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Abstract

We prove propagation of regularity, uniformly in time, for the scaled solutions of the inelastic Maxwell model for any value of
the coefficient of restitution. The result follows from the uniform in time control of the tails of the Fourier transform of the solution,
normalized in order to have constant energy. By standard arguments this implies the convergence of the scaled solution towards the
stationary state in Sobolev and L1 norms in the case of regular initial data as well as the convergence of the original solution to the
corresponding self-similar cooling state. In the case of weak inelasticity, similar results have been established by Carlen, Carrillo
and Carvalho (2009) in [11] via a precise control of the growth of the Fisher information.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper concerns the regularity properties of solutions to the spatially homogeneous Boltzmann equation for
Maxwellian molecules in R

3 with inelastic collisions, introduced in [6]. This equation describes the relaxation towards
equilibrium of the distribution function of particles interacting through inelastic binary collisions. Kinetic theory of
granular gases becames popular in the last ten years, and various mathematical problems, arising from dissipation,
have been considered so far [22]. Let f (v, τ ) be the probability density for the velocity v of a particle chosen randomly
from the collection at time τ . Let ϕ(v) be any bounded and continuous function on R

3. For a dilute gas, with a mean
free path of size ε, the equation under investigation is given, in weak form, by

d

dτ
〈f,ϕ〉 = 1

ε

〈
Q(f,f ),ϕ

〉
(1)
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where

〈f,ϕ〉 =
∫
R3

ϕ(v)f (v, τ )dv,

and 〈
Q(f,f ),ϕ

〉 = 1

4π

∫
R3

∫
R3

∫
S2

f (v, τ )f (w, τ)
[
ϕ(v′) − ϕ(v)

]
dσ dv dw. (2)

In (2) σ is a unit vector in S2, dσ is the uniform measure on S2 with total mass 4π and the post-collision velocities
are given by the collision mechanism written as

v′ = 1

2
(v + w) + 1 − e

4
q + 1 + e

4
|q|σ,

w′ = 1

2
(v + w) − 1 − e

4
q − 1 + e

4
|q|σ (3)

with q = v − w. The positive parameter e, with 0 � e < 1 is the restitution coefficient. From (3) it follows that the
post-collision relative velocity is non-increasing, with

|v′ − w′|2 = |q ′|2 = |q|2 − 1 − e2

2

(|q|2 − |q|q · σ )
� |q|2 = |v − w|2.

Note that the dissipation increases with e decreasing. Thus the case e = 0 corresponds to the strongest dissipation.
Since e < 1, the collisions are inelastic, energy is dissipated in each collision, and the collisions are not reversible.
This makes a crucial difference with the elastic theory in which there is a complete time reversal symmetry between
the pre- and post-collision velocities. As pointed out in [11], it is mainly for this reason that the Boltzmann equation
is usually written in the weak form (1), and not because of any difficulty in constructing strong solutions. The post-
collision velocities (3) represent one of the possible parameterizations of the inelastic collision mechanism. However,
as exhaustively discussed in [11] other possible pairs of pre-collision velocities (v∗,w∗) that result in the pair of
post-collision velocities (v,w) can be constructed [6,19]. It is remarkable that these parameterizations give equivalent
collision terms only when the restitution coefficient satisfies e > 0 [11]. Consequently, any result which is valid for
any value of e, including the case e = 0, cannot be translated, in this limit case, to other collision rules.

Since the total momentum v + w is conserved in each individual collision (v,w) → (v′,w′), the first moment of
f (v, τ ) (i.e. the mean velocity) is conserved. In particular, choosing as initial datum a probability density f0 satisfying∫

R3

f0(v)dv = 1,

∫
R3

vif0(v)dv = 0, i = 1,2,3,

∫
R3

|v|2f0(v)dv = T0 < ∞, (4)

it follows that while both mass and momentum are preserved in time, the second moment (i.e. the temperature or
energy) decays according to the law

T (τ) =
∫
R3

|v|2f (v, τ )dv = T0 exp

{
−1 − e2

4ε
τ

}
. (5)

This implies that f (v, τ )dv converges towards a point mass at v = 0 as τ tends to infinity. The precise way in which
the density collapses into a mass concentrated in zero has been investigated in various previous works [5,8,2,7,9]. It
has been shown that, after a certain relaxation time, each solution converges towards a self-similar solution, known
as the homogeneous cooling state. The argument to show that this happens, and the respective rate of convergence,
is based on an argument which is commonly used in nonlinear diffusion equations [15]. If one defines a temperature
invariant scaling h(v, τ ) of f (v, τ ) as

h(v, τ ) =
(

T (τ)

3

)3/2

f

((
T (τ)

3

)1/2

v, τ

)
, (6)

so that
∫

R3 |v|2 h(v, τ )dv = 3 for all τ � 0, then the scaled density tends to a universal equilibrium state h∞, and∫
3 |v|2h∞(v)dv = 3.
R
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The equation for h(v, τ ) now reads

d

dτ
〈h,ϕ〉 = 1

ε

〈
Q(h,h),ϕ

〉 + 1 − e2

8ε
〈h,v · ∇ϕ〉. (7)

The speed at which the second moment converges to zero depends both on the mean free path ε and on the coefficient
of restitution e. On the other hand, the dependence on the mean free path can be absorbed once and for all by scaling
the time. By setting

E = 8

1 − e2
, (8)

and scaling the time as

t = 1 − e2

8ε
τ, (9)

we obtain for

g(v, t) = h

(
v,

8ε

1 − e2
t

)
(10)

the equivalent equation

d

dt
〈g,ϕ〉 = E

〈
Q(g,g),ϕ

〉 + 〈g, v · ∇ϕ〉. (11)

In the rest of the paper, we will study Eq. (11). We remark that any result on the asymptotic convergence of g(v, t)

towards g∞ = h∞ can be easily translated into a result on the asymptotic convergence of h(v, τ ). It is worth remarking
that thanks to (6) and (10), the initial data g0 of a scaled solution g(t) is related to the initial data f0 of the original
solution f (τ) by

g0(v) =
(

T0

3

)3/2

f0

((
T0

3

)1/2

v

)

and so
∫

R3 |v|2 g0(v)dv = 3 independently of the initial temperature T0 of f0.
Both the large-time behavior and the regularity of the solution of Eq. (11) have been recently studied in [11]. In

particular, propagation of regularity was found by controlling the growth of the frequencies of the Fourier transform
of the solution by means of a precise control of the growth of the Fisher information

I (f )(t) = 4
∫
R3

∣∣∇√
f (v, t)

∣∣2 dv.

Convergence in L1 follows therefore by coupling the uniform bound on the regularity of the solution with the time
decay of the Fourier metric [2,16]

d2(f, g)(t) = sup
ξ 	=0

|f̂ (ξ, t) − ĝ(ξ, t)|
|ξ |2 . (12)

This strategy is popular in the field of nonlinear diffusion equations (cf. [15,3] and the references therein), where,
after scaling to obtain confinement, convergence in relative entropy is used to deduce rates of convergence in more
standard norms, like L1, or in Ck by interpolation. The results in [3], which are referred to fast diffusion equations, are
linked to the present problem for one additional aspect, namely the fat tails of the asymptotic profile, which possesses
only moments of low order. A related problem for a linear Fokker–Planck equation with coefficient of diffusion
growing with the distance from the origin is treated in [10]. There, convergence in Fourier weak norm coupled with
regularity has been used to prove strong convergence to equilibrium in the physical space. Last, we recall that other
weak norms can be used to control the convergence of kinetic equations towards equilibrium, among others the well-
known Wasserstein metric [21]. This metric has been successfully used to control convergence towards equilibrium in
Fokker–Planck models of granular media [13,14].
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Going back to the results of [11], their validity requires the assumption of weak inelasticity, which corresponds to
fix the coefficient of restitution e sufficiently close to 1.

A different technique which allows to control the growth of the frequencies of the Fourier transform of the so-
lution has been recently applied in [18] to a one-dimensional dissipative model introduced by Ben-Avraham and
coworkers [1]. The results in [18] are independent of the degree of dissipation. By adapting this technique to the
three-dimensional case, we will end up with a result which is independent of the coefficient of restitution e. The start-
ing point of this analysis is the results of the paper [12], where the proof of uniform propagation of regularity makes
use of the following property for the solution f (t) of the elastic Boltzmann equation

sup
|ξ |�R

∣∣f̂ (ξ, t)
∣∣ → 0, R → +∞ (13)

uniformly in time. This property is proved by exploiting the pointwise convergence of the Fourier transform of the
solution to the Maxwellian equilibrium M̂(ξ) = e−|ξ |2/2 and the decreasing property (with respect to |ξ |2) of the
Maxwellian itself. In the dissipative case, condition (13) cannot be satisfied by f (t) but still holds for the solution to
the scaled Boltzmann equation g(t), provided the Fourier transform of the initial data satisfies(

1 + κ|ξ |)μ∣∣ĝ0(ξ)
∣∣ � K, ξ ∈ R

3 (14)

for some positive constants κ , K and μ. Indeed, we prove that the solution g(t) satisfies an analogous estimate(
1 + κ|ξ |)μ∣∣ĝ(ξ, t)

∣∣ � K, ξ ∈ R
3 (15)

uniformly in time, for possibly different κ , K and μ. Condition (15) is difficult to prove directly from the equation
satisfied by the scaled density g(t), due to the presence of the drift term in Eq. (11). The key point of our approach
is to consider a semi-implicit discretization of Eq. (11), where the drift term is absorbed in an integral term which is
much easier to handle. The same trick has been successfully exploited in the one-dimensional case in [18] where it
has been also pointed out that an equivalent approach could have been through the Duhamel formula for the solution
g(t) (see e.g. [16]).

Our main results are summarized into the following statements.

Theorem 1. Assume e ∈ [0,1). Let g(t) be the weak solution of Eq. (11), corresponding to the initial probability
density g0 with zero mean velocity,

∫
R3 |v|2 g0(v)dv = 3 and such that

∫
R3 |v|4g0(v)dv < +∞. If in addition

∣∣ĝ0(ξ)
∣∣ � 1

(1 + β|ξ |)ν , |ξ | > R, (16)

for some R > 0, ν > 0 and β > 0, then there exist ρ > 0, k > 0, ν ′ > 0 such that g(t) satisfies

∣∣ĝ(ξ, t)
∣∣ �

⎧⎪⎪⎨
⎪⎪⎩

1

1 + k|ξ |2 , |ξ | � ρ, t � 0,

1

(1 + β|ξ |)ν′ , |ξ | > ρ, t � 0.

(17)

Theorem 2. Assume e ∈ [0,1). Let g(t) be the weak solution of Eq. (11), corresponding to the initial probability
density g0 with zero mean velocity,

∫
R3 |v|2 g0(v)dv = 3 and satisfying

∫
R3 |v|4g0(v)dv < +∞. Let us suppose more-

over g0 ∈ Ḣ η(R3) for some η > 0 and
√

g0 ∈ Ḣ ν(R3) for some ν > 0. Then g(t) converges strongly in L1 with an
exponential rate towards the stationary solution g∞, i.e., there exist positive constants C and γ explicitly computable
such that∥∥g(t) − g∞

∥∥
L1(R3)

� Ce−γ t , t � 0.

Thanks to the scaling invariance of the L1-norm, Theorem 2 allows to deduce also the strong convergence of the
original non-scaled solution f (τ) to the self-similar state∥∥f (τ) − f∞(τ )

∥∥
1 3 � Ce−γ 1−e2

8ε
τ , τ � 0,
L (R )
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where

f∞(v, τ ) =
(

3

T (τ)

)3/2

g∞
((

3

T (τ)

)1/2

v

)

for T (τ) as in (5) and this independently of the initial temperature T0 of f0.

2. Preliminary results

Following Bobylev [4] it is convenient to rewrite Eq. (1) for Maxwell molecules in the dissipative case in the
Fourier variables:

∂

∂τ
f̂ (ξ, τ ) = 1

4πε

∫
σ∈S2

(
f̂

(
ξ+, τ

)
f̂

(
ξ−, τ

) − f̂ (ξ, τ )f̂ (ξ,0)
)

dσ, (18)

where

ξ+ = 3 − e

4
ξ + 1 + e

4
|ξ |σ,

ξ− = 1 + e

4

(
ξ − |ξ |σ ) = ξ − ξ+. (19)

The existence and uniqueness of a solution of (18) for any initial data f0 satisfying (4) can be established through
the application of Wild sums [16].

Theorem 3 (Theorem of existence and uniqueness [4,16]). We consider f0 � 0 satisfying the normalization condi-
tions (4) and the following Cauchy problem:⎧⎪⎪⎨

⎪⎪⎩
∂

∂τ
f̂ (ξ, τ ) = 1

4πε

∫
σ∈S2

(
f̂

(
ξ+, τ

)
f̂

(
ξ−, τ

) − f̂ (ξ, τ )f̂ (ξ,0)
)

dσ, τ > 0,

f̂ (ξ,0) = f̂0(ξ).

(20)

Then, there exists a unique nonnegative solution f ∈ C1([0,+∞),L1(R3)) to Eq. (20). This solution preserves mass
and momentum, while the energy decays at the exponential rate given by (5).

Let g(v, t) be defined by (10). One can easily show that g(v, t) preserves the temperature, and moreover∫
R3

|v|2g(v, t)dv = 3, t � 0.

Moreover if the initial data g0 has a diagonal pressure tensor which is unitary∫
R3

vivjg0(v)dv = δi,j , i, j = 1,2,3, (21)

then all the second moments are also preserved. If on the contrary the pressure tensor is not unitary, then its non-
isotropic part (

∫
R3 vivjg(v, t)dv for i 	= j ) vanishes if it is initially vanishing (cf. [2]), whereas the isotropic part

(
∫

R3 v2
i g(v, t)dv) is in general not preserved. Nevertheless, the condition

∫
R3 |v|2g0(v)dv = 3 implies that the matrix

[∫
R3 vivjg0(v)dv]i,j is real and symmetric. Consequently there exists a suitable orthonormal system in R

3 in which
it is diagonal and therefore it remains diagonal for all t > 0. Owing to this property, throughout this paper we will
assume, without any additional assumption, that g0 has diagonal pressure tensor, although not unitary.

It is well known that in Maxwell models the time evolution of moments can be evaluated exactly. In particular, this
can be done for the diagonal terms

∫
3 v2g(v, t)dv. We have
R i
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Proposition 4. Assume e ∈ [0,1). Let g(t) be the weak solution of Eq. (11), corresponding to the initial probability
density g0 with zero mean velocity, diagonal pressure tensor and satisfying

∫
R3 |v|2g0(v)dv = 3. Then, we have⎡

⎢⎣
∫

R3 v2
1g(v, t)dv∫

R3 v2
2g(v, t)dv∫

R3 v2
3g(v, t)dv

⎤
⎥⎦ =

[1
1
1

]
+ C1

[−1
1
0

]
e− 1+e

1−e
t + C2

[−1
0
1

]
e− 1+e

1−e
t , t � 0, (22)

where C1 = ∫
R3 v2

2g0(v)dv − 1 and C2 = ∫
R3 v2

3g0(v)dv − 1.

Proof. Recalling Eq. (11), the expression (3) of the post-collisional variables, the conservations of the mass and the
vanishing both of the momentum and of the non-isotropic terms

∫
R3 vivjg(v, t)dv along the solution, we obtain the

following linear differential system:

d

dt

⎡
⎢⎣

∫
R3 v2

1g(v, t)dv∫
R3 v2

2g(v, t)dv∫
R3 v2

3 g(v, t)dv

⎤
⎥⎦ =

⎡
⎢⎣

− 2
3

1+e
1−e

1
3

1+e
1−e

1
3

1+e
1−e

1
3

1+e
1−e

− 2
3

1+e
1−e

1
3

1+e
1−e

1
3

1+e
1−e

1
3

1+e
1−e

− 2
3

1+e
1−e

⎤
⎥⎦

⎡
⎢⎣

∫
R3 v2

1g(v, t)dv∫
R3 v2

2g(v, t)dv∫
R3 v2

3g(v, t)dv

⎤
⎥⎦ .

Since the matrix of coefficients has 0 as simple eigenvalue and − 1+e
1−e

as double eigenvalue, with eigenspaces
〈[ 1

1
1

]〉
and

〈[−1
1
0

]
,
[−1

0
1

]〉
respectively, the general solution of the system is

⎡
⎢⎣

∫
R3 v2

1g(v, t)dv∫
R3 v2

2g(v, t)dv∫
R3 v2

3g(v, t)dv

⎤
⎥⎦ =

[1
1
1

]
+ C1

[−1
1
0

]
e− 1+e

1−e
t + C2

[−1
0
1

]
e− 1+e

1−e
t , t � 0,

for C1, C2 real constants to be determined by the initial conditions. �
In Fourier variables, the function g(t) satisfies the equation⎧⎪⎨

⎪⎩
∂

∂t
ĝ(ξ, t) − (ξ · ∇ξ )ĝ(ξ, t) = E

4π

∫
σ∈S2

(
ĝ
(
ξ+, t

)
ĝ
(
ξ−, t

) − ĝ(ξ, t)ĝ(ξ,0)
)

dσ,

ĝ(ξ,0) = ĝ0(ξ).

(23)

We will denote

Q+(ĝ, ĝ)(ξ, t) = 1

4π

∫
σ∈S2

ĝ
(
ξ+, t

)
ĝ
(
ξ−, t

)
dσ.

Hence Eq. (23) can be written

∂

∂t
ĝ(ξ, t) − (ξ · ∇ξ )ĝ(ξ, t) = E

(
Q+(ĝ, ĝ)(ξ, t) − ĝ(ξ, t)

)
.

For s > 0 let Ps(R
3) define the set of probability densities satisfying∫

R3

|v|sf (v)dv < +∞. (24)

Consider on Ps(R
3) the distance

ds(f, g) = sup
ξ 	=0

|f̂ (ξ) − ĝ(ξ)|
|ξ |s .

It is not difficult to show through a Taylor expansion that ds(f, g) is finite for any pair of probability densities f and
g with equal moments

∫
R3 vβf (v)dv for any multi-index β ∈ N

3 of length smaller than or equal to [s] (if s ∈ N, it is
enough to suppose equal moments up to the (s − 1)-th order). For α ∈ (0,1] and initial data g1, g2 ∈ P2+α(R3) which
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share the same moments up to the second order and have unitary pressure tensor as in (21), it is possible to estimate
the d2+α distance between the two solutions as follows.

Theorem 5 (Strict contraction of d2+α [2]). Assume e ∈ [0,1). For α ∈ (0,1] there exists an explicit constant
C(α, e) > 0, C(α, e) ↘ 0 as α → 0, such that for any g1(t) and g2(t) solutions of (11) corresponding to initial
values g0

1 , g0
2 in P2+α(R3) with unit mass, zero mean velocity and unitary pressure tensor, then

d2+α

(
g1(t), g2(t)

)
� d2+α

(
g0

1, g0
2

)
e−C(α,e)t , t � 0.

In our framework, the constant C(α, e) has the following expression:

C(α, e) = E
(
1 − A(α, e)

) − (2 + α) (25)

where

A(α, e) = 1

4π

∫
S2

|ξ+|2+α + |ξ−|2+α

|ξ |2+α
dσ. (26)

A detailed analysis of C(α, e) can be found in [2].
It is worth noticing that we cannot deduce from the previous theorem the uniform boundedness in time neither of∫

R3 |v|2+αg1(v, t)dv nor of
∫

R3 |v|2+αg2(v, t)dv. Nevertheless, if the initial data g0 belongs to P4(R
3), it is possible

to prove that the solution keeps on satisfying the same property uniformly in time.

Theorem 6 (Uniform control of 4th moment [9]). If g0 is a Borel probability density in P4(R
3) then the solution g(t)

to (11) with initial data g0 belongs to P4(R
3) for all t � 0 and

sup
t�0

∫
R3

|v|4g(v, t)dv < ∞.

Thanks to the uniform boundedness of the fourth moment, it is possible to prove, via a fixed point argument, the
existence of a universal stationary state in a suitable subspace of P2(R

3). Moreover, the strict contraction of the d2+α

metric allows also to prove the stability of this stationary state in this subspace.

Theorem 7 (Stationary states [5,2,16]). Let e ∈ [0,1) be fixed. Eq. (11) has a unique stationary state g∞ which is a
probability density in

H =
{
g � 0,

∫
R3

g(v)dv = 1,

∫
R3

vi g(v)dv = 0,

∫
R3

vivjg(v)dv = δi,j , i, j = 1,2,3,

∫
R3

|v|2+αg(v)dv < +∞, for α ∈ (0,1]
}
.

This stationary state is a radial function and belongs to P4(R
3) with

∫
R3 |v|4g∞(v)dv � M4, where M4 depends only

on e ∈ [0,1). Moreover, for α ∈ (0,1], given any g(t) solution of (11) issued from an initial datum g0 ∈ P2+α(R3)

with unit mass, zero mean velocity and unitary pressure tensor, then

d2+α

(
g(t), g∞

)
� d2+α(g0, g∞)e−C(α,e)t , t � 0,

where C(α, e) is the constant (25).

The hypothesis of unitary pressure tensor can in fact be removed. Under the only assumption that the initial datum
belongs to P2+α(R3) with

∫
R3 |v|2g0(v)dv = 3 (and same moments up to the first order as the stationary state), the

d2 distance between the solution and the stationary state is proved to be exponentially decreasing.
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Theorem 8 (Stability in d2 without unitary tensor pressure [2,16]). Let e ∈ [0,1) be fixed. For any α ∈ (0,1] and
any initial datum g0 ∈ P2+α(R3) with unit mass, zero mean velocity and

∫
R3 |v|2g0(v)dv = 3, there exist positive

constants K1 and K2 depending on e,α,g0 such that given g(t) the solution of (23) issued from g0 and g∞ the
stationary state, then

d2
(
g(t), g∞

)
� K1e

−K2t , t � 0.

As a consequence, the uniqueness of the stationary state holds in a larger space where the second moments are not
prescribed.

Corollary 9 (Uniqueness of stationary states [5,16]). The uniqueness of the stationary state g∞ found in Theorem 7
holds true in

H̃ =
{
g � 0,

∫
R3

g(v)dv = 1,

∫
R3

vig(v)dv = 0, i = 1,2,3,

∫
R3

|v|2g(v)dv = 3,

∫
R3

|v|2+α g(v)dv < +∞, for α ∈ (0,1]
}
.

As far as the smoothness of the stationary state is concerned, it is known that g∞ ∈ Hs(R3), for all s � 0. This is a
consequence of the following result.

Theorem 10 (Smoothness of the stationary state [5], Theorem 5.3). For e ∈ [0,1), the stationary state g∞ satisfies
the bounds

e− |ξ |2
2 �

∣∣ĝ∞(ξ)
∣∣ �

(
1 + |ξ |)e−|ξ |, ξ ∈ R

3.

3. The iteration process

The goal of this section is to build up a sequence of functions {gN(ξ, t)} which approximates uniformly the solution
ĝ(ξ, t). In order to do this, for any fixed T > 0 we consider first a semi-implicit discretization in time of Eq. (23) by
partitioning the interval [0, T ] into N subintervals and we define thus the approximate solution at any time t = j T

N

for j = 0, . . . ,N . Second, we define gN(ξ, t) on the whole interval [0, T ] by interpolation and last we show the
convergence of the approximation to the solution. Other details and the missing proofs of this section can be found
in [18].

We begin by introducing a semi-implicit discretization in time of Eq. (23) as follows. Let T > 0 and �t = T
N

for

N ∈ N, N > T . Let φ̂N
j (ξ), j = 0, . . . ,N , be the sequence:⎧⎪⎨

⎪⎩
φ̂N

0 (ξ) = ĝ0(ξ),

φ̂N
j+1(ξ) − φ̂N

j (ξ)

�t
= ξ · ∇ξ φ̂

N
j+1 + E

(
Q+

(
φ̂N

j , φ̂N
j

)
(ξ) − φ̂N

j (ξ)
)
, j = 0, . . . ,N − 1.

(27)

Proposition 11. Assume e ∈ [0,1). If g0 is a probability density with zero mean velocity satisfying
∫

R3 |v|2g0(v)dv =
3, then there exists a unique sequence of bounded functions φ̂N

j for j = 1, . . . ,N , satisfying (27). This sequence is
defined as follows⎧⎪⎪⎪⎨

⎪⎪⎪⎩
φ̂N

0 (ξ) = ĝ0(ξ),

φ̂N
j+1(ξ) = 1

�t

+∞∫
1

(
E�tQ+

(
φ̂N

j , φ̂N
j

)
(ηξ) + (1 − E�t)φ̂N

j (ηξ)
) dη

η
1

�t
+1

, j = 0, . . . ,N − 1.
(28)
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Proof. Let us begin by proving that φ̂N
1 is well defined. We proceed in the same way as in Proposition 7 in [18]. For

ξ 	= 0 we multiply Eq. (27) by (− 1
�t

)|ξ |− 1
�t

−1 to obtain(
− 1

�t

)
|ξ |− 1

�t
−1φ̂N

1 (ξ) + |ξ |− 1
�t

ξ

|ξ | · ∇ξ φ̂
N
1 (ξ)

=
(

− 1

�t

)
|ξ |− 1

�t
−1(E�tQ+(ĝ0, ĝ0)(ξ) + (1 − E�t)ĝ0(ξ)

)
,

or, what is the same

∂

∂|ξ |
(|ξ |− 1

�t φ̂N
1

)
(ξ) =

(
− 1

�t

)
|ξ |− 1

�t
−1(E�tQ+(ĝ0, ĝ0)(ξ) + (1 − E�t)ĝ0(ξ)

)
.

In spherical coordinates, ξ = (|ξ | cos θ sinψ, |ξ | sin θ sinψ, |ξ | cosψ), where θ ∈ [0,2π) and ψ ∈ [0,π]. Since ĝ0(ξ)

is bounded, integrating over [|ξ |,+∞) we get

|ξ |− 1
�t φ̂N

1 (ξ) = 1

�t

+∞∫
|ξ |

(
E�tQ+(ĝ0, ĝ0)(s, θ,ψ) + (1 − E�t)ĝ0(s, θ,ψ)

)
s− 1

�t
−1 ds.

Since (
η|ξ | cos θ sinψ,η|ξ | sin θ sinψ,η|ξ | cosψ

) = ηξ,

through the change of variables η = s
|ξ | we finally obtain

φ̂N
1 (ξ) = 1

�t

+∞∫
1

(
E�tQ+(ĝ0, ĝ0)(ηξ) + (1 − �t)ĝ0(ηξ)

) dη

η
1

�t
+1

. (29)

Since the initial density g0 has unit mass, zero mean velocity and bounded temperature, then ĝ0 belongs to C 1(R3)

and there exists C > 0 such that

ĝ0(0) = 1,
∣∣∂kĝ0(ξ)

∣∣ � C, ∂kĝ0(0) = 0, k = 1,2,3. (30)

Therefore the function φ̂N
1 defined by continuity in ξ = 0 as φ̂N

1 (0) = 1 is the unique bounded and C 1(R3) solution
of (27).

By an iteration argument the same conclusion holds for any φ̂N
j . Hence, for j = 0, . . . ,N − 1 it holds

φ̂N
j+1(ξ) = 1

�t

+∞∫
1

(
E�tQ+

(
φ̂N

j , φ̂N
j

)
(ηξ) + (1 − E�t)φ̂N

j (ηξ)
) dη

η
1

�t
+1

. �

Remark 12. We remark that Fubini’s theorem implies that any function φ̂N
j+1(ξ) is the Fourier transform of φN

j+1(v),

where for j = 0, . . . ,N − 1 and v ∈ R
3⎧⎪⎪⎪⎨

⎪⎪⎪⎩
φN

0 (v) = g0(v),

φN
j+1(v) = 1

�t

+∞∫
1

(
E�t

1

η3
Q+

(
φN

j ,φN
j

)(v

η

)
+ (1 − E�t)

1

η3
φN

j

(
v

η

))
dη

η
1

�t
+1

.
(31)

In the following proposition we gather the results on the moments of the approximation φN
j which will be used in

the proof of Theorem 1. For the sake of clarity, the proof of the proposition will be postponed to Appendix A.

Proposition 13. Assume e ∈ [0,1) and let g0 be a probability density in P4(R
3) with zero mean velocity, satisfying∫

3

vivkg0(v)dv = 0, i 	= k,

∫
3

|v|2g0(v)dv = 3. (32)
R R
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Let φN
j be the approximation defined in (31). Then, there exists C > 0 such that for N large enough, for j = 0, . . . ,N

it holds

φN
j (v) � 0,

∫
R3

φN
j (v)dv = 1,

∫
R3

vkφ
N
j (v)dv = 0, k = 1,2,3, (33)

∫
R3

vivkφ
N
j (v)dv = 0, i 	= k, (34)

⎡
⎢⎣

∫
R3 v2

1φN
j (v)dv∫

R3 v2
2φN

j (v)dv∫
R3 v2

3φN
j (v)dv

⎤
⎥⎦ =

[1
1
1

]
+ C1

[−1
1
0

](
1 − �t 3−e

1−e

1 − 2�t

)j

+ C2

[−1
0
1

](
1 − �t 3−e

1−e

1 − 2�t

)j

, (35)

∫
R3

|v|4φN
j (v)dv � C, (36)

where C1 = ∫
R3 v2

2g0(v)dv − 1 and C2 = ∫
R3 v2

3g0(v)dv − 1.

We define the approximate solution gN(ξ, t) at any time t = j T
N

as gN(ξ, j T
N

) = φ̂N
j (ξ) for j = 0, . . . ,N . We

extend afterwards the definition on the whole interval by interpolation. More precisely, let us define

gN(ξ, t) =
{

ĝ0(ξ), t = 0,

α(t)φ̂N
KN−1(ξ) + (

1 − α(t)
)
φ̂N

KN
(ξ), 0 < t � T ,

where for 0 < t � T and KN ∈ {1, . . . ,N} we have (KN − 1) T
N

< t � KN
T
N

. Thus there is a function 0 � α(t) < 1
such that t = α(t)(KN − 1) T

N
+ (1 − α(t))KN

T
N

. Any gN(ξ, t) is continuous on R
3 × [0, T ] and for any t ∈ [0, T ] it

belongs to C 2(R3).
The result of convergence is therefore as follows.

Proposition 14. There is a subsequence {gNl (ξ, t)}l of {gN(ξ, t)}N which converges uniformly on any compact set of
R

3 × [0, T ] to the solution ĝ(ξ, t).

4. Control of tails of the Fourier transform of the solution

In this section we prove Theorem 1. Thanks to the uniform convergence of a subsequence of the approximate
solutions gN(ξ, t) to the solution ĝ(ξ, t) and to the definition of gN(ξ, t), it is enough to prove bounds (17) for any
φ̂N

j (ξ) uniformly for N ∈ N large enough and j = 0, . . . ,N . We remark that the control of low frequencies follows
directly from properties (4) and from the boundedness of the fourth moment of the initial data.

Lemma 15. Assume e ∈ [0,1). Let g(t) be the weak solution of Eq. (11), corresponding to the initial probability
density g0 ∈ P4(R

3) with zero mean velocity and
∫

R3 |v|2g0(v)dv = 3. Let φ̂N
j be the approximation defined in (28).

There exist k > 0 and ρ > 0 such that for any fixed T > 0 and any N ∈ N large enough we get

∣∣ĝ(ξ, t)
∣∣ � 1

1 + k|ξ |2 , |ξ | � ρ, t � 0, (37)

∣∣φ̂N
j (ξ)

∣∣ � 1

1 + k|ξ |2 , |ξ | � ρ, j = 0, . . . ,N. (38)

Proof. Both estimates will be achieved through a MacLaurin expansion in which all terms will be bounded uniformly
thanks to Proposition 4, Theorem 6 and Proposition 13. In what follows, constants may vary from one line to another.
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Let us begin by proving (37). From the hypotheses on g0 and Proposition 4, the MacLaurin expansion in Fourier
variables reads

ĝ(ξ, t) = 1 − 1

2

3∑
k=1

( ∫
R3

v2
kg(v, t)dv

)
ξ2
k +

1∫
0

D3ĝ(sξ, t)(ξ, ξ, ξ)ds, ξ ∈ R
3, t � 0.

For all i, j, k = 1,2,3 and all t � 0 the conservation of the mass and the uniform boundedness of the fourth moment
(Theorem 6) implies∫

R3

|vivj vk|g(v, t)dv � C < +∞.

On the other hand, for all i, j, k = 1,2,3 and all t � 0∣∣∂3
ijkĝ(ξ, t)

∣∣ � C

∫
R3

|vivj vk|g(v, t)dv.

Hence we have the uniform upper bound∣∣∣∣∣
1∫

0

D3ĝ(sξ, t)(ξ, ξ, ξ)ds

∣∣∣∣∣ � C|ξ |3, ξ ∈ R
3, t � 0.

The time evolution of the second moments of g(t) obtained in Proposition 4 implies a strictly positive uniform lower
bound on

∫
R3 v2

k g(v, t)dv for k = 1,2,3 and t � 0. Therefore, for any ξ ∈ R
3 and t � 0 we have the estimate∣∣ĝ(ξ, t)

∣∣ � 1 − C|ξ |2 + D|ξ |3, (39)

with C and D suitably chosen. Inequality (39) implies that there exist ρ > 0 and k > 0 such that

∣∣ĝ(ξ, t)
∣∣ � 1

1 + kξ2
, |ξ | � ρ, t � 0.

To prove (38), thanks to the uniform estimates collected in Proposition 13, we can proceed exactly in the same
way. �

We are now in position to prove Theorem 1.

Theorem 1. Assume e ∈ [0,1). Let g(t) be the weak solution of Eq. (11), corresponding to the initial probability
density g0 ∈ P4(R

3) with zero mean velocity and
∫

R3 |v|2g0(v)dv = 3. If in addition

∣∣ĝ0(ξ)
∣∣ � 1

(1 + β|ξ |)ν , |ξ | > R, (40)

for some R > 0, ν > 0 and β > 0, then there exist ρ > 0, k > 0, ν ′ > 0 such that g(t) satisfies

∣∣ĝ(ξ, t)
∣∣ �

⎧⎪⎪⎨
⎪⎪⎩

1

1 + k|ξ |2 , |ξ | � ρ, t � 0,

1

(1 + β|ξ |)ν′ , |ξ | > ρ, t � 0.

(41)

Proof. The bound on the low frequencies |ξ | � ρ has been established in Lemma 15. Moreover, in consequence of
Proposition 3.3 in [17], we can suppose that condition (40) holds for any |ξ | > ρ (with a possibly smaller exponent ν∗).
We will now prove that, for any N ∈ N and j = 0, . . . ,N ,

∣∣φ̂N
j (ξ)

∣∣ � 1
ν′ , |ξ | > ρ,
(1 + β|ξ |)
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for a positive constant ν′ small enough. By induction we have only to check the bound on

φ̂N
1 (ξ) = 1

�t

+∞∫
η=1

(
E�tQ+(ĝ0, ĝ0)(ηξ) + (1 − E�t)ĝ0(ηξ)

) dη

η
1

�t
+1

.

Let |ξ | > ρ and η > 1. We start to bound the term

Q+(ĝ0, ĝ0)(ηξ) = 1

4π

∫
S2

ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)

dσ,

where ξ̃ = ηξ . Since |η| > 1, we have |ξ̃ | = η|ξ | > |ξ | > ρ. We recall that for σ ∈ S2

ξ̃+ = 3 − e

4
ξ̃ + 1 + e

4
|ξ̃ |σ,

ξ̃− = 1 + e

4

(
ξ̃ − |ξ̃ |σ )

,

so that |ξ̃+ + ξ̃−| = |ξ̃ |. Therefore∣∣ξ̃+∣∣ + ∣∣ξ̃−∣∣ � |ξ̃ |, (42)

and so either |ξ̃+| � |ξ̃ |
2 or |ξ̃−| � |ξ̃ |

2 . Moreover, for any σ ∈ S2

∣∣ξ̃+∣∣2 � |ξ̃ |2
(

1 − e

2

)2

� |ξ |2
(

1 − e

2

)2

. (43)

The surface S2 can be split into six non-overlapping domains

S2 = A0 ∪ A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5,

where

A0 = {
σ ∈ S 2:

∣∣ξ̃+∣∣ > ρ,
∣∣ξ̃−∣∣ > ρ

}
,

A1 = {
σ ∈ S 2:

∣∣ξ̃+∣∣ � ρ,
∣∣ξ̃−∣∣ > ρ

}
,

A2 =
{
σ ∈ S 2:

∣∣ξ̃−∣∣ � ρ,
∣∣ξ̃−∣∣ � |ξ̃ |

2
,

∣∣ξ̃+∣∣ >
|ξ̃ |
2

}
,

A3 =
{
σ ∈ S 2:

∣∣ξ̃−∣∣ � ρ,
∣∣ξ̃−∣∣ >

|ξ̃ |
2

,
∣∣ξ̃+∣∣ >

|ξ̃ |
2

,
∣∣ξ̃+∣∣ � ρ

}
,

A4 =
{
σ ∈ S 2:

∣∣ξ̃−∣∣ � ρ,
∣∣ξ̃−∣∣ >

|ξ̃ |
2

,
∣∣ξ̃+∣∣ >

|ξ̃ |
2

,
∣∣ξ̃+∣∣ > ρ

}
,

A5 =
{
σ ∈ S 2:

∣∣ξ̃−∣∣ � ρ,
∣∣ξ̃+∣∣ � |ξ̃ |

2

}
.

We use the aforementioned decomposition to estimate

∣∣Q+(ĝ0, ĝ0)(ηξ)
∣∣ � 1

4π

5∑
i=0

∫
Ai

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣dσ.

If σ ∈ A0, inequality (42) gives∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣ � 1

(1 + β|ξ̃+|)ν′
1

(1 + β|ξ̃−|)ν′ � 1

(1 + β(|ξ̃+| + |ξ̃−|))ν′ � 1

(1 + β|ξ |)ν′ .

Hence∫ ∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣dσ � 1

(1 + β|ξ |)ν′ |A0|, (44)
A0
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where |A0| denotes the Lebesgue measure of A0. Let us choose now σ ∈ A1. Thanks both to inequality (43) and to

the lower bound |ξ̃−| � |ξ̃ |
2 (which holds true since |ξ̃−| � |ξ̃+|), we obtain

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣ � 1

1 + k|ξ̃+|2
1

(1 + β|ξ̃−|)ν′ � 1

1 + k( 1−e
2 )2|ξ |2

1

(1 + β
2 |ξ̃ |)ν′

� 1

1 + k( 1−e
2 )2|ξ |2

1

(1 + β
2 |ξ |)ν′ .

On the other hand, if ν′ > 0 is small enough

1

1 + k( 1−e
2 )2|ξ |2

1

(1 + β
2 |ξ |)ν′ � 1

(1 + β|ξ |)ν′ .

Indeed, since (1 + x)/(1 + 1
2x) � 2 for any x � 0(

1 + β|ξ |
1 + β

2 |ξ |
)ν′

1

1 + k( 1−e
2 )2|ξ |2 � 2ν′ 1

1 + k( 1−e
2 )2ρ2

where the last term is smaller than 1 for ν′ � log2(1 + k( 1−e
2 )2ρ2). Finally∫

A1

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣dσ � 1

(1 + β|ξ |)ν′ |A1|. (45)

Let us now fix σ ∈ A2. We get∫
A2

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣dσ � 1

(1 + β|ξ̃+|)ν′

∫
A2∩{|ξ̃+|>ρ}

∣∣ĝ0
(
ξ̃−)∣∣dσ

+ 1

1 + k|ξ̃+|2
∫

A2∩{|ξ̃+|�ρ}

∣∣ĝ0
(
ξ̃−)∣∣dσ. (46)

Thanks to (43), |ξ̃+|2 > ρ2( 1−e
2 )2, so that for ν′ small enough we obtain

1

1 + k|ξ̃+|2 � 1

(1 + β|ξ̃+|)ν′ .

Using the previous bound into (46) we conclude∫
A2

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣dσ � 1

(1 + β|ξ̃+|)ν′

∫
A2

∣∣ĝ0
(
ξ̃−)∣∣dσ � 1

(1 + β
2 |ξ |)ν′

∫
A2

1

1 + k|ξ̃−|2 dσ.

To evaluate the integral over A2, we introduce a spherical reference frame centered at the collision center between the
two particles with z-axis defined by ξ (or ξ̃ , which is just a multiple). We will denote ϑ ∈ [0,π] the longitude and
ϕ ∈ [0,2π) the latitude of the point on the sphere corresponding to the vector σ . In this reference frame

∣∣ξ̃+∣∣2 = 10 + 2e2 − 4e

16
|ξ̃ |2 + (3 − e)(1 + e)

8
|ξ̃ |2 cosϑ,

∣∣ξ̃−∣∣2 = 2

(
1 + e

4

)2

|ξ̃ |2(1 − cosϑ).

Consequently

A2 =
{
ϕ ∈ [0,2π), ϑ ∈ [0,π]: (1 − cosϑ) � min

(
ρ2

2( 1+e )2|ξ̃ |2 ,
6

(3 − e)(1 + e)
,

1

8( 1+e )2

)}
.

4 4
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Since in A2 |ξ̃+| > |ξ̃ |
2 and 6/[(3 − e)(1 + e)] � 1/[8( 1+e

4 )2] for all e > 0,

A2 =
{
ϕ ∈ [0,2π), ϑ ∈ [0,π]: (1 − cosϑ) � min

(
ρ2

2( 1+e
4 )2|ξ̃ |2 ,

1

8( 1+e
4 )2

)}
.

Let us suppose first ξ̃ such that

|ξ̃ |2 � 4ρ2.

In this case, we have∫
A2

1

1 + k|ξ̃−|2 dσ =
∫

ϕ∈[0,2π)

∫
(1−cosϑ)� ρ2

2( 1+e
4 )2|ξ̃ |2

1

1 + 2k( 1+e
4 )2|ξ̃ |2(1 − cosϑ)

sinϑ dϑ dϕ

= 2π

2( 1+e
4 )2|ξ̃ |2

ρ2∫
0

dx

1 + kx
= 2πρ2

2( 1+e
4 )2|ξ̃ |2

log(1 + kρ2)

kρ2
= log(1 + kρ2)

kρ2
|A2|.

If on the contrary

|ξ̃ |2 < 4ρ2

then ∫
A2

1

1 + k|ξ̃−|2 dσ =
∫

ϕ∈[0,2π)

∫
(1−cosϑ)� 1

8( 1+e
4 )2

1

1 + 2k( 1+e
4 )2|ξ̃ |2(1 − cosϑ)

sinϑ dϑ dϕ

= 2π

2( 1+e
4 )2|ξ̃ |2

|ξ̃ |2
4∫

0

dx

1 + kx
= 2π

2( 1+e
4 )2|ξ̃ |2

log(1 + k
|ξ̃ |2

4 )

k

= 2π

8( 1+e
4 )2

log(1 + k
|ξ̃ |2

4 )

k
|ξ̃ |2

4

= log(1 + k
|ξ̃ |2

4 )

k
|ξ̃ |2

4

|A2|.

In both cases we get∫
A2

1

1 + k|ξ̃−|2 dσ � sup
t� ρ2

4

log(1 + kt)

kt
|A2|

so that∫
A2

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣dσ � 1

(1 + β
2 |ξ |)ν′ sup

t� ρ2
4

log(1 + kt)

kt
|A2|.

By choosing ν′ > 0 small enough

1

(1 + β
2 |ξ |)ν′ sup

t� ρ2
4

log(1 + kt)

kt
� 1

(1 + β|ξ |)ν′ .

Indeed,(
1 + β|ξ |
1 + β

2 |ξ |
)ν′

sup
t� ρ2

4

log(1 + kt)

kt
� 2ν′

sup
t� ρ2

4

log(1 + kt)

kt
� 1,

as soon as

ν′ � log2

(
inf

t� ρ2

kt

log(1 + kt)

)
.

4
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Finally∫
A2

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣dσ � 1

(1 + β|ξ |)ν′ |A2|. (47)

Let us fix now σ ∈ A3. For ν′ > 0 small enough it holds

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣ � 1

1 + k|ξ̃+|2
1

1 + k|ξ̃−|2 � 1

1 + k(|ξ̃+|2 + |ξ̃−|2) � 1

1 + k
|ξ |2

2

� 1

(1 + β|ξ |)ν′ .

Thus ∫
A3

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣dσ � 1

(1 + β|ξ |)ν′ |A3|. (48)

For σ ∈ A4 and ν′ > 0 small enough

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣ � 1

(1 + β|ξ̃+|)ν′
1

1 + k|ξ̃−|2 � 1

(1 + β
2 |ξ |)ν′

1

1 + k
|ξ |2

4

� 1

(1 + β|ξ |)ν′ .

Therefore∫
A4

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣dσ � 1

(1 + β|ξ |)ν′ |A4|. (49)

Last, let us consider σ ∈ A5. It is worth noticing that

A5 ⊂
{∣∣ξ̃−∣∣ >

|ξ̃ |
2

,
∣∣ξ̃+∣∣ � ρ

}

so that, for ν′ > 0 small enough

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣ � 1

1 + k|ξ̃+|2
1

1 + k|ξ̃−|2 � 1

1 + k
|ξ |2

4

� 1

(1 + β|ξ |)ν′ .

This implies∫
A5

∣∣ĝ0
(
ξ̃+)

ĝ0
(
ξ̃−)∣∣dσ � 1

(1 + β|ξ |)ν′ |A5|. (50)

Grouping inequalities (44), (45), (47), (48), (49) and (50) we conclude that it exists a suitably small positive constant
ν′ depending on ρ and k fixed once and for all in the first part of this proof such that, for |ξ | > ρ and η > 1

∣∣Q+(ĝ0, ĝ0)(ηξ)
∣∣ � 1

4π

∣∣S2
∣∣ 1

(1 + β|ξ |)ν′ = 1

(1 + β|ξ |)ν′ .

Coming back to φ̂N
1 (ξ) for N large enough and |ξ | > ρ we obtain

∣∣φ̂N
1 (ξ)

∣∣ � 1

�t

+∞∫
η=1

(
E�t

1

(1 + β|ξ |)ν′ + (1 − E�t)
1

(1 + β|ξ |)ν′

)
dη

η
1

�t
+1

= 1

(1 + β|ξ |)ν′ . �

Remark 16. Note that the bounds in (41) imply

∣∣ĝ(ξ, t)
∣∣ � C

(1 + κ|ξ |)μ , ξ ∈ R
3, t � 0.
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5. Propagation of regularity and strong convergence

The aim of this section is to prove Theorem 2 about the strong L1-convergence of the solution g(t) of Eq. (11) to
the stationary state g∞.

Theorem 2. Assume e ∈ [0,1). Let g(t) be the weak solution of Eq. (11), corresponding to the initial probability
density g0 ∈ P4(R

3) with zero mean velocity and
∫

R3 |v|2g0(v)dv = 3. Let us suppose moreover g0 ∈ Ḣ η(R3) for
some η > 0 and

√
g0 ∈ Ḣ ν(R3) for some ν > 0. Then g(t) converges strongly in L1 with an exponential rate towards

the stationary solution g∞, i.e., there exist positive constants C and γ explicitly computable such that∥∥g(t) − g∞
∥∥

L1(R3)
� Ce−γ t , t � 0.

Let us begin by the following lemma (cf. [20]), which makes a link between the condition
√

g0 ∈ Ḣ ν(R3) and the
decay of the Fourier transform. For the proof we refer to [18].

Lemma 17. Let g0 be a probability density such that
√

g0 ∈ Ḣ ν(R3) for some ν > 0. Then there exist positive con-
stants C and β such that ĝ0 satisfies

∣∣ĝ0(ξ)
∣∣ � C

(1 + β|ξ |)ν , ξ ∈ R
3.

In order to prove Theorem 2, we need to pass from the weak convergence in the Fourier distance d2 of the solution
g(t) to the stationary state g∞ (Theorem 7) to the more natural L1-convergence in the physical space. To this extent,
we make use of the propagation of regularity established in Theorem 1. The additional ingredient is the uniform
boundedness of the solution in Sobolev norms. The proof of this statement follows along the lines of the analogous
proof in [11], Lemma 3.4 and Theorem 3.6. In [11], however, the decay of the Fourier transform of the solution (41)
was proved only for small inelasticity e � 1, making use of a precise control of the growth of the Fisher information
(Theorem 1.2).

Theorem 18. Assume e ∈ [0,1). Let g(t) be the weak solution of Eq. (11), corresponding to the initial probability
density g0 ∈ P4(R

3) with zero mean velocity and
∫

R3 |v|2g0(v)dv = 3. Moreover, let g0 ∈ Ḣ η(R3) for some η > 0
and

√
g0 ∈ Ḣ ν(R3) for some ν > 0. Then g(t) is uniformly bounded in Ḣ η(R3).

Proof of Theorem 2. The proof of Theorem 2 is completed using the following interpolation bounds:

• there exists a positive constant C such that

‖h‖L1 � C
∥∥|v|2h∥∥ 3

7
L1‖h‖

4
7
L2;

• for any s � 0 and any η > 0, there exists a positive constant C such that

‖h‖Ḣ s � C

(
sup
ξ 	=0

|ĥ(ξ)|
|ξ |2

) η
2s+7+η ‖h‖1− η

2s+7+η

Ḣ s+η .

To prove the last bound, consider that, for any given constant R > 0

‖h‖2
Ḣ s =

∫
R3

∣∣ĥ(ξ)
∣∣2|ξ |2s dξ =

∫
|ξ |�R

|ĥ(ξ)|2
|ξ |4 |ξ |2s+4 dξ +

∫
|ξ |>R

1

|ξ |2η

∣∣ĥ(ξ)
∣∣2|ξ |2s+2η dξ

� C

(
sup
ξ

|ĥ(ξ)|
|ξ |2

)2

R2s+7 + 1

R2η
‖h‖2

Ḣ s+η .

Optimizing over R gives the result.
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Let h = g(t) − g∞. Keeping in mind the regularity of the stationary state (Theorem 10), for s = 0 we get∥∥g(t) − g∞
∥∥

L1 � C
(∥∥|v|2g(t)

∥∥
L1 + ∥∥|v|2g∞

∥∥
L1

) 3
7

× (
d2

(
g(t), g∞

) η
7+η

(∥∥g(t)
∥∥

Ḣ η + ‖g∞‖Ḣ η

)1− η
7+η

) 4
7 . �

Appendix A

Proof of Proposition 13. The estimates on the first order moments (33) are easily obtained by a recursive procedure
based on expression (31). A similar procedure applies to show that the non-isotropic second moments (34) vanish.

Let us now consider the diagonal second moments (35). Using the same procedure of Proposition 22 we arrive at
the following first order linear difference system⎡

⎢⎣
∫

R3 v2
1 φN

j+1 dv∫
R3 v2

2φN
j+1 dv∫

R3 v2
3φN

j+1 dv

⎤
⎥⎦ = 1

1 − 2�t
(Id + �tA)

⎡
⎢⎣

∫
R3 v2

1φN
j dv∫

R3 v2
2φN

j dv∫
R3 v2

3φN
j dv

⎤
⎥⎦

where

A =
⎡
⎢⎣

− 4
3

2−e
1−e

1
3

1+e
1−e

1
3

1+e
1−e

1
3

1+e
1−e

− 4
3

2−e
1−e

1
3

1+e
1−e

1
3

1+e
1−e

1
3

1+e
1−e

− 4
3

2−e
1−e

⎤
⎥⎦ .

The matrix A has −2 as simple eigenvalue, with eigenspace
〈[ 1

1
1

]〉
and − 3−e

1−e
as double eigenvalue with eigenspace〈[−1

1
0

]
,
[−1

0
1

]〉
. Therefore the matrix 1

1−2�t
(Id + �tA) has 1 as simple eigenvalue and 1

1−2�t
(1 − �t 3−e

1−e
) as double

eigenvalue, with the same eigenspaces. Since for N large enough (depending on e ∈ [0,1)) we have 0 < 1
1−2�t

(1 −
�t 3−e

1−e
) < 1, we obtain⎡
⎢⎣

∫
R3 v2

1φN
j (v)dv∫

R3 v2
2φN

j (v)dv∫
R3 v2

3φN
j (v)dv

⎤
⎥⎦ =

[1
1
1

]
+ C1

[−1
1
0

](
1 − �t 3−e

1−e

1 − 2�t

)j

+ C2

[−1
0
1

](
1 − �t 3−e

1−e

1 − 2�t

)j

,

with C1, C2 real constants determined by the initial conditions. By virtue of (35), for all N and for all j = 0, . . . ,N∫
R3

|v|2φN
j (v)dv = 3.

Finally, let us take into account the fourth moment (36). Making use again of (31) we find∫
R3

|v|4φN
j+1(v)dv

= 1

�t

+∞∫
1

(
E�t

∫
R3

|v|4
η3

Q+
(
φN

j ,φN
j

)(v

η

)
dv + (1 − E�t)

∫
R3

|v|4
η3

φN
j

(
v

η

)
dv

)
dη

η
1

�t
+1

= 1

�t

1
1

�t
− 4

(
E�t

∫
R3

|v|4Q+
(
φN

j ,φN
j

)
(v)dv + (1 − E�t)

∫
R3

|v|4 φN
j (v)dv

)
.

We denote

m4,j =
∫

3

|v|4φN
j (v)dv.
R
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By Lemma 5 in [9], we know that there exist λ, μ1 and μ2 positive constants depending only on e such that∫
R3

|v|4Q(
φN

j ,φN
j

)
(v)dv = −λm4,j + 9μ1 + μ2

∫
R3×R3

(v · w)2φN
j (v)φN

j (w)dv dw

� −λm4,j + C

for a suitable positive constant C depending on g0. Remembering that∫
R3

|v|4Q+
(
φN

j ,φN
j

)
(v)dv =

∫
R3

|v|4Q(
φN

j ,φN
j

)
(v)dv +

∫
R3

|v|4 φN
j (v)dv,

we end up with the recursive relation

m4,j+1 � 1

1 − 4�t

(
E�t

(
(1 − λ)m4,j + C

) + (1 − E�t)m4,j

)
= 1

1 − 4�t

(
(1 − λE�t)m4,j + CE�t

)
.

By a Taylor expansion we get for �t → 0:

m4,j+1 � (1 − λE�t)
(
1 + 4�t + o(�t)

)
m4,j + CE�t

(
1 + 4�t + o(�t)

)
= (

1 − (λE − 4)�t + o(�t)
)
m4,j + CE�t + o(�t).

Since λ > 4/E for any e ∈ [0,1) [9], we get for N large enough

m4,j+1 �
(

1 − λE − 4

2
�t

)
m4,j + 2CE�t.

Thus

m4,j+1 �
(

1 − λE − 4

2
�t

)j+1

m4,0 + 2CE�t

j∑
k=0

(
1 − λE − 4

2
�t

)k

� m4,0 + 2CE�t

λE−4
2 �t

= m4,0 + 4CE

λE − 4
.

Hence, if g0 ∈ P4(R
3), m4,j is uniformly bounded for all j = 0, . . . ,N , provided N is large enough. �
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