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Abstract

In this paper, we consider the rolling problem (R) without spinning nor slipping of a smooth connected oriented complete
Riemannian manifold (M,g) onto a space form (M̂, ĝ) of the same dimension n � 2. This amounts to study an n-dimensional
distribution DR, that we call the rolling distribution, and which is defined in terms of the Levi-Civita connections ∇g and ∇ ĝ .
We then address the issue of the complete controllability of the control system associated to DR. The key remark is that the state
space Q carries the structure of a principal bundle compatible with DR. It implies that the orbits obtained by rolling along loops
of (M,g) become Lie subgroups of the structure group of πQ,M . Moreover, these orbits can be realized as holonomy groups of
either certain vector bundle connections ∇Rol, called the rolling connections, when the curvature of the space form is non-zero,
or of an affine connection (in the sense of Kobayashi and Nomizu, 1996 [14]) in the zero curvature case. As a consequence, we
prove that the rolling (R) onto an Euclidean space is completely controllable if and only if the holonomy group of (M,g) is equal
to SO(n). Moreover, when (M̂, ĝ) has positive (constant) curvature we prove that, if the action of the holonomy group of ∇Rol is
not transitive, then (M,g) admits (M̂, ĝ) as its universal covering. In addition, we show that, for n even and n � 16, the rolling
problem (R) of (M,g) against the space form (M̂, ĝ) of positive curvature c > 0, is completely controllable if and only if (M,g)

is not of constant curvature c.
© 2012

1. Introduction

In this paper, we study the rolling of a manifold over another one. Unless otherwise precised, manifolds are smooth,
connected, oriented, of finite dimension n � 2, endowed with a Riemannian metric. The rolling is assumed to be
without spinning (NS) or without spinning nor slipping (R). Here we only consider the rolling problem (R). When
both manifolds are isometrically embedded into an Euclidean space, the rolling problem is classical in differential
geometry (see [21]), through the notions of “development of a manifold” and “rolling maps”. For instance, É. Cartan
defines holonomy by rolling a manifold against its tangent space without spinning nor slipping (cf. [5,7]). The most
basic issue linked to the rolling problem (R) is that of controllability, i.e., to determine, for two given points qinit and
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qfinal in the state space Q, if there exists a curve γ so that the rolling (R) along γ steers the system from qinit to qfinal.
If this is the case for every points qinit and qfinal in Q, then the rolling (R) is said to be completely controllable.

If the manifolds rolling on each other are two-dimensional, the controllability issue is well-understood thanks to
the work of [2,6,8,16,1] especially. For instance, in the simply connected case, the rolling (R) is completely control-
lable if and only if the manifolds are not isometric. In the case where the manifolds are isometric, [2] also provides a
description of the reachable sets in terms of isometries between the manifolds. In particular, these reachable sets are
immersed submanifolds of Q of dimension either 2 or 5. In case the manifolds rolling on each other are isometric
convex surfaces, [16] provides a beautiful description of a two-dimensional reachable set: consider the initial config-
uration given by two (isometric) surfaces in contact so that one is the image of the other one by the symmetry with
respect to the (common) tangent plane at the contact point. Then, this symmetry property (chirality) is preserved along
the rolling (R). If the (isometric) convex surfaces are not spheres nor planes, the reachable set starting at a contact
point where the Gaussian curvatures are distinct, is open (and thus of dimension 5).

After [2], the state space (Q) of the rolling problem (R) is given by

Q = {
A :T |xM → T |x̂ M̂

∣∣A o-isometry, x ∈ M, x̂ ∈ M̂
}
,

where “o-isometry” means positively oriented isometry (see [6,17,11] for an alternative description). The set of ad-
missible controls is equal to the set of absolutely continuous (a.c.) curves on M . We next construct an n-dimensional
distribution DR, that we call the rolling distribution, so that its tangent curves coincide with the admissible curves
of (Σ)R . A standard procedure in geometric control in order to address the controllability issue simply consists of
studying the Lie algebra spanned by the vector fields tangent to DR. More precisely, one tries to compute the dimen-
sion of the evaluation at every point q ∈ Q of this Lie algebra. However, this strategy turns out to be delicate for the
rolling problem, even if one of the manifolds is assumed to be the Euclidean space. Indeed, in that particular case, this
amounts to determine the dimension of the holonomy group associated to the Levi-Civita connection of a Riemannian
manifold (M,g), only from the infinitesimal information provided by the evaluation at any point x of the curvature
tensor associated to ∇g and its covariant derivatives of arbitrary order (cf. [10] for more details).

However, when one of the manifolds, let say (M̂, ĝ), is a space form, i.e., a simply connected complete Rieman-
nian manifold of constant curvature, we prove, in Section 4, that there is a principal bundle structure on the bundle
πQ,M :Q → M , which is compatible with the rolling distribution DR. From this fundamental feature, we show how
to address the complete controllability of the rolling problem (R) without resorting to any Lie bracket computation.
Indeed, if M̂ has zero curvature, i.e., it is the Euclidean plane, we reduce the description of reachable sets to the study
of an affine connection and its holonomy group, a subgroup of SE(n), in the sense of [14]. Then, we deduce that the
rolling (R) is completely controllable if and only if the (Riemannian) holonomy group of ∇g is equal to SO(n). This
result is actually similar to Theorem IV.7.1, p. 193 and Theorem IV.7.2, p. 194 in [14].

In the case where M̂ has non-zero constant curvature (up to a trivial reduction equal to 1 or −1), the description of
reachable sets resumes to the study of a vector bundle connection ∇Rol of the vector bundle πT M⊕R :T M ⊕R → M

and its holonomy group HRol, which is a subgroup of SO(n + 1) or SO0(n,1) depending whether the curvature of M̂

is equal to 1 or −1 respectively. Recall that SO0(n,1) is the identity component of O(n,1). We then prove that the
rolling problem (R) is completely controllable if and only if HRol is equal to SO(n + 1) or SO0(n,1) respectively.

The structure of HRol is further investigated for the rolling onto an n-dimensional unit sphere Sn. We prove that
if the action of HRol onto Sn is not transitive, then (M,g) admits the unit sphere as Riemannian universal covering.
This rigidity result can be seen as a de Rham type of result of global nature and we will provide in another paper
[9] the details of the extension of de Rham decomposition theorem to the case of rolling on a space form of negative
curvature.

Then by adapting to the classical argument of Simons [22] to our particular situation, we prove that for n even and
n � 16, the rolling problem (R) of (M,g) against the space form (M̂, ĝ) of positive curvature c > 0, is completely
controllable if and only if (M,g) is not of constant curvature c. In that way, we recover some of the results of [13].

To conclude this introduction, we would like to propose some open problems. The first one deals with the rolling
problem of two (locally) symmetric spaces. Indeed, the Lie algebraic structure of the rolling distribution does not
involve the covariant derivatives of the curvature tensors on M and M̂ (see [11]) and therefore its analysis turns out to
be a purely algebraic question. Another question refers to the rolling onto a space of constant positive curvature, where
the action of the rolling holonomy group is irreducible and transitive. One reasonably expects a list of possibilities
similar to that of Berger. In addition, one may investigate the structure of the group of (local) symmetries associated
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to the rolling distribution, in particular when both manifolds M and M̂ have constant curvature. Finally, what could be
necessary conditions on M and M̂ insuring that the rolling distribution is a principal bundle connection over Q → M?
Recall that we provide here a sufficient condition for that, namely that M̂ has constant curvature.

2. Notations

For any sets A, B , C and U ⊂ A × B and any map F :U → C, we write Ua and Ub for the sets defined by
{b ∈ B | (a, b) ∈ U} and {a ∈ A | (a, b) ∈ U} respectively. Similarly, let Fa :Ua → C and Fb :Ub → C be defined
by Fa(b) := F(a, b) and Fb(a) := F(a, b) respectively. For any sets V1, . . . , Vn the map pri :V1 × · · · × Vn → Vi

denotes the projection onto the i-th factor.
In this paper, a smooth manifold is a finite-dimensional, second countable, Hausdorff manifold (see e.g. [15]). For

any smooth map π :E → M between smooth manifolds E and M , the set π−1({x}) =: π−1(x) is called the π -fiber
over x and it is sometimes denoted by E|x , when π is clear from the context. The set of smooth sections of π is
denoted by Γ (π). The value s(x) of a section s at x is usually denoted by s|x . For a smooth map π :E → M and
y ∈ E, let V |y(π) be the set of all Y ∈ T |yE such that π∗(Y ) = 0. If π is a smooth bundle, the collection of spaces
V |y(π), y ∈ E, defines a smooth submanifold V (π) of T (E) and the restriction πT (E) :T (E) → E to V (π) is denoted
by πV (π). In this case πV (π) is a vector subbundle of πT (E) over E.

One uses VF(M) to denote the set of smooth vector fields on M . The flow of a vector field Y ∈ VF(M) is a smooth
onto map ΦY :D → M defined on an open subset D of R× M containing {0} × M .

For any maps γ : [a, b] → M , ω : [c, d] → M into M such that γ (b) = ω(c) we define

ω � γ : [a, b + d − c] → M; (ω � γ )(t) =
{

γ (t), t ∈ [a, b],
ω(t − b + c), t ∈ [b, b + d − c].

Also we write γ −1 : [a, b] → M ; γ −1(t) := γ (b + a − t). In the space of loops [0,1] → M based at some given
point x0, one defines an operation “.” of concatenation by ω.γ := (t 	→ ω( t

2 )) � (t 	→ γ ( t
2 )). For y ∈ M , we use

Ωy(M) to denote the set of all piecewise C1-loops [0,1] → M of M based at y.
A continuous map γ : I → M from a real compact interval I into a smooth manifold M is called absolutely

continuous, or a.c. for short if, for every t0 ∈ I , there is a smooth coordinate chart (φ,U) of M such that γ (t0) ∈ U

and φ ◦ γ |γ −1(U) is absolutely continuous.
Given a smooth distribution D on M , we call an absolutely continuous curve γ : I → M , I ⊂ R, D-admissible

if γ is tangent to D almost everywhere (a.e.), i.e., if for almost all t ∈ I it holds that γ̇ (t) ∈ D|γ (t). For x0 ∈ M ,
the endpoints of all the D-admissible curves of M starting at x0 form the set called D-orbit through x0 and denoted
OD(x0). More precisely,

OD(x0) = {
γ (1)

∣∣ γ : [0,1] → M, D-admissible, γ (0) = x0
}
. (1)

By the Orbit Theorem (see [3]), it follows that OD(x0) is an immersed smooth submanifold of M containing x0. It is
also known that one may restrict to piecewise smooth curves in the description of the orbit, i.e., the curves γ in (1)
can be taken piecewise smooth.

Let π :E → M be a vector bundle and ∇ : VF(M) × Γ (π) → Γ (π) a linear connection on π . As is standard, we
write for X ∈ VF(M), s ∈ Γ (π) the value of ∇ as ∇Xs ∈ Γ (π). A parallel transport of s0 ∈ E|x0 along an a.c. path
γ : [a, b] → M from γ (a) = x0 to γ (b) is written as (P ∇)ba(γ )s0. The parallel transport map(

P ∇)b
a
(γ ) :E|γ (a) → E|γ (b) (2)

is a linear isomorphism and one also writes (P ∇)ab(γ ) := (P ∇)ba(γ
−1) = (P ∇)ba(γ )−1. The holonomy group of ∇ at

x0 is defined to be the subgroup H∇|x0 of GL(E|x0) given by

H∇ ∣∣
x0

= {(
P ∇)1

0(γ )
∣∣ γ ∈ Ωx0(M)

}
.

One writes R∇ for the curvature tensor of ∇ and if the connection ∇ is clear from the context, one simply writes
P = P ∇ and R = R∇ for the parallel transport operator and the curvature operator, respectively. Finally, the Levi-
Civita connection of a Riemannian manifold (N,h) is written as ∇h or simply ∇ when h is clear from the context.
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We use Iso(N,h) to denote the group of isometries of a Riemannian manifold (N,h). The isometries respect
parallel transport in the sense that for any absolutely continuous γ : [a, b] → N and F ∈ Iso(N,h) one has (cf. [20,
p. 41, Eq. (3.5)])

F∗|γ (t) ◦ (P ∇h)t
a
(γ ) = (

P ∇h)t
a
(F ◦ γ ) ◦ F∗|γ (a). (3)

The following result is standard.

Proposition 2.1. (Cf. [14, Chapter IV, Theorem 4.1].) Let (N,h) be a Riemannian manifold and for any absolutely
continuous γ : [0,1] → M , γ (0) = y0, define

Λ∇h

y0
(γ )(t) =

t∫
0

(
P ∇h)0

s
(γ )γ̇ (s)ds ∈ T |y0N, t ∈ [0,1].

Then the map Λ∇h

y0
:γ 	→ Λ∇h

y0
(γ )(·) is an injection from the set of absolutely continuous curves [0,1] → N starting at

y0 onto an open subset of the Banach space of absolutely continuous curves [0,1] → T |y0N starting at 0. Moreover,

the map Λ∇h

y0
is a bijection onto the latter Banach space if (and only if ) (N,h) is a complete Riemannian manifold.

3. State space and distributions

3.1. State space

3.1.1. Definition of the state space
After [2,3] we make the following definition.

Definition 3.1. The state space Q = Q(M,M̂) for the rolling of two n-dimensional connected, oriented smooth
Riemannian manifolds (M,g), (M̂, ĝ) is defined as

Q = {A :T |xM → T |x̂M̂ | A o-isometry, x ∈ M, x̂ ∈ M̂},
with “o-isometry” means “orientation preserving isometry”: if (Xi)

n
i=1 is a pos. oriented g-orthonormal frame of M

at x then (AXi)
n
i=1 is a pos. oriented ĝ-orthonormal frame of M̂ at x̂.

The linear space of R-linear map A :T |xM → T |x̂M̂ is canonically isomorphic to the tensor product T ∗|xM ⊗
T |x̂M̂ . We write

T ∗M ⊗ T M̂ =
⋃

(x,x̂)∈M×M̂

T ∗|xM ⊗ T |x̂ M̂

and if a point A ∈ T ∗M ⊗ T M̂ belongs to T ∗|xM ⊗ T |x̂ M̂ , we usually write it as q = (x, x̂;A). With projection
π

T ∗M⊗T M̂
:T ∗M ⊗T M̂ → M × M̂ ; (x, x̂;A) 	→ (x, x̂), the space T ∗M ⊗T M̂ becomes a vector bundle over M × M̂

of rank n2 and πQ := π
T ∗M⊗T M̂

|Q :Q → M ×M̂ is a smooth subbundle of rank n(n−1)/2 with fibers diffeomorphic
to SO(n).

Remark 3.2. Let q = (x, x̂;A) ∈ Q and B ∈ (T ∗M ⊗T M̂)|(x,x̂). Then ν(B)|q ∈ V |q(π
T ∗M⊗T M̂

) is tangent to Q (i.e.,
is an element of V |q(πQ)) if and only if ĝ(AX,BY)+ ĝ(BX,AY) = 0 for all X,Y ∈ T |xM . This latter condition can
be stated equivalently as B ∈ A(so(T |xM)), i.e. V |(x,x̂;A)(πQ) is naturally R-linearly isomorphic to A(so(T |xM)).

3.2. Distribution and the control problems

3.2.1. The rolling distribution DR
In this section, using the subsequent lift operation, we build a smooth distribution DR on the spaces Q and T ∗M ⊗

T M̂ whose tangent curves are the solutions of (8). For the next definition, we use the fact that if A ∈ Q, then P t
0(γ̂ ) ◦

A ◦ P 0
t (γ ) ∈ Q for all t where γ , γ̂ are any smooth curves in M , M̂ respectively.
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Definition 3.3. For q = (x, x̂;A) ∈ Q and X ∈ T |xM we define a vector LR(X)|q ∈ T |qQ as

LR(X)|q = d

dt

∣∣∣∣
0

(
P t

0(γ̂ ) ◦ A ◦ P 0
t (γ )

)
(4)

where γ, γ̂ are any smooth curves in M,M̂ respectively such that γ̇ (0) = X and ˙̂γ (0) = AX.

Remark 3.4. The definition of LR(X) as given above is independent of the choice of γ , γ̂ such that they satisfy
γ̇ (0) = X, ˙̂γ (0) = AX.

This map naturally induces LR : VF(M) → VF(Q) as follows. For X ∈ VF(M) we define LR(X), the rolling lifted
vector field associated to X, by

LR(X) :Q → T Q,

q 	→ LR(X)|q .

The rolling lift map LR allows one to construct a distribution on Q of rank n as follows.

Definition 3.5. The rolling distribution DR on Q is the n-dimensional smooth distribution defined by

∀q = (x, x̂;A) ∈ Q, DR|q = LR(T |xM)|q . (5)

One defines πQ,M := pr1 ◦ πQ :Q → M .

Remark 3.6. The map πQ,M :Q → M is a bundle: if F = (Xi)
n
i=1 is a local oriented orthonormal frame of M defined

on an open set U , the local trivialization of πQ,M induced by F as

τF :π−1
Q,M(U) → U × FOON(M̂); τF (x, x̂;A) = (

x, (AXi |x)ni=1

)
,

is a diffeomorphism, where FOON(M̂) is the bundle of all oriented orthonormal frames on M̂ .

The differential (πQ,M)∗ maps each DR|q , q = (x, x̂;A) ∈ Q, isomorphically onto T |xM , implying the local
existence of rolling curves described in the following proposition (cf. [10]).

Proposition 3.7.

(i) For any q0 = (x0, x̂0;A0) ∈ Q and a.c. γ : [0, a] → M , a > 0, such that γ (0) = x0, there exists a unique a.c.
q : [0, a′] → Q, q(t) = (γ (t), γ̂ (t);A(t)), with 0 < a′ � a (and a′ maximal with the latter property), which is
tangent to DR a.e. and q(0) = q0. We denote this unique curve q by

t 	→ qDR(γ, q0)(t) = (
γ (t), γ̂DR(γ, q0)(t);ADR(γ, q0)(t)

)
,

and refer to it as the rolling curve with initial conditions (γ, q0) or along γ with initial position q0. In the case
that M̂ is a complete manifold one has a′ = a.
Conversely, any absolutely continuous curve q : [0, a] → Q, which is a.e. tangent to DR, is a rolling curve along
γ := πQ,M ◦ q , i.e., has the form qDR(γ, q(0)).

(ii) Writing Λx0 = Λ∇
x0

and Λ̂x̂0 = Λ̂∇̂
x̂0

(see Proposition 2.1), then, for any q0 = (x0, x̂0;A0) ∈ Q and a.c. curve γ

starting from x0, the corresponding rolling curve is given by

qDR(γ, q0)(t) = (
γ (t), Λ̂−1

x̂0

(
A0 ◦ Λx0(γ )

)
(t);P t

0

(
Λ̂−1

x̂0

(
A0 ◦ Λx0(γ )

)) ◦ A0 ◦ P 0
t (γ )

)
. (6)

(iii) Let q0 = (x0, x̂0;A0) ∈ Q, X ∈ T |x0M and γ : [0, a] → M ; γ (t) = expx0
(tX), a geodesic of (M,g) with

γ (0) = x0, γ̇ (0) = X. The rolling curve qDR(γ, q0) = (γ, γ̂DR(γ, q0);ADR(γ, q0)) : [0, a′] → Q, 0 < a′ � a,
along γ with initial position q0 is given by

γ̂DR(γ, q0)(t) = êxpx̂0
(tA0X), ADR(γ, q0)(t) = P t

0

(
γ̂DR(γ, q0)

) ◦ A0 ◦ P 0
t (γ ),

where êxp is the exponential mapping of (M̂, ĝ). Moreover, a′ = a if M̂ is complete.
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(iv) If γ : [a, b] → M and ω : [c, d] → M are two a.c. curves with γ (b) = ω(c) and q0 ∈ Q, then

qDR(ω � γ, q0) = qDR

(
ω,qDR(γ, q0)(b)

) � qDR(γ, q0). (7)

On the group Ωx0(M) of piecewise differentiable loops of M based at x0 one has

qDR(ω.γ, q0) = qDR

(
ω,qDR(γ, q0)(1)

)
.qDR(γ, q0),

where γ,ω ∈ Ωx0(M).

Remark 3.8. The curve t 	→ q(t) = (γ (t), γ̂ (t);A(t)) ∈ Q, t ∈ [a, b], is a rolling curve if and only if it is an admissible
curve of the following driftless control affine system

(Σ)R

⎧⎨⎩
γ̇ (t) = u(t),
˙̂γ (t) = A(t)u(t),

∇(u(t),A(t)u(t))A(t) = 0,

for a.e. t ∈ [a, b], (8)

where ∇ is the vector bundle connection on π
T ∗M⊗T M̂

canonically induced by ∇, ∇̂ and the control u belongs to
U(M), the set of measurable T M-valued functions u defined on some interval I = [a, b] such that there exists a.c.
y : [a, b] → M verifying u = ẏ a.e. on [a, b]. We can write the above system as{ ˙̂γ (t) = A(t)γ̇ (t),

∇
(γ̇ (t), ˙̂γ (t))

A(t) = 0

where γ is a.c. In the model of rolling of a Riemannian manifold (M,g) against another one (M̂, ĝ), the first (resp.
second) equation models the so-called no-slipping condition (resp. no-spinning condition). A complete argument for
the above remark is provided in [10].

3.3. Global properties of a DR-orbit

The next proposition describes on one hand the symmetry of the rolling problem with respect to (M,g) and (M̂, ĝ)

and on the other hand that each DR-orbit is a smooth bundle over M . Proofs are omitted (cf. [10]).

Proposition 3.9.

(i) Let D̂R be the rolling distribution in Q̂ := Q(M̂,M). Then the map ι :Q → Q̂; ι(x, x̂;A) = (x̂, x;A−1) is a
diffeomorphism of Q onto Q̂ and ι∗DR = D̂R. In particular, ι(ODR(q)) =OD̂R

(ι(q)).

(ii) Let q0 = (x0, x̂0;A0) ∈ Q and suppose that M̂ is complete. Then πODR (q0),M := πQ,M |ODR (q0) :ODR(q0) → M

is a smooth subbundle of πQ,M .

Proposition 3.10. For any Riemannian isometries F ∈ Iso(M,g) and F̂ ∈ Iso(M̂, ĝ) of (M,g), (M̂, ĝ) respectively,
one defines smooth free right and left actions of Iso(M,g), Iso(M̂, ĝ) on Q by

q0 · F := (
F−1(x0), x̂0;A0 ◦ F∗|F−1(x0)

)
, F̂ · q0 := (

x0, F̂ (x̂0); F̂∗|x̂0 ◦ A0
)
,

where q0 = (x0, x̂0;A0) ∈ Q. Set F̂ · q0 · F := (F̂ · q0) · F = F̂ · (q0 · F). For any q0 = (x0, x̂0;A0) ∈ Q, a.c.
γ : [0,1] → M , γ (0) = x0, and F ∈ Iso(M,g), F̂ ∈ Iso(M̂, ĝ), one has

F̂ · qDR(γ, q0)(t) · F = qDR

(
F−1 ◦ γ, F̂ · q0 · F )

(t), (9)

for all t ∈ [0,1] where qDR(γ, q0)(t) is defined. In particular, F̂ ·ODR(q0) · F =ODR(F̂ · q0 · F).

Proof. The fact that the group actions are well defined is clear and the smoothness of these actions can be proven
by writing out the Lie group structures of the isometry groups (using e.g. Lemma III.6.4 in [20]). If q0 · F = q0 · F ′
for some F,F ′ ∈ Iso(M,g) and q0 ∈ Q, then F−1(x0) = F ′−1(x0), F∗|x0 = F ′∗|x0 and hence F = F ′ since M is
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connected (see [20, p. 43]). This proves the freeness of the right Iso(M,g)-action. The same argument proves the
freeness of the left Iso(M̂, ĝ)-action.

Finally, Eq. (9) follows from a simple application of Eq. (3). Indeed, we first recall the rolling curve qDR(γ, q0) =
(γ, γ̂DR(γ, q0);ADR(γ, q0)) satisfies

P 0
t

(
γ̂DR(γ, q0)

) ˙̂γDR
(γ, q0)(t) = A0P

0
t (γ )γ̇ (t),

ADR(γ, q0)(t) = P t
0

(
γ̂DR(γ, q0)

) ◦ A0 ◦ P 0
t (γ ).

First, by using (3), we get

P 0
t

(
F̂ ◦ γ̂DR(γ, q0)

) d

dt

(
F̂ ◦ γ̂DR(γ, q0)

)
(t)

= F̂∗P 0
t

(
γ̂DR(γ, q0)

)
F̂−1∗

(
F̂∗ ˙̂γDR

(γ, q0)(t)
)

= F̂∗A0P
0
t (γ )γ̇ (t) = (F̂∗A0F∗)

(
F−1∗ P 0

t (γ )F∗
)
F−1∗ γ̇ (t)

= (F̂∗A0F∗)P 0
t

(
F−1 ◦ γ

) d

dt

(
F−1 ◦ γ

)
(t),

and since by definition one has

P 0
t

(
γ̂DR

(
F−1 ◦ γ, F̂ · q0 · F )) ˙̂γDR

(
F−1 ◦ γ, F̂ · q0 · F )= (F̂∗A0F∗)P 0

t

(
F−1 ◦ γ

) d

dt

(
F−1 ◦ γ

)
(t),

the uniqueness of solutions of a system of ODEs gives that F̂ ◦ γ̂DR(γ, q0) = γ̂DR(F−1 ◦ γ, F̂ · q0 · F). Hence (9) is
a consequence of the following

F̂∗ADR(γ, q0)F∗ = F̂∗
(
P t

0

(
γ̂DR(γ, q0)

) ◦ A0 ◦ P 0
t (γ )

)
F∗

= P t
0

(
F̂ ◦ γ̂DR(γ, q0)

) ◦ (F̂∗A0F∗) ◦ P 0
t

(
F−1 ◦ γ

)
= P t

0

(
γ̂DR

(
F−1 ◦ γ, F̂ · q0 · F )) ◦ (F̂∗A0F∗) ◦ P 0

t

(
F−1 ◦ γ

)
= ADR

(
F−1 ◦ γ, F̂ · q0 · F )

. �
The following proposition and its corollary are given without their proofs.

Proposition 3.11. Let π1 : (M1, g1) → (M,g) and π̂ : (M̂1, ĝ1) → (M̂, ĝ) be Riemannian coverings. Write Q1 =
Q(M1, M̂1) and (DR)1 for the rolling distribution in Q1. Then the map Π :Q1 → Q; Π(x1, x̂1;A1) =
(π(x1), π̂(x̂1); π̂∗|x̂1 ◦ A1 ◦ (π∗|x1)

−1) is a covering map of Q1 over Q and Π∗(DR)1 = DR. Moreover, for every
q1 ∈ Q1 the restriction onto O(DR)1(q1) of Π is a covering map O(DR)1(q1) → ODR(Π(q1)). Then, for every q1 ∈ Q1,
Π(O(DR)1(q1)) =ODR(Π(q1)) and one has O(DR)1(q1) = Q1 if and only if ODR(Π(q1)) = Q.

As an immediate corollary of the above proposition, we obtain the following result regarding the complete control-
lability of (DR).

Corollary 3.12. Let π1 : (M1, g1) → (M,g) and π̂ : (M̂1, ĝ1) → (M̂, ĝ) be Riemannian coverings. Write
Q = Q(M,M̂), DR and Q1 = Q(M1, M̂1), (DR)1 respectively for the state space and for the rolling distribution
in the respective state space. Then the control system associated to DR is completely controllable if and only if the
control system associated to (DR)1 is completely controllable. As a consequence, when one addresses the complete
controllability issue for the rolling distribution DR, one can assume with no loss of generality that both manifolds M

and M̂ are simply connected.

4. Rolling against a space form

For the rest of the paper we assume that (M̂, ĝ) is a space form, i.e., a simply connected complete Riemannian
manifold of constant curvature. The possible cases are: (i) Euclidean space with Euclidean metric (zero curvature),
(ii) sphere (positive curvature), and (iii) hyperbolic space (negative curvature), cf. e.g. [20].
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We first reduce the original control problem to the following one: fix (any) x0 ∈ M and consider rolling of M along
loops γ ∈ Ωx0(M); one obtains a control problem whose state space is the fiber π−1

Q,M(x0) and the reachable sets are

π−1
Q,M ∩ODR(q0), where q0 ∈ π−1

Q,M(x0). It is then trivial to see that complete controllability of the original problem is
equivalent to the complete controllability of the reduced rolling problem. Note that this fact holds true for the general
rolling problem of one Riemannian manifold against another one.

On the other hand, the rolling problem against a space form of constant curvature c ∈ R actually presents a funda-
mental feature which turns out to be the crucial ingredient to address the controllability issue. We next prove that on
the bundle πQ,M :Q → M one can define a principal bundle structure that preserves the rolling distribution DR. As
a consequence, the reachable sets π−1

Q,M(x0) ∩ ODR(q0) become Lie subgroups of the structure group of πQ,M . We
will prove that these orbits in fact can be realized as holonomy groups of certain vector bundle connections if c �= 0
and as a holonomy group of an affine connection (in the sense of [14]). Therefore the original problem of complete
controllability reduces to the study of appropriate connections.

4.1. Orbit structure

We first recall standard results on space forms. Following Section V.3 of [14], we define the n-dimensional space
form M̂n;c of curvature c �= 0 as a subset of Rn+1, n ∈N, given by

M̂n;c :=
{
(x1, . . . , xn+1) ∈ R

n+1
∣∣∣ x2

1 + · · · + x2
n + c−1x2

n+1 = c−1, xn+1 + c

|c| � 0

}
.

Equip M̂n;c with a Riemannian metric ĝn;c defined as the restriction to M̂n;c of the non-degenerate symmetric (0,2)-
tensor sn;c := (dx1)

2 + · · · + (dxn)
2 + c−1(dxn+1)

2. The condition xn+1 + c
|c| � 0 in the definition M̂n;c guarantees

that M̂n;c is connected also when c < 0.
Let Gc(n) be the identity component of the Lie group of linear maps Rn+1 → R

n+1 leaving invariant the bilinear
form

〈x, y〉n;c :=
n∑

i=1

xiyi + c−1xn+1yn+1,

for x = (x1, . . . , xn+1), y = (y1, . . . , yn+1) and having determinant +1. In other words, a linear map B :Rn+1 →R
n+1

belongs to Gc(n) if and only if det(B) = +1 and 〈Bx,By〉n;c = 〈x, y〉n;c , ∀x, y ∈ R
n+1, or, equivalently,

BT In;cB = In;c, det(B) = +1, where In;c = diag(1,1, . . . ,1, c−1). In particular, G1(n) = SO(n + 1) and G−1(n) =
SO0(n,1). The Lie algebra of the Lie group Gc(n) will be denoted by gc(n). Notice that an (n + 1) × (n + 1) real
matrix B belongs to gc(n) if and only if BT In;c + In;cB = 0, where In;c was introduced above.

Sometimes we identify the form sn;c on R
n+1 with 〈·,·〉n;c using the canonical identification of the tangent spaces

T |vRn+1 with R
n+1. Notice that if x̂ ∈ M̂n;c and V ∈ T |x̂Rn+1, then V ∈ T |x̂ M̂n;c if and only if sn;c(V , x̂) = 0.

If c = 0, the space form (M̂n;0, ĝn;0) is simply equal to R
n with the Euclidean metric, Gn(0) is set to be the group

SE(n) := SE(Rn), the special Euclidean group of (M̂n;0, ĝn;0). Recall that SE(n) is equal to R
n × SO(n) as a set, and

is equipped with the group operation � given by

(v,L) � (u,K) := (Lu + v,L ◦ K).

The natural action, also written as �, of SO(n) on R
n is given by

(u,K) � v := Kv + u, (u,K) ∈ SO(V ), v ∈ V.

Finally recall that, with this notation, the isometry group of (M̂n;c, ĝn;c) is equal to Gc(n) for all c ∈ R (cf. [14]) as
explicitly recalled in the next proof. From now on we set (M̂, ĝ) = (M̂n;c, ĝn;c) for c ∈ R. In the next proposition we
detail the principal bundle structure of πQ,M .

Proposition 4.1.

(i) The bundle πQ,M :Q → M is a principal Gc(n)-bundle with a left action μ :Gc(n) × Q → Q defined for every
q = (x, x̂;A) by
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μ
(
(ŷ,C), q

)= (x,Cx̂ + ŷ;C ◦ A), if c = 0,

μ(B,q) = (x,Bx̂;B ◦ A), if c �= 0.

Moreover, the action μ preserves the distribution DR, i.e., for any q ∈ Q and B ∈ Gc(n), (μB)∗DR|q =DR|μ(B,q)

where μB :Q → Q; q 	→ μ(B,q).
(ii) For any given q = (x, x̂;A) ∈ Q there is a unique subgroup Hq of Gc(n), called the holonomy group of DR, such

that

μ
(
Hq × {q})=ODR(q) ∩ π−1

Q,M(x).

Also, if q ′ = (x, x̂′;A′) ∈ Q is in the same πQ,M -fiber as q , then Hq and Hq ′ are conjugate in Gc(n) and all
conjugacy classes of Hq in Gc(n) are of the form Hq ′ . This conjugacy class will be denoted by H. Moreover,
πODR (q),M :ODR(q) → M is a principal H-bundle over M .

Proof. (i) We begin by showing that if B ∈ Gc(n), then μ(B,q) ∈ Q. Let X ∈ T |x . If c = 0, then B = (ŷ,C) ∈
SE(n) =R

n × SO(n) and∥∥μ(B,q)X
∥∥

ĝn;0 = ‖CAX‖ĝn;0 = ‖AX‖ĝn;0 = ‖X‖g

while if c �= 0,∥∥μ(B,q)X
∥∥

ĝn;c = ‖BAX‖ĝn;c = ‖AX‖ĝn;c = ‖X‖g.

Since Gc(n) is connected for every c ∈ R, it follows that μ(B,q) = (x, ẑ;A′) viewed as a map T |xM → TẑM̂n;c is
also orientation preserving and therefore indeed μ(B,q) ∈ Q.

Clearly μ is smooth, satisfies the group action property and the action is free. We show that μ-action is transitive
and proper, implying that πQ,M endowed with Gc(n) action μ becomes a principal bundle.

Let q = (x, x̂;A),q ′ = (x, x̂′,A′) ∈ π−1
Q,M(x) and suppose (Xi)

n
i=1 is some orthonormal frame of M at x. Since

Gc(n), identified as an open subgroup of Iso(Mn;c, ĝn;c), acts transitively on the space of orthonormal frames of M̂n;c ,
there is an F̂ ∈ Gc(n) such that F̂∗(AXi) = A′Xi for all i = 1, . . . , n. This implies that F̂ (x̂) = x̂′ and F̂∗A = A′.

If c = 0 we set B
F̂

= (x̂′ − F̂∗|x̂ (x̂), F̂∗|x̂ ), where F̂∗|x̂ is thought as a map R
n → R

n through canonical identifi-

cations of T |x̂M̂n;c and T |x̂′M̂n;c with R
n. If c �= 0 the element B

F̂
of Gc(n) is uniquely determined by setting it to

be equal to F̂∗|x̂ on T |x̂ M̂n;c and imposing that B
F̂
(x̂) = x̂′. Therefore, we get μ(B

F̂
, q) = q ′ which therefore shows

the transitivity.
We first prove that if F̂ ∈ Gc(n) and B

F̂
∈ Gc(n) as defined above, then μ(B

F̂
, q) = F̂ · q where q = (x, x̂;A) and

the right hand side is defined in Proposition 3.10. If c = 0, then

μ(B
F̂
, q) = μ

((
F̂ (x̂) − F̂∗|x̂ (x̂), F̂∗|x̂

)
, q
)= (

x, F̂∗|x̂ (x̂) + (
F̂ (x̂) − F̂∗|x̂ (x̂)

); F̂∗|x̂ ◦ A
)

= (
x, F̂ (x̂); F̂∗|x̂ ◦ A

)= F̂ · q,

while if c �= 0, μ(B
F̂
, q) = (x,B

F̂
(x̂);B

F̂
◦ A) = (x, F̂ (x̂); F̂∗|x̂ ◦ A) = F̂ · q .

To prove the properness, consider a sequence Bn in Gc(n) and qn = (xn, x̂n;An) in Q such that qn → q = (x, x̂;A)

and μ(Bn, qn) → q ′ = (x′, x̂′;A′) as n → ∞. Choose the unique F̂n ∈ Iso(Mn;c, ĝn;c) such that Bn = B
F̂n

as above.

Then μ(Bn, qn) = F̂n · q → q ′ implies in particular that F̂n(x̂n) → x̂′ and we also have x̂n → x̂. Since the action of
the isometry group of a complete connected Riemannian manifold is proper, we hence obtain a subsequence F̂ni

of
F̂n converging to F̂ ∈ Gc(n). Then Bni

converges to B
F̂

and we are done.
It remains to check the claim that the action μ preserves DR in the sense stated above. Let B ∈ Gc(n). From what

precedes, there is a unique F̂ ∈ Iso(M̂n;c, ĝn;c) such that B = B
F̂

. Let q = (x, x̂;A) ∈ Q and let γ be any smooth
curve in M such that γ (0) = x. By what was proved above and Proposition 3.10 imply that for all t ,

μ
(
B,qDR(γ, q)(t)

)= F̂ · qDR(γ, q)(t) = qDR(γ, F̂ · q)(t) = qDR

(
γ,μ(B,q)

)
(t).

Taking derivative with respect to t at t = 0, we find that
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(μB)∗LR
(
γ̇ (0)

)∣∣
q

= (μB)∗
d

dt

∣∣∣∣
0
qDR(γ, q)(t) = d

dt

∣∣∣∣
0
μ
(
B,qDR(γ, q)(t)

)
= d

dt

∣∣∣∣
0
qDR

(
γ,μ(B,q)

)
(t) = LR

(
γ̇ (0)

)∣∣
μ(B,q)

.

This implies that (μB)∗DR =DR|μ(B,q) and hence allows us to conclude the proof of (i).
(ii) This follows from the general theory of principal bundle connections. See [12,14]. �

4.2. Rolling against an Euclidean space

In this section, we give a necessary and sufficient condition for the controllability of (Σ)R in the case that M̂ =R
n

equipped with the Euclidean metric, i.e. (M̂, ĝ) = (M̂n;0, ĝn;0).
Now fix a point q0 of Q = Q(M,Rn) of the form q0 = (x0,0;A0), i.e., the initial contact point on M is equal to x0

and, on R
n, it is the origin. Since R

n is flat, for any a.c. curve t 	→ γ̂ (t) in R
n and X̂ ∈ R

n we have P t
0(γ̂ (t))X̂ = X̂,

where we understand the canonical isomorphisms T |γ̂ (0)R
n ∼= R

n ∼= T |γ̂ (t)R
n. We can then parameterize the rolling

curves explicitly in the form:

qDR

(
γ, (x0, x̂;A)

)
(t) =

(
γ (t), x̂ + A

t∫
0

P 0
s (γ )γ̇ (s)ds;AP 0

t (γ )

)
, (10)

for any (x0,0;A0), (x0, x̂;A) ∈ Q and γ ∈ Ωx0(M).
We will make some standard observations for subgroups G of an Euclidean group SE(V ), where (V ,h) is a

finite-dimensional inner product space. Call an element of G of the form (v, idV ) a pure translation of G and write
T = T (G) for the set that they form. Clearly T is a subgroup of G. Let pr1, pr2 denote the projections SE(V ) → V

and SE(V ) → SO(V ).

Proposition 4.2. Let G be a Lie subgroup of SE(V ) with pr2(G) = SO(V ). Then either of the following cases hold:

(i) G = SE(V ), or
(ii) there exists v∗ ∈ V which is a fixed point of G.

Proof. Suppose first that T = T (G) is non-trivial, i.e., there exists a pure translation (v, idV ) ∈ T , v �= 0. Then for
any (w,A) ∈ G it holds that

G � (w,A)−1 � (v, idV ) � (w,A) = (−A−1w,A−1) � (v + w,A)

= (
A−1(v + w) − A−1w, idV

)= (
A−1v, idV

)
,

which implies that

T ⊃ {(
A−1v, idV

) ∣∣ (w,A) ∈ G
}= {(

A−1v, idV

) ∣∣A ∈ pr2(G) = SO(V )
}

= Sn−1(0,‖v‖)× {idV }
where Sn−1(w, r), w ∈ R

n, r > 0, is the sphere of radius r centered at w ∈ V and ‖ · ‖ = h(·,·)1/2. If w ∈ V such
that ‖w‖ � ‖v‖ then it is clear that there are u,u′ ∈ Sn−1(0,‖v‖) such that u + u′ = w (choose u ∈ Sn−1(0,‖v‖) ∩
Sn−1(w,‖v‖) and u′ = w − u). Therefore

(w, idV ) = (u, idV ) �
(
u′, idV

) ∈ T ,

i.e., B(0,‖v‖) ⊂ T where B(w, r) is the closed ball of radius r centered at w. For k ∈N,{
B
(
0,‖v‖)+ · · · + B

(
0,‖v‖)︸ ︷︷ ︸

k times

}× {idV } = (
B
(
0,‖v‖)× {idV }) � · · · � (B(0,‖v‖)× {idV })︸ ︷︷ ︸

k times

⊂ T .

From this we conclude that V × {idV } = T . Therefore we get the case (i) since
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G = T � G = {
(u, idV ) � (w,A)

∣∣ u ∈ V, (w,A) ∈ G
}

= {
(u + w,A)

∣∣ u ∈ V, (w,A) ∈ G
}= {

(u,A)
∣∣ u ∈ V, A ∈ pr2(G) = SO(V )

}
= V × SO(V ) = SE(V ).

The case that is left to investigate is the one where T is trivial, i.e., T = {(0, idV )}. In this case the smooth sur-
jective Lie group homomorphism pr2|G :G → SO(V ) is also injective. In fact, if A = pr2(v,A) = pr2(w,A) for
(v,A), (w,A) ∈ G and v �= w, then

G � (w,A) � (v,A)−1 = (w,A) �
(−A−1v,A−1)= (w − v, idV ) ∈ T ,

and since (w − v, idV ) �= (0, idV ), this contradicts the triviality of T . It follows that pr2|G is a Lie group isomorphism
onto SO(V ) and hence a diffeomorphism. In particular, G is compact since SO(V ) is compact.

Take a non-zero v ∈ V and writing μH for the (right- and) left-invariant normalized (to 1) Haar measure of the
compact group G, we define v∗ := ∫

G
(B � v)dμH(B). Thus for (w,A) ∈ G,

(w,A) � v∗ = w + Av∗ =
∫
G

(
w + A(B � v)

)
dμH(B) =

∫
G

((
(w,A) � B

)
� v

)
dμH(B)

=
∫
G

(B � v)dμH(B) = v∗,

where, in the second equality, we have used the linearity of the integral and normality of the Haar measure and in
the last phase the left invariance of the Haar measure. This proves that v∗ is a fixed point of G and completes the
proof. �

The previous proposition allows us prove the main theorem of this section.

Theorem 4.3. Suppose (M,g) is a complete Riemannian n-manifold and (M̂, ĝ) =R
n is the Euclidean n-space. Then

the rolling problem (R) is completely controllable if and only if the holonomy group of (M,g) is SO(n).

Proof. We write H |x for the holonomy group H∇|x of ∇ at x ∈ M .
Suppose first that (R) is completely controllable. We need to show that H |x0 = SO(T |x0M) for some given x0 ∈ M .

Let A0 := idT |x0M and q0 := (x0,0;A0) ∈ Q where we understand the canonical identification T |0(T |x0M) = T |x0M .
Given B ∈ SO(T |x0M), set q = (x0,0;AB) ∈ Q. By assumption ODR(q0) = Q so there exists a γ ∈ Ωx0(M)

(notice that πQ,M(q0) = x0 = πQ,M(q)) such that q ′ = qDR(γ, q0)(1) which by (10) means that

(x0,0;AB) =
(

x0,A

1∫
0

P 0
s (γ )γ̇ (s)ds;AP 0

1 (γ )

)

and thus B = P 0
1 (γ ) ∈ H |x0 . This proves the necessity of the condition.

Assume now that the holonomy group of M is SO(n), i.e., for any x ∈ M we have H |x = SO(T |xM). Let q =
(x,0;A) ∈ Q and let Hq be the subgroup of SE(n) such that μ(Hq ×{q}) = π−1

Q,M(x)∩ODR(q) as in Proposition 4.1
case (ii).

We claim that pr2(Hq) = SO(n). Indeed, if B ∈ SO(n), then A−1BA ∈ SO(T |xM) = H |x and hence there is a
γ ∈ Ωx(M) such that A−1BA = P 0

1 (γ ). Let (ŷ,C) ∈ Hq be such that μ((ŷ,C), q) = qDR(γ, q)(1). Then from (10)
and the definition of μ in Proposition 4.1 we obtain

(ŷ,CA) =
(

A

1∫
0

P s
0 (γ )γ̇ (s)ds,AP 0

1 (γ )

)

and hence B = AP 1(γ )A−1 = C ∈ pr2(Hq), which establishes the claim.
0
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It follows from Proposition 4.2 that either (i) Hq = SE(n) or (ii) there exists a fixed point w∗
q ∈ R

n of Hq . If (i)
holds for some q0 = (x0,0;A0) ∈ Q, then by Proposition 4.1 we obtain

π−1
Q,M(x0) ∩ODR(q0) = μ

(
Hq × {q})= μ

(
SE(n) × {q})= π−1

Q,M(x0)

and hence ODR(q0) = Q because πODR (q0),M is a subbundle of πQ,M . Thus the rolling problem (R) is completely
controllable if (i) holds.

Therefore suppose that (ii) holds, i.e., for every q ∈ Q of the form q = (x,0;A) there is a fixed point w∗
q ∈ R

n

of Hq . We will prove that this implies that (M,g) is flat which is a contradiction since (M,g) does not have a trivial
holonomy group.

Thus for any point of Q of the form q = (x,0;A) and all loops γ ∈ Ωx(M) we have by (10) and Proposition 4.1,

w∗
q = (

μq
)−1(

qDR(γ, q)(1)
)
� w∗

q = (
μq

)−1

(
x,

1∫
0

P 0
s (γ )γ̇ (s)ds;AP 0

1 (γ )

)
� w∗

q

=
(

A

1∫
0

P 0
s (γ )γ̇ (s)ds,AP 0

1 (γ )A−1

)
� w∗

q = AP 0
1 (γ )A−1w∗

q + A

1∫
0

P 0
s (γ )γ̇ (s)ds.

In other words we have (P 0
1 (γ ) − id)A−1w∗

q + ∫ 1
0 P 0

s (γ )γ̇ (s)ds = 0. Thus if q = (x,0;A) and q ′ = (x,0;A′) are on

the same πQ-fiber over (x,0), then (P 0
1 (γ ) − id)(A−1w∗

q − A′−1w∗
q ′) = 0 for every γ ∈ Ωx(M). On the other hand,

since M has full holonomy, i.e., H |x = SO(T |xM), and H |x = {P 0
1 (γ ) | γ ∈ Ωx(M)}, it follows from the above

equation that A−1w∗
q = A′−1w∗

q ′ . This means that for every x ∈ M there is a unique vector V |x ∈ T |xM such that

V |x = A−1w∗
q , ∀q ∈ π−1

Q (x,0). Moreover, the map V :M → T M ; x 	→ V |x is a vector field on M (smoothness of V

is deduced below) satisfying

P 0
1 (γ )V |x − V |x = −

1∫
0

P 0
s (γ )γ̇ (s)ds, ∀γ ∈ Ωx(M). (11)

It follows from this that, for any piecewise C1 path γ : [0,1] → M , we have

V |γ (1) = P 1
0 (γ )

(
V |γ (0) −

1∫
0

P 0
s (γ )γ̇ (s)ds

)
. (12)

Indeed, if ω ∈ Ωγ(1)(M), then γ −1.ω.γ ∈ Ωγ(0)(M) and therefore

P 0
1 (γ )P 0

1 (ω)P 1
0 (γ )V |γ (0) − V |γ (0)

= P 0
1

(
γ −1.ω.γ

)
V |γ (0) − V |γ (0)

= −
1∫

0

P 0
s

(
γ −1.ω.γ

) d

ds

(
γ −1.ω.γ

)
(s)ds

= −
1∫

0

P 0
s (γ )γ̇ (s)ds − P 0

1 (γ )

1∫
0

P 0
s (ω)ω̇(s)ds − P 0

1 (γ )P 0
1 (ω)

1∫
0

P 0
s

(
γ −1) d

ds
γ −1(s)ds

= −
1∫

0

P 0
s (γ )γ̇ (s)ds + P 0

1 (γ )
(
P 0

1 (ω)V |γ (1) − V |γ (1)

)+ P 0
1 (γ )P 0

1 (ω)P 1
0 (γ )

1∫
0

P 0
s (γ )γ̇ (s)ds,

that is (P 0
1 (ω) − id)P 1

0 (γ )(V |γ (0) − ∫ 1
0 P 0

s (γ )γ̇ (s)ds) = (P 0
1 (ω) − id)V |γ (1). Eq. (12) then follows from this since

{P 0(ω) | ω ∈ Ωγ(1)(M)} = H |γ (1) = SO(T |γ (1)M).
1
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Since (M,g) is complete, the geodesic γX(t) = expx(tX) is defined for all t ∈ [0,1]. Inserting this to Eq. (12) and
noticing that P 0

s (γX)γ̇X(s) = X in this case for all s ∈ [0,1], we get V |γX(1) = P 1
0 (γX)(V |x − X). In particular, one

deduces from this formula that V is smooth on M . If X := V |x and z := γX(1) = expx(V |x), we get V |z = 0.

Fix z ∈ M such that V |z = 0 and fix also some q∗ ∈ Q of the form q∗ = (z,0;A0) (one may e.g. take A0 = idT |zM ).
Eq. (12) is clearly equivalent to

P 0
t (γ )V |γ (t) = V |γ (0) −

t∫
0

P 0
s (γ )γ̇ (s)ds

for any piecewise smooth path γ : [0, T ] → M , T > 0. Taking γ to be smooth and differentiating the above equation
w.r.t. to t , we get P 0

t (γ )∇γ̇ (t)V = −P 0
t (γ )γ̇ (t), i.e., ∇γ̇ (t)V = −γ̇ (t). Since γ was an arbitrary smooth curve, this

implies that

∇XV = −X, ∀X ∈ VF(M). (13)

For any X ∈ VF(M), the vector R(X,V )V can be seen to vanish everywhere since

R(X,V )V = ∇X∇V V − ∇V ∇XV − ∇[X,V ]V = −∇XV + ∇V X + [X,V ]
= [V,X] + [X,V ] = 0,

where, in the second equality, we used (13).
For any X ∈ T |zM , we write γX(t) = expz(tX) for the geodesic through z in the direction of X. It follows that

V |γX(t) = P t
0(γX)

(
V |z −

t∫
0

P 0
s (γX)γ̇X(s)ds

)
= P t

0(γX)

(
−

t∫
0

Xds

)
= P t

0(γX)(−tX) = −t γ̇X(t).

Now for given X,v ∈ T |zM let Y(t) = ∂
∂s

|0 expz(t (X + sv)) be the Jacobi field along γX such that Y(0) = 0,
∇γ̇X(t)Y |t=0 = v. Then one has

∇γ̇X(t)∇γ̇X
Y = R

(
γ̇X(t), Y (t)

)
γ̇X(t) = 1

t2
R
(
V |γX(t), Y (t)

)
V |γX(t) = 0,

for t �= 0 which means that t 	→ ∇γ̇X(t)Y is parallel along γX , i.e., ∇γ̇X(t)Y = P t
0(γX)∇γ̇X(0)Y = P t

0(γX)v. This allows
us to compute, for any t ,

d2

dt2

∥∥Y(t)
∥∥2

g
= 2

d

dt
g
(∇γ̇X(t)Y,Y (t)

)= 2g
(∇γ̇X(t)∇γ̇X

Y︸ ︷︷ ︸
=0

, Y (t)
)+ 2g(∇γ̇X(t)Y,∇γ̇X(t)Y )

= 2g
(
P t

0(γX)v,P t
0(γX)v

)= 2‖v‖2
g

and then d
dt

‖Y(t)‖2
g = 2‖v‖2

gt + d
dt

|0‖Y(t)‖2
g = 2‖v‖2

gt , since d
dt

|0‖Y(t)‖2
g = 2g(∇γ̇X(0)Y,Y (0)) = 0 as Y(0) = 0.

Therefore,∥∥Y(t)
∥∥2

g
= ‖v‖2

gt
2 + ∥∥Y(0)

∥∥2
g

= ‖v‖2
gt

2,

which means that ‖t (expz)∗|tX(v)‖g = ‖tv‖g and hence, when t = 1,∥∥(expz)∗|X(v)
∥∥

g
= ‖v‖g, ∀X,v ∈ T |zM. (14)

This proves that expz is a local isometry (T |zM,g|z) → (M,g) and hence a Riemannian covering. Thus (M,g) is
flat and the proof is finished. �
Remark 4.4. For results and proofs in similar lines to those of the above proposition and theorem, see Theorem IV.7.1,
p. 193 and Theorem IV.7.2, p. 194 in [14].
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4.3. Rolling against a non-flat space form

4.3.1. The rolling connection
Let πT M⊕R :T M ⊕R → M be the vector bundle over M where πT M⊕R(X, r) = πT M(X). In this section we will

prove the following result.

Theorem 4.5. There exists a vector bundle connection ∇Rol of the vector bundle πT M⊕R that we call the rolling
connection, and which we define as follows: for every x ∈ M , Y ∈ T |xM , X ∈ VF(M), r ∈ C∞(M),

∇Rol
Y (X, r) = (∇Y X + r(x)Y,Y (r) − cg(X|x, Y )

)
, (15)

such that in the case of (M,g) rolling against the space form (M̂n;c, ĝn;c), c �= 0, the holonomy group G of DR is

isomorphic to the holonomy group H∇Rol
of ∇Rol.

Moreover, if one defines a fiber inner product hc on T M ⊕R by

hc

(
(X, r), (Y, s)

)= g(X,Y ) + c−1rs,

where X,Y ∈ T |xM , r, s ∈ R, then ∇Rol is a metric connection in the sense that for every X,Y,Z ∈ VF(M), r, s ∈
C∞(M),

Z
(
hc

(
(X, r), (Y, s)

))= hc

(∇Rol
Z (X, r), (Y, s)

)+ hc

(
(X, r),∇Rol

Z (Y, s)
)
.

Before providing the proof of the theorem, we present the equations of parallel transport w.r.t. ∇Rol along a general
curve and along a geodesic of M and also the curvature of ∇Rol. Let γ : [0,1] → M be an a.c. curve on M , γ (0) = x

and let (X0, r0) ∈ T |xM ⊕R. Then the parallel transport (X(t), r(t)) = (P ∇Rol
)t0(γ )(X0, r0) of (X0, r0) is determined

from the equations{∇γ̇ (t)X + r(t)γ̇ (t) = 0,

ṙ(t) − cg
(
γ̇ (t),X(t)

)= 0,
(16)

for a.e. t ∈ [0,1]. In particular, if γ is a geodesic on (M,g), one may derive the following uncoupled second order
differential equations for X and r , for all t ,{∇γ̇ (t)∇γ̇ (t)X + cg

(
X(t), γ̇ (t)

)
γ̇ (t) = 0,

r̈(t) + c
∥∥γ̇ (t)

∥∥2
g
r(t) = 0.

(17)

One easily checks that the connection ∇Rol on πT M⊕R has the curvature,

R∇Rol
(X,Y )(Z, r) = (

R(X,Y )Z − c
(
g(Y,Z)X − g(X,Z)Y

)
,0
)
, (18)

where X,Y,Z ∈ VF(M), r ∈ C∞(M).

Proof of Theorem 4.5. We have proved in Proposition 4.1 that the rolling distribution DR is a principal bundle
connection for the principal Gc(n)-bundle πQ,M :Q → M . By a standard procedure (cf. Definition 2.1.3 and Propo-
sition 2.3.7 in [12]), the previous fact implies that there is a vector bundle ξ :E → M with fibers isomorphic to R

n+1

and a unique linear vector bundle connection ∇Rol :Γ (ξ)× VF(M) → Γ (ξ) which induces the distribution DR on Q.
Then the holonomy group G of DR and H∇Rol

of ∇Rol are isomorphic. We will eventually show that ξ is further iso-
morphic to πT M⊕R and give the explicit expression (15) for the connection of πT M⊕R induced by this isomorphism
from ∇Rol on ξ .

There is a canonical non-degenerate metric hc :E � E → M on the vector bundle ξ (positive definite when c > 0
and indefinite if c < 0) and the connection ∇Rol is a metric connection w.r.t. to hc, i.e., for any Y ∈ VF(M) and
s, σ ∈ Γ (ν),

Y
(
hc(s, σ )

)= hc

(∇Rol
Y s, σ

)+ hc

(
s,∇Rol

Y σ
)
. (19)

The construction of ξ goes as follows (see [12, Section 2.1.3]). Define a left Gc(n)-group action β on Q×R
n+1 by

β(B, (q, v)) = (μ(B,q),Bv), where q ∈ Q, v ∈ R
n+1, B ∈ Gc(n). The action β is clearly smooth, free and proper.
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Hence E := (Q ×R
n+1)/β is a smooth manifold of dimension n + (n + 1) = 2n + 1. The β-equivalence class (i.e.,

β-orbit) of (q, v) ∈ Q × R
n+1 is denoted by [(q, v)]. Then one defines ξ([(q, v)]) = πQ,M(q) which is well defined

since the β-action preserves the fibers of Q ×R
n+1 → M ; (q, v) 	→ πQ,M(q). We prove now that ξ is isomorphic, as

a vector bundle over M , to

πT M⊕R :T M ⊕R→ M,

(X, t) 	→ πT M(X).

Indeed, let f ∈ Γ (ξ) and notice that for any q ∈ Q there exists a unique f (q) ∈ R
n+1 such that [(q, f (q))] =

f (πQ,M(q)) by the definition of the action β . Then f :Q → R
n+1 is well defined and, for each q = (x, x̂;A), there

are unique X|q ∈ T |xM , r(q) ∈R such that

f (q) = AX|q + r(q)x̂.

The maps q 	→ X|q and q 	→ r(q) are smooth. We show that the vector X|q and the real number r(q) depend only on
x and hence define a vector field and a function on M . One has [((x, x̂;A),v)] = [((x, ŷ;B),w)] if and only if there
is C ∈ Gc(n) such that Cx̂ = ŷ, CA = B and Cv = w. This means that C|imA = BA−1|imA :T |x̂ M̂n;c → T |ŷM̂n;c
(with imA denoting the image of A) and this defines C uniquely as an element of Gc(n) and also, by the definition
of f , Cf (x, x̂,A) = f (x, ŷ,B). Therefore,

BX|(x,ŷ;B) + r(x, ŷ;B)ŷ = C
(
AX|(x,x̂;A) + r(x, x̂;A)x̂

)= BX|(x,x̂;A) + r(x, x̂;A)ŷ,

which shows that X|(x,ŷ;B) = X|(x,x̂;A), r(x, ŷ;B) = r(x, x̂;A) and proves the claim.
Hence for each f ∈ Γ (ξ) there are unique Xf ∈ VF(M) and rf ∈ C∞(M) such that

f (x) = [(
(x, x̂;A),AXf |x + rf (x)x̂

)]
(here the right hand side does not depend on the choice of (x, x̂;A) ∈ π−1

Q,M(x)).
Conversely, given X ∈ VF(M), r ∈ C∞(M) we may define f(X,r) ∈ Γ (ξ) by

f(X,r)(x) = [(
(x, x̂;A),AX|x + r(x)x̂

)]
,

where the right hand side does not depend on the choice of (x, x̂;A) ∈ π−1
Q,M(x).

Clearly, for f ∈ Γ (ξ), one has f(Xf ,rf ) = f and, for (X, r) ∈ VF(M)×C∞(M), one has (Xf(X,r)
, rf(X,r)

) = (X, r).
This proves that the map defined by

Γ (ξ) → VF(M) × C∞(M),

f 	→ (Xf , rf )

is a bijection. It is easy to see that it is actually a C∞(M)-module homomorphism. Since C∞(M)-modules Γ (ξ) and
VF(M) × C∞(M) are isomorphic and since VF(M) × C∞(M) is obviously isomorphic, as a C∞(M)-module, to
Γ (πT M⊕R), it follows that ξ and πT M⊕R are isomorphic vector bundles over M .

We now describe the connection ∇Rol and the inner product structure hc on ξ and we determine to which objects
they correspond in the isomorphic bundle πT M⊕R.

By Section 2.1.3 in [12] and the above notation, one defines for f ∈ Γ (ξ), Y ∈ T |xM , x ∈ M

∇Rol
Y f |x := [(

(x, x̂;A),LR(Y )|(x,x̂;A)f
)]

,

where f :Q → R
n+1 is defined above and LR(Y )|(x,x̂;A)f is defined componentwise (i.e., we let LR(Y )|(x,x̂;A) to

operate separately to each of the n + 1 component functions of f ). The definition does not depend on (x, x̂;A) ∈
π−1

Q,M(x) as should be evident from the above discussions. The inner product on ξ , on the other hand, is defined by

hc

([(
(x, x̂;A),v

)]
,
[(

(x, ŷ;B),w
)])= g(X,Y ) + c−1rt,

where v = AX + rx̂, w = BY + t ŷ. It is clear that hc is well defined.
We work out the expression for ∇Rol. For clarity, we write ι : M̂n;c → R

n+1 for the inclusion. Let f ∈ Γ (ξ),
Y ∈ T |xM , x ∈ M . Then f (y, ŷ,B) = ι∗(BXf |y) + rf (y)ŷ where Xf ∈ VF(M), rf ∈ C∞(M) and

LR(Y )|(x,x̂;A)f = LR(Y )|(x,x̂;A)

(
(y, ŷ;B) 	→ ι∗(BXf |y)

)+ Y(rf )x̂ + rf (x)AY.
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Take a path γ on M such that γ̇ (0) = Y . Then q̇DR(γ, q)(0) = LR(Y )|q , where q = (x, x̂;A), and
LR(Y )|q((y, ŷ;B) 	→ ι∗(BXf |y)) = d

dt
|0ι∗(ADR(γ, q)(t)Xf |γ (t)). Since

sn;c
(

d

dt

∣∣∣∣
0
ι∗
(
ADR(γ, q)(t)Xf |γ (t)

)
, x̂

)
= d

dt

∣∣∣∣
0
sn;c

(
ι∗ADR(γ, q)(t)Xf |γ (t), γ̂DR(γ, q)(t)

)− sn;c(ι∗AXf |x, ι∗AY)

= −ĝn;c(AXf |x,AY ) = −g(Xf |x, Y ) = sn;c
(−cg(Xf |x, Y )x̂, x̂

)
.

This implies that

LR(Y )|q
(
(y, ŷ;B) 	→ ι∗(BXf |y)

)= ι∗∇̂AY

(
ADR(γ, q0)(·)Xf

)− cg(Xf |x, Y )x̂

= ι∗A∇Y Xf − cg(Xf |x, Y )x̂

and so LR(Y )|qf = ι∗A(∇Y Xf + rf (x)Y ) + (Y (rf ) − cg(Xf |x, Y ))x̂.

Correspondingly, using the isomorphism of ξ and πT M⊕R, to the connection ∇Rol and the non-degenerate metric
hc on ξ , there is a connection ∇Rol and an indefinite metric hc (with the same names as the ones on ξ ) on πT M⊕R

such that for X ∈ VF(M), r ∈ C∞(M) and Y ∈ T |xM ,

∇Rol
Y (X, r) = (∇Y X + r(x)Y,Y (r) − cg(X|x, Y )

)
, (20)

where (x, x̂;A) ∈ Q is any point of π−1x and hc((X, r), (Y, s)) = g(X,Y ) + c−1rs for X,Y ∈ T |xM , r, s ∈ R. To
finish the proof, we need to show that ∇Rol is metric w.r.t. hc . Indeed, if X,Y,Z ∈ VF(M), r, s ∈ C∞(M), we get

hc

(∇Rol
Z (X, r), (Y, s)

)+ hc

(
(X, r),∇Rol

Z (Y, s)
)

= hc

((∇ZX + rZ,Z(r) − cg(X,Z)
)
, (Y, s)

)+ hc

(
(X, r),

(∇ZY + sZ,Z(s) − cg(Y,Z)
))

= g(∇ZX + rZ,Y ) + c−1Z(r)s − g(X,Z)s + g(∇ZY + sZ,X) + c−1rZ(s) − rg(Y,Z)

= g(∇ZX,Y ) + g(X,∇ZY ) + c−1Z(r)s + c−1rZ(s)

= Z
(
g(X,Y ) + c−1rs

)= Z
(
hc

(
(X, r), (Y, s)

))
. �

4.4. Rolling holonomy for a space form of positive curvature

In this section, we assume that c = 1, i.e. (M̂, ĝ) = (M̂n;1, ĝn;1) is the n-dimensional unit sphere Sn. It is now
clear, thanks to Theorem 4.5, that the controllability of the rolling problem of a manifold M against the sphere Sn

amounts to checking whether the connection ∇Rol of πT M⊕R has full holonomy or not, i.e., whether HRol := H∇Rol
is

SO(n + 1) or not.
The classical investigation of the holonomy group H of the Levi-Civita connection in Riemannian geometry is

divided into several steps. The first one consists of studying the reducibility of the action of HRol and this issue is
tackled by de Rham theorem (see [20]). The second step then deals with the question of transitivity of the irreducible
action of H on the unit sphere. In particular, if this action is not transitive, the corresponding Riemannian manifold
is shown to be (locally) symmetric (cf. [22,12,18,4]). Then, from the list of compact connected subgroups of SO(n)

having a transitive action on the unit sphere, one proceeds by either excluding candidates or constructing examples of
manifolds having a prescribed holonomy group.

As regards to HRol the situation turns out to be much more simple and is summarized in the following theorem.

Theorem 4.6. Let ∇Rol be the rolling connection associated to the rolling problem (R) of a complete simply connected
Riemannian manifold (M,g) onto the unit sphere Sn, n � 2. We use HRol to denote the holonomy group of ∇Rol.
Assume that the action of HRol on the unit sphere is not transitive, then (M,g) admits the unit sphere as its universal
covering space.

We deduce from the list of compact connected subgroups of SO(n) having a transitive action on the unit sphere
(cf. [12, Section 3.4.3]) an immediate corollary regarding the complete controllability of the rolling problem (R)
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associated to the manifolds (M,g), (M̂, ĝ) as in the previous theorem. Indeed, a transitive action on the unit sphere
Sk for even dimension k � 16 corresponds to a unique compact connected subgroup of SO(k + 1), namely SO(k + 1)

itself.

Corollary 4.7. If n is even and n� 16, then the rolling problem (R) associated to a complete simply connected (M,g)

against a space form (M̂n;c, ĝn;c) of positive curvature c > 0 is completely controllable if and only if (M,g) is not of
constant curvature c.

The proof of Theorem 4.6 is divided in two steps. We first assume that the action of H Rol is reducible and then deal
with the case of irreducible and non-transitive action.

4.5. Reducibility

Theorem 4.8. Let (M,g) be a complete connected Riemannian manifold and (M̂, ĝ) = Sn be the unit sphere. If the
rolling holonomy group HRol corresponding to the rolling of (M,g) against Sn acts reducibly, then Sn is a Riemannian
covering of (M,g).

Proof. We write h = h1 for the inner product on T M ⊕ R. Fix once and for all a point x0 ∈ M . Since HRol acts
reducibly, then there are two non-trivial subspaces V1,V2 ⊂ T |x0M ⊕ R and invariant by the action of HRol|x0 , the
holonomy group of ∇Rol at x0. Since the holonomy group of ∇Rol acts h-orthogonally on T |x0M , it follows that
V1 ⊥ V2.

Define subbundles πDj
:Dj → M , j = 1,2, of πT M⊕R such that for any x ∈ M one chooses a piecewise C1 curve

γ : [0,1] → M from x0 to x and defines

Dj |x = (
P ∇Rol)1

0(γ )Vj , j = 1,2.

These definitions are independent of the chosen path γ : if ω is another curve, then ω−1.γ ∈ Ωx0(M) is a loop based
at x0 and by the invariance of Vj , j = 1,2, under the holonomy of ∇Rol,(

P ∇Rol)1
0(γ )Vj = (

P ∇Rol)1
0(ω)

(
P ∇Rol)1

0

(
ω−1.γ

)
Vj︸ ︷︷ ︸

=Vj

= (
P ∇Rol)1

0(ω)Vj .

Moreover, since parallel transport (P ∇Rol
)1
0(γ ) is an h-orthogonal map, it follows that D1 ⊥D2 w.r.t. the vector bundle

metric h.
It is a standard fact that Dj , j = 1,2, are smooth embedded submanifolds of T M ⊕ R and that the restriction of

πT M⊕R to Dj defines a smooth subbundle πDj
as claimed. Moreover, it is clear that πD1 ⊕ πD2 = πT M⊕R, and this

sum is h-orthogonal.
We will now assume that both Dj , j = 1,2, have dimension at least 2. The case where one of them has

dimension = 1 can be treated in a similar fashion and will be omitted. So we let m + 1 = dimD1 where m � 1
and then n − m = (n + 1) − (m + 1) = dimD2 � 2, i.e., 1 �m � n − 2. Define for j = 1,2

DM
j = pr1(Dj ) = {

X
∣∣ (X, r) ∈Dj

}⊂ T M,

Nj = {
x ∈ M

∣∣ (0,1) ∈ Dj |x
}⊂ M.

Trivially, N1 ∩ N2 = ∅. Also, Nj , j = 1,2, are closed subsets of M since they can be written as Nj = {x ∈ M |
p⊥

j (T |x) = T |x} where p⊥
j :T M ⊕ R → Dj is the h-orthogonal projection onto Dj and T is the (smooth) constant

section x 	→ (0,1) of πT M⊕R.
We next provide a sketch of the proof. We show that Nj are non-empty totally geodesic submanifolds of M and,

for any xj ∈ Nj , j = 1,2, that (M,g) is locally isometric to the sphere

S = {
(X1,X2) ∈ T |⊥x1

N1 ⊕ T |⊥x2
N2

∣∣ ‖X1‖2
g + ‖X2‖2

g = 1
}
,

with the metric G := (g|T |⊥x1
N1

⊕ g|T |⊥x2
N2

)|S . Here ⊥ denotes the orthogonal complement inside T |xM w.r.t. g. Since

(S,G) is isometric to the Euclidean sphere (Sn, sn;1) this would finish the argument. The latter is rather long and we
decompose it in a sequence of ten lemmas.
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Lemma 4.9. The sets Nj , j = 1,2, are non-empty.

Proof. Note that N1 ∪ N2 �= M since otherwise N1 = M\N2 would be open and closed and similarly for N2. If
(say) N1 �= ∅, then N1 = M by connectedness of M , i.e., the point (0,1) ∈ D1|x for all x ∈ M . Then, for all x ∈ M ,
X ∈ VF(M), D1|x � ∇Rol

X|x (0,1) = (X|x,0), by the invariance of D1, the holonomy of ∇Rol and (15), implying that
D1 = T M ⊕R, a contradiction.

Let x′ ∈ M\(N1 ∪N2) be arbitrary. Choose a basis (X0, r0), . . . , (Xm, rm) of D1|x′ . Then at least one of the numbers
r0, . . . , rm is non-zero, since otherwise one would have (Xi, ri) = (Xi,0) ⊥ (0,1) for all i and thus D1|x′ ⊥ (0,1),
i.e., (0,1) ∈ D2|x′ , i.e., x′ ∈ N2 which is absurd. We assume that it is r0 which is non-zero. By taking appropriate
linear combinations of (Xi, ri), i = 0, . . . ,m (and by Gram–Schmidt’s process), one may change the basis (Xi, ri),
i = 0, . . . ,m, of D1|x so that r1, . . . , rm = 0, r0 �= 0 and that (X0, r0), (X1,0), . . . , (Xm,0) are h-orthonormal. Also,
X0, . . . ,Xm are non-zero: for X1, . . . ,Xm this is evident, and for X0 it follows from the fact that if X0 = 0, then
r0 = 1 and hence x′ ∈ N1, which contradicts our choice of x′.

Now let γ :R → M be the unit speed geodesic with γ (0) = x ′, γ̇ (0) = X0‖X0‖g
. Parallel translate (Xi, ri) along γ

by ∇Rol to get πD1 -sections (Xi(t), ri(t)) along γ . In particular, from (17) one gets r̈i (t) + ri(t) = 0, with r0(0) �= 0,
r1(0) = · · · = rm(0) = 0. From the second equation in (16) one obtains ṙi (0) = g(γ̇ (0),Xi(0)) = ‖X0‖−1

g g(X0,Xi)

and thus ṙi (0) = 0 for i = 1, . . . ,m since (Xi,0) is h-orthogonal to (X0, r0). Moreover, ṙ0(0) = ‖X0‖g . Hence ri(t) =
0 for all t and i = 1, . . . ,m and r0(t) = ‖X0‖g sin(t) + r0 cos(t). In particular, at t = t0 := arctan(− r0‖X0‖g

) one has
ri(t0) = 0 for all i = 0, . . . ,m which implies that D1|γ (t0) ⊥ (0,1), i.e., γ (t0) ∈ N2. This proves that N2 is non-empty.
The same argument with D1 and D2 interchanged shows that N1 is non-empty. �
Lemma 4.10. For any x ∈ M and any unit vector u ∈ T |xM ,(

P ∇Rol)t
0(γu)(0,1) = (− sin(t)γ̇u(t), cos(t)

)
. (21)

Proof. Here and in what follows, γu(t) := expx(tu). Write (X0(t), r0(t)) := (P ∇Rol
)t0(γu)(0,1). The second equation

in (16) implies that ṙ0(0) = g(γ̇u(0),X0(0)) = g(u,0) = 0 and, since r0(0) = 1, the second equation in (17) gives
r0(t) = cos(t). Notice that, for all t ∈ R,

∇γ̇u(t)

(− sin(t)γ̇u(t)
)+ r0(t)γ̇u(t) = ∇γ̇u(t)

(− sin(t)
)
γ̇u(t) − sin(t)∇γ̇u(t)γ̇u(t) + cos(t)γ̇u(t)

= − cos(t)γ̇u(t) − 0 + cos(t)γ̇u(t) = 0,

i.e., − sin(t)γ̇u(t) solves the same first order ODE as X0(t), ∇γ̇u(t)X0 + r0(t)γ̇u(t) = 0 by the first equation in (16).
Moreover, since (− sin(t)γ̇u(t))|t=0 = 0 = X0(0), then X0(t) = − sin(t)γ̇u(t), which, combined with the fact that
r0(t) = cos(t) proven above, gives (21). �
Lemma 4.11. The sets Nj , j = 1,2, are complete, totally geodesic submanifolds of (M,g) and DM

j |x = T |xNj ,
∀x ∈ Nj , j = 1,2.

Proof. We show this for N1. The same argument then proves the claim for N2. Let x ∈ N1 and u ∈ DM
1 |x a unit vector.

Since (0,1) ∈D1|x , Eq. (21) implies that

D1|γu(t) � (
P ∇Rol)t

0(γu)(0,1) = (− sin(t)γ̇u(t), cos(t)
)
.

Next notice that

∇Rol
γ̇u(t)

(
cos(t)γ̇u(t), sin(t)

)= (− sin(t)γ̇u(t) + sin(t)γ̇u(t), cos(t) − g
(
γ̇u(t), cos(t)γ̇u(t)

))
= (0,0),

and hence, since (cos(t)γ̇u(t), sin(t))|t=0 = (u,0) ∈ D1|x (because u ∈ DM
1 |x , hence there is some r ∈ R such

that (u, r) ∈ D1|x and since (0,1) ∈ D1|x , then D1|x � (u, r) − r(0,1) = (u,0)), we have, for all t ∈ R,
(cos(t)γ̇u(t), sin(t)) = (P ∇Rol

)t0(u,0) ∈D1|γu(t), and then

D1|γu(t) � sin(t)
(
cos(t)γ̇u(t), sin(t)

)+ cos(t)
(− sin(t)γ̇u(t), cos(t)

)= (0,1).
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This proves that any geodesic starting from a point of N1 with the initial direction from DM
1 stays in N1 forever.

Hence, once it has been shown that N1 is a submanifold of M with tangent space T |xN1 = DM
1 |x for all x ∈ N1, then

automatically N1 is totally geodesic and complete.
Let x ∈ N1. If U is an open neighbourhood of x and (Xm+1, rm+1), . . . , (Xn, rn) local πD2 -sections forming a

basis of D2 over U , then N1 ∩ U = {x ∈ U | rm+1(x) = · · · = rn(x) = 0}.
Thus let (Xm+1, rm+1), . . . , (Xn, rn) ∈ D2|x be a basis of D2|x . Choose ε > 0 such that expx is a diffeomorphism

from Bg(0, ε) onto its image Uε and define for y ∈ Uε , j = m + 1, . . . , n,

(Xj , rj )|y = (
P ∇Rol)1

0

(
τ 	→ expx

(
τ exp−1

x (y)
))

(Xj , rj ).

Then (Xj , rj ) are local πD2 -sections and it is clear that

N1 ∩ Uε = {
y ∈ Uε

∣∣ rm+1(y) = · · · = rn(y) = 0
}
.

Moreover, from (16), ∇rj |x = Xj |x , j = m + 1, . . . , n, which are linearly independent. Hence, by taking ε > 0
possibly smaller, we may assume that the local vector fields ∇rj , j = m + 1, . . . , n, are linearly independent on Uε .
But this means that N1 ∩ Uε = {y ∈ Uε | rm+1(y) = · · · = rn(y) = 0} is a smooth embedded submanifold of Uε with
tangent space

T |xN1 = {
X ∈ T |xM

∣∣ g(∇rj ,X) = 0, j = m + 1, . . . , n
}

= {
X ∈ T |xM

∣∣ g(Xj ,X) = 0, j = m + 1, . . . , n
}=DM

1

∣∣
x
.

Since x ∈ N1 was arbitrary, this proves that N1 is indeed an embedded submanifold of M and T |xN1 = DM
1 |x for

all x ∈ N1. �
Lemma 4.12. Let di(x) := dg(Ni, x), x ∈ M . Then in the set where di is smooth,(∇ cos

(
di(·)

)
, cos

(
di(·)

)) ∈DM
i , (22)

where ∇ is the gradient w.r.t. g.

Proof. Let x ∈ M\N1. Choose y ∈ N1, u ∈ (T |yN1)
⊥ such that γu : [0, di(x)] → M is the minimal normal unit speed

geodesic from N1 to x. Since (0,1) ∈ D1|y (because y ∈ N1), the parallel translate of (0,1) along γu stays in D1
which, in view of (21), gives

D1|x � (
P ∇Rol)d1(x)

0 (γu)(0,1) = (− sin
(
d1(x)

)
γ̇u

(
d1(x)

)
, cos

(
d1(x)

))
= (− sin

(
d1(x)

)∇(
d1(·)

)∣∣
x
, cos

(
d1(x)

))
= (∇ cos

(
d1(·)

)∣∣
x
, cos

(
d1(x)

))
,

where the last two equalities hold true if x is not in the cut nor the conjugate locus of N1 (nor is x in N1, by assump-
tion). Working in the complement of these points, which is a dense subset of M and using a continuity argument,
we may assure that the result holds true everywhere where di is smooth. The same argument proves formula (22)
for d2. �
Lemma 4.13. For every Y ∈ VF(M), one has, wherever d1(·) is smooth, that

g
(
R
(
Y,∇d1(·)

)∇d1(·), Y
)= g(Y,Y ) − (∇Y

(
d1(·)

))2
. (23)

Proof.
It is known (see [19]) that for any Y,Z ∈ VF(M), d1(·) satisfies a PDE

−g
(
R
(
Y |y,∇d1(y)

)∇d1(y),Z|y
)= Hess2(d1(·)

)
(Y |y,Z|y) + (∇∇d1(y)Hess

(
d1(·)

))
(Y |y,Z|y),

for every y ∈ M such that d1 is smooth at y (and this is true in a dense subset of M). In particular, y /∈ N1. Also, since
the set of points y ∈ M where cos(d1(y)) = 0 or sin(d1(y)) = 0 is clearly Lebesgue zero-measurable, we may assume
that cos(d1(y)) �= 0 and sin(d1(y)) �= 0.
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Notice that (X0, r0) := (∇ cos(d1(·)), cos(d1(·))) belongs to D1 and has h-norm equal to 1. We may choose in a
neighbourhood U of y vector fields X1, . . . ,Xm ∈ VF(U) such that (X0, r0), (X1,0), . . . , (Xm,0) is an h-orthonormal
basis of D1 over U . Assume also that (X0, r0) is smooth on U . This implies that there are smooth one-forms ωi

j ,

i, j = 0, . . . ,m, defined by (set here r1 = · · · = rm = 0) ∇Rol
Y (Xi, ri) = ∑m

i=0 ω
j
i (Y )(Xj , rj ), Y ∈ VF(M), or, more

explicitly,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇Y Xj + rjY =

m∑
i=0

ωi
j (Y )Xi,

Y (rj ) − g(Y,Xj ) =
m∑

i=0

ωi
j (Y )ri .

Since (X0, r0), . . . , (Xm, rm) are h-orthonormal, it follows that ωi
j = −ω

j
i . The fact that r1 = · · · = rm = 0 implies

that −g(Y,Xj ) = ω0
j (Y )r0, j = 1, . . . ,m, i.e.,

ω
j

0(Y ) = g(Y,Xj )

cos(d1(·)) .

Since ω0
0 = 0, one has ∇Y X0 + r0Y =∑m

j=1 ω
j

0(Y )Xj , which simplifies to

∇Y ∇d1(·) = − cot
(
d1(·)

)∇Y

(
d1(·)

)∇d1(·) + cot
(
d1(·)

)
Y − 1

sin(d1(·)) cos(d1(·))
m∑

j=1

g(Xj ,Y )Xj .

Writing S(Y ) := ∇Y ∇d1(·) = Hess(d1(·))(Y, ·), one obtains

(∇∇d1(·)S)(Y ) = ∇∇d1(·)
(
S(Y )

)− S(∇∇d1(·)Y )

= 1

sin2(d1(·))
∇Y

(
d1(·)

)∇d1(·) − cot
(
d1(·)

)
g
(∇∇d1(·)Y,∇d1(·)

)∇d1(·)

− 1

sin2(d1(·))
Y −

(
1

cos2(d1(·)) − 1

sin2(d1(·))
) m∑

j=1

g(Y,Xj )Xj

− 1

sin(d1(·)) cos(d1(·))
m∑

j=1

(
g(Y,∇∇d1(·)Xj )Xj + g(Y,Xj )∇∇d1(·)Xj

)
+ cot

(
d1(·)

) ∇∇∇d1(·)Y
(
d1(·)

)︸ ︷︷ ︸
=g(∇d1(·),∇∇d1(·)Y )

∇d1(·),

where we used that ∇∇d1(·)(d1(·)) = g(∇d1(·),∇d1(·)) = 1. On the other hand,

Hess2(d1(·)
)
(Y, ·) = S2(Y ) = S

(
S(Y )

)
= S

(
− cot

(
d1(·)

)∇Y

(
d1(·)

)∇d1(·) + cot
(
d1(·)

)
Y − 1

sin(d1(·)) cos(d1(·))
m∑

j=1

g(Xj ,Y )Xj

)

= − cot2
(
d1(·)

)∇Y

(
d1(·)

)∇d1(·) + cot2
(
d1(·)

)
Y − 2

sin2(d1(·))
m∑

j=1

g(Xj ,Y )Xj

+ 1

sin2(d1(·)) cos2(d1(·))
m∑

j=1

g(Xj ,Y )Xj ,

where we used that ∇d1(·),X1, . . . ,Xm are g-orthonormal (recall that X0 = − sin(d1(·))∇d1(·)). Thus, for any Y,Z ∈
VF(M), one has on U that
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−g
(
R
(
Y,∇d1(·)

)∇d1(·),Z
)

= −g(Y,Z) +
(

1

sin2(d1(·))
− cot2

(
d1(·)

))∇Y

(
d1(·)

)∇Z

(
d1(·)

)
− 1

sin(d1(·)) cos(d1(·))
m∑

j=1

(
g(Y,∇∇d1(·)Xj )g(Xj ,Z) + g(Y,Xj )g(∇∇d1(·)Xj ,Z)

)
.

We also set Z = Y and hence get that −g(R(Y,∇d1(·))∇d1(·), Y ) is equal to

g(Y,Y ) − ∇Y

(
d1(·)

)∇Y

(
d1(·)

)+ 2

sin(d1(·)) cos(d1(·))
m∑

j=1

g(Y,∇∇d1(·)Xj )g(Xj ,Y ).

Here
∑m

j=1 g(Y,∇∇d1(·)Xj )g(Xj ,Y ) is equal to

− 1

sin(d1(·))
m∑

j=1

g(Y,∇X0Xj)g(Xj ,Y ) = − 1

sin(d1(·))
m∑

j=1

g

(
Y,

m∑
i=1

ωi
j (X0)Xig(Xj ,Y )

)

= − 1

sin(d1(·))
m∑

i,j=1

ωi
j (X0)︸ ︷︷ ︸
(�)1

g(Y,Xi)g(Xj ,Y )︸ ︷︷ ︸
(�)2

= 0,

where expression (�)1 is skew-symmetric in (i, j) while (�)2 is symmetric on (i, j). Hence the sum is zero. We finally
obtain g(R(Y,∇d1(·))∇d1(·), Y ) = g(Y,Y )− (∇Y (d1(·)))2, as claimed. It is clear that this formula now holds at every
point of M where d1(·) is smooth and for any Y ∈ VF(M). In particular, if Y is a unit vector g-perpendicular to ∇d1(·)
at a point y of M , then ∇Y d1(·)|y = g(∇d1(·)|y, Y |y) = 0 and hence sec(Y, d1(·))|y = +1. �
Lemma 4.14. For every x ∈ N1, a unit vector u ∈ (T |xN1)

⊥ and v ∈ T |xM with v ⊥ u,∥∥(expx)∗|tu(v)
∥∥

g
=
∣∣∣∣ sin(t)

t

∣∣∣∣‖v‖g, t ∈ R. (24)

In particular, for all unit vectors u1, u2 ∈ (T |xN1)
⊥ one has expx(πu1) = expx(πu2).

Proof. Let Yu,v(t) = ∂
∂s

|0 expx(t (u + sv)) be the Jacobi field along γu(t) = expx(tu) such that Yu,v(0) = 0,
∇γ̇u(0)Yu,v = v. Since v ⊥ u, it follows from the Gauss lemma (see [20]) that Yu,v(t) ⊥ γ̇u(t) for all t . Moreover,
the assumption u ∈ (T |xN1)

⊥ implies that ∇d1(·)|γu(t) = γ̇u(t) and thus ∇Yu,v(t)(d1(·)) = g(γ̇u(t), Yu,v(t)) = 0. By
polarization, (23) rewrites as R(Z(t), γ̇u(t))γ̇u(t) = Z(t) − g(Z(t), γ̇u(t))γ̇u(t), for any vector field Z along γu.
In particular, ∇γ̇u∇γ̇uYu,v = −R(Yu,v, γ̇u)γ̇u = −Yu,v, since g(Yu,v(t), γ̇u(t)) = 0 for all t . On the other hand,
the vector field Z(t) = sin(t)P t

0(γu)v satisfies along γu, for all t that ∇γ̇u(t)∇γ̇uZ = −Z(t) with Z(0) = 0 and
∇γ̇uZ|t=0 = v, i.e., the same initial value problem as Yu,v . This implies that Yu,v(t) = sin(t)P t

0(γu)v, from which
we obtain (24) because Yu,v(t) = t (expx)∗|tu(v). The last claim follows from the fact that the map expx |S :S → M

where S = {u ∈ (T |xN1)
⊥ | ‖u‖ = π} is a constant map. Indeed, if u ∈ S, v ∈ T |uS and we identify v as an element

of T |xM as usual, then by what we have just proved (note that u = π u
‖u‖ g

), ‖(expx)∗|u(v)‖g = sin(π)
π

‖v‖g = 0. Hence

expx |S has zero differential on all over S which is connected, since its dimension is n − m − 1 � 1 by assumption.
Hence expx |S is a constant map. �
Lemma 4.15. For every x ∈ N1 and unit normal vector u ∈ (T |xN1)

⊥, the geodesic t 	→ γu(t) meets N2 exactly at
t ∈ (Z+ 1

2 )π , similarly with the roles of N1 and N2 interchanged.

Proof. Let x ∈ N1 and u ∈ (T |xN1)
⊥ be a unit vector normal vector to N1. For (X, r) ∈ D1|x define (X(t), r(t)) =

(P ∇Rol
)t0(γu)(X, r). Then by (16), (17) we have (notice that g(u,X) = 0 since u ∈ (T |xN1)

⊥ = (DM
1 |x)⊥ and X ∈

DM
1 |x ) r(t) = r(0) cos(t). Hence, (X(t), r(t)) is h-orthogonal to (0,1) if and only of r(t) = 0, i.e., r(0) cos(t) = 0.

This proves that (0,1) ⊥ D1|γu(t), i.e., (0,1) ∈ D2|γu(t), i.e., γu(t) ∈ N2 if and only if t ∈ ( 1
2 + Z)π (obviously, there

is a vector (X, r) ∈D1|x with r �= 0). �
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Lemma 4.16. The submanifolds N1, N2 are isometrically covered by Euclidean spheres of dimensions m and n − m,
respectively, and the fundamental groups of N1 and N2 are finite and have the same number of elements. More
precisely, for any x ∈ N1 define

Sx = {
u ∈ (T |xN1)

⊥ ∣∣ ‖u‖g = 1
}
,

equipped with the restriction of the metric g|x of T |xM . Then Sx → N2; u 	→ expx(
π
2 u), is a Riemannian covering.

The same claim holds with N1 and N2 interchanged.

Proof. Denote by C1 the component of N1 containing x. We show first that C1 = N1, i.e., N1 is connected. Let
y1 ∈ N1. Since C1 is a closed subset of M , there is a minimal geodesic γv in M from C1 to y1 with γ̇v(0) = v a
unit vector, x1 := γv(0) ∈ C1 and γv(d) = y1, with d := dg(y1,C1). By minimality, v ∈ (T |x1C1)

⊥ = (T |x1N1)
⊥.

Hence by Lemma 4.15, x2 := expx1
(π

2 v) = γv(
π
2 ) belongs to N2. Since the set Sx2 = {u ∈ (T |x2N2)

⊥ | ‖u‖g = 1}
is connected (its dimension is m � 1 by assumption), Lemma 4.15 implies that expx2

(π
2 Sx2) is contained in a single

component C′
1 of N1. Writing u := γ̇v(

π
2 ), we have ±u ∈ Sx2 so

C′
1 � expx2

(
−π

2
u

)
= expx2

(
−π

2

d

dt

∣∣∣∣
π
2

expx1
(tv)

)
= expx1

((
π

2
− t

)
v

)∣∣∣∣
t= π

2

= x1,

and since also x1 ∈ C1, it follows that C′
1 = C1. But this implies that

γv(π) = expx1
(πv) = expx2

(
π

2

d

dt

∣∣∣∣
π
2

expx1
(tv)

)
= expx2

(
π

2
u

)
∈ C1.

It also follows from u ∈ (T |x2N2)
⊥ that γ̇v(π) = d

dt
| π

2
expx2

(tu) ∈ (T |γv(π)N1)
⊥. Since expx2

((d − π
2 )u) = y1 ∈ N1,

Lemma 4.15 implies that d − π
2 ∈ ( 1

2 +Z)π , from which, since d � 0, we get d ∈N0π , where N0 = {0,1,2, . . .}. By
taking x′

2 = γv(
3
2π) ∈ N2 we may show similarly that γv(2π) ∈ C1 and by induction we get γv(kπ) ∈ C1 for every

k ∈ N0. In particular, since d ∈ N0π , we get y1 = γv(d) ∈ C1. Since y1 ∈ N1 was arbitrary, we get N1 ⊂ C1 which
proves the claim. Repeating the argument with N1 and N2 interchanged, we see that N2 is connected.

Eq. (24) shows that, taking u ∈ Sx and v ∈ T |uSx , i.e., v ⊥ u, v ⊥ T |xN1,∥∥∥∥ d

dt

∣∣∣∣
0

expx

(
π

2
(u + tv)

)∥∥∥∥
g

=
∥∥∥∥(expx)∗| π

2 u

(
π

2
v

)∥∥∥∥
g

= ‖v‖g.

This shows that u 	→ expx(
π
2 u) is a local isometry Sx → N2. In particular, the image is open and closed in N2, which

is connected, hence u 	→ expx(
π
2 u) is onto N2. According to Proposition II.1.1 in [20], u 	→ expx(

π
2 u) is a covering

Sx → N2.
Similarly, for any y ∈ N2 the map Sy → N1; u 	→ expy(

π
2 u) is a Riemannian covering.

Finally, let us prove the statement about fundamental groups. Fix a point xi ∈ Ni and write φi(u) = expxi
( π

2 u),
i = 1,2, for maps φ1 :Sx1 → N2, φ2 :Sx2 → N1. The fundamental groups π1(N1), π1(N2) of N1, N2 are finite since
their universal coverings are the (normal) spheres Sx2 , Sx1 which are compact. Also, φ−1

1 (x2) and φ−1
2 (x1) are in

one-to-one correspondence with π1(N2) and π1(N1) respectively.
Define Φ1 :φ−1

1 (x2) → Sx2 ; Φ1(u) = − d
dt

| π
2

expx1
(tu) ∈ Sx2 and similarly Φ2 :φ−1

2 (x1) → Sx1 ; Φ2(u) =
− d

dt
| π

2
expx2

(tu) ∈ Sx1 . Clearly, for u ∈ φ−1
1 (x2),

φ2
(
Φ1(u)

)= expx2

(
−π

2

d

dt

∣∣∣∣
π
2

expx1
(tu)

)
= expx1

((
π

2
− t

)
u

)∣∣∣∣
t= π

2

= x1,

i.e., Φ1 maps φ−1
1 (x2) → φ−1

2 (x1). Similarly Φ2 maps φ−1
2 (x1) → φ−1

1 (x2). Finally, Φ1 and Φ2 are inverse maps to
each other since for u ∈ φ−1

1 (x2),

Φ2
(
Φ1(u)

)= − d

dt

∣∣∣∣
π
2

expx2

(
−t

d

ds

∣∣∣∣
π
2

expx1
(su)

)
= − d

dt

∣∣∣∣
π
2

expx1

((
π

2
− t

)
u

)
= u,

and similarly Φ1(Φ2(u)) = u for u ∈ φ−1(x1). �
2
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For sake of simplicity, we finish the proof of Theorem 4.8 under the assumption that N2 is simply connected and
indicate in Remark 4.19 below how to handle the general case.

If N2 is simply connected, then Sx → N2; u 	→ expx(
π
2 u), defined in Lemma 4.16 is an isometry for some (and

hence every) x ∈ N1. From Lemma 4.16, it follows that N1 is (simply connected and) isometric to a sphere as well.
We next get the following.

Lemma 4.17. Fix xi ∈ Nj , j = 1,2, and let

Sx1 = {
u ∈ (T |x1N1)

⊥ ∣∣ ‖u‖g = 1
}
, Sx2 = {

u ∈ (T |x2N2)
⊥ ∣∣ ‖u‖g = 1

}
,

the unit normal spheres to N1, N2 at x1, x2 respectively. Consider first the maps

f1 :Sx1 → N2, f2 :Sx2 → N1,

f1(u) = expx1

(
π

2
u

)
, f2(v) = expx2

(
π

2
v

)
, (25)

and the map w which associates to (u, v) ∈ Sx1 × Sx2 the unique element of Sf2(v) such that expf2(v)(
π
2 w(u,v)) =

f1(u). Finally let

Ψ :

]
0,

π

2

[
× Sx1 × Sx2 → M,

Ψ (t, u, v) = expf2(v)

(
tw(u, v)

)
. (26)

Suppose that S̃ := ]0, π
2 [ × Sx1 × Sx2 is endowed with the metric g̃ such that

g̃|(t,u,v) = dt2 + sin2(t)g|T |uSx1
+ cos2(t)g|T |vSx2

.

Then Ψ is a local isometry.

Proof. We use G to denote the geodesic vector field on T M , i.e., for u ∈ T M we have

G|u := γ̈u(0) = d2

dt2

∣∣∣∣
0

expπT M(u)(tu).

The projections on M by πT M of its integral curves are geodesics. Indeed, first we notice that

G|γ̇ u(t) = d2

ds2

∣∣∣∣
0

expγu(t)

(
sγ̇u(t)

)= d2

ds2

∣∣∣∣
0
γu(t + s) = γ̈u(t),

and hence, if Γ is a curve on T M defined by Γ (t) = γ̇u(t), then Γ̇ (t) = γ̈u(t) = G|γ̇u(t) = G|Γ (t), and Γ (0) = u.
Hence Γ satisfies the same initial value problem as t 	→ ΦG(t, u), which implies that ΦG(t, u) = γ̇u(t), ∀t ∈ R,
u ∈ T M, and in particular, (πT M ◦ ΦG)(t, u) = γu(t), ∀t ∈R, u ∈ T M.

For every u ∈ T M there is a direct sum decomposition Hu ⊕ Vu of T |uT M where Vu = V |u(πT M) is the πT M -
vertical fiber over u and Hu is defined as

Hu =
{

d

dt

∣∣∣∣
0
P t

0(γX)u

∣∣∣X ∈ T |πT M(u)M

}
.

We write the elements of T |uT M w.r.t. this direct sum decomposition as (A,B) where A ∈ Hu, B ∈ Vu. It can now
be shown that (see [20, Lemma 4.3, Chapter II])(

(ΦG)t
)
∗
∣∣
u
(A,B) = (

Z(A,B)(t),∇γ̇u(t)Z(A,B)

)
, (A,B) ∈ T |uT M, u ∈ T M,

with Z(A,B), the unique Jacobi field along geodesic γu such that Z(A,B)(0) = A, ∇γ̇u(0)Z(A,B) = B .
We are now ready to prove the claim. First observe that Ψ (t, u, v) = (πT M ◦ ΦG)(t,w(u, v)) and hence, for

( ∂ ,X1,X2) ∈ T S̃,

∂t
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Ψ∗
(

∂

∂t
,X1,X2

)
= (πT M)∗

(
∂

∂t
ΦG

(
t,w(u, v)

)+ (
(ΦG)t

)
∗
∣∣
w(u,v)

w∗(X1,X2)

)
= (πT M)∗

(
G|ΦG(t,w(u,v)) + (

Zw∗(X1,X2)(t),∇ ∂
∂t

(πT M◦ΦG)(t,w(u,v))
Zw∗(X1,X2)

))
= γ̇w(u,v)(t) + Zw∗(X1,X2)(t).

On the other hand, (πT M ◦ ΦG)(π
2 ,w(u, v)) = f1(u), from where (f1)∗|u(X1) = Zw∗(X1,X2)(

π
2 ). Similarly, since

(πT M ◦ ΦG)(0,w(u, v)) = πT M(w(u, v)) = f2(v), we get (f2)∗|v(X2) = Zw∗(X1,X2)(0).

As in the proof of Lemma 4.14, we see that the Jacobi equation that Zw∗(X1,X2) satisfies is
∇γ̇w(u,v)(t)∇γ̇w(u,v)

Zw∗(X1,X2) = −Zw∗(X1,X2)(t). It is clear that this implies that Zw∗(X1,X2) has the form
Zw∗(X1,X2)(t) = sin(t)P t

0(γw(u,v))V1 + cos(t)P t
0(γw(u,v))V2, for some V1,V2 ∈ T |f2(u)M . Using the boundary values

of Zw∗(X1,X2)(t) at t = 0 and t = π
2 as derived above, we get V1 = P 0

π
2
(γw(u,v))((f1)∗|u(X1)) and V2 = (f2)∗|v(X2).

Define

Y1(t) = sin(t)P t
0(γw(u,v))V1 = sin(t)P t

π
2
(γw(u,v))

(
(f1)∗|u(X1)

)
,

Y2(t) = cos(t)P t
0(γw(u,v))V2 = cos(t)P t

0(γw(u,v))
(
(f2)∗|v(X2)

)
,

which means that Z = Y1 + Y2. Notice that Y1 and Y2 are Jacobi fields along γw(u,v).
Since w(u,v) ∈ (T |f2(v)N1)

⊥ and γ̇w(u,v)(
π
2 ) ∈ (T |f1(u)N2)

⊥ and

Y1

(
π

2

)
= (f1)∗|u(X1) ∈ T |f1(u)N2, Y2(0) = (f2)∗|v(X2) ∈ T |f2(v)N1,

it follows that Y1, Y2 ⊥ γw(u,v). We claim that moreover Y1 ⊥ Y2. Indeed, since (f2)∗|v(X2) ∈ T |f2(v)N1 and
(0,1) ∈ D1|f2(v) (by definition of N1), we have ((f2)∗|v(X2),0) ∈ D1|f2(v) and hence, for all t , (Z1(t), r1(t)) :=
(P ∇Rol

)t0(γw(u,v))((f2)∗|v(X2),0) ∈ D1. On the other hand, r1 satisfies r̈1 + r1 = 0 with initial conditions r1(0) =
0 and ṙ1(0) = g(γ̇w(u,v)(0),Z1(0)) = g(w(u, v), (f2)∗|v(X2)) = 0 so r1(t) = 0 for all t . Thus Z1(t) satisfies
∇γ̇w(u,v)(t)Z1 = 0, i.e., Z1(t) = P t

0(γw(u,v))((f2)∗|v(X2)). Similarly, if w′(u, v) := − d
dt

| π
2

expf2(v)(tw(u, v)) =
−γ̇w(u,v)(

π
2 ),(

Z2

(
π

2
− t

)
, r2

(
π

2
− t

))
:= (

P ∇Rol)t
0(γw′(u,v))

(
(f1)∗|u(X1),0

) ∈ D2,

and we have r2(
π
2 − t) = 0 and Z2(

π
2 − t) = P t

0(γw′(u,v))((f1)∗|v(X1)), i.e., Z2(t) = P t
π
2
(γw(u,v))((f1)∗|v(X1)). But

since D1 ⊥ D2 w.r.t. h, we have that (Z1, r1) ⊥ (Z2, r2) w.r.t. h, i.e., g(Z1(t),Z2(t)) = 0 for all t (since r1(t) =
r2(t) = 0). Thus,

g
(
Y1(t), Y2(t)

)= sin(t) cos(t)g
(
P t

π
2
(γw(u,v))

(
(f1)∗|u(X1)

)
,P t

0(γw(u,v))
(
(f2)∗|v(X1)

))
= sin(t) cos(t)g

(
Z2(t),Z1(t)

)= 0.

This proves the claim, i.e., Y1 ⊥ Y2. Since ‖w(u,v)‖g = 1, one has∥∥∥∥Ψ∗
(

∂

∂t
,X1,X2

)∥∥∥∥2

g

= ∥∥γ̇w(u,v)(t) + Y1(t) + Y2(t)
∥∥2

g
= ∥∥γ̇w(u,v)(t)

∥∥2
g

+ ∥∥Y1(t)
∥∥2

g
+ ∥∥Y2(t)

∥∥2
g

= 1 + sin2(t)2
∥∥(f1)∗|u(X1)

∥∥2
g

+ cos2(t)
∥∥(f2)∗|v(X2)

∥∥
g
.

Finally, since (f1)∗|u(X1) = (expx1
)∗| π

2 u(
π
2 X1) and (f2)∗|v(X2) = (expx2

)∗| π
2 v(

π
2 X2), Eq. (24) implies that

‖(f1)∗|u(X1)‖g = | sin(π
2 )|‖X1‖g = ‖X1‖g , ‖(f2)∗|v(X2)‖g = | sin(π

2 )|‖X2‖g = ‖X2‖g, and therefore
‖Ψ∗( ∂

∂t
,X1,X2)‖2

g = 1+sin2(t)‖X2‖2
g +cos2(t)‖X1‖2

g = g̃|(t,u,v)(
∂
∂t

,X1,X2), i.e., Ψ is a local isometry S̃ → M . �
Lemma 4.18. The manifold M has constant curvature equal to 1.

Proof. By Lemma 4.17, we know that Ψ : S̃ → M is a local isometry. Now (S̃, g̃) has constant curvature = 1 since it
is isometric to an open subset of the unit sphere (cf. [19, Chapter 1, Section 4.2]). The image Ψ (S̃) of Ψ is clearly a
dense subset of M (indeed, Ψ (S̃) = M\(N1 ∪ N2)), which implies that M has constant curvature = 1. �
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This completes the proof the theorem in the case 1 � m � n − 2, since a complete Riemannian manifold (M,g)

with constant curvature = 1 is covered, in a Riemannian sense, by the unit sphere, i.e., Sn. The cases m = 0 and
m = n − 1, i.e., dimD1 = 1 and dimD2 = 1, respectively, are treated exactly in the same way as above, but in this
case N1 is a discrete set which might not be connected. �
Remark 4.19. The argument can easily be modified to deal with the case where N2 (nor N1) is not simply connected.
The simplifying assumption of simply connectedness of N1 and N2 made previously just serves to render the map
w(·,·) globally defined on Sx1 × Sx2 . Otherwise we must define w only locally and, in its definition, make a choice
corresponding to different sheets (of which there is a finite number).

4.6. Non-transitive irreducible action

Following the same line of arguments that have been used in proving the classification of Riemannian holonomy
groups, the next step to take after proving Theorem 4.8 consists of studying the case where HRol|x0 acts irreducibly
on T |x0M ⊕R and non-transitively on the h1-unit sphere of T |x0M ⊕ R, where the latter means that there are more
than one HRol|x0 -orbit on that unit sphere. We will prove that in this case of irreducible and non-transitive action of
the rolling holonomy group, the manifold (M,g) has to have, again, constant curvature one. To do this, we will use
the results from [22].

For the ease of reading, we first recall some definitions and the key results from [22]. Let V be a vector space.
The action of GL(V ) on V induces in a natural way an action of GL(V ) on the tensor spaces

⊗k
V ∗ ⊗ ⊗m

V of
(k,m)-tensors by

(gT )(X1, . . . ,Xk,ω1, . . . ,ωm) := T
(
g−1X1, . . . , g

−1Xk,ω1 ◦ g, . . . ,ωm ◦ g
)
,

where T ∈⊗k
V ∗ ⊗⊗m

V , X1, . . . ,Xk ∈ V , ω1, . . . ,ωm ∈ V ∗.
If P ∈⊗3

V ∗ ⊗ V , we write usually P(X,Y )Z for P(X,Y,Z, ·) ∈ V , where X,Y,Z ∈ V . If g ∈ GL(V ) and P is
a (1,3)-tensor, then (gP)(X,Y ) = g ◦P(g−1X,g−1Y) ◦g−1. This implies that gl(V ) acts on an element

⊗3
V ∗ ⊗V

by

(AP)(X,Y ) = −P(AX,Y ) −P(X,AY) − [
P(X,Y ),A

]
so

, (27)

where A ∈ gl(V ). Let G be a subgroup of O(V ), where V is an inner product space. We recall that G acts (a) irre-
ducibly in V if the only G-invariant subspaces of G are {0} and V and (b) transitively on (the unit sphere of) V if
for one (and hence any) unit vector X ∈ V one has GX = Sn−1(V ), where Sn−1(V ) is the unit sphere of V . We also
recall that if a connected subgroup G of O(V ) acts irreducibly in V , then G is compact (see [14, Appendix 5]). The
concept of a curvature tensor, in abstract setting, is defined as follows.

Definition 4.20. Let V be a vector space with inner product 〈·,·〉. Then a (1,3)-tensor R ∈ ⊗3
V ∗ ⊗ V is called a

curvature (tensor) in V if the following conditions hold for all X,Y,Z,W ∈ V

R(X,Y ) = −R(Y,X), (28)〈
R(X,Y )Z,W

〉= −〈
R(X,Y )W,Z

〉
, (29)〈

R(X,Y )Z,W
〉= 〈

R(Z,W)X,Y
〉
, (30)

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0. (31)

From these one makes the following observations. Eqs. (28), (29) imply that R can be seen as a map R :∧2V →
∧2V by defining 〈R(X ∧ Y),Z ∧ W 〉 to be 〈R(X,Y )Z,W 〉, where in the former 〈·,·〉 is the inner product in ∧2V

induced in the standard way by 〈·,·〉 in V . Then Eq. (30) means that R as a map ∧2V → ∧2V is orthogonal.

Definition 4.21. Let V be an inner product space, G a compact subgroup of O(V ) with Lie algebra g and R a
curvature tensor in V . The triple (V ,R,G) is a holonomy system if

R(X,Y ) ∈ g, ∀X,Y ∈ V.
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Notice that by (29), if R is a curvature in V , then R(X,Y ) :V → V is skew-symmetric, i.e. R(X,Y ) ∈ so(V ) for
all X,Y ∈ V . Moreover, it is easy to see that for all g ∈ O(V ) one has that gR is a curvature in V .

Definition 4.22. If (V ,R,G) is a holonomy system, we write G(R) for the linear span in gl(V ) of {(gR)(X,Y ) |
X,Y ∈ V }.

Clearly for all Q ∈ G(R), g ∈ G one has gQ ∈ G(R) and hence AQ ∈ G(R) for all A ∈ g. Moreover, if g ∈ G

and X,Y ∈ V , then since one can write (gR)(X,Y ) as Ad(g)R(X,Y ) which belongs to g, because R(X,Y ) ∈ g, we
get that Q(X,Y ) ∈ g for all Q ∈ G(R), X,Y ∈ V . Thus we may pose the following definition.

Definition 4.23. If (V ,R,G) is a holonomy system, we define gR as the linear span of {Q(X,Y ) | Q ∈ G(R),
X,Y ∈ V } in g.

The subset gR of g is more than just a subspace as will be shown next.

Lemma 4.24. The linear space gR is an ideal in g.

Proof. Let Q ∈ G(R), X,Y ∈ V , A ∈ g. By Eq. (27),[
Q(X,Y ),A

]
so

= −Q(AX,Y ) −Q(X,AY) − (AQ)(X,Y ).

We observed just before the previous definition that AQ ∈ G(R). Thus all the terms on the right belong to gR by the
very definition of it. Therefore gR is an ideal in g. �

Hence the following definition makes sense.

Definition 4.25. Let (V ,R,G) be a holonomy system. We write GR for the Lie subgroup of G corresponding to the
ideal gR of g.

We need to define the concepts of an irreducible, transitive and symmetric holonomy systems.

Definition 4.26. A holonomy system (V ,R,G) is said to be

(1) reducible (resp. irreducible) if G acts reducibly (resp. irreducibly) in V ;
(2) symmetric if gR=R for all g ∈ G.

If G is connected, the symmetry (2) of a holonomy system (V ,R,G) can be written in the infinitesimal way as:
AR= 0, ∀A ∈ g. We state the main result of [22].

Proposition 4.27.

• Let (V ,R,G) be an irreducible holonomy system. If GR does not act transitively on (the unit sphere of ) V , then
(V ,R,G) is symmetric.

• If (V ,R,G) and (V ,R′,G) are two irreducible symmetric holonomy systems with the same V and G and if both
R and R′ are non-zero, then there exists c ∈ R such that R′ = cR.

We next deduce from the previous proposition our main result.

Theorem 4.28. Let (M,g) be a simply connected Riemannian manifold and (Sn, sn+1) be the unit sphere. Then the
rolling holonomy group HRol|x0 , for some x0 ∈ M , cannot act both irreducibly and non-transitively on T |x0M ⊕R.

Proof. We argue by contradiction. Assume that HRol|x0 acts irreducibly and non-transitively on T |x0M ⊕ R. Since
M is connected, it follows that for any x ∈ M , HRol|x acts irreducibly and non-transitively on T |xM ⊕ R. We will
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continue using x0 in the notations below, but we don’t consider it to be fixed anymore. Notice moreover that simply
connectedness of M implies that H Rol|x0 is connected. Write M × R. The canonical, positively directed unit vector
field in the R gives rise to a vector field ∂t in M ×R in a natural way. We equip M ×R with the metric h1,

h1
(
(X, r∂t ), (Y, s∂t )

)= g(X,Y ) + rs, (X, r∂t ), (Y, s∂t ) ∈ T (M ×R).

If pr1 :M × R → M is the projection onto the first factor, then the pull-back bundle pr∗1(πT M⊕R) is canonically
isomorphic to πT (M×R). We define a connection ∇R on the manifold as the pull-back pr∗1(∇Rol) determined by

∇R
(X,r∂t )

(Y, s∂t ) = ∇Rol
X (Y, s), ∀X,Y ∈ VF(M), r, s ∈ C∞(M)

= (∇XY + sX,
(
X(s) − g(X,Y )

)
∂t

)
.

One has ∇R is h1-compatible (i.e. metric w.r.t. h1) and if T R := T ∇R
, then T R((X, r∂t ), (Y, s∂t )) = r(Y, s∂t ) −

s(X, r∂t ), so it is not the Levi-Civita connection of (M ×R, h1).
Write HR := H∇R

for the holonomy group(s) of ∇R. Next we show that for every (x0, s0) ∈ M × R, one
has HR|(x0,s0) = HRol|x0 , where the isomorphism T |(x0,s0)(M × R) ∼= T |x0M ⊕ R is understood. Indeed, suppose
(γ, τ ) : [0,1] → M × R is a piecewise smooth path, (γ, τ )(0) = (x0, s0) and (X0, r0∂t |s0) ∈ T |(x0,s0)(M × R).

Let (X(t), r(t)∂t |τ(t)) := (P ∇R
)t0(γ, τ )(X0, r0∂t |s0) and (X(t), r(t)) := (P ∇Rol

)t0(γ )(X0, r0). It is enough to show
that (X(t), r(t)∂t |τ(t)) = (X(t), r(t)∂t |τ(t)) for all t ∈ [0,1]. But this is clear since ∇R

(γ̇ (t),τ̇ (t)∂t |τ (t))
(X, r∂t ) =

∇Rol
γ̇ (t)(X, r) = 0. Thus for every (x0, s0) ∈ M × R, the ∇R-holonomy group HR|(x0,s0) ⊂ SO(T |(x0,s0)(M ⊕ R)) acts

irreducibly and non-transitively on T |(x0,s0)(M ⊕R). Proposition 4.27 therefore implies that for all (x0, s0) ∈ M ×R

the holonomy system S(x0,s0) := (T |(x0,s0)(M ⊕ R),R∇R |(x0,st ),H
R|(x0,s0)) is symmetric. Notice that the fact that

S(x0,s0) is a holonomy system in the first place follows from three facts: (1) R∇R |(x0,st ) satisfies Eqs. (28)–(31),
(2) HR|(x0,s0) is compact since it is a connected subgroup of SO(T |(x0,s0)(M × R)) acting irreducibly (see [14, Ap-

pendix 5]) and (3) Ambrose–Singer theorem implies that R∇R |(x0,st )((X, r∂t ), (Y, s∂t )) always belongs to the Lie
algebra of HR|(x0,s0). Moreover, we have explicitly

R∇R(
(X, r∂t ), (Y, s∂t )

)
(Z,u∂t ) = R∇Rol

(X,Y )(Z,u) = (
R(X,Y )Z − B(X,Y )Z,0

)
,

where B(X,Y )Z := g(Y,Z)X − g(X,Z)Y . Notice that R∇R
cannot vanish identically on M × R, since in that case

HR|(x0,s0) would be trivial by Ambrose–Singer theorem, which contradicts the irreducibility of its action.

Consider the open set O := {(x, s) ∈ M × R | R∇R �= 0}. We claim that O is actually empty, which leads us
to the sought contradiction. Indeed, suppose (x0, s0), (x, s) ∈ O and choose some path (γ, τ ) : [0,1] → M from
(x, s) to (x0, s0). Then if R∇R

0 denotes the parallel translate (P ∇R
)1
0(γ, τ )R∇R |(x,s), then R∇R

0 is a non-zero cur-

vature tensor in T |(x0,s0)(M × R). The Ambrose–Singer theorem implies that (T |(x0,s0)(M × R),R∇R

0 ,HR|(x0,s0))

and (T |(x0,s0)(M × R),R∇R |(x0,s0),H
R|(x0,s0)) are both holonomy systems. Also, Proposition 4.27 implies that the

holonomy system (T |(x0,s0)(M × R),R∇R

0 ,HR|(x0,s0)) is symmetric. Therefore, if one writes V = T |(x0,s0)(M ×R),

G = HR|(x0,s0), R = R∇R |(x0,s0) �= 0, R′ = R∇R

0 �= 0, Proposition 4.27 shows that there exists a unique c �= 0 such

that (P ∇R
)1
0(γ, τ )R∇R |(x,s) = cR∇R |(x0,s0).

Let E be the exponential mapping of ∇R starting at (x0, s0) and choose U ⊂ T |(x0,s0)(M ×R) small enough such
that this exponential mapping is a diffeomorphism of U onto an open subset U � (x0, s0) of M ×R which is contained
in the open set O . Then by the above formula, for every (x, s) ∈ U one has a unique f (x, s) �= 0 such that

f (x, s)
(
P ∇R)1

0

(
t 	→ E

(
tE−1(x, s)

))
R∇R ∣∣

(x0,s0)
= R∇R ∣∣

(x,s)
.

Clearly (x, s) 	→ f (x, s) is smooth. Let Γ be a ∇R-geodesic through (x0, s0). Then since for t small,
f (Γ (t))R∇R |(x0,s0) = (P ∇R

)0
t (Γ )R∇R |Γ (t), we get

Γ̇ (0)(f )R∇R ∣∣
(x0,s0)

= ∇Γ̇ (0)R
∇R

. (32)

If pr2 :M × R → R is the projection onto the second factor, one sees from the explicit expression of R∇R
that

(pr2)∗(R∇R
((Y, s∂t ), (Z,u∂t ))(W,v∂t )) = 0, for every (Y, s∂t ), (Z,u∂t ), (W,v∂t ) ∈ T |(x0,s0)(M × R). Thus (32)

shows that (pr2)∗(∇Γ̇ (0)R
∇R

((Y, s∂t ), (Z,u∂t ))(W,v∂t )) = 0.
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Write (X, r∂t |s0) = Γ̇ (0) and take Y,Z,W ∈ VF(M), s, u, v ∈ C∞(M). Then one has

∇R
Γ̇ (0)

(
R∇R(

(Y, s∂t ), (Z,u∂t )
)
(W,v∂t )

)
= (∇R

Γ̇ (0)
R∇R)(

(Y, s∂t ), (Z,u∂t )
)
(W,v∂t ) + R∇R(∇R

Γ̇ (0)
(Y, s∂t ), (Z,u∂t )

)
(W,v∂t )

+ R∇R(
(Y, s∂t ),∇R

Γ̇ (0)
(Z,u∂t )

)
(W,v∂t ) + R∇R(

(Y, s∂t ), (Z,u∂t )
)∇R

Γ̇ (0)
(W,v∂t ),

and hence, (pr2)∗(∇R
Γ̇ (0)

(R∇R
((Y, s∂t ), (Z,u∂t ))(W,v∂t ))) = 0. Moreover, one also has

(pr2)∗∇R
Γ̇ (0)

(
R∇R(

(Y, s∂t ), (Z,u∂t )
)
(W,v∂t )

)
= (pr2)∗∇R

(X,r∂t |s0 )

(
R(Y,Z)W − B(Y,Z)W,0

)= −g
(
X,R(Y,Z)W − B(Y,Z)W

)
.

Hence g(X,R|x0(Y,Z)W − B|x0(Y,Z)W) = 0 and since Y , Z, W , Γ , and thus X, were arbitrary, we deduce from

this that R|x0 = B|x0 . But this then implies that R∇R |(x0,s0) = 0, which is in contradiction with the definition of the
set O containing (x0, s0). �
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