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Abstract

In this paper we show the existence of multiple solutions to a class of quasilinear elliptic equations when the continuous non-
linearity has a positive zero and it satisfies a p-linear condition only at zero. In particular, our approach allows us to consider
superlinear, critical and supercritical nonlinearities.
© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we look for positive C 1(Ω) weak solutions of the problem{−�pu = λf (u) in Ω,

u = 0 on ∂Ω,
(Pλ)

where Ω is a convex bounded domain in R
N with smooth boundary, N > p > 1, λ is a positive parameter and f

satisfies f (0) = f (1) = 0, f (x) > 0 for any x /∈ {0;1}; we will show the existence of at least two positive solutions
for λ large, without restrictions on the growth of the nonlinearity at infinity.

It is known from [17,18] that if the domain Ω is star-shaped and the nonlinearity is |u|r−2u with r greater or equal
to the critical exponent p∗ = pN/(N − p), then no nontrivial solution exists. A solution could be recovered either by
considering more topologically complex domains, or by perturbing the nonlinearity. In this second direction several
authors considered nonlinearities with any growth at infinity but which behave like |u|q−2u with q ∈ (p,p∗) near
zero; for instance, [3,16,9] assume this type of condition, then they truncate the nonlinearity and look for estimates
on the possible solutions. These estimates allow to prove that the solutions are below the truncation point for suitable
values of λ, and then a solution of the original problem is obtained.
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Problems with a nonlinearity which is nonnegative but has a zero at a positive value were first considered in [14]
for the Laplacian operator, and two solutions were obtained, through topological degree arguments, in the subcritical
case. The existence and behavior of a solution below the zero of f are studied in many works (see for instance [7]
and references therein), and it can be proved that this solution converges to 1 (the positive zero of the nonlinearity),
when λ → ∞. The existence of a solution whose maximum is above 1 is more delicate and usually requires some
hypotheses on the growth of f at infinity. In [11], we considered the p-Laplacian operator and we allowed f to depend
also on the variable x ∈ Ω , but only in the subcritical case: two positive solutions were obtained for λ above the first
eigenvalue of the asymptotical problem at the origin, and it was proved that both solutions converge at least pointwise
to 1 when λ → ∞.

This behavior suggests that also for this problem, truncation procedures like those in [3,16,9] could be used to
prove the existence of two solutions when considering critical or supercritical nonlinearities. However, the pointwise
convergence is not enough to guarantee a suitable control on the L∞ norm of the solutions.

In this paper we suppose that Ω is convex and that f is independent of x ∈ Ω , in order to use suitable monotonicity
results (such as [2,6]) which imply a better knowledge of the geometry of the solutions, and then allow to estimate
the L∞ norm when λ → ∞ and finally obtain the existence result for critical or supercritical nonlinearities. Even in
the subcritical case, our result gives new information with respect to [11] in the sense that we may substitute global
hypotheses on f with (much weaker) local ones (see Remark 1.1).

We remand to [11] for a further discussion on the literature related to (Pλ).

1.1. Statement of the results

We will consider the following hypotheses on f .

(F1) f : [0,+∞) → [0,+∞) is a continuous function which is locally Lipschitz continuous in (0,∞), f (0) =
f (1) = 0 and f (x) > 0 for x /∈ {0;1}.

(F2) lim infs→0+ f (s)

sp−1 � 1.
(F3) There exist γ > 0 and σ ∈ (p − 1,p∗ − 1) such that

lim
t→1

f (t)

|t − 1|σ = γ,

where p∗ denotes the Serrin’s exponent given by p∗ = (N−1)p
N−p

.

(F4) There exist k > 0 and T > 1 such that the map t �→ f (t) + ktp−1 is increasing for t ∈ [0, T ].

Our result is the following

Theorem 1.1. Assume that Ω is a convex smooth domain. Then, under the hypotheses (F1) through (F4), there exists
λ∗ > 0 such that the problem (Pλ) has at least two C 1 weak positive solutions u1,λ, u2,λ, for λ > λ∗.

Moreover, these solutions satisfy ‖u1,λ‖∞ → 1− and ‖u2,λ‖∞ → 1+, when λ → ∞.

A simple example of a function f satisfying the four assumptions of the preceding theorem is f (u) =
up−1eu|1 − u|σ where σ ∈ (p − 1,p∗ − 1).

1.2. Some comments on the problem

In [11], two solutions for the problem (Pλ) were encountered by mainly variational techniques, the first solution
being a local minimum (which could also be obtained via sub- and supersolutions), while the second one was obtained
via mountain pass. It was also proved, using a combination of a Liouville-type theorem, a priori estimates and the
blow-up technique, that both solutions tend pointwise to 1.

For the above result of pointwise convergence, a blow-up argument centered at an arbitrary fixed point in Ω and
a new Liouville-type theorem in R

N (see Lemma 2.2) were combined. A stronger result could be achieved if one
centers the blow-up at the maximum point of the solution; however, in that case we did not know if the maximum of
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the solutions stayed far from the boundary or not, so that the limiting problem could be in a half-space instead of R
N ,

and Liouville-type theorems in the half-space are not available for the kind of nonlinearity that we are considering.
Since we are aiming to treat also supercritical nonlinearities, variational techniques cannot be used directly here.

For this reason we perform a truncation of the nonlinearity and we look for solutions below the truncation point. As
observed above, in order to obtain an estimate on the L∞ norm, when applying the blow-up argument, we need to be
sure that the maximum point of the solutions stays far from the boundary, so that the limiting problem is defined in
the whole of R

N . This will be obtained by assuming the convexity of Ω and using [6].
However, the results in [6] hold for locally Lipschitz and strictly positive nonlinearities. The first condition imposes

a restriction on p and N (actually, assumption (F3) is not possible for a Lipschitz function if p < 2 and N is large, see
Remark 1.1) while, due to the second condition, we will need to solve first an auxiliary problem, where a perturbation
is added which makes the nonlinearity strictly positive for u > 0. A first solution for the perturbed problem is obtained
via sub- and supersolutions, and a second one by using topological degree (see Propositions 3.3–3.4).

Finally, the first solution in Theorem 1.1 is just the same as in [11], while the second one is obtained as the limit of
the solutions of the perturbed problem; since we need to distinguish these two solutions, it is crucial to know that one
lies below 1 and the other does not: for this reason, instead of the mountain pass theorem used in [11], we obtain the
second solution for the perturbed problem by a degree approach, which has the advantage to furnish the information
that its maximum is greater than the supersolution available.

We conclude this Introduction with some remarks on the hypotheses.

Remark 1.1.

• Hypothesis (F2) is classical in order to have a subsolution for λ above the first eigenvalue of the operator.
On the other hand, the constant function 1 is always a supersolution for (Pλ), but not for the perturbed problem:
hypothesis (F3) will be used to obtain a family of supersolutions, in particular a supersolution strictly below 1
and one strictly above: this will help to distinguish the two solutions when taking limit.

• Hypothesis (F3) is required also to obtain inequality (2.1) for the truncated nonlinearity, which is necessary for
applying the Liouville-type theorem from [11] (Lemma 2.2). We also remark that, in fact, (F3) avoids the forma-
tion of the so-called flat core (a solution which coincides with 1 in a whole open set, see [12,20] for instance);
actually, if this phenomenon could occur, then it would become difficult to separate the two solutions and obtain
the multiplicity result.

• Hypothesis (F4) is a standard condition required in order to apply the sub- and supersolution method and com-
parison principles. We remark that in [11] we had to impose hypothesis (F4) with T = ∞ and condition (2.1) had
to be imposed directly; here these hypotheses are replaced by the local conditions (F3) and (F4), since it will be
possible to verify the global conditions when performing the truncation of the nonlinearity.

• We observe that in fact Theorem 1.1 is meaningful only for p > 4/3, moreover, if p ∈ (4/3,2) we have an upper
bound for the dimension N : actually, hypothesis (F3) is possible for a Lipschitz function only if the Serrin’s
exponent p∗ > 2, which implies, for p < 2, that p < N < p/(2 − p), and this cannot be satisfied if p � 4/3.

2. Preliminaries

We will denote by λ1 the first eigenvalue of (−�p) in Ω and by φ1 the first eigenfunction, which can be chosen
positive in Ω .

By hypothesis (F3) there exist R > 1 and γ ′ > 0 such that f (t) � γ ′|t − 1|σ for t ∈ [1,R]; without loss of
generality we may suppose that R � T from hypothesis (F4). Then we truncate f as follows

fR(t) =
{

f (t+), t � R,
f (R)
Rσ tσ , t � R,

where t+ = max{0, t}. With this definition, fR has a power growth at infinity with exponent below the Serrin’s
exponent and satisfies the following properties:

fR(t) � γ ′′|t − 1|σ for t � 1, (2.1)
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if γ ′′ = min{γ ′, f (R)
Rσ } > 0 and

the map t �→ fR(t) + ktp−1 is increasing for t ∈ [0,∞], (2.2)

where k is as in hypothesis (F4).
We consider then the auxiliary problem{−�pu = λfR(u) + τ(u+)p−1 in Ω,

u = 0 on ∂Ω,
(Qλ,τ )

where τ is a nonnegative parameter.
We remark that, by the strong maximum principle (see [23]), the nontrivial solutions of the problem (Qλ,τ ) are

positive and, by hypothesis (F1) and since σ < p∗ − 1, they are in C 1,α(Ω) for some α ∈ (0,1) (see [8]); moreover,
since fR � 0, (Qλ,τ ) has no positive solution if τ > λ1.

The following lemma is a consequence of the results in [6], and will be used in our argument.

Lemma 2.1. Under the hypotheses (F1) and (F3), if Ω is convex, there exists δΩ > 0 which depends only on Ω (but
not on f , R, τ and λ) with the following property: for any C 1(Ω) weak solution u of (Qλ,τ ) with τ > 0, there exists
a point x ∈ Ω such that dist(x, ∂Ω) > δΩ and u(x) = ‖u‖∞.

Our purpose will be to obtain a solution for (Qλ,0) as the limit of solutions of (Qλ,τ ) with τ > 0, so that the
conclusion of Lemma 2.1 holds also for this solution. Then it will be possible to prove that, for large λ, this is also
a solution for (Pλ); for this we will make use of the following result, which (using the fact that fR was constructed
satisfying (2.1) and with power growth with exponent below p∗ − 1) is a consequence of the Liouville-type theorem
proved in [11].

Lemma 2.2. Under hypotheses (F1), (F2) and (F3), any C 1 weak solution of the problem{−�pw = fR(w)

w � 0
in R

N, (2.3)

is either w ≡ 0 or w ≡ 1.

Remark 2.1. We observe that hypothesis (F2) is weaker than the one appearing in [11], but the extension to include
this case is straightforward.

3. Proofs

Our first step will be to derive some a priori estimates for the solutions of (Qλ,τ ); we remark that this result holds
also for τ = 0.

Lemma 3.1. Under hypotheses (F1) and (F2), we have

(1) given λ̃ > 0, there exists a constant Dλ̃ such that, if u ∈ C 1(Ω) is a weak solution of the problem (Qλ,τ ) with
λ > λ̃ and τ � 0 then

‖u‖∞ � Dλ̃;
(2) given λ > 0, there exist constants Cλ > 0 and α ∈ (0,1) such that one has also the estimate

‖u‖C 1,α(Ω) � Cλ. (3.4)

Proof. Suppose, for sake of contradiction, that there exists a sequence {(un,λn, τn)}n∈N with un being a positive
C 1-solution of (Qλn,τn), such that Sn := maxΩ un = un(xn) n→∞−−−−→ ∞, where {xn} ⊂ Ω is a sequence of points where
the maximum is attained. We remark that since we are not supposing τ > 0 at this point, this sequence may not be
bounded away from the boundary.
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Let now δn = dist(xn, ∂Ω) and define wn(y) = S−1
n un(Any + xn), where An will be fixed later; then wn satisfies

−�pwn(y) = λn

A
p
n

S
p−1
n

fR

(
Snwn(y)

) + τnA
p
nwn(y) in B

(
0, δnA

−1
n

)
(3.5)

and wn(0) = maxwn = 1.
We choose A

p
n = λ−1

n S
p−1−σ
n f (R)−1Rσ : since Sn → ∞, λn > λ̃ and τn � λ1 (since no positive solution of (Qλ,τ )

exists for τ > λ1), we conclude that An → 0 and τnA
p
n → 0. Then, the right hand side of (3.5) becomes Rσ fR(Snwn)

f (R)Sσ
n

+
o(1) and then by the continuity of f and the definition of fR it is bounded. This allows us to apply the regularity
theorem in [22] for the p-Laplacian operator, indeed, if Ωn is the rescaled domain then, according to whether the limit
of δn/An is infinity or not, Ωn tends to R

N or to a half-space; fixed an open subset Ω̃ such that Ω̃ ⊆ Ωn for n large,
for any compact set Ω ′ ⊆ Ω̃ one obtains α ∈ (0,1) and C > 0 such that, since wn is also uniformly bounded in L∞,
the estimate ‖wn‖C 1,α(Ω ′) � C holds.

Then, up to a subsequence, wn → w in the C 1 norm in compact sets, where w is a C 1-function defined on R
N or

on a half-space.
Finally, taking the limit in (3.5), we have that w satisfies, in the weak sense, the following:{−�pw = wσ ,

w > 0,

w(0) = maxw = 1;
this contradicts the Liouville-type theorem in [19, Corollary II] in the case of R

N and in [15] for the half-space.
This contradiction proves that ‖u‖∞ � C for any solution of the problem (Qλ,τ ) with λ > λ̃ and τ � 0, that is, the

item (1) of Lemma 3.1, and also for any solution with a given λ and τ � 0. In this second case, using the regularity
theorem in [13], one obtains the uniform bound also for the C 1,α norm, as claimed in the item (2). �

Now we look for a family of supersolutions: for this purpose, let e ∈ W
1,p

0 (Ω) be the solution of{−�pe = 1 in Ω,

e = 0 on ∂Ω

and n := ‖e‖∞.

Lemma 3.2. Under hypothesis (F3), for any λ > 0 there exist τ ∗
λ , δλ > 0 such that vξ = 1+ ξ + δλ

4n
e is a supersolution

for (Qλ,τ ) for any ξ ∈ [−δλ, δλ/2] and τ ∈ [0, τ ∗
λ ). Moreover, we may choose δλ as a nonincreasing function of λ.

Proof. Fixed λ > 0, by the hypothesis (F3) we have that

lim
t→1

λfR(t)

|t − 1|p−1
= 0,

and then there exists δ > 0 such that λfR(t) < (
|t−1|

8n
)p−1 < ( δ

8n
)p−1 for |t − 1| � δ. Since this estimate still holds for

lower values of λ we deduce that δ may be chosen as a nonincreasing function of λ.
If τ ∗ > 0 is such that τup−1 < ( δ

8n
)p−1 for τ ∈ [0, τ ∗), u ∈ (0,1 + δ], then

λfR(u) + τup−1 <

(
δ

4n

)p−1

for τ ∈ [
0, τ ∗), u ∈ [1 − δ,1 + δ].

If we define vξ = 1 + ξ + δ
4n

e, we have that vξ ∈ [1 − δ,1 + δ] provided τ ∈ [0, τ ∗), ξ ∈ [−δ, δ/2] and then

−�pvξ =
(

δ

4n

)p−1

> λfR(vξ ) + τv
p−1
ξ ,

which proves that vξ is a supersolution. �
Now we prove the existence of a first solution for (Qλ,τ ) via the sub- and supersolution method: for this we need

hypothesis (F4).
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Proposition 3.3. If hypotheses (F1)–(F4) hold, then the problem (Qλ,τ ) has a positive solution u1,λ,τ < 1 for λ > λ1
and 0 � τ < τ ∗

λ .
Moreover, the following property holds: given λ > λ1 there exists ε > 0 such that εφ1 � u1,λ,τ < 1 for any λ > λ

and τ ∈ [0, τ ∗
λ ).

Proof. In a standard way, using (F2), we may find a ε > 0 (as small as desired) such that λfR(t) > λ1t
p−1 for any

t ∈ (0,max{εφ1}) and any λ > λ > λ1; then εφ1 is a subsolution for the problem (Qλ,τ ) for any τ � 0 and λ > λ.
For τ ∈ [0, τ ∗

λ ), we have the supersolution v−δλ < 1 from Lemma 3.2; since δλ is not increasing in λ, we may
choose ε such that εφ1 < v−δλ/2 for any λ > λ. Then the sub- and supersolutions method gives a solution u1,λ,τ with
the claimed properties. �

Now, we work with τ > 0 and we show that a second solution exists: we will apply a topological degree argument,
adapting a result obtained, for p = 2, by de Figueiredo and Lions in [4], see also [10] for the general case.

Proposition 3.4. In the same hypotheses as Proposition 3.3, if λ > λ1 and τ0 ∈ (0, τ ∗
λ ), then (Pλ,τ0) has a second

positive solution u2,λ,τ0 . Moreover ‖u2,λ,τ0‖∞ > 1.

Proof. Let us fix λ > λ1 and denote by X the Banach space of C 1-functions on Ω which are 0 on ∂Ω , endowed with
the usual C 1-norm. Also, we will write u � v to say that u < v in Ω and ∂u

∂ν
> ∂v

∂ν
on ∂Ω , where ν denotes the unitary

outward normal to ∂Ω . Let k be as in (2.2) and Kτ : X → X be defined as follows: Kτv = u, where u is the unique
solution of the Dirichlet problem{−�pu + λkup−1 = λfR(v) + (λk + τ)vp−1 in Ω,

u = 0 on ∂Ω; (3.6)

the mapping Kτ so defined is compact.
We consider the bounded open set

O = {
u ∈ X: ‖u‖X < Cλ + Bλ + 1, u 
 εφ1

}
,

where Cλ,Bλ > 0 will be chosen below (see in (3.7) and (3.9), respectively) and ε > 0 is as in the proof of Propo-
sition 3.3, so that εφ1 < 1 and it is a strict subsolution for all problems (Qλ,τ ), τ � 0 (in particular λ1(εφ1)

p−1 <

λfR(εφ1)).
We need that 0 /∈ (I − Kτ )(∂O) (i.e., no solution of (Qλ,τ ) lies on ∂O), so that the degree deg(I − Kτ , O,0) will

be well defined and independent of τ . To obtain this we get Cλ from Lemma 3.1 part (2), so that

‖u‖X � Cλ (3.7)

for all possible solutions of (Qλ,τ ) with τ � 0.
Then, we claim that any solution u of (Qλ,τ ) such that u � εφ1 in Ω satisfies u 
 εφ1 (and then it is not on ∂O).
Actually, we have{−�pu + λkup−1 = λfR(u) + (λk + τ)up−1,

−�p(εφ1) + λk(εφ1)
p−1 = λ1(εφ1)

p−1 + (λk + τ)(εφ1)
p−1,

(3.8)

by hypothesis (F4) and since u � εφ1, we have λfR(u) + (λk + τ)up−1 � λfR(εφ1) + (λk + τ)(εφ1)
p−1, and then a

strict inequality holds between the (continuous) right hand sides of (3.8). Thus, using the comparison result in [5], the
claim is proved.

By the above computations, we obtain that

deg(I − Kτ , O,0) = 0 for any τ > 0,

since (Qλ,τ ) has no solutions for τ > λ1.
At this point we fix τ = τ0, we consider the supersolution a := vξ=0 > 1 from Lemma 3.2, and we assume that no

solution of (Qλ,τ0) touches it, otherwise such a solution would satisfy the claim and the proposition would be true.
Using the L∞ estimate in [1] and then [13] we obtain that we may choose the constant Bλ > 0 such that

‖Kτ0v‖X � Bλ, ∀v ∈ X: 0 � v � a; (3.9)
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we consider the open subset of O

O′ = {u ∈ O: u < a in Ω}
and we claim that deg(I − Kτ0 , O′,0) = 1.

Observe that Kτ0 maps O′ into O′. Indeed, if v ∈ O′, then ‖Kτ0v‖X � Bλ by (3.9), and if we consider u = Kτ0v

we have⎧⎨⎩
−�pa + λkap−1 � λfR(a) + (λk + τ0)a

p−1,

−�pu + λkup−1 = λfR(v) + (λk + τ0)v
p−1,

−�p(εφ1) + λk(εφ1)
p−1 = λ1(εφ1)

p−1 + (λk + τ0)(εφ1)
p−1,

(3.10)

then, since εφ1 � v � a, the comparison principle in [21] implies that εφ1 � Kτ0v � a.
Now, let u0 ∈ O′ and consider the constant mapping C : O′ → O′ defined by C(u) = u0: one obtains that I −

μKτ0(v) − (1 − μ)u0, μ ∈ [0,1], is a homotopy between I − Kτ0 and I − C in O′ without zeros on ∂O′: in fact,
if v ∈ ∂O′ then (since O′ is convex) μKτ0(v) + (1 − μ)u0 ∈ O′ for μ �= 1, and then it is different from v, while for
μ = 1 we have v �= Kτ0(v) since we are assuming that no solution touches a.

Hence deg(I − Kτ0 , O′,0) = deg(I − C, O′,0) = 1, as we claimed.
Then, applying the excision property, it follows that deg(I − Kτ0 , O \ O′,0) = −1, so (Qλ,τ0) has a solution

u2 ∈ O \ O′; in particular, u2(x0) > a(x0) > 1 in some point x0 ∈ Ω , since otherwise it would be on ∂O′, and then u2
is distinct from u1,λ,τ0 from Proposition 3.3. �

Now, we will obtain a solution for (Qλ,0) as the limit of the solutions obtained in the previous proposition; as a
result, such solution inherits the property in Lemma 2.1.

Lemma 3.5. In the same hypotheses as Propositions 3.3–3.4, if moreover Ω is convex, then given λ > λ1, there exists
a solution u2,λ,0 for the problem (Qλ,0), which satisfies ‖u2,λ,0‖∞ � 1.

Moreover, there exists x ∈ Ω such that d := dist(x, ∂Ω) � δΩ and u2,λ,0(x) = ‖u2,λ,0‖∞.

Proof. Given λ > λ1 we will consider a sequence τn → 0 and we will focus on the solution un := u2,λ,τn from
Proposition 3.4, so that we know that ‖un‖∞ > 1, and that, by Lemma 2.1, there exists xn ∈ Ω such that dn :=
dist(xn, ∂Ω) > δΩ and un(xn) = ‖un‖∞.

By Lemma 3.1 point (2), we have a uniform bound for ‖un‖C 1,α(Ω) for some α ∈ (0,1). Then, up to a subsequence,

un → u in C 1(Ω), where u is a nonnegative weak solution of (Qλ,0).
From ‖un‖∞ > 1 we obtain ‖u‖∞ � 1, thus u is nontrivial and then positive. Finally, up to a subsequence, xn →

x ∈ Ω with dist(x, ∂Ω) � δΩ and taking limit u(x) = ‖u‖∞. �
The following lemma will show that, for λ large, the solution from Lemma 3.5 is a solution also for the supercritical

problem (Pλ).

Lemma 3.6. The solutions u2,λ,0 from Lemma 3.5 satisfy ‖u2,λ,0‖∞ → 1 when λ → ∞.
In particular, there exists λ∗ such that if λ > λ∗ then ‖u2,λ,0‖∞ � R.

Proof. Given η > 1, suppose by contradiction that there exists a sequence λn → ∞ such that the corresponding
solutions un := u2,λn,0 satisfy ‖un‖ > η, in particular there exists a sequence xn ∈ Ω such that dn := dist(xn, ∂Ω) �
δΩ and un(xn) = ‖un‖∞ > η.

Letting wn(x) = un(xn + λ
− 1

p
n x) we see that wn satisfies

−�pwn(x) = fR(wn) in B
(
0, dnλ

1/p
n

)
(3.11)

and wn(0) = un(xn).
As in the proof of point (2) in Lemma 3.1, we obtain (since wn is bounded in L∞ by the point (1) in the same

lemma) also a uniform bound in the C 1,α norm in compact sets, for some α ∈ (0,1); then, up to a subsequence,
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wn → w in the C 1 norm in compact sets, where now w is a C 1 function defined in R
N , since dnλ

1/p
n → ∞. Thus, w

is a weak solution of the problem{−�pw = fR(w) in R
N,

w � 0.
(3.12)

According to Lemma 2.2 we conclude that either w ≡ 0 or w ≡ 1.
This contradicts the fact that wn(0) = un(xn) > η > 1, and then the lemma is proved. �
We are now in a position to prove our main result.

Proof of Theorem 1.1. The first solution is u1,λ,0 from Proposition 3.3, and satisfies ‖u1,λ,0‖∞ < 1. By Lemma 3.6
we see that, for λ large, the solutions u2,λ,0 from Lemma 3.5 satisfy 1 � ‖u2,λ,0‖∞ < R, and then are solutions of the
supercritical problem (Pλ). Therefore we have obtained the existence of a second solution.

We have already proved that ‖u2,λ,0‖∞ → 1 when λ → ∞.
By hypotheses (F1) and (F2), if tλ is the largest real such that λf (t) > λ1t

p−1 for t ∈ (0, tλ), then tλ → 1 when
λ → ∞. Since no positive solution of (Pλ) may exist below tλ, we deduce that also ‖u1,λ,0‖∞ → 1 when λ → ∞. �
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