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Abstract

This works extends the recent study on the dielectric permittivity of crystals within the Hartree model [E. Cancès, M. Lewin,
Arch. Ration. Mech. Anal. 197 (1) (2010) 139–177] to the time-dependent setting. In particular, we prove the existence and
uniqueness of the nonlinear Hartree dynamics (also called the random phase approximation in the physics literature), in a suitable
functional space allowing to describe a local defect embedded in a perfect crystal. We also give a rigorous mathematical definition of
the microscopic frequency-dependent polarization matrix, and derive the macroscopic Maxwell–Gauss equation for insulating and
semiconducting crystals, from a first order approximation of the nonlinear Hartree model, by means of homogenization arguments.
© 2012

1. Introduction

A material subjected to a time-dependent perturbation usually does not respond instantaneously. Consistently with
the causality principle, the linear response of the material can be expressed as the time convolution of some causal
response function with the applied perturbation. The response properties are therefore frequency-dependent in general.
This is the case for instance for the dielectric permittivity of the material, which allows to describe the linear response
of the electronic density in terms of an applied external electric field [1,23]. For molecules, a dipole moment is created,
while for solids a more global charge redistribution, with possibly screening effects, occurs.

For molecules, a convenient model to approximate the many-body quantum dynamics of the system is the time-
dependent Hartree–Fock model, whose well-posedness is studied in [4,7,8]. In the density matrix formulation of the
Hartree–Fock model considered in [7], the state of the system at time t is described by a density matrix

γ (t) ∈ S
(
L2(

R
3)), 0 � γ (t)� 1, (1)

where S(L2(R3)) denotes the space of bounded self-adjoint operators on L2(R3), and where, for A and B in
S(L2(R3)), A � B means (ψ,Aψ)L2 � (ψ,Bψ)L2 for all ψ ∈ L2(R3). To simplify the notation, we omit through-
out this article the spin variable. This does not modify the mathematical structure of the equations. The condition
0 � γ (t) � 1 is a translation of the Pauli exclusion principle in the language of one-body density matrices: two
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electrons cannot be at the same time in the same quantum state. The density matrix γ (t) is in fact trace-class since
there is a finite number of electrons in the system (recall that in non-relativistic quantum mechanics, the trace of γ (t)

is stationary, and equal to the number of electrons). Therefore, an electronic density ργ (t) ∈ L1(R3) can be associated
with the operator γ (t) [21]. We consider here the dynamics of the finite system within the time-dependent Hartree
(also called time-dependent reduced Hartree–Fock) approximation:

i
dγ

dt
= [

H 0
γ , γ

]
,

with

H 0
γ = −1

2
� + Vnuc + vc(ργ ),

where Vnuc is the potential generated by the nuclei, and

vc(ρ) = ρ �
1

| · |
is the Coulomb potential generated by the charge density ρ. The time-dependent Hartree model is obtained from the
time-dependent Hartree–Fock model by discarding the exchange term. It can also be viewed as the simplest model
derived from time-dependent density functional theory (TDDFT, see for instance [15]), corresponding to the case
when exchange-correlation is neglected.

When an external perturbative potential v(t) is considered, the Hartree Hamiltonian reads

Hv
γ = −1

2
� + Vnuc + vc(ργ ) + v,

and the dynamics is modified as

i
dγ

dt
= [

Hv
γ , γ

]
. (2)

The well-posedness of such dynamics is studied in [2]. Recently, extensions of the time-dependent Hartree–Fock
models have been studied, in particular time-dependent multi-configuration models [3,14].

Crystals are infinite periodic assemblies of nuclei surrounded by their electronic clouds. The currently most popular
models to approximate the dynamics of their electronic structures rely on TDDFT, and read as self-consistent nonlinear
mean-field models. However, linear empirical models are sometimes used. In both linear empirical models and self-
consistent nonlinear mean-field models, the electronic state of the crystal at time t is described by a one-body density
matrix γ (t) still satisfying (1). On the other hand, since there are infinitely many electrons in a crystal, γ (t) is not
trace-class.

In linear empirical models, the electrons in the crystal experience an effective potential and do not interact with each
other (except through the Pauli principle). In such models, a perfect crystal with periodic lattice R is characterized
by a periodic Schrödinger operator H 0

per = − 1
2�+Vper where Vper is a given R-periodic effective potential. Provided

Vper ∈ L2
loc(R

3), H 0
per defines a self-adjoint operator on L2(R3) with domain H 2(R3), bounded from below, with well-

known mathematical properties. In particular, the spectrum of H 0
per is purely absolutely continuous and composed of

a countable number of (possibly overlapping) bands [22]. The ground state of the system is described by the one-body
density matrix

γ 0
per = 1(−∞,εF]

(
H 0

per

)
,

where the real number εF, called the Fermi level, controls the number of electrons per unit cell. Here and in the sequel,
1B denotes the characteristic function of the Borel set B ⊂R. Loosely speaking, the electrons fill the energy levels of
H 0

per up to εF, and filling the N lowest energy bands amounts to putting N electrons per unit cell.
Now, if originally the system is not at equilibrium and/or if some external perturbation is applied, the state of the

system evolves in time. Still in the framework of linear empirical models, the dynamics is characterized by the unitary
propagator Uv(t, s) associated with the effective time-dependent Hamiltonian H(t) = H 0

per + v(t):

γ (t) = Uv(t,0)γ (0)Uv(t,0)∗.
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Recall that a two-parameter family of unitary operators U(t, s) (s, t ∈ R) on L2(R3) is a unitary propagator provided
(see [17, Section X.12]) (i) ∀(r, s, t) ∈ R

3, U(t, s)U(s, r) = U(t, r); (ii) U(t, t) = 1 (the identity operator); and (iii)
U(t, s) is jointly strongly continuous in t and s.

Similar considerations hold for mean-field models, although the situation is more complicated since both the peri-
odic potential Vper and the perturbation v depend self-consistently on the state γ . The time-evolution corresponding to
the Hartree model is known as the time-dependent self-consistent field equation, and is in fact equivalent under some
assumptions to the so-called random phase approximation; see the discussion in [12].

We focus in this work on the evolution of the electronic state in insulating (or semiconducting) crystals with local
defects. The precise functional setting allowing to describe local defects in insulating crystals is recalled in Section 2.2.
The equation governing the time evolution of the defect can be motivated by a formal thermodynamic limit based on
the evolution equation (2) for finite systems, writing γ (t) = γ 0

per + Q(t) in the thermodynamic limit, and using the

formal relation Hv
γ (t) = H 0

per + v(t) + vc(ρQ(t)). This leads to the following nonlinear dynamics for a given external
time-dependent potential v(t):

i
dQ(t)

dt
= [

H 0
per + vc(ρQ(t)) + v(t), γ 0

per + Q(t)
]
. (3)

This paper is organized as follows. After recalling the structure of the time-independent Hartree model for perfect
crystals and for crystals with local defects in Section 2, we study in Section 3 the effective dynamics

i
dQ(t)

dt
= [

H 0
per + w(t), γ 0

per + Q(t)
]
, (4)

where w(t) is a given effective potential. In particular, we prove that, if the initial condition Q(0) belongs to the
functional space Q introduced in [5] to describe the electronic structure of local defects (see Section 2.2), and under
some reasonable assumptions on the external perturbation w, the dynamics is well posed in Q for all times. We also
investigate the linear response corresponding to the effective dynamics (4), and show how the results obtained in [6]
for the static case can be recovered by an adiabatic limit.

In a second step (Section 4), we study the mathematical properties of the nonlinear dynamics (3). In Section 4.1,
we prove the global-in-time existence and uniqueness for (3) in the space Q, for initial data in Q (corresponding to
local defects). We also provide in Section 4.2 a mathematical derivation of the Adler–Wiser formula [1,23] relating the
macroscopic frequency-dependent relative permittivity tensor to the microscopic structure of the crystal at the atomic
level. This derivation is based on a linearized version of the nonlinear dynamics (3). Note that a formal derivation of
the expression of the macroscopic frequency-dependent relative permittivity tensor for a general TDDFT dynamics is
presented in [11].

The proofs of the results presented in Sections 3 and 4 are gathered in Section 5.

2. The time-independent Hartree model for crystals

In this section, we briefly recall the main properties of the time-independent Hartree model for perfect crystals and
crystals with a localized defect (see [5,6] for a detailed analysis). We consider the bulk limit where the nuclear charge
of the perfect crystal is described by a R-periodic distribution ρnuc

per , R denoting a periodic lattice of R3. In the sequel,
we assume that ρnuc

per is a locally bounded measure.

2.1. Perfect crystals

The density matrix γ 0
per of a perfect crystal obtained in the bulk limit is unique [5]. It is the unique solution to the

self-consistent equation

γ 0
per = 1(−∞,εF]

(
H 0

per

)
, H 0

per = −1

2
� + Vper,

where Vper is a R-periodic function satisfying

−�Vper = 4π
(
ρ0

per − ρnuc
per

)
, with ρ0

per(x) = γ 0
per(x, x),
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and where εF ∈ R is the Fermi level. The potential Vper is defined up to an additive constant; if Vper is replaced with
Vper + C, εF has to be replaced with εF + C, in such a way that γ 0

per remains unchanged. The function Vper being

in L2
per(R

3), it defines a �-bounded operator on L2(R3) with relative bound zero (see [18, Theorem XIII.96]) and

therefore H 0
per is self-adjoint on L2(R3) with domain H 2(R3). In addition, the spectrum of H 0

per is purely absolutely
continuous, composed of bands as stated in [22, Theorems 1–2] and [18, Theorem XIII.100].

More precisely, denoting by R∗ the reciprocal lattice, by Γ the unit cell, and by Γ ∗ the first Brillouin zone, it holds

σ
(
H 0

per

) =
⋃

n�1, q∈Γ ∗
{εn,q},

where for all q ∈ Γ ∗, (εn,q)n�1 is the non-decreasing sequence formed by the eigenvalues (counted with their multi-
plicities) of the operator(

H 0
per

)
q

= −1

2
� − iq · ∇ + |q|2

2
+ Vper

acting on

L2
per(Γ ) := {

u ∈ L2
loc

(
R

3) ∣∣ u R-periodic
}
,

endowed with the inner product

〈u,v〉L2
per

=
ˆ

Γ

uv.

We denote by (un,q)n�1 an orthonormal basis of L2
per(Γ ) consisting of eigenfunctions of (H 0

per)q . The spectral de-

composition of (H 0
per)q thus reads

(
H 0

per

)
q

=
∞∑

n=1

εn,q |un,q〉〈un,q |. (5)

Recall that, according to the Bloch–Floquet theory [18], any function f ∈ L2(R3) can be decomposed as

f (x) =
 

Γ ∗
fq(x)eiq·x dq,

where
ffl
Γ ∗ is a notation for |Γ ∗|−1

´
Γ ∗ and where the functions fq are defined by

fq(x) =
∑
R∈R

f (x + R)e−iq·(x+R) = (2π)3/2

|Γ |
∑

K∈R∗
f̂ (q + K)eiK·x. (6)

Throughout this paper, we use the unitary spatial Fourier transform

(Fxf )(k) = f̂ (k) = (2π)−3/2
ˆ

R3

f (x)e−ikx dx. (7)

It can be shown that, for almost all q ∈ R3, fq ∈ L2
per(Γ ). Moreover, fq+K(x) = fq(x)e−iK·x for all K ∈ R∗ and

almost all q ∈ R
3. Lastly,

‖f ‖2
L2(R3)

=
 

Γ ∗
‖fq‖2

L2
per(Γ )

dq.

If the crystal possesses N electrons per unit cell, the Fermi level εF is chosen to ensure the overall neutrality of the
unit cell:

N = 1

|Γ ∗|
∑∣∣{q ∈ Γ ∗ ∣∣ εn,q � εF

}∣∣. (8)

n�1
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In the remainder of the paper, we assume that the system is an insulator (or a semiconductor) in the sense that the N th
band is strictly below the (N + 1)st band:

Σ+
N := max

q∈Γ ∗ εN,q < min
q∈Γ ∗ εN+1,q := Σ−

N+1.

In this case, one can choose for εF any number in the range (Σ+
N ,Σ−

N+1). For simplicity we set in the following

εF = Σ+
N + Σ−

N+1

2
and denote by

g = Σ−
N+1 − Σ+

N > 0 (9)

the band gap.

2.2. Crystals with local defects

Before turning to the model for the crystal with a local defect which was introduced in [5], let us recall that a
bounded linear operator Q on L2(R3) is said to be trace-class [18,21] if

∑
i〈φi,

√
Q∗Qφi〉L2 < ∞ for some or-

thonormal basis (φi) of L2(R3). Then Tr(Q) = ∑
i〈φi,Qφi〉L2 is well defined and does not depend on the chosen

basis. If Q is not trace-class, it may happen that the series
∑

i〈φi,Qφi〉L2 converges for one specific basis but not for
another one. This is the case for the operators Qν,εF introduced in (15) (see the results of [6]).

A compact self-adjoint operator Q = ∑
i λi |φi〉〈φi | ∈ S(L2(R3)), with 〈φi,φj 〉L2 = δij , is trace-class when its

eigenvalues are summable:
∑

i |λi | < ∞. Then the density

ρQ(x) =
+∞∑
i=1

λi

∣∣φi(x)
∣∣2

is a function of L1(R3) independent of the chosen orthonormal basis (φi) and

Tr(Q) =
+∞∑
i=1

λi =
ˆ

R3

ρQ.

A Hilbert–Schmidt operator Q is a bounded operator such that Q∗Q is trace-class.
We also need to introduce the Coulomb space

C := {
f ∈ S ′(

R
3) ∣∣ f̂ ∈ L1

loc

(
R

3), | · |−1f̂ (·) ∈ L2(
R

3)},
where S ′ denotes the space of tempered distributions, the dual of the Schwartz space S . Endowed with the scalar
product defined by

D(f1, f2) := 4π

ˆ

R3

f̂1(k)f̂2(k)

|k|2 dk,

C is a Hilbert space. Recall that L6/5(R3) ↪→ C and that, for f1 and f2 in L6/5(R3),

D(f1, f2) =
ˆ

R3

ˆ

R3

f1(x)f2(y)

|x − y| dx dy. (10)

Considering L2(R3) as a pivot space, the dual space of C is

C′ := {
V ∈ L6(

R
3) ∣∣ ∇V ∈ (

L2(
R

3))3}
,

endowed with the inner product

〈V1,V2〉C′ := 1

4π

ˆ

3

∇V1 · ∇V2 = 1

4π

ˆ

3

|k|2V̂1(k)V̂2(k) dk.
R R
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We now describe the results of [5] dealing with crystals with local defects. The appropriate functional space to
describe local defects is the convex set

K = {
Q ∈Q

∣∣ −γ 0
per �Q � 1 − γ 0

per

}
, (11)

with

Q= {
Q ∈ S2

∣∣ Q∗ = Q, Q−− ∈S1, Q++ ∈S1, |∇|Q ∈ S2, |∇|Q−−|∇| ∈S1, |∇|Q++|∇| ∈S1
}
, (12)

where S1 and S2 denote respectively the spaces of trace-class and Hilbert–Schmidt operators on L2(R3) and

Q−− := γ 0
perQγ 0

per, Q−+ := γ 0
perQ

(
1 − γ 0

per

)
,

Q+− := (
1 − γ 0

per

)
Qγ 0

per, Q++ := (
1 − γ 0

per

)
Q

(
1 − γ 0

per

)
.

Endowed with the norm defined by

‖Q‖Q = ∥∥(1 − �)1/2Q
∥∥
S2

+ ∥∥(1 − �)1/2Q−−(1 − �)1/2
∥∥
S1

+ ∥∥(1 − �)1/2Q++(1 − �)1/2
∥∥
S1

, (13)

Q is a Banach space. Although a generic operator Q ∈Q is not trace-class, it is shown in [5] that it can be associated
a generalized trace Tr0(Q) = Tr(Q++) + Tr(Q−−) and a density ρQ ∈ L2(R3) ∩ C. In addition, the mapping Q �
Q �→ ρQ ∈ L2(R3) ∩ C is continuous (see [5, Proposition 1]) and there exists Cρ > 0 such that

‖ρQ‖L2∩C � Cρ‖Q‖Q, (14)

for any Q ∈Q. Note that if Q ∈ K ∩S1, then of course Tr0(Q) = Tr(Q), ρQ ∈ L1(R3) and Tr(Q) = ´
R3 ρQ.

It is proved in [5] by means of bulk limit arguments that, for insulating and semiconducting materials, the ground
state density matrix of a crystal containing a local defect, with nuclear charge density ρnuc

per + ν, reads

γ = γ 0
per + Qν,εF . (15)

The operator Qν,εF is obtained by minimizing over K the energy functional

Eν,εF(Q) = Tr0
(
H 0

perQ
) −

ˆ

R3

ρQ

(
ν � | · |−1) + 1

2
D(ρQ,ρQ), (16)

where Tr0(H
0
perQ) is a notation for

Tr0
(
H 0

perQ
) = Tr

(∣∣H 0
per − εF

∣∣1/2(
Q++ − Q−−)∣∣H 0

per − εF
∣∣1/2) + εF Tr0(Q). (17)

The energy functional Eν,εF is well defined on K for all ν such that (ν � | · |−1) ∈ L2(R3) + C′. The first term of
Eν,εF makes sense as it holds

c1(1 − �) �
∣∣H 0

per − εF
∣∣� c2(1 − �) (18)

for some constants 0 < c1 < c2 < ∞ (see [5, Lemma 1]). The last two terms of Eν,εF are also well defined since
ρQ ∈ L2(R3) ∩ C for all Q ∈ K.

3. Response to a time-dependent effective potential

In this section, we study the evolution of the electronic state of the system when the mean-field Hamiltonian H 0
per

of the perfect crystal is perturbed by a time-dependent effective potential v(t, x), so that the system is described by
the time-dependent Hamiltonian

Hv(t) = H 0
per + v(t, ·) = −1

2
� + Vper + v(t, ·).

Under the additional assumption

v ∈ C1(
R,L∞(

R
3)), (19)
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we can apply Theorem X.71 in [17] and obtain the existence of a unitary propagator (Uv(t, t0))(t0,t)∈R×R on L2(R3)

such that for each ψ ∈ H 2(R3), and each t0 ∈ R, t �→ φt0(t) := Uv(t, t0)ψ is in C1(R,L2(R3)) ∩ C0(R,H 2(R3)),
and satisfies

i
dφt0(t)

dt
(t) = Hv(t)φt0(t), φt0(t0) = ψ.

Besides, denoting by U0(t) = e−itH 0
per the unitary propagator associated with the time-independent Hamiltonian H 0

per,
(Uv(t, t0))(t0,t)∈R×R is the unique unitary propagator satisfying the Dyson equation

∀(t0, t) ∈R×R, Uv(t, t0) = U0(t − t0) − i

tˆ

t0

U0(t − s)v(s)Uv(s, t0) ds. (20)

Under the weaker assumption that

v ∈ L1
loc

(
R,L∞(

R
3)), (21)

it can be proved (see Lemma 15 in Section 5.1) that there exists a unique unitary propagator solution to (20). By
extension, we will call (Uv(t, t0))(t0,t)∈R×R the unitary operator associated with the time-dependent Hamiltonian
Hv(t).

Denoting by γ 0 the density matrix at time t = 0, we consider the dynamics of the electronic state defined by the
evolution equation

γ (t) = Uv(t,0)γ 0Uv(t,0)∗. (22)

Note that the conditions γ 0 ∈ S(L2(R3)) and 0 � γ 0 � 1 are automatically propagated forward in time by (22). In
addition, if (1 − �)γ 0(1 − �) is a bounded operator, and if v satisfies (19), then (1 − �)γ (t)(1 − �) is a bounded
operator for each t ∈R, and γ (t) is the unique solution in C1(R,S(L2(R3))) to the differential equation

i
dγ

dt
(t) = [

Hv(t), γ (t)
]
, γ (0) = γ 0.

Considering v(t) as a perturbation of the time-independent Hamiltonian H 0
per, it is natural, as in the time-

independent setting described in Section 2.2 (see in particular the definition (15)), to introduce

Q(t) = γ (t) − γ 0
per.

Using (20), (22), and the fact that γ 0
per is a steady state of the system in the absence of perturbation (U0(t)γ

0
perU0(t)

∗ =
γ 0

per), a simple calculation shows that Q(t) satisfies the integral equation

∀t ∈R+, Q(t) = U0(t)Q
0U0(t)

∗ − i

tˆ

0

U0(t − s)
[
v(s), γ 0

per + Q(s)
]
U0(t − s)∗ ds, (23)

where Q0 = γ 0 − γ 0
per. It is easy to see that under the assumption (21) on the effective potential v, the above integral

equation has a unique solution in C0(R+,S(L2(R3))).

3.1. Well-posedness of the effective dynamics in Q

We now focus on the interesting and important case when v(t) is the effective potential generated by a local defect,
that is when

v(t) = vc
(
ρ(t)

) := ρ(t) � | · |−1, (24)

with ρ ∈ L1
loc(R,L2(R3)∩C). The mapping vc is an invertible bounded linear operator from C to C′, and, according to

Lemma 16 below, it also defines a bounded operator from L2(R3)∩C to L∞(R3). Hence, if ρ ∈ L1
loc(R,L2(R3)∩C),

the potential v defined by (24) satisfies (21). The following proposition shows that, in this case, (23) can be considered
not only as an integral equation on S(L2(R3)), but also as an integral equation on the functional space Q.
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Proposition 1. Consider Q0 ∈ Q, ρ ∈ L1
loc(R+,L2(R3) ∩ C) and v the effective potential given by (24). Then, the

integral equation (23) has a unique solution in C0(R+,Q), and for all t ∈ R+, Tr0(Q(t)) = Tr0(Q
0). In addition, if

Q0 ∈ K, then Q(t) ∈K for all t ∈R+.

The proof of Proposition 1 is based on the following three lemmas.

Lemma 2. Let Q ∈ Q. Then, for all t ∈ R, U0(t)QU0(t)
∗ ∈ Q, Tr0(U0(t)QU0(t)

∗) = Tr0(Q), and there exists a real
constant β � 1 (independent of Q and t ) such that

1

β
‖Q‖Q �

∥∥U0(t)QU0(t)
∗∥∥

Q � β‖Q‖Q. (25)

Lemma 3. Let � ∈ L2(R3) ∩ C and Q ∈ Q. Then, i[vc(�),Q] ∈ Q, Tr0(i[vc(�),Q]) = 0, and there exists a constant
Ccom,Q ∈ R+ (independent of � and Q) such that∥∥i

[
vc(�),Q

]∥∥
Q � Ccom,Q‖�‖L2∩C‖Q‖Q. (26)

Lemma 4. Let v ∈ C′. Then, i[v, γ 0
per] ∈ Q, Tr0(i[v, γ 0

per]) = 0, and there exists a constant Ccom ∈ R+ (independent
of v) such that∥∥i

[
v, γ 0

per

]∥∥
Q � Ccom‖v‖C′ .

The results contained in Lemma 4 are established in the proof of [5, Lemma 5], while the proofs of Lemmas 2
and 3 can be read in Section 5.3.

Proof of Proposition 1. As v := vc(ρ) ∈ L1(R+,L∞(R3)), we infer from Lemmas 2, 3 and 4 that the affine mapping

Q �→ −i

·ˆ

0

U0(· − s)
[
vc

(
ρ(s)

)
, γ 0

per + Q(s)
]
U0(· − s)∗ ds

is continuous from C0(R+,Q) into itself. The existence and uniqueness of the solution to (23) in C0(R+,Q) can then
be proved by standard techniques (see for instance [16]). The preservation of Tr0(Q(t)) also straightforwardly follows
from Lemmas 2, 3 and 4. Finally, the fact that −γ 0

per � Q(t) � 1 − γ 0
per whenever −γ 0

per � Q0 � 1 − γ 0
per can be read

off from (22). �
3.2. Dyson expansion

The Dyson expansion consists in writing (formally for the moment) the solution Q(t) of (23) as the series expansion

Q(t) = U0(t)Q
0U0(t)

∗ +
+∞∑
n=1

Qn,v(t), (27)

where the operators Qn,v(t) are obtained by inserting (27) into (23) and equating the terms involving n occurrences
of the potential v. In particular, the linear response is given by

Q1,v(t) = −i

tˆ

0

U0(t − s)
[
v(s), γ 0

per + U0(s)Q
0U0(s)

∗]U0(t − s)∗ ds, (28)

and the following recursion relation holds true:

∀n � 2, Qn,v(t) = −i

tˆ

0

U0(t − s)
[
v(s),Qn−1,v(s)

]
U0(t − s)∗ ds. (29)

The main result of this section is the following proposition, whose proof can be read in Section 5.4.
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Proposition 5. Let ρ ∈ L1
loc(R+,L2(R3) ∩ C) and v(t) := vc(ρ(t)). For each n� 1, the function Qn,v defined by (28)

for n = 1 and by (29) for n� 2 is in C0(R+,Q), and, for any n� 1, Tr0(Qn,v(t)) = 0 for all t ∈ R+. Moreover, there
exists a constant C > 0 such that

∀n � 1, ∀t ∈ R+,
∥∥Qn,v(t)

∥∥
Q � β

1 + ‖Q0‖Q
n!

(
C

tˆ

0

∥∥ρ(s)
∥∥

L2∩C ds

)n

, (30)

and the right-hand side of (27) converges in Q, uniformly on any compact subset of R+, to the unique solution to
(23)–(24) in C0(R+,Q).

It is possible, and convenient for some calculations, to reformulate the dynamics (23) in the so-called interaction
picture (the reference time being fixed to t0 = 0), introducing the operators

Uint(t) = U0(t)
∗Uv(t,0) and vint(t) = U0(t)

∗v(t)U0(t). (31)

The Dyson expansion of the evolution operator Uint(t) then reads, in terms of the potential in the interaction picture,
as

Uint(t) = 1 − i

tˆ

0

vint(s)Uint(s) ds

= 1 +
+∞∑
n=1

(−i)n
tˆ

0

t1ˆ

0

. . .

tn−1ˆ

0

vint(t1)vint(t2) . . . vint(tn) dtn . . . dt1. (32)

Note that, in the last integral, the times are increasing from the right to the left (tn � tn−1 � · · ·� t1), and the operators
(vint(tj ))1�j�n do not commute. We can also rewrite the recursion (28)–(29) in a form reminiscent of the Baker–
Campbell–Hausdorff formula: for any n� 1, it holds

Qn,v(t) = (−i)nU0(t)

( ˆ

0�tn�···�t1�t

[
vint(t1),

[
vint(t2), . . . ,

[
vint(tn), γ

0
per + Q0] . . .

]]
dt1 . . . dtn

)
U0(t)

∗.

3.3. Linear response and definition of the polarization

The aim of this section is to motivate, using rigorous mathematical arguments, the formula (44) for the polarization
matrix usually encountered in the physics literature, known as the Adler–Wiser formula [1,23] (up to a factor 2
accounting for the spin, see (2.8) in [1]). These expressions are established for a modified linear response involving
some damping. Proposition 8 gives a mathematical meaning to the polarization formula when the damping vanishes.
We therefore focus on the linear response term, which is the operator Q1,v(t) given by (28):

Q1,v(t) = −i

tˆ

0

U0(t − s)
[
v(s), γ 0

per + U0(s)Q
0U0(s)

∗]U0(t − s)∗ ds.

We choose Q0 = 0. When the external perturbation v(t) is compactly supported in time in some interval [−t0, t0], we
can view the perturbation process as a dynamics starting in the distant past from an equilibrium state described by
Q(t) = 0 up to time t = −t0, and perturbed only for times t � −t0. Upon changing the reference time from 0 to −t0,
the following integral equation is then obtained:

∀t ∈R, Q1,v(t) = −i

tˆ

−∞
U0(t − s)

[
v(s), γ 0

per

]
U0(t − s)∗ ds. (33)

The interest of this formulation (compared to the original formulation (28)) is that it can be interpreted as some time
convolution, which can then be rewritten in a simpler manner using Fourier transforms in time. Using Lemmas 2
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and 4, and the density of C∞
c (R,C′) in L1(R,C′), it is easily seen that v �→ Q1,v defines a linear mapping from

L1(R,C′) to C0
b(R,Q), where C0

b(R,Q) denotes the space of the continuous bounded Q-valued functions on R. It is
then possible, by density, to consider external perturbations v ∈ L1(R,C′), and not only perturbations with compact
supports in time. Alternatively, for a given perturbation ṽ(t) defined only for positive times, the linear response can
be written as (33) upon considering v(t) = ṽ(t) if t � 0, and 0 otherwise.

Since Q1,v(t) ∈ Q for all t ∈ R, it is possible, in view of [5, Proposition 1], to associate a density ρQ1,v
(t) ∈

L2(R3) ∩ C to this operator. This defines a bounded linear mapping

χ0 : L1(
R,C′) → C0

b

(
R,L2(

R
3) ∩ C

)
v �→ ρQ1,v

.

In fact, it is more convenient to work with the mapping E = v
1/2
c χ0v

1/2
c . As v

1/2
c is an invertible bounded linear

operator from L2(R3) onto C′, and from C onto L2(R3), and as L2(R3) ∩ C′ = H 1(R3), E is a continuous linear
operator from L1(R,L2(R3)) to C0

b(R,H 1(R3)):

E : L1(
R,L2(

R
3)) → C0

b

(
R,H 1(

R
3))

f �→ v
1/2
c (ρQ

1,v
1/2
c (f )

). (34)

In order to state our results, we need to introduce additional Fourier transforms, taking the time variable into
account. The partial Fourier transform with respect to the time variable, denoted by Ft f , has the following normal-
ization1:

[Ft f ](ω, x) =
+∞ˆ

−∞
f (t, x)eiωt dt. (35)

The space–time Fourier transform Ft,x based on Ft and on the spatial Fourier transform Fx defined in (7) is then

(Ft,xf )(ω, k) = (FtFxf )(ω, k) = (2π)−3/2
ˆ

R×R3

f (t, x)e−i(k·x−ωt) dt dx. (36)

3.3.1. Damped linear response
In order to study the properties of the linear response, it is convenient to first focus on the damped linear response

defined, for η > 0, as

Q
η
1,v(t) = −i

tˆ

−∞
U0(t − s)

[
v(s), γ 0

per

]
U0(t − s)∗e−η(t−s) ds. (37)

We denote the associated damped linear response operator

E η : L1(
R,L2(

R
3)) → C0

b

(
R,H 1(

R
3)) ∩ L1(

R,H 1(
R

3))
f �→ v

1/2
c (ρQ

η

1,v
1/2
c (f )

). (38)

As shown below (see Proposition 8), the operator E η indeed is an approximation of the operator E . The interest of
the operator E η is that it has better regularity properties than the plain linear response E .

For a given η > 0, we consider a simple closed contour Cη in the complex plane, symmetric with respect to the real
axis, enclosing σ(H 0

per) ∩ (−∞, εF], containing no element of R± iη (see Fig. 1), and such that

dist
(
Cη, σ

(
H 0

per

) ∩ (−∞, εF]) � η

3
, dist(Cη,R+ iη)� η

3
. (39)

1 Note that, as usual in the physics literature, there is no minus sign in the phase factor in the definition of the Fourier transform with respect to
the time variable.
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Fig. 1. Integration contour Cη used in Proposition 6.

We can then prove the following result.

Proposition 6. The operator E η is bounded on L2(R,L2(R3)) and, for f1, f2 ∈ L2(R,L2(R3)),〈
f2,E

ηf1
〉
L2(L2)

=
ˆ

R

〈
Ft f2(ω),E η(ω)Ft f1(ω)

〉
L2(R3)

dω, (40)

where, for h1, h2 ∈ L2(R3),

〈
h1,E

η(ω)h2
〉
L2(R3)

= 1

π
Im

(˛

Cη

TrL2(R3)

[
(γ 0

per)
⊥

z − (H 0
per + ω + iη)

v
1/2
c (h2)

γ 0
per

z − H 0
per

v
1/2
c (h1)

]
dz

)
. (41)

In addition, there exists a constant C ∈R+ such that∥∥E η
∥∥
B(L2(R,L2(R3)))

= sup
ω∈R

∥∥E η(ω)
∥∥
B(L2(R3))

� C

η2
.

The proof of this result can be read in Section 5.5. The operator appearing in the trace on the right-hand side of (41)
is indeed trace-class since

TrL2(R3)

[
(γ 0

per)
⊥

z − (H 0
per + ω + iη)

v
1/2
c (h2)

γ 0
per

z − H 0
per

v
1/2
c (h1)

]

= TrL2(R3)

[
(γ 0

per)
⊥

z − (H 0
per + ω + iη)

[
v

1/2
c (h2), γ

0
per

] γ 0
per

z − H 0
per

[
γ 0

per, v
1/2
c (h1)

]]
, (42)

and [v1/2
c (h), γ 0

per] ∈ S2 when h ∈ L2(R3) by Lemma 4. In addition, in view of the conditions (39) on the contour Cη,

the operators
(γ 0

per)
⊥

z−(H 0
per+ω+iη)

and
γ 0

per

z−H 0
per

are bounded uniformly in z and ω, with a bound proportional to η−1 for both

of them. The right-hand side of (40) is therefore well defined for f1, f2 ∈ L2(R,L2(R3)).
Since the linear response commutes with time translations, it is not surprising that the operator E η is diagonal in

the frequency domain (in the sense of (40)). Moreover, the operators E η(ω) commute with spatial translations of the
lattice. They are hence decomposed by the Bloch transform associated with the lattice R. The action of E η(ω) on
the fiber associated with the Bloch vector q ∈ Γ ∗ is denoted by E η(ω, q). Introducing the Fourier basis (eK)K∈R∗ of
L2

per(Γ ), where eK(x) = |Γ |−1/2eiK·x , the Bloch matrices of the operator E η(ω) are defined as

E
η

K,K ′(ω, q) = 〈
eK,E η(ω, q)eK ′

〉
L2

per
,

and it holds

∀K ∈R∗, Ft,x

(
E ηf

)
(ω, q + K) =

∑
K ′∈R∗

E
η

K,K ′(ω, q)Ft,xf
(
ω,q + K ′), for a.a. (ω, q) ∈R× Γ ∗. (43)

As stated in the proposition below, the Bloch matrices of the operators E η can be written in terms of the Bloch
decomposition of the mean-field Hamiltonian H 0

per. The corresponding expressions are known in physics under the
name of Adler–Wiser formula [1,23].
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Proposition 7. For each η > 0, the Bloch matrices of the damped linear response operator E η are given by

E
η

K,K ′(ω, q) = 1Γ ∗(q)

|Γ |
|q + K ′|
|q + K| T

η

K,K ′(ω, q), (44)

where the continuous functions T
η

K,K ′ :R×R
3 → C defined by

T
η

K,K ′(ω, q) =
+∞∑

n,m=1

(1n�N<m − 1m�N<n)

 

Γ ∗

〈um,q ′ , e−iK·xun,q+q ′ 〉L2
per

〈un,q+q ′ , eiK ′·xum,q ′ 〉L2
per

εn,q+q ′ − εm,q ′ − ω − iη
dq ′ (45)

are uniformly bounded.

The proof of Proposition 7 can be read in Section 5.6. The above expressions make sense since it is proven in
Lemma 19 that the sums over m,n which enter in the definition of E

η

K,K ′ are convergent. This is due to the fact that

for all η > 0, (i) εn,q grows as n2/3 when n goes to infinity, uniformly in q ∈ Γ ∗ (see (78)); and (ii) for a given
K ∈R∗, there exists a constant C > 0 such that, for all 1 � n� N , m �N + 1, and q, q ′ ∈ Γ ∗ (see (80)),∣∣〈um,q ′ , e−iK·xun,q+q ′

〉
L2

per

∣∣� C
(
1 + |K|2)m−2/3.

For later purposes, it is useful to notice that for all f ∈ S (R×R
3),

Ft,x

(
E ηf

) =
∑

K,K ′∈R∗
τK

(
τ−K ′(Ft,xf )E

η

K,K ′
)
, (46)

where τKf (ω,q) = f (ω,q −K) is the momentum space translation of vector K . As will be shown below (see Propo-
sition 8), this representation is well suited to the limiting procedure η → 0. Note that E

η

K,K ′ belongs to L∞(R×R
3)

and hence defines a tempered distribution on R×R
3. Therefore, τ−K ′(Ft,xf )E

η

K,K ′ is a tempered distribution when

f ∈ S (R × R
3). The fact that the series on the right-hand side of (46) converges to Ft,x(E ηf ) in the sense of the

tempered distributions is proved in Lemma 23.
The expression (46) is a result of the following computations. Since the E

η

K,K ′ ’s are C-valued functions on R×R
3

with supports in R×Γ ∗ and uniform bounds in L∞(R×R3) (for fixed η > 0), we obtain that, for all f ∈ S (R×R3)

and all ϕ ∈ S (R×R3),

〈
Ft,x

(
E ηf

)
, ϕ

〉
S ′,S =

ˆ

R×R3

Ft,x

(
E ηf

)
(ω, k)ϕ(ω, k) dω dk

=
ˆ

R

∑
K∈R∗

ˆ

Γ ∗
Ft,x

(
E ηf

)
(ω, q + K)ϕ(ω,q + K)dq dω

=
ˆ

R

∑
K∈R∗

ˆ

Γ ∗

∑
K ′∈R∗

E
η

K,K ′(ω, q)Ft,xf
(
ω,q + K ′)ϕ(ω,q + K)dq dω

=
∑

K,K ′∈R∗

ˆ

R×R3

E
η

K,K ′τ−K ′(Ft,xf )τ−Kϕ

=
∑

K,K ′∈R∗

〈
τ−K ′(Ft,xf )E

η

K,K ′ , τ−Kϕ
〉
S ′,S

=
〈 ∑
K,K ′∈R∗

τK

(
τ−K ′(Ft,xf )E

η

K,K ′
)
, ϕ

〉
S ′,S

.
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3.3.2. Bloch matrices of the linear response
In order to characterize the Bloch-frequency decomposition of the operator E defined by (34), we investigate in

this section the limit of the damped linear response when η ↓ 0, by passing to the limit in (46).

Proposition 8. The operators E η converge to E in the following sense: for any f ∈ L1(R,L2(R3)),

∀T ∈ R, lim
η↓0

E ηf = E f in L∞(
(−∞, T ],H 1(

R
3)).

In addition, for each (K,K ′) ∈ R∗ ×R∗, the Bloch matrix E
η

K,K ′ converges in S ′(R×R
3), when η → 0, to a limiting

distribution denoted by EK,K ′ . Finally, for each f ∈ S (R×R
3), the following equality holds in S ′(R×R

3):

Ft,x(E f ) =
∑

K,K ′∈R∗
τK

(
τ−K ′(Ft,xf )EK,K ′

)
. (47)

The proof can be read in Section 5.7. This result shows that the matrix (EK,K ′)K,K ′ can be interpreted as the Bloch
matrix of the operator E . An expression of 〈EK,K ′ , ϕ〉S ′,S is provided in the proof of Lemma 22.

A careful inspection of the proof shows that (47) can be given a meaning for functions f which are not in
S (R×R

3), but are nevertheless regular in space and decaying in time, see Remark 24.

Remark 9. The tempered distribution EK,K ′ , defined in Proposition 8 as the limit of E
η

K,K ′ when η goes to zero, can
be written more explicitly when the pulsation ω is not too large, namely when its absolute value is smaller than the
band gap g defined by (9). Indeed, when |ω| < g, it holds |εn,q+q ′ − εm,q ′ −ω|� g − |ω| > 0 for all q, q ′ and all n,m

satisfying 1 � n� N < m or 1 � m� N < n, so that for all K,K ′ ∈R∗ and almost all (ω, q) ∈ R× Γ :

EK,K ′(ω, q) = 1Γ ∗(q)

|Γ |
|q + K ′|
|q + K| T 0

K,K ′(ω, q), (48)

where the bounded continuous functions T 0
K,K ′ :R×R

3 → C are defined by

T 0
K,K ′(ω, q) =

+∞∑
n,m=1

(1n�N<m − 1m�N<n)

 

Γ ∗

〈um,q ′ , e−iK·xun,q+q ′ 〉L2
per

〈un,q+q ′ , eiK ′·xum,q ′ 〉L2
per

εn,q+q ′ − εm,q ′ − ω
dq ′. (49)

Let us also notice that

|Γ | |q + K|
|q + K ′|EK,K ′(ω, q) = 1Γ ∗(q)

2π i
TrL2

per

[ ˛

Cω

 

Γ ∗
e−iK·x (γ 0

per)q+q ′

z − (H 0
per − ω)q+q ′

eiK ′·x (γ 0
per)

⊥
q ′

z − (H 0
per)q ′

dq ′ dz

]

+ 1Γ ∗(q)

2π i
TrL2

per

[ ˛

Cω

 

Γ ∗
e−iK·x (γ 0

per)
⊥
q+q ′

z − (H 0
per)q+q ′

eiK ′·x (γ 0
per)q ′

z − (H 0
per + ω)q ′

dq ′ dz

]
,

(50)

where Cω is a contour enclosing (σ (H 0
per)∩(−∞, εF])±ω and containing no element of σ(H 0

per)∩[εF,+∞) (see (83)
below and Fig. 2).

3.3.3. Adiabatic limit
The linear response of the electronic density for time-independent perturbations was studied in [6]. The aim of this

section is to recover the static polarization operator from the time-dependent one in some adiabatic limit.
The static linear response operator is defined as Ẽ static := v

1/2
c χ static

0 v
1/2
c , where χ static

0 is the time-independent
polarizability operator introduced in [6, Proposition 1]:

Ẽ static : L2(
R

3) → L2(
R

3)
h �→ v

1/2
c (ρQstatic

1/2
), (51)
1,vc (h)
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Fig. 2. Integration contour Cω used in formula (50).

with (for V ∈ C′)

Qstatic
1,V = 1

2iπ

˛

C0

(
z − H 0

per

)−1
V

(
z − H 0

per

)−1
dz,

where C0 is a simple closed contour in the complex plane enclosing σ(H 0
per) ∩ (−∞, εF] and containing no element

of σ(H 0
per) ∩ [εF,+∞). We deduce from (48)–(49) and the results in [6] that

∀(
K,K ′) ∈R∗ ×R∗, Ẽ static

K,K ′ (q) = EK,K ′(0, q) for a.a. q ∈ Γ ∗.

The time-independent polarizability operator is therefore the zero-frequency limit of the dynamical response.
This consideration leads us to study the adiabatic limit of the linear response. To this end, we consider the following

time evolution for some parameter α > 0 small enough:

Q̃α
1,v(t) = −i

t/αˆ

−∞
U0

(
t

α
− s

)[
v(αs), γ 0

per

]
U0

(
t

α
− s

)∗
ds.

In the above dynamics, the evolution of the time-dependent potential v is slowed down, and the effect of the perturba-
tion is considered on longer times (for t > 0) in order to obtain a non-trivial result (note that Q̃α

1,v(t) = Q1,v(α·)(t/α),
where Q1,v is defined in (33)). Equivalently, this procedure may be seen as accelerating the free evolution generated
by H 0

per and appropriately rescaling the result. Indeed, a change of variables shows that

Q̃α
1,v(t) = − i

α

tˆ

−∞
U0

(
t − s

α

)[
v(s), γ 0

per

]
U0

(
t − s

α

)∗
ds.

For any α > 0, we introduce the rescaled linear response operator

Ẽ α : L1(
R,L2(

R
3)) → C0

b

(
R,H 1(

R
3))

f �→ v
1/2
c (ρQ̃α

1,v
1/2
c (f )

). (52)

Proposition 10. For any function f ∈ S (R×R
3),

lim
α↓0

Ẽ αf = Ẽ 0f in S ′(
R×R

3),
where for all t ∈R, (Ẽ 0f )(t) = Ẽ static(f (t)).

This result is proved in Section 5.8. It means that, in the adiabatic limit, the linear response at time t only depends
on v(t). There is no memory effect. Moreover, the linear response at time t is given by the time-independent (or static)
polarization operator Ẽ static studied in [6, Proposition 4].
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4. Nonlinear Hartree dynamics

We now focus on the nonlinear Hartree dynamics defined by

∀t ∈R+, Q(t) = U0(t)Q
0U0(t)

∗ − i

tˆ

0

U0(t − s)
[
vc

(
ρQ(s) − ν(s)

)
, γ 0

per + Q(s)
]
U0(t − s)∗ ds, (53)

for an initial condition Q0 ∈ K, and for a nuclear charge distribution of defects ν(t) ∈ L2(R3) ∩ C for all t . Re-
call that the solutions of (53) are the mild solutions of the von Neumann equation (3) with v(t) = −vc(ν(t)), since
[H 0

per, γ
0
per] = 0.

4.1. Well-posedness of the dynamics

The main result of this section is the following.

Theorem 11. Let ν ∈ L1
loc(R+,L2(R3)) ∩ W

1,1
loc (R+,C). Then, for any Q0 ∈ K, the time-dependent Hartree equa-

tion (53) has a unique solution in C0(R+,Q). Moreover, for all t � 0, Q(t) ∈ K and Tr0(Q(t)) = Tr0(Q
0). Finally,

if γ 0
per + Q0 is an orthogonal projector, then γ 0

per + Q(t) is also an orthogonal projector for all t � 0.

The proof of local existence and uniqueness (see Section 5.9.1) is classical and is based upon a Banach fixed point
argument in a well-chosen ball of Q. Once local-in-time existence and uniqueness is ensured, it is possible to extend
the well-posedness of the dynamics to all times by proving that the Q-norm of Q(t) does not blow up in finite time
(see Section 5.9.2). This can be performed by controlling the growth of ‖Q(t)‖Q by means of the energy functional
E :R+ ×Q→ R defined by

E(t,Q) = Eν(t),εF(Q) = Tr0
(
H 0

perQ
) − D

(
ρQ,ν(t)

) + 1

2
D(ρQ,ρQ), (54)

where Tr0(H
0
perQ) are defined respectively in (16) and (17).

Under appropriate regularity assumptions on Q0 and ν, the unique solution of (53) is a classical solution of (3)
with v(t) = −vc(ν(t)). Let us detail this point. The evolution problem (53) can be formally written as

dQ(t)

dt
= AQ(t) + F

(
t,Q(t)

)
, Q(0) = Q0, (55)

where

F(t,Q) = −i
[
vc

(
ρQ − ν(t)

)
, γ 0

per + Q
]
,

and where A is the generator of the strongly continuous group (G(t))t∈R on B(Q), the space of the bounded linear
operators on Q, defined as

G(t)Q = U0(t)QU0(t)∗.

In fact (see [10, Section XVII.B.5.1]),

D(A) = {
Q ∈ Q

∣∣ QD
(
H 0

per

) ⊂ D
(
H 0

per

)
,−i

(
H 0

perQ − QH 0
per

)
is a linear operator on L2(

R
3),

with domain D
(
H 0

per

)
, which can be extended to a bounded operator on L2(

R
3),

and this extension, denoted by QA, belongs to Q
}
,

and AQ = QA. In particular, the operators Q ∈ Q such that (1 − �)Q(1 − �) ∈ Q are in D(A) (recall that the set of
those operators is dense in Q, see [5, Lemma 2]), and AQ = −i[H 0

per,Q] in this case. We can then state the following.

Proposition 12. Let ν ∈ C1(R+,L2(R3) ∩ C). Then, for any Q0 ∈ D(A), the unique solution to the time-dependent
Hartree equation (53) in C0(R+,Q) is in C0(R+,D(A)) ∩ C1(R+,Q), and is a classical solution to (55).
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Proof. The result follows directly from Theorem 6.1.5 of [16], since F : R+ × Q → Q is C1. Indeed, this mapping
is differentiable and its derivative

dF(t,Q) · (s,R) = is
[
vc

(
ν′(t)

)
, γ 0

per + Q
] − i

[
vc

(
ρQ − ν(t)

)
,R

] − i
[
vc(ρR), γ 0

per + Q
]

defines a bounded linear operator on R+ × Q. Moreover, in view of Lemma 3, the mapping (t,Q) �→ dF(t,Q) is
continuous whenever ν ∈ C1(R+,L2(R3) ∩ C). �
4.2. Macroscopic dielectric permittivity

We start with formal computations, which, to be justified, would require estimates on the long time behavior of
Q(t). Unfortunately, we do not have such estimates, see the discussion after Proposition 13. For the same reasons as
the ones presented before (33), we choose Q0 = 0 in (53) and change the reference time from 0 to t0, letting then t0
go to −∞, formally obtaining

Q(t) = −i

tˆ

−∞
U0(t − s)

[
vc

(
ρQ(s) − ν(s)

)
, γ 0

per + Q(s)
]
U0(t − s)∗ ds. (56)

The above integral equation can be rewritten as

Q(t) = Q1,vc(ρQ−ν)(t) + Q̃2,vc(ρQ−ν)(t), (57)

where the linear operator Q1,v is defined in (28), and where the remainder Q̃2,vc(ρQ−ν)(t) collects the higher order
terms. Eq. (57) can be reformulated in terms of electronic densities as

ρQ(t) = [
L(ν − ρQ)

]
(t) + r2(t),

where L = −χ0vc and r2(t) = ρQ̃2,vc(ρQ−ν)(t)
, or equivalently as[

(1 +L)(ν − ρQ)
]
(t) = ν(t) − r2(t). (58)

This motivates the following result (proved in Section 5.10).

Proposition 13 (Properties of the operator L). For any 0 < Ω < g (the band gap of the host crystal), the operator L
is a non-negative bounded self-adjoint operator on the Hilbert space

HΩ = {
� ∈ L2(R,C)

∣∣ supp(Ft,x�) ⊂ [−Ω,Ω] ×R
3},

endowed with the scalar product

〈�2, �1〉L2(C) =
ˆ

R

D
(
�2(t, ·), �1(t, ·)

)
dt = 4π

Ω̂

−Ω

ˆ

R3

Ft,x�2(ω, k)Ft,x�1(ω, k)

|k|2 dωdk.

Hence, 1 +L, considered as an operator on HΩ , is invertible.

This result cannot be used as such to study (58) since, even when ν belongs to HΩ (0 < Ω < g), the nonlinear
response r2 generally involves frequencies with absolute values larger than Ω . This can be seen from the relation (29).
For instance, Q2,v is a convolution between the time evolution U0 of the perfect crystal, and products such as vQ1,v .
Since the time Fourier transform of each of the element of the latter product has support in (−Ω,Ω), the time Fourier
transform of their product has support in (−2Ω,2Ω).

In order to rigorously obtain the macroscopic dielectric permittivity from (58), some spatial rescaling should be
performed. In the time-independent case dealt with in [6], the equivalent of the nonlinear term r2 turns out to become
negligible under this spatial rescaling. In order to prove that the same phenomenon occurs in the time-dependent
case, we would need estimates on the time growth of the nonlinear term r2(t). Controlling this term is probably
difficult since very few is known about the long time limit of dynamics such as (56). Typical tools to this end are
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Strichartz-like estimates, which allow to establish appropriate decays in time and prove scattering results (see for
instance [19, Section XI.13]). Such inequalities are easy to prove for the operator −� on L2(R3). To our knowledge,
the only known dispersion inequality for periodic Schrödinger operators is restricted to the one-dimensional setting,
see the recent work [9]. The proof is based on the stationary phase method, but several fine estimates rely explicitly
on the fact that the system is one-dimensional. It is unclear whether such results can be extended to three-dimensional
systems.

We will therefore limit ourselves to pass to the macroscopic limit on the following linear problem, obtained by
neglecting r2 in (58): 0 < Ω < g and ν ∈ HΩ being given, seek ρν ∈HΩ such that

∀t ∈R,
[
(1 +L)(ν − ρν)

]
(t) = ν(t). (59)

In order to study the response of the system at the macroscopic scale, we consider the regime where the perturbation
is weak but spread out over a large region, using the same spatial rescaling as in [6]. For η > 0, introduce the rescaled
charge of the external perturbation

νη(t, x) = η3ν(t, ηx). (60)

Note that
´
R3 νη(t, x) dx = ´

R3 ν(t, x) dx for all η > 0 and all t ∈ R. We also define the rescaled potential generated
by the total charge of the defect νη − ρνη as

Wη
ν (t, x) = η−1vc(νη − ρνη)

(
t, η−1x

)
. (61)

The scaling of the potential is such that, in the absence of dielectric response (L = 0), the potential effectively seen
by the crystal is W

η
ν = vc(ν). We are then able to prove the following result.

Proposition 14. There exists a smooth mapping (−g,g) � ω �→ εM(ω), with values in the space of symmetric 3 × 3
matrices, satisfying εM(ω) � 1 for all ω ∈ (−g,g), such that, for all ν ∈HΩ (0 < Ω < g), the rescaled potential W

η
ν

defined by (59)–(61) converges weakly in HΩ when η goes to 0, to the unique solution Wν in HΩ to the equation

−div
(
εM(ω)∇[FtWν](ω, ·)) = 4π [Ft ν](ω, ·), (62)

where div and ∇ are the usual divergence and gradient operators with respect to the space variable x, and where Ft

is the time Fourier transform defined in (35).

This result is proved in Section 5.11. In particular, the precise expression of εM(ω) in terms of the Bloch decompo-
sition of the mean-field Hamiltonian H 0

per is given in (110). Note that in the macroscopic equation (62), the pulsation
ω enters as a parameter: there is no coupling between different values of ω. In the space–time domain, this means that
the charge ν(t, x) and the potential Wν(t, x) are related by a space–time convolution.

5. Proof of the results

5.1. Existence of propagators

Lemma 15. Consider a self-adjoint operator H 0
per, and the associated propagator U0(t) = e−itH 0

per . For a given poten-

tial v ∈ L1
loc(R,L∞(R3)), there exists a unique unitary propagator (Uv(t, s))(s,t)∈R2 satisfying the integral equation

∀(t, t0) ∈R×R, Uv(t, t0) = U0(t − t0) − i

tˆ

t0

U0(t − s)v(s)Uv(s, t0) ds. (63)

Proof. The proof uses ideas from [17, Section X.12], [16, Section 4.1] and [24]. Denote vint(t) = U0(t)
∗v(t)U0(t) the

perturbing potential in the interaction representation. Note that vint belongs to L1
loc(R,B(L2(R3))), where B(L2(R3))

is the Banach space of the bounded operators on L2(R3). We first define the propagator Uv,int(t, t0) associated with the
family of bounded operators vint. In view of [17, Section X.12], we can associate to the family of bounded operators
(vint(t))t∈R a unitary propagator (Uv,int(t, t0))(t ,t)∈R2 . In addition,
0



904 E. Cancès, G. Stoltz / Ann. I. H. Poincaré – AN 29 (2012) 887–925
∀(t0, t) ∈ R×R, Uv,int(t, t0) = 1 − i

tˆ

t0

vint(s)Uv,int(s, t0) ds. (64)

It easily follows that (Uv(t, t0))(t0,t)∈R2 , where Uv(t, s) = U0(t)Uv,int(t, t0)U0(t0)
∗, forms a unitary propagator, and

verifies (63) in view of (64). �
5.2. Some properties of the Coulomb potential

The following result is an extension of Lemma 3 in [13].

Lemma 16. When � ∈ L2(R3)∩C, the potential V� = vc(�) belongs to L6(R3)∩L∞(R3), and there exists a constant
Cpot ∈R+ such that

∀p ∈ [6,+∞], ‖V�‖Lp � Cpot‖�‖L2∩C . (65)

Moreover, for all q ∈ [2,6), ∇V� ∈ (L2(R3) ∩ Lq(R3))3, and there exists a constant Cgrad,q ∈R+ such that

‖∇V�‖Lq � Cgrad,q‖�‖L2∩C .

Proof. Note first that, since V� ∈ C′, it holds V� ∈ L6(R3) and ∇V� ∈ (L2(R3))3 with

‖V�‖L6 � CC‖�‖C, ‖∇V�‖L2 � CC‖�‖C,

for some constant CC ∈ R+ independent of �. The boundedness of the potential comes from the following estimate:

‖V�‖L∞ � (2π)−3/2‖V̂�‖L1 =
√

2

π

ˆ

R3

|̂�(k)|
|k|2 dk =

√
2

π

ˆ

|k|�R

|̂�(k)|
|k|2 dk +

√
2

π

ˆ

|k|�R

|̂�(k)|
|k|2 dk.

Now,
ˆ

|k|�R

|̂�(k)|
|k|2 dk �

( ˆ

|k|�R

|̂�(k)|2
|k|2 dk

)1/2( ˆ

|k|�R

1

|k|2 dk

)1/2

�
√

R‖�‖C,

and
ˆ

|k|�R

|̂�(k)|
|k|2 dk �

( ˆ

|k|�R

∣∣̂�(k)
∣∣2

dk

)1/2( ˆ

|k|�R

1

|k|4 dk

)1/2

�
√

4π

R
‖�‖L2,

so that finally

‖V�‖L∞ �
√

8

R
‖�‖L2 +

√
2R

π
‖�‖C .

By interpolation, V� ∈ Lp(R3) for any p ∈ [6,+∞], and the constant Cpot in (65) can be chosen independently of p.
To show that ∇V� ∈ (Lq(R3))3 for any 2 � q < 6, it is sufficient, by the Hausdorff–Young theorem (see for

instance [17]), to verify that k �→F(|∇|V�)(k) = |k|V̂�(k) = 4π�̂(k)/|k| is in Lα(R3) for 6/5 < α � 2 since∥∥|∇|V�

∥∥
Lq � 4π(2π)3/2−3/α

∥∥∥∥ �̂

|k|
∥∥∥∥

Lα

,

with α−1 = 1 − q−1. Let R > 0. First, the Hölder inequality (with exponent 2/α and conjugated exponent 2/(2 − α))
ensures that

ˆ ( |̂�(k)|
|k|

)α

dk �
( ˆ |̂�(k)|2

|k|2 dk

)α/2( ˆ
dk

)1−α/2

� (4π)1−α

(
R3

3

)1−α/2

‖�‖α
C .
|k|�R |k|�R |k|�R
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Second,
ˆ

|k|�R

( |̂�(k)|
|k|

)α

dk �
( ˆ

|k|�R

∣∣̂�(k)
∣∣2

dk

)α/2( ˆ

|k|�R

1

|k|2α/(2−α)
dk

)1−α/2

�
(

4π
2 − α

6 − 5α

)1−α/2

R(6−5α)/2‖�‖α
L2 .

when 2α/(2 − α) > 3, i.e. α > 6/5. �
We will need the following result.

Lemma 17. Let V ∈ L∞(R3) be such that ∇V ∈ (L4(R3))3. Then (1 − �)1/2V (1 − �)−1/2 is a bounded operator
on L2(R3), and there exists a constant C ∈R+ independent of V such that∥∥(1 − �)1/2V (1 − �)−1/2

∥∥� C
(‖V ‖L∞ + ‖∇V ‖L4

)
.

In particular, there exists a constant C� ∈ R+ such that

∀� ∈ L2(
R

3) ∩ C,
∥∥(1 − �)1/2vc(�)(1 − �)−1/2

∥∥� C�‖�‖L2∩C . (66)

Proof. First, note that, for a given smooth function ψ ,

∂xi

(
V (1 − �)−1/2ψ

) = (∂xi
V )

(
(1 − �)−1/2ψ

) + V ∂xi
(1 − �)−1/2ψ.

The operator (∂xi
V )(1−�)−1/2 is in S4 by the Kato–Seiler–Simon inequality (see [20,21]), and is therefore bounded.

The operator V ∂xi
(1 − �)−1/2 is clearly bounded since V ∈ L∞(R3). Therefore, the operator ∂xi

V (1 − �)−1/2

is bounded for i ∈ {1,2,3}. More precisely, there exists a constant C ∈ R+ such that the bounded operator A =
V (1 − �)−1/2 verifies

‖A‖� C‖V ‖L∞, ‖∂xi
A‖� C

(‖V ‖L∞ + ‖∇V ‖L4

)
. (67)

Then, for a given function ψ ∈ L2(R3),∥∥(1 − �)1/2V (1 − �)−1/2ψ
∥∥2

L2 = ∥∥(1 − �)1/2Aψ
∥∥2

L2 = ∥∥(
1 + |k|2)1/2

Âψ
∥∥2

L2

= ‖Âψ‖2
L2 +

3∑
i=1

‖kiÂψ‖2
L2

= ‖Aψ‖2
L2 +

3∑
i=1

‖∂xi
Aψ‖2

L2

�
(

‖A‖2 +
3∑

i=1

‖∂xi
A‖2

)
‖ψ‖2

L2,

which, in view of (67) and Lemma 16, gives the expected results. �
5.3. Some stability results

Before providing the proofs of Lemmas 2, 3 and 18, we first show that, for any fixed c < min(σ (H 0
per)), the norm

|Q|Q = ∥∥(
H 0

per − c
)1/2

Q
∥∥
S2

+ ∥∥(
H 0

per − c
)1/2

Q−−(
H 0

per − c
)1/2∥∥

S1

+ ∥∥(
H 0

per − c
)1/2

Q++(
H 0

per − c
)1/2∥∥

S1
(68)

is equivalent to the norm ‖Q‖Q defined in (13). More precisely,

b−1|Q|Q � ‖Q‖Q � b|Q|Q,
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with b = max(‖B‖,‖B−1‖,‖B‖2,‖B−1‖2) � 1 where

B = (
H 0

per − c
)1/2

(1 − �)−1/2 (69)

is bounded and invertible. This is a consequence of the following inequalities:∥∥(
H 0

per − c
)1/2

Q
∥∥
S2

= ∥∥B(1 − �)1/2Q
∥∥
S2

� ‖B‖∥∥(1 − �)1/2Q
∥∥
S2

,

and ∥∥(1 − �)1/2Q
∥∥
S2

= ∥∥B−1(H 0
per − c

)1/2
Q

∥∥
S2

�
∥∥B−1

∥∥∥∥(
H 0

per − c
)1/2

Q
∥∥
S2

,

as well as∥∥(
H 0

per − c
)1/2

Q±±(
H 0

per − c
)1/2∥∥

S1
= ∥∥B(1 − �)1/2Q±±(1 − �)1/2B

∥∥
S1

� ‖B‖2
∥∥(1 − �)1/2Q±±(1 − �)1/2

∥∥
S1

,

and ∥∥(1 − �)1/2Q±±(1 − �)1/2
∥∥
S1

�
∥∥B−1

∥∥2∥∥(
H 0

per − c
)1/2

Q±±(
H 0

per − c
)1/2∥∥

S1
.

It is therefore sufficient to prove the stability results we need in the norm | · |Q defined in (68). The interest of this
norm is that it simplifies some algebraic computations since any function of H 0

per commutes with (H 0
per − c)1/2.

The first stability result, stated in Lemma 2, shows that the space Q is stable under the action of the propagator of
the corresponding periodic mean-field Hamiltonian.

Proof of Lemma 2. The inequality (25) is a straightforward consequence of the equivalence of norms (68) and the
equality∣∣U0(t)QU0(t)

∗∣∣
Q = |Q|Q.

Moreover, as γ 0
per and U0(t) commute, we obtain

Tr0
(
U0(t)QU0(t)

∗) = Tr0
((

U0(t)QU0(t)
∗)−−) + Tr0

((
U0(t)QU0(t)

∗)++)
= Tr

(
γ 0

perU0(t)QU0(t)
∗γ 0

per

) + Tr
((

1 − γ 0
per

)
U0(t)QU0(t)

∗(1 − γ 0
per

))
= Tr

(
U0(t)Q

−−U0(t)
∗) + Tr

(
U0(t)Q

++U0(t)
∗)

= Tr
(
Q−−) + Tr

(
Q++) = Tr0(Q),

which completes the proof of Lemma 2. �
The second stability result, stated in Lemma 3, shows that for all � ∈ L2(R3) ∩ C, Q �→ i[vc(ρ),Q] defines a

bounded linear operator on Q.

Proof of Lemma 3. First, since V� := vc(�) is bounded in view of Lemma 16, and Q ∈ S2, i[V�,Q] is self-adjoint
and Hilbert–Schmidt on L2(R3), with∥∥i[V�,Q]∥∥

S2
� 2Cpot‖�‖L2∩C‖Q‖Q.

In addition,(
H 0

per − c
)1/2[V�,Q] = w

(
H 0

per − c
)1/2

Q − (
H 0

per − c
)1/2

QV�,

where (H 0
per − c)1/2Q ∈S2 and

w = (
H 0

per − c
)1/2

V�

(
H 0

per − c
)−1/2 = B(1 − �)1/2V�(1 − �)−1/2B−1 (70)

(with B defined in (69)) is bounded by Lemma 17. This shows that (H 0
per − c)1/2i[V�,Q] ∈S2 with∥∥(

H 0
per − c

)1/2i[V�,Q]∥∥ �
(
Cpot + ‖B‖∥∥B−1

∥∥C�

)‖�‖L2∩C |Q|Q.

S2
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Now, consider for instance (i[V�,Q])++ = i(1 − γ 0
per)[V�,Q](1 − γ 0

per). The goal is to prove that (H 0
per − c)1/2 ×

(i[V�,Q])++(H 0
per − c)1/2 ∈S1. This operator can be decomposed as(

H 0
per − c

)1/2(i[V�,Q])++(
H 0

per − c
)1/2 = i

(
H 0

per − c
)1/2(1 − γ 0

per

)
V�γ 0

perQ
(
1 − γ 0

per

)(
H 0

per − c
)1/2

− i
(
H 0

per − c
)1/2(1 − γ 0

per

)
Qγ 0

perV�

(
1 − γ 0

per

)(
H 0

per − c
)1/2

+ i
(
H 0

per − c
)1/2(1 − γ 0

per

)
V�Q++(

H 0
per − c

)1/2

− i
(
H 0

per − c
)1/2

Q++V�

(
1 − γ 0

per

)(
H 0

per − c
)1/2

.

Let us deal with the first and the third terms on the right-hand side (the second and the fourth terms are the adjoints of
the first and third terms respectively). It holds

i
(
H 0

per − c
)1/2(1 − γ 0

per

)
V�γ 0

perQ
(
1 − γ 0

per

)(
H 0

per − c
)1/2 = (

H 0
per − c

)1/2i
[
V�, γ 0

per

]
Q−+(

H 0
per − c

)1/2
,

and (
H 0

per − c
)1/2(

1 − γ 0
per

)
V�Q++(

H 0
per − c

)1/2 = (
1 − γ 0

per

)
w

(
H 0

per − c
)1/2

Q++(
H 0

per − c
)1/2

with w defined in (70). In view of Lemmas 4 and 17, we infer that the above operators are trace-class and that∥∥i
(
H 0

per − c
)1/2(1 − γ 0

per

)
V�γ 0

perQ
(
1 − γ 0

per

)(
H 0

per − c
)1/2∥∥

S1
� Ccom‖B‖‖�‖L2∩C |Q|Q,∥∥i

(
H 0

per − c
)1/2(1 − γ 0

per

)
V�Q++(

H 0
per − c

)1/2∥∥
S1

� C�‖B‖∥∥B−1
∥∥‖�‖L2∩C |Q|Q.

Using similar manipulations for the other terms, we finally obtain (26). Besides,(
i[V�,Q])−− + (

i[V�,Q])++ = i
(
V −−

� Q−− − Q−−V −−
�

) + i
(
V −+

� Q+− − Q−+V +−
�

)
+ i

(
V ++

� Q++ − Q++V ++
�

) + i
(
V +−

� Q−+ − Q+−V −+
�

)
.

It follows from the cyclicity of the trace that Tr0(i[V�,Q]) = 0. �
The last lemma of this section is concerned with the regularization operators

Rδ = (
1 + δ

∣∣H 0
per − εF

∣∣)−1
.

The properties of these operators we will make use of are collected in the following lemma. As in [5], we introduce
the space

S0
1 := {

Q ∈ S2
∣∣ Q++ ∈ S1, Q−− ∈ S1

}
,

and denote by Tr0(Q) = Tr(Q++) + Tr(Q−−) the generalized trace of an operator Q ∈ S0
1.

Lemma 18. The regularization operators have the following properties.

(1) For all Q ∈ Q and all δ > 0, RδQRδ ∈Q, and there exists a constant C independent of Q and δ such that

∀Q ∈ Q, ∀δ > 0, ‖RδQRδ‖Q � C‖Q‖Q.

In addition,

lim
δ↓0

‖RδQRδ − Q‖Q = 0. (71)

(2) For all Q ∈ Q and δ > 0, i[Q,Rδ] ∈ Q, and there exists a constant C independent of Q and δ such that

∀Q ∈ Q, ∀δ > 0,
∥∥i[Q,Rδ]

∥∥
Q � C‖Q‖Q.

Moreover,

lim
δ↓0

∥∥i[Q,Rδ]
∥∥
Q = 0. (72)
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(3) Let � ∈ L2(R3) ∩ C, V� := vc(�) and Q ∈ Q. Then for all δ > 0, V�RδH
0
perQ, V�QRδH

0
per, V�RδH

0
perQRδ and

V�RδQRδH
0
per belong to S0

1, and the following estimates hold, for a constant C independent of �, Q and δ:∣∣Tr0
(
V�RδH

0
perQ

)∣∣� C‖�‖L2∩C‖Q‖Q,
∣∣Tr0

(
V�QRδH

0
per

)∣∣� C‖�‖L2∩C‖Q‖Q,∣∣Tr0
(
V�RδH

0
perQRδ

)∣∣ � C‖�‖L2∩C‖Q‖Q,
∣∣Tr0

(
V�RδQRδH

0
per

)∣∣ � C‖�‖L2∩C‖Q‖Q.

Proof. We prove the bounds in the norm defined in (68). Let Q ∈ Q and δ > 0. It is clear that RδQRδ is Hilbert–
Schmidt and self-adjoint. In addition, (RδQRδ)

±± = RδQ
±±Rδ . Using the fact that Rδ is a bounded self-adjoint

operator satisfying 0 � Rδ � 1 and commuting with H 0
per, we obtain∥∥(

H 0
per − c

)1/2
(RδQRδ)

±±(
H 0

per − c
)1/2∥∥

S1
�

∥∥(
H 0

per − c
)1/2

Q±±(
H 0

per − c
)1/2∥∥

S1
.

Likewise,∥∥(
H 0

per − c
)1/2

(RδQRδ)
∥∥2
S2

= Tr
(
Rδ

(
H 0

per − c
)1/2

QR2
δQ

(
H 0

per − c
)1/2

Rδ

)
�

∥∥(
H 0

per − c
)1/2

Q
∥∥2
S2

.

Hence, RδQRδ ∈Q and |RδQRδ|Q � |Q|Q. The property (71) is established in the proof of [5, Lemma 2].
Let us now turn to the second assertion. Clearly, i[Q,Rδ] is Hilbert–Schmidt and self-adjoint. In addition,(

H 0
per − c

)1/2(i[Q,Rδ]
)±±(

H 0
per − c

)1/2

= i
(
H 0

per − c
)1/2

Q±±(
H 0

per − c
)1/2

Rδ − iRδ

(
H 0

per − c
)1/2

Q±±(
H 0

per − c
)1/2 ∈S1,

and (
H 0

per − c
)1/2

i[Q,Rδ] = i
(
H 0

per − c
)1/2

QRδ − iRδ

(
H 0

per − c
)1/2

Q ∈ S2.

Hence, i[Q,Rδ] ∈Q and |i[Q,Rδ]|Q � 2|Q|Q. We deduce (72) from the fact that (see [5, Lemma 7])

∀1 � p < ∞, ∀A ∈Sp, lim
δ↓0

‖RδA − A‖Sp
= 0.

Let us finally prove the third assertion. We focus on the first estimate; the other ones can be established in a very
similar manner. Consider for instance(

1 − γ 0
per

)
V�RδH

0
perQ

(
1 − γ 0

per

) = (
V�RδH

0
perQ

)++ = V ++
� RδH

0
perQ

++ + V +−
� RδH

0
perQ

−+,

the term γ 0
perV�RδH

0
perQγ 0

per being treated similarly. Since V� and RδH
0
per are bounded, Q++ ∈ S1 and

Q+−,V −+
� ∈S2, the operator (V�RδH

0
perQ)++ is trace-class on L2(R3). Besides,

Tr
((

V�RδH
0
perQ

)++) = Tr
(
V ++

� RδH
0
perQ

++) + Tr
(
V +−

� RδH
0
perQ

−+)
. (73)

The second term in (73) is the trace of V +−
� RδH

0
perQ

−+ = V +−
� AδQ

−+, where Aδ = γ 0
perRδH

0
per is uniformly

bounded in δ. It can therefore be bounded by C‖V +−
� ‖S2‖Q‖Q, hence by C‖�‖L2∩C‖Q‖Q in view of Lemma 4.

The first term on the right-hand side of (73) can be rewritten as

Tr
(
V ++

� RδH
0
perQ

++) = Tr
(
w∗Ãδ

(
H 0

per − c
)1/2

Q++(
H 0

per − c
)1/2)

,

where Ãδ = H 0
per(H

0
per − c)−1Rδ is uniformly bounded in δ and w is defined in (70). The boundedness of w and the

inequality ‖Rδ‖� 1 imply the existence of a constant c̃ > 0, independent of δ, � and Q, such that∣∣Tr
((

V�RδH
0
perQ

)++)∣∣� c̃‖�‖L2∩C‖Q‖Q.

This therefore gives the expected estimate. �
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5.4. Proof of Proposition 5

We start with the case n = 1. We easily deduce from Lemmas 2, 3 and 4 that if ρ ∈ L1(R+,L2(R3) ∩ C) and if
v = vc(ρ), then Q1,v ∈ C0(R+,Q) and the following estimate holds:

∀t ∈R+,
∥∥Q1,v(t)

∥∥
Q � β

(
Ccom + βCcom,Q

∥∥Q0
∥∥
Q

) tˆ

0

∥∥ρ(s)
∥∥

L2∩C ds

� β max(Ccom, βCcom,Q)
(
1 + ∥∥Q0

∥∥
Q

) tˆ

0

∥∥ρ(s)
∥∥

L2∩C ds. (74)

We also infer from Lemmas 2, 3 and 4 that Tr0(Q1,v(t)) = 0 for all t ∈R+. Still using those three lemmas, we obtain
by an elementary induction argument that for all n� 2, Qn,v ∈ C0(R+,Q), Tr0(Qn,v(t)) = 0 for all t ∈ R+, and

∀t ∈R+,
∥∥Qn,v(t)

∥∥
Q � βCcom,Q

tˆ

0

∥∥ρ(s)
∥∥

L2∩C
∥∥Qn−1,v(s)

∥∥
Q ds. (75)

The estimate (30) being true for n = 1 in view of (74), it remains true for all n� 2.
The right-hand side of (27) therefore normally, hence uniformly, converges in Q on any compact subset of R+, to

some Q(t) such that Q(·) ∈ C0(R+,Q). It is then elementary to check that Q(·) is the unique solution to (23)–(24) in
C0(R+,Q).

5.5. Proof of Proposition 6

We consider the regularized operator χ
η
0 based on (37), and defined as

χ
η
0 : L1(

R,C′) → C0
b

(
R,L2(

R
3) ∩ C

) ∩ L1(
R,L2(

R
3) ∩ C

)
v �→ ρQ

η
1,v

. (76)

We show in this section that this operator is in fact well defined and bounded from L2(R,C) to L2(R,L2(R3)∩ C) for
any η > 0, so that E η is a bounded operator on L2(R,L2(R3)).

In the sequel, we will meet expressions of the form

fq(x) =
 

Γ ∗

+∞∑
n,m=1

(1n�N<m − 1m�N<n)αm,n,q,q ′um,q ′(x)un,q+q ′(x) dq ′.

The function f : q �→ fq(·) is in L∞(Γ ∗,L2
per(Γ )) as soon as

sup
q∈Γ ∗

 

Γ ∗

+∞∑
n,m=1

(1n�N<m + 1m�N<n)|αm,n,q,q ′ |2 dq ′ < ∞, (77)

and

‖f ‖L∞(Γ ∗,L2
per(Γ )) �

(
sup

q∈Γ ∗

 

Γ ∗

+∞∑
n,m=1

(1n�N<m + 1m�N<n)|αm,n,q,q ′ |2 dq ′
)1/2

.

It is easily checked that the coefficients αm,n,q,q ′ in the expressions below satisfy (77) using the following estimates.

Lemma 19.

(1) There exist (a−, b−) ∈ R
∗+ ×R and (a+, b+) ∈R

∗+ ×R such that, for all q ∈ Γ ∗,

a−n2/3 + b− � εn,q � a+n2/3 + b+. (78)
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(2) There exists a constant C ∈ R+ such that, for any function v ∈ H 2(R3) and for all 1 � n � N , m � N + 1,
q ∈ Γ ∗,

 

Γ ∗

∣∣〈un,q, vq−q ′um,q ′ 〉L2
per

∣∣2
dq ′ � C‖v‖2

H 2m
−4/3. (79)

(3) There exists a constant C ∈R+ such that, for any K ∈R
3,∣∣〈un,q, eiK·xum,q ′

〉
L2

per

∣∣� C
(
1 + |K|2)m−2/3. (80)

Proof. The bound (78) follows from (18) (see also (3.9) in [5]) and the results of Section XIII.15 in [18]. To prove (79)
and (80), we rewrite, for m large enough, um,q ′ as ε−1

m,q ′(H 0
per)q ′um,q ′ , so that, for all w ∈ H 2

per(Γ ),

〈un,q,wum,q ′ 〉L2
per

= 1

εm,q ′

〈(
H 0

per

)
q ′(wun,q), um,q ′

〉
L2

per

= 1

εm,q ′

〈
−1

2
w�un,q − (∇w + iwq ′) · ∇un,q +

(
−1

2
�w − iq ′ · ∇w + Vper + |q ′|2

2

)
un,q, um,q ′

〉
L2

per

.

We infer from (78) that there exists a constant C ∈ R+ such that for all 1 � n � N , m � N + 1, q ∈ Γ ∗, q ′ ∈ Γ ∗,
w ∈ H 2

per(Γ ),∣∣〈un,q,wum,q ′ 〉L2
per

∣∣� C‖w‖H 2
per

m−2/3.

Choosing w(x) = eiK·x leads to (80). Applying the square of the above inequality to w = vq−q ′ for v ∈ H 2(R3), and
integrating on Γ ∗, we obtain

 

Γ ∗

∣∣〈un,q, vq−q ′um,q ′ 〉L2
per

∣∣2
dq ′ � C

( 

Γ ∗
‖vq−q ′ ‖2

H 2
per

dq ′
)

m−4/3 � C′‖v‖2
H 2m

−4/3,

which completes the proof of the lemma. �
The proof of Proposition 6 is performed in two steps: (i) we first give the expression of [Ft (χ

η
0 v)(ω)]q(x) since

this quantity is the basis for several computations in this section and the following ones; (ii) we then evaluate
〈f2,E ηf1〉L2(L2). The proofs are written for regular functions v,f1, f2, the general result following by the continuity
of E η on L2(R,L2(R3)).

Lemma 20. For any function v ∈ S (R×R
3), the following equality holds in L∞(R×Γ ∗,L2

per(Γ )) (with ω ∈R and
q ∈ Γ ∗):

[
Ft

(
χ

η
0 v

)
(ω)

]
q

=
 

Γ ∗

+∞∑
n,m=1

(1n�N<m − 1m�N<n)
〈un,q+q ′ , [Ft v(ω)]qum,q ′ 〉L2

per
um,q ′un,q+q ′

εn,q+q ′ − εm,q ′ − ω − iη
dq ′. (81)

Proof. Let v ∈ S (R×R
3). We first note that

Q
η
1,v(t) = −i

tˆ

−∞

(
U0(t − s)v(s)γ 0

perU0(t − s)∗ − U0(t − s)γ 0
perv(s)U0(t − s)∗

)
e−η(t−s) ds

= i

tˆ (
U0(t − s)γ 0

perv(s)
(
γ 0

per

)⊥
U0(t − s)∗ − U0(t − s)

(
γ 0

per

)⊥
v(s)γ 0

perU0(t − s)∗
)
e−η(t−s) ds.
−∞
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The Bloch decomposition of the operator Q
η
1,v(t) reads

[
Q

η
1,v(t)

]
q,q ′ = i

tˆ

−∞

[
U0(t − s)γ 0

per

]
q

[
v(s)

]
q−q ′

[(
γ 0

per

)⊥
U0(t − s)∗

]
q ′e

−η(t−s) ds

− i

tˆ

−∞

[
U0(t − s)

(
γ 0

per

)⊥]
q

[
v(s)

]
q−q ′

[
γ 0

perU0(t − s)∗
]
q ′e

−η(t−s) ds

= i
ˆ

R

+∞∑
n,m=1

(1n�N<m − 1m�N<n)g
η

n,q,m,q ′(t − s)hn,q,m,q ′(s)|un,q〉〈um,q ′ |ds,

where g
η

n,q,m,q ′(t) = exp(−(η+ i(εn,q −εm,q ′))t)1t�0 and hn,q,m,q ′(t) = 〈un,q, [v(t)]q−q ′um,q ′ 〉L2
per

. It can be checked

that [Qη
1,v(t)f ]q = ffl

Γ ∗ [Qη
1,v(t)]q,q ′fq ′ dq ′ is well defined in L2

per(Γ ) when η > 0 since g
η

n,q,m,q ′(t) is uniformly

integrable in t, n,m,q, q ′. Therefore (see [6, Section 6.5]), the following equality holds in L∞(R× Γ ∗,L2
per(Γ )) for

the function (t, q) �→ [χη
0 v(t)]q :[

χ
η
0 v(t)

]
q
(x) =

 

Γ ∗

[
Q

η
1,v(t)

]
q+q ′,q ′(x, x) dq ′

= i
 

Γ ∗

+∞∑
n,m=1

(1n�N<m − 1m�N<n)
(
g

η

n,q+q ′,m,q ′ � hn,q+q ′,m,q ′
)
(t)um,q ′(x)un,q+q ′(x) dq ′.

Remark that g
η

n,q+q ′,m,q ′ and hn,q+q ′,m,q ′ are both integrable, and that

Ft

(
g

η

n,q+q ′,m,q ′
)
(ω) = − i

εn,q+q ′ − εm,q ′ − ω − iη
.

It follows that[
Ft

(
χ

η
0 v

)
(ω)

]
q
(x)

=
 

Γ ∗

+∞∑
n,m=1

(1n�N<m − 1m�N<n)Ft

(
g

η

n,q+q ′,m,q ′
)
(ω)Ft (hn,q+q ′,m,q ′)(ω)um,q ′(x)un,q+q ′(x) dq ′

=
 

Γ ∗

+∞∑
n,m=1

(1n�N<m − 1m�N<n)
〈un,q+q ′ , [Ft v(ω)]qum,q ′ 〉L2

per
um,q ′(x)un,q+q ′(x)

εn,q+q ′ − εm,q ′ − ω − iη
dq ′,

where the equality holds in L2
per(Γ ) (for functions in the x variable) uniformly in ω ∈ R and q ∈ Γ ∗. �

Lemma 21. For any f1, f2 ∈ S (R×R3) and η > 0,

〈
f2,E

ηf1
〉
L2(L2)

= − 1

π
Im

( ˛

Cη

ˆ

R

Tr

[
(γ 0

per)
⊥

z − (H 0
per + ω + iη)

Ft v
1/2
c (f2)(ω)

(γ 0
per)

z − H 0
per

Ft v
1/2
c (f1)(ω)

]
dωdz

)
.

(82)

Proof. Using Lemma 20,〈
f2,E

ηf1
〉
L2(L2)

=
ˆ  

∗

ˆ [
Ft v

1/2
c (f2)(ω)

]
q
(x)

[
Ftχ

η
0 v

1/2
c (f1)(ω)

]
q
(x) dx dq dω
R Γ Γ
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=
ˆ

R

 

(Γ ∗)2

+∞∑
n,m=1

(1n�N<m − 1m�N<n)

×
〈um,q ′ , [Ft v

1/2
c (f2)(ω)]qun,q+q ′ 〉L2

per
〈un,q+q ′ , [Ft v

1/2
c (f1)(ω)]qum,q ′ 〉L2

per

εn,q+q ′ − εm,q ′ − ω − iη
dq ′ dq dω

= − 1

π
Im

(
TrL2

per

[ ˛

Cη

ˆ

R

 

(Γ ∗)2

(γ 0
per)

⊥
q ′

z − (H 0
per + ω + iη)q ′

[
Ft v

1/2
c (f2)(ω)

]
q

× (γ 0
per)q+q ′

z − (H 0
per)q+q ′

[
Ft v

1/2
c (f1)(ω)

]
q
dq ′ dq dωdz

])
,

where we have used the fact that the terms in the sum over 1 � m � N < n are the complex conjugates of the
corresponding terms in the sum over 1 � n� N < m. Remarking that

TrL2
per

[  

Γ ∗

 

Γ ∗

(γ 0
per)

⊥
q ′

z − (H 0
per + ω + iη)q ′

[
Ft v

1/2
c (f2)(ω)

]
q

(γ 0
per)q+q ′

z − (H 0
per)q+q ′

[
Ft v

1/2
c (f1)(ω)

]
q
dq ′ dq

]

= TrL2
per

[  

Γ ∗

 

Γ ∗

(γ 0
per)

⊥
q ′

z − (H 0
per + ω + iη)q ′

[
Ft v

1/2
c (f2)(−ω)

]
q ′−q

(γ 0
per)q

z − (H 0
per)q

[
Ft v

1/2
c (f1)(ω)

]
q−q ′ dq ′ dq

]

=
 

Γ ∗
TrL2

per

[
(γ 0

per)
⊥

z − (H 0
per + ω + iη)

[
Ft v

1/2
c (f2)(−ω)

] (γ 0
per)

z − H 0
per

[
Ft v

1/2
c (f1)(ω)

]]
q ′,q ′

dq ′

= Tr

[
(γ 0

per)
⊥

z − (H 0
per + ω + iη)

(
Ft v

1/2
c (f2)(ω)

) (γ 0
per)

z − H 0
per

(
Ft v

1/2
c (f1)(ω)

)]
,

we obtain the expected result. �
Proposition 6 now easily follows from (82), using the density of S (R × R

3) in L2(R,L2(R3)). The bounds on
E η(ω) are a consequence of (42) (see the discussion after this equation).

5.6. Proof of Proposition 7

Note first that, thanks to Lemma 19 above, the sums over n,m in (45) are convergent when η > 0. In addition, for
all η > 0 and all q ∈ Γ ∗, the expression (45) can be rewritten as

T
η

K,K ′(ω, q) = 1

2π i
TrL2

per

( ˛

Cη

 

Γ ∗
e−iK·x (γ 0

per)q+q ′

z − (H 0
per)q+q ′

eiK ′·x (γ 0
per)

⊥
q ′

z − (H 0
per + ω + iη)q ′

dq ′ dz

)

+ 1

2π i
TrL2

per

( ˛

Cη

 

Γ ∗
e−iK·x (γ 0

per)
⊥
q+q ′

z − (H 0
per − ω − iη)q+q ′

eiK ′·x (γ 0
per)q ′

z − (H 0
per)q ′

dq ′ dz

)
, (83)

where Cη is plotted in Fig. 1. This gives the continuity of the mapping (ω, q) �→ T
η

K,K ′(ω, q) on R × Γ ∗ for any
η > 0.

To prove (44), we use Lemma 20, and write

(2π)3/2Ft,x

(
χ

η
0 v

)
(ω, q + K) =

ˆ

Γ

[
Ft

(
χ

η
0 v

)
(ω)

]
q
(x)e−iK·xdx

=
+∞∑

n,m=1

(1n�N<m − 1m�N<n)

 
∗

〈un,q+q ′ , [Ft v(ω)]qum,q ′ 〉L2
per

〈um,q ′ , e−iK·xun,q+q ′ 〉L2
per

εn,q+q ′ − εm,q ′ − ω − iη
dq ′.
Γ
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Now,

[
Ft v(ω)

]
q
(x) = (2π)3/2

|Γ |
∑

K ′∈R∗
Ft,xv

(
ω,q + K ′)eiK ′·x,

which implies that

Ft,x

(
χ

η
0 v

)
(ω, q + K) =

∑
K ′∈R∗

[
1Γ ∗(q)

|Γ |
+∞∑

n,m=1

(1n�N<m − 1m�N<n)T
η

n,m,K,K ′(ω, q)

]
Ft,xv

(
ω,q + K ′),

with

T
η

n,m,K,K ′(ω, q) =
 

Γ ∗

〈um,q ′ , e−iK·xun,q+q ′ 〉L2
per

〈un,q+q ′ , eiK ′·xum,q ′ 〉L2
per

εn,q+q ′ − εm,q ′ − ω − iη
dq ′. (84)

Therefore,

(
χ

η
0

)
K,K ′(ω, q) = 1Γ ∗(q)

|Γ |
+∞∑

n,m=1

(1n�N<m − 1m�N<n)T
η

n,m,K,K ′(ω, q).

Since F(v
1/2
c f )(k) = √

4π |k|−1Ff (k), we obtain that the entries of the Bloch matrix of the operator E η =
v

1/2
c χ

η
0 v

1/2
c are given by (44).

5.7. Proof of Proposition 8

The outline of the proof is the following:

(i) we first characterize the limit when η goes to zero of the matrices E
η

K,K ′ for a given pair (K,K ′) ∈ (R∗)2

(Lemma 22);
(ii) next, we show that for any f ∈ S (R×R

3), the series∑
K,K ′∈R∗

τK

(
τ−K ′(Ft,xf )E

η

K,K ′
)

converges to Ft,x(E ηf ) in S ′(R×R
3), and has a well-defined limit when η goes to zero (Lemma 23);

(iii) finally, we prove that E η strongly converges to E on time intervals of the form (−∞, T ], which allows us to
identify Ft,x(E f ) with the limiting series obtained in the previous step (see Lemma 25 and the discussion after
its proof).

Lemma 22. For any K,K ′ ∈ R∗, the family of functions E
η

K,K ′ defined by (44) has a limit in S ′(R×R
3), denoted by

EK,K ′ , when η goes to zero. Moreover, the support of EK,K ′ is contained in R× Γ ∗.

Proof. It is easily seen that for any η > 0, the function (ω, q) �→ E
η

K,K ′(ω, q) belongs to L∞(R × R
3), hence to

S ′(R×R
3), and that its support is included in R× Γ ∗. Fix a function ϕ ∈ S (R×R

3). It holds:〈
E

η

K,K ′ , ϕ
〉
S ′,S =

ˆ

R

ˆ

Γ ∗
E

η

K,K ′(ω, q)ϕ(ω,q) dq dω

= 1

|Γ |
+∞∑

n,m=1

(1n�N<m − 1m�N<n)

ˆ

Γ ∗

|q + K ′|
|q + K|

(ˆ
R

T
η

n,m,K,K ′(ω, q)ϕ(ω,q) dω

)
dq,

where T
η

′ is defined in (84). Now,

n,m,K,K
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ˆ

R

T
η

n,m,K,K ′(ω, q)ϕ(ω,q) dω =
 

Γ ∗

〈
um,q ′ , e−iK·xun,q+q ′

〉
L2

per

〈
un,q+q ′ , eiK ′·xum,q ′

〉
L2

per
Ψ n,m,η

ϕ

(
q, q ′)dq ′,

with

Ψ n,m,η
ϕ

(
q, q ′) =

ˆ

R

ϕ(ω,q)

εn,q+q ′ − εm,q ′ − ω − iη
dω.

Standard computations show that the functions Ψ
n,m,η
ϕ are bounded in L∞(Γ ∗ × Γ ∗) uniformly for 0 � η � 1, and

1 � n� N < m or 1 �m � N < n. In addition,

lim
η→0

Ψ n,m,η
ϕ

(
q, q ′) = Φn,m

ϕ

(
q, q ′),

where

Φn,m
ϕ

(
q, q ′) := −

〈
p.v.

(
1

| · |
)

, ϕ(εn,q+q ′ − εm,q ′ + ·, q)

〉
S ′,S

− iπϕ(εn,q+q ′ − εm,q ′ , q). (85)

It then follows from Lemma 19 that 〈E η

K,K ′ , ϕ〉S ′,S has a limit 〈EK,K ′ , ϕ〉S ′,S when η goes to zero, given by

〈EK,K ′ , ϕ〉S ′,S = 1

|Γ |
+∞∑

n,m=1

(1n�N<m − 1m�N<n)

ˆ

Γ ∗

|q + K ′|
|q + K|

×
 

Γ ∗

〈
um,q ′ , e−iK·xun,q+q ′

〉
L2

per

〈
un,q+q ′ , eiK ′·xum,q ′

〉
L2

per
Φn,m

ϕ

(
q, q ′)dq ′ dq.

We also infer from the above arguments that there exists a constant C independent of ϕ, K and K ′ such that∣∣〈EK,K ′ , ϕ〉S ′,S
∣∣� C

(
1 + |K ′|)3(1 + |K|)NΓ ∗(ϕ),

where the seminorm NΓ ∗ is defined on S (R×R
3) by

NΓ ∗(ϕ) := ∥∥(
1 + |ω|)ϕ∥∥

L∞(R×Γ ∗) +
∥∥∥∥ ∂ϕ

∂ω

∥∥∥∥
L∞(R×Γ ∗)

.

The limit EK,K ′ of E
η

K,K ′ therefore defines a tempered distribution of order 1. Besides, as the distributions E
η

K,K ′ are

all supported in R× Γ ∗, so is their limit. �
Lemma 23. Let f ∈ S (R×R3). For all η > 0, it holds

Ft,x

(
E ηf

) =
∑

K,K ′∈R∗
τK

(
τ−K ′(Ft,xf )E

η

K,K ′
)

(86)

in S ′(R × R
3). In addition, the above quantity converges in S ′(R × R

3), when η goes to zero, to the tempered
distribution

T =
∑

K,K ′∈R∗
τK

(
τ−K ′(Ft,xf )EK,K ′

)
,

where the tempered distributions EK,K ′ are defined in Lemma 22.

Proof. The computations performed in the proof of Lemma 22 show that there exists a constant C > 0 and η0 > 0
small enough such that, for all 0 � η � η0, all K,K ′ in R∗, and all ϕ ∈ S (R×R

3),∣∣〈E η

K,K ′ , ϕ
〉
S ′,S

∣∣� C
(
1 + ∣∣K ′∣∣)3(1 + |K|)NΓ ∗(ϕ).

Therefore,
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∣∣〈τK

(
τ−K ′(Ft,xf )E

η

K,K ′
)
, ϕ

〉
S ′,S

∣∣ = ∣∣〈E η

K,K ′ , τ−K ′(Ft,xf )τ−K(ϕ)
〉
S ′,S

∣∣
� C

(
1 + ∣∣K ′∣∣)3(1 + |K|)NΓ ∗

(
τ−K ′(Ft,xf )τ−K(ϕ)

)
� C

(
1 + ∣∣K ′∣∣)3(

1 + |K|)NΓ ∗
(
(Ft,xf )

(· , · + K ′))NΓ ∗
(
ϕ(· , · + K)

)
.

Consequently, for all f ∈ S (R×R
3), and any 0 � η � η0, the series∑

K,K ′∈R∗
τK

(
τ−K ′(Ft,xf )E

η

K,K ′
)

converges in S ′(R×R
3) and∣∣∣∣〈 ∑

K,K ′∈R∗
τK

(
τ−K ′(Ft,xf )E

η

K,K ′
)
, ϕ

〉
S ′,S

∣∣∣∣� CN1,7(Ft,xf )N1,5(ϕ),

where for (p, q) ∈N×N, Np,q denotes the Schwartz seminorm on S (R×R
3) defined as

Np,q(φ) := max
|αp |�p, |αq |�q

∥∥∥∥(
1 + |ω|)p(

1 + |k|)q ∂ |αp |+|αq |φ
∂ωαp∂kαq

∥∥∥∥
L∞

.

The claimed convergence result is then easily obtained. �
Remark 24 (Sufficient regularity requirements on the function f ). The above proof shows that the series (86) are well
defined as soon as N1,7(Ft,xf ) < ∞. Actually, weaker conditions such as∥∥(

1 + |ω|)(1 + |k|)6+εFt,xf (ω, k)
∥∥

L∞ +
∥∥∥∥(

1 + |k|)6+ε ∂Ft,xf

∂ω
(ω, k)

∥∥∥∥
L∞

< ∞

can be derived by using sharper estimates in the above two lemmas.

Lemma 25. For all f ∈ L1(R,L2(R3)), it holds

∀T ∈ R, lim
η↓0

E ηf = E f in L∞(
(−∞, T ],H 1(

R
3)).

Proof. This result is a straightforward consequence of the following fact: for any given potential v ∈ L1(R,C′),

∀T ∈ R, sup
t∈(−∞,T ]

∥∥Q
η
1,v(t) − Q1,v(t)

∥∥
Q −→

η→0
0, (87)

together with the continuity of the linear mappings Q � Q → ρQ ∈ L2(R3) ∩ C, v
1/2
c : L2(R3) → C′ and v

1/2
c :

L2(R3) ∩ C → C′ ∩ L2(R3) = H 1(R3). Actually, it is sufficient to show (87) for ṽ ∈ C∞
c (R×R

3). Indeed, fix ε > 0,
and approximate v by some ṽ ∈ C∞

c (R×R
3) in such a way thatˆ

R

∥∥v(t) − ṽ(t)
∥∥
C′ dt � ε.

Then, using Lemmas 2 and 4, we obtain

∀t ∈R,
∥∥Q

η
1,v(t) − Q

η
1,̃v(t)

∥∥
Q � βCcom

tˆ

−∞

∥∥v(s) − ṽ(s)
∥∥
C′ ds � βCcomε,

and similarly ‖Q1,v(t) − Q1,̃v(t)‖Q � βCcomε. Let us now consider v ∈ C∞
c (R × R

3) and T0 > 0 large enough so
that the support of t �→ v(t) is contained in [−T0, T0]. Then,

sup
t∈(−∞,T ]

∥∥Q
η
1,v(t) − Q1,v(t)

∥∥
Q � βCcom‖v‖L1(R,C′)

(
eη(|T |+T0) − 1

)−→
η→0

0,

which concludes the proof. �
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With these results, the proof of Proposition 8 is now straightforward. Indeed, Lemma 25 implies that, for any f ∈
S (R×R

3), Ft,x(E ηf ) converges to Ft,x(E f ) in S ′(R×R
3), while Lemma 23 allows to identify the corresponding

limit.

5.8. Proof of Proposition 10

We fix f ∈ S (R×R
3) and prove that Ft,x(Ẽ αf ) converges in S ′(R×R

3) to Ft,x(Ẽ 0f ) when α goes to zero.
The expression

Q̃α
1,v(t) = i

α

tˆ

−∞
U0

(
t − s

α

)[
γ 0

per, v(s)
]
U0

(
t − s

α

)∗
ds

shows that the adiabatic evolution can be understood as the standard evolution upon considering the evolution operator
with generator H 0

per/α (hence replacing εn,q+q ′ − εm,q ′ by (εn,q+q ′ − εm,q ′)/α in the expressions involving Bloch

matrices), and globally rescaling the result by a factor α−1. According to Proposition 8 and the results established in
Section 5.7, the quantity Ft,x(Ẽ αf ) can therefore be expressed in terms of the Bloch matrices (Ẽ α

K,K ′)K,K ′∈R∗ by the

following equality in S ′(R×R
3):

Ft,x

(
Ẽ αf

) =
∑

K,K ′∈R∗
τK

(
τ−K ′(Ft,xf )Ẽ α

K,K ′
)
,

where for any ϕ ∈ S (R×R3),

〈
Ẽ α

K,K ′ , ϕ
〉
S ′,S =

+∞∑
n,m=1

(1n�N<m − 1m�N<n)E
n,m,α
K,K ′ (ϕ),

with

E
n,m,α
K,K ′ (ϕ) = 1

|Γ |
ˆ

Γ ∗

 

Γ ∗

|q + K ′|
|q + K|

〈
um,q ′ , e−iK·xun,q+q ′

〉
L2

per

〈
un,q+q ′ , eiK ′·xum,q ′

〉
L2

per
Φ̃n,m,α

ϕ

(
q, q ′)dq dq ′,

and

Φ̃n,m,α
ϕ

(
q, q ′) := − 1

α

〈
p.v.

(
1

| · |
)

, ϕ

(
εn,q+q ′ − εm,q ′

α
+ ·, q

)〉
S ′,S

− i
π

α
ϕ

(
εn,q+q ′ − εm,q ′

α
,q

)
.

On the other hand,

Ft,x

(
Ẽ 0f

) =
∑

K,K ′∈R∗
τK

(
τ−K ′(Ft,xf )Ẽ 0

K,K ′
)
,

where for any ϕ ∈ S (R×R
3),

〈
Ẽ 0

K,K ′ , ϕ
〉
S ′,S =

+∞∑
n,m=1

(1n�N<m − 1m�N<n)E
n,m,0
K,K ′ (ϕ),

with

E
n,m,0
K,K ′ (ϕ) = 1

|Γ |
ˆ

Γ ∗

 

Γ ∗

|q + K ′|
|q + K|

〈um,q ′ , e−iK·xun,q+q ′ 〉L2
per

〈un,q+q ′ , eiK ′·xum,q ′ 〉L2
per

εn,q+q ′ − εm,q ′

(ˆ

R

ϕ(ω,q)dω

)
dq dq ′.

We now use the same arguments as in the previous section to prove the convergence of 〈Ẽ α
K,K ′ , ϕ〉S ′,S to

〈Ẽ 0 ′ , ϕ〉S ′,S when α goes to zero. The only point we need to check is that

K,K
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• there exists a constant C such that for all 0 < α � 1, all 1 � n� N < m or 1 � m � N < n, and all q, q ′ in Γ ∗,∣∣Φ̃n,m,α
ϕ

(
q, q ′)∣∣� C;

• for all 1 � n� N < m or 1 � m� N < n, and all q, q ′ in Γ ∗,

lim
α↓0

Φ̃n,m,α
ϕ

(
q, q ′) = 1

εn,q+q ′ − εm,q ′

ˆ

R

ϕ(ω,q)dω.

This is a direct consequence of the following lemma. We denote by Np , p ∈ N, the usual Schwartz seminorms on
S (R).

Lemma 26. For given ψ ∈ S (R), y ∈R, and α > 0, we set

hψ,y(α) = − 1

α

〈
p.v.

(
1

| · |
)

,ψ

(
y

α
+ ·

)〉
S ′,S

.

Then, there exists Cψ < ∞ such that for all |y| � δ > 0, and all α ∈ (0,1],∣∣hψ,y(α)
∣∣ � Cψ

δ
N3(ψ),

and, for any y �= 0,

lim
α↓0

hψ,y(α) = 1

y

ˆ

R

ψ.

Proof. Consider the case when y > 0. It holds

hψ,y(α) = 1

y
gψ

(
y

α

)
,

where

gψ(z) = −z

−1ˆ

−∞

ψ(z + x)

x
dx − z

1ˆ

0

ψ(z + x) − ψ(z − x)

x
dx − z

+∞ˆ

1

ψ(z + x)

x
dx.

The third term can be bounded as follows: for z � 1,∣∣∣∣∣z
+∞ˆ

1

ψ(z + x)

x
dx

∣∣∣∣∣ =
∣∣∣∣∣

+∞ˆ

1

z

z + x

(z + x)2ψ(z + x)

x(x + z)
dx

∣∣∣∣∣�
( +∞ˆ

1

dx

x(x + z)

)
N2(ψ) −→

z→+∞ 0.

Moreover, for z � 2,∣∣∣∣∣z
1ˆ

0

ψ(z + x) − ψ(z − x)

x
dx

∣∣∣∣∣ = 2

∣∣∣∣∣
1ˆ

0

zψ ′(z + θx,zx) dx

∣∣∣∣∣� 2z

(z − 1)2
N2(ψ) −→

z→+∞ 0,

where θx,z ∈ [−1,1]. Lastly, for z � 2,

−z

−1ˆ

−∞

ψ(z + x)

x
dx =

z−1ˆ

−∞

1

1 − y/z
ψ(y)dy =

(z−1)/2ˆ

−∞

1

1 − y/z
ψ(y)dy +

z−1ˆ

(z−1)/2

1

1 − y/z
ψ(y)dy.

The first term of the right-hand side of the above equality is controlled by

2

(z−1)/2ˆ
|ψ | � 2

ˆ
N2(ψ)

1 + y2
dy = 2πN2(ψ),
−∞ R
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and converges to
´
R

ψ when z goes to +∞. To bound the other term, we notice that∣∣∣∣∣
z−1ˆ

(z−1)/2

1

1 − y/z
ψ(y)dy

∣∣∣∣∣� z

z−1ˆ

(z−1)/2

∣∣ψ(y)
∣∣dy � z

z−1ˆ

(z−1)/2

N3(ψ)

y3
dy = 3zN3(ψ)

2(z − 1)2
−→

z→+∞ 0.

Hence the function z �→ gψ(z) is bounded by CN3(ψ), uniformly on [2,+∞), and converges to
´
R

ψ when z goes
to +∞. This completes the proof. �
5.9. Proof of Theorem 11

To simplify the notation, we denote by v(s) := −vc(ν(s)) and wQ(s) := v(s) + vc(ρQ(s)) = vc(ρQ(s) − ν(s)). We
proceed in three steps:

(i) we first show that the dynamics is well defined for short times (Section 5.9.1);
(ii) we then extend the result to arbitrary times using some energy estimate (Section 5.9.2);

(iii) we finally establish a few qualitative properties of the solution (Section 5.9.3).

5.9.1. Local-in-time existence and uniqueness
The existence and uniqueness in C0([0, T ],Q) of the solution to the integral equation (53) for short times

easily follows from Lemmas 2, 3 and 4, using standard techniques. For each T > 0, we consider the mapping
FT : C0([0, T ],Q) → C0([0, T ],Q) defined by

FT (Q)(t) = U0(t)Q
0U0(t)

∗ − i

tˆ

0

U0(t − s)
[
vc

(
ρQ(s) − ν(s)

)
, γ 0

per + Q(s)
]
U0(t − s)∗ ds. (88)

Notice that the solutions of the integral equation (53) on [0, T ] are the fixed points of FT . For each T > 0, the mapping
FT is well defined in view of Lemmas 2, 3 and 4. The existence of a fixed point for T small enough is, in turn, given
by the following

Lemma 27. For any R > β‖Q0‖Q (where β is defined in Lemma 2), there exists T > 0 small enough such that FT is
a contraction on

BR =
{
Q ∈ C0([0, T ],Q) ∣∣∣ sup

0�t�T

∥∥Q(t)
∥∥
Q � R

}
.

Proof. Let Q ∈ BR . Lemmas 2, 3 and 4, together with the continuity property (14) show that∥∥FT (Q)(t) − U0(t)Q
0U0(t)

∗∥∥
Q

� β

(
Ccom

tˆ

0

∥∥ρQ(s) − ν(s)
∥∥
C ds + Ccom,Q

tˆ

0

∥∥ρQ(s) − ν(s)
∥∥

L2∩C
∥∥Q(s)

∥∥
Q ds

)

� β(Ccom + Ccom,QR)

T̂

0

∥∥ρQ(s) − ν(s)
∥∥

L2∩C ds

� β(Ccom + Ccom,QR)

(
CρRT +

T̂

0

∥∥ν(s)
∥∥

L2∩C ds

)
.

Therefore,

∥∥FT (Q)(t)
∥∥
Q � β

∥∥Q0
∥∥
Q + β(Ccom + Ccom,QR)

(
CρRT +

T̂∥∥ν(s)
∥∥

L2∩C ds

)
�R
0
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for T small enough, so that the application FT : BR → BR is well defined. Now, consider Q1,Q2 ∈ BR . Then,

FT (Q1)(t) − FT (Q2)(t) = −i

tˆ

0

U0(t − s)
[
wQ1(s) − wQ2(s), γ 0

per + Q1(s)
]
U0(t − s)∗ds

− i

tˆ

0

U0(t − s)
[
wQ2(s),Q1(s) − Q2(s)

]
U0(t − s)∗ds,

so that

∥∥FT (Q1)(t) − FT (Q2)(t)
∥∥
Q � βCρ(Ccom + Ccom,QR)

tˆ

0

∥∥Q1(s) − Q2(s)
∥∥
Q ds

+ βCcom,Q

tˆ

0

(∥∥ν(s)
∥∥

L2∩C + CρR
)∥∥Q1(s) − Q2(s)

∥∥
Q ds

� α(T ) max
0�s�T

∥∥Q1(s) − Q2(s)
∥∥
Q,

where

α(T ) = βCcom,Q

T̂

0

∥∥ν(s)
∥∥

L2∩C ds + βCρ(Ccom + 2Ccom,QR)T

is (strictly) smaller than 1 when T is small enough. This shows that FT is a contraction provided T is small
enough. �
5.9.2. Global-in-time existence and uniqueness

Let [0, Tc), 0 < Tc � ∞, the maximal interval on which the solution to the integral equation (53) is well defined. In
order to obtain global-in-time existence and uniqueness, that is to prove that Tc = ∞, it suffices to show that ‖Q(t)‖Q
does not blow up in finite time. For this purpose, we rely on the following energy estimate:

∀t ∈ [0, Tc), E
(
t,Q(t)

) = E
(
0,Q0) −

tˆ

0

D
(
ρQ(s), ν

′(s)
)
ds, (89)

where we recall that E(t,Q) is defined in (54) as

E(t,Q) = Tr0
(
H 0

perQ
) − D

(
ρQ,ν(t)

) + 1

2
D(ρQ,ρQ).

Although the formal derivation of (89) is a simple exercise, the rigorous proof is somewhat technical. We first complete
the proof of the global-in-time existence and uniqueness, assuming that (89) holds true; the latter equality will be
established at the end of the present section.

From (89), we infer that

E
(
t,Q(t)

)
� E

(
0,Q0) +

tˆ

0

∣∣D(
ρQ(s), ν

′(s)
)∣∣ds � E

(
0,Q0) + Cρ

tˆ

0

∥∥ν′(s)
∥∥
C
∥∥Q(s)

∥∥
Q ds.

On the other hand, we deduce from Corollary 2 in [5] that there exist a, b > 0 such that for all t ∈R+ and all Q ∈K,

E(t,Q) � a‖Q‖Q + εF Tr0(Q) − b − 1∥∥ν(t)
∥∥2
C .
2
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In addition, Tr0(Q(t)) = Tr0(Q
0) for all t ∈ [0, Tc) in view of Lemmas 2, 3 and 4 and the formula

Q(t) = U0(t)Q
0U0(t)

∗ − i

tˆ

0

U0(t − s)
[
vc

(
ρQ(s) − ν(s)

)
, γ 0

per + Q(s)
]
U0(t − s)∗ ds.

Therefore,

∀t ∈ [0, Tc),
∥∥Q(t)

∥∥
Q � α1(t) +

tˆ

0

α2(s)
∥∥Q(s)

∥∥
Q ds,

where

α1(t) = 1

a

(
E
(
0,Q0) − εF Tr0

(
Q0) + b + 1

2

∥∥ν(t)
∥∥2
C

)
, α2(t) = Cρ

a

∥∥ν′(t)
∥∥
C .

As, by assumption, ν ∈ W
1,1
loc (R+,C), we infer from the Gronwall lemma that ‖Q(t)‖Q does not blow up in finite

time, which implies that Tc = ∞.
Let us finally establish the energy estimate (89). The proof is based on the following result.

Lemma 28. Consider the regularization operators Rδ = (1 + δ|H 0
per − εF|)−1, and the regularized energy Eδ(t,Q) =

E(t,RδQRδ), where E is defined in (54). Let ν ∈ W
1,1
loc (R+,C) and Q ∈ C0([0, Tc),Q) be the unique solution to the

integral equation (53). Then, there exists a constant c ∈R+ such that, for all t ∈ [0, Tc),

Eδ

(
t,Q(t)

) = Eδ

(
0,Q0) −

tˆ

0

D
(
ρRδQ(s)Rδ

, ν′(s)
)
ds +

tˆ

0

rδ(s) ds, (90)

with ∣∣rδ(t)∣∣ � C
(∥∥ν(t)

∥∥
L2∩C + ∥∥Q(t)

∥∥
Q

)
× ((

1 + ∥∥Q(t)
∥∥
Q

)∥∥RδQ(t)Rδ − Q(t)
∥∥
Q + ∥∥i

[
Q(t),Rδ

]∥∥
Q + ∥∥RδQ̃(t)Rδ − Q̃(t)

∥∥
Q

)
, (91)

where Q̃(t) = i[wQ(t), γ 0
per + Q(t)].

The energy estimate (89) can then be easily deduced from (90), by remarking that the mapping Q � Q �→ E(t,Q) ∈
R is continuous, and that the first two assertions in Lemma 18 allow to pass to the limit in (90) by means of the
dominated convergence theorem.

Proof of Lemma 28. In this proof, the constant C > 0 may vary from line to line, and can be chosen to be independent
of δ. By density, it is enough to establish (90) in the case when ν ∈ C1(R+,L2(R3) ∩ C).

The solution of (53) can be rewritten as

Q(t) = U0(t)

(
Q0 − i

tˆ

0

U0(s)
∗[wQ(s), γ 0

per + Q(s)
]
U0(s) ds

)
U0(t)

∗. (92)

In addition,

i
d

dt

(
RδU0(t)

) = RδH
0
perU0(t),

where RδH
0
per = H 0

perRδ is bounded. Therefore, t �→ RδQ(t)Rδ is differentiable and

i
d (

RδQ(t)Rδ

) = RδH
0
perQ(t)Rδ − RδQ(t)RδH

0
per + Rδ

[
wQ(t), γ 0

per + Q(t)
]
Rδ. (93)
dt
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Since Q(t) ∈ Q and i[wQ(t), γ 0
per + Q(t)] ∈ Q by Lemmas 3 and 4, it is easily verified that d

dt
(RδQ(t)Rδ) ∈ Q for

all δ > 0. Now, (92) implies

Tr0
(
H 0

perRδQ(t)Rδ

) = Tr0
(
H 0

perRδQ
0Rδ

) −
tˆ

0

Tr0
(
H 0

perRδi
[
wQ(s), γ 0

per + Q(s)
]
Rδ

)
ds,

so that t �→ Tr0(H
0
perRδQ(t)Rδ) is differentiable, with

d

dt

(
Tr0

(
H 0

perRδQ(t)Rδ

)) = −Tr0
(
H 0

perRδi
[
wQ(t), γ 0

per + Q(t)
]
Rδ

)
= −Tr0

(
H 0

perRδi
[
wQ(t),Q(t)

]
Rδ

)
= −Tr0

(
RδH

0
perRδi

[
wQ(t),Q(t)

])
,

where we have used that γ 0
per, Rδ and RδH

0
per commute. Moreover,

d

dt
D

(
ρRδQ(t)Rδ

, ν(t)
) = D

(
ρRδQ(t)Rδ

, ν′(t)
) + Tr0

(
vc

(
ν(t)

) d

dt

(
RδQ(t)Rδ

))
,

where the second expression makes sense since d
dt

(RδQ(t)Rδ) ∈ Q. Finally,

d

dt
D(ρRδQ(t)Rδ

, ρRδQ(t)Rδ
) = 2 Tr0

(
vc(ρRδQ(t)Rδ

)
d

dt

(
RδQ(t)Rδ

))
.

Therefore, t �→ Eδ(t,Q(t)) is differentiable and

d

dt

(
Eδ

(
t,Q(t)

)) = −D
(
ρRδQ(t)Rδ

, ν′(t)
) + rδ(t)

where

rδ(t) = Tr0

(
wRδQRδ (t)

d

dt

(
RδQ(t)Rδ

)) − Tr0
(
RδH

0
perRδi

[
wQ(t),Q(t)

])
. (94)

Therefore, (90) holds true for rδ given by (94). Using (93), we may rewrite rδ(t) as

rδ(t) = −i Tr0
(
vc(ρRδQ(t)Rδ−Q(t))RδH

0
perQ(t)Rδ

) + i Tr0
(
vc(ρRδQ(t)Rδ−Q(t))RδQ(t)RδH

0
per

)
− Tr0

(
vc(ρRδQ(t)Rδ−Q(t))Rδi

[
wQ(t), γ 0

per + Q(t)
]
Rδ

) − Tr0
(
wQ(t)Rδi

[
wQ(t), γ 0

per + Q(t)
]
Rδ

)
− Tr0

(
wQ(t)RδH

0
peri

[
Q(t),Rδ

]) − Tr0
(
wQ(t)i

[
Q(t),Rδ

]
RδH

0
per

)
. (95)

We deduce from the third assertion in Lemma 18 that∣∣Tr0
(
vc(ρRδQ(t)Rδ−Q(t))RδH

0
perQ(t)Rδ

)∣∣� C
∥∥Q(t)

∥∥
Q

∥∥RδQ(t)Rδ − Q(t)
∥∥
Q, (96)

and ∣∣Tr0
(
vc(ρRδQ(t)Rδ−Q(t))RδQ(t)RδH

0
per

)∣∣� C
∥∥Q(t)

∥∥
Q

∥∥RδQ(t)Rδ − Q(t)
∥∥
Q. (97)

It also follows from Lemmas 3 and 4 that∣∣Tr0
(
vc(ρRδQ(t)Rδ−Q(t))Rδi

[
wQ(t), γ 0

per + Q(t)
]
Rδ

)∣∣
� C

(
1 + ∥∥Q(t)

∥∥
Q

)(∥∥ν(t)
∥∥

L2∩C + ∥∥Q(t)
∥∥
Q

)∥∥RδQ(t)Rδ − Q(t)
∥∥
Q. (98)

To bound the fourth term in the right-hand side of (95), we notice that

Tr0
(
wQ(t)Rδi

[
wQ(t), γ 0

per + Q(t)
]
Rδ

) = Tr0
(
wQ(t)i

[
wQ(t), γ 0

per + Q(t)
])

+ Tr0
(
wQ(t)

(
RδQ̃(t)Rδ − Q̃(t)

))
,

where we recall that Q̃(t) := i[wQ(t), γ 0
per + Q(t)]. Now, for all V ∈ vc(L

2 ∩ C) and all Q ∈ Q,
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Tr0
(
V i

[
V,γ 0

per + Q
]) = 0,

so that∣∣Tr0
(
wQ(t)Rδi

[
wQ(t), γ 0

per + Q(t)
]
Rδ

)∣∣� C
(∥∥ν(t)

∥∥
L2∩C + ∥∥Q(t)

∥∥
Q

)∥∥RδQ̃(t)Rδ − Q̃(t)
∥∥
Q. (99)

We finally infer from the third assertion in Lemma 18 that∣∣Tr0
(
wQ(t)RδH

0
peri

[
Q(t),Rδ

])∣∣� C
(∥∥ν(t)

∥∥
L2∩C + ∥∥Q(t)

∥∥
Q

)∥∥i
[
Q(t),Rδ

]∥∥
Q, (100)

and ∣∣Tr0
(
wQ(t)i

[
Q(t),Rδ

]
RδH

0
per

)∣∣� C
(∥∥ν(t)

∥∥
L2∩C + ∥∥Q(t)

∥∥
Q

)∥∥i
[
Q(t),Rδ

]∥∥
Q. (101)

Collecting (96)–(101), we obtain (91). �
5.9.3. Properties of the solution

The preservation of the trace has already been proved at the beginning of Section 5.9.2.
Let us now assume that γ 0

per + Q0 is an orthogonal projector. Since γ 0
per + Q(t) is self-adjoint and non-negative,

proving that γ 0
per +Q(t) is an orthogonal projector amounts to proving that (γ 0

per +Q(t))2 = γ 0
per +Q(t) for all t � 0.

Introducing Γ (t) = (γ 0
per + Q(t))2 and γ (t) = γ 0

per + Q(t), it formally holds

i
d

dt
γ (t) = [

H(t), γ (t)
]
,

where H(t) = H 0
per + vc(ρQ(t) − ν(t)), and

i
d

dt
Γ (t) = [

H(t), γ (t)
]
γ (t) + γ (t)

[
H(t), γ (t)

] = [
H(t), γ (t)2] = [

H(t),Γ (t)
]
.

The above formal computation can be made rigorous upon using mild formulations, and establishing the second
equality by some limiting procedure involving regularization operators, as in Section 5.9.2. We do not detail this point
here for the sake of brevity. The uniqueness of the mild solution of the linear equation

i
d

dt
A(t) = [

H(t),A(t)
]

and the fact that γ (0) = Γ (0) allow to conclude that γ (t) = Γ (t) for all t � 0.

5.10. Proof of Proposition 13

Proposition 6 shows that the regularized operator

Lη = −χ
η
0 vc (102)

(with χ
η
0 defined in (76)) is such that, for any �1, �2 ∈ L2(R,C),

〈
�2,Lη�1

〉
L2(C)

= − 1

π
Im

( ˛

Cη

ˆ

R

Tr

[
(γ 0

per)
⊥

z − (H 0
per + ω + iη)

Ft vc(�2)(ω)
(γ 0

per)

z − H 0
per

Ft vc(�1)(ω)

]
dωdz

)
, (103)

where the contour Cη is plotted on Fig. 1.
We now investigate the limit η → 0 of the latter expression. To this end, we choose a contour C similar to the one

of Fig. 2, such that, for all η ∈ [−1,1],

dist
(
C ,

(
σ
(
H 0

per

) ∩ [εF,+∞)
) ± Ω + iη

)
� g − Ω

2
> 0, (104)

and consider �1, �2 ∈ S (R×R
3) such that Ft �1,Ft �2 have support in [−Ω,Ω] ×R

3. We can then pass to the limit
η ↓ 0 in (103), and the limit actually make sense when Ft vc(�k) ∈ L2(R,C′) for k = 1,2 and Ft vc(�1)Ft vc(�2) = 0
outside a compact subset of (−g,g). This is the case in particular when both functions �k belong to HΩ (note however
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that it is even possible to give a meaning to this expression when only one of the functions is in HΩ , the other one
being in L2(R,C)). The resulting expression is clearly symmetric in �1, �2:

〈�2,L�1〉L2(C) = − 1

π
Im

( ˛

C

Ω̂

−Ω

Tr

[
(γ 0

per)
⊥

z − (H 0
per + ω)

Ft vc(�2)(ω)
(γ 0

per)

z − H 0
per

Ft vc(�1)(ω)

]
dωdz

)
.

This finally shows that L, restricted to HΩ ⊂ L2(R,C), is a well-defined symmetric operator. It is also clearly
bounded, with a bound proportional to (g − Ω)−2 in view of (104).

Besides, for � ∈ HΩ ,

〈�,L�〉L2(C) = 2
+∞∑

1�n�N<m

Ω̂

−Ω

 

Γ ∗

 

Γ ∗

|〈un,q+q ′ , [Ft vc(�)(ω)]qum,q ′ 〉L2
per

|2
εm,q ′ − εn,q+q ′ + ω

dq ′ dq dω � 0,

which shows that L is non-negative on HΩ when 0 < Ω < g.

Remark 29. Note that the corresponding expressions of 〈L�1, �2〉C and 〈L�,�〉C in the time-independent (static)
setting (see the proof of Proposition 2 in [6]) are recovered by removing the integration over ω ∈ [−Ω,Ω] and setting
ω = 0 everywhere.

5.11. Proof of Proposition 14.

This proof strongly relies on the proof of Theorem 3 in [6] and we only present the required modifications. For the
ease of comparison, we follow the notation of [6] and hence use η for the spatial dilation operator

(Uηh)(t, x) = η3/2h(t, ηx).

Computations similar to the ones performed in [6, Section 6.10] give

U∗
η A−1Uην̃ = f η, (105)

where A = v
1/2
c (1 +L)v

−1/2
c is bounded and invertible on the space

H̃Ω = {
f ∈ L2(

R,L2(
R

3)) ∣∣ supp(Ft f ) ⊂ [−Ω,Ω] ×R
3},

and where ν̃ and f η are the functions of H̃Ω defined as ν̃ = v
1/2
c ν and f η = v

−1/2
c W

η
ν , with W

η
ν = √

ηU∗
η vc(νη −ρνη).

Note that Uη is unitary on H̃Ω , with adjoint (Uη)
∗ = Uη−1 . The proof of the result therefore amounts to identifying

the weak limit of U∗
η A−1Uην̃.

Lemma 20 shows that, for any function h ∈ L2(R,L2
per(Γ )),

Ft (Aqh)(ω,x)

= h(ω,x) −
+∞∑

n,m=1

(1n�N<m − 1m�N<n)

 

Γ ∗

〈un,q+q ′ , [Ft (v
1/2
c )qh(ω, ·)]um,q ′ 〉L2

per

εn,q+q ′ − εm,q ′ − ω

(
v

1/2
c

)
q
[un,q+q ′um,q ′ ](x) dq ′.

This defines an operator A(ω,q) acting as Ft (Aqh)(ω, ·) = A(ω,q)Ft h(ω, ·), with (for g ∈ L2
per(Γ ))

A(ω,q)g = g + (
v

1/2
c

)
q

 

Γ ∗

N∑
n=1

(
(γ 0

per)
⊥
q+q ′

(H 0
per)q+q ′ − εn,q ′ + ω

un,q ′
(
v

1/2
c

)
q
g

)
un,q ′ dq ′

+ (
v

1/2
c

)
q

 
∗

N∑
n=1

(
(γ 0

per)
⊥
q+q ′

(H 0
per)q+q ′ − εn,q ′ − ω

un,q ′
(
v

1/2
c

)
q
g

)
un,q ′ dq ′. (106)
Γ
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As A−1 is bounded on H̃Ω , the weak limit of the left-hand side of (105) can be studied for functions whose space–
time Fourier transforms have compact support. For h1 and h2 in L2(R,L2(R3)) with compact supports, and for η

small enough,〈
U∗

η A−1Uηh1, h2
〉
L2(L2)

=
ˆ

R

 

Γ ∗

〈
Ft

(
A−1Uηh1

)
q
(ω, ·),Ft (Uηh2)q(ω, ·)〉

L2
per

dq dω

=
ˆ

R3

ˆ

R

〈[
A(ω,ηk)

]−1
e0, e0

〉
L2

per
Ft,xh1(ω, k)Ft,xh2(ω, k) dω dk,

where we have used that, for h ∈ L2(R,L2(R3)),

(Ft h)q(ω, x) = (2π)3/2

|Γ |1/2

∑
K∈R∗

Ft,xh(ω,q + K)eK(x),

so that

Ft (Uηh)q(ω, x) = η−3/2 (2π)3/2

|Γ |1/2

∑
K∈R∗

Ft,xh

(
ω,

q + K

η

)
eK(x).

Note that, since the spatial Fourier transforms of the functions h1, h2 have compact supports, for η small enough, only
the first component K = 0 remains in the above sum.

It is therefore sufficient to understand the limit 〈[A(ω,ηk)]−1e0, e0〉L2
per

when η → 0, with e0 = |Γ |−1/2. This is
given by the following lemma, whose proof is omitted since it is a straightforward modification of Lemma 6 of [6]
(note that Eq. (69) in [6] is replaced by (106)).

Lemma 30. Denote by P0 the orthogonal projection on {e0}⊥. The following hold:

(i) For all ω ∈ (−g,g) and all σ ∈ S
2, A(ω,ησ)e0 converges strongly in L2

per(Γ ) to bσ (ω,x) as η → 0, where for

all k ∈ R
3, the periodic function bk(ω, ·) is defined by

bk(ω, ·) = (|k|2 + kT L(ω)k
)
e0

− 2i
√

4π

|Γ |1/2
G

1
2
0

 

Γ ∗

N∑
n=1

(
(γ 0

per)
⊥
q ′

((H 0
per)q ′ − εn,q ′ − ω)((H 0

per)q ′ − εn,q ′ + ω)
(k · ∇)un,q ′

)
un,q ′ dq ′,

(107)

with

∀k ∈R
3, kT L(ω)k = 8π

|Γ |
N∑

n=1

+∞∑
m=N+1

 

Γ ∗

|〈(k · ∇x)un,q , um,q〉L2
per(Γ )|2

(εm,q − εn,q)(εm,q − εn,q + ω)(εm,q − εn,q − ω)
dq,

and where G
1
2
0 is the operator defined on L2

per(Γ ) as

G
1/2
0 f =

∑
K∈R∗\{0}

√
4πf̂K

|K|
eiK·x

|Γ | 1
2

where f̂K =
ˆ

Γ

f (x)
e−iK·x

|Γ |1/2
dx,

and which satisfies P0G
1/2
0 = G

1/2
0 P0.

(ii) For a given ω ∈ (−g,g), the family of operators P0A(ω,q)P0, seen as bounded operators acting on P0L
2
per(Γ ),

is continuous with respect to q and

P0A(ω,q)P0|P0L
2
per(Γ ) → C(ω)

strongly as q → 0, where C(ω) � 1 is the bounded operator on P0L
2
per(Γ ) defined by
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C(ω)f = f + G
1/2
0

 

Γ ∗

N∑
n=1

[(
(γ 0

per)
⊥
q ′

(H 0
per)q ′ − εn,q ′ − ω

+ (γ 0
per)

⊥
q ′

(H 0
per)q ′ − εn,q ′ + ω

)
un,q ′G

1
2
0 f

]
un,q ′ dq ′ (108)

for all f ∈ P0L
2
per(Γ ).

(iii) For all σ ∈ S
2 and ω ∈ (−g,g), the following limit holds:

lim
η→0+

〈
e0,

[
A(ω,ησ)

]−1
e0

〉 = 1

1 + σT L(ω)σ − 〈P0bσ (ω, ·), [C(ω)]−1P0bσ (ω, ·)〉L2
per

. (109)

We may now define the macroscopic dielectric permittivity as

kT εM(ω)k = |k|2 + kT L(ω)k − 〈
P0bk(ω, ·), [C(ω)

]−1
P0bk(ω, ·)〉

L2
per

. (110)

The matrix inequality εM(ω) � 1 is a straightforward consequence of (109), using the fact that A� 1.
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