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Abstract

In this paper we prove the existence of a nontrivial solution to the nonlinear Schrödinger–Maxwell equations in R
3, assuming

on the nonlinearity the general hypotheses introduced by Berestycki and Lions.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on démontre l’existence d’une solution non-banale et positive pour les équations non-linéaires de Schrödinger–
Maxwell dans R

3 en supposant que le terme non-linéaire satisfait les hypothèses introduites par Berestycki et Lions.
© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the recent years, the following electrostatic nonlinear Schrödinger–Maxwell equations, also known as nonlinear
Schrödinger–Poisson system,{−�u + qφu = g(u) in R

3,

−�φ = qu2 in R
3,

(S M)

have been object of interest for many authors. Indeed a similar system arises in many mathematical physics contexts,
such as in quantum electrodynamics, to describe the interaction between a charge particle interacting with the electro-
magnetic field, and also in semiconductor theory, in nonlinear optics and in plasma physics. We refer to [4] for more
details in the physics aspects.

The greatest part of the literature focuses on the study of the previous system for the very special nonlinearity
g(u) = −u + |u|p−1u, and existence, nonexistence and multiplicity results are provided in many papers for this
particular problem (see [1,2,10,12–14,19–21,24,28]). In [9,11,27], also the linear and the asymptotic linear cases have
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been studied, whereas in [22] the problem has been dealt with in a bounded domain, with Neumann conditions on the
boundary.

The aim of this paper is to study the Schrödinger–Maxwell system assuming the same very general hypotheses
introduced by Berestycki & Lions, in their celebrated paper [7]. Actually, we assume that the following hold for g:

(g1) g ∈ C(R,R);
(g2) −∞ < lim infs→0+ g(s)/s � lim sups→0+ g(s)/s = −m < 0;
(g3) −∞ � lim sups→+∞ g(s)/s5 � 0;

(g4) there exists ζ > 0 such that G(ζ) := ∫ ζ

0 g(s) ds > 0.

Using similar assumptions on the nonlinearity g, [3,18] and [23] studied, respectively, a nonlinear Schrödinger
equation in presence of an external potential and a system of weakly coupled nonlinear Schrödinger equations. We
mention also [5] where the Klein–Gordon and in Klein–Gordon–Maxwell equations are considered.

The main result of the paper is

Theorem 1.1. If g satisfies (g1)–(g4), then there exists q0 > 0 such that, for any 0 < q < q0, problem (S M) admits a
nontrivial positive radial solution (u,φ) ∈ H 1(R3) × D1,2(R3).

Some remarks on this result are in order:

• the assumptions are trivially satisfied by nonlinearities like g(u) = −u + |u|p−1u, for any p ∈ ]1,5[;
• hypotheses on g are almost necessary in the sense specified in [7, Subsection 2.2];
• the fact that the result is obtained for small q is not surprising for at least two reasons: first, because small q makes,

in some sense, less strong the influence of the term φu, which constitutes, in the first equation, a perturbation with
respect to the classical nonlinear Schrödinger equation treated in [7]; second, there is a nonexistence result for
large q and g(u) = −u + |u|p−1u with p ∈ ]1,2] (see [24]).

From the technical point of view, dealing with (S M) under the effect of a general nonlinear term presents several
difficulties. Indeed the lack of the following global Ambrosetti–Rabinowitz growth hypothesis on g:

there exists μ > 2 such that 0 < μG(s) � g(s)s, for all s ∈ R,

brings on two obstacles to the standard Mountain Pass arguments both in checking the geometrical assumptions in the
functional and in proving the boundedness of its Palais–Smale sequences. To overcome these difficulties, we will use
a combined technique consisting in a truncation argument (see [17,21]) and a monotonicity trick à la Jeanjean [15]
(see also Struwe [26]).

It is natural to ask about multiplicity of solutions of (S M). However, our approach does not seem to work in this
direction.

The paper is organized as follows. In Section 2 we introduce the functional framework for solving our problem
by a variational approach. In Section 3 we define a sequence of modified functionals on which we can easily apply
the Mountain Pass Theorem. Then we study the convergence of the sequence of critical points obtained. Finally
Appendix A is devoted to prove a Pohozaev type identity which we use, in Section 3, as a fundamental tool in our
arguments.

Notation.

• For any 1 � s � +∞, we denote by ‖ · ‖s the usual norm of the Lebesgue space Ls(R3);
• H 1(R3) is the usual Sobolev space endowed with the norm

‖u‖2 :=
∫
R3

|∇u|2 + u2;
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• D1,2(R3) is completion of C∞
0 (R3) (the compactly supported functions in C∞(R3)) with respect to the norm

‖u‖2
D1,2(R3)

:=
∫
R3

|∇u|2;

• for brevity, we denote α = 12/5.

2. Functional setting

We first recall the following well-known facts (see, for instance [4,6,12,24]).

Lemma 2.1. For every u ∈ H 1(R3), there exists a unique φu ∈ D1,2(R3) solution of

−�φ = qu2, in R
3.

Moreover,

(i) ‖φu‖2
D1,2(R3)

= q
∫

R3 φuu
2;

(ii) φu � 0;
(iii) for any θ > 0: φuθ (x) = θ2φu(x/θ), where uθ (x) = u(x/θ);
(iv) there exist C,C′ > 0 independent of u ∈ H 1(R3) such that

‖φu‖D1,2(R3) � Cq‖u‖2
α,

and ∫
R3

φuu
2 � C′q‖u‖4

α; (1)

(v) if u is a radial function then φu is radial, too.

Following [7], define s0 := min{s ∈ [ζ,+∞[ | g(s) = 0} (s0 = +∞ if g(s) 	= 0 for any s � ζ ). We set g̃ : R → R

the function such that

g̃(s) =
⎧⎨
⎩

g(s) on [0, s0];
0 on R+ \ [0, s0];
(g(−s) − ms)+ − g(−s) on R−.

(2)

By the strong maximum principle and by (ii) of Lemma 2.1, if u is a nontrivial solution of (S M) with g̃ in the place
of g, then 0 < u < s0 and so it is a positive solution of (S M). Therefore we can suppose that g is defined as in (2), so
that (g1), (g2), (g4) and then the following limit

lim
s→±∞

g(s)

s5
= 0 (3)

hold.
We set

g1(s) :=
{

(g(s) + ms)+, if s � 0,

0, if s < 0,

g2(s) := g1(s) − g(s), for s ∈ R.

Since

lim
s→0

g1(s)

s
= 0,

lim
g1(s)

5
= 0, (4)
s→±∞ s
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and

g2(s) � ms, ∀s � 0, (5)

by some computations, we have that for any ε > 0 there exists Cε > 0 such that

g1(s) � Cεs
5 + εg2(s), ∀s � 0. (6)

If we set

Gi(t) :=
t∫

0

gi(s) ds, i = 1,2,

then, by (5) and (6), we have

G2(s) � m

2
s2, ∀s ∈ R (7)

and for any ε > 0 there exists Cε > 0 such that

G1(s) � Cε

6
s6 + εG2(s), ∀s ∈ R. (8)

The solutions (u,φ) ∈ H 1(R3) × D1,2(R3) of (S M) are the critical points of the action functional E :H 1(R3) ×
D1,2(R3) → R, defined as

Eq(u,φ) := 1

2

∫
R3

|∇u|2 − 1

4

∫
R3

|∇φ|2 + q

2

∫
R3

φu2 −
∫
R3

G(u).

The action functional Eq exhibits a strong indefiniteness, namely it is unbounded both from below and from above
on infinite dimensional subspaces. This indefiniteness can be removed using the reduction method described in [4,6],
by which we are led to study a one variable functional that does not present such a strongly indefinite nature. Hence,
it can be proved that (u,φ) ∈ H 1(R3) × D1,2(R3) is a solution of (S M) (critical point of functional Eq ) if and only if
u ∈ H 1(R3) is a critical point of the functional Iq : H 1(R3) → R defined as

Iq(u) = 1

2

∫
R3

|∇u|2 + q

4

∫
R3

φuu
2 −

∫
R3

G(u),

and φ = φu.
We will look for critical points of Iq on H 1

r (R3) := {u ∈ H 1(R3) | u is radial}, which is a natural constraint.

3. The perturbed functional

Kikuchi, in [21], considered (S M), where g(u) = −u + |u|p−1u, with 1 < p < 5. To overcome the difficulty in
finding bounded Palais–Smale sequences for the associated functional Iq , following [17], he introduced the cut-off
function χ ∈ C∞(R+,R) satisfying⎧⎪⎨

⎪⎩
χ(s) = 1, for s ∈ [0,1],
0 � χ(s) � 1, for s ∈ ]1,2[,
χ(s) = 0, for s ∈ [2,+∞[,
‖χ ′‖∞ � 2,

(9)

and studied the following modified functional Ĩ T
q : H 1(R3) → R

Ĩ T
q (u) = 1

2

∫
R3

|∇u|2 + q

4
k̃T (u)

∫
R3

φuu
2 −

∫
R3

G(u),

where, for every T > 0,

k̃T (u) = χ

(‖u‖2

2

)
.

T
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With this penalization, for T sufficiently large and for q sufficiently small, he is able to find a critical point ū such that
‖ū‖ � T and so he concludes that ū is a critical point of Iq .

Let us observe that if g(u) = f (u) − u with f satisfying the Ambrosetti–Rabinowitz growth condition, the argu-
ments of Kikuchi still hold with slide modifications.

On the other hand, in presence of nonlinearities satisfying Berestycki–Lions assumptions, further difficulties arise
about the geometry of our functional and compactness. First of all, as in [21], we introduce a similar truncated func-
tional IT

q : H 1
r (R3) → R

IT
q (u) = 1

2

∫
R3

|∇u|2 + q

4
kT (u)

∫
R3

φuu
2 −

∫
R3

G(u),

where, now,

kT (u) = χ

(‖u‖α
α

T α

)
.

The C1-functional IT
q satisfies the geometrical assumptions of the Mountain–Pass Theorem but, under our general as-

sumptions on the nonlinearity, we are not able to obtain the boundedness of the Palais–Smale sequences. Therefore we
use an indirect approach developed by Jeanjean. We apply the following slight modified version of [15, Theorem 1.1]
(see [16]).

Theorem 3.1. Let (X,‖ · ‖) be a Banach space and J ⊂ R+ an interval. Consider the family of C1 functionals on X

Iλ(u) = A(u) − λB(u), ∀λ ∈ J,

with B nonnegative and either A(u) → +∞ or B(u) → +∞ as ‖u‖ → ∞ and such that Iλ(0) = 0.
For any λ ∈ J we set

Γλ := {
γ ∈ C

([0,1],X) ∣∣ γ (0) = 0, Iλ

(
γ (1)

)
< 0

}
.

If for every λ ∈ J the set Γλ is nonempty and

cλ := inf
γ∈Γλ

max
t∈[0,1]

Iλ

(
γ (t)

)
> 0, (10)

then for almost every λ ∈ J there is a sequence (vn)n ⊂ X such that

(i) (vn)n is bounded;
(ii) Iλ(vn) → cλ;

(iii) (Iλ)
′(vn) → 0 in the dual X−1 of X.

In our case, X = H 1
r (R3),

A(u) := 1

2

∫
R3

|∇u|2 + q

4
kT (u)

∫
R3

φuu
2 +

∫
R3

G2(u),

B(u) :=
∫
R3

G1(u),

so that the perturbed functional we study is

IT
q,λ(u) = 1

2

∫
R3

|∇u|2 + q

4
kT (u)

∫
R3

φuu
2 +

∫
R3

G2(u) − λ

∫
R3

G1(u).

Actually, this functional is the restriction to the radial functions of a C1-functional defined on the whole space
H 1(R3) and for every u,v ∈ H 1(R3)
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〈(
IT
q

)′
(u), v

〉 = ∫
R3

(∇u | ∇v) + qkT (u)

∫
R3

φuuv

+ qα

4T α
χ ′

(‖u‖α
α

T α

)∫
R3

φuu
2
∫
R3

|u|α−2uv +
∫
R3

g2(u)v − λ

∫
R3

g1(u)v.

In order to apply Theorem 3.1, we have just to define a suitable interval J such that Γλ 	= ∅, for any λ ∈ J , and
(10) holds.

Observe that, according to [7], as a consequence of (g4), there exists a function z ∈ H 1
r (R3) such that∫

R3

G1(z) −
∫
R3

G2(z) =
∫
R3

G(z) > 0. (11)

Then there exists 0 < δ̄ < 1 such that

δ̄

∫
R3

G1(z) −
∫
R3

G2(z) > 0. (12)

We define J as the interval [δ̄,1].

Lemma 3.2. Γλ 	= ∅, for any λ ∈ J .

Proof. Let λ ∈ J . Set θ̄ > 0 and z̄ = z(·/θ̄).
Define γ : [0,1] → H 1

r (R3) in the following way

γ (t) =
{

0, if t = 0,

z̄(·/t), if 0 < t � 1.

It is easy to see that γ is a continuous path from 0 to z̄. Moreover, we have that

IT
q,λ

(
γ (1)

)
� θ̄

2

∫
R3

|∇z|2 + q

4
θ̄5χ

(
θ̄3‖z‖α

α

T α

)∫
R3

φzz
2

+ θ̄3
( ∫

R3

G2(z) − δ̄

∫
R3

G1(z)

)

and then, if θ̄ is sufficiently large, by (12) and (9) we get IT
q,λ(γ (1)) < 0. �

Lemma 3.3. There exists a constant c̃ > 0 such that cλ � c̃ > 0 for all λ ∈ J .

Proof. Observe that for any u ∈ H 1
r (R3) and λ ∈ J , using (7) and (8) for ε < 1, we have

IT
q,λ(u) � 1

2

∫
R3

|∇u|2 + q

4
kT (u)

∫
R3

φuu
2 +

∫
R3

G2(u) −
∫
R3

G1(u)

� 1

2

∫
R3

|∇u|2 + (1 − ε)
m

2

∫
R3

u2 − Cε

6

∫
R3

|u|6

and then, by Sobolev embeddings, we conclude that there exists ρ > 0 such that, for any λ ∈ J and u ∈ H 1
r (R3) with

u 	= 0 and ‖u‖ � ρ, it results IT
q,λ(u) > 0. In particular, for any ‖u‖ = ρ, we have IT

q,λ(u) � c̃ > 0. Now fix λ ∈ J

and γ ∈ Γλ. Since γ (0) = 0 and IT
q,λ(γ (1)) < 0, certainly ‖γ (1)‖ > ρ. By continuity, we deduce that there exists

tγ ∈ ]0,1[ such that ‖γ (tγ )‖ = ρ. Therefore, for any λ ∈ J ,

cλ � inf IT
q,λ

(
γ (tγ )

)
� c̃ > 0. �
γ∈Γλ
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We present a variant of the Strauss’ compactness result [25] (see also [7, Theorem A.1]). It will be a fundamental
tool in our arguments:

Theorem 3.4. Let P and Q : R → R be two continuous functions satisfying

lim
s→∞

P(s)

Q(s)
= 0,

(vn)n, v and w be measurable functions from R
N to R, with z bounded, such that

sup
n

∫
RN

∣∣Q(
vn(x)

)
w

∣∣dx < +∞,

P
(
vn(x)

) → v(x) a.e. in R
N.

Then ‖(P (vn) − v)w‖L1(B) → 0, for any bounded Borel set B .
Moreover, if we have also

lim
s→0

P(s)

Q(s)
= 0,

lim
x→∞ sup

n

∣∣vn(x)
∣∣ = 0,

then ‖(P (vn) − v)w‖L1(RN) → 0.

In analogy with the well-known compactness result in [8], we state the following result

Lemma 3.5. For any λ ∈ J , each bounded Palais–Smale sequence for the functional IT
q,λ admits a convergent subse-

quence.

Proof. Let λ ∈ J and (un)n be a bounded (PS) sequence for IT
q,λ, namely(

IT
q,λ(un)

)
n

is bounded ,(
IT
q,λ

)′
(un) → 0 in

(
H 1

r

(
R

3))′
. (13)

Up to a subsequence, we can suppose that there exists u ∈ H 1
r (R3) such that

un ⇀ u weakly in H 1
r

(
R

3), (14)

un → u in Lp
(
R

3), 2 < p < 6, (15)

un → u a.e. in R
N. (16)

If we apply Theorem 3.4 for P(s) = gi(s), i = 1,2, Q(s) = |s|5, (vn)n = (un)n, v = gi(u), i = 1,2 and w ∈
C∞

0 (RN), by (3), (4) and (16) we deduce that∫
R3

gi(un)w →
∫
R3

gi(u)w, i = 1,2.

Moreover, by (15) and [24, Lemma 2.1], we have

kT (un)

∫
R3

φununw → kT (u)

∫
R3

φuuw,

χ ′
(‖un‖α

α

T α

)∫
R3

φunu
2
n

∫
R3

|un| 2
5 unw → χ ′

(‖u‖α
α

T α

)∫
R3

φuu
2
∫
R3

|u| 2
5 uw.
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As a consequence, by (13) and (14) we deduce (IT
q,λ)

′(u) = 0 and hence∫
R3

|∇u|2 + qkT (u)

∫
R3

φuu
2 + qα

4T α
χ ′

(‖u‖α
α

T α

)
‖u‖α

α

∫
R3

φuu
2 +

∫
R3

g2(u)u = λ

∫
R3

g1(u)u. (17)

By weak lower semicontinuity we have:∫
R3

|∇u|2 � lim inf
n

∫
R3

|∇un|2. (18)

Again, by (15) we have

kT (un)

∫
R3

φunu
2
n → kT (u)

∫
R3

φuu
2, (19)

χ ′
(‖un‖α

α

T α

)
‖un‖α

α

∫
R3

φunu
2
n → χ ′

(‖u‖α
α

T α

)
‖u‖α

α

∫
R3

φuu
2. (20)

If we apply Theorem 3.4 for P(s) = g1(s)s, Q(s) = s2 + s6, (vn)n = (un)n, v = g1(u)u, and w = 1, by (3), (4) and
(16), we deduce that∫

R3

g1(un)un →
∫
R3

g1(u)u. (21)

Moreover, by (16) and Fatou’s lemma∫
R3

g2(u)u � lim inf
n

∫
R3

g2(un)un. (22)

By (17), (19), (20), (21) and (22), and since 〈(Iλ)
′(un), un〉 → 0, we have

lim sup
n

∫
R3

|∇un|2 = lim sup
n

[
λ

∫
R3

g1(un)un −
∫
R3

g2(un)un

− qkT (un)

∫
R3

φunu
2
n − qα

4T α
χ ′

(‖un‖α
α

T α

)
‖un‖α

α

∫
R3

φunu
2
n

]

� λ

∫
R3

g1(u)u −
∫
R3

g2(u)u − qkT (u)

∫
R3

φuu
2 − qα

4T α
χ ′

(‖u‖α
α

T α

)
‖u‖α

α

∫
R3

φuu
2

=
∫
R3

|∇u|2. (23)

By (18) and (23), we get

lim
n

∫
R3

|∇un|2 =
∫
R3

|∇u|2, (24)

hence

lim
n

∫
R3

g2(un)un =
∫
R3

g2(u)u. (25)

Since g2(s)s = ms2 + h(s), with h a positive and continuous function, by Fatou’s lemma we have
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∫
R3

h(u) � lim inf
n

∫
R3

h(un),

∫
R3

u2 � lim inf
n

∫
R3

u2
n.

These last two inequalities and (25) imply that, up to a subsequence,∫
R3

u2 = lim
n

∫
R3

u2
n,

which, together with (24), shows that un → u strongly in H 1
r (R3). �

Lemma 3.6. For almost every λ ∈ J , there exists uλ ∈ H 1
r (R3), uλ 	= 0, such that (IT

q,λ)
′(uλ) = 0 and IT

q,λ(u
λ) = cλ.

Proof. By Theorem 3.1, for almost every λ ∈ J , there exists a bounded sequence (uλ
n)n ⊂ H 1

r (R3) such that

IT
q,λ

(
uλ

n

) → cλ; (26)(
IT
q,λ

)′(
uλ

n

) → 0 in
(
H 1

r

(
R

3))′
. (27)

Up to a subsequence, by Lemma 3.5, we can suppose that there exists uλ ∈ H 1
r (R3) such that uλ

n → uλ in H 1
r (R3).

By Lemma 3.3, (26) and (27) we conclude. �
Therefore there exist (λn)n ⊂ J and (un)n ⊂ H 1

r (R3) such that

IT
q,λn

(un) = cλn,
(
IT
q,λn

)′
(un) = 0. (28)

Lemma 3.7. Let un be a critical point for IT
q,λn

at level cλn . Then, for T > 0 sufficiently large, there exists q0 = q0(T )

such that for any 0 < q < q0, up to a subsequence, ‖un‖α � T , for any n � 1.

Proof. We will argue by contradiction.
First of all, since (I T

q,λn
)′(un) = 0, un satisfies the following Pohozaev type identity

1

2

∫
R3

|∇un|2 + 5q

4
kT (un)

∫
R3

φunu
2
n + 3q

T α
χ ′

(‖un‖α
α

T α

)
‖un‖α

α

∫
R3

φunu
2
n

= 3λn

∫
R3

G1(un) − 3
∫
R3

G2(un) (29)

(see Appendix A for the proof).
Moreover, combining (29) with the first of (28) and by (1), we get∫

R3

|∇un|2 = 3cλn + q

2
kT (un)

∫
R3

φunu
2
n + 3q

T α
χ ′

(‖un‖α
α

T α

)
‖un‖α

α

∫
R3

φunu
2
n

� 3cλn + C1q
2kT (un)‖un‖4

α + C2χ
′
(‖un‖α

α

T α

)
q2

T α
‖un‖4+α

α . (30)

We are going to estimate the right part of the previous inequality. By the min–max definition of the Mountain Pass
level, we have

cλn � max
θ

I T
q,λn

(
z(·/θ)

)
� max

θ

{
θ

2

∫
3

|∇z|2 + θ3
( ∫

3

G2(z) − δ̄

∫
3

G1(z)

)}

R R R
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+ max
θ

{
q

4
θ5χ

(
θ3‖z‖α

α

T α

)∫
R3

φzz
2
}

= A1 + A2(T )

where z is the function such that (11) holds.
Now, if θ3 � 2T α/‖z‖α

α then A2(T ) = 0, otherwise we compute

A2(T ) � q

4

(
2T α

‖z‖α
α

) 5
3
∫
R3

φzz
2 = C3q

2T 4.

We also have

C1q
2kT (un)‖un‖4

α � C4q
2T 4

C2χ
′
(‖un‖α

α

T α

)
q2

T α
‖un‖4+α

α � C5q
2T 4.

Then, from (30) we deduce that∫
R3

|∇un|2 � 3A1 + C6q
2T 4. (31)

On the other hand, since 〈(IT
q,λn

)′(un), (un)〉 = 0, by (6) we have that∫
R3

|∇un|2 + qkT (un)

∫
R3

φunu
2
n + qα

4T α
χ ′

(‖un‖α
α

T α

)
‖un‖α

α

∫
R3

φunu
2
n +

∫
R3

g2(un)un

= λn

∫
R3

g1(un)un � Cε

∫
R3

|un|6 + ε

∫
R3

g2(un)un. (32)

Now, by (5) and (32), we obtain

m(1 − ε)

∫
R3

u2
n � (1 − ε)

∫
R3

g2(un)un

� Cε

∫
R3

|un|6 − qα

4T α
χ ′

(‖un‖α
α

T α

)
‖un‖α

α

∫
R3

φnu
2
n

� C

( ∫
R3

|∇un|2
)3

+ C̄q2T 4

� C
(
3A1 + C6q

2T 4)3 + C̄q2T 4 (33)

where in the last inequality we have used (31).
We suppose by contradiction that there exists no subsequence of (un)n which is uniformly bounded by T in the

α-norm. As a consequence, for a certain n̄ it should result that

‖un‖α > T, ∀n � n̄. (34)

Without any loss of generality, we are supposing that (34) is true for any un.

Therefore, by (31) and (33), we conclude that

T 2 < ‖un‖2
α � C‖un‖2 � C7 + C8q

2T 4 + C9q
4T 8 + C10q

6T 12

which is not true for T large and q small enough: indeed we can find T0 > 0 such that T 2
0 > C7 + 1 and q0 = q0(T0)

such that C8q
2T 4 + C9q

4T 8 + C10q
6T 12 < 1, for any q < q0, and we find a contradiction. �
0 0 0
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Proof of Theorem 1.1. Let T ,q0 be as in Lemma 3.7 and fix 0 < q < q0. Let un be a critical point for IT
q,λn

at

level cλn . We prove that (un)n is a H 1-bounded Palais–Smale sequence for Iq .
Since by Lemma 3.7

‖un‖α � T , (35)

the boundedness in the H 1-norm trivially follows from arguments such as those in (31) and (33). Finally, by (35),
certainly we have that

IT
q,λn

(un) = 1

2

∫
R3

|∇u|2 + q

4

∫
R3

φuu
2 +

∫
R3

G2(u) − λn

∫
R3

G1(u),

and then, since λn ↗ 1, we can prove that (un)n is a (PS) sequence for Iq by similar argument as in [3, Theorem 1.1].
Now we conclude arguing as in Lemma 3.5. �

Appendix A. A Pohozaev type identity

In this section we show that if u,φ ∈ H 2
loc(R

3) solve⎧⎪⎪⎨
⎪⎪⎩

−�u + qkT (u)φu + q
α

T α
χ ′

(‖u‖α
α

T α

)
|u|2/5u

∫
R3

φu2 = g(u) in R
3,

−�φ = qu2 in R
3,

(36)

then the following Pohozaev type identity

1

2

∫
R3

|∇u|2 + 5q

4
kT (u)

∫
R3

φu2 + 3q

T α
χ ′

(‖u‖α
α

T α

)
‖u‖α

α

∫
R3

φu2 = 3
∫
R3

G(u) (37)

holds.
Indeed, by [13, Lemma 3.1], for every R > 0, we have∫

BR

−�u(x · ∇u) = −1

2

∫
BR

|∇u|2 − 1

R

∫
∂BR

|x · ∇u|2 + R

2

∫
∂BR

|∇u|2, (38)

∫
BR

φu(x · ∇u) = −1

2

∫
BR

u2(x · ∇φ) − 3

2

∫
BR

φu2 + R

2

∫
∂BR

φu2, (39)

∫
BR

g(u)(x · ∇u) = −3
∫
BR

G(u) + R

∫
∂BR

G(u), (40)

∫
BR

|u|2/5u(x · ∇u) = − 3

α

∫
BR

|u|α + R

α

∫
∂BR

|u|α, (41)

where BR is the ball of R
3 centered in the origin and with radius R.

Multiplying the first equation of (36) by x · ∇u and the second equation by x · ∇φ and integrating on BR , by (38),
(39), (40) and (41) we get

−1

2

∫
BR

|∇u|2 − 1

R

∫
∂BR

|x · ∇u|2 + R

2

∫
∂BR

|∇u|2

− q

2
kT (u)

∫
u2(x · ∇φ) − 3q

2
kT (u)

∫
φu2 + Rq

2
kT (u)

∫
φu2
BR BR ∂BR
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− 3q

T α
χ ′

(‖u‖α
α

T α

)∫
R3

φu2
∫
BR

|u|α + Rq

T α
χ ′

(‖u‖α
α

T α

)∫
R3

φu2
∫

∂BR

|u|α

= −3
∫
BR

G(u) + R

∫
∂BR

G(u) (42)

and

q

∫
BR

u2(x · ∇φ) = −1

2

∫
BR

|∇φ|2 − 1

R

∫
∂BR

|x · ∇φ|2 + R

2

∫
∂BR

|∇φ|2. (43)

Substituting (43) into (42) we obtain

−1

2

∫
BR

|∇u|2 − 3q

2
kT (u)

∫
BR

φu2 + 1

4
kT (u)

∫
BR

|∇φ|2

− 3q

T α
χ ′

(‖u‖α
α

T α

)∫
R3

φu2
∫
BR

|u|α + 3
∫
BR

G(u)

= 1

R

∫
∂BR

|x · ∇u|2 − R

2

∫
∂BR

|∇u|2 − 1

2R
kT (u)

∫
∂BR

|x · ∇φ|2

+ R

4
kT (u)

∫
∂BR

|∇φ|2 − Rq

2
kT (u)

∫
∂BR

φu2

− Rq

T α
χ ′

(‖u‖α
α

T α

)∫
R3

φu2
∫

∂BR

|u|α + R

∫
∂BR

G(u).

As in [13], the right-hand side goes to zero as R → +∞ and so we get

−1

2

∫
R3

|∇u|2 − 3q

2
kT (u)

∫
R3

φu2 + 1

4
kT (u)

∫
R3

|∇φ|2

− 3q

T α
χ ′

(‖u‖α
α

T α

)∫
R3

φu2
∫
R3

|u|α + 3
∫
R3

G(u) = 0.

If (u,φu) ∈ H 1(R3) × D1,2(R3) is a solution of (36), by standard regularity results, u,φu ∈ H 2
loc(R

3) and, by (i)
of Lemma 2.1, we get (37).
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