi ≡ Fi[c] := F+
i − F−

i :=
∞∑

j=1

Bi+j βi+j,ici+j − Bici . (2)

The parameters Bi , βi,j and ai,j , for integers i, j � 0, represent the total rate Bi of fragmentation of clusters of size i,
the average number βi,j of clusters of size j produced due to fragmentation of a cluster of size i, and the coagulation
rate ai,j of clusters of size i with clusters of size j . We refer to these parameters as the coefficients of the system of
equations. They represent rates, so they are always nonnegative; single particles do not fragment further, and mass
should be conserved when a cluster fragments into smaller pieces, so one always imposes

ai,j = aj,i � 0, βi,j � 0
(
i, j ∈ N

∗), (3a)

B1 = 0, Bi � 0
(
i ∈ N

∗), (3b)

i =
i−1∑
j=1

jβi,j (i ∈ N, i � 2). (3c)

In fact, the last condition (3c) implies the conservation of the total mass
∫
Ω

∑∞
i=1 ici dx, which becomes obvious

from the following formal fundamental identity or weak formulation of the coagulation and fragmentation opera-
tors: Consider a sequence of nonnegative numbers {ci}, and define Qi , Fi as in Eqs. (2), then, for any sequence of
numbers ϕi ,

∞∑
i=1

ϕiQi = 1

2

∞∑
i=1

∞∑
j=1

ai,j cicj (ϕi+j − ϕi − ϕj ),

∞∑
i=1

ϕiFi = −
∞∑
i=2

Bici

(
ϕi −

i−1∑
j=1

βi,j ϕj

)
. (4)

As a (still formal) consequence for solutions {ci} of (1)–(2), one can calculate the time derivative of the integral of the
moment

∑
ϕici to obtain

d

dt

∫
Ω

∞∑
i=1

ϕici =
∫
Ω

∞∑
i=1

ϕi(Qi + Fi), (5)

since the integral of the diffusion part vanishes due to the homogeneous Neumann boundary condition. By choosing
ϕi := i above and thanks to (3c), we have

∑∞
i=1 iQi = ∑∞

i=1 iFi = 0, and the total mass is formally conserved:

∥∥ρ(t, ·)∥∥
L1 =

∫
Ω

∞∑
i=1

ici(t, x) dx =
∫
Ω

∞∑
i=1

ic0
i (x) dx = ∥∥ρ0

∥∥
L1 (t � 0). (6)

Our main aim in this work is to provide some new bounds on the regularity of weak solutions for system (1)–(2) by
means of techniques developed in the context of reaction–diffusion equations [9,16,17], and to give three applications
to those bounds, the main one proving rigorously (for almost all the coefficients where this is true in the homogeneous
case) mass conservation (6) and thus the absence of gelation, a well-known phenomenon in coagulation–fragmentation
models [11,10], where the formal conservation of mass is violated as clusters of infinite size are formed.
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In this paper we will work with the global weak solutions constructed in [15] (see also [20] for the case Ω = R
N )

under the assumption

lim
j→+∞

ai,j

j
= lim

j→+∞
Bi+j βi+j,i

i + j
= 0 (for fixed i � 1). (7)

The notion of solution is the following, which we take from [15]:

Definition 1.1. A global weak solution c = {ci}i�1 to (1)–(2) is a sequence of functions ci : [0,+∞)×Ω → [0,+∞)

such that for each T > 0,

ci ∈ C
([0, T ];L1(Ω)

)
, i � 1, (8)

∞∑
j=1

ai,j cicj ∈ L1([0, T ] × Ω
)
, (9)

sup
t�0

∫
Ω

[ ∞∑
i=1

ici(t, x)

]
dx �

∫
Ω

[ ∞∑
i=1

ic0
i (x)

]
dx, (10)

and for each i � 1, ci is a mild solution to the i-th equation in (1a), that is,

ci(t) = ediA1t c0
i +

t∫
0

ediA1(t−s)
(
Qi

[
c(s)

] + Fi

[
c(s)

])
ds, t � 0, (11)

where Qi[c] is defined by (2), A1 denotes the closure in L1(Ω) of the unbounded linear operator A of L2(Ω) defined
by

D(A) := {
w ∈ H 2(Ω)

∣∣ ∇w · n = 0 on ∂Ω
}
, Aw = �w, (12)

and ediA1t is the C0-semigroup generated by diA1 in L1(Ω).

The existence result of [15] reads:

Theorem 1.2 (Laurençot–Mischler). Assume hypotheses (3) and (7) on the coagulation and fragmentation coefficients.
Assume also that

di > 0 for all i � 1,

and that the nonnegative initial datum has finite mass:

c0
i � 0 on Ω and

∫
Ω

∞∑
i=1

ic0
i < +∞.

Then, there exists a global weak solution to the initial–boundary problem (1)–(2) in the sense of Definition 1.1.

Under the extra assumptions on the diffusion constants and the initial data

0 < inf
i

{di} =: d, D := sup
i

{di} < +∞, (13)

∞∑
i=1

ic0
i ∈ L2(Ω), (14)

we are in fact able to prove the following L2 bound on the mass density ρ(t, x) := ∑∞
i=1 ici(t, x): Denoting by ΩT

the cylinder [0, T ] × Ω , we have
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Proposition 1.3. Assume that (3), (7), (13) and (14) hold. Then, for all T > 0 the mass ρ of a weak solution to system
(1)–(2) (given by Theorem 1.2) lies in L2(ΩT ) and the following estimate holds:

‖ρ‖L2(ΩT ) �
(

1 + supi{di}
infi{di}

)
T

∥∥ρ(0, ·)∥∥
L2(Ω)

. (15)

Remark 1.4. Note that the assumption (7) is only included in Proposition 1.3 in order to ensure the existence of a weak
solution via Theorem 1.2. Without assumption (7), the bound (15) would still hold for smooth solutions of a truncated
version of system (1)–(2) uniformly with respect to the truncation. See [15] for the details of such a truncation.

In addition to Proposition 1.3, we give a new proof of an L1 bound of the various coagulation and fragmentation
terms:

Proposition 1.5. We still assume that (3), (7), (13) and (14) hold. Then, for all T > 0 and i ∈ N
∗ all the terms Q+

i ,
Q−

i , F+
i and F−

i associated to a weak solution to system (1)–(2) (given by Theorem 1.2) lie in L1(ΩT ) with a bound
which depends in an explicit way on the coagulation and fragmentation coefficients, the diffusion coefficients, and the
initial data c0

i .

Remark 1.6. The fact that the terms Q+
i , Q−

i , F+
i and F−

i associated to a weak solution are in L1(ΩT ) is included
in the definition of weak solution; the main content of Proposition 1.5 is the explicit dependence of the bounds on the
coefficients and initial data, which can be used to obtain uniform estimates for approximated solutions as we show for
instance in Section 3. For details on the explicit L1 bounds we refer to the proof of Proposition 1.5 in Section 2.

Remark 1.7. The L1 bounds on Q+
i , Q−

i , F+
i and F−

i require the assumption (7) only to ensure existence. They
would hold at the formal level (that is, for smooth solutions of a truncated system) under the less stringent assumption

Ki := sup
j∈N

Bi+j βi+j,i

i + j
< +∞ (

i ∈ N
∗). (16)

Note that the above L1 bound also holds when assumptions (3), (7) are replaced by the assumptions of Theorem 1.2
in [15], but the proof is then much more difficult as it requires an induction on i which can be removed under our extra
assumptions.

In Section 3, as a first application of the bounds obtained in Propositions 1.3 and 1.5, we give a very simple proof
of existence of weak solutions to (1)–(2) in dimension N = 1 (that is, the result of Theorem 1.2 in dimension 1) under
the additional assumptions (13) and (14).

Our main application of Propositions 1.3 and 1.5 is however related to the problem of conservation of mass (6),
which holds rigorously for solutions to a truncated system (see e.g [15]). Nevertheless, it is an important issue in
coagulation–fragmentation theory whether (6) holds for weak solutions of system (1)–(2) itself, or if (6) is replaced
by an inequality stating that mass is nonincreasing in time. If at some time t , the identity (6) does not hold any
more, we say that gelation occurs, which means from a physical point of view that a macroscopic object has been
created.

Our main result in Section 4 basically shows that (under the assumptions (3) and (7)) gelation does not occur when
the coagulation coefficients ai,j are at most linear and, moreover, slightly sublinear far off the diagonal i = j . More
precisely, we prove mass conservation under the following condition on the coefficients ai,j :

Hypothesis 1.8. There is some bounded function θ : [0,+∞) → (0,+∞) such that θ(x) → 0 when x → +∞ and

ai,j � (i + j)θ(j/i) for all j � i. (17)

(Or equivalently, by symmetry,

ai,j � (i + j)θ
(
max{j/i, i/j }) for all i, j � 1.)
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Theorem 1.9. Assume that (3), (7), (13), and (14) hold. Also, assume Hypothesis 1.8. Then, the weak solution to the
system (1) given by Theorem 1.2 has a superlinear moment which is bounded on bounded time intervals; this is, there
is some increasing function C = C(T ) > 0, and some increasing sequence of positive numbers {ψi}i�1 with

lim
i→∞ψi → +∞ (18)

such that for all T > 0,∫
Ω

∞∑
i=1

iψici � C(T ) for all t ∈ [0, T ]. (19)

As a consequence, under these conditions all weak solutions given by Theorem 1.2 of (1) conserve mass:∫
Ω

ρ0(x) dx =
∫
Ω

ρ(t, x) dx for all t � 0. (20)

Remark 1.10 (Admissible coagulation coefficients). Let us comment on Hypothesis 1.8. First note that 1.8 includes
coefficients of the form

ai,j � Cst
(
iαjβ + iβjα

)
for any α,β > 0 such that α + β � 1 (take θ(x) = x−ε for ε > 0 small enough). It is also satisfied when

ai,j � Cst

(
i

φ(i)
+ j

φ(j)

)
,

where x 
→ φ(x) is any positive strictly increasing function (for x big enough), which goes to infinity at infinity, and
such that x 
→ x

φ(x)
is also increasing (take θ(λ) = φ(λ)−1/2). All the examples φ = log(1 + ·), φ = log(1 + ·) ◦

log(1 + ·), . . . , φ = log(1 + ·) ◦ · · · ◦ log(1 + ·) satisfy this condition. Likewise, condition (17) also holds when (for
i, j � 2)

aij � Cst

(
i
R(log j)

log i
+ j

R(log i)

log j

)
(21)

for some nondecreasing function R such that x 
→ R(x)/x is nonincreasing and tends to 0 when x → +∞. Note
indeed that when (21) holds,

aij

i + j
� 1

1 + j/i

R[log(j/i) + log i]
log i

+ j/i

1 + j/i

R[log i]
log(j/i) + log i

. (22)

Then, condition (17) is obtained by distinguishing the cases i � j/i and i � j/i in both terms of the right-hand side
of (22).

Assumption (21) can even be replaced by

aij � Cst

(
i
R(log(log j))

log(log i)
+ j

R(log(log i))

log(log j)

)
,

with the same requirements on R as previously.
Note however that the linear coefficient aij = i + j (or the coefficient aij = i

log i
log j + j

log j
log i) does not satisfy

Hypothesis 1.8, though one would expect that Theorem 1.9 still holds for such coefficients.

Before introducing a generalised coagulation–fragmentation model and thus, a third application of Propositions 1.3
and 1.5, let us briefly review previous results on existence theory and mass conservation for the coagulation–
fragmentation system (1). With some further restrictions on the coefficients as compared to [15], existence of solutions
by means of L∞ bounds on the ci has been proven in [3,7,13,18,19]. A different technique was used in [1] to prove
that Eq. (1) is well posed, locally in time, and globally in time when the space dimension N is one, always assuming
that the coagulation and fragmentation coefficients are bounded.
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In a recent work [14], Hammond and Rezakhanlou considered Eq. (1) without fragmentation, and gave L∞ bounds
on moments of the solution (and as a consequence, L∞ bounds on the ci ). This implies uniqueness and mass conser-
vation for some coagulation coefficients that grow at most linearly as well as an alternative proof of the existence of
L∞ solutions by a priori bounds on the ci ; for instance, if Ω = R

N and diffusion coefficients di are nonincreasing
and satisfying (13) and if moreover

∞∑
i=1

ic0
i ∈ L∞(

R
N

)
,

∞∑
i=1

i2c0
i ∈ L1(

R
N

)
, ai,j � C(i + j)

for some C > 0 and all i, j � 1, then they show that mass is conserved for all weak solutions of Eq. (1) without
fragmentation. See [14, Theorems 1.3 and 1.4] and [14, Corollary 1.1] for more details.

In the spatially homogeneous case, mass conservation is known for general data with finite mass and coagulation
coefficients including the critical linear case ai,j � Cst(i + j) (see, for instance, [2,5]).

We finally give a third application of Propositions 1.3 and 1.5. As mentioned already in Remarks 1.4 and 1.7, Propo-
sitions 1.3 and 1.5 (despite true without restrictions on the coagulation coefficients ai,j for smooth approximating
solutions) do not really improve the theory of existence of weak solutions for the usual models of coagulation–
fragmentation like (1) as the full assumption (7) are needed in passing to the limit in the approximating solutions. At
best they help provide simpler proofs in particular cases, as done in Section 3.

On the other hand, Propositions 1.3 and 1.5 are well suited for the existence theory of more exotic models, for
instance, when fragmentation occurs due to binary collisions between clusters. Then, the break-up terms are quadratic,
being proportional to the concentration of the two clusters which collide. This leads to coagulation–fragmentation
models where all terms in the right-hand side are quadratic.

More precisely, we consider that clusters of size k and l collide with a rate bk,l � 0, leading to fragmentation. As
a consequence, clusters of size i < max{k, l} are produced, in average, at a rate βi,k,l � 0 in such a way that the mass
is conserved (that is,

∑
i<max{k,l} iβi,k,l = k + l). This leads to the following system (for t ∈ R+, x ∈ Ω a bounded

regular open subset of R
N ):

∂t ci − di�xci = 1

2

∑
k+l=i

ak,lckcl −
∞∑

k=1

ai,kcick + 1

2

∞∑
k,l=1

∑
i<max{k,l}

bk,lckclβi,k,l −
∞∑

k=1

bi,kcick

(
i ∈ N

∗),
(23)

together with the initial and boundary conditions (1b), (1c). For this model, the set of assumptions (3) is replaced by

ai,j = aj,i � 0
(
i, j ∈ N

∗), (24a)

βi,k,l = βi,l,k � 0
(
i, k, l ∈ N

∗, i < max{k, l}), (24b)

bi,k = bk,i � 0, b1,1 = 0
(
i, k ∈ N

∗, i < k
)
, (24c)∑

i<max{k,l}
iβi,k,l = k + l

(
k, l ∈ N

∗). (24d)

Because of the quadratic character of the fragmentation terms, the inductive method for the proof of existence
devised by Laurençot and Mischler [15] seems difficult to adapt in this case. The method presented in our first appli-
cation can however be adapted, provided that the dimension is N = 1 and that the following assumptions are made on
the coefficients:

Hypothesis 1.11. Assume (24), and suppose that the diffusion coefficients are uniformly bounded above and below
(Eq. (13)) and that the initial mass lies in L2(Ω) (Eq. (14)). In place of (7) we assume further that

lim
l→∞

ak,l

l
= 0, lim

l→∞
bk,l

l
= 0

(
for fixed k ∈ N

∗), (25)

lim
l→∞ sup

k

{
bk,l

kl
βi,k,l

}
= 0

(
for fixed i ∈ N

∗). (26)
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We define a solution to (23) along the same lines as in Definition 1.1:

Definition 1.12. A global weak solution c = {ci}i�1 to (23), the boundary condition (1b) and the initial data (1c) is a
sequence of functions ci : [0,+∞) × Ω → [0,+∞) such that for each T > 0,

ci ∈ C
([0, T ];L1(Ω)

)
, i � 1, (27)

the four terms on the right-hand side of (23) are in L1([0, T ] × Ω),

sup
t�0

∫
Ω

[ ∞∑
i=1

ici(t, x)

]
dx �

∫
Ω

[ ∞∑
i=1

ic0
i (x)

]
dx, (28)

and for each i � 1, ci is a mild solution to the i-th equation in (23), that is,

ci(t) = ediA1t c0
i +

t∫
0

ediA1(t−s)Zi

[
c(s)

]
ds, t � 0,

where Zi[c] represents the right-hand side of (23) and A1, ediA1t are the same as in Definition 1.1.

We are now able to prove the following theorem:

Theorem 1.13. Under Hypothesis 1.11 on the coefficients and initial data of the equation, and in dimension N = 1,
there exists a global weak solution to Eq. (23) satisfying

ci ∈ C
([0, T ],L1(Ω)

) ∩ L3−ε(ΩT )
(

for all i ∈ N
∗, T > 0, ε > 0

)
,

for which the four terms appearing in the right-hand side of (23) lie in L1(ΩT ).

Remark 1.14. The method of proof unfortunately does not seem to provide existence in dimensions N � 2. Dimension
N = 2 looks in fact critical as it doesn’t allow a priori a bootstrap in the heat equation with right-hand side in L1.
A possible line of proof could follow [12] in the context of reaction–diffusion equations. In higher dimensions N � 3,
assuming additionally a detailed balance relation between coagulation and fragmentation, an entropy based duality
method as in [9] could be used to define global weak L2 solutions (see also [16]).

Our paper is built in the following way: Section 2 is devoted to the proof of Propositions 1.3 and 1.5. Then
Sections 3, 4, and 5 are each devoted to one of the three applications. In particular, Theorem 1.9 is proven in Section 4
first in a particular case (with a very short proof), and then in complete generality. Theorem 1.13 is proven in Section 5.
Finally, an Appendix A is devoted to the proof of a lemma of duality due to M. Pierre and D. Schmitt (cf. [17]), which
is the key to Proposition 1.3.

2. A new a priori estimate

The solutions given in [15] are constructed by approximating the system (1)–(2) by a truncated system (the proce-
dure consists in setting the coagulation and fragmentation coefficients to zero beyond a given finite size, and smoothing
the initial data) for which very regular solutions exist. Then, uniform estimates for the solutions of this approximate
system are proven. Finally, it is shown that these solutions have a subsequence which converges to a solution to the
original system. In the proofs below it must be understood that the bounds are obtained for the truncated system (in
a uniform way) and then transferred to the weak solution by a passage to the limit: the fact that this transfer can
be done (in the case of the total mass) without replacing the equality by an inequality is the heart of our second
application.
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We begin with

Proof of Proposition 1.3. Using the fact that

∂tρ − �(Mρ) = 0, inf
i∈N∗{di} � M(t, x) :=

∑∞
i=1 diici∑∞
i=1 ici

� sup
i∈N∗

{di},

we can deduce thanks to a lemma of duality [9, Appendix] that ρ ∈ L2(ΩT ), and more precisely that

‖ρ‖L2(ΩT ) �
(

1 + supi{di}
infi{di}

)
T

∥∥ρ(0, ·)∥∥
L2(Ω)

,

for all T > 0. For the sake of completeness, the lemma is recalled with its proof in Appendix A (Lemma A.2). �
We now turn to

Proof of Proposition 1.5. For F−
i , it is clear that

F−
i � Biρ ∈ L2([0, T ] × Ω

) ⊆ L1([0, T ] × Ω
)
,

thanks to Proposition 1.3. For F+
i we use Eq. (16) to write

F+
i �

∞∑
j=1

(
Bi+j βi+j,i

i + j

)
(i + j)ci+j � Ki

∞∑
j=1

(i + j)ci+j � Kiρ, (29)

which is again in L2([0, T ] × Ω), and hence in L1([0, T ] × Ω).
For the coagulation terms, we have, since each ci is less than ρ,

Q+
i � 1

4

i−1∑
j=1

ai−j,j

(
c2
i−j + c2

j

)
� 1

2
ρ2

(
i−1∑
j=1

ai−j,j

)
, (30)

which is in L1([0, T ]×Ω) as the same is true for ρ2 and the sum consists only of a finite number of terms. Finally, for
Q−

i we use the fact that Q+
i and F+

i are already known to be integrable: Thus, from Eq. (1) integrated over [0, T ]×Ω ,

∫
Ω

ci(T , x) dx +
T∫

0

∫
Ω

Q−
i (t, x) dx dt �

∫
Ω

c0
i (x) dx +

T∫
0

∫
Ω

Q+
i (t, x) dx dt +

T∫
0

∫
Ω

F+
i (t, x) dx dt.

This proves our result. �
3. First application: A simplified proof of existence of solutions in dimension 1

We begin this section with the following corollary of Proposition 1.5, in the particular case of dimension N = 1.

Lemma 3.1. Assume that the dimension N = 1, and that (3), (13), (14) and (16) (being more general than (7)) hold.
Then, for all T � 0, i ∈ N

∗ the concentrations ci ∈ L∞([0, T ] × Ω) (where ci are smooth solutions of a truncated
version of (1)–(2), the L∞ norm being independent of the truncation).

Proof. We carry out a bootstrap regularity argument. Thanks to Proposition 1.5, we know that (for all i ∈ N
∗)

(∂t − di�)ci ∈ L1([0, T ] × Ω
)
.

Using for example the results in [8], this implies that for any δ > 0,

ci ∈ L3−δ
([0, T ] × Ω

) (
i ∈ N

∗). (31)
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Now, Eq. (31) shows that Q+
i is actually more regular: from (the first inequality in) (30),

Q+
i ∈ L

3
2 − δ

2
([0, T ] × Ω

)
for all δ > 0, i ∈ N

∗. (32)

In addition, we already knew from Eq. (29) that (for all i ∈ N
∗)

F+
i ∈ L2([0, T ] × Ω

)
, (33)

[for which we do not need to assume that the space dimension N is 1]. Consequently, omitting the negative terms (for
all i ∈ N

∗, δ > 0), we can find hi such that

(∂t − di�)ci � hi ∈ L
3
2 − δ

2
([0, T ] × Ω

)
.

As the ci are positive, this implies that

ci ∈ Lp
([0, T ] × Ω

)
for all p ∈ [1,+∞[, i ∈ N

∗.

Again from (30),

Q+
i ∈ Lp

([0, T ] × Ω
)

for all p ∈ [1,+∞[, i ∈ N
∗.

From this and (33), we can find hi such that

(∂t − di�)ci � hi ∈ L2([0, T ] × Ω
)
,

which implies in turn that ci ∈ L∞([0, T ] × Ω) (for all i ∈ N
∗). �

We now have the possibility to give a short proof of Theorem 1.2 in dimension 1 (and under the extra assump-
tions (13), (14)). Recall that a proof for any dimension can be found in [15].

Short proof of Theorem 1.2 in 1D assuming additionally (13) and (14). Consider a sequence cM
i of (regu-

lar) solutions to a truncated version of system (1)–(2). Thanks to Lemma 3.1, we know that for each i ∈ N
∗,

supM ‖cM
i ‖L∞(ΩT ) < +∞. Then (for each i ∈ N

∗) there is a subsequence of the (cM
i )M∈N (which we still denote

by (cM
i )M∈N), and a function ci ∈ L∞(ΩT ), such that

cM
i

∗
⇀ci weak-∗ in L∞(ΩT ). (34)

Using Proposition 1.5, we also see that (for any fixed i ∈ N
∗), the L1(ΩT ) norms of C

+,M
i , C

−,M
i , F

+,M
i , F

−,M
i (the

coagulation and fragmentation terms associated to {cM
i }) are bounded independently of M . Using Eq. (1a) and the

properties of the heat equation, one sees that for each i ∈ N
∗, the sequence {cM

i } lies in a strongly compact subset of
L1(ΩT ). Hence, by renaming our subsequence again, we may assume that

cM
i → ci in L1(ΩT ) strong , for all i ∈ N

∗. (35)

In order to prove that {ci} is indeed a solution to Eq. (1)–(2), let us prove that all terms F
+,M
i , F

−,M
i , C

+,M
i , C

−,M
i

converge to the corresponding expressions for ci , which we denote by F+
i , F−

i , C+
i , C−

i , as usual.

1. Positive fragmentation term: for each fixed i, the sum

F
+,M
i =

∞∑
j=1

Bi+j βi+j,ic
M
i+j

converges to F+
i in L1(ΩT ) because the tails of the sum converge to 0 uniformly in M (this is due to hypothe-

sis (7)):

T∫
0

∫
Ω

∣∣∣∣∑
j

Bi+j βi+j,i

(
cM
i+j − ci+j

)∣∣∣∣dx dt � 2

(
sup
j�J0

∣∣∣∣Bi+j βi+j,i

i + j

∣∣∣∣
)

ρ + sup
j�J0

∥∥cM
i+j − ci+j

∥∥
L1(ΩT )

.
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2. The negative fragmentation term is just a multiple of cM
i , so the convergence in L1(ΩT ) is given by (35).

3. For each fixed i, the positive coagulation term is a finite sum of terms of the form ai,j c
M
i cM

j . Thanks to (34)

and (35), this converges to ai,j cicj in L1(ΩT ).
4. The negative coagulation term is

Q
−,M
i = cM

i

∞∑
j=1

ai,j c
M
j .

Since cM
i converges to ci weak-∗ in L∞(ΩT ), it is enough to prove that

∑∞
j=1 ai,j c

M
j converges to

∑∞
j=1 ai,j cj

strongly in L1(ΩT ). Observing that

T∫
0

∫
Ω

∣∣∣∣∑
j

ai,j

(
cM
j − cj

)∣∣∣∣dx dt � 2

(
sup
j�J0

∣∣∣∣ai,j

j

∣∣∣∣
)

ρ + sup
j�J0

∥∥cM
j − cj

∥∥
L1(ΩT )

,

we see thanks to (7) and (35) that this convergence indeed holds. �
4. Second application: Mass conservation

We begin this section with a very short proof of Theorem 1.9 in a particular case in order to show how estimate (15)
works. More precisely, we consider the pure coagulation case with ai,j = √

ij and Bi = 0 (no fragmentation), and with
initial data satisfying additionally

∑∞
i=0 i log ici(0, x) dx < +∞ (which is sightly more stringent than only assuming

finite initial mass).
Then, using the weak formulation (4) with ϕi = log(i) (and remembering that log(1 + x) � Cst

√
x )

d

dt

∫
Ω

∞∑
i=1

i log ici dx =
∫
Ω

∞∑
i=1

∞∑
j=1

√
ijcicj

(
i log

(
1 + j

i

)
+ j log

(
1 + i

j

))
dx

� 2
∫
Ω

∞∑
i=1

∞∑
j=1

ijcicj dx � 2
∫
Ω

ρ(t, x)2 dx. (36)

As a consequence, we have for all T > 0

∫
Ω

∞∑
i=0

i log ici(T , x) dx �
∫
Ω

∞∑
i=0

i log ici(0, x) dx + 2

T∫
0

∫
Ω

ρ(t, x)2 dx dt,

which ensures the propagation of the moment
∫ ∑∞

i=0 i log ici(·, x) dx, and therefore gives a rigorous proof of con-
servation of the mass for weak solutions of the system: no gelation occurs.

Our general result is obtained through a refinement of this argument under Hypothesis 1.8. Before giving the proof
of Theorem 1.9 we need two technical lemmas, which will substitute the intermediate step in (36).

Lemma 4.1. Let {μi}i�1 and {νi}i�1 be sequences of positive numbers such that {μi} is bounded,

∞∑
i=1

μi = +∞ and lim
i→+∞νi = +∞.

Then we can find a sequence {ξi}i�1 of nonnegative numbers such that

∞∑
i=1

ξi = +∞,

ξi � μi and ψi :=
i∑

j=1

ξj � νi for all i � 1.
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Proof. We may assume that νi is nondecreasing, for otherwise we can consider ν̃i := infj�i{νj } instead of νi . Then,
in order to find ξi it is enough to define recursively ξ0 := 0 and, for i � 1,

ξi :=
{

μi if μi + ∑i−1
j=0 ξj � νi,

0 otherwise.

By construction, ξi � μi for all i � 1, and also
∑i

j=1 ξj � νi for i � 1, as we are assuming {νi} nondecreasing.
To see that {ξi} cannot be summable, suppose otherwise that

∑∞
i=1 ξi = S < +∞. Take a bound M > 0 of {μi},

and choose an integer k such that νi � S + M for all i � k. Then, by definition,

ξi = μi for all i � k,

which implies that {ξi} is not summable, as {μi} is not, and gives a contradiction. �
Lemma 4.2. Assume (17). There is a nondecreasing sequence of positive numbers {ψi}i�1 such that ψi → +∞ when
i → +∞, and

ai,j (ψi+j − ψi) � Cj for all i, j � 1, (37)

for some constant C > 0.
In addition, for a given sequence of positive numbers λi with limi→+∞ λi = +∞, we can choose ψi so that ψi � λi

for all i.

Proof. First, we may assume that the function θ given in Hypothesis 1.8 is nonincreasing on [1,+∞), as we can
always take θ̃ (x) := supy�x θ(y) instead.

We choose a sequence of nonnegative numbers {ξi} by applying Lemma 4.1 with

μi := 1

(1 + i) log(1 + i)
, (38)

νi := min

{
λi,

1

θ(
√

i/2)
,

}
. (39)

Note that the conditions in Lemma 4.1 are met: the sequence in the right-hand side of (38) is not summable,
and the right-hand side of (39) goes to +∞ with i. If we define ψi := ∑i

j=1 ξj , then the following is given by
Lemma 4.1:

ξi � 1

(1 + i) log(1 + i)
, ψi � 1

θ(
√

i/2)
, ψi � λi, i � 1,

lim
i→+∞ψi = +∞.

These conditions essentially say that ψi grows slowlier than log log(i), slowlier than θ(
√

i/2)−1, and slowlier than λi ,
yet still diverges as i → +∞.

We can now prove (37) to hold for these {ψi} by distinguishing three cases:

1. For any i, j � 1, as log(1 + k) � 1/2 for all k � 1,

ψi+j − ψi =
i+j∑

k=i+1

ξk � 2
i+j∑

k=i+1

1

1 + k
� 2 log(i + j + 1) − 2 log(i + 1) � 2j

i
.

Then, in case j � i we use the fact that θ(x) � Cθ for some constant Cθ > 0 and all x > 0 and have

ai,j (ψi+j − ψi) � 2Cθ(i + j)
j � 4Cθj, for j � i.

i
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2. Secondly, for i < j � i2,

ψi+j − ψi �
2i2∑

k=i+1

ξk �
2i2∑

k=i+1

1

(k + 1) log(k + 1)

� log log
(
2i2 + 1

) − log log(i + 1) � log

(
2 log(

√
3i)

log(i + 1)

)
� C1,

for some number C1 > 0. Thus,

ai,j (ψi+j − ψi) � C1Cθ(i + j) � 2C1Cθj.

3. Finally, for j > i2,

ψi+j − ψi � ψi+j =
i+j∑
k=1

ξk � 1

θ(
√

(i + j)/2 )
� 1

θ(
√

j )
,

and as θ is nonincreasing on [1,+∞) (we may assume this; see the beginning of this proof), we have for all j > i2

ai,j (ψi+j − ψi) � (i + j)θ(j/i)
1

θ(
√

j )
� (i + j)θ(

√
j )

1

θ(
√

j )
= i + j � 2j.

Together, these three cases show (37) for all i, j � 1. �
Now we are ready to finish the proof of our result on mass conservation:

Proof of Theorem 1.9. As remarked above (cf. beginning of Section 2), we will prove the estimate (19) for a regular
solution to an approximating system, with a constant C(T ) that does not depend on the regularisation. Then, passing
to the limit, the result is true for a weak solution thus constructed.

We consider a solution to an approximating system on [0,+∞), which we still denote by {ci}i�1. Then, by a
version of the de la Vallée–Poussin’s Lemma (see, for instance, Proposition 9.1.1 in [4] or also proof of Lemma 7
in [6]), there exists a nondecreasing sequence of positive numbers {λi}i�1 (independent of the regularisation of the
initial data) which diverges as i → +∞, and such that∫

Ω

∞∑
i=1

iλic
0
i dx < +∞. (40)

If we define ri := ∫
Ω

ic0
i , note that this is just the claim that one can find λi as above with

∑
i λiri < +∞.

Taking {ψi} as given by Lemma 4.2, such that ψi � λi for all i � 1, we have thus
∫
Ω

∑∞
i=1 iψic

0
i (x) dx < +∞.

Then, as integrating over Ω makes the diffusion term vanish due to the no-flux boundary conditions, we estimate

d

dt

∫
Ω

∞∑
i=1

iψici dx � 1

2

∫
Ω

∞∑
i,j=1

ai,j cicj

(
(i + j)ψi+j − iψi − jψj

)
dx, (41)

where we used that the contribution of the fragmentation term is nonpositive, as can be seen from (4) with ϕi ≡ iψi ,
and the fact that

i−1∑
j=1

βi,j jψj � ψi

i−1∑
j=1

βi,j j = iψi,

as ψi is nondecreasing and (3c) holds. Continuing from (41), by the symmetry of the ai,j , and using the inequality (37)
from Lemma 4.2, we have

d

dt

∫ ∞∑
i=1

iψici dx �
∫ ∞∑

i,j=1

ai,j cicj i(ψi+j − ψi) dx � C

∫
ρ2 dx. (42)
Ω Ω Ω
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Thus, Proposition 1.3 showing ρ ∈ L2(ΩT ) proves that
∫
Ω

∑∞
i=1 iψici dx is bounded on bounded time intervals.

Mass conservation is a direct consequence of this. �
Remark 4.3 (Absence of gelation via tightness). It is interesting to sketch an alternative proof showing conservation
of mass via a tightness argument and without establishing superlinear moments. By introducing the superlinear test
sequence iφk(i) with φk(i) = log i

log k
Ii<k + Ii�k for all k ∈ N

∗, we use the weak formulation (4) to see (as above)
that the fragmentation part is nonnegative for superlinear test sequences, and use the symmetry of the ai,j to reduce
summation over the indices i � j ∈ N

∗, which leads to the estimate

d

dt

∫
Ω

∞∑
i=1

ciiφk(i) dx

�
∫
Ω

∞∑
i�j

∞∑
j=1

ai,j [ici][cj ]
(

log(1 + j
i
)

log(k)
Ii<k + j

i

( log(1 + i
j
)

log(k)
Ii+j<k + log( k

j
)

log(k)
Ij<k�i+j

))
dx.

For the first term, we use log(1 + j/i) � j/i. Then, for the second and third terms, we distinguish further the areas
where i/j � log(k) and i/j > log(k). When i/j � log(k), we estimate 1 + i/j � 1 + log(k) in the second term. In the
third term, where k � i + j , we estimate k/j � 1 + i/j � 1 + log(k). On the other hand, when i/j > log(k), both the
second and the third term are bounded by one. Altogether, we get thanks to Hypothesis 1.8, i.e.

ai,j

i
� Cst θ(i/j) for

i � j :

d

dt

∫
Ω

∞∑
i=1

ciiφk(i) dx �
(

1

log(k)
+ log(1 + logk)

log(k)

)
sup

i�j∈N∗

{
ai,j

i

}∫
Ω

ρ2 dx

+
∫
Ω

∞∑
i�j

∞∑
j=1

[ici][jcj ]ai,j

i
Ii/j>log(k);j<k dx

� Cst

(
log(1 + logk)

log(k)
+ sup

i/j�log(k)

θ

(
i

j

))∫
Ω

ρ2 dx

and the right-hand side tends to zero as k → ∞. Hence, using Proposition 1.3 and integrating over a time inter-
val [0, T ], we get thanks to a tightness argument that the mass is indeed conserved, and no gelation occurs.

5. Third application: Fragmentation due to collisions in dimension 1

Proof of Theorem 1.13. We introduce (cM
i )M a sequence of smooth solutions for a truncated version of Eq. (23). We

first observe that Proposition 1.3 still holds thanks to the duality estimate, that is ρ := ∑
i ici ∈ L2(ΩT ) for all T > 0.

Estimate (30), in which only the coagulation kernel appears, also holds. Moreover, thanks to (24d),∑
k,l

∑
max{k,l}>i

bk,lckclβikl � Csti
∑

k

∑
l

(k + l)ckcl � Csti ρ
2 ∈ L1(ΩT ).

The loss terms

∞∑
k=1

ai,kcick,

∞∑
k=1

bi,kcick

lie then in L1(ΩT ) by integration of the equation on [0, T ] × Ω .
Using now Eq. (23), we see that (for all i ∈ N

∗) ∂t c
M
i − di∂xxc

M
i belongs to a bounded subset of L1(ΩT ). As a

consequence, cM
i belongs (for all i ∈ N

∗) to a compact subset of L3−ε([0, T ]×Ω) for all T > 0 and ε > 0. We denote
(for all i ∈ N

∗) by ci a limit (in L3−ε([0, T ] × Ω) strong) of a subsequence of (cM)M∈N (still denoted by (cM)M∈N).
i i
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We now pass to the limit in all terms of the right-hand side of Eq. (23). The first term can easily be dealt with, since
it consists of a finite sum. Then, we pass to the limit in the second term:

T∫
0

∫
Ω

∣∣∣∣∣
∞∑

k=1

ai,kc
n
i cn

k −
∞∑

k=1

ai,kcick

∣∣∣∣∣dx dt �
T∫

0

∫
Ω

∣∣∣∣∣
K∑

k=1

ai,kc
n
i cn

k −
K∑

k=1

ai,kcick

∣∣∣∣∣dx dt + 2‖ρ‖2
L2 sup

k>K

{
ai,k

k

}
.

The second part of this expression is small when K is large enough thanks to assumptions (25), (26), while the first
part tends to 0 for all given K .

The fourth term of the right-hand side of Eq. (23) can be treated exactly in the same way. We now turn to the third
term:

T∫
0

∫
Ω

∣∣∣∣∣
∞∑

k,l=1

∑
i<max{k,l}

bk,lc
n
k cn

l βi,k,l −
∞∑

k,l=1

∑
i<max{k,l}

bk,lckclβi,k,l

∣∣∣∣∣dx dt

�
T∫

0

∫
Ω

∣∣∣∣∣
K∑

k,l=1

k�K,l�K∑
i<max{k,l}

bk,lc
n
k cn

l βi,k,l −
K∑

k,l=1

k�K,l�K∑
i<max{k,l}

bk,lckclβi,k,l

∣∣∣∣∣dx dt + 4‖ρ‖2
L2 sup

l�K

sup
k∈N

{
bk,l

kl
βi,k,l

}
.

Once again, the second term is small when K is large enough thanks to assumptions (25), (26), while the first term
tends to 0 for all given K . �
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Appendix A. A duality lemma

We recall here results from e.g. [17,9]. We start with

Lemma A.1. Assume that z : ΩT → [0,+∞) satisfies

∂t z + M�z = −H on Ω,

∇z · n = 0 on ∂Ω,

z(T , x) = 0 on Ω, (A.1)

where H ∈ L2(ΩT ), and d1 � M � d0 > 0. Then,

∥∥z(0, ·)∥∥
L2(Ω)

�
(

1 + d1

d0

)
T ‖H‖L2(ΩT ). (A.2)

Proof. Calculating the time derivative of
∫
Ω

|∇z|2, or alternatively multiplying Eq. (A.1) by �z and integrating on Ω ,
we obtain

−1

2

d

dt

∫
Ω

|∇z|2 dx +
∫
Ω

M(�z)2 dx =
∫
Ω

−H�zdx,

where the boundary condition on z was used. Integrating on [0, T ] and taking into account that z(T , x) = 0,
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1

2

∫
Ω

∣∣∇z(0, ·)∣∣2
dx +

∫
ΩT

M(�z)2 dx dt =
∫

ΩT

−H�zdx dt � ‖H‖L2(ΩT )‖�z‖L2(ΩT ). (A.3)

Using that M � d0 we see that
∫
ΩT

M(�z)2 � d0‖�z‖2
L2(ΩT )

, so (A.3) implies

d0‖�z‖L2(ΩT ) � ‖H‖L2(ΩT ).

From this and (A.1) we have

‖∂t z‖L2(ΩT ) � ‖M�z‖L2(ΩT ) + ‖H‖L2(ΩT )

� d1‖�z‖L2(ΩT ) + ‖H‖L2(ΩT ) �
(

1 + d1

d0

)
‖H‖L2(ΩT ).

Finally,

∥∥z(0, ·)∥∥
L2(Ω)

�
T∫

0

‖∂szs‖L2(Ω) ds �
(

1 + d1

d0

)
T ‖H‖L2(ΩT ). �

Lemma A.2. Assume that ρ : ΩT → [0,+∞) and satisfies

∂tρ − �(Mρ) � 0 on Ω,

∇(ρM) · n = 0 on ∂Ω, (A.4)

where M : ΩT → R is a function which satisfies d1 � M � d0 > 0 for some numbers d1, d0. Then,

‖ρ‖L2(ΩT ) �
(

1 + d1

d0

)
T

∥∥ρ(0, ·)∥∥2.

Proof. Consider the dual problem (A.1)–(A.2) for an arbitrary function H ∈ L2(ΩT ), with H � 0. Then, z � 0, and
integrating by parts in Eq. (A.1), one finds that∫

ΩT

ρH dx dt = −
∫

ΩT

ρ(∂t z + M�z)dx dt

=
∫

ΩT

z
(
∂tρ − �(ρM)

)
dx dt +

∫
Ω

ρ(0, ·)z(0, ·) dx dt

�
∫
Ω

ρ(0, ·)z(0, ·) dx dt,

where we have used Eqs. (A.4), (A.2) and the boundary conditions on ρM and z. Hence, for any nonnegative function
H ∈ L2(ΩT ),∫

ΩT

ρH dx dt �
∥∥ρ(0, ·)∥∥

L2(Ω)

∥∥z(0, ·)∥∥
L2(Ω)

,

and thanks to Lemma A.1,∫
ΩT

ρH dx dt � (1 + d1/d0)T
∥∥ρ(0, ·)∥∥

L2(Ω)
‖H‖L2(ΩT ).

Remembering that ρ � 0, we obtain by duality:

‖ρ‖L2(ΩT ) � (1 + d1/d0)T
∥∥ρ(0, ·)∥∥

L2(Ω)
.

This proves the lemma. �
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