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Abstract

For a smooth W : (0,∞) × R
d → R and a family of L-periodic W1,2-functions ϑε : R → R

d with ϑε ⇀ ϑ , the basic problem is
to understand the weak* limit as ε → 0 of L-periodic minimizers of

L∫
0

(
ε

2
ϕ′2 + W(ϕ,ϑε)

)
ds. (†)

It is assumed that W(φ, θ) → ∞ as φ → 0,∞, and that W(·, θ), which has no more than three critical points counting multiplicity
depending on θ ∈ R

d , is of a type that arises in the Cahn–Hilliard theory of phase separations where d = 1. The limiting problem
with ε = 0 is to minimize, over bounded L-periodic measurable functions ϕ,

L∫
0

W
(
ϕ(s),ϑ(s)

)
ds. (‡)

Minimizers of (‡) need not be unique (there may be uncountably many), they may be discontinuous and minimizers with only
simple jumps may coexist with minimizers with much more complicated discontinuities. Weak* limits of minimizers of (†) as
ε → 0 are minimizers of the relaxation of (‡). However it is shown that if, for a sequence of minimizers of (†),

lim sup
k→∞

√
εk

L∫
0

∣∣ϕ′
εk

(s)
∣∣2 ds < ∞, εk → 0,

then the weak* limit of any subsequence of {ϕεk } is an actual minimizer of (‡) which is continuous except at a finite number
of simple jumps. Moreover, for sequences εk → 0 from a set of positive Lebesgue density, it is shown that the weak* limit of
L-periodic minimizers of (†) is a minimizer of (‡) with a finite number of simple jumps. Under additional hypotheses it is shown
that, for sequences from a set of full Lebesgue density, the weak* limits of L-periodic minimizers of (†) are minimizers of (‡) with
a minimal number of simple jumps.
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1. Introduction

A crucial feature in models of phase transitions is the non-convexity of bulk energy functions with respect to the
phase variable ϕ. For instance, in one-dimensional Cahn–Hilliard theory the Helmoltz free energy density is given by

W(ϕ,ϑ) = 1

4

(
ϕ2 − 1

)2 − ϑϕ, (1.1)

where ϑ is the chemical potential. If ϕ and ϑ are L-periodic, the total mesoscopic energy per period is

Jε(ϕ) :=
L∫

0

(
ε

2
ϕ′2 + 1

4

(
ϕ2 − 1

)2 − ϑϕ

)
dx, ε > 0, (1.2)

where εϕ′2/2 corresponds to the energy of phase interactions,
√

ε characterizes the width of the interfaces between
phases and in practice ε is very small. Critical points of Jε satisfy

−εϕ′′(x) + ϕ(x)3 − ϕ(x) = ϑ(x), x ∈ R. (1.3)

Alternatively, (1.3) occurs as a quasi-steady, phase field model in the theory of solidification with ϑ representing tem-
perature [1,2]. One-dimensional phase transition modelling can also give rise to higher order non-convex variational
problems [10,12], see [9] for a general discussion. However we confine ourselves to studying generalizations of (1.2)
and the weak* limits in L∞

per of its minimizers as ε → 0 and two questions arise.

(1) How does one describe the weak* limits of minimizers of (1.2) and its generalizations?
(2) Is there is a “macroscopic” variational problem with minimizers that coincide with these weak* limits?

A common belief is that both issues can be resolved using Γ -convergence theory, but this is not always the case.
Recall that a sequence of functionals Fε :X → [α,∞], α > −∞, defined on a metric space X, has Γ -limit F :X →
[α,∞] if, for every ϕ0 and ϕε → ϕ0,

F(ϕ0) � lim inf
ε→0

Fε(ϕε)

and there exists a sequence ϕε → ϕ0 so that

F(ϕ0) = lim
ε→0

Fε(ϕε).

Let MFε and MF be the sets of minimizers of Fε and F respectively, and let LF be set of limit points of sequences
xε ∈ MFε as ε → 0. It is clear that LF ⊂ MF , but they are not equal in general. In the mesoscopic theory of phase
transitions Fε would represent the total free energy and ϕε ∈ MFε the corresponding stable equilibrium states. If
a macroscopic theory is to be regarded as a limit of mesoscopic theory, then macroscopic stable equilibria should
belong to LF and the Γ -limit F interpreted as an approximation to the macroscopic free energy. The validity of
such an approach depends on the size of MF \ LF . If it is not empty, an additional selection principle is needed to
identify the solutions of the macroscopic problem that are relevant to the mesoscopic theory (particularly if LF is
small in MF ).

The following two examples related to our problem illustrate different relations between MF and LF . In both,
ϑ is a given, continuous L-periodic function. For L > 0 fixed, let L

p
per or L∞

per be the space of L-periodic functions
with restrictions that are pth-power integrable or essentially bounded on (0,L).

The first problem is to minimize the Ginzburg–Landau energy functional (1.2):

Jε

(
ϕ∗) = min

ϕ∈L4
per

Jε(ϕ), Jε(ϕ) =
L∫ (

εϕ′2 + 1

4

(
ϕ2 − 1

)2 − ϕϑ

)
ds. (1.4)
0
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The second is to minimize the scaled free energy functional

Jε

(
ψ∗) = min

ψ∈L4
per

Jε(ψ), Jε(ψ) =
L∫

0

(√
εψ ′2 + 1

4
√

ε

(
ψ2 − 1

)2 − ψϑ

)
ds. (1.5)

Note that if ϑ in (1.4) is replaced by
√

εϑ , then (1.4) is transformed into (1.5), but there is an essential difference
between the two as they stand. Let X = L4

per with the weak topology in which bounded sets are metrizable. The
Γ -limit J of Jε is a particular case of general theory, see, for example, [6],

J (ϕ) =: Γ -lim Jε(ϕ) =
L∫

0

W ∗∗(ϕ,ϑ)ds, (1.6)

where, for fixed θ ∈ R, W ∗∗(·, θ) denotes the convex envelope of W(·, θ) in (1.1). Since W is bounded below, the
set of minimizers of (1.6) is non-empty and there are various possibilities. For example, (1.6) may have a unique
minimizer. This happens if the set of zeros of ϑ is discrete, a case that was thoroughly investigated in [1,2] (see
also [10] for generalizations and further discussion). Alternatively, (1.6) may have an infinite set of minimizers,
including Young measure solutions, as happens when ϑ in (1.1) vanishes on some interval. Moreover, a minimizer
may be discontinuous at every point of such an interval.

On the other hand, see [4, Chapter 6], [11], we have that

Γ -limJε(ψ) = J(ψ) :=

⎧⎪⎪⎨⎪⎪⎩
℘0 N (ψ) − ∫ L

0 ψϑ ds if |ψ | = 1
almost everywhere on [0,L)

and ψ is piecewise constant,
+∞ otherwise,

(1.7)

where N (ψ) is the number of discontinuities of ψ in [0,L) and

℘0 = 2

1∫
−1

√
1

4

(
φ2 − 1

)2
dφ = 4

3
. (1.8)

Clearly elements of MJ are piecewise constant functions ψ with a finite number of jumps at points si ∈ [0,L), and
N (ψ)℘0 is a weighted count of jumps per period. Roughly speaking the first term in (1.7) strives to minimize the
number of jumps, but this process is controlled by ϑ .

A difference between MJε and M Jε is that elements of MJε have a regularity property independent of ε because
the set

{
Φ(ψε): ψε ∈ MJε, ε ∈ (0,1)

}
, where Φ(φ) =

φ∫
0

∣∣s2 − 1
∣∣ds,

is bounded in the Sobolev space W
1,1
per . By contrast, the minimizers of the Ginzburg–Landau energy Jε have no

regularity independent of ε. An analysis of the relation between M J and L J is consequently more difficult and is
our concern here. A special case of our results concerns L J under the assumption that the limiting problem, (1.4) with
ε = 0, has at least one piecewise continuous minimizer, which is true when {ϑ = 0} ∩ [0,L) has a finite number of
connected components. The conclusion is that there exists a set E ⊂ (0,1) which is Lebesgue dense at 0 (see (5.1)) and
the elements of L J which arise from sequences in E are piecewise continuous functions with the minimal possible
weighted number of jumps (see (2.3)).

Similar non-convex variational problems arise in the classical nonlinear theory of elastic rods [7] (also [5]) as
follows. Suppose that x ∈ R represents the positions of material points in an elastic rod with uniform density 
 when
it is in equilibrium in the absence of external forces on a straight line. Suppose that u(x, t) denotes the position of
the same point when the rod is deformed in the same straight line by a force field f (x, t), and that f and the stretch
field ux are L-periodic in x. If the elastic energy density is given in terms of the stretch and stretch gradient by the
formula

ε
uxx

2 + W(ux),

2
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where W is convex (a one-phase material), then u satisfies the wave equation


utt = −εuxxxx + (
W ′(ux)

)
x

+ f, ux(x + L, t) = ux(x, t).

In the corresponding travelling-wave problem, f (x, t) = f (x − ct), u = u(x − ct), and the stretch variable ϕ(s) =
u′(s), with ϑ ′(s) = f (s), satisfies

−εϕ′′ + ∂φW
(
ϕ(s),ϑ(s), γ

) = 0, ϕ(s + L) = ϕ(s),

for some constant γ , where

W(φ, θ, γ ) = W(φ) − c2
φ2/2 + (θ + γ )φ.

Note that, for large c, W is non-convex in φ even though W is convex. The external functions are ϑ and γ . If instead
of remaining straight, a compressible rod with bending stiffness is prescribed to lie on a given periodic curve in a
vertical plane, the stored energy is again non-convex in the stretch, and its curvature and height are two additional
external functions in the travelling-wave equation. This observation in [13] explains our interest in periodic boundary
conditions and multiple external functions.

Main results. Let H 1
per be the Hilbert space of L-periodic continuous functions on R with restrictions in W 1,2(0,L).

In what follows, d ∈ N, ϕ : R → (0,∞), ϑ : R → R
d and A : R → R are L-periodic functions, while (φ, θ,A, ε) ∈

R
d+3. We study minimization problems for generalizations of (1.2) of the following type. Let B : R → R be a smooth

increasing function and, for a set E ⊂ (0,1] with a limit point at 0, let {ϑε : ε ∈ E} be bounded in (H 1
per)

d . Then the

problem is to find ϕε ∈ H 1
per such that

Jε(ϕε) = inf
ϕ∈H 1

per

Jε(ϕ) =: E(ε), ε > 0, (1.9)

where

Jε(ϕ) =
L∫

0

(
ε

2

(
B(ϕ)′

)2 + W(ϕ,ϑε)

)
ds, ϕ ∈ H 1

per. (1.10)

For the Ginzburg–Landau functional (1.2), B(φ) = φ and W is given by (1.1), whereas the scaled Ginzburg–Landau
functional (1.5) corresponds to W in (1.1) with B(φ) = √

2φ and ϑε = √
εϑ . A solution ϕε to problem (1.9), for

ε > 0, satisfies the Euler–Lagrange equation

εB ′(ϕε(s)
)
B(ϕε)

′′(s) − ∂φW
(
ϕε(s),ϑε(s)

) = 0 on R. (1.11)

It follows from the maximum principle and (H1) below that solutions ϕε of (1.11) have ‖ϕε‖L∞
per

+‖ϕ−1
ε ‖L∞

per
bounded

by a constant independent of ε when ‖ϑε‖(H 1
per)

d � ME , ε ∈ E. Our goal is to give an explicit upper bound for the

number of jumps of ϕ, a weak* limit in L∞
per of minimizers ϕεk

, for a “almost all sequences εk tending to zero” in a
sense that will be made precise. Before summarizing our result we discuss the essential properties of the potentials W

and exterior functions ϑε under consideration.
Conditions (H1–3), which are formulated precisely and illustrated by a figure in Section 2, describe a function

W(·, θ) which is either a single or double well potential depending on θ ∈ R
d . (H1) is a coercivity condition that

W(φ, θ) → ∞ as φ → α,β where α,β ∈ [−∞,∞]. To avoid repetition, we consider only the mixed case α > −∞,
β = ∞ and take α = 0. (H2) says that, for θ ∈ R

d , the function W(·, θ) has no more than three critical points counting
multiplicity. (H3) implies that the distance between local or global minimizers φ±(θ) of W(·, θ) is bounded below
by a positive constant. Therefore the only possible bifurcations of critical points of W(·, θ) are from inflection points
to local-minimum–local-maximum pairs. Thus W is of a type that arises in first order phase transition problems.
Hypotheses (H1–3) induce a decomposition of R

d into disjoint sets corresponding to the number and type of critical
points of W . The most important is G0

3, which consists of those θ ∈ R
d for which W(·, θ) has two distinct global

minima corresponding to two distinct coexisting stable phases (see Fig. 1).
(H4) in Section 4 means, roughly speaking, that, for some ϑ ∈ (H 1

per)
d and Θ0,Θ1 < ∞,

lim sup‖ϑε − ϑ‖(L1
per)

d /
√

ε = Θ0 and lim sup
√

ε‖∂εϑε‖(L1
per)

d = Θ1.

ε→0 ε→0
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Fig. 1. Graphs of W(·, θ) depending on θ ∈ R
d .

(H5) is the requirement that there exists a piecewise regular solutions to the primary variational problem:

L∫
0

W
(
ϕ∗, ϑ

)
ds = inf

ϕ∈L∞
per

L∫
0

W(ϕ,ϑ)ds =: E(0). (1.12)

It holds if the critical set G 0
3(ϑ) = {s: ϑ(s) ∈ G0

3} has a finite number of connected components.
By definition, a piecewise regular minimizer of (1.12) has finitely many jumps per period at points si with ϑ(si) ∈

G0
3 and to each such minimizer ϕ∗ we can assign a weighted number of jumps W (ϕ∗), which is commensurate with,

but not necessarily equal to, the actual number of jumps per period,

W
(
ϕ∗) =

∑
℘

(
ϑ(si)

)
.

si∈[0,L)
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Here ℘ :G0
3 → R is given by formula (2.3a), which is similar to (1.8) in that special case. Let Wmin be the infimum

of the weighted number of jumps of all piecewise regular minimizers. We will see that Wmin is attained. Let N ∗ < ∞
be the maximum of the actual number of jumps of all piecewise regular minimizers with minimal weighted number
of jumps.

(H6) in Section 5 is the requirement that E defined by (1.9) is locally absolutely continuous on (0,1). (In Ap-
pendix A we discuss (H6) which is often satisfied trivially; when ϑε is independent of ε it follows because E is
concave.)

The following, Theorem 5.6, is one of the main results of the paper.

Minimal number of jumps principle. Suppose that (H1–6) hold with Θ0 = Θ1 = 0 in (H4). Then, for any δ > 0
there is a set Eδ ⊂ (0,1] which is Lebesgue dense at 0, see (5.1), with the following property. If a sequence {ϕεn : Eδ �
εn → 0} of minimizers converges weak* in L∞

per to ϕ, then ϕ is a piecewise regular minimizer of (1.12) with weighted
number of jumps W (ϕ) � Wmin + δ and actual number of jumps N (ϕ) � N ∗.

Method. As mentioned above, the passage to the limit in (1.9) is difficult because its solutions lack regular-
ity properties independent of ε. To cope, we use the fact that the Euler–Lagrange equation (1.11) implies that

A′
ε(s) = ∂θW(ϕε(s),ϑε(s))ϑ

′
ε(s) where the adiabatic variable A (see [3]) is defined by

Aε(s) := W
(
ϕε(s),ϑε(s)

) − ε

2

(
B(ϕε)

′(s)
)2

.

Combining this observation with the remark following (1.11), we conclude that solutions of (1.11) satisfy the estimates

M−1 � ϕε(s), ϕ(s) � M for s ∈ R, ‖Aε‖H 1
per

� M,

in which the constant M depends only on W and supε‖ϑε‖(H 1
per)

d . In particular, if periodic solutions of (1.11) converge

weak* in L∞
per to ϕ, then, after passing to a subsequence, we can assume that (Aε, ϑε) converges weakly in (H 1

per)
d+1

to some (A, ϑ). The main idea is to obtain a representation for weak* limits of solutions to (1.11) in terms of A and ϑ .
To this end we introduce the averaging operator

Ψε[ϕε](s) = 1

h(ε)
√

ε

h(ε)
√

ε/2∫
−h(ε)

√
ε/2

ϕε(s + t) dt ≡ 1

h(ε)

h(ε)/2∫
−h(ε)/2

vε(y, s) dy,

where h(ε) = ln|ln ε| for ε ∈ (0,1/e] and vε(y, s) = ϕε(s+√
εy). By Lemma 3.7, the function vε can be approximated

with an accuracy of εp , p ∈ (0,1/4), by a solution to the autonomous ordinary differential equation

1

2

(
B(uε)

′(y)
)2 − W

(
uε(y, s),ϑε(s)

) + Aε(s) = 0, y ∈ (−h(ε),h(ε)
)
.

This choice of h is more or less essential for the existence of such an approximation and leads to the representation

Ψε[ϕε](s) = 1

h(ε)

h(ε)/2∫
−h(ε)/2

uε(y, s) dy + O
(
εp

)
.

In Section 2.3 we show that Ψ (s) = limε→0 Ψε[ϕε](s) exists for every s ∈ R, and that the weak* limit is continuous
on [0,L) except at points of the critical set

s ∈ F (A, ϑ) :=
{
s ∈ [0,L): ϑ(s) ∈ G0

3 and A(s) = inf
φ

W
(
φ,ϑ(s)

)}
.

Since the weak* limit ϕ of ϕε equals Ψ almost everywhere, we can identify ϕ with Ψ and thus replace the analysis
of solutions to (1.11) with an analysis of the corresponding sequence Ψε[ϕε]. The advantage gained is that Ψε[ϕε]
converges pointwise to ϕ and the limiting behaviour of Ψε[ϕε], ε ∈ E, near s ∈ F (A, ϑ) can be characterized by
what we call the oscillation defect. This oscillation defect, osc-defE(s), is defined by (3.3) in terms of the family
{ϕε : ε ∈ E} and not in terms of its weak* limit points. Nevertheless ϕ is continuous at s when osc-defE(s) = 0.
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The relation between the oscillation defect and the limiting behaviour of the energy functional is established in
Theorem 3.3 which is the first significant result of the paper. If a sequence of periodic solutions ϕε , ε ∈ E, of Eq. (1.11)
converges weak* in L∞

per to a function ϕ, it follows that

∑
si

℘
(
ϑ(si)

)
� lim inf

E�ε→0

√
ε

2

L∫
0

(
B

(
ϕε(s)

)′)2
ds, (1.13)

where the sum is taken over the set of points si ∈ [0,L)∩ F (A, ϑ) with non-zero oscillation defect. This theorem holds
for solutions of the Euler–Lagrange equation, not only for minimizers of Jε . However, when applied to a sequence of
minimizers, Theorem 3.3 implies that if the limit on the right in (1.13) is finite, then ϕ is a piecewise regular minimizer
and

W (ϕ) � lim inf
E�ε→0

√
ε

2

L∫
0

(
B

(
ϕε(s)

)′)2
ds.

The second significant result of the paper is Theorem 4.2 which can be regarded as the “inverse” of Theorem 3.3.
In the simplest case, when Θ0 = 0 in (H4), if the primary variational problem has at least one piecewise regular
minimizer ϕ, then Theorem 4.2 says that

lim sup
ε→0

E(ε) − E(0)√
ε

� 2W (ϕ), where E(ε) = Jε(ϕε).

Theorems 3.3 and 4.2 give estimates, from below and above, of the weighted number of jumps of a weak* limit of
minimizers, in terms of the total energy E(ε) = Jε(ϕε) and the interfacial energy

B(ϕε) = ε

2

L∫
0

(
B

(
ϕε(s)

)′)2
ds.

Notice that while E(ε) depends only on ε, the interfacial energy depends on the minimizer ϕε , since (1.9) may have
many solutions. The relation between total and interfacial energies is important in the general theory of singularly
perturbed variational problems. For example, for minimizers of the scaled Ginzburg–Landau functional (1.5), the in-
terfacial and bulk energy contributions to the total energy are approximately equal when ε is small. This is an example
of the principle of equipartition of energy which plays a crucial role in the analysis of (1.5) and its multidimensional
generalizations. However it is special, and for more general problems we need a different technique.

Our approach is based on Struwe’s monotonicity method [14, Chapter II, Section 9]. Application of this method to
problem (1.9), in the simplest case when Θ1 = 0 in (H4), leads to the inequality, see Lemma 5.4,

B(ε) � E′(ε) + Λ1(ε),
√

εΛ1(ε) → 0 as ε → 0, (1.14)

in which B(ε) = supϕε
ε−1 B(ϕε). In its turn, this lead to a criterion for estimating the number of jumps of a weak*

limit of minimizers when Θ0 = Θ1 = 0 in (H4), namely, for δ > 0,

lim sup
k→∞

√
εkE

′(εk) � Wmin + δ, εk → 0 ⇒ W (ϕ) � Wmin + δ.

That this criterion is valid for sequences in a set which is Lebesgue dense at zero is the content of Lemma 5.5. Its
proof, which depends on the energy estimate (1.14), might be regarded as the main insight in this paper.

2. Minimization problems

The primary problem is

inf
ϕ∈L∞

per

L∫
0

W
(
ϕ(s),ϑ(s)

)
ds, (2.1)

where ϑ ∈ (H 1
per)

d is given and W satisfies the following hypotheses which are illustrated in Fig. 1.
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(H1) W ∈ C3((0,∞) × R
d),

W(φ, θ) → ∞,
∣∣∂φW(φ, θ)

∣∣ → ∞ as φ → 0,∞,

uniformly for θ in compact subsets of R
d .

(H2) For every θ ∈ R
d , the function W(·, θ) has no more than three, counting multiplicity, critical points each of

which is one of the following types: a stable global minimizer φs(θ) which is non-degenerate, an unstable local
maximizer φu(θ) which is non-degenerate, a metastable local minimizer φm(θ) which is non-degenerate, or a
critical inflection point φum(θ). With this hypothesis we can write R

d as the union of three disjoint sets, G1,
G2, G3 as follows.
G1 is the set of θ ∈ R

d such that W(·, θ) has only one critical point – the non-degenerate global minimizer φs(θ);
G2 is the set of θ ∈ R

d such that W(·, θ) has two critical points – the non-degenerate global minimizer φs(θ)

and a critical inflection point φum(θ) with W(φs(θ), θ) < W(φum(θ), θ).
G3 is the set of θ ∈ R

d such that W(·, θ) has three critical points – a non-degenerate global minimizer φs(θ),
a non-degenerate local maximizer φu(θ), and a non-degenerate local minimizer φm(θ) with

W
(
φs(θ), θ

)
� W

(
φm(θ), θ

)
< W

(
φu(θ), θ

)
.

In its turn, G3 contains the set G0
3 of θ such that W(·, θ) has two non-degenerate global minimizers, φ−

s (θ) <

φ+
s (θ), and one non-degenerate local maximizer φu(θ). In other words, a metastable state has become stable

and φm coincides with one of the points φ±
s .

Let F ⊂ R
d+1 be defined by

F = {
(A, θ) ∈ R

d+1: A = W
(
φ±

s (θ), θ
)

where θ ∈ G0
3

}
.

(H3) For θ in a compact set there exists c > 0 such that∣∣φu(θ) − φs(θ)
∣∣ � c,

∣∣φm(θ) − φs(θ)
∣∣ � c,

∣∣φ+
s (θ) − φ−

s (θ)
∣∣ � c,

W
(
φu(θ), θ

) − W
(
φs(θ), θ

)
� c for θ ∈ G3 \ G0

3,

W
(
φu(θ), θ

) − W
(
φ±

s (θ), θ
)
� c for θ ∈ G0

3,

W
(
φum(θ), θ

) − W
(
φs(θ), θ

)
� c for θ ∈ G2,

∂2
φW

(
φs(θ), θ

)
� c for θ ∈ R \ G0

3,

∂2
φW

(
φ±

s (θ), θ
)
� c for θ ∈ G0

3,

∂2
φW

(
φu(θ), θ

)
< 0 for θ ∈ G3,

∂2
φW

(
φm(θ), θ

)
> 0 for θ ∈ G3 \ G0

3.

Remark 2.1. If W is a real-analytic function, then G0
3 is a real-analytic variety. More generally, except in degenerate

situations, possibly caused by symmetries, the set G0
3 is typically the closure of a union of manifolds with dimensions

d − 1, or smaller. In particular, when d = 1, G0
3 is often a discrete set of points.

To proceed we need some additional notation. Let (A, ϑ) ∈ (H 1
per)

d+1 be given. With F , Gi , i = 1,2,3, and G0
3

defined in terms of W by (H2), let

Gi (ϑ) = {
s ∈ R: ϑ(s) ∈ Gi

}
, i = 1,2,3,

G 0
3(ϑ) = {

s ∈ R: ϑ(s) ∈ G0
3

}
,

F (A, ϑ) = {
s ∈ R:

(
A(s),ϑ(s)

) ∈ F
} ⊂ G 0

3(ϑ).

Since the prescribed functions ϑ are continuous, the sets G1(ϑ), G3(ϑ) are open and G2(ϑ), G 0
3(ϑ) are closed; so the

sets R \ G 0
3(ϑ) and G3(ϑ) \ G 0

3(ϑ) are open. Since G 0
3(ϑ) = {s: ϑ(s) ∈ G0

3}, it follows from Remark 2.1 that if ϑ is
real-analytic, then G 0

3 is a one-dimensional real-analytic variety. If it is not the whole space R it is a discrete set of
points.
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2.1. Minimizers of primary problem

For any ϑ ∈ (H 1
per)

d , ϕ is a minimizer of the primary problem (2.1) if

ϕ(t) ∈
{{φs(ϑ(t))}, t ∈ R \ G 0

3(ϑ)

{φ+
s (ϑ(t)), φ−

s (ϑ(t))}, t ∈ G 0
3(ϑ)

}
almost everywhere. Minimizers always exist but they may not be unique and often cannot be continuous. By (H3),
the size, φ+

s (θ) − φ−
s (θ), θ ∈ G0

3, of possible jumps of minimizers is bounded below by a positive constant. We are
interested in minimizers that are piecewise regular in the following sense. Say that {Sn} is a discrete periodic sequence
if Sn+1 − Sn ∈ [a, b] for some a, b > 0 and all n, and {Sn: n ∈ Z} = {Sn + L: n ∈ Z}.

Piecewise regular minimizers. For ϑ ∈ (H 1
per)

d , a minimizer ϕ ∈ L∞
per of the primary problem (2.1) is said to be

piecewise regular if there exists a discrete periodic sequence {Sn} ⊂ G 0
3(ϑ) with the following properties. For every n,

the restriction ϕ|(Sn,Sn+1) ∈ W 1,2(Sn, Sn+1),

lim
s→Sn±0

ϕ(s) ∈ {
φ−

s

(
ϑ(Sn)

)
, φ+

s

(
ϑ(Sn)

)}
and the function ϕ has a jump at Sn with magnitude φ+

s (ϑ(Sn)) − φ−
s (ϑ(Sn)).

For a piecewise regular minimizer the actual number of jumps per period is

N (ϕ) := card Q(ϕ) < ∞ where Q(ϕ) = [0,L) ∩ {Sn: n ∈ N}. (2.2)

It will be convenient to estimate the number of jumps of a piecewise regular minimizer by assigning to each a number
other than unity. Let B : (0,∞) → R be the smooth strictly increasing function in (1.10) and, for θ ∈ G0

3, let

℘(θ) = 1√
2

φ+
s (θ)∫

φ−
s (θ)

B ′(φ)
√

W(φ, θ) − Adφ where A = W
(
φ±

s (θ), θ
)
. (2.3a)

Then the weighted number of jumps of ϕ per period is

W (ϕ) =
∑

s∈Q(ϕ)

℘
(
ϑ(s)

)
< ∞. (2.3b)

A piecewise regular minimizer ϕ has a minimal weighted number of jumps if

W (ϕ) = inf
ϕ̃

W (ϕ̃) =: Wmin, (2.3c)

where the infimum is taken over all piecewise regular minimizers ϕ̃. Lemma 2.3 asserts that Wmin is attained.

Remark 2.2. Note that, for θ ∈ G0
3,

℘(θ) = 1

2

T∫
0

(
B(u)′

)2
dt

if u satisfies

A = W
(
u(t), θ

) − 1

2

(
B(u)′

)2
, u(0) = φ−

s (θ), u(T ) = φ+
s (θ),

where A = W(φ±
s (θ), θ). Note also that, for a given B , ℘(ϑ(s)), s ∈ G 0

3(ϑ), is bounded below by a positive con-
stant k(M), for any ϑ with ‖ϑ‖(H 1

per)
d � M . To see this, suppose (A, θ) ∈ F and ‖θ‖ � cLM , where ‖ϑ(s)‖ �

cL‖ϑ‖(H 1
per)

d � cLM . Then, since {φ−(θ),φ+(θ): ‖θ‖ � cLM} is bounded and since W ∈ C3, by Taylor’s theorem,∣∣∣∣W(φ, θ) − A − 1
∂2
φW

(
φ−(θ), θ

)(
φ − φ−(θ)

)2
∣∣∣∣ � C

∣∣φ − φ−(θ)
∣∣3
2
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for φ−(θ) � φ � φ+(θ), where C depends on M and W . Therefore there exists φ1 > 0, independent of θ with
‖θ‖ � cLM , such that φ−(θ) + φ1 � φ+(θ) and√

W(φ, θ) − A �
√

c

2

(
φ − φ−(θ)

)
for φ ∈ (φ−(θ),φ−(θ) + φ1), where c is as in (H3). Therefore

φ+(θ)∫
φ−(θ)

B ′(φ)
√

W(φ, θ) − Adφ �
φ−(θ)+φ1∫
φ−(θ)

B ′(φ)
√

W(φ, θ) − Adφ � C,

where C is independent of θ with ‖θ‖ � cLM .

We now record an observation that will be useful later.

Lemma 2.3. Suppose that (H1–3) hold and that there exists at least one piecewise regular minimizer. Then there exists
a piecewise regular minimizer with a minimal weighted number of jumps. Let

N ∗ = max
ϕmin

N (ϕmin),

where the maximum of the actual number of jumps is taken over all piecewise regular minimizers with minimal
weighted number of jumps. Then there exists δ > 0 such that N (ϕ) � N ∗ if W (ϕ) � Wmin + δ.

Proof. Let W (ϕk) � Wmin + 1/k for a sequence of piecewise regular minimizers. Denote by S
(k)
n ∈ G 0

3(ϑ) the points

of discontinuities of ϕk . Since, by Remark 2.2, the quantities ℘(ϑ(S
(k)
n )) are uniformly bounded away from 0, the

numbers N (ϕk) of discontinuities of ϕk form a finite set of integers. Therefore, after passing to a subsequence, we can
assume that N (ϕk) = N for all k. Since the set S

(k)
n is invariant with respect to the shift s → s + L, we can assume

that, for every n, the sequence {S(k)
n } converges as k → ∞, to Sn say, where {Sn} is invariant with respect to the shift

and Sn ∈ G 0
3(ϑ).

The piecewise regular minimizers ϕk are periodic and continuous at s ∈ (S
(k)
n−1, S

(k)
n ) and hence coincide with one

of φs(ϑ(s)), φ±
s (ϑ(s)) there. However, from (H3), each of the critical points φs(ϑ(s0)), φ±

s (ϑ(s0)) is non-degenerate,

for each s0 ∈ (S
(k)
n−1, S

(k)
n ). Hence there is a unique continuous branch of critical points ϕ̃(t) defined in a vicinity of s0

by the system

∂φW
(
ϕ̃(t), ϑ(t)

) = 0, ϕ̃(s0) = ϕk(s0).

Therefore ϕk coincides with ϕ̃ in a neighbourhood of each point s0 ∈ (S
(k)
n−1, S

(k)
n ). Moreover the non-degeneracy

condition (H3) implies that

∣∣ϕ′
k(s0)

∣∣ = ∣∣ϕ̃′(s0)
∣∣ =

∣∣∣∣∂2
φθW(ϕk(s0),ϑ(s0)) · ϑ ′(s0)

∂2
φW(ϕk(s0),ϑ(s0))

∣∣∣∣ � c(M)
∥∥ϑ ′(s0)

∥∥.

Thus, since ϑ ′ is square-integrable on (0,L),

∑
n∈Z

{ ∫
(0,L)∩(S

(k)
n−1,S

(k)
n )

ϕ′
k(s)

2 ds

}
=:

L∫
0

(
ϕ′

k

)2
ds � c.

We can therefore assume that ϕk converges uniformly to some continuous function ϕ on each compact subset of the
interval (Sn−1, Sn) and that

∑
n∈Z

{ ∫
(0,L)∩(S ,S )

ϕ′(s)2 ds

}
=:

L∫
0

(
ϕ′)2

ds � c,
n−1 n
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where ϕk converges weak* in L∞
per to ϕ. Since the set of relaxed minimizers (Section 2.2) is weakly closed, ϕ is a

relaxed minimizer. Hence it is a piecewise regular minimizer of (2.1).
Now choose η > 0 so that the points η and L + η do not lie in the sequence {Sn}. Then

W (ϕ) =
∑

Sn∈(η,L+η)

℘
(
ϑ(Sn)

)
,

and for all sufficiently large k,

W (ϕk) =
∑

S
(k)
n ∈(η,L+η)

℘
(
ϑ

(
S(k)

n

))
.

In the limiting process some points S
(k)
n can be lost: more precisely, for each Sn there is a finite set P(n) of

cardinality p(n) � 1 so that

S
(k)
i → Sn as k → ∞ for all i ∈ P(n).

In other words we can split the set of sequences {S(k)
n } ∩ (η,L + η) into disjoint clusters of cardinality p(n) such

that all sequences in a cluster converge to one point Sn. Obviously∑
Sn∈(η,L+η)

p(n) = N .

Since, for i ∈ P(n),

℘
(
ϑ

(
S

(k)
i

)) → ℘
(
ϑ(Sn)

)
as k → ∞ for all i ∈ P(n),

we obtain that∑
Sn∈(η,L+η)

p(n)℘
(
ϑ(Sn)

) = lim
k→∞

∑
S

(k)
n ∈(η,L+η)

℘
(
ϑ

(
S(k)

n

))
= Wmin �

∑
Sn∈(η,L+η)

℘
(
ϑ(Sn)

)
.

We conclude that ϕ is a piecewise regular minimizer with a minimal weighted number of jumps, that p(n) = 1 for
all n, and that N ∗ is finite.

Suppose that for no δ > 0 does W (ϕ) � Wmin + δ imply that N (ϕ) � N ∗. Then there is a sequence of piecewise
regular minimizers {ϕk} with

W (ϕk) � Wmin + 1/k, and N (ϕk) � N ∗ + 1.

Now we repeat the preceding argument to obtain, in the weak* limit of ϕk , a piecewise regular minimizer ϕ with
minimal weighted number of jumps and p(n) = 1 for all n. Since p(n) = 1 for all n, N (ϕ) � N ∗+1. But N (ϕ) � N ∗,
because ϕ is a piecewise regular minimizer with minimal weighted number of jumps. This contradiction proves the
result. �
Generalized solutions. For given ϑ ∈ (H 1

per)
d , a pair (A, ϕ) ∈ H 1

per × L∞
per is called a generalized solution of

∂φW(ϕ,ϑ) = 0 (2.4)

if

(GS)(i): for all t ∈ R \ G 0
3(ϑ),

ϕ(t) ∈ {
φι

(
ϑ(t)

)
, ι = s,m,u,um

}
and A(t) = W

(
ϕ(t),ϑ(t)

);
(GS)(ii): for all t ∈ G 0

3(ϑ),

A(t) ∈ {
W

(
φ±

s

(
ϑ(t)

)
, ϑ(t)

)
,W

(
φu

(
ϑ(t)

)
, ϑ(t)

)};
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(GS)(iii):

ϕ(t) = φu

(
ϑ(t)

)
for t ∈ G 0

3(ϑ) \ F (A, ϑ),

ϕ(t) = k(t)φ−
s

(
ϑ(t)

) + (
1 − k(t)

)
φ+

s

(
ϑ(t)

)
for t ∈ F (A, ϑ),

where k : F (A, ϑ) �→ [0,1] is measurable.

The continuity of A restricts the behaviour of ϕ as follows.

Lemma 2.4. For ϑ ∈ (H 1
per)

d , let (A, ϕ) be a generalized solution of (2.4). Then ϕ is continuous on R \ F (A, ϑ).

Proof. To simplify notation, let ϕι(t) = φι(ϑ(t)), ι ∈ {s, u,m,um}, t ∈ R. Let s0 ∈ G1(ϑ), which is open since G1
is open and ϑ is continuous. Then ϕs(t) is the unique critical point of W(·, ϑ(t)), for t in a neighbourhood of s0.
Hence, by (GS)(i), ϕ(t) = ϕs(t) in this neighbourhood of s0. However, by the implicit function theorem, ϕs(t) is a
continuous function of t in a neighbourhood of s0, since ϕs(s0) is a non-degenerate critical point of W(·, ϑ(s0)). Thus
ϕ is continuous on G1(ϑ).

Let s0 ∈ G3(ϑ) \ G 0
3(ϑ), an open set. It follows from (GS)(i) that, for t in a neighbourhood of s0, ϕ(t) ∈ {ϕι(t): ι =

s, u,m} and A(t) = W(ϕ(t),ϑ(t)). Since, by (H3),

∂φW
(
ϕι(s0),ϑ(s0)

) = 0 and ∂2
φW

(
ϕι(s0),ϑ(s0)

) �= 0,

if follows from the implicit function theorem that ϕι depends continuously on t in a neighbourhood of s0. Since
s0 ∈ G3(ϑ) \ G 0

3(ϑ), there exists ε > 0 such that, for all |t − s0| sufficiently small,

W
(
ϕs(t),ϑ(t)

) + ε � W
(
ϕm(t),ϑ(t)

)
� W

(
ϕu(t),ϑ(t)

) − ε.

Since ϕ(t) ∈ {ϕι(t): ι = s, u,m} and A(t) = W(ϕ(t),ϑ(t)), and since A is continuous, it follows that ϕ(t) = ϕι(t),
t in a neighbourhood of s0, for one choice of ι. Thus ϕ is continuous at s0 for any s0 ∈ G3(ϑ) \ G 0

3(ϑ).
Let s0 ∈ G 0

3(ϑ) \ F (A, ϑ). Since, by (H3),

∂φW
(
ϕu(s0),ϑ(s0)

) = 0 and ∂2
φW

(
ϕu(s0),ϑ(s0)

) �= 0,

by the implicit function theorem, ϕu(t) depends continuously on t in a neighbourhood of s0. Also, by (H3),

∂φW
(
ϕ±

s (s0),ϑ(s0)
) = 0 and ∂2

φW
(
ϕ±

s (s0),ϑ(s0)
) �= 0.

It follows that there are continuous functions ϕ̃±, defined for t in a neighbourhood of s0 in the open set G3(ϑ) with,
for some ε > 0,

ϕ̃±(s0) = ϕ±
s (s0), ∂φW

(
ϕ̃±(t),ϑ(t)

) = 0,

ϕ̃−(t) + ε � ϕu(t) � ϕ̃+(t) − ε, W
(
ϕ̃±(t),ϑ(t)

) + ε � W
(
ϕu(t),ϑ(t)

)
.

Therefore, for t in this neighbourhood of s0 in G3(ϑ), {ϕu(t), ϕ̃
±(t)} are the three critical points of W(·, ϑ(t)) and,

for all such t ,

A(t) ∈ {
W

(
ϕu(t),ϑ(t)

)
,W

(
ϕ̃±(t),ϑ(t)

)}
.

However, by (GS)(iii),

ϕ(s0) = ϕu(s0), A(s0) = W
(
ϕu(s0),ϑ(s0)

)
,

where A is continuous at s0. It follows that ϕ(t) = ϕu(t) in a neighbourhood of s0 and the continuity of ϕ at a point
of G 0

3(ϑ) \ F (A, ϑ) follows.
Next assume that s0 ∈ G2(ϑ). Then the function W(·, ϑ(s0)) has exactly two critical points ϕs(s0) and ϕum(s0)

with

W
(
ϕs(s0),ϑ(s0)

)
< W

(
ϕum(s0),ϑ(s0)

)
. (2.5)

Moreover A is continuous and

A(s0) ∈ {
W

(
ϕum(s0),ϑ(s0)

)
,W

(
ϕs(s0),ϑ(s0)

)}
.
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Let tn → s0. From (H3), tn ∈ R \ G 0
3(ϑ) for all n sufficiently large; from (GS)(i),

ϕ(tn) ∈ {
ϕs(tn), ϕm(tn), ϕu(tn), ϕum(tn)

};
and {ϕ(tn)} lies in a compact subset of (0,∞), by (H1). Suppose that, for some subsequence, ϕ(tnk

) converges
to ϕ∗. From the continuity of ∂φW and ϑ we conclude that ϕ∗ is a critical point of W(·, ϑ(s0)). Hence ϕ∗ ∈
{ϕum(s0), ϕs(s0)}. Since A is continuous,

A(s0) = lim
k

A(tnk
) = lim

n
W

(
ϕ(tnk

),ϑ(tnk
)
)
,

and since (2.5) holds, we conclude that the full sequence {ϕ(tn)} converges to a limit which belongs to {ϕum(s0),

ϕs(s0)}. By (GS)(i) and (2.5), the value of A(s0) determines the value of ϕ(s0) and thereby ensures the continuity of ϕ

at a point of G2(ϑ). This completes the proof. �
2.2. Relaxed minimizers

For θ ∈ R
d , let W ∗∗(·, θ) be the convex envelope of W(·, θ), defined for φ ∈ (0,∞) by W ∗∗(φ, θ) =

sup(a,b)∈C(θ) aφ + b, where

C(θ) = {
(a, b) ∈ R

2: aφ + b � W(φ, θ) for all φ ∈ (0,∞)
}
.

For a given ϑ ∈ (H 1
per)

d , ϕ ∈ L∞
per is a relaxed minimizer if

L∫
0

W ∗∗(ϕ,ϑ)ds = inf
ψ∈L∞

per

L∫
0

W ∗∗(ψ,ϑ)ds (2.6)

where (2.6) is the relaxed minimization problem.

Lemma 2.5. For ϑ ∈ (H 1
per)

d let ϕ be a relaxed minimizer. Then

ϕ(t) = φs

(
ϑ(t)

)
for t ∈ R \ G 0

3(ϑ),

ϕ(t) = k(t)φ−
s

(
ϑ(t)

) + (
1 − k(t)

)
φ−

s

(
ϑ(t)

)
for t ∈ G 0

3(ϑ), (2.7)

almost everywhere, where k : G 0
3(ϑ) �→ [0,1] is measurable.

Let

Aϑ(t) = inf
φ∈R

W ∗∗(φ,ϑ(t)
) =

{
W(φs(ϑ(t)),ϑ(t)) for t ∈ R \ G 0

3(ϑ)

W(φ±
s (ϑ(t)),ϑ(t)) for t ∈ G 0

3(ϑ)

}
.

Then Aϑ ∈ H 1
per and there is a constant M depending only on ‖ϑ‖(H 1

per)
d such that

M−1 � ϕ(t) � M for t ∈ R and ‖Aϑ‖H 1
per

� M. (2.8)

Also F (Aϑ ,ϑ) = G 0
3(ϑ) and (Aϑ ,ϕ) is a generalized solution of (2.4). In particular, after being redefined on a

set of zero measure, a relaxed minimizer ϕ is continuous on R \ G 0
3(ϑ) and Aϑ is continuous on R.

Proof. Let ϕ be a solution to (2.6). Since, for s ∈ R \ G 0
3(ϑ), the function W ∗∗(·, ϑ(s)) has a unique global minimizer

φs(ϑ(s)), it follows that φs(ϑ(s)) and ϕ(s) must coincide almost everywhere on R \ G 0
3(ϑ). For s ∈ G 0

3(ϑ), the
function W ∗∗(·, ϑ(s)) takes its global minimum at every point of the interval [φ−

s (ϑ(s)),φ+
s (ϑ(s))]. Hence ϕ(s) is an

arbitrary point of this segment. Since ϕ is measurable, the measurability of k in (2.7) follows. The first part of (2.8) is
immediate from (H1).

Next we show that the function

Aϑ(s) = min W ∗∗(φ,ϑ(s)
) = min W

(
φ,ϑ(s)

)

φ∈(0,∞) φ∈(0,∞)
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belongs to H 1
per and satisfies the second inequality in (2.8). Now ‖ϑ(s)‖ � cL‖ϑ‖(H 1

per)
d and, by (H1), there exists

C = C(‖ϑ‖(H 1
per)

d ) > 0, such that

min
φ∈(0,∞)

W(φ, θ) = min
φ∈[C−1,C]

W(φ, θ)

for all θ ∈ R
d with ‖θ‖ � cL‖ϑ‖(H 1

per)
d � k, say. Let a(θ) = minφ∈(0,∞) W(φ, θ) and let K(M) be the Lipschitz

constant of W on [C−1,C] × [−k, k]d . Then

W(φ, θ1) = W(φ, θ2) + W(φ, θ1) − W(φ, θ2)

� W(φ, θ2) + K(M)
(‖θ1 − θ2‖

)
.

Hence

a(θ1) � a(θ2) + K(M)‖θ1 − θ2‖.
Interchanging the indices 1 and 2, we find that a is Lipschitz continuous with Lipschitz constant K(M) on the ball of
radius c and centre 0 in R

d . Since Aϑ(s) = a(ϑ(s)), it follows that Aϑ ∈ H 1
per and the second part of (2.8) holds. From

the definition of Aϑ , F (Aϑ ,ϑ) = G 0
3(ϑ), and it follows from the first part of the proof that (Aϑ ,ϕ) is a generalized

solution of (2.4). The continuity of ϕ on R \ G 0
3(ϑ) follows from Lemma 2.4. Finally Aϑ ∈ H 1

per is continuous. �
The following criterion ensures that certain relaxed minimizers coincide almost everywhere with piecewise regular

minimizers of (2.1).

Lemma 2.6. For ϑ ∈ (H 1
per)

d , let ϕ be a relaxed minimizer. Suppose that {an} is a discrete periodic sequence with, for

each point s0 ∈ G 0
3(ϑ) ∩ (an, an+1),

either lim
β→0

ess sup
|s−s0|�β

∣∣ϕ(s) − φ−
s

(
ϑ(s0)

)∣∣ = 0,

or lim
β→0

ess sup
|s−s0|�β

∣∣ϕ(s) − φ+
s

(
ϑ(s0)

)∣∣ = 0. (2.9)

Then, after being redefined on a set of zero measure, ϕ is a piecewise regular minimizer of (2.1) with jumps at
{Sn} ⊂ {an}. Moreover, if ‖ϑ‖(H 1

per)
d � M ,

L∫
0

ϕ′(s)2 ds :=
∑
n∈Z

{ ∫
(0,L)∩(Sn−1,Sn)

ϕ′(s)2 ds

}
� c(M) < ∞. (2.10)

Proof. Let ω(t) be a standard mollifying kernel with suppω ⊂ [−1,1] and define the mollified function

ϕτ (s) = 1

τ

∫
R

ω

(
t − s

τ

)
ϕ(t) dt, ϕ ∈ L∞

per.

By Lemma 2.5, the relaxed minimizer ϕ is continuous on R \ G 0
3(ϑ). Hence, by (2.9), for any s ∈ (an, an+1),

limτ→0 ϕτ (s) exists and equals either φs(ϑ(s)) or φ±
s (ϑ(s)). Hence the function ϕ can be redefined on a set of

zero measure in such a way that it is everywhere the pointwise limit of a sequence of continuous functions on every
interval (an, an+1). Once redefined, at every point of these intervals its value coincides with one of the stable critical
point φs(ϑ(s)), φ±

s (ϑ(s)) and

lim
β→0

ess sup
|s−s0|�β

∣∣ϕ(s) − ϕ(s0)
∣∣ = 0 for any s0 ∈ (an, an+1). (2.11)

In particular this function (also denoted by ϕ) is a minimizer of the primary problem (2.1). To show that ϕ is continuous
on this interval it is sufficient to prove that the set of mollifying functions ϕτ is equi-continuous on each subinterval
[σ,γ ] ⊂ (an, an+1), for n ∈ Z. If this is false, then there exist δ > 0 and sequences {sk}, {tk} ⊂ [σ,γ ], {τk} so that∣∣ϕτk

(sk) − ϕτk
(tk)

∣∣ � δ, |sk − tk| → 0 and τk → 0 as n → ∞. (2.12)
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Without loss of generality we can assume that sk, tk → t∗ ∈ [σ,γ ] as n → ∞. It follows from (2.11) that there is
β > 0 so that

ess sup
|t−t∗|�β

∣∣ϕ(t) − ϕ
(
t∗

)∣∣ < δ/3.

It is clear that for all sufficiently large n,{
t : |t − tk| � τk

} ∪ {
t : |t − sk| � τk

} ⊂ {
t :

∣∣t − t∗
∣∣ < β

}
.

Therefore∣∣ϕτk
(sk) − ϕτk

(tk)
∣∣ �

∣∣∣∣ 1

τk

∫
R

ω

(
t − sk

τk

)(
ϕ(t) − ϕ

(
t∗

))
dt

∣∣∣∣ +
∣∣∣∣ 1

τk

∫
R

ω

(
t − tk

τk

)(
ϕ(t) − ϕ

(
t∗

))
dt

∣∣∣∣
�

∣∣∣∣ δ

3τk

∫
R

ω

(
t − sk

τk

)
dt

∣∣∣∣ +
∣∣∣∣ δ

3τk

∫
R

ω

(
t − tk

τk

)
dt

∣∣∣∣ = 2δ

3
,

which contradicts (2.12). Hence ϕ is continuous on all the interval (an, an+1).
Now from (H3), the critical points φs , φ±

s are non-degenerate. Hence, for s0 ∈ (an, an+1), n ∈ N, a unique con-
tinuous branch of critical points ϕ̃(t), for t in a neighbourhood of s0, is defined by equations ∂φW(ϕ̃(t),ϑ(t)) = 0,

ϕ̃(s0) = ϕ(s0). Therefore ϕ coincides with ϕ̃ in neighbourhood of each point s0 ∈ (an, an+1). Moreover the non-
degeneracy condition (H3) implies

∣∣ϕ̃′(s0)
∣∣ =

∣∣∣∣∂2
φθW(ϕ(s0),ϑ(s0)) · ϑ ′(s0)

∂2
φW(ϕ(s0),ϑ(s0))

∣∣∣∣ � c(M)
∥∥ϑ ′(s0)

∥∥.

With (H1), this gives (2.10) and the lemma follows. �
Remark 2.7. It is obvious from the proof that (2.10) holds for any piecewise regular minimizer ϕ.

2.3. Regularized problems

As in (1.10) let B : R → R be a smooth increasing function and, for a set E ⊂ (0,1] with a limit point at 0, let
{ϑε : ε ∈ E} be bounded in (H 1

per)
d . Then a solution ϕε to the regularized variational problem, for ε > 0,

L∫
0

(
ε

2

(
B(ϕε)

′)2 + W(ϕε,ϑε)

)
ds = inf

ϕ∈H 1
per

L∫
0

(
ε

2

(
B(ϕ)′

)2 + W(ϕ,ϑε)

)
ds, (2.13)

satisfies the Euler–Lagrange equation

εB ′(ϕε(s)
)
B(ϕε)

′′(s) − ∂φW
(
ϕε(s),ϑε(s)

) = 0 on R. (2.14)

We assume that ‖ϑε‖(H 1
per)

d � ME . Then, by the maximum principle and (H1), solutions to (2.14) satisfy M−1 �
ϕε(s) � M for s ∈ R, where M depends only on ME , B and W . Since the adiabatic variable

Aε(s) := W
(
ϕε(s),ϑε(s)

) − ε

2

(
B(ϕε)

′(s)
)2 (2.15)

satisfies the identity A′
ε = ∇θW · ϑ ′, we also have the estimate

‖Aε‖H 1
per

� c(ME), ε ∈ E. (2.16)

Hence {(Aε, ϑε): ε ∈ E} is relatively sequentially compact in the weak topology of (H 1
per)

d+1 and {ϕε : ε ∈ E} is
relatively sequentially compact in the weak* topology of L∞

per. The difficulty is that a weak* limit of a sequence of
solutions ϕε to problem (2.14) need not satisfy the limiting equation (2.4).
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3. Oscillation defect, energy estimates and jumps

Suppose that as E � ε → 0,

(Aε, ϑε) ⇀ (A, ϑ) in
(
H 1

per

)d+1 and ϕε ⇀∗ ϕ in L∞
per, (3.1a)

where (2.14) holds and

‖ϑε‖(H 1
per)

d + ‖ϑ‖(H 1
per)

d � ME < ∞, (3.1b)

M−1 � ϕε(s), ϕ(s) � M for s ∈ R, (3.1c)

‖Aε‖H 1
per

+ ‖A‖H 1
per

� M. (3.1d)

When solutions ϕε ∈ L∞
per of (2.14) converge weak* as E � ε → 0, the functions ϕε can oscillate at points of

F (A, ϑ). To characterize the behaviour of ϕε at these points we define an averaging operator as follows. For ε ∈
(0,1/e] and ϕ ∈ L∞

per, let

Ψε[ϕ](s) = 1√
εh(ε)

s+√
εh(ε)/2∫

s−√
εh(ε)/2

ϕ(t) dt, h(ε) = ln|ln ε|, (3.2)

and note that, if ϕ,ψ ∈ L∞
per, then

L∫
0

ψ(s)Ψε[ϕ](s) ds =
L∫

0

ϕ(s)Ψε[ψ](s) ds.

Oscillation defect. When (3.1) holds and s0 ∈ G 0
3(ϑ), the oscillation defect of E at s0 is defined by

osc-defE(s0) := min
{

lim
β→0

lim inf
E�ε→0

sup
|s−s0|�β

∣∣Ψε[ϕε](s) − φ−
s (s0)

∣∣,
lim
β→0

lim inf
E�ε→0

sup
|s−s0|�β

∣∣Ψε[ϕε](s) − φ+
s (s0)

∣∣}, (3.3)

where φ±
s (s0) = φ±

s (ϑ(s0)).
The oscillation defect is defined in terms of the family {ϕε : ε ∈ E}, and not in terms of its weak* limit points.

Nevertheless we have the following observation.

Lemma 3.1. If (3.1) holds and osc-defE(s0) = d , s0 ∈ G 0
3(ϑ). Then either

lim
β→0

∥∥ϕ − φ−
s (s0)

∥∥
L∞(s0−β,s0+β)

� d or lim
β→0

∥∥ϕ − φ+
s (s0)

∥∥
L∞(s0−β,s0+β)

� d.

In particular, if osc-defE(s0) = 0, then ϕ is essentially continuous at s0.

Proof. This depends on the general observation that if uk ⇀∗ u in any dual space X∗, then ‖u‖X∗ � lim infk‖uk‖X∗ .
Suppose that ϕεk

⇀∗ ϕ. It is clear that for any continuous L-periodic function f ,

L∫
0

f (s)ϕ(s) ds = lim
k→∞

L∫
0

Ψεk
[f ](s)ϕεk

(s) ds = lim
k→∞

L∫
0

f (s)Ψεk
[ϕεk

](s) ds.

Hence the sequence Ψεk
[ϕεk

] is weak* convergent in L∞(s0 − β, s0 + β) to ϕ and∥∥ϕ − φ±
s (s0)

∥∥
L∞(s0−β,s0+β)

� lim inf
k

∥∥Ψεk
[ϕεk

] − φ±
s (s0)

∥∥
L∞(s0−β,s0+β)

.

Since osc-defE(s0) = d , the result follows. �
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Combining this observation with Lemma 2.6 we obtain the following.

Corollary 3.2. Suppose that ϕ in (3.1) is a relaxed minimizer of the limiting problem and {an: n ∈ Z} is a discrete
periodic sequence for which osc-defE(s) = 0 for all s ∈ G 0

3(ϑ) ∩ (an, an + 1), n ∈ Z. Then ϕ is a piecewise regular
minimizer of (2.1) with jump set {Sn} ⊂ {an}.

We now establish a connection between the oscillation defect of a family of solutions of (2.14) (not necessarily
minimizers), the asymptotic behaviour of the energy functional for small ε, and, from Lemma 3.1, the possible jumps
of a weak* limiting function.

Theorem 3.3. If (H1–3) and (3.1) hold,

lim inf
E�ε→0

√
ε

2

L∫
0

(
B

(
ϕε(s)

)′)2
ds �

∑
s∈O(E)

℘
(
ϑ(s)

)
, (3.4)

where the singular set O(E) is given by

O(E) = [0,L) ∩ {
s ∈ F (A, ϑ): osc-defE(s) > 0

}
. (3.5)

If O(E) is infinite, then both sides of (3.4) are infinite.

Proof. The proof is divided into a number of steps.

Step 1: Equations with constant coefficients. Fix (A0, θ0) ∈ F . The first two lemmas concern solutions to the equa-
tion

W
(
u(y), θ

) − 1

2

(
B(u)′(y)

)2 = A (3.6)

in which the constant parameters (A, θ) ∈ R
d+1 satisfy

‖θ − θ0‖ + |A − A0| < ρ (3.7)

for some small ρ. Let

0 < η < φ+
s (θ0) − φ−

s (θ0). (3.8)

Lemma 3.4. Suppose that (3.7) and (3.8) hold, (A0, θ0) ∈ F and u is a solution of Eq. (3.6) on an interval I where

M−1 � u(y) � M, (3.9)∣∣u(y) − φ±
s (θ0)

∣∣ � η, u is monotone. (3.10)

Then there are positive constants ρ0 and C, depending only on θ0 and η, such that, for all ρ < ρ0 the length of I is
bounded by C.

Proof. If u = uc , a constant, then A = W(uc, θ). If ρ > 0 is sufficiently small this is impossible because of (3.7)
and (3.10). Hence, without loss of generality, we can assume that u is increasing on I and

dy = B ′(u) du√
2(W(u, θ) − A)

.

Recall that the function W(·, θ0) − A0 is continuous on the interval [M−1,M] and has only two zeros φ±
s (θ0). There-

fore, by (3.7) and (3.10), there exist ρ0 > 0 and c(η, θ0) > 0 such that for ρ < ρ0,

W(u, θ) − A > c(η, θ0)

when u ∈ [M−1,M] and |u − φ±
s (θ0)| � η. Thus, for ρ < ρ0,
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meas I �
φ−

s (θ0)−η∫
M−1

B ′(u) du√
2(W(u, θ) − A)

+
φ+

s (θ0)−η∫
φ−

s (θ0)+η

B ′(u) du√
2(W(u, θ) − A)

+
M∫

φ+
s (θ0)+η

B ′(u) du√
2(W(u, θ) − A)

�
M∫

M−1

B ′(u) du√
2c(η, θ0)

,

and the lemma follows. �
Next we extend this result to the case of non-monotone u, when θ and A are constants. Suppose θ0 ∈ G0

3. For any
function u :J �→ R and η > 0 let

Bη[u] = {
y ∈ J :

∣∣u(y) − φ±
s (θ0)

∣∣ � η
}
. (3.11)

Lemma 3.5. For (A0, θ0) ∈ F , suppose that u satisfies (3.6) on an interval J and (3.7)–(3.9) hold. Then, for any
δ > 0 there exist K2, 
0 > 0, depending only on δ, η and θ0, such that if measJ � K2 and ρ < ρ0 then measBη[u] <

δ measJ .

Proof. Suppose this is false. Then there exists δ > 0 and a sequence of solutions un :Jn → R of (3.6) corresponding
to (An, θn) which satisfy (3.7)–(3.9), with (An, θn) → (A0, θ0),

measJn → ∞ as n → ∞ and
measBη[un]

measJn

� δ. (3.12)

To contradict (3.12) we need only prove that

(measJn)
−1 measBη[un] → 0 as measJn → ∞. (3.13)

Let Π denote the set of (A, θ) ∈ R
d+1 such that the equation W(φ, θ) = A has four simple roots R1 < R2 < R3 < R4.

After passing to a subsequence, we can assume that either (An, θn) ∈ Π or (An, θn) /∈ Π .
First consider the case (An, θn) ∈ Π . There are two possibilities.
The first is that un takes its values in interval (−∞,R1(n)) or in (R4(n),∞). In both cases it is monotone and, by

virtue of Lemma 3.4,

measBη[un]/measJn � C/measJn,

which yields (3.13).
The second possibility is that un is a periodic function which oscillates between R2(n) and R3(n) with half-period

Tn =
R3(n)∫

R2(n)

B ′(φ)dφ√
2(W(φ, θn) − An)

.

Without loss of generality we can assume that un(0) = R2(n), un(Tn) = R3(n) and un is monotone on each interval
[kTn, (k + 1)Tn]. Let

Jn = (αn,βn) =
m+k⋃
i=k

[
iTn, (i + 1)Tn

] ∪ (αn, kTn] ∪ [
(k + m + 1)Tn,βn

)
for integers k, m � 0, where

αn ∈ [
(k − 1)Tn, kTn

]
, βn ∈ [

(k + m + 1)Tn, (k + m + 2)Tn

]
.

Then un is monotone on each of the intervals in this representation of Jn. Hence the intersection of Bη[un] with these
intervals consists of no more that three subintervals on each of which the function un is monotone. It follows from
Lemma 3.4 that, for all sufficiently large n, the measure of each such subinterval is bounded by a constant depending
only on η if ρ < ρ0. Therefore
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measBη[un] ∩ [αn, kTn] + measBη[un] ∩ [
(k + m + 1)Tn,βn

] + measBη[un] ∩ [
iTn, (i + 1)Tn

]
� c(η, θ0)

and

(measJn)
−1 measBη[un] �

(
2(measJn)

−1 + T −1
n

)
c(η,ρ0).

To complete the analysis of this case, it suffices to show that Tn → ∞ as n → ∞. To this end note that the function
W(u, θ) is uniformly continuous on the set

u ∈ [
M−1,M

]
, ‖θ − θ0‖ < ρ,

and the equation W(φ, θ0) = A0 has exactly two distinct roots φ±
s (θ0). Hence the limit points of subsequences of

{Rj(n)} lie in {φ−
s (θ0),φ

+
s (θ0)}. We claim that

R3(n) → φ+
s (θ0) and R2(n) → φ−

s (θ0) as n → ∞. (3.14)

There are only two possibilities: R3(n) → φ+
s (θ0), or, for a subsequence indexed by k, R3(k) → φ−

s (θ0). In the second
case Rj (k) → φ−

s (θ0) for j � 3, which is impossible, since the roots φ±
s (θ0) of the limiting equation W(φ, θ0) = A0

are non-degenerate, that is, ∂2
φW(φ−

s (θ0), θ0) �= 0. Therefore R3(n) → φ+
s (θ0) as n → ∞. The same arguments show

that R2(n) → φ−
s (θ0). Since

φ+
s (θ0)∫

φ−
s (θ0)

B ′(φ)dφ√
W(φ, θ0) − A0

= ∞,

it follows that Tn → ∞ as n → ∞ which yields (3.13).
It remains to establish (3.13) when (An, θn) /∈ Π . Since the set G3 ⊂ R

d is open, θn ∈ G3 for all sufficiently large n

and we have the following possibilities.
The first is that un is a constant and coincides with one of the critical points of W(·, θn). More precisely,

un ∈ {φι(θn): ι = s,m,u} when θn ∈ G3 \ G0
3, and un ∈ {φ±

s (θn),φu(θn)} when θn ∈ G0
3. Note that un = φu(θn)

is impossible since it implies that

lim
n

An = lim
n

W
(
φu(θn), θn

) = W
(
φu(θ0), θ0

)
> W

(
φ±

s (θ0), θ0
) = A0

which is false, by (H3). Hence un coincides with one of the stable critical points and converges uniformly to φ−
s (θ0)

or φ+
s (θ0). This means that the set Bη[un] is empty for all large n which yields (3.13).

The only other possibility is that the functions un are not constants. Moreover, they are not periodic since
(An, θn) /∈ Π . Hence each un is either monotone and bounded (a kink solution), or monotone and unbounded, or
has exactly one critical point on each side of which it is monotone (a solitary wave). In all these cases, Jn consists
of no more than two intervals on each of which un is monotone. It follows (from the definition of Bη[un]) that the
intersection of Bη[un] with Jn consists of no more than six subintervals. By Lemma 3.4, the measure of each such
subinterval is less than C(η, θ0), which yields (3.13). �

The last lemma in Step 1 gives a lower bound on the energy of solutions to (3.6).

Lemma 3.6. If η satisfies (3.8) and (An, θn) → (A0, θ0) ∈ F as n → ∞, let solutions un to Eq. (3.6) with (A, θ)

replaced by (An, θn) be defined on intervals Jn and suppose that, for each n, there are points y±
n with

un

(
y−
n

) = φ−
s (θ0) + η, un

(
y+
n

) = φ+
s (θ0) − η.

Then

lim inf
n→∞

1

2

∫
Jn

(
B(un)

′)2
dy � 1√

2

φ+
s (θ0)−η∫

φ−
s (θ0)+η

B ′(φ)
√

W(φ, θ0) − A0 dφ.
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Proof. First we show that for all sufficiently large n we can choose y±
n as end-points of an interval In ⊂ Jn on which

the function un is monotone. Recall that there are only two possibilities: (An, θn) ∈ Π and un is periodic, or un has at
most one critical point on Jn.

In the first case, un oscillates between the roots R2(n) and R3(n) of the equation W(φ, θn) = An, and is strictly
monotone between successive minima and maxima. In the second, un has only one critical point which is either an
absolute maximum or minimum. The supremum and infimum of un are then R3(n) and R2(n), respectively. It follows
from (3.14) (which holds, by the same argument, in the present situation) that, for all n sufficiently large,∣∣R2(n) − φ−

s (θ0)
∣∣ < η/2 and

∣∣R3(n) − φ+
s (θ0)

∣∣ < η/2,

and the existence of the interval In is then obvious.
Choosing y±

n ∈ In and noting that W(un(y), θn) − An � 0 for y ∈ In, we obtain

1

2

∫
Jn

(
B(un)

′)2
dy � 1

2

y+
n∫

y−
n

(
B(un)

′)2
dy =

y+
n∫

y−
n

(
W(un, θn) − An

)
dy

= 1√
2

φ+
s (θ0)−η∫

φ−
s (θ0)+η

B ′(φ)
√

W(φ, θn) − An dφ

→ 1√
2

φ+
s (θ0)−η∫

φ−
s (θ0)+η

B ′(φ)
√

W(φ, θ0) − A0 dφ as n → ∞,

and the lemma follows. �
Step 2: Equations with variable coefficients. For a solution ϕε to (2.14) and s ∈ R, let

vε(y, s) = ϕε(s + √
εy), ϑ̂ε(y, s) = ϑε(s + √

εy). (3.15)

Then

B ′(vε)B(vε)
′′ − ∂φW(vε, ϑ̂ε) = 0,

in which ′ denotes differentiation with respect to y. Denote by uε(y, s) the solution to the Cauchy problem

B ′(uε(y)
)
B(uε)

′′(y) − ∂φW
(
uε(y),ϑε(s)

) = 0,

uε(0, s) = vε(0, s), ∂yuε(0, s) = ∂yvε(0, s). (3.16)

From (3.16), uε satisfies the autonomous equation

−1

2

(
B

(
uε(y)

)′)2 + W
(
uε(y),ϑε(s)

) = Aε(s), (3.17)

where Aε(s) is given by (2.15). Let h(ε) = ln|ln ε| > 0, ε ∈ (0,1/e].

Lemma 3.7. For any compact set K ⊂ R and p ∈ (0,1/4), there is ε0 > 0, depending only on K and p, so that, for all
s ∈ K and ε ∈ (0, ε0), the function uε(y, s) is defined on the interval |y| � h(ε)/2 where |uε(y, s) − vε(y, s)| � εp.

Proof. Let

V (φ, θ) = B ′(φ)−1∂φW(φ, θ), (φ, θ) ∈ (0,∞) × R
d .

Since s is fixed, we can suppress it in the notation and write uε(y) instead of uε(y, s), and similarly for the other
variables. Then
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(
B

(
uε(y)

) − B
(
vε(y)

))′′ = V
(
uε(y), ϑ̂ε(0)

) − V
(
vε(y), ϑ̂ε(y)

)
= (

uε(y) − vε(y)
) 1∫

0

∂φV
(
tuε(y) + (1 − t)vε(y), ϑ̂ε(0)

)
dt

+ V
(
vε(y), ϑ̂ε(0)

) − V
(
vε(y), ϑ̂ε(y)

)
= P(y)

(
B

(
uε(y)

) − B
(
vε(y)

)) + Q(y), say,

where, for a constant N1 = N1(ME), independent of s ∈ K ,

∣∣P(y)
∣∣ = uε(y) − vε(y)

B(uε(y)) − B(vε(y))

1∫
0

∂φV
(
tuε(y) + (1 − t)vε(y), ϑ̂ε(0)

)
dt � N1,

∣∣Q(y)
∣∣ � N1ε

1/4
√|y|,

when ∣∣uε(y) − vε(y)
∣∣ � 1

2
min

{
M−1,M

}
. (3.18)

Since Z(y) := B(uε(y)) − B(vε(y)) solves the Cauchy problem

Z′′(y) = P(y)Z(y) + Q(y), Z(0) = Z′(0) = 0,

it follows that |Z(y)| � z(y) where

z′′(y) = N1
(
z(y) + ε1/4

√|y| ), z(0) = z′(0) = 0.

It is easy to see that

z(y) = ε1/4N1|y|5/2Y(y),

where

Y(y) = 4
∞∑

k=0

A2ky
2k and A2k = Nk

1 22k

(4k + 5)(4k + 3) · · ·1
�

Nk
1

15(2k)! .

Thus ∣∣Z(y)
∣∣ � 4N1ε

1/4

15
|y|5/2 exp

(√
N1|y|).

Now suppose that (3.18) holds on an interval I ⊂ (−h(ε),h(ε)). Then for y ∈ I ,∣∣Z(y)
∣∣ � 4N1ε

1/4

15

(
ln|ln ε|)5/2|ln ε|

√
N1 � εp, p ∈ (0,1/4),

when ε < ε0, where ε0 depends only on M and p. If, also, ε
p

0 � 1
2 min{M−1,M}, then (3.18) holds on (−h(ε),h(ε)).

This estimate of Z implies the required estimate of |vε(y) − uε(y)|, and the proof is complete. �
The next result characterizes the behaviour of uε(y, s) near a point s0 with non-zero oscillation defect.

Lemma 3.8. Under the hypotheses of Theorem 3.3 suppose, for some s0 ∈ F (A, ϑ), that osc-defE(s0) > 0. Let
θ0 = ϑ(s0) and let

η0 = 1

4
min

{
osc-defE(s0),φ

+
s (θ0) − φ−

s (θ0)
}

> 0. (3.19)

For any η ∈ (0, η0) and any sequence E � εn → 0, there is a subsequence {εnm} and there are sequences {sm}, {y±
m}

with the following properties:

(εnm, sm) → (0, s0) as m → ∞, y±
m ∈ [−h(εnm)/2, h(εnm)/2

]
,

uεnm

(
y−
m, sm

) = φ−
s (θ0) + η, uεnm

(
y+
m, sm

) = φ+
s (θ0) − η. (3.20)
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Proof. Fix an arbitrary sequence E � εn → 0. Suppose the assertion of the theorem is false. Then there exist η ∈
(0, η0), ε0 > 0, and b > 0 so that for every εn ∈ (0, ε0) and s ∈ (s0 − b, s0 + b), the function uεn(·, s) does not take at
least one of the values φ−

s (θ0) + η or φ+
s (θ0) − η on [−h(εn)/2, h(εn)/2]. This means that for every εn ∈ (0, ε0) and

s ∈ (s0 − b, s0 + b), either∣∣uεn(y, s) − φ−
s (θ0)

∣∣ � η for all |y| � h(εn)/2, (3.21)

or ∣∣uεn(y, s) − φ+
s (θ0)

∣∣ � η for all |y| � h(εn)/2. (3.22)

Consider first the case when uεn satisfies (3.21). Now uεn satisfies (3.17) on Jn = [−h(εn)/2, h(εn)/2], and

Jn = Bη

[
uεn(·, s)

] ∪ {
y ∈ Jn:

∣∣uε(y, s) − φ+
s (θ0)

∣∣ � η
}
, (3.23)

where the set Bη is defined by (3.11). By hypothesis,

ϑεn(s) → ϑ(s0) = θ0, Aεn(s) → A(s0) as (εn, s) → (0, s0),

measJn → ∞ as εn → 0 and 1/(2M) � uεn � 2M by Lemma 3.7.

Since, by hypothesis, s0 ∈ F (A, ϑ), we can apply Lemma 3.5 to Eq. (3.17). Let ε0 and b, depending only on η and
ϑ(s0), be such that, for all εn ∈ (0, ε0) and s ∈ (s0 − b, s0 + b),∥∥ϑεn(s) − ϑ(s0)

∥∥ + ∣∣Aεn(s) − A(s0)
∣∣ < ρ0, measJn = h(εn) > K2,

where ρ0 and K2 are given by Lemma 3.5 with δ = η/6M . Thus

measBη[uεn(·, s)]
measJn

<
η

6M

for all εn ∈ (0, ε0) and s ∈ (s0 − b, s0 + b). Therefore, from (3.23), for all such s and εn,∣∣∣∣∣
{

1

h(εn)

h(εn)/2∫
−h(εn)/2

uεn(y, s) dy

}
− φ+

s (θ0)

∣∣∣∣∣
� 1

measJn

∫
Bη[uεn (·,s)]

∣∣uεn(y, s) − φ+
s (θ0)

∣∣dy + 1

measJn

∫
Jn\Bη[uεn (·,s)]

η dy

� 3M
measBη[uεn(·, s)]

measJn

+ η � η

2
+ η < 2η.

Applying Lemma 3.7 and, with p ∈ (0,1/4), choosing ε0 sufficiently small we conclude that for all s ∈ (s0 −b, s0 +b)

and εn ∈ (0, ε0),∣∣∣∣∣
{

1

h(εn)

h(εn)/2∫
−h(εn)/2

vεn(y, s) dy

}
− φ+

s (θ0)

∣∣∣∣∣ < 2η + ε
p
n .

Now recall from (3.2) that

Ψεn[ϕεn](s) = 1√
εnh(εn)

s+√
εnh(εn)/2∫

s−√
εnh(εn)/2

ϕεn(t) dt = 1

h(εn)

h(εn)/2∫
−h(εn)/2

vεn(y, s) dy.

Thus, for all s ∈ (s0 − b, s0 + b) and εn ∈ (0, ε0) for which (3.21) holds,∣∣Ψεn[ϕεn](s) − φ+
s (θ0)

∣∣ < 2η + ε
p
n .

Repeating the above arguments we conclude that if uεn satisfies inequality (3.22), then for all s ∈ (s0 − b, s0 + b) and
εn ∈ (0, ε0),∣∣Ψεn[ϕεn](s) − φ−

s (θ0)
∣∣ < 2η + ε

p
n .
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Recalling the definition (3.3) of the oscillation defect we conclude that

0 < osc-defE(s0) � lim inf
n→∞ sup

|s−s0|<b

∣∣Ψεn[ϕεn](s) − φ+
s (θ0)

∣∣ � 2η.

But this contradicts η < η0 in (3.19) and the lemma follows. �
Step 3: Proof of Theorem 3.3. To complete the proof, fix an arbitrary s0 ∈ F (A, ϑ) with osc-defE(s0) > 0 and let
η0 be defined by (3.19). Now let η ∈ (0, η0) and β > 0. For a sequence with E � εn → 0 as n → ∞ and

lim inf
E�ε→0

1√
ε

s0+β∫
s0−β

ε

2

(
B(ϕε)

′)2
ds = lim

n→∞
1√
εn

s0+β∫
s0−β

εn

2

(
B(ϕεn)

′)2
ds, (3.24)

apply Lemma 3.8 to extract a subsequence {εnm} ⊂ {εn} and sequences {sm}, {y±
m} satisfying (3.20). For convenience

let εnm be denoted by εm. Then, since (εm, sm) → (0, s0) we have, for sufficiently large m,

lim
m→∞

1√
εm

s0+β∫
s0−β

εm

2

(
B(ϕεm)′

)2
ds � lim sup

m→∞
1√
εm

sm+√
εmh(εm)/2∫

sm−√
εmh(εm)/2

εm

2

(
B(ϕεm)′

)2
ds. (3.25)

Since (εm/2)(B(ϕεm)′(s))2 = W(ϕεm(s),ϑεm(s)) − Aεm(s), we have that

1√
εm

sm+√
εmh(εm)/2∫

sm−√
εmh(εm)/2

εm

2

(
B(ϕεm)′

)2
ds = 1√

εm

sm+√
εmh(εm)/2∫

sm−√
εmh(εm)/2

(
W

(
ϕεm(s),ϑεm(s)

) − Aεm(s)
)
ds. (3.26)

Moreover, since (3.1) holds, for a constant c depending on ME and M ,∣∣(W (
ϕεm(s),ϑεm(s)

) − Aεm(s)
) − (

W
(
ϕεm(s),ϑεm(sm)

) − Aεm(sm)
)∣∣

� c
(∥∥ϑεm(s) − ϑεm(sm)

∥∥ + ∣∣Aεm(s) − Aεm(sm)
∣∣) � c|s − sm|1/2.

Combining this observation with (3.26) and (3.15) we obtain

1√
εm

sm+√
εmh(εm)/2∫

sm−√
εmh(εm)/2

εm

2

(
B(ϕεm)′

)2
ds

= 1√
εm

sm+√
εmh(εm)/2∫

sm−√
εmh(εm)/2

(
W

(
ϕεm(s),ϑεm(sm)

) − Aεm(sm)
)
ds + O

(
ε

1/4
m h(εm)3/2)

=
h(εm)/2∫

−h(εm)/2

(
W

(
vεm(y, sm),ϑεm(sm)

) − Aεm(sm)
)
dy + o

(
ε

1/8
m

)
as εm → 0. (3.27)

Recall, from Lemma 3.7, that for all m sufficiently large, and p ∈ (0,1/4),∣∣vεm(y, sm) − uεm(y, sm)
∣∣ � ε

p
m when y ∈ [−h(εm)/2, h(εm)/2

]
,

where uεm(y, s) satisfies (3.16) with s = sm. With p = 1/8 this leads to the estimate∣∣W (
vεm(y, sm),ϑεm(sm)

) − W
(
uεm(y, sm),ϑεm(sm)

)∣∣ � cε
1/8
m ,

which in (3.27) yields that

1√
εm

sm+√
εmh(εm)/2∫

s −√
ε h(ε )/2

εm

2

(
B(ϕεm)′

)2
ds =

h(εm)/2∫
−h(ε )/2

(
W

(
uεm(y, sm),ϑεm(sm)

) − Aεm(sm)
)
dy + O

(
ε

1/8
m

)
. (3.28)
m m m m
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Now recall that, in addition to the sequences {εm} and {sm}, we can choose sequences {y±
m} satisfying (3.20). Note

also that if the function uεm has different values at y±
m , then it is not a constant and there are only three possibilities: it

is periodic and monotone between successive points at which it takes absolute minimum and maximum values, or it
has only one critical point at which it takes its absolute minimum or maximum, or it is monotone.

It obviously follows that we can choose y±
m , satisfying conditions (3.20), so that uεm(y, sm) will be monotone on

the interval Im ⊂ [−h(εm)/2, h(εm)/2] which is bounded by y−
m and y+

m . Note from Lemma 3.7 that

W
(
uεm(y, sm),ϑεm(sm)

) − Aεm(sm) � 0 for |y| � h(εm)/2

and, on Im,

B ′(uεm) duεm = ±
√

2
(
W

(
uεm(y, sm),ϑεm(sm)

) − Aεm(sm)
)
dy,

where we take “+” if y−
m < y+

m and “−” otherwise. Thus, since |y±
m | � h(εm)/2,

h(εm)/2∫
−h(εm)/2

(
W

(
uεm(y, sm),ϑεm(sm)

) − Aεm(sm)
)
dy �

∫
Im

(
W

(
uεm(y, sm),ϑεm(sm)

) − Aεm(sm)
)
dy

= 1√
2

φ+
s (ϑ0)−η∫

φ−
s (ϑ0)+η

√
W

(
φ,ϑεm(sm)

) − Aεm(sm)B ′(φ)dφ.

Combining this observation with (3.28) we obtain

1√
εm

sm+√
εmh(εm)/2∫

sm−√
εmh(εm)/2

εm

2

(
B(ϕεm)′

)2
ds � 1√

2

φ+
s (ϑ0)−η∫

φ−
s (ϑ0)+η

√
W

(
φ,ϑεm(sm)

) − AεmB ′(φ)dφ + O
(
ε

1/8
m

)
.

Since (Aεm(sm),ϑεm(sm)) → (A(s0),ϑ(s0)) as m → ∞, from (3.24) and (3.25),

lim inf
E�ε→0

1√
ε

s0+β∫
s0−β

ε

2

(
B(ϕε)

′)2
ds � 1√

2

φ+
s (s0)−η∫

φ−
s (s0)+η

√
W

(
φ,ϑ(s0)

) − A(s0)B
′(φ)dφ.

Finally, letting η → 0, we find that for s0 ∈ F (A, ϑ) with osc-defE(s0) > 0 and β > 0,

lim inf
E�ε→0

1√
ε

s0+β∫
s0−β

ε

2

(
B(ϕε)

′)2
ds � ℘

(
ϑ(s0)

)
where ℘ is defined by (2.3a). If the set O(E) defined by (3.5), contains n distinct points si , 1 � i � n, then, for β

sufficiently small, we obtain

lim inf
ε→0

1√
ε

L∫
0

ε

2

(
B(ϕε)

′)2
ds � lim inf

ε→0

1√
ε

∑
i

si+β∫
si−β

ε

2

(
B(ϕε)

′)2
ds �

∑
i

℘
(
ϑ(si)

)
.

If the set O(E) is finite, this gives (3.4). If the set O(E) is infinite, then letting n → ∞ we obtain that both sides
of (3.4) are equal to ∞ (see Remark 2.2), which completes the proof of Theorem 3.3. �
4. Asymptotic behaviour of energy minimizers

In this section we make the following hypotheses on {ϑε : ε ∈ (0,1)}.

(H4) (i) {ϑε : ε ∈ (0,1)} is bounded in (H 1
per)

d .

(ii) lim supε→0 ε−1/2‖ϑε − ϑ‖(L1 )d = Θ0 < ∞.

per
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(iii) There exists Λ : (0,1) → R with lim supε→0
√

εΛ(ε) = Θ1 < ∞ and, for almost all ε ∈ (0,1),

lim inf
λ→0

‖ϑε−λ − ϑε‖(L1
per)

d

λ
= Λ(ε).

With E = (0,1) let M be as in (3.1b), (3.1c) and let CW be such that∣∣W(φ, θ1) − W(φ, θ2)
∣∣ � CW‖θ1 − θ2‖, φ ∈ [

M−1,M
]
, ‖θ1‖,‖θ2‖ � ME.

(H5) With ϑ given by (H4), problem (2.1) has a piecewise regular minimizer.

Of course, (H4) is trivial if ϑε is independent of ε.

Energy minimizers. Let (H4) and (H5) hold and define E : [0,1) �→ R by

E(ε) = inf
ϕ∈H 1

per

L∫
0

(
ε

2

(
B(ϕ)′

)2 + W(ϕ,ϑε)

)
ds, ε ∈ (0,1),

E(0) =
L∫

0

Aϑ(s) ds where Aϑ(s) = inf
φ

W
(
φ,ϑ(s)

)
. (4.1)

Here Aϑ ∈ H 1
per is as in Lemma 2.5. First we discuss the behaviour of E at 0.

Theorem 4.1. E is continuous from the right at 0.

Proof. Let ϕ be a minimizer of (2.1) so that ϕ(s) ∈ [M−1,M] and

E(0) =
L∫

0

W(ϕ,ϑ)ds.

For δ > 0, let ϕη be a mollification of ϕ with ϕη ∈ [M−1,M] and∣∣∣∣∣
L∫

0

W
(
ϕη,ϑ

)
ds −

L∫
0

W(ϕ,ϑ)ds

∣∣∣∣∣ � δ

3
.

Now let

εδ = 2δ

3

( L∫
0

(
B

(
ϕη

)′)2
ds

)−1

.

Then, for 0 < ε � εδ ,

E(0) � E(ε) � Jε

(
ϕη

) =
L∫

0

(
ε

2

(
B

(
ϕη

)′)2 + W
(
ϕη,ϑε

))
ds

� δ

3
+

L∫
0

(
W

(
ϕη,ϑ

))
ds +

L∫
0

(
W

(
ϕη,ϑε

) − W
(
ϕη,ϑ

))
ds

� E(0) + 2δ

3
+

L∫
0

(
W

(
ϕη,ϑε

) − W
(
ϕη,ϑ

))
ds

� E(0) + δ,

by (H1) and (H4)(ii), if ε < εδ is sufficiently small. This proves the result. �
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Theorem 4.2. Suppose that (H1–5) hold and that ϕ is a piecewise regular minimizer ϕ of (2.1). Then

lim sup
0<ε→0

E(ε) − E(0)√
ε

� 2W (ϕ) + CWΘ0, (4.2)

where W (ϕ) is defined in (2.3b) and CW and Θ0 are given by (H4).

Proof. For any {ψε ∈ H 1
per: ε ∈ (0,1)} with ψε(s) ∈ [M−1,M],

E(ε) − E(0)√
ε

� 1√
ε

L∫
0

(
ε

2

(
B(ψε)

′(s)
)2 + W

(
ψε(s),ϑ(s)

) − Aϑ(s)

)
ds

+ 1√
ε

L∫
0

(
W

(
ψε(s),ϑε(s)

) − W
(
ψε(s),ϑ(s)

))
ds

� 1√
ε

L∫
0

(
ε

2

(
B(ψε)

′(s)
)2 + W

(
ψε(s),ϑ(s)

) − Aϑ(s)

)
ds + CWΘ0 + o(1), (4.3)

by (H4)(ii), as ε → 0. Hence it suffices to make an optimal choice of ψε , in order to estimate the first term on the
right-hand side of (4.3). We use an auxiliary function Φ defined by the following lemma.

Lemma 4.3. For constants (A, θ) ∈ F , the Cauchy problem

W
(
Φ(y), θ

) − 1

2

(
B(Φ)′(y)

)2 = A, Φ(0) = 1

2

(
φ−

s (θ) + φ+
s (θ)

)
, Φ ′(0) > 0, (4.4)

has a unique solution Φ : R → R. It is monotone, limy→±∞ Φ(y) = φ±
s (θ) and there are positive constants c1, c2,

depending only on ‖θ‖, such that∣∣Φ(y) − φ±
s (θ)

∣∣ � e−c1|y| for |y| > c2.

Proof. Since the function W(·, θ) − A is positive on (φ−
s (θ), ϕ+

s (θ)) and has non-degenerate global minima on R at
φ±

s (θ), the statement of the lemma follows from the formula

y =
Φ(y)∫

(φ−
s (θ)+φ+

s (θ))/2

B ′(φ)dφ√
2(W(φ, θ) − A)

. �

Turning to the proof of the theorem, for ε > 0 sufficiently small, let

In = (
Sn − 2ε5/12, Sn + 2ε5/12),

where {Sn} is the jump set of the piecewise regular minimizer ϕ. For all small ε, these intervals are disjoint and their
union covers the set {Sn}. Set θn = ϑ(Sn), An = Aϑ(Sn), φ±

n = φ±
s (θn), and denote by Φn the solution to the Cauchy

problem (4.4) with θ = θn and A = An.

(i) For s ∈ R \ ∪In, let ψε(s) = ϕ(s).
(ii) For |s − Sn| � ε5/12, let

ψε(s) = Φ

(
s − Sn√

ε

)
when lim

s→Sn±0
ϕ(s) = φ±

n , (4.5)

and

ψε(s) = Φ

(
Sn − s√

ε

)
when lim

s→Sn±0
ϕ(s) = φ∓

n . (4.6)



P.I. Plotnikov, J.F. Toland / Ann. I. H. Poincaré – AN 27 (2010) 655–691 681
(iii) On (Sn − 2ε5/12, Sn − ε5/12) ∪ (Sn + ε5/12, Sn + 2ε5/12), let ψε be affine so that the resulting function is contin-
uous on R.

The behaviour of ψε when it is affine is described by the following lemma.

Lemma 4.4. Suppose that (4.5) holds. Then∣∣ψε(s) − φ−
n

∣∣ � cε5/24 for Sn − 2ε5/12 < s < Sn − ε5/12,∣∣ψε(s) − φ+
n

∣∣ � cε5/24 for Sn + ε5/12 < s < Sn + 2ε5/12,∣∣ψ ′
ε(s)

∣∣ � cε−5/24 for ε5/12 < |Sn − s| < 2ε5/12. (4.7)

If (4.6) holds, then the roles of φ+
n and φ−

n are interchanged.

Proof. Suppose that (4.5) holds. On (Sn − 2ε5/12, Sn − ε5/12) where ψε is affine,∣∣ψε(s) − φ−
n

∣∣ �
∣∣ψε

(
Sn − 2ε5/12) − φ−

n

∣∣ + ∣∣ψε

(
Sn − ε5/12) − φ−

n

∣∣
= ∣∣ϕ(

Sn − 2ε5/12) − φ−
n

∣∣ + ∣∣Φn

(−ε−1/12) − φ−
n

∣∣.
Since the piecewise regular minimizer ϕ is absolutely continuous and ϕ′ is square-integrable on (Sn−1, Sn),∣∣ϕ(

Sn − 2ε5/12) − φ−
n

∣∣ = ∣∣ϕ(
Sn − 2ε5/12) − lim

s→Sn−0
ϕ(s)

∣∣
�

(
2

Sn∫
Sn−1

(
ϕ′)2

ds

)1/2

ε5/24 � cε5/24.

Also it follows from Lemma 4.3 that, as ε → 0,∣∣Φn

(−ε−1/12) − φ−
n

∣∣ � ce−c1ε
−1/12 � cε5/24.

This gives the first inequality in (4.7). Repeating this arguments on the interval (Sn + ε5/12, Sn + 2ε5/12), we obtain
the second estimate in (4.7). Finally note that, on the interval (Sn − 2ε5/12, Sn − ε5/12),∣∣ψ ′

ε

∣∣ = ε−5/12
∣∣ψε

(
Sn − 2ε5/12) − ψε

(
Sn − ε5/12)∣∣

� ε−5/12(∣∣ψε

(
Sn − 2ε5/12) − φ−

n

∣∣ + ∣∣ψε

(
Sn − ε5/12) − φ−

n

∣∣)
= ε−5/12(∣∣ϕ(

Sn − 2ε5/12) − φ−
n

∣∣ + ∣∣Φn

(−ε−1/12) − φ−
n

∣∣) � cε−5/24,

which yields the third estimate in (4.7) when (4.5) holds. A similar argument when (4.6) holds completes the
proof. �

With this choice of ψε we study the integral on the right side of (4.3) in three steps. Choose an arbitrary integer n

and without loss of generality assume that lims→Sn±0 ϕ(s) = φ±
n .

Step 1. By hypothesis, {‖ϑ(s)‖: s ∈ R} is bounded and, by construction, M−1 � ψε(s) � M, where M is as
in (3.1). Therefore∣∣W (

ψε(s),ϑ(s)
) − W

(
ψε(s), θn

)∣∣ + ∣∣An − Aϑ(s)
∣∣ � c

(∥∥ϑ(s) − ϑ(Sn)
∥∥ + ∣∣Aϑ(s) − Aϑ(Sn)

∣∣)
� c

(‖ϑ‖(H 1
per)

d + ‖Aϑ‖H 1
per

)|s − Sn|1/2 � cε5/24, (4.8)

for all s ∈ (Sn − 2ε5/12, Sn + 2ε5/12). Therefore

1√
ε

∣∣∣∣∣
Sn+ε5/12∫

5/12

(
W

(
ψε(s),ϑ(s)

) − W
(
ψε(s), θn

) + An − Aϑ(s)
)
ds

∣∣∣∣∣ � cε−1/2+5/12+5/24 = cε1/8.
Sn−ε
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Observe, from (4.4) and the definition of ψε , that

W
(
ψε(s), θn

) − An = ε

2

(
B(ψε)

′(s)
)2 on

[
Sn − ε5/12, Sn + ε5/12].

Hence

1√
ε

Sn+ε5/12∫
Sn−ε5/12

(
ε

2

(
B(ψε)

′(s)
)2 + W

(
ψε(s),ϑ(s)

) − Aϑ(s)

)
ds

= 2√
ε

Sn+ε5/12∫
Sn−ε5/12

(
W

(
ψε(s), θn

) − An

)
ds + 1√

ε

Sn+ε5/12∫
Sn−ε5/12

(
W

(
ψε(s),ϑ(s)

) − W
(
ψε(s), θn

) + An − Aϑ(s)
)
ds

= 2√
ε

Sn+ε5/12∫
Sn−ε5/12

(
W

(
ψε(s), θn

) − An

)
ds + O

(
ε1/8). (4.9)

Next, from the definition of ψε ,

2√
ε

Sn+ε5/12∫
Sn−ε5/12

(
W

(
ψε(s), θn

) − An

)
ds = 2

ε−1/12∫
−ε−1/12

(
W

(
Φn(y), θn

) − An

)
dy

= √
2

Φn(ε−1/12)∫
Φn(−ε−1/12)

B ′(φ)
√

W(φ, θn) − An dφ. (4.10)

Since, by Lemma 4.3,

φ−
n < Φn < φ+

n ,
∣∣Φn

(±ε−1/12) − φ±
n

∣∣ � ce−c1ε
−1/12

,

it follows from formula (2.3a) that, as ε → 0,∣∣∣∣∣√2

Φn(ε−1/12)∫
Φn(−ε−1/12)

B ′(φ)
√

W(φ, θn) − An dφ − 2℘(θn)

∣∣∣∣∣
= √

2

{ Φn(−ε−1/12)∫
φ−

n

+
φ+

n∫
Φn(ε−1/12)

}
B ′(φ)

√
W(φ, θn) − An dφ

� ce−c1ε
−1/12 � cε1/8.

Combining this with (4.9) and (4.10) we obtain that, as ε → 0,

1√
ε

Sn+ε5/12∫
Sn−ε5/12

(
ε

2

(
B(ψε)

′(s)
)2 + W

(
ψε(s),ϑ(s)

) − Aϑ(s)

)
ds = 2℘(θn) + O

(
ε1/8). (4.11)

Step 2. Note that

1√
ε

Sn−ε5/12∫
5/12

(
W

(
ψε(s),ϑ(s)

) − Aϑ(s)
)
ds
Sn−2ε
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= 1√
ε

Sn−ε5/12∫
Sn−2ε5/12

(
W

(
ψε(s), θn

) − An

)
ds

+ 1√
ε

Sn−ε5/12∫
Sn−2ε5/12

(
W

(
ψε(s),ϑ(s)

) − W
(
ψε(s), θn

) − Aϑ(s) + An

)
ds. (4.12)

From (4.8) we obtain∣∣∣∣∣ 1√
ε

Sn−ε5/12∫
Sn−2ε5/12

(
W

(
ψε(s),ϑ(s)

) − W
(
ψε(s), θn

) − Aϑ(s) + An

)
ds

∣∣∣∣∣ � cε−1/2+5/12+5/24 = cε1/8 (4.13)

and, from Lemma 4.4,∣∣W (
ψε(s), θn

) − An

∣∣ = ∣∣W (
ψε(s), θn

) − W
(
φ−

n , θn

)∣∣ � c
∣∣ψε(s) − φ−

n

∣∣ � cε5/24,

which leads to the conclusion that∣∣∣∣∣ 1√
ε

Sn−ε5/12∫
Sn−2ε5/12

(
W

(
ψε(s), θn

) − An

)
ds

∣∣∣∣∣ � cε−1/2+5/12+5/24 � cε1/8. (4.14)

Substituting (4.13) and (4.14) into (4.12) we finally obtain∣∣∣∣∣ 1√
ε

Sn−ε5/12∫
Sn−2ε5/12

(
W

(
ψε(s),ϑ(s)

) − Aϑ(s)
)
ds

∣∣∣∣∣ � cε1/8. (4.15)

Furthermore, it follows from Lemma 4.4 that∣∣∣∣∣ 1√
ε

Sn−ε5/12∫
Sn−2ε5/12

ε

2

(
B(ψε)

′(s)
)2

ds

∣∣∣∣∣ � cε1/2. (4.16)

Combining (4.15) and (4.16) gives∣∣∣∣∣ 1√
ε

Sn−ε5/12∫
Sn−2ε5/12

(
ε

2

(
B(ψε)

′(s)
)2 + W

(
ψε(s),ϑ(s)

) − Aϑ(s)

)
ds

∣∣∣∣∣ � cε1/8.

Similarly, the same estimate holds on (Sn + ε5/12, Sn + 2ε5/12). Hence, by (4.11),

1√
ε

∫
In

(
ε

2

(
B(ψε)

′(s)
)2 + W

(
ψε(s),ϑ(s)

) − Aϑ(s)

)
ds = 2℘(θn) + O

(
ε1/8). (4.17)

Step 3. Note that ψε(s) coincides with the piecewise regular minimizer ϕ(s) and Aϑ(s) = W(ϕ(s),ϑ(s)) for s

outside of the intervals In. Hence, for any finite interval (a, b),

1√
ε

∫
(a,b)\∪In

(
ε

2

(
B(ψε)

′(s)
)2 + W

(
ψε(s),ϑ(s)

) − Aϑ(s)

)
ds

=
√

ε

2

∫ (
B(ϕ)′(s)

)2
ds � c

√
ε

b∫
a

(
ϕ′(s)

)2
ds � c(a, b)

√
ε.
(a,b)\∪In
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We are now in a position to complete the proof of Theorem 4.2. Since each compact set contains only a finite number
of points Sn, there exists δ > 0 so that the intervals (−δ,0) and (L − δ,L) do not contain any Sn, n ∈ Z. Therefore

1√
ε

L∫
0

(
ε

2

(
B(ψε)

′)2 + W(ψε,ϑ) − Aϑ

)
ds

= 1√
ε

L−δ∫
−δ

(
ε

2

(
B(ψε)

′)2 + W(ψε,ϑ) − Aϑ

)
ds

=
∑

{n: Sn∈(−δ,L−δ)}

1√
ε

∫
In

(
ε

2

(
B(ψε)

′)2 + W(ψε,ϑ) − Aϑ

)
ds

+ 1√
ε

∫
(−δ,L−δ)\∪In

(
ε

2

(
B(ψε)

′)2 + W(ψε,ϑ) − Aϑ

)
ds

=
∑

{n: Sn∈(−δ,L−δ)}

1√
ε

∫
In

(
ε

2

(
B(ψε)

′)2 + W(ψε,ϑ) − Aϑ

)
ds + O

(
ε1/2).

This observation, when combined with (4.17), yields

1√
ε

L∫
0

(
ε

2

(
B(ψε)

′)2 + W(ψε,ϑ) − Aϑ

)
ds =

∑
{n: Sn∈(−δ,L−δ)}

2℘(θn) + O
(
ε1/8)

=
∑

Sn∈[0,L)

2℘
(
ϑ(Sn)

) + O
(
ε1/8).

Recalling (4.3) we finally arrive at the inequality

E(ε) − E(0)√
ε

� 2
∑

Sn∈[0,L)

℘
(
ϑ(Sn)

) + O
(
ε1/8)

as ε → 0, which yields (4.2). �
5. Minimal number of jumps principle

Theorem 5.6, which says that, almost always, solutions to the variational problem (2.13) converge weak* to piece-
wise regular minimizers with a minimal number of jumps, is a corollary of a stronger statement, under more general
hypotheses. A set E ⊂ (0,1] has lower Lebesgue density λ at 0 if

lim inf
0<τ→0

1

τ

(
measE ∩ [0, τ ]) = λ. (5.1)

We say that E has positive Lebesgue density at 0 if λ > 0 and E is Lebesgue dense at 0 if λ = 1. We need a final
hypothesis.

(H6) E defined in (4.1) is locally absolutely continuous on (0,1).

This is a rather weak hypothesis which is trivial when ϑε is independent of ε, because then E is concave. More
generally it is shown in Corollary A.2 in Appendix A that (H6) holds if there exists a locally absolutely continuous
function h : (0,1) → R with the property that, for all ϕ ∈ H 1

per with range in [M−1,M],

the mapping ε �→ h(ε) +
L∫
W(ϕ,ϑε) ds is concave on (0,1), (5.2)
0
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where M � 0 is given by (3.1) with E = (0,1). Alternately, if [δ,1] � ε �→ ϑε ∈ (L1
per)

d is Lipschitz continuous for
all δ ∈ (0,1), (H6) follows from Theorem A.3. In the notation of (H4), let

L(δ) =
(

δ

δ + CWΘ1 + CWΘ0/2

)2

, δ > 0. (5.3)

Theorem 5.1. Suppose that (H1–6) hold. Then, for any δ > 0 there is a set Eδ ⊂ (0,1] with lower Lebesgue density at
least L(δ) at 0 and the following property. If a sequence {ϕεn}, Eδ � εn → 0, of solutions to problem (2.13) converges
weak* in L∞

per to some function ϕ, then ϕ is a piecewise regular minimizer of (2.1) with weighted number of jumps

W (ϕ) � Wmin + CWΘ1 + CWΘ0/2 + δ, (5.4)

where Wmin is defined in (2.3c).

Proof. The proof is in a number of steps, but first a remark.

Remark 5.2. To illustrate this observation, consider the example

Jε(ϕ) :=
L∫

0

(
εϕ′2 + W(ϕ,ϑε)

)
ds,

in which d = 1, W(φ, θ) = (φ2 − 1)2/4 − θφ (a Landau potential) and ϑε = √
εγ ϑ∗, where γ ∈ R and ϑ∗ ∈ H 1

per
are given. Note that (H4) holds with Θ0 ∼ |γ |‖ϑ∗‖L1

per
and Θ1 ∼ |γ |‖ϑ∗‖L1

per
/2, that the limit of ϑε is 0 and that

℘(0) = ℘0 = 4/3, from (1.8). Clearly the minimum possible number of jumps of a minimizer of J0 is zero, in other
words, Wmin = 0 in (5.4). A question arises:

how many jumps do the weak* limits of minimizers of Jε have?

To address this question, note that minimizers of Jε are minimizers of a family of scaled Ginzburg–Landau function-
als Jε given by (1.5) with ϑ = γϑ∗,

Jε(ϕ) = 1√
ε
Jε(ϕ) := 1√

ε

L∫
0

(
εϕ′2 + W(ϕ,ϑε)

)
ds.

Hence weak* limits of minimizers of Jε are minimizers of the Γ -limit J given by (1.7), where ℘0 N (ϕ) coincides with
the weighted number of jumps W (ϕ) of a minimizer. It follows from (1.7) and (1.8) that weak* limits of minimizers
of Jε take the values ±1 only, and are minimizers of the functional

2W (ϕ) − γ

L∫
0

ϑ∗ϕ ds, |ϕ| = 1. (5.5)

Suppose that ϑ∗(t) = sin(2πt/L) which has only two simple zeros per period. If ϕ does not change sign then
ϕ ≡ ±1 and the minimum of (5.5) is zero. If minimizers of (5.5) have jumps, they must occur at t = 0 mod π .
However, if ϕ changes sign twice then (5.5) becomes 16/3 ± 2γL/π . Hence, the minimum of (5.5) is zero if and
only if |γ | � 8π/3L, and negative otherwise. It follows that weak* limits of minimizers of Jε have no jumps when
|γ | is small and two jumps when γ is large, notwithstanding the fact that in both cases there exists a minimizer of the
limiting problem with no jumps. This discrepancy is allowed for in inequality (5.4).

Step 1. The function E(ε). We have seen in Theorem 4.1 that E is continuous at zero. Even more is true.

Lemma 5.3. If (H1–5) hold and if a sequence ϕε of minimizers of problem (2.13) converges weak* in L∞
per to a

function ϕ, then ϕ is a minimizer of the relaxed problem (2.6), and is therefore continuous on R \ G 0
3(ϑ). Moreover,

Aε in (2.15) converges weakly in H 1
per to Aϑ , defined in Lemma 2.5.
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Proof. It follows from the definitions that
L∫

0

W ∗∗(ϕε,ϑ)dt �
L∫

0

W(ϕε,ϑ)dt

�
L∫

0

(
ε

2

(
B(ϕε)

′)2 + W(ϕε,ϑε)

)
dt +

L∫
0

(
W(ϕε,ϑ) − W(ϕε,ϑε)

)
dt

= E(ε) +
L∫

0

(
W(ϕε,ϑ) − W(ϕε,ϑε)

)
dt.

Therefore, if ϕε ⇀∗ ϕ in L∞
per, from the convexity of W ∗∗(·, ϑ(s)) which is bounded below, and the characterization

of sequentially weak* lower semi-continuous functionals in L∞
per [8, Theorem 6.56], the uniform convergence of ϑε

to ϑ , and the definition of E(0) we find that

E(0) �
L∫

0

W ∗∗(ϕ,ϑ)dt � lim inf
ε→0

L∫
0

W ∗∗(ϕε,ϑ)dt � lim inf
ε→0

E(ε).

Moreover, from Theorem 4.1, E is continuous at 0. Hence
L∫

0

W ∗∗(ϕ,ϑ)dt = E(0) = lim
ε→0

E(ε),

which proves that ϕ is a relaxed minimizer. Now

0 �
L∫

0

ε

2

(
B(ϕε)

′)2
dt +

L∫
0

(
W(ϕε,ϑ) − W ∗∗(ϕε,ϑ)

)
dt

= E(ε) +
L∫

0

(
W(ϕε,ϑ) − W(ϕε,ϑε)

)
dt −

L∫
0

W ∗∗(ϕε,ϑ)dt

� E(ε) − E(0) +
L∫

0

(
W(ϕε,ϑ) − W(ϕε,ϑε)

)
dt → 0

as ε → 0. Since both integrands on the first line are non-negative, it follows that

ε

2

L∫
0

(
B(ϕε)

′)2
dt → 0 as ε → 0.

By (2.16), {Aε : ε ∈ (0,1)}, defined in (2.15), is bounded in H 1
per. Moreover,

L∫
0

Aε(s) ds = E(ε) − ε

L∫
0

(
B(ϕε)

′)2
dt → E(0) =

L∫
0

W ∗∗(ϕ,ϑ)ds (5.6)

as ε → 0. However, for ε > 0,

Aε = W(ϕε,ϑε) − ε

2

(
B(ϕε)

′)2

� W ∗∗(ϕε,ϑ) + W(ϕε,ϑε) − W(ϕε,ϑ) − ε

2

(
B(ϕε)

′)2

� W ∗∗(ϕ,ϑ) + W(ϕε,ϑε) − W(ϕε,ϑ) − ε (
B(ϕε)

′)2
.

2
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Taking limits almost everywhere on the right, for a sequence of ε → 0 we find that

lim inf
ε→0

Aε(s) � W ∗∗(ϕ(s),ϑ(s)
)

(5.7)

almost everywhere. Along with (5.6) and Fatou’s lemma, this implies equality almost everywhere in (5.7) for that
sequence. Since Aϑ coincides with W ∗∗(ϕ,ϑ) almost everywhere and since {Aε} is bounded in H 1

per, it follows at

once that Aε converges weakly in H 1
per to Aϑ . �

Step 2. Monotonicity trick. The following lemma is similar to Struwe’s monotonicity argument [14, Chapter II,
Section 9]. Denote by M(ε), ε ∈ (0,1), the set of all minimizers ϕε of the variational problem (2.13) and let

B(ε) = sup
ϕε∈M(ε)

1

2

L∫
0

(
B(ϕε)

′)2
ds.

We note from (H6) that E is locally absolutely continuous and hence its derivative E′(ε) exists almost everywhere.

Lemma 5.4. There exists a function Λ1 : (0,1) → [0,∞) with

lim sup
ε→0

√
εΛ1(ε) � CWΘ1 and B(ε) � E′(ε) + Λ1(ε)

for almost all ε ∈ (0,1]. Hence,
√

εE′(ε) is essentially bounded below as ε → 0.

Proof. Choose an arbitrary ε ∈ (0,1], λ ∈ (0, ε) and ϕε ∈ M(ε). Then

λ

2

L∫
0

(
B(ϕε)

′)2
ds =

L∫
0

(
ε

2

(
B(ϕε)

′)2 + W
(
ϕε(t),ϑε(t)

))
dt −

L∫
0

(
ε − λ

2

(
B(ϕε)

′)2 + W
(
ϕε(t),ϑε−λ(t)

))
dt

+
L∫

0

(
W

(
ϕε(t),ϑε−λ(t)

) − W
(
ϕε(t),ϑε(t)

))
dt

� E(ε) − E(ε − λ) +
L∫

0

(
W

(
ϕε(t),ϑε−λ(t)

) − W
(
ϕε(t),ϑε(t)

))
dt.

Now

1

λ

∣∣∣∣∣
L∫

0

(
W

(
ϕε(t),ϑε−λ(t)

) − W
(
ϕε(t),ϑε(t)

))
dt

∣∣∣∣∣ � CW

λ
‖ϑε−λ − ϑε‖(L1

per)
d .

Hence, by (H4)(iii) and the absolute continuity of E, for almost all ε ∈ (0,1),

1

2

L∫
0

(
B(ϕε)

′)2
ds � E′(ε) + CWΛ(ε),

where lim supε→0
√

εΛ(ε) = Θ1. With Λ1 = CWΛ, the proof is complete. �
Step 3. Lebesgue density. For any c > 0, let

Ec = {
ε ∈ (0,1]: E′(ε) > c/

√
ε
}
. (5.8)

Lemma 5.5. If c = Wmin + CWΘ0/2 + δ, δ > 0, then

lim sup
τ→0

1

τ
meas

(
Ec ∩ [0, τ ]) � 1 − L(δ).

In particular, if Θ0 = Θ1 = 0 in (H4), the complement of Ec is Lebesgue dense at 0 for all c > Wmin.
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Proof. Suppose there exists a sequence {τn} and λ ∈ (0,1) so that

1

τn

meas
(

Ec ∩ (0, τn]
)
> λ > 0, τn → 0 as n → ∞.

Let mn = 0 if (0, τn] \ Ec has zero measure and

mn = ess inf
{√

εE′(ε): ε ∈ (0, τn] \ Ec

}
otherwise.

Then mn > −∞ by Lemma 5.4 and, from Theorem 4.1, (5.8) and (H6),∫
Ec∩(0,τn]

c√
ε

dε +
∫

(0,τn]\Ec

mn√
ε

dε � lim
h↘0

τn∫
h

E′(ε) dε = E(τn) − E(0).

To estimate the right-hand side we use Theorem 4.2. Choose the minimizer ϕn in the hypotheses of that theorem so
that W (ϕn) � Wmin + (1/n). It then follows from Theorem 4.2 that

E(τn) − E(0) = (2Wmin + CWΘ0)
√

τn + ζn, where lim sup
n→∞

ζn/
√

τn � 0.

Hence ∫
Ec∩(0,τn]

c√
ε

dε +
∫

(0,τn]\Ec

mn√
ε

dε � (2Wmin + CWΘ0)
√

τn + ζn.

Now set μn = Wmin + CWΘ0/2 − mn and c = Wmin + CWΘ0/2 + δ. Then δ > 0 and

δ

∫
Ec∩(0,τn]

dε√
ε

− ζn � μn

∫
(0,τn]\Ec

dε√
ε
.

Since meas(Ec ∩ (0, τn]) > λτn,∫
Ec∩(0,τn]

dε√
ε

>

τn∫
(1−λ)τn

dε√
ε

= 2
√

τn(1 − √
1 − λ ),

whence

2δ
√

τn(1 − √
1 − λ) − ζn < μn

∫
(0,τn]\Ec

dε√
ε
.

Since lim infn→0(−ζn/
√

τn ) � 0, it follows that μn is positive and (0, τn] \ Ec has positive measure for all sufficiently
large n. Moreover,∫

(0,τn]\Ec

dε√
ε

<

(1−λ)τn∫
0

dε√
ε

= 2
√

τn

√
1 − λ.

Hence, for all large n,

1√
1 − λ

(
δ(1 − √

1 − λ ) − ζn

2
√

τn

)
< μn.

Since lim infn→∞{−ζn/
√

τn } � 0, we have

lim inf
n→∞ μn � μ∗ := δ

(
1√

1 − λ
− 1

)
> 0.

Since ess inf(0,τn]\Ec

√
εE′(ε) = Wmin +CWΘ0/2−μn, we have proved that (0, τn] \ Ec �= ∅ for all sufficiently large n

and

lim sup
{

ess inf
√

εE′(ε)
}

� Wmin + CWΘ0

2
− μ∗.
n→∞ (0,τn]\Ec
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Now recall from Lemma 5.4 that, for all ε ∈ (0,1), every solution ϕε to the variational problem (2.13) satisfies

√
ε

2

L∫
0

(
B(ϕε)

′)2
ds �

√
εB(ε) �

√
εE′(ε) + √

εΛ1(ε),

where lim supε→0
√

εΛ1(ε) � CWΘ1. Therefore, there exists εn ∈ (0, τn) and a solution ϕεn to (2.13) such that

lim
n→∞

√
εn

2

L∫
0

(
B(ϕεn)

′)2
ds � Wmin + CWΘ0

2
+ CWΘ1 − μ∗ =: Wmin + ν∗, say.

Without loss of generality we can assume that ϕεn converges weak* in L∞
per to a function ϕ. Let E = {εn: n ∈ N}.

By Lemma 5.3, ϕ is a relaxed minimizer and Aεn ⇀ Aϑ in H 1
per. Hence F (Aϑ ,ϑ) = G 0

3(ϑ) in (3.5). Therefore, by
Theorem 3.3,

∑
s∈O(E)

℘
(
ϑ(s)

)
� lim inf

n→∞

√
εn

2

L∫
0

(
B

(
ϕεn(s)

)′)2
ds � Wmin + ν∗ (5.9)

where

O(E) = [0,L) ∩ {
s ∈ G 0

3(ϑ): osc-defE(s) > 0
}
.

Hence O(E) is a finite set and, by Corollary 3.2, ϕ is a piecewise regular minimizer with Q(ϕ) ⊂ O(E), where Q(ϕ)

is given by (2.2). Hence

W (ϕ) =
∑

s∈Q(ϕ)

℘
(
ϑ(s)

)
� Wmin + ν∗. (5.10)

If ν∗ < 0, this contradicts the definition of Wmin and we can infer that

CWΘ0

2
+ CWΘ1 � μ∗ = δ

(
1√

1 − λ
− 1

)
.

Hence λ � 1 − L(δ), where L(δ) is defined in (5.3), as required. �
Proof of Theorem 5.1 concluded. By Lemma 5.5, the set Eδ := (0,1] \ Ec with c = Wmin + CWΘ0 + δ has lower
Lebesgue density at least L(δ) at 0. Suppose E ⊂ Eδ has a limit point at 0 and ϕε , ε ∈ E, converges weak* in L∞

per
to ϕ as E � ε → 0. From Lemma 5.3, ϕ is a relaxed minimizer. However, by the choice of the set E and Lemma 5.4,

√
ε

2

L∫
0

(
B

(
ϕε(s)

)′)2
ds � Wmin + CWΘ0 + δ + √

εΛ1(ε) for all ε ∈ E.

A repeat of the argument for (5.9) and (5.10) now yields

W (ϕ) =
∑

s∈Q(ϕ)

℘
(
ϑ(s)

)
�

∑
s∈O(E)

℘
(
ϑ(s)

)

� lim
ε→0

√
ε

2

L∫
0

(
B

(
ϕε(s)

)′)2
ds � Wmin + CWΘ1 + CWΘ0/2 + δ,

which completes the proof of Theorem 5.1. �
Theorem 5.6. Suppose that (H1–6) hold, that Θ0 = Θ1 = 0 in (H4) and that N ∗ is defined in (2.3). Then, for δ > 0
sufficiently small, Eδ in Theorem 5.1 is Lebesgue dense at 0 (i.e., λ = 1 in (5.1)) and N (ϕ) � N ∗.

Proof. This follows from Lemma 2.3 because L(δ) = 1 in Theorem 5.1 when Θ0 = Θ1 = 0. �
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Appendix A. Simple criteria for absolute continuity of E

On any non-empty set X consider a variational problem

E(ε) = inf
x∈X

{
εf (x) + g(ε, x)

}
,

where f :X → R and g : (0,1] × X → R are arbitrary functions.

Theorem A.1. Suppose that there is a set E ⊂ X and a function h : (0,1] → R which is locally absolutely continuous
with the following properties:

(A) for each ε ∈ (0,1] there exists xε ∈ E with E(ε) = εf (xε) + g(ε, xε) > −∞;
(B) for all x ∈ E, ε �→ g(ε, x) + h(ε) is concave on (0,1].

Then E is locally absolutely continuous on (0,1].
Proof. For ε ∈ (0,1], let

H(ε) = inf
x∈X

{
εf (x) + g(ε, x) + h(ε)

} = E(ε) + h(ε). (A.1)

By (A), for ε ∈ (0,1],
H(ε) = inf

x∈E

{
εf (x) + g(ε, x) + h(ε)

}
(A.2)

and, by hypothesis (B), H is concave, and hence locally absolutely continuous, on (0,1]. The result follows from (A.1),
since h is locally absolutely continuous. �
Corollary A.2. If (5.2) holds, E is locally absolutely continuous on (0,1].
Proof. In the preceding theorem let X = H 1

per, for ϕ ∈ X let

f (ϕ) = 1

2

L∫
0

(
B(ϕ)′

)2
ds, g(ε,ϕ) =

L∫
0

W(ϕ,ϑε) ds

and let E = {ϕε : ε ∈ (0,1]} where ϕε is a solution of (2.13). Because of (5.2), the hypotheses (A) and (B) are satisfied
and the result follows. �
Theorem A.3. Suppose that (A) holds and, for all δ ∈ (0,1),

(C) {f (xε): ε ∈ [δ,1]} is a bounded set;
(D) for ε̂ ∈ [δ,1], ε �→ g(ε, x̂ε) is Lipschitz continuous on [δ,1] with a Lipschitz constant that is independent of ε,

ε̂ ∈ [δ,1].

Then E is locally absolutely continuous on (0,1].
Proof. Since

ε1f (xε1) + g(ε1, xε1) = ε2f (xε1) + g(ε2, xε1) + (ε1 − ε2)f (xε1) + g(ε1, xε1) − g(ε2, xε1)

it follows that

E(ε2) − E(ε1) � (ε2 − ε1)f (xε1) + g(ε2, xε1) − g(ε1, xε1).

Similarly,

E(ε1) − E(ε2) � (ε1 − ε2)f (xε2) + g(ε1, xε2) − g(ε2, xε2).

It follows from (C) and (D) that E is Lipschitz continuous on [δ,1], for all δ ∈ (0,1). Hence it is locally absolutely
continuous on (0,1], as required. �
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