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Abstract

A spatio-temporal localization of the BMO-version of the Beale–Kato–Majda criterion for the regularity of solutions to the 3D
Navier–Stokes equations obtained by Kozono and Taniuchi, i.e., the time-integrability of the BMO-norm of the vorticity, is pre-
sented.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Une localisation spatio-temporelle de la version BMO du critère de Beale–Kato–Majda pour la régularité des solutions des
équations de Navier–Stokes obtenue par Kozono et Taniuchi, c.-à-d., l’intégrabilité en temps de la norme BMO de la vorticité,
est présentée.
© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

The Beale–Kato–Majda (BKM) regularity criterion, originally derived for solutions to the 3D Euler equations
(cf. [1]), holds for solutions to the 3D Navier–Stokes equations (NSE) as well. The criterion can be viewed as a
continuation principle for strong solutions stating that as long as the time-integral of the L∞-norm of the vorticity is
bounded, no blow-up can occur.

A refinement of the BKM criterion was obtained in [13] where the condition on time-integrability of the L∞-norm
of the vorticity was replaced by the time-integrability of the BMO-norm of the vorticity (BMO is the space of bounded
mean oscillations). The proof in [13] is based on various bilinear estimates in BMO obtained by the authors which in
turn rely on continuity of a class of convolution-type pseudodifferential operators with the symbol vanishing on one
of the components from L2 × BMO to L2 (cf. [6]).

A further generalization was presented in [14,15] where the regularity condition is expressed in terms of the time-
integrability of the homogeneous Besov norm Ḃ0∞,∞ of the vorticity.
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In all the aforementioned results, the spatial domain was the whole space R
3. In this paper, utilizing the localization

of the vorticity–velocity formulation of the 3D NSE developed in [12,10] (see also [11]), we present a spatio-temporal
localization of the BMO-criterion on the vorticity. Instead of trying to localize the original proof in the global case
given in [13], we will exploit the non-homogeneous div–curl structure of the leading order vortex-stretching term, a
variant of the local non-homogeneous div–curl lemma (cf. [5]), and the duality between a local version of the Hardy
space H1 and a local version of the space of bounded mean oscillations BMO.

In a very recent work [3], utilizing a localization of the velocity–pressure form of the 3D NSE, the authors obtained
a localization of another BMO regularity criterion; namely, the time-integrability of the square of the BMO-norm of
the velocity (cf. [13]). Their proof was based on bilinear estimates in BMO obtained in [13] and an estimate on the
BMO-norm of a product of a BMO-function with a smooth function of compact support.

As in the previous works [12,10,11], for simplicity of the exposition, the calculations are presented on smooth
solutions. More precisely, we consider a weak solution on a space–time domain Ω × (0, T ) and suppose that u is
smooth in an open parabolic cylinder Q2R(x0, t0) = B(x0,2R) × (t0 − (2R)2, t0) contained in Ω × (0, T ). The goal
is to show that, under a suitable local condition on Q2R(x0, t0) (in this case, the time-integrability of a local version
of the BMO-norm of the vorticity), the localized enstrophy remains uniformly bounded up to t = t0, i.e.,

sup
t∈(t0−R2,t0)

∫
B(x0,R)

∣∣ω(x, t)
∣∣2

dx < ∞.

Alternatively, we can consider, e.g., a class of suitable weak solutions constructed in [2] as a limit of a family of
delayed mollifications (see also [7]), and perform the calculations on the smooth approximations.

The only a priori bounds on weak solutions needed in [12,10,11] are the Leray bounds, u in L∞(0, T ;L2) ∩
L2(0, T ;H 1). Here, we will also make use of the vorticity counterpart of the L∞(0, T ;L2)-bound on the velocity,
i.e., the L∞(0, T ;L1)-bound on the vorticity. This bound holds for suitable weak solutions for which the initial
vorticity is a finite Radon measure (cf. [7]).

In Section 2 we recall some facts about global and local versions of the Hardy space H1 and BMO, as well as a
local, non-homogeneous div–curl lemma from [5]. Section 3 contains the statement and the proof of our localization
result.

2. Preliminaries

Definition 1. Let h in C∞
0 = C∞

0 (Rn) be a function supported in the unit ball B(0,1) such that
∫

h = 1. The maximal
function of a distribution f is defined by

Mh(f )(x) = sup
t>0

∣∣f ∗ ht (x)
∣∣ for all x ∈ R

n, where ht (x) = t−nh
(
t−1x

)
.

f belongs to H1 if the maximal function Mh(f ) belongs to L1 and the H1-norm of f is given by ‖f ‖H1 =
‖Mh(f )‖L1 .

The local Hardy space h1 was introduced by Goldberg (cf. [9]).

Definition 2. The local maximal function of a distribution f is defined by

mh(f )(x) = sup
0<t<1

∣∣f ∗ ht (x)
∣∣ for all x ∈ R

n.

f belongs to h1 if the local maximal function mh(f ) belongs to L1 and the h1-norm of f is given by ‖f ‖h1 =
‖mh(f )‖L1 .

On the other hand, H1
loc is defined to be the space of all locally integrable functions such that the local maximal

function mh(f ) is in L1
loc.

Note that the norms are independent of the choice of h up to equivalence; hence the spaces H1, H1
loc and h1 are

well defined.
The dual space of H1 is the space of functions of bounded mean oscillation, abbreviated to BMO (cf. [8]).
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Definition 3. A locally integrable function f on R
n is of bounded mean oscillation if

‖f ‖BMO = sup
x,r>0

1

|B(x, r)|
∫

B(x,r)

∣∣f (y) − fB(x,r)

∣∣dy < ∞

where fB(x,r) = 1
|B(x,r)|

∫
B(x,r)

f (y) dy.

Similarly, the dual space of h1 is the space bmo; this is the localized version of BMO (see [9]).

Definition 4. A locally integrable function f on R
n is in bmo if

‖f ‖bmo = sup
x,0<r<1

1

|B(x, r)|
∫

B(x,r)

∣∣f (y) − fB(x,r)

∣∣dy + sup
x,r�1

1

|B(x, r)|
∫

B(x,r)

∣∣f (y)
∣∣dy < ∞.

For any bounded Lipschitz domain Ω , the same duality holds for the spaces bmor (Ω) and h1
z(Ω) [4].

Here g is in bmor (Ω) if there exists a function f in bmo such that g = f on Ω and

‖g‖bmor (Ω) = inf
{‖f ‖bmo: f in bmo, f = g on Ω

}
.

The space h1
z consists of all functions on Ω whose extensions to the constant function 0 on R

3\Ω are in h1.
Alternatively, this space can be thought of as the space of all distributions in h1 that are supported in Ω .

The following is a variant of a local, non-homogeneous div–curl lemma presented in [5, III.2].

Lemma 1 (Coifman, Lions, Meyer, Semmes). Suppose that u,v are in L2(B(0,R)) with divu in W−1,s(B(0,R)) for
some s > 2 and curlv = 0. Then,

∥∥mh(u · v)
∥∥

L1(B(0,R))
� c(R)

(‖u‖L2(B(0,R)) + ‖divu‖W−1,s (B(0,R))

)‖v‖L2(B(0,R))

where c is an increasing function of R.

Remark 1. A simple consequence of the lemma is the following bound on the div–curl products in h1
z(B(0, r)).

Let r � 1, and suppose that u,v are in L2(B(0, r)) with divu in W−1,s(B(0, r)) for some s > 2 and curlv = 0.
Then,

‖u · v‖h1
z(B(0,r)) � c

(‖u‖L2(B(0,r)) + ‖divu‖W−1,s (B(0,r))

)‖v‖L2(B(0,r)).

3. A local version of the BMO regularity criteria on the vorticity

Theorem 1. Let u be a weak solution on a space–time domain Ω × (0, T ) such that supt∈(0,T ) ‖ω(t)‖L1(Ω) is finite
(e.g. a suitable weak solution with initial vorticity a finite Radon measure), (x0, t0) in Ω × (0, T ) and 0 < R < 1 such
that the parabolic cylinder Q2R(x0, t0) = B(x0,2R) × (t0 − (2R)2, t0) is contained in Ω × (0, T ).

Suppose that u is smooth in Q2R(x0, t0) and that

‖ω‖bmor (B(x0,2R)) is in L1((t0 − (2R)2, t0
))

.

Then the localized enstrophy remains uniformly bounded up to t = t0, i.e.,

sup
t∈(t0−R2,t0)

∫
B(x0,R)

|ω|2(x, t) dx < ∞.

Proof. Let (x0, t0) be a point in Ω × (0, T ) and 0 < R < 1 such that Q2R(x0, t0) = B(x0,2R) × (t0 − (2R)2, t0) is
contained in Ω × (0, T ). Given 0 < r � R, let ψ(x, t) = φ(x)η(t) be a smooth cut-off function with the following
properties,
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suppφ ⊂ B(x0,2r), φ = 1 on B(x0, r),
|∇φ|
φρ

� c

r
for some ρ ∈ (0,1), 0 � φ � 1,

and

suppη ⊂ (
t0 − (2r)2, t0

]
, η = 1 on

[
t0 − r2, t0

]
,

∣∣η′∣∣ � c

r2
, 0 � η � 1.

Taking the curl of the velocity–pressure formulation we obtain the vorticity–velocity form of the 3D NSE,

ωt − �ω + (u · ∇)ω = (ω · ∇)u. (1)

It has been shown in [12] that multiplying the vorticity equations by ψ2ω and integrating over Qs
2r = B(x0,2r) ×

(t0 − (2r)2, s), for a fixed s in (t0 − (2r)2, t0), yields

1

2

∫
B(x0,2r)

φ2(x)|ω|2(x, s) dx +
∫

Qs
2r

∣∣∇(ψω)
∣∣2

dx dt

�
∫

Q2r

(|η||∂tη| + |∇ψ |2)|ω|2 dx dt +
∣∣∣∣
∫

Qs
2r

(u · ∇)ω · ψ2ωdx dt

∣∣∣∣ +
∣∣∣∣
∫

Qs
2r

(ω · ∇)u · ψ2ωdx dt

∣∣∣∣

� c(r)

∫
Q2r

|ω|2 dx dt + 1

2

∫
Q2r

∣∣∇(ψω)
∣∣2

dx dt +
∣∣∣∣
∫

Qs
2r

(ω · ∇)u · ψ2ωdx dt

∣∣∣∣, (2)

where the bound on the localized transport term (u · ∇)ω · ψ2ω holds for any 1
2 � ρ < 1. This condition was used to

estimate the lower order terms whereas the leading order term vanishes after the integration by parts due to the incom-
pressibility of the fluid. In order to estimate the localized vortex stretching term we will use the explicit localization
formula obtained in [10],

φ2(x)(ω · ∇)u · ω(x) = −c P.V.

∫
B(x0,2r)

εjkl

∂2

∂xi∂yk

1

|x − y|φωl dy φ(x)ωi(x)ωj (x)

− c

∫
B(x0,2r)

εjkl

∂

∂xi

1

|x − y|
∂

∂yk

φωl dy

+ c

∫
B(x0,2r)

∂

∂xi

1

|x − y| (2∇φ · ∇uj + �φuj )dy

− ∂

∂xi

φ(x)uj (x)φ(x)ωi(x)ωj (x)

= −c P.V.

∫
B(x0,2r)

εjkl

∂2

∂xi∂yk

1

|x − y|φωl dy φ(x)ωi(x)ωj (x) + LOT

= VSTloc + LOT

where LOT is comprised of the terms that are either lower order with respect to VSTloc for at least one order of the
differentiation and/or less singular than VSTloc for at least one power of |x − y|.

Hence, for the vortex stretching term in (2) we get∣∣∣∣
∫

Qs
2r

(ω · ∇)u · ψ2ωdx dt

∣∣∣∣ �
∣∣∣∣
∫

Qs
2r

η2 VSTloc dx dt

∣∣∣∣ +
∣∣∣∣
∫

Qs
2r

η2 LOTdx dt

∣∣∣∣.

It has been shown in [10] that for ρ close enough to 1 it is possible to bound the integral of the lower order terms with
a bounded term that depends only on ‖∇u‖L2(Q2r )

and r , and a term that can be absorbed by the left-hand side of (2)
for sufficiently small r . It remains to estimate the leading vortex-stretching term.
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The claim is that the leading order vortex-stretching term has a div–curl structure amenable to the application of
Remark 1. Indeed, we can write

P.V.

∫
B(x0,2r)

εjkl

∂2

∂xi∂yk

1

|x − y|φωl dy φ(x)ωi(x) = ∇x

( ∫
B(x0,2r)

∇y

1

|x − y| × φωdy

)
j

· φω

= ∇xEj · B. (3)

Curl(∇xEj ) = 0; on the other hand, for divB = div(φω) = ∇φ · ω, the Sobolev embedding and the properties of the
cut-off φ yield∥∥∇φ · ω(t)

∥∥
W−1,3(B(x0,2r))

� c
∥∥∇φ · ω(t)

∥∥
L

3
2 (B(x0,2r))

� c(ρ)

r

∥∥(
φ
∣∣ω(t)

∣∣)ρ∣∣ω(t)
∣∣1−ρ∥∥

L3/2(B(x0,2r))
.

For any 2
3 < ρ < 1, several applications of the Hölder inequality imply

∥∥∇φ · ω(t)
∥∥

W−1,3(B(x0,2r))
� c(ρ)

r

∥∥φω(t)
∥∥ρ

L
3ρ

3ρ−1 (B(x0,2r))

∥∥ω(t)
∥∥1−ρ

L1(B(x0,2r))

� c(ρ)

r
r

3ρ−2
2

∥∥φω(t)
∥∥ρ

L2(B(x0,2r))

∥∥ω(t)
∥∥1−ρ

L1(B(x0,2r))

= c(ρ)r
3ρ−4

2
∥∥φω(t)

∥∥ρ

L2(B(x0,2r))

∥∥ω(t)
∥∥1−ρ

L1(B(x0,2r))

�
∥∥φω(t)

∥∥
L2(B(x0,2r))

+ c(ρ)r
3ρ−4

2(1−ρ)
∥∥ω(t)

∥∥
L1(B(x0,2r))

. (4)

Using the fact that (h1
z(B(x0,2r)))∗ = bmor (B(x0,2r)), Remark 1, the fact that each component of ∇xEj (t) is the

image of a component of φω(t) under the Calderon–Zygmund operator with the kernel ∂2

∂xi∂yk

1
|x−y| and (4), we arrive

at the following string of inequalities,∣∣∣∣
∫

Qs
2r

η2 VSTloc dx dt

∣∣∣∣ �
∣∣∣∣
∫

Qs
2r

(
η2∇xEj · B)

(t) · ω(t) dx dt

∣∣∣∣

�
∫

(t0−2r2,t0)

∥∥(
η2∇xEj · B)

(t)
∥∥

h1
z(B(x0,2r))

∥∥ω(t)
∥∥

bmor (B(x0,2r))

� C

∫

(t0−2r2,t0)

∥∥(ψω)(t)
∥∥

L2(B(x0,2r))

(∥∥(ψω)(t)
∥∥

L2(B(x0,2r))

+ ∥∥(∇ψ · ω)(t)
∥∥

W−1,3(B(x0,2r))

)∥∥ω(t)
∥∥

bmor (B(x0,2r))
dt

� C

∫

(t0−2r2,t0)

(∥∥(ψω)(t)
∥∥2

L2(B(x0,2r))
+ c(ρ)r

3ρ−4
1−ρ

∥∥ω(t)
∥∥2

L1(B(x0,2r))

)

× ∥∥ω(t)
∥∥

bmor (B(x0,2r))
dt

� C sup
t∈(t0−(2r)2,t0)

∥∥φω(t)
∥∥2

L2(B(x0,2r))

∫

(t0−2r2,t0)

∥∥ω(t)
∥∥

bmor (B(x0,2r))
dt

+ c(ρ, r) sup
t∈(t0−(2r)2,t0)

∥∥ω(t)
∥∥2

L1(B(x0,2r))

∫

(t0−2r2,t0)

∥∥ω(t)
∥∥

bmor (B(x0,2r))
dt.

Due to our assumptions, the second term is finite. Since ‖ω‖bmor (B(x0,2R)) is in L1((t0 − (2R)2, t0)), the Lebesgue
dominated convergence implies that we can choose r small enough so that the first term gets absorbed by the left-
hand side of (2). If R is small enough, we are done. If not, we simply cover B(x0,2R) with finitely many balls of
radius r . �
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Remark 2. The non-homogeneous div–curl approach to localization of the BMO regularity criteria presented here
also leads to an alternative proof of the localization of the velocity BMO criterion given in [3]. More precisely, in the
localized evolution of the enstrophy (2), write∫

Qs
2r

(ω · ∇)u · ψ2ωdx dt = −
∫

Qs
2r

∇(
(ψω)j

) · (ψω)uj dx dt + LOT;

this form of the vortex-stretching term has a non-homogeneous div–curl structure that is after utilizing the h1
z–bmor

duality amenable to the application of Remark 1.
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