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Abstract

We investigate the Dirichlet minimization problem for the total variation and the area functional with a one-sided obstacle. Re-
lying on techniques of convex analysis, we identify certain dual maximization problems for bounded divergence-measure fields, 
and we establish duality formulas and pointwise relations between (generalized) BV minimizers and dual maximizers. As a partic-
ular case, these considerations yield a full characterization of BV minimizers in terms of Euler equations with a measure datum. 
Notably, our results apply to very general obstacles such as BV obstacles, thin obstacles, and boundary obstacles, and they include 
information on exceptional sets and up to the boundary. As a side benefit, in some cases we also obtain assertions on the limit 
behavior of p-Laplace type obstacle problems for p ↘ 1.

On the technical side, the statements and proofs of our results crucially depend on new versions of Anzellotti type pairings 
which involve general divergence-measure fields and specific representatives of BV functions. In addition, in the proofs we employ 
several fine results on (BV) capacities and one-sided approximation.
© 2017 
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1. Introduction

Obstacle problems for total variation and area functional. In this paper, on a bounded open set � ⊂Rn of dimen-
sion n ∈ N, we study certain variational problems with unilateral obstacles. More precisely, our primary interest is in 
the minimization problem for the total variation∫

�

|Du|dx (1.1)
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among functions u : � → R which satisfy, for a given obstacle ψ , the zero Dirichlet boundary condition and the 
obstacle constraint

u = 0 on ∂�, (1.2)

u ≥ ψ on �. (1.3)

We directly remark that instead of (1.2) we will eventually consider the non-homogeneous condition u = uo on ∂�

with a quite general Dirichlet datum uo, but for the purposes of this introductory exposition we limit ourselves to the 
homogeneous case in (1.2). Moreover, imposing the same constraints on u, we also study the minimization problem 
for the area integral∫

�

√
1+|Du|2 dx , (1.4)

which, for sufficiently smooth functions u, gives the n-dimensional area of the graph of u.
It is well known that these problems are naturally set in the space BV(�) of functions of bounded variation and 

that, thanks to weak∗ compactness, general existence results for BV minimizers can be obtained. Indeed, such results 
involve the BV versions |Du|(�) and 

√
1+|Du|2(�) of the functionals in (1.1) and (1.4), where in order to explain1

Du also on ∂� one extends u by 0 outside �. Moreover, one imposes mild assumptions on the obstacle ψ to ensure 
compatibility of (1.2) and (1.3) and make sure that the admissible class is non-empty (ψ ∈ L∞

cpt(�) suffices, but can be 
weakened). Then, if the obstacle condition (1.3) is understood as an Ln-a.e. inequality, the existence of a minimizer 
follows by a standard application of the direct method. In particular, the validity of (1.3) is preserved in this reasoning, 
since BV embeds compactly in L1 and minimizing sequences possess Ln-a.e. convergent subsequences.

We record that, under specific assumptions on ψ , some finer existence and regularity results for the problems 
in (1.1)–(1.4) have been obtained in [24–26,37], for instance. However, in the present paper, we are concerned with 
different issues, which are approached in a general setting with much lighter assumptions on ψ .

Thin obstacles and relaxation. With regard to the case of thin obstacles (i.e. obstacles which are positive only 
on (n−1)-dimensional surfaces), it is also interesting to understand (1.3) as an a.e. condition with respect to the 
(n−1)-dimensional Hausdorff measure Hn−1. This understanding of the constraint is also natural, since Hn−1-a.e. 
means quasi everywhere with respect to 1-capacity; cf. (2.15). The resulting point of view leads to a more general 
theory and typically makes an essential difference for obstacles which are — as it occurs in the thin case — upper 
semicontinuous, but neither continuous nor BV. Precisely, as a substitute for (1.3) we thus employ the condition

u+ ≥ � Hn−1-a.e. on �, (1.5)

where the capital letter � is used for the Hn−1-a.e. defined obstacle and the approximate upper limit u+ gives the 
largest one among the reasonable Hn−1-a.e. defined representatives of u ∈ BV(�); see Section 2.3 for the precise 
definition. Under (1.5) the existence issue becomes more subtle, since a (minimizing) sequence of smooth functions 
uk ≥ � may converge to a limit u ∈ BV(�) which does not anymore satisfy (1.5) — even though the usage of u+
means that (1.5) is understood in the widest possible Hn−1-a.e. sense. This difficulty can be overcome by passing to 
suitable relaxations (or more precisely to L1-lower semicontinuous envelopes) of the functionals (1.1) and (1.4), and 
indeed explicit formulas for the relaxations — when starting from competitors w ∈ W1,1

0 (�) with (1.5) — have been 
identified by Carriero & Dal Maso & Leaci & Pascali [15]. Their corresponding result [15, Theorem 7.1] states that, 
if � has a Lipschitz boundary and a Borel function � on � is compatible with (1.2) in the sense that there exists a 
competitor w ∈ W1,1

0 (�) with (1.5), then the relaxed functionals on BV(�) are given by

TV�;�(u) = |Du|(�) +
∫
�

(�−u+)+ dς , (1.6)

1 To be precise, the above quantities are defined for all u ∈ BV(�) such that the extension with value 0 on Rn \� is BV on the whole Rn, and the 
measure Du then represents the distributional gradient of the extended function. Correspondingly, the quantities |Du|(�) and 

√
1+|Du|2(�) are 

understood as the total variations over � of this Rn-valued measure Du and the R1+n-valued measure (Ln, Du) (with the Lebesgue measure Ln), 
and they suitably take into account the zero Dirichlet condition in (1.2).
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A�;�(u) =
√

1+|Du|2(�) +
∫
�

(�−u+)+ dς . (1.7)

Here the subscript + is used for the positive part of a function, and ς stands for a certain Borel measure on Rn, which is 
called the De Giorgi measure and coincides with 2Hn−1 on (countable unions of) regular (n−1)-dimensional surfaces, 
but not on all Borel sets; see [19,20,17,28,15] and Section 2.6. In view of the described relaxation result, the obstacle 
problems in (1.1)–(1.4) are naturally generalized by the minimization problems for the relaxed functionals TV�;�
and A�;� on all of BV(�) — with no need to postulate (1.5) anymore, since this constraint is already incorporated, 
in a weaker fashion, through the ς -terms in TV�;� and A�;�; compare Remark 3.7 for a more thorough discussion. 
As the main benefit of the relaxation process, the existence of minimizers of the new functionals TV�;� and A�;�
is easy to establish. Recently, the relaxed functionals TV�;� also proved to be useful in the parabolic setting of [14], 
where solutions to the thin obstacle problem for the total variation flow were constructed.

Main results: duality formulas. In the present paper, we complement the relaxation results from [15] with duality 
formulas for the above BV obstacle problems, which can (mostly) be obtained as limit cases for p ↘ 1 of more 
standard duality results for p-Laplace type obstacle problems. A first simplified version of our BV duality formulas 
asserts that, if � has a Lipschitz boundary and � is a bounded upper semicontinuous function on � with � ≤ 0 on ∂�, 
then we have

min
u∈BV(�)

TV�;�(u) = max
σ∈S∞− (�)

∫
�

�d(−divσ) , (1.8)

min
u∈BV(�)

A�;�(u) = max
σ∈S∞− (�)

(∫
�

�d(−divσ) +
∫
�

√
1−|σ |2 dx

)
, (1.9)

where S∞− (�) denotes the collection of all sub-unit vector fields in L∞(�, Rn) whose distributional divergence exists 
as a non-positive Radon measure on �. Moreover, given any BV obstacle ψ ∈ BV(�) ∩ L∞(�) with non-positive 
trace on ∂�, the formulas (1.8) and (1.9) remain true for � = ψ+, and likewise they hold for a natural (and essen-
tially optimal) generalization of both upper semicontinuous and BV obstacles, namely for 1-capacity quasi upper 
semicontinuous obstacles � ∈ L∞(�; Hn−1) with � ≤ 0 on ∂�; see Sections 2.8 and 3.2 for more details. Here, the 
significance of the quasi semicontinuity requirement is also supported by classical results which guarantee, in a variety 
of settings, that every convex unilateral set can be represented with the help of a quasi semicontinuous obstacle; see 
[9, Thm. 3.2], for instance.

We emphasize, however, that, even though our results hold under this very general assumption on � and include 
the thin case, they seem to be new even in more standard situations with n-dimensional obstacles ψ . Indeed, by 
taking � = ψ+ we cover continuous obstacles ψ , bounded BV obstacles ψ and more generally all bounded Ln-a.e. 
obstacles ψ which Ln-a.e. satisfy ψ+ = ψ ; clearly, in these cases the ς -term in TV�;� and A�;� can only take the 
values 0 and ∞, and thus it is equivalent to drop this term and return to the constraint (1.5).

In the proofs of the duality formulas we rely on fine one-sided approximation results and the theory of variational 
(1-)capacity, and we crucially involve certain product constructions, which are known as Anzellotti type pairings (see 
also the next paragraph). Moreover, a part of our reasoning is based on the passage to the limit p ↘ 1 in obstacle 
problems for p-Laplace type operators, and it yields a statement on the convergence of p-energy minimizers to total 
variation or area minimizers as a side benefit.

Anzellotti type pairings and optimality conditions. The main motivation for our interest in (1.8) and (1.9) stems 
from the possibility to deduce first-order optimality criteria for BV minimizers. The deduction of such criteria parallels 
recent work by Beck and the second author, who identified in [10, Theorem 2.2] necessary and sufficient pointwise 
conditions for BV minimizers of a wide class of functionals, but without presence of an obstacle (compare also [8,13]
for previous results). Here, in contrast, we treat the functionals TV�;� and A�;�, which include the (possibly very 
general) obstacle �. On a heuristic level with sufficiently smooth minimizers u and the functionals in (1.1) and (1.4), 
one expects the first-order criteria for the obstacle problems to take the form of variational inequalities or, equivalently, 
of Euler–Lagrange equations with right-hand side measures
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−div
Du

|Du| = μ and −div
Du√

1+|Du|2 = μ, (1.10)

where the non-negative measure μ is supported in the coincidence set of u and �. However, a definition of BV
solutions (and, in the first case, even of any solutions u with zeroes of Du) to these equations is not immediate and 
has only been addressed, as a topic of independent interest, in our predecessor paper [35]. In that paper, extending 
classical ideas of Kohn & Temam [29] and Anzellotti [6], we indeed introduced a measure �σ, Du+�0 on � as a 
generalized product of a gradient measure Du and a divergence-measure field σ ∈ S∞− (�). Our measure �σ, Du+�0
is a variant of the one described by Chen & Frid [16, Theorem 3.2] and Mercaldo & Segura de León & Trombetti 
[32, Appendix A] (their measure corresponds to �σ, Du∗� in our terminology), but still our product construction is 
somewhat refined and is perfectly suited for giving a precise meaning to the equations in (1.10) — in the same general 
framework in which the functionals TV�;� and A�;� and the duality formulas (1.8) and (1.9) have been described. 
At this stage, we state our corresponding result only for the total variation case, in which it also allows to overcome 
difficulties due to non-differentiability of |Du| and singular behavior of Du

|Du| at zeroes of Du. Concretely, for every 
pair of competitors (u, σ) ∈ BV(�) × S∞− (�), we obtain: (u, σ) is a minimizer–maximizer pair in (1.8) if and only if 
the optimality relations

�σ,Du+�0 = |Du| on �, −divσ = μ in D ′(�) , (1.11)

μ ≡ 0 on � ∩ {u+ > �} , μ = ς on � ∩ {u+ < �} (1.12)

hold with a non-negative measure μ. The equations in (1.11) are a BV (up-to-the-boundary) analog, as devised in [35], 
of the first heuristic equation in (1.10), and in particular the first equality in (1.11) encodes that σ takes over the role 
of the non-well-defined2 quantity Du

|Du| . Moreover, the equalities in (1.12) specify that μ is supported only on the 
coincidence set � ∩ {u+ = �} and the exceptional set � ∩ {u+ < �} and that, on the latter set, μ is even fully 
determined and equal to the De Giorgi measure ς . Here, it is possible that Hn−1(� ∩ {u+ < �}) > 0 occurs, since — 
as we recall once more — the strict requirement in (1.5) has been dropped in favor of the weaker penalizing ς -term 
in (1.6).

Extensions: thin boundary obstacles and mildly regular domains. At this stage we would like to point out that the 
previously described statements, though quite general, do not yet give a complete picture of our main results in two 
regards.

Indeed, the more relevant extra feature, which we can handle, are (1-capacity quasi upper semicontinuous) obsta-
cles � which do not anymore respect the boundary condition (1.2). In other words, on top of the results described so 
far, we can dispense with the requirement � ≤ 0 on ∂�. Then, since we allow all functions in BV(�) as competitors, 
the admissible class is still non-empty and consists of functions which are forced to jump at the boundary. Specifically, 
we can even cover, for instance, the case of thin boundary obstacles (i.e. obstacles which are positive only on ∂�). 
The generalization of the duality formulas (1.8) and (1.9) to these cases actually requires an extension of the ς-terms 
in TV�;� and A�;� to � and also — maybe more surprisingly — the addition of an extra term 

∫
∂�

(1−σ ∗
n )�+ dHn−1

on the right-hand sides of (1.8) and (1.9). Here, σ ∗
n stands for the inner normal trace of a divergence-measure field 

σ ∈ S∞− (�) in the sense of [35]. With regard to the optimality criteria, these changes lead to some additional con-
ditions on the boundary, which can partially be understood with the help of a modified up-to-the-boundary pairing 
�σ, Du+�∗

0, which has also been introduced in [35]; see Sections 2.5, 3.2, and 3.3 for more details.
With regard to the regularity of ∂�, the above statements are made for the case of Lipschitz domains �, but in 

the sequel we will even cover a large class of bounded open sets � of finite perimeter with well-behaved topological 
boundary. The precise mild regularity condition, on which we rely, has been introduced in [36] and is stated in (2.1)
below. This condition ensures, for instance, that � cannot locally lie on both sides of ∂� and is relevant in connection 
with interior approximation of � in measure and perimeter. Our adaptation of an up-to-the-boundary Anzellotti type 
pairing to this kind of mildly regular domains follows the approach of [10, Section 5].

2 We stress that in our context the Radon–Nikodým derivative dDu
d|Du| is not suited as a replacement for Du

|Du| . Indeed, a first indication for this is that 
dDu

d|Du| is |Du|-a.e. defined. In contrast, σ is Ln-a.e. defined, thus its distributional divergence can be taken, but still the equality �σ, Du+�0 = |Du|
also contains information on the singular parts of Du.
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Comparison with Anzellotti’s directional-derivative approach to Euler equations in BV. Finally, we comment on 
an alternative way to identify a BV version of Euler equations. While the alternative is clearly more straightforward 
than our duality-based considerations, we believe (and try to explain in the sequel) that its results are conceptionally 
weaker than the characterization via (1.11)–(1.12) above.

Indeed, in order to characterize BV minimizers u one may simply require, for a given variational functional on BV, 
the vanishing of all those directional derivatives which exist at the point u. In the obstacle-free case, a computation 
of the relevant derivatives, which leads to a weak BV formulation of the Euler equation, has been carried out by 
Anzellotti [7]. Specifically, for a generalized minimizer u ∈ BV(�) of the total variation with respect to a boundary 
datum uo on a Lipschitz domain �, Anzellotti obtained in [7, Theorem 3.9] the equation (with the Radon–Nikodým 
derivative dDu

d|Du| )∫
�

dDu

d|Du| · dDϕ +
∫
∂�

u−uo

|u−uo|ϕ dHn−1 = 0 (1.13)

for all ϕ ∈ BV(�) such that |Dϕ| is absolutely continuous w.r.t. |Du| on � and such that the trace ϕ vanishes Hn−1-a.e. 
on ∂� ∩ {u = uo}. However, in case of the total variation and for similar non-differentiable functionals, it has not 
been clarified in [7] if this necessary criterion is also sufficient for minimality. For functionals with differentiable 
integrands such as the area, the statement of Anzellotti’s equation requires some more notation and involves BV
test functions such that |Dϕ| is absolutely continuous w.r.t. Ln+|Du|. In these latter cases, at least, the equation 
does indeed characterize BV solutions of the Dirichlet minimization problem (which results from the fact that the 
directions ϕ with the relevant absolute-continuity property are dense in a suitable topology); see [7, Theorem 3.7] and 
[7, Theorem 3.10] for the necessity and the sufficiency of the equation, respectively.

In principle, Anzellotti’s approach via directional derivatives also applies to obstacle problems for BV functionals 
(possibly with a small enhancement based on one-sided directional derivatives). However, already in the obstacle-free 
case the Anzellotti Euler equation seems less explicit and meaningful than the corresponding duality-based extremal-
ity relations of [10, Theorem 2.2]. In fact, in the total variation case (still without obstacle as above), the duality 
information consists in the simplified version of (1.11) with μ ≡ 0 which asserts �σ,Du�uo

= |Du| on � for some 
sub-unit field σ with vanishing distributional divergence. In contrast, it seems difficult to find a conceptual interpre-
tation of (1.13) based on more standard classes of test functions ϕ. Actually, whenever some level set of u possesses 
an interior point, some functions ϕ ∈ D(�) are non-admissible in (1.13), and (1.13) does not yield the existence of a 
divergence-free quantity of type Du

|Du| on �. In view of such problems, we believe that our approach is preferable over 
the use of directional derivatives and yields more useful results. Nevertheless, at least for area minimization without 
obstacle, the Euler equations obtained by the two approaches are, a posteriori, equivalent, even though this is not at 
all obvious (to us) from the equations themselves.

Last but not least we remark that our duality considerations and specifically equation (1.11) are also consistent 
with plenty of more recent literature [21,2–5,11,22,12,33,31,32,34,35], in which it has become common to model the 
1-Laplace operator and the total variation flow on BV functions with the help of Anzellotti type pairings. All in all, we 
thus believe that the strategy of this paper via duality and pairings is the state-of-the-art technique in order to extract 
first-order information on BV minimizers.

Organization of this article. We start with a preliminary section in which we gather the technical tools that are 
necessary to formulate our results. After these preparations, we give the precise statement of our results in Section 3. 
Section 4 contains some results on the p-Laplace obstacle problems for p > 1, which we use as approximating 
problems. The proofs of our results on the obstacle problem for the total variation functional are presented in Section 5. 
In the final Section 6, we comment on the changes that are necessary to derive corresponding results for the area 
functional.

2. Preliminaries

2.1. General notation

We write Ln and Hn−1 for the n-dimensional Lebesgue measure and the (n−1)-dimensional spherical Hausdorff-
measure, respectively. The perimeter of a Borel set A ⊂ Rn is denoted by P(A). The {0, 1}-valued characteristic 
function of a set A is abbreviated by 1A.
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For the positive and the negative part of a function f : � →R, we use the customary notation

f+(x) := max{f (x),0} and f−(x) := max{−f (x),0} .

This is not to be confused with the approximate upper and lower limits f + and f −, which are defined in Section 2.3
below.

As in [1], we use the standard notations Lp, Wk,p , Ck , Ck,α , BV for spaces of integrable, (weakly) differentiable, 
Hölder, and bounded-variation functions, respectively. Moreover, D(�) denotes the space of smooth functions with 
compact support in the open set �, while D ′(�) stands for the corresponding space of distributions.

2.2. Domains

In the sequel, we will always work on an open set � in Rn, and mostly we will assume that � is bounded and 
satisfies the mild regularity requirement

Hn−1(∂�) = P(�) < ∞ , (2.1)

where P(�) stands for the perimeter of �. In view of De Giorgi’s structure theorem, condition (2.1) can be equivalently 
reformulated to P(�) < ∞ and Hn−1(∂� \ ∂∗�) = 0 with the reduced boundary ∂∗� of �, and in particular (2.1)
implies that ∂� is Hn−1-rectifiable; compare [1, Theorem 3.59].

2.3. Representatives and traces of BV functions

Consider u ∈ BV(Rn). We recall that Hn−1-a.e. x ∈ Rn is either a Lebesgue point (also called an approximate con-
tinuity point) of u or an approximate jump point of u; compare [1, Sections 3.6, 3.7]. We write u+ for the approximate 
upper limit of u, defined by

u+(x) = inf

{
λ ∈R : lim

r↘0

Ln({u > λ} ∩ Br (x))

rn
= 0

}
,

where Br (x) ⊂ Rn denotes the open ball with radius r > 0 and center x ∈ Rn. This defines an Hn−1-a.e. defined 
representative u+ of u which takes the Lebesgue values in the Lebesgue points and the larger of the two jump values 
in the approximate jump points. Analogously, one defines a representative u− which takes the lesser jump value in the 
approximate jump points, and we set u∗ := 1

2 (u++u−). Observe that (u+v)+ ≤ u++v+ and (u+v)− ≥ u−+v− hold 
Hn−1-a.e. and that, on the set Ju ∩ Jv of joint approximative jump points, these inequalities need not be equalities. 
However, for the mean value representative, one always has the Hn−1-a.e. equality (u+v)∗ = u∗+v∗.

We also recall that u ∈ BV(Rn) possesses traces in the sense of [1, Theorem 3.77] on every oriented Hn−1-rectifi-
able set 
 in Rn. These traces from the two sides of 
 are defined and finite Hn−1-a.e. on 
, but are not necessarily 
equal to each other or integrable in any sense. In particular, an interior and an exterior trace with respect to � exist 
whenever 
 = ∂∗� is the reduced boundary of a set � of finite perimeter in Rn, and these traces are then denoted 
(with slight abuse of terminology) by uint

∂∗� and uext
∂∗�. Under the hypothesis (2.1) we can and do regard the traces 

as Hn−1-a.e. defined functions even on the topological boundary ∂�, and thus we then use the corresponding nota-
tions uint

∂� and uext
∂�.

2.4. Admissible function classes

Given a Borel measurable obstacle � : � → R and a boundary datum uo ∈ W1,1(Rn) ∩ L∞(�), we introduce the 
admissible classes

BVuo(�) := {u ∈ BV(Rn) : u = uo holds Ln-a.e. on Rn \ �} ,

K�(�) := {u ∈ BVuo(�) : u+ ≥ � holds Hn−1-a.e. on � } .

Occasionally, we will also use the more precise notation K�,uo(�) if it is not clear from the context which boundary 
data are considered.



C. Scheven, T. Schmidt / Ann. I. H. Poincaré – AN 35 (2018) 1175–1207 1181
For the formulation of dual problems, we introduce the notation

S∞− (�) := {σ ∈ L∞(�,Rn) : |σ | ≤ 1 holds Ln-a.e. on �, divσ ≤ 0 in D ′(�)}
for the class of sub-unit vector fields on � with non-positive distributional divergence.

2.5. Anzellotti type pairings for divergence-measure fields

Following [16], we denote the space of bounded divergence-measure fields on � by

DM∞(�) := {σ ∈ L∞(�,Rn) : divσ is a finite signed Borel measure } .

The following result by Chen & Frid [16, Proposition 3.1] is crucial for our purposes.

Lemma 2.1. Assume that σ ∈DM∞(�). Then, for every Borel set A ⊂ � with Hn−1(A) = 0, we have |divσ |(A) = 0.

The following lemma enables us to make sense of a pairing �σ, Du+�uo
when u and σ are in the admissible classes 

BVuo(�) and S∞− (�), respectively.

Lemma 2.2 (Finiteness of divergences with a sign). If � is a bounded open set in Rn with Hn−1(∂�) < ∞, then we 
have

S∞− (�) ⊂DM∞(�)

and

(−divσ)(�) ≤ nωn

ωn−1
Hn−1(∂�) for every σ ∈ S∞− (�) ,

where ωn denotes the volume of the n-dimensional unit ball.

For the proof, we refer to [35, Lemma 2.2]. The constant nωn

ωn−1
can be improved, but this is not relevant for our 

purposes, and so we have chosen to state the outcome of the simple proof in [35], which still covers the very general 
domains � considered here.

With Lemma 2.1 and Lemma 2.2 at hand, we next define our Anzellotti type pairing.

Definition 2.3 (Distributional up-to-the-boundary pairing). Consider a bounded open set � ⊂ Rn. For every uo ∈
W1,1(�) ∩ L∞(�), σ ∈ S∞− (�) and U ∈ L∞(�; Hn−1), we define a distribution �σ, DU �uo

∈ D ′(Rn) by setting

�σ,DU �uo
(ϕ) :=

∫
�

ϕ(U−u∗
o)d(−divσ) −

∫
�

(U−uo)(σ · Dϕ)dx +
∫
�

ϕσ · Duo dx

for ϕ ∈ D(Rn). This distribution is well-defined in view of Lemma 2.1 and Lemma 2.2 and, since U and u∗
o are 

Hn−1-a.e. defined and bounded.

Remark 2.4 (On the up-to-the-boundary pairing for BV functions). Given a function u ∈ BVuo(�) ∩L∞(�), we may 
choose the representative U = u+ of u in the preceding definition, because u+ is Hn−1-a.e. defined and bounded. In 
this way, we obtain the distribution �σ, Du+�uo

∈ D ′(Rn), which was already considered in [34,35] and is given by

�σ,Du+�uo
(ϕ) :=

∫
�

ϕ(u+−u∗
o)d(−divσ) −

∫
�

(u−uo)(σ · Dϕ)dx +
∫
�

ϕσ · Duo dx

for ϕ ∈ D(Rn). In the same way, by choosing the representatives u− or u∗ of u instead of u+, one obtains the 
distributions �σ, Du−�uo

and �σ, Du∗�uo
(which coincide with �σ, Du+�uo

for u ∈ W1,1(�) ∩ L∞(�), since then 
u+ = u∗ = u− holds Hn−1-a.e.). However, in connection with obstacle problems, it turns out that u+ is the suitable 
choice. This is related to the occurrence of u+ in the penalization terms in (1.6) and (1.7) and also to the fact that the 
maximum on the right-hand sides of the duality formulas (1.8) and (1.9) would not necessarily be attained if we used 
the representative � = ψ− or � = ψ∗ of a BV obstacle ψ , rather than � = ψ+.
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From [35, Lemma 3.3] we have the following statement.

Lemma 2.5 (The pairing on W1,1 functions and the generalized normal trace). For an arbitrary bounded open set 
� ⊂Rn, σ ∈ S∞− (�) and u ∈ (uo|� + W1,1

0 (�)) ∩ L∞(�), it holds

�σ,Du+�uo
(ϕ) =

∫
�

ϕ(σ · Du)dx for every ϕ ∈ D(Rn) . (2.2)

If � additionally satisfies (2.1), then for every σ ∈ S∞− (�) there exists a uniquely determined normal trace σ ∗
n ∈

L∞(∂�; Hn−1) with |σ ∗
n | ≤ 1 so that for all u ∈ W1,1(Rn) ∩ L∞(�) and ϕ ∈ D(Rn), it holds

�σ,Du+�uo
(ϕ) =

∫
�

ϕ(σ · Du)dx +
∫
∂�

ϕ (u−uo)
int
∂� σ ∗

n dHn−1 , (2.3)

where the trace (u−uo)
int
∂� is taken in the sense of Section 2.3.

Following [34,35] once more, we also define the following modification of the up-to-the-boundary pairing.

Definition 2.6 (Modified distributional up-to-the-boundary pairing). Consider a bounded open set � ⊂Rn with (2.1). 
For every uo ∈ W1,1(�) ∩ L∞(�), σ ∈ S∞− (�), U ∈ L∞(�; Hn−1), and ϕ ∈D(Rn), we set

�σ,DU �∗
uo

(ϕ) := �σ,DU �uo
(ϕ) +

∫
∂�

ϕ
[
U−(uo)

int
∂�

]
+(1−σ ∗

n )dHn−1 , (2.4)

where σ ∗
n denotes the normal trace of σ ∈ S∞− (�) determined by the preceding lemma. This defines a distribution 

�σ, DU �∗
uo

∈ D ′(Rn) with support in �. Therefore, even though �σ, DU �∗
uo

need not be a measure, it makes sense to 
write �σ, DU �∗

uo
(�) in the sense of �σ, DU �∗

uo
(ϕ) for any ϕ ∈D(Rn) with ϕ ≡ 1 on �, i.e.

�σ,DU �∗
uo

(�) =
∫
�

(U−u∗
o)d(−divσ) +

∫
�

σ · Duo dx +
∫
∂�

[
U−(uo)

int
∂�

]
+(1−σ ∗

n )dHn−1 .

Remark 2.7 (On the modified up-to-the-boundary pairing for BV functions). Once more, for uo ∈ W1,1(Rn) ∩L∞(�), 
u ∈ BVuo(�) ∩ L∞(�), the preceding definition is applicable to U = u+. Since u+ = max{uint

∂�, (uo)
int
∂�} holds 

Hn−1-a.e. on ∂�, in this case the pairing takes the form

�σ,Du+�∗
uo

(ϕ) = �σ,Du+�uo
(ϕ) +

∫
∂�

ϕ
[
(u−uo)

int
∂�

]
+(1−σ ∗

n )dHn−1 ,

and we again use the notation

�σ,Du+�∗
uo

(�) :=
∫
�

(u+−u∗
o)d(−divσ) +

∫
�

σ · Duo dx +
∫
∂�

[
(u−uo)

int
∂�

]
+(1−σ ∗

n )dHn−1 .

While the pairings with general U need only exist as distributions, the next result shows that in the case U = u+
(and similarly for U = u∗ and U = u−) with a BV function u they turn out to be measures.

Proposition 2.8 (The pairings with BV functions are bounded measures). Suppose that � is a bounded open set in Rn

with (2.1). For uo ∈ W1,1(Rn) ∩ L∞(�), σ ∈ S∞− (�), and u ∈ BVuo(�) ∩ L∞(�), the distributions �σ, Du+�uo
and 

�σ, Du+�∗
uo

both are finite signed Borel measures supported in �, and there hold∣∣�σ,Du+�uo

∣∣ ≤ |Du| (2.5)

and
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∣∣�σ,Du+�∗
uo

∣∣ ≤ |Du| (2.6)

as measures on �.

The proofs can be retrieved from [35, Proposition 3.5 and formula (4.11)].
Finally, we note that the measures �σ, Du+�uo

and �σ, Du+�∗
uo

differ only on the boundary, and there we have

�σ,Du+�uo
∂� = (u−uo)

int
∂�σ ∗

n Hn−1 , (2.7)

�σ,Du+�∗
uo

∂� =
(
[(u−uo)

int
∂�]+ − [(u−uo)

int
∂�]−σ ∗

n

)
Hn−1 , (2.8)

for all u ∈ BVuo(�) ∩ L∞(�) and σ ∈ S∞− (�), see [35, Eqns. (3.10), (4.10)].

2.6. De Giorgi’s measure

According to [17], the following definition of the De Giorgi measure is equivalent to the original one.

Definition 2.9 (De Giorgi measure). For any ε > 0, one defines a set function ςε on Rn by

ςε(E) := inf
{
P(B) + 1

ε
Ln(B) : B ⊂Rn is open with B ⊃ E

}
for every E ⊂Rn. Then one lets

ς(E) := sup
ε>0

ςε(E) = lim
ε↘0

ςε(E) . (2.9)

The above definition yields a Borel-regular outer measure ς on Rn (and thus, in particular, a σ -additive measure 
on Borel sets in Rn). This measure satisfies

ς(E) = 2Hn−1(E) (2.10)

for every Borel set E that is contained in a countable union of (n−1)-dimensional C1-surfaces, see [20]. However, 
[28] provides an example of a Borel set E for which (2.10) does not hold. In general, the De Giorgi measure is only 
comparable to the Hausdorff measure in the sense

c1Hn−1(E) ≤ ς(E) ≤ c2Hn−1(E) (2.11)

for every subset E ⊂Rn, with dimensional constants c1(n), c2(n) > 0, cf. [20] once more.
The following lemma is a slight technical adaptation of [15, Proposition 4.4]. It allows to approximate thin obstacles 

by W1,1 functions from above.

Lemma 2.10. Consider an open set � in Rn and an Hn−1-a.e. defined, real-valued function � with compact support 
in � such that there holds �+ ∈ L1(�; ς). Then there exist wk ∈ W1,1

0 (�) such that w∗
k ≥ � holds Hn−1-a.e. on �

and such that we have

lim sup
k→∞

∫
�

|Dwk|dx ≤
∫
�

�+ dς .

Proof. By [15, Proposition 4.4(b)] there exist uk ∈ W1,1(Rn) such that u∗
k ≥ � holds Hn−1-a.e. on �, such that uk

converges to 0 in L1(Rn), and such that

lim
k→∞

∫
Rn

|Duk|dx =
∫
�

�+ dς .

Choosing a cut-off function η ∈ D(�) with 1spt� ≤ η ≤ 1 on �, we take

wk := ηuk ∈ W1,1
(�) .
0
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Then w∗
k ≥ � evidently holds Hn−1-a.e. on �, and via the product rule we moreover get

lim sup
k→∞

∫
�

|Dwk|dx ≤ lim sup
k→∞

[∫
Rn

|Duk|dx + ‖∇η‖L∞(�,Rn)‖uk‖L1(Rn)

]
=

∫
�

�+ dς .

This finishes the proof. �
We use the preceding result for a comparison between the De Giorgi measure and the measure −divσ for an 

arbitrary σ ∈ S∞− (�).

Proposition 2.11. For every open set � in Rn and every σ ∈ S∞− (�), we have

ς ≥ −divσ as measures on �.

Proof. It is sufficient to compare the measures on Borel sets A ⊂ � with ς(A) < ∞ and A � �. Then Lemma 2.10, 
applied with � = 1A, gives wk ∈ W1,1

0 (�) such that w∗
k ≥ 1A holds Hn−1-a.e. on � and such that we have

lim sup
k→∞

∫
�

|Dwk|dx ≤ ς(A) .

Using this together with the bound |σ | ≤ 1, the representation (2.2) in Lemma 2.5 and the definition of the pairing, 
we obtain

ς(A) ≥ lim sup
k→∞

∫
�

|Dwk|dx ≥ lim sup
k→∞

∫
�

σ · Dwk dx

= lim sup
k→∞

�σ,Dwk �0

(
�

) = lim sup
k→∞

∫
�

w∗
k d(−divσ) ≥ (−divσ)(A) .

This proves the claim. �
The next proposition can be understood as a boundary version of the preceding result.

Proposition 2.12. For every bounded open set � ⊂Rn with (2.1) and every σ ∈ S∞− (�) we have

ς = 2Hn−1 ≥ (1−σ ∗
n )Hn−1 as measures on ∂� .

Proof. Since, by De Giorgi’s structure theorem, the assumption (2.1) implies that � is a set of finite perimeter with 
Hn−1(∂� \ ∂∗�) = 0, its boundary ∂� is Hn−1-rectifiable. This means that, up to a set of Hn−1-measure zero, it is 
the countable union of (n−1)-dimensional C1-surfaces, and we infer from (2.10) that we have ς = 2Hn−1 on ∂�. 
This implies the claimed identity, and the asserted inequality is an immediate consequence since 1−σ ∗

n ≤ 2 holds 
Hn−1-a.e. on ∂�. �
2.7. Total variation and area functionals for relaxed obstacle problems

For u ∈ K�(�), we set

TV�(u) := |Du|(�) = |Du|(�) +
∫
∂�

|(u−uo)
int
∂�|dHn−1

(where the second equality holds under (2.1) at least) and extend the functional to L1(�) by letting TV�(u) := ∞ for 
u ∈ L1(�) \ K�(�). Since in case of a thin obstacle � the class K�(�) is not closed with respect to L1 convergence 
(or weak∗ BV convergence), it is necessary to consider the L1-lower semicontinuous relaxation of TV�. For Lipschitz 
domains � and for obstacles � that are compatible with the boundary datum, the relaxation has been identified in [15, 
Theorem 7.1] as the functional
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TV�;�(u) := |Du|(�) +
∫
�

(�−u+)+ dς , (2.12)

with the De Giorgi measure ς introduced in Section 2.6 and with the understanding that TV�;�(u) = ∞ whenever 
u /∈ BVuo(�). Here we take (2.12) as general definition of TV�;�, and we recall that we use the subscript + to denote 
the non-negative part of a function, while the superscript + stands for an approximate upper limit. Assuming (2.1), we 
also record the Hn−1-a.e. equality u+ = max{uint

∂�, (uo)
int
∂�} on the boundary ∂� (which results from our setting with 

uo ∈ W1,1(Rn) and u = uo on Rn \ �). In particular, whenever the compatibility condition � ≤ (uo)
int
∂� is satisfied 

Hn−1-a.e. on ∂�, it makes no difference if the ς -integral in (2.12) is restricted from � to �. Therefore, (2.12) is 
consistent with the definition of TV�;� in the introduction, and if we think of this compatible situation, we sometimes 
define � only on � and still use the notation TV�;� (with the background understanding that we may take � = (uo)

int
∂�

on ∂�). However, when we allow up-to-the-boundary obstacles � with � > (uo)
int
∂� on a portion of ∂� (as we will 

do in Section 3.2 below), then we still rely on (2.12) as a definition, and then it will be essential to stick to � as the 
domain of the ς -integral.

Similarly, we treat the model case of the area functional. For uo ∈ W1,1(Rn) and u ∈ K�(�) ⊂ BVuo(�), this 
functional is given by

A�(u) :=
√

1+|Du|2(�) =
∫
�

√
1+|Dau|2 dx + |Dsu|(�) +

∫
∂�

|(u−uo)
int
∂�|dHn−1

(where the second equality holds under (2.1) at least). Here the measure 
√

1+|Du|2 is defined as the variation measure 
of the R1+n-valued measure (Ln, Du), and Du = (Dau)Ln + Dsu is the decomposition into the absolutely continuous 
and the singular part with respect to the Lebesgue measure Ln. We extend this functional to L1(�) by letting A�(u) :=
∞ whenever u ∈ L1(�) \ K�(�). As before, from [15, Theorem 7.1] we infer that under mild assumptions on �

and �, the L1-lower semicontinuous relaxation of the resulting functional is given by

A�;�(u) :=
√

1+|Du|2(�) +
∫
�

(�−u+)+ dς (2.13)

with the De Giorgi measure ς .
We crucially rely on the following semicontinuity property which results from [15, Theorem 6.1].

Theorem 2.13 (Carriero–Dal Maso–Leaci–Pascali lower semicontinuity). Consider a bounded open set � in Rn, an 
obstacle � ∈ L∞(�; Hn−1), and assume that uk converges to u in L1(�). Then we have

TV�;�(u) ≤ lim inf
k→∞ TV�;�(uk) ,

A�;�(u) ≤ lim inf
k→∞ A�;�(uk) .

Proof. We consider a bounded open set �̃ in Rn with � � �̃ and extensions �̃, ̃uk , ̃u of �, uk , u by the values of uo

on �̃ \ �. We can now write

TV�;�(u) +
∫

�̃\�
|Duo|dx =

{
|Dũ|(�̃) + ∫

�̃
(�̃−ũ+)+ dς if ũ ∈ BV(�̃) ,

∞ otherwise ,

where the right-hand side (as a functional in ũ) is identified by [15, Theorem 6.1] as a relaxed functional in L1
(
�̃

)
, 

i.e. as an L1
(
�̃

)
lower semicontinuous envelope. In particular, this functional is itself lower semicontinuous in L1

(
�̃

)
, 

and then our claim for the total variation follows immediately. The statement for the area functional can be deduced 
from [15, Theorem 6.1] in the same way. �
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2.8. Capacities and quasi (semi)continuity

For q ∈ [1,∞), the (variational or functional) q-capacity of a set E ⊂Rn can be defined by

Capq(E) := inf

{∫
Rn

(|u|q+|Du|q)
dx : u ∈ W1,q (Rn),

u ≥ 1 holds Ln-a.e. on an

open neighborhood of E

}
.

With this definition at hand, we often say that a property holds Capq -q.e. on a set U in Rn if it holds on U \E with 
some subset E of U such that Capq(E) = 0. It is clear from the definition that a set with zero q-capacity is negligible 
for the Lebesgue measure. Hence, a Capq -q.e. requirement is stronger than the corresponding Ln-a.e. requirement.

A modified q-capacity C̃apq(E) can be defined for E ⊂Rn by replacing the integrand 
(|u|q+|Du|q)

above with the 
simpler quantity |Du|q . For q < n or q = n = 1, this modification is marginal in the sense that Capq and C̃apq have the 
same zero sets and satisfy c Capq(E) ≤ C̃apq(E) ≤ Capq(E) for every bounded set E ⊂ Rn with a positive constant 
c(n, q, diamE); this can be shown via cut-off and the Gagliardo–Nirenberg inequality, compare [30, Lemma 2.6]. 
For 1 �= q ≥ n, however, by using the competitors 

[
1−ε log+(|x|/r)

]
+ one sees that C̃apq vanishes on all bounded 

subsets of Rn and does not exhibit the behavior expected for q-capacity. In contrast, Capq with q > n or q = n = 1 is 
positive on all non-empty sets E ⊂Rn by Sobolev’s inequality, so that Capq behaves reasonably, but trivially in these 
cases. In particular, a Capq -q.e. requirement with q > n or q = n = 1 is an everywhere requirement. However, in this 
paper we are interested in letting q ↘ 1, so most of the time both Capq and C̃apq are non-trivial, reasonable, and only 
marginally different.

Specifically for the case q = 1 of the BV capacities Cap1 and C̃ap1 we record (see, for instance, [15, Section 2])

C̃ap1(E) = inf
{

TVRn(u) : u ∈ BV(Rn), u+ ≥ 1 holds Hn−1-a.e. on E
}
, (2.14)

Cap1(E) = 0 ⇐⇒ C̃ap1(E) = 0 ⇐⇒ Hn−1(E) = 0 (2.15)

for every E ⊂Rn, so that Cap1-q.e. means nothing but Hn−1-a.e., in particular.
With the notion of capacity at hand it now makes sense to introduce the following concept of (semi)continuity up 

to small sets.

Definition 2.14 (Capq -quasi (semi)continuity). For any q ∈ [1,∞), one says that a Capq -q.e. defined, real-valued 
function � on an open subset � of Rn is Capq -quasi upper semicontinuous on � if for every ε > 0 there exists 
an open subset E of � with Capq(E) < ε such that the restriction of � to � \ E is everywhere defined and upper 
semicontinuous. Clearly, there is a corresponding concept of Capq -quasi lower semicontinuity, and a function is called 
Capq -quasi continuous if it is both Capq -quasi upper semicontinuous and Capq -quasi lower semicontinuous.

The next lemma is a restatement of [15, Theorem 2.5], in which, taking into account the above remarks, C̃ap1 has 
been replaced with Cap1.

Lemma 2.15 (Cap1-quasi semicontinuous representatives of a BV function). For every open subset � of Rn and 
every u ∈ BV(�), the representative u+ is Cap1-quasi upper semicontinuous on �, while the representative u− is 
Cap1-quasi lower semicontinuous on �.

Finally, consider an open set � in Rn and u ∈ W1,q (�). Then, the set of non-Lebesgue points of u has zero 
q-capacity, and the precise representative u∗ is Capq -q.e. defined. These facts and the following lemmas have orig-
inally been obtained in [23] for C̃apq with q ∈ [1, n). The case of Capq with q ∈ (1, n] is covered in [27, Thm. 4.3, 
Lemma 4.8], compare also [30, Lemma 2.19]. Finally, the cases q = n = 1 and q > n are simple consequences of 
Sobolev’s embedding.

Lemma 2.16 (Capq -quasi continuous representative of a W1,q function). For an open subset � of Rn and u ∈
W1,q (�) with q ∈ [1,∞), the representative u∗ is Capq -quasi continuous on �.
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Lemma 2.17 (Convergence in W1,q implies convergence Capq -q.e.). For an open subset � of Rn, if uk converges to 
u strongly in W1,q(�) with q ∈ [1,∞), then some subsequence u∗

k�
converges Capq -q.e. on � to u.

2.9. Monotone approximation of quasi upper semicontinuous functions

The following lemma is the special case m = 1 of a result of Dal Maso [18, Lemma 1.5], for q = 1 see also [18, 
Section 6].

Lemma 2.18. For q ∈ [1,∞), consider a Capq -quasi upper semicontinuous function � :Rn →R with

� ≤ g∗ Capq -q.e. on Rn for some g ∈ W1,q (Rn) .

Then there exists a non-increasing sequence ψk ∈ W1,q (Rn), k ∈N such that, in the limit k → ∞,

ψ∗
k → � Capq -q.e. on Rn .

Moreover, we will need the following version of the previous result with boundary values on a domain �.

Lemma 2.19. For q ∈ [1,∞), suppose that � : � → R is Capq -quasi upper semicontinuous with

� ≤ g∗ Capq -q.e. on � for some g ∈ uo|� + W1,q
0 (�) ,

where uo ∈ W1,q (Rn) is given. Then there exists a non-increasing sequence of functions ψk ∈ uo|� + W1,q

0 (�) such 
that

ψ∗
k → � Capq -q.e. on �.

Proof. Extending g by uo outside of �, we find a function ̂g ∈ W1,q (Rn) such that ̂g ∗ ≥ � holds Capq -q.e. on � (with 
the representative ̂g ∗ of Lemma 2.16). Therefore, the extension of � by u∗

o outside of � is Capq -quasi upper semicon-
tinuous on Rn. Consequently, we can apply Lemma 2.18 to construct a non-increasing sequence χk ∈ W1,q (Rn) such 
that χ∗

k → � converges Capq -q.e. on � and χ∗
k → u∗

o converges Capq -q.e. on Rn \ �. Since � ≤ g∗ holds Capq -q.e. 

on � with g ∈ uo|� + W1,q
0 (�), we obtain the desired sequence by letting ψk := min{χk, g}. �

Remark 2.20. If, additionally, the function � in the preceding lemmas is essentially bounded with respect to the 
Capq -capacity and if, in case of Lemma 2.19, also uo is bounded, then the approximations ψk can be chosen as 
bounded functions. This follows by passing to the truncations ψ̂k := min{ψk, max{q- sup�, supuo}} if necessary.

3. Statement of the full results

Next we provide the full statements and a more thorough discussion of our results.

3.1. Duality formulas for obstacle problems in the limit p ↘ 1

We consider a Borel measurable obstacle � : � → R and a boundary datum uo ∈ W1,1(Rn) ∩ L∞(�). From 
Section 2.4, we recall the definitions of the admissible classes for the minimization problems

BVuo(�) = {u ∈ BV(Rn) : u = uo holds Ln-a.e. on Rn \ �} ,

K�(�) = {u ∈ BVuo(�) : u+ ≥ � holds Hn−1-a.e. on � }
and of the admissible class for the dual problems

S∞− (�) = {σ ∈ L∞(�,Rn) : |σ | ≤ 1 holds Ln-a.e. on �, divσ ≤ 0 in D ′(�)}.
We now consider the obstacle problem for the 1-Laplacian, in a generalized formulation based on functional TV�;�
from (2.12). Our first main result identifies a dual formulation of this problem and shows consistency with the corre-
sponding duality theory for the p-Laplacian with p > 1.
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Theorem 3.1 (TV duality as the limit p ↘ 1 of p-Laplace obstacle problems). We consider a bounded open set 
� ⊂Rn with (2.1), uo ∈ W1,q (Rn) ∩ L∞(�), and a bounded Borel function � : � → R so that

� is Capq -quasi upper semicontinuous on � (3.1)

for some q > 1. We also suppose that � is compatible with the boundary values in the sense that there exists a function 
g ∈ uo

∣∣
�

+ W1,q
0 (�) with

� ≤ g∗ Capq -q.e. on �. (3.2)

Then we have

min
u∈BVuo (�)

TV�;�(u) = max
σ∈S∞− (�)

�σ,D��uo
(�) , (3.3)

and every minimizer u of the left-hand side is bounded with

inf� uo ≤ u ≤ max
{
1- sup� �, sup� uo

}
a.e. in �, (3.4)

where 1-sup� � stands for the essential supremum of � up to an Hn−1-negligible set, while inf� uo and sup� uo

denote the usual essential infimum and supremum of uo (up to a Lebesgue negligible set).
Moreover, there is a minimizer–maximizer pair (u, σ) for (3.3) that can be obtained as a limit of solutions of 

p-Laplace obstacle problems in the following sense: for some sequence pi ↘ 1 and the solution upi
∈ uo|� +

W1,pi

0 (�) of the obstacle problem for the pi-Laplacian with obstacle � (cf. Definition 4.1), there holds{
upi

∗
⇁ u weakly∗ in BVuo(�) ,

|Dupi
|pi−2Dupi

⇁ σ weakly in L
q

q−1 (�,Rn) .
(3.5)

Remark 3.2 (On the distributional product �σ, D��uo
). The distributional product �σ, D��uo

and the quantity 
�σ, D��uo

(�) on the right-hand side of (3.3) have been explained in Definition 2.6. In particular, we record that, 
even though �σ, D��uo

is not necessarily a measure, it makes sense to understand

�σ,D��uo
(�) =

∫
�

(�−u∗
o)d(−divσ) +

∫
�

σ · Duo dx .

Remark 3.3 (On thin obstacles). Our assumptions include the case of a thin obstacle such as the characteristic function 
of a closed, (n−1)-dimensional regular surface contained in �. If we consider boundary data uo ≡ 0, the assump-
tions (3.1) and (3.2) are satisfied because the obstacle function is upper semicontinuous with compact support in �. 
In this case, even for minimizers u ∈ BV0(�), the obstacle constraint u+ ≥ � might not be satisfied Hn−1-a.e. on �. 
However, the possible violation of the constraint is penalized by the term∫

�

(�−u+)+ dς (3.6)

in the functional TV�;�. Since this functional must be finite for any minimizer u ∈ BV0(�) in (3.3) and the De Giorgi 
measure is comparable to the Hausdorff measure in the sense of estimate (2.11), we can conclude that a minimizer can 
violate the obstacle constraint at most on a set which is σ -finite with respect to Hn−1. In particular, for a minimizer u, 
the exceptional set {x ∈ � : u+(x) < �(x)} has Hausdorff dimension at most n−1.

Remark 3.4 (On W1,q obstacles). Another case that is covered by our assumptions is an obstacle function ψ ∈
W1,q (�) that satisfies (ψ−uo)+ ∈ W1,q

0 (�) for some q > 1. More precisely, the theorem is then applicable to the 
Capq -quasi continuous representative � = ψ∗ of ψ . In this particular case, the penalization term (3.6) is either infinite 
or zero for all u ∈ BV(Rn), which means that any minimizer u ∈ BVuo(�) in (3.3) must, Hn−1-a.e. on �, satisfy the 
obstacle constraint u+ ≥ � = ψ∗ and thus lie in Kψ∗(�). Consequently, formula (3.3) is then equivalent to

min
u∈K ∗ (�)

TV�(u) = max
σ∈S∞(�)

�σ,Dψ∗�uo
(�) . (3.7)
ψ −
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If we even have ψ ∈ uo|� + W1,q

0 (�), this can be re-written to

min
u∈Kψ∗ (�)

TV�(u) = max
σ∈S∞− (�)

∫
�

σ · Dψ dx , (3.8)

see Lemma 2.5.

As a second model case, we consider the minimization problem for the non-parametric area functional, again in 
a generalized formulation based on the functional A�:� from (2.13). The following theorem is the equivalent of 
Theorem 3.1.

Theorem 3.5 (Area duality as the limit p ↘ 1 of p-Laplace type obstacle problems). Under the assumptions of 
Theorem 3.1, it holds

min
u∈BVuo (�)

A�;�(u) = max
σ∈S∞− (�)

(
�σ,D��uo

(�) +
∫
�

√
1−|σ |2 dx

)
, (3.9)

and every minimizer of the left-hand side is bounded with (3.4). Moreover, there is a minimizer–maximizer pair (u, σ)

for (3.9) that arises as the limit of solutions up of obstacle problems for the non-degenerate p-Laplacian with obstacle 
� in the sense that{

upi

∗
⇁ u weakly∗ in BVuo(�) ,

(1+|Dupi
|2) pi−2

2 Dupi
⇁ σ weakly in L

q
q−1 (�,Rn) ,

holds for some sequence pi ↘ 1. Here, by the solution of the obstacle problem for the non-degenerate p-Laplacian 
we mean the uniquely determined map up ∈ uo|� + W1,p

0 (�) such that there hold the Capp-q.e. inequality up ≥ �

and the minimality property∫
�

(1+|Dup|2) p
2 dx ≤

∫
�

(1+|Dv|2) p
2 dx

for all v ∈ uo|� + W1,p

0 (�) that Capp-q.e. satisfy v ≥ �.

We finally remark that the area case differs from the total variation case insofar that the functional on the right-hand 
side of (3.9) is strictly concave and its maximizer σ is uniquely determined.

3.2. Duality correspondence for even more general obstacles

When compared to the preceding theorems, our next main result is concerned with obstacle functions that are more 
general in two aspects. First, � : � → R needs only be Cap1-quasi upper semicontinuous instead of Capq -quasi upper 
semicontinuous, which is the more natural assumption for obstacle problems with linear growth and allows in partic-
ular the application to BV obstacles (cf. Remark 3.8). Second, we can treat obstacles that are not compatible with the 
boundary values in the sense that � > uo may hold on the boundary (or parts thereof). The corresponding obstacle 
problems do still admit minimizers because functions u ∈ BVuo(�) can develop jumps along the boundary ∂�. How-
ever, in the dual formulation on the right-hand side of (3.10) below one has to use the modified distributional product 

�σ, D��∗
uo

, whose relevance will be discussed in Remark 3.7 below.

Theorem 3.6 (Duality for general TV obstacle problems). Consider a bounded open set � ⊂ Rn with (2.1), uo ∈
W1,1(Rn) ∩ L∞(�), and an obstacle � ∈ L∞(�; Hn−1) that is Cap1-quasi upper semicontinuous on �. Then we 
have

min
u∈BVuo (�)

TV�;�(u) = max
σ∈S∞− (�)

�σ,D��∗
uo

(�) . (3.10)

Moreover, every minimizer u ∈ BVuo(�) of the left-hand side is bounded with (3.4).



1190 C. Scheven, T. Schmidt / Ann. I. H. Poincaré – AN 35 (2018) 1175–1207
Remark 3.7 (On up-to-the-boundary obstacles). The Anzellotti type pairing �σ, D��∗
uo

already appeared in [34,35], 
where it was shown to be the natural pairing for the definition of weak super-1-harmonicity up to the boundary. Here, 
a corresponding definition has been given in Section 2.5, and the term on the right-hand side of (3.10) can be written 
out as

�σ,D��∗
uo

(�) =
∫
�

(�−u∗
o)d(−divσ) +

∫
�

σ · Duo dx +
∫
∂�

(1−σ ∗
n )[�−(uo)

int
∂�]+dHn−1 , (3.11)

where the normal trace σ ∗
n ∈ L∞(∂�; Hn−1) of σ ∈ S∞− (�) exists by Lemma 2.5. The main difference to the pairing 

�σ, D��uo
and the previous duality formulas thus lies in the occurrence of the boundary integral on the right-hand 

side of (3.11), which can be interpreted in a purely heuristic way as follows. Clearly, the boundary integral vanishes 
if the obstacle is compatible with the boundary values in the sense � ≤ uo on ∂�. On portions of ∂� with � > uo, 
the minimizers u ∈ BVuo(�) are forced to jump up from uo to � (seen from the outside of �), so that one expects the 
gradient Du to point in the direction of the inner unit normal to ∂�. Since σ can be understood as a generalization 
of Du

|Du| , this means that σ should coincide with the inner unit normal and its normal trace (with respect to the inward 
normal) should equal 1 on boundary portions where � > uo. In this light, one may say that the boundary integral 
in (3.11) measures on one hand the incompatibility of � and uo and on the other hand the deviation of the normal 
trace σ ∗

n from the expected value 1 on the relevant boundary portions.

Remark 3.8 (On BV obstacles). For an obstacle ψ ∈ BVuo(�) ∩ L∞(�) the preceding theorem is applicable since 
the representative � = ψ+ of ψ is Cap1-upper semicontinuous by Lemma 2.15. Similarly to the situation considered 
in Remark 3.4, in this case we have TV�;�(u) = ∞ whenever u /∈ Kψ+(�). Consequently, for obstacle functions 
ψ ∈ BVuo(�) ∩ L∞(�), the duality formula (3.10) can be written in the equivalent form

min
u∈Kψ+ (�)

TV�(u) = max
σ∈S∞− (�)

�σ,Dψ+�∗
uo

(
�

)
. (3.12)

Replacing the total variation by the area functional in the situation of Theorem 3.6, we get the following result.

Theorem 3.9 (Duality for area minimization with general obstacles). Under the assumptions of Theorem 3.6, we have

min
u∈BVuo (�)

A�;�(u) = max
σ∈S∞− (�)

(
�σ,D��∗

uo
(�) +

∫
�

√
1−|σ |2 dx

)
. (3.13)

Moreover, every minimizer u ∈ BVuo(�) of the left-hand side is bounded with the bounds (3.4).

3.3. Optimality relations with measure data for minimizer–maximizer pairs

As a consequence of the duality formula (3.10), the solutions of general TV obstacle problems can be seen to 
solve a 1-Laplace equation with a measure datum on the right-hand side in the sense of the following corollary, which 
involves the pairing �σ, Du+�∗

uo
from Section 2.5.

Corollary 3.10 (Optimality relations for general TV obstacle problems). Under the assumptions of Theorem 3.6, 
consider a pair of competitors (u, σ) ∈ BVuo(�) × S∞− (�). Then, (u, σ) is a minimizer–maximizer pair in (3.10) if 
and only if it solves the equation

�σ,Du+�∗
uo

= |Du| on �, −divσ = μ in D ′(�) (3.14)

with a non-negative Radon measure μ on � such that

μ ≡ 0 on the non-contact set � ∩ {u+ > �} , (3.15)

μ = ς on the exceptional set � ∩ {u+ < �} , (3.16)

and if (u, σ) also satisfies Hn−1-a.e. the boundary coupling conditions

σ ∗
n ≡ 1 on ∂� ∩ {

uint
∂� > max{�, (uo)

int
∂�}} , (3.17)

σ ∗
n ≡ −1 on ∂� ∩ {

uint
∂� < max{�, (uo)

int
∂�}} . (3.18)
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The proof of this corollary is given in Section 5.3.
Several remarks on interpretations and reformulations of the conditions (3.14)–(3.18) are in order. However, before 

coming to these points, we briefly clarify that the conditions (3.15) and (3.16) make sense even though � ∩ {u+ > �}
and � ∩ {u+ < �} are only defined up to Hn−1-negligible sets, simply because μ and ς vanish on Hn−1 null sets, 
see Lemma 2.1 and formula (2.11) in the preliminaries section. Moreover, we find it worth pointing out that the first 
equality of measures in (3.14) can be replaced by the equality of numbers �σ, Du+�∗

uo
(�) = |Du|(�), which may 

seem weaker, but is actually equivalent by estimate (2.6).

Remark 3.11 (On (3.14) and super-1-harmonicity up to the boundary). In the terminology introduced in [34,35], the 
validity of (3.14) for some σ ∈ S∞− (�) and μ ≥ 0 means exactly that u ∈ BVuo(�) is weakly super-1-harmonic on �
with respect to the Dirichlet datum uo.

In order to further explicate this point of view we record that the first condition in (3.14) can be split in an inte-
rior statement on � and a boundary statement on ∂�. The interior information is just that �σ, Du+� = |Du| holds 
on � (for a local pairing �σ, Du+�), and together with the second condition in (3.14) this means that u is weakly 
super-1-harmonic on � in the terminology of [34,35]. The boundary information in (3.14) turns out to be that σ ∗

n ≡ −1
holds Hn−1-a.e. on ∂� ∩ {uint

∂� < (uo)
int
∂�}, cf. (2.8). This last piece of information is also contained in (3.18) and is 

thus redundant — but this one redundancy in the statement seems acceptable in order to gather all information related 
to super-1-harmonicity in (3.14) and all boundary information in (3.17) and (3.18).

Remark 3.12 (On obstacles compatible with the boundary condition). If the obstacle � respects the Dirichlet bound-
ary datum uo in the sense of the Hn−1-a.e. inequality

� ≤ (uo)
int
∂� on ∂�, (3.19)

the statement of Corollary 3.10 simplifies in some regards.
So, we record that the boundary coupling conditions in (3.17) and (3.18) then read as

σ ∗
n ≡ 1 on ∂� ∩ {uint

∂� > (uo)
int
∂�} , (3.20)

σ ∗
n ≡ −1 on ∂� ∩ {uint

∂� < (uo)
int
∂�} . (3.21)

This is precisely the boundary requirement which one imposes in defining 1-harmonicity on � with regard to the 
Dirichlet datum uo, and this seems indeed very reasonable in the presently considered case where the obstacle is 
inactive on ∂�.

Moreover, (3.21) fully coincides with the boundary information in (3.14) and is thus contained already there. In 
addition, also (3.20) can be incorporated in a condition of type (3.14), simply by replacing �σ, Du+�∗

uo
with �σ, Du+�uo

in the latter, cf. (2.7). All in all, under the compatibility condition (3.19), minimizer–maximizer pairs (u, σ) are thus 
characterized by the equalities

�σ,Du+�uo
= |Du| on �, −divσ = μ in D ′(�)

for some non-negative Radon measure μ on � with (3.15) and (3.16) — without any need for further conditions on ∂�. 
In this case without boundary obstacles we thus recover the criteria specified in (1.11)–(1.12) in the introduction.

Finally, we state the corresponding result for the area functional. For the formulation of the measure data problem, 
we now need a generalized way of saying that σ = Du√

1+|Du|2 holds a.e. on �. For a function u ∈ W1,1(�), this identity 

turns out to be equivalent to the Ln-a.e. equality

σ · Du =
√

1+|Du|2 −
√

1−|σ |2 ,

see the discussion in Section 6.1. Therefore, the version of the preceding corollary in the case of the area functional 
reads as follows.

Corollary 3.13 (Optimality relations for area minimization with general obstacles). In the situation of Theorem 3.6, 
consider (u, σ) ∈ BVuo(�) × S∞− (�). Then, (u, σ) is a minimizer–maximizer pair in (3.13) if and only if it solves the 
equation
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�σ,Du+�∗
uo

=
√

1+|Du|2 −
√

1−|σ |2Ln on �, −divσ = μ in D ′(�) (3.22)

for some non-negative Radon measure μ on � such that (3.15), (3.16), (3.17), (3.18) hold.
If � ≤ (uo)

int
∂� holds Hn−1-a.e. on ∂�, it is possible to replace �σ, Du+�∗

uo
by �σ, Du+�uo

in this characterization. 
Furthermore, the statement remains generally valid if one requires (3.22) only on � instead of � and thus without 
dependence on uo (since the relevant boundary information is contained in (3.18) anyway).

Finally, we record that the dual solution σ in the area case is fully determined by u via the first relation in (3.22). 
This has already been pointed out in [35, Section 5], and it is in accordance with the uniqueness remark made after 
Theorem 3.5.

4. The p-Laplace obstacle problem with p > 1

In this section, we consider a bounded open set � ⊂Rn, a boundary datum uo ∈ W1,q (�) ∩L∞(�), and a bounded 
Borel obstacle � : � →R that satisfies (3.1) and (3.2) for some q > 1. For any p ∈ (1, q] we introduce the admissible 
class

K
p
�(�) := {u ∈ uo + W1,p

0 (�) : u∗ ≥ � holds Capp-q.e. on �} .

Definition 4.1. A function u ∈ K
p
�(�) is called a solution to the obstacle problem for the p-Laplacian with obstacle �

if it satisfies∫
�

|Du|p dx ≤
∫
�

|Dv|p dx for all v ∈ K
p
�(�) . (4.1)

The existence of solutions in the above sense follows by classical arguments, which we briefly recall for the 
convenience of the reader. First, one observes that the set Kp

�(�) is non-empty by (3.2). Moreover, Kp
�(�) is closed 

with respect to the strong topology of W1,p(�) because every sequence with ui → u in W1,p(�) in the limit i → ∞
has a subsequence that converges Capp-quasi-everywhere, cf. Lemma 2.17. As a consequence of Mazur’s lemma 
and the convexity of Kp

�(�), this set is even (sequentially) closed with respect to the weak topology of W1,p(�). 
Therefore, the existence of a solution u ∈ K

p
�(�) follows by the direct method of the calculus of variations. By the 

strict convexity of the p-energy integral in (4.1), it is also clear that u is the unique solution.
Replacing v ∈ K

p
�(�) by u + t (v−u) ∈ K

p
�(�) for t > 0, dividing by t and letting t ↘ 0, we deduce that the 

solution u satisfies the variational inequality∫
�

|Du|p−2Du · D(v−u)dx ≥ 0 for all v ∈ K
p
�(�) . (4.2)

The following lemma ensures that, for bounded data, the solutions to the obstacle problems are also bounded.

Lemma 4.2. For boundary data uo ∈ W1,q (�) ∩ L∞(�) and a bounded Borel function � : � → R with (3.1)
and (3.2), the solution u ∈ K

p
�(�) of the obstacle problem (4.1) satisfies

inf
�

uo ≤ u ≤ max
{
p- sup� �, sup� uo

}
a.e. on �,

where p-sup� � is the essential supremum of � up to a set of zero p-capacity.

Proof. If we had u > M := max{p-sup� �, sup� uo} on a set of positive Lebesgue measure, then the truncated 
function û := min{u, M} ∈ K

p
�(�) would be an admissible competitor with∫

�

|Dû|p dx <

∫
�

|Du|p dx ,

which would contradict the minimality of u. Analogously, if we had u < m := inf� uo on a set of positive measure, 
then ǔ := max{u, m} would be an admissible competitor with strictly smaller energy. �



C. Scheven, T. Schmidt / Ann. I. H. Poincaré – AN 35 (2018) 1175–1207 1193
For the dual formulation of the obstacle problem, we introduce the space

S
p′
− (�) := {σ ∈ Lp′

(�,Rn) : divσ ≤ 0 in D ′(�)} ,

where we used the customary notation p′ := p
p−1 . For σ ∈ S

p′
− (�), the Riesz representation theorem implies that the 

distribution divσ is a non-positive Radon measure, and by a well-known reasoning3 this measure vanishes on every 
set of p-capacity zero.

In view of these observations, the distributional product �σ, DU �uo
in Definition 2.3 is also meaningful in the 

slightly different setting of this section, that is for uo ∈ W1,p

0 (�) ∩ L∞(�), σ ∈ S
p′
− (�) and a bounded Borel 

function U on � which is at least Capp-q.e. defined. For u ∈ uo + W1,p
0 (�), specifically, the product �σ, Du∗�uo

corresponds to the function σ · Du ∈ L1(�), as it follows from the integration-by-parts formula∫
�

ϕ∗ d(−divσ) =
∫
�

σ · Dϕ dx . (4.3)

Indeed, this formula is trivially valid for σ ∈ S
p′
− (�) and ϕ ∈ D(�), but it carries over to arbitrary ϕ ∈ W1,p

0 (�) by 

strong approximation in W1,p
0 and Lemma 2.17.

Now we can state and prove the duality formula for the p-Laplace obstacle problem.

Proposition 4.3. Consider a bounded open set � ⊂Rn, some uo ∈ W1,q (�) ∩ L∞(�), and a bounded Borel function 
� : � → R with (3.1) and (3.2) for some q > 1. Then, for any p ∈ (1, q], we have

min
u∈K

p
�(�)

1
p

∫
�

|Du|p dx = max
σ∈S

p′
− (�)

(
�σ,D��uo

(�) − 1
p′

∫
�

|σ |p′
dx

)
. (4.4)

In fact, for the minimizer u ∈ K
p
�(�) of the left-hand side and σ := |Du|p−2Du ∈ S

p′
− (�) we have

1
p

∫
�

|Du|p dx = �σ,D��uo
(�) − 1

p′

∫
�

|σ |p′
dx .

Proof. We begin by considering arbitrary functions σ ∈ S
p′
− (�) and u ∈ K

p
�(�). Since − divσ is a non-negative 

Radon measure that vanishes on sets with p-capacity zero, we know∫
�

(u∗−�)d(−divσ) ≥ 0 ,

from which we infer

�σ,D��uo
(�) =

∫
�

(�−u∗
o)d(−divσ) +

∫
�

σ · Duo dx

≤
∫
�

(u∗−u∗
o)d(−divσ) +

∫
�

σ · Duo dx

=
∫
�

Du · σ dx

3 Indeed, for compact E ⊂ Rn and ε > 0, via the definition of Capp one finds some ϕ ∈ D(Rn) with ϕ ≥ 1E and ‖Dϕ‖p
Lp(Rn,Rn)

≤
Capp(E)+ε. This gives (− divσ)(E) ≤ ∫

Rn ϕ d(− divσ) = ∫
Rn σ · Dϕ dx ≤ (Capp(E)+ε)1/p‖σ‖

Lp′
(�,Rn)

, and, by inner regularity of − divσ , 
the resulting inequality (− div σ)(E) ≤ Capp(E)1/p‖σ‖ p′ n holds true even for arbitrary E ⊂ Rn .
L (�,R )
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≤
∫
�

(
1
p
|Du|p + 1

p′ |σ |p′)
dx .

In the last two steps, we used formula (4.3) and Young’s inequality. All in all, we deduce

min
u∈K

p
�(�)

1
p

∫
�

|Du|p dx ≥ sup
σ∈S

p′
− (�)

(
�σ,D��uo

(�) − 1
p′

∫
�

|σ |p′
dx

)
. (4.5)

For the reverse inequality, we choose the solution u ∈ K
p
�(�) of the obstacle problem for the p-Laplacian with 

obstacle � and let σ := |Du|p−2Du. Then we have

1
p

∫
�

|Du|p dx =
∫
�

|Du|p−2Du · D(u−uo)dx +
∫
�

|Du|p−2Du · Duo dx − 1
p′

∫
�

|Du|p dx

=
∫
�

(u∗−u∗
o)d(−divσ) +

∫
�

σ · Duo dx − 1
p′

∫
�

|σ |p′
dx .

Now we choose a non-increasing sequence ψk ∈ uo + W1,q
0 (�) such that ψ∗

k → � converges Capq -q.e. on �. Such 
a sequence exists by Lemma 2.19 and thanks to our assumptions (3.1) and (3.2). Via monotone convergence and the 
variational inequality (4.2) for the solution u, we infer∫

�

(�−u∗)d(−divσ) = lim
k→∞

∫
�

(ψ∗
k −u∗)d(−divσ)

= lim
k→∞

∫
�

|Du|p−2Du · D(ψk−u)dx ≥ 0 .

Joining the two preceding formulas, we arrive at

1
p

∫
�

|Du|p dx ≤
∫
�

(�−u∗
o)d(−divσ) +

∫
�

σ · Duo dx − 1
p′

∫
�

|σ |p′
dx

= �σ,D��uo
(�) − 1

p′

∫
�

|σ |p′
dx .

This proves the reverse inequality in (4.5) and shows moreover that the supremum on the right-hand side is attained 
for σ = |Du|p−2Du. �
5. The obstacle problem for the total variation

5.1. The duality formula in the limit p ↘ 1

This section is devoted to the proof of Theorem 3.1. We still consider uo ∈ W1,q (Rn) ∩ L∞(�) and a bounded 
Borel function � : � → R with (3.1) and (3.2) for some q > 1. Then we analyze the asymptotic behavior of the 
solutions to the obstacle problems for the p-Laplacian with data uo and � in the limit p ↘ 1.

Proof of Theorem 3.1.. The proof is divided into four steps.
Step 1. The easy inequality in the duality formula. We begin by considering arbitrary u ∈ BVuo(�) ∩ L∞(�) and 

σ ∈ S∞− (�). We use Proposition 2.8 and Proposition 2.11 with U = �−u+ in order to estimate

�σ,D��uo
(�) = �σ,Du+�uo

(�) +
∫
�

(�−u+)d(−divσ)

≤ |Du|(�) +
∫
�

(�−u+)+dς = TV�;�(u) . (5.1)
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Moreover, we observe that every minimizer u ∈ BVuo(�) of TV�;� satisfies the bounds

m := inf� uo ≤ u ≤ max
{
1- sup� �, sup� uo

} =: M a.e. in �. (5.2)

In fact, if one of these inequalities did not hold on a set of positive measure, the truncation ̂u := max{min{u, M},m}
would satisfy TV�;�(̂u) < TV�;�(u), which contradicts the minimality property of u. This implies the claim (3.4)
and also shows

inf
u∈BVuo (�)∩L∞(�)

TV�;�(u) = inf
u∈BVuo (�)

TV�;�(u) . (5.3)

Combining (5.3) with (5.1), we infer the estimate

inf
u∈BVuo (�)

TV�;�(u) ≥ sup
σ∈S∞− (�)

�σ,D��uo
(�) , (5.4)

which yields one inequality of the claimed identity (3.3). It remains to prove the reverse inequality and to show that 
the infimum and the supremum are attained. To this end, we analyze the asymptotic behavior of the solutions to the 
p-Laplacian obstacle problems as p ↘ 1.

Step 2. Solutions to the obstacle problems for p > 1. For every p ∈ (1, q), we choose up ∈ K
p
�(�) as the solution 

of the obstacle problem for the p-Laplacian in the sense of Definition 4.1. From Lemma 4.2 we infer up ∈ L∞(�)

with

inf� uo ≤ up ≤ max{sup� �, sup� uo} a.e. on �, (5.5)

for every p ∈ (1, q) (where, for simplicity, we estimated p-sup� � by the pointwise supremum sup� �). Moreover, 
by using v = g as comparison map in the minimality condition (4.1) for up , where g ∈ uo|� + W1,q

0 (�) ⊂ uo|� +
W1,p

0 (�) is provided by assumption (3.2), we deduce∫
�

|Dup|dx ≤ c
(∫

�

|Dup|p dx
) 1

p ≤ c
(∫

�

|Dg|p dx
) 1

p ≤ c
(∫

�

|Dg|q dx
) 1

q
(5.6)

for every p ∈ (1, q). Here the constant c can be chosen only in dependence on q and |�|.

Step 3. Letting p → 1. Extending up by uo outside of �, we can interpret up as element of BVuo(�). The 
bounds (5.5) and (5.6) enable us to extract a subsequence pi → 1 with{

upi

∗
⇁ u weakly∗ in BVuo(�) ,

upi

∗
⇁ u weakly∗ in L∞(�) ,

(5.7)

as i → ∞, for some limit map u ∈ BVuo(�) ∩ L∞(�). Due to (5.6), the functions σi := |Dupi
|pi−2Dupi

satisfy

sup
i∈N

∫
�

|σi |p′
i dx < ∞ . (5.8)

Possibly passing to another subsequence, we can therefore assume

σi ⇁ σ weakly in Lq ′
(�,Rn) (5.9)

as i → ∞ for some σ ∈ Lq ′
(�, Rn). We claim that we have σ ∈ L∞(�, Rn) with ‖σ‖L∞(�,Rn) ≤ 1. To verify this 

claim, we consider the truncated sequence

T σi :=

⎧⎪⎨⎪⎩
σi

|σi | = Dupi

|Dupi
| , if |σi | ≥ 1 ,

σ = |Du |pi−2Du , if |σ | < 1 .
i pi pi i
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Clearly, we can also assume T σi
∗

⇁ σ̃ in L∞(�, Rn) as i → ∞ for some σ̃ ∈ L∞(�, Rn), which satisfies 
‖σ̃‖L∞(�,Rn) ≤ 1 by lower semicontinuity of the norm with respect to weak∗ convergence. In order to identify σ = σ̃ , 
we calculate for arbitrary λ > 1∫

�

|σi−T σi |dx =
∫

�∩{|Dupi
|≥1}

∣∣∣ Dupi

|Dupi
|
∣∣∣(|Dupi

|pi−1−1
)

dx

=
∫

�∩{1≤|Dupi
|≤λ}

(|Dupi
|pi−1−1

)
dx +

∫
�∩{|Dupi

|>λ}

(|Dupi
|pi−1−1

)
dx

=: Ii + IIi .

The first integral on the right-hand side can be bounded by

Ii ≤ |�|(λpi−1−1) for every i ∈N . (5.10)

For the estimate of the second integral, we recall (5.6), which yields

IIi ≤ 1

λ

∫
�

|Dupi
|pi dx ≤ 1

λ

∫
�

|Dg|pi dx ≤ c

λ

(‖Dg‖q

Lq (�,Rn) + 1
)
. (5.11)

Collecting the estimates, we arrive at∫
�

|σi−T σi |dx ≤ |�|(λpi−1−1) + c

λ

(‖Dg‖q

Lq (�,Rn) + 1
)
.

The right-hand side can be made arbitrarily small by first choosing λ > 1 large enough and then pi sufficiently close 
to 1. Hence, we have shown

σi − T σi → 0 in L1(�,Rn), as i → ∞ .

But this implies σ = σ̃ ∈ L∞(�, Rn) and consequently,

‖σ‖L∞(�,Rn) = ‖σ̃‖L∞(�,Rn) ≤ 1 , (5.12)

as claimed. Next, we recall that the approximating solutions upi
satisfy∫

�

σi · Dϕ dx =
∫
�

|Dupi
|pi−2Dupi

· Dϕ dx ≥ 0

for all ϕ ∈ D(�) with ϕ ≥ 0 on �. Passing to the limit i → ∞, this implies∫
�

σ · Dϕ ≥ 0 for all ϕ ∈ D(�) with ϕ ≥ 0 .

Keeping in mind (5.12), we thereby deduce σ ∈ S∞− (�).

Step 4. The limit maps are extremal points. Since the solutions upi
∈ W1,pi (�) satisfy Cap1-q.e. the obstacle 

constraint u∗
pi

≥ �, we have TV�;�(upi
) = ∫

�
|Dupi

|dx. Using the lower semicontinuity of TV�;� with respect to 
weak∗ convergence in BV, which is guaranteed by Theorem 2.13, we hence deduce

TV�;�(u) ≤ lim inf
i→∞

∫
�

|Dupi
|dx ≤ lim inf

i→∞ |�|1− 1
pi

(∫
�

|Dupi
|pi dx

) 1
pi (5.13)

= lim inf
i→∞

(
1
pi

∫
�

|Dupi
|pi dx

) 1
pi .

From Proposition 4.3 we know



C. Scheven, T. Schmidt / Ann. I. H. Poincaré – AN 35 (2018) 1175–1207 1197
1
pi

∫
�

|Dupi
|pi dx = �σi,D��uo

(�) − 1
p′

i

∫
�

|σi |p′
i dx (5.14)

for every i ∈ N. Now, we join (5.13) with (5.14) and make use of the bound (5.8). This leads us to

TV�;�(u) ≤ lim inf
i→∞

(
�σi,D��uo

(�) − 1
p′

i

∫
�

|σi |p′
i dx

) 1
pi

= lim inf
i→∞ �σi,D��uo

(�) . (5.15)

Next, we apply Lemma 2.19 to obtain a non-increasing sequence of functions ψk ∈ uo|� + W1,q

0 (�) such that ψ∗
k

converges Capq -q.e. on � to �. We subsequently use the Capq -q.e. inequality � ≤ ψ∗
k on �, the triviality of the 

pairing on W1,q -functions (see Lemma 2.5 or (4.3)), the convergence (5.9), and again the triviality of the pairing 
on W1,q in order to estimate

lim sup
i→∞

�σi,D��uo
(�) ≤ lim sup

i→∞
�σi,Dψ∗

k �uo
(�) = lim sup

i→∞

∫
�

σi · Dψk dx

=
∫
�

σ · Dψk dx = �σ,Dψ∗
k �uo

(�) (5.16)

for every k ∈N. Combining (5.15) and (5.16) and letting k → ∞, we deduce

TV�;�(u) ≤ lim
k→∞ �σ,Dψ∗

k �uo
(�) = �σ,D��uo

(�) , (5.17)

where the last equality follows from the definition of the pairing and the monotone Capq -q.e. (hence also 
(− divσ)-a.e.) convergence ψ∗

k → � on �. Combining this with (5.4), we deduce the claim (3.3). The asymptotic 
behavior (3.5) in the limit p ↘ 1 is satisfied by (5.7) and (5.9). This completes the proof of the theorem. �
5.2. The duality formula for general obstacles

In this section, we establish the general duality statement in Theorem 3.6.

Proof of Theorem 3.6. We consider uo ∈ W1,1(Rn) ∩ L∞(�) and, for a start, an arbitrary � ∈ L∞(�; Hn−1). From 
the Propositions 2.8, 2.11, 2.12, the definitions of the pairings, and the sublinearity of the function x �→ x+, it follows 
that we have, for all u ∈ BVuo(�) ∩ L∞(�) and σ ∈ S∞− (�),

TV�;�(u) = |Du|(�) +
∫
�

(�−u+)+ dς

≥ �σ,Du+�∗
uo

(
�

) +
∫
�

(�−u+)d(−divσ) +
∫
∂�

(�−u+)+(1−σ ∗
n )dHn−1

= �σ,D��uo

(
�

) +
∫
∂�

([u+−(uo)
int
∂�]+ + (�−u+)+

)
(1−σ ∗

n )dHn−1

≥ �σ,D��∗
uo

(
�

)
.

Moreover, by the truncation argument already used for the derivation of (5.2) we deduce

inf� uo ≤ u ≤ max
{
1- sup� �, sup� uo

}
a.e. in � (5.18)

for every minimizer u ∈ BVuo(�) of TV�;� and

inf
u∈BVuo (�)∩L∞(�)

TV�;�(u) = inf
u∈BVuo (�)

TV�;�(u) .

Thus, we have verified (3.4) and
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inf
u∈BVuo (�)

TV�;�(u) ≥ sup
σ∈S∞− (�)

�σ,D��∗
uo

(
�

)
. (5.19)

The reverse inequality and the fact that the infimum and supremum are attained will be verified in several steps for 
more and more general obstacles.

Step 1. W1,1 obstacles ψ with ψ = uo on ∂�. Possibly replacing uo ∈ W1,1(Rn) ∩ L∞(�) with the trunca-
tion max{min{uo, ‖uo‖L∞(�)}, −‖uo‖L∞(�)}, we can assume that uo is indeed bounded on the whole Rn. More-
over, in this first step, we consider ψ ∈ (uo|� + W1,1

0 (�)) ∩ L∞(�). Extending ψ by uo outside of �, we can 
understand ψ ∈ W1,1(Rn) ∩ L∞(Rn). Standard approximation of this extension yields functions ψk ∈ W1,2(Rn)

with ψk → ψ in W1,1(Rn), as k → ∞. We can assume ‖ψk‖L∞(Rn) ≤ ‖ψ‖L∞(Rn) by passing to the truncations 
max{min{ψk, supRn ψ}, infRn ψ} if necessary. As new boundary data, we consider the same functions uo,k := ψk ∈
W1,2(�) ∩L∞(�). In this way, we find approximating obstacles ψk ∈ uo,k +W1,2

0 (�), and we have the convergences

ψk → ψ in W1,1(�)

uo,k

∣∣
Rn\� → uo

∣∣
Rn\� in W1,1(Rn \ �)

(5.20)

in the limit k → ∞. From Theorem 3.1 and Remark 3.4 thereafter (compare (3.8), in particular), we obtain minimizer–
maximizer pairs (uk, σk) ∈ Kψ∗

k ,uo,k
(�) × S∞− (�) for the obstacle problems with obstacles ψk such that we have

TV�(uk) =
∫
�

σk · Dψk dx .

Moreover, since (5.18) applies to each of the uk , we have

‖uk‖L∞(�) ≤ max
{
sup� ψk,‖uo,k‖L∞(�)

} ≤ ‖ψ‖L∞(Rn) (5.21)

for every k ∈ N. By minimality we have |Duk|
(
�

) ≤ ∫
�

|Dψk|dx, and hence the convergence (5.20) implies that 
the functions uk ∈ BVuo,k

(�) are bounded in BV(Rn). Moreover, by definition of S∞− (�), the σk are bounded in 
L∞(�, Rn). Possibly passing to subsequences, we can thus assume that uk and σk weakly∗ converge in BV(Rn) ∩
L∞(�) and L∞(�, Rn) to limits u∞ ∈ BVuo(�) ∩ L∞(�) and σ∞ ∈ S∞− (�), respectively, and it follows that u ≥ ψ

holds a.e. on �. Furthermore, relying on the above convergences, the lower semicontinuity of the total variation, and 
the bounds |σk| ≤ 1, we obtain

TV�(u∞) ≤ lim inf
k→∞ TV�(uk) = lim inf

k→∞

∫
�

σk · Dψk dx

≤ lim
k→∞

∫
�

σk · Dψ dx + lim
k→∞

∫
�

|D(ψk−ψ)|dx

=
∫
�

σ∞ · Dψ dx = �σ∞,Dψ+�∗
uo

(�) ,

where the last identity follows from Lemma 2.5 and the fact that �σ∞, Dψ+�uo
equals �σ∞, Dψ+�∗

uo
under the present 

assumption at the boundary. Joining this with (5.19) for � = ψ+ and observing that the a.e. inequality u∞ ≥ ψ suffices 
to guarantee u∞ ∈ Kψ+,uo

(�), we deduce that (u∞, σ∞) ∈ Kψ+,uo
(�) ×S∞− (�) is a minimizer–maximizer pair with 

the claimed L∞-bound for u∞ and that (3.10) holds for obstacles in uo|� + W1,1
0 (�).

Step 2. W1,1 obstacles ψ , possibly with ψ > uo on ∂�. Next, we consider an obstacle ψ ∈ W1,1(�) ∩ L∞(�)

that need not agree with the boundary datum uo on ∂�, but satisfies only (ψ−uo)− ∈ W1,1
0 (�). Since 1� is lower 

semicontinuous, we can find an increasing sequence of Lipschitz functions ηk ∈ C0,1
0 (�) with ηk → 1� pointwisely 

on �. We use these to define an increasing sequence of approximating obstacles by

ψk := uo|� + ηk(ψ−uo)+ − (ψ−uo)− ∈ uo|� + W1,1
(�) .
0
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From Step 1 we infer the existence of solutions (uk, σk) ∈ Kψ+
k ,uo

(�) × S∞− (�) for the obstacle problems with 
obstacles ψk , in particular

TV�(uk) =
∫
�

σk · Dψk dx = �σk,Dψ+
k �uo

(�) . (5.22)

Using uo + 1�(ψ−uo) as a competitor, we see that the uk are bounded in BV(Rn), and the property (5.18) for the uk

implies

‖uk‖L∞(�) ≤ max{sup� ψk,‖uo‖L∞(�)} ≤ max{sup� ψ,‖uo‖L∞(�)} (5.23)

for every k ∈ N. Consequently, after passage to a subsequence we can assume that uk weakly∗ converges to a limit 

u∞ ∈ BVuo(�) ∩ L∞(�), which in fact satisfies u∞ ∈ Kψ+,uo
(�). Moreover, we can assume that σk

∗
⇁ σ∞ weakly∗

in L∞(�, Rn). Taking into account the definition of the pairing, the Cap1-q.e. inequality ψ+
k ≤ ψ+ on � for any 

k ∈N and the identity (2.3) with ϕ ≡ 1 on �, we find

�σk,Dψ+
k �uo

(�) ≤ �σk,Dψ+�uo
(�)

=
∫
�

σk · Dψ dx +
∫
∂�

(ψ−uo)
int
∂� (σk)

∗
n dHn−1

≤
∫
�

σk · Dψ dx +
∫
∂�

(ψ−uo)
int
∂� dHn−1 ,

where we used the Hn−1-a.e. inequalities (ψ−uo)
int
∂� ≥ 0 and (σk)

∗
n ≤ 1 on ∂� for the last step. Plugging the last 

estimate into (5.22), letting k → ∞, and again applying (2.3), we arrive at

lim inf
k→∞ TV�(uk) ≤

∫
�

σ∞ · Dψ dx +
∫
∂�

(ψ−uo)
int
∂� dHn−1

= �σ∞,Dψ+�uo
(�) +

∫
∂�

(1−(σ∞)∗n)(ψ−uo)
int
∂� dHn−1

= �σ∞,Dψ+�∗
uo

(�) ,

where the last identity is valid since (ψ)int
∂� ≥ (uo)

int
∂� holds Hn−1-a.e. on ∂� by assumption. By using the lower 

semicontinuity of the total variation, we thereby deduce

TV�(u∞) ≤ �σ∞,Dψ+�∗
uo

(�) .

Comparison with (5.19) shows that u∞ ∈ Kψ+,uo
(�) is a minimizer with the claimed L∞-bound and that (3.10) holds 

also in the case ψ ∈ W1,1(�) with (ψ−uo)− ∈ W1,1
0 (�) if we choose the representative � = ψ+ of ψ .

Step 3. Cap1-quasi upper semicontinuous obstacles. Finally, we consider an arbitrary bounded Borel function 
� : � → R that is Cap1-quasi upper semicontinuous. We decompose the obstacle function according to

� = max{�,u∗
o} − (�−u∗

o)− on �.

Since −(�−u∗
o)− is majorized by the constant function g ≡ 0, we can apply Lemma 2.19 and the remark thereafter 

to find a non-increasing sequence of functions ηk,1 ∈ W1,1
0 (�) ∩ L∞(�) with

η∗
k,1 → −(�−u∗

o)− Cap1-q.e. on �, as k → ∞ . (5.24)

By passing to min{ηk,1, 0} if necessary, we can moreover assume that ηk,1 ≤ 0 holds a.e. on �. Since max{�, u∗
o}

is a bounded Cap1-quasi upper semicontinuous function on �, its extension by u∗
o outside of � is Cap1-quasi upper 

semicontinuous on Rn and can be majorized by a W1,1 function. We are thus in a position to apply Lemma 2.18, 
which, together with Remark 2.20, yields a non-increasing sequence of functions ηk,2 ∈ W1,1(�) ∩ L∞(�) with 
ηk,2 ≤ max{1- sup� �, ‖uo‖L∞(�)} a.e. on � and



1200 C. Scheven, T. Schmidt / Ann. I. H. Poincaré – AN 35 (2018) 1175–1207
η∗
k,2 → max{�,u∗

o} Cap1-q.e. on � ,

(ηk,2)
int
∂� → max{�, (uo)

int
∂�} Cap1-q.e. on ∂�,

(5.25)

in the limit k → ∞. Consequently, the functions

ψk := ηk,1 + ηk,2 ∈ W 1,1(�) ∩ L∞(�)

form a non-increasing sequence with

‖ψk‖L∞(�) ≤ max{1- sup� |�|,‖uo‖L∞(�)} for every k ∈N ,

ψ∗
k → � Cap1-q.e. on �,

(ψk−uo)
int
∂� → [�−(uo)

int
∂�]+ Cap1-q.e. on ∂�,

in the limit k → ∞. Since ηk,2 ≥ uo as a consequence of our construction, for each k ∈N we have 0 ≥ −(ψk−uo)− ≥
ηk,1 ∈ W1,1

0 (�). Therefore, it holds (ψk−uo)− ∈ W1,1
0 (�), so that we are in a situation covered by Step 2 above. The 

earlier reasoning thus ensures the existence of minimizer–maximizer pairs (uk, σk) ∈ Kψ+
k ,uo

(�) × S∞− (�) for the 
obstacle problems with obstacles ψk , which, by (5.18), satisfy

‖uk‖L∞(�) ≤ max
{

sup� ψk,‖uo‖L∞(�)

} ≤ max
{

sup� ψ1,‖uo‖L∞(�)

}
and

TV�(uk) = �σk,Dψ+
k �∗

uo

(
�

)
(5.26)

for each k ∈ N. Since uo + 1�(ψ1−uo) is an admissible competitor for each of the uk , we infer that the sequence uk

is bounded in BVuo(�). We may thus assume convergence uk
∗

⇁ u∞ weakly∗ in BVuo(�) and σk
∗

⇁ σ∞ weakly∗ in 
L∞(�, Rn) in the limit k → ∞, for some u∞ ∈ BVuo(�) ∩ L∞(�) and some σ∞ ∈ S∞− (�). We emphasize that, in 
contrast to the previous steps, at the present stage the exceptional set �∩{u∞ < �} may have positive Hn−1-measure. 
In order to analyze the convergence of the right-hand side in (5.26), we observe that for every � ∈N, the monotonicity 
of the sequence ψk implies

lim sup
k→∞

�σk,Dψ+
k �∗

uo

(
�

)
= lim sup

k→∞

(
�σk,Dψ+

k �uo

(
�

) +
∫
∂�

(1−(σk)
∗
n)(ψk−uo)

int
∂� dHn−1

)

≤ lim sup
k→∞

(
�σk,Dψ+

� �uo

(
�

) +
∫
∂�

(1−(σk)
∗
n)(ψ�−uo)

int
∂� dHn−1

)

= lim sup
k→∞

∫
�

σk · Dψ� dx +
∫
∂�

(ψ�−uo)
int
∂� dHn−1

=
∫
�

σ∞ · Dψ� dx +
∫
∂�

(ψ�−uo)
int
∂� dHn−1

= �σ∞,Dψ+
� �uo

(
�

) +
∫
∂�

(1−(σ∞)∗n)(ψ�−uo)
int
∂� dHn−1 .

In the last three steps, we employed the weak∗ convergence σk
∗

⇁ σ∞ in L∞(�, Rn) as k → ∞ and twice the 
identity (2.3). Passing � → ∞ and making use of the monotone Cap1-q.e. convergences ψ+

� = ψ∗
� → � on � and 

(ψ� − uo)
int
∂� → [� − (uo)

int
∂�]+ on ∂�, we deduce

lim sup
k→∞

�σk,Dψ+
k �∗

uo

(
�

) ≤ �σ∞,D��uo

(
�

) +
∫
∂�

(1−(σ∞)∗n)[�−(uo)
int
∂�]+ dHn−1

= �σ∞,D��∗
uo

(
�

)
. (5.27)
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Since we have uk ∈ Kψ+
k ,uo

(�) ⊂ K�,uo(�), the lower semicontinuity result from Theorem 2.13 ensures

TV�;�(u∞) ≤ lim inf
k→∞ TV�;�(uk) = lim inf

k→∞ TV�(uk) . (5.28)

Combining (5.28), (5.26), and (5.27), we conclude

TV�;�(u∞) ≤ �σ∞,D��∗
uo

(
�

)
.

Comparing the last inequality with (5.19), it turns out that u∞ is a minimizer and σ∞ a maximizer. Therefore, we 
have verified (3.10) in the general case, and the proof of Theorem 3.6 is complete. �
5.3. Derivation of the optimality relations

In this short subsection, we give the

Proof of Corollary 3.10. The corollary is a consequence of the following chain of inequalities that holds for any pair 
of competitors (u, σ) ∈ BVuo(�) × S∞− (�) in (3.10):

�σ,D��∗
uo

(�) = �σ,Du+�∗
uo

(�) +
∫
�

(�−u+)d(−divσ)

+
∫
∂�

(1−σ ∗
n )

([�−(uo)
int
∂�]+ − [u+−(uo)

int
∂�]+

)
dHn−1

≤ �σ,Du+�∗
uo

(�) +
∫
�

(�−u+)d(−divσ) +
∫
∂�

(1−σ ∗
n )(�−u+)+ dHn−1

≤ |Du|(�) +
∫
�

(�−u+)+ d(−divσ) + 2
∫
∂�

(�−u+)+ dHn−1

≤ |Du|(�) +
∫
�

(�−u+)+ dς +
∫
∂�

(�−u+)+ dς

= TV�;�(u) . (5.29)

Here, the first line follows from the definition of �σ, Du+�∗
uo

(�), and the second one from the Hn−1-a.e. bound σ ∗
n ≤ 1

on ∂� and the elementary inequality a+−b+ ≤ (a−b)+ for a, b ∈ R, which specifically gives

[�−(uo)
int
∂�]+ − [u+−(uo)

int
∂�]+ ≤ (�−u+)+ . (5.30)

Furthermore, in the third line we used Proposition 2.8, the non-negativity of (−divσ), and the Hn−1-a.e. bound 
σ ∗

n ≥ −1 on ∂�, while the fourth line is a consequence of Propositions 2.11 and 2.12.
It is clear from Theorem 3.6 that (u, σ) is a minimizer–maximizer pair if and only if all the inequalities in (5.29) are 

in fact equalities, and going through the above argument this occurs precisely if we have the following five identities, 
which we will show to be equivalent with (3.14)–(3.18) in the statement of the corollary:

�σ,Du+�∗
uo

(�) = |Du|(�) ,

�−u+ = (�−u+)+ (−divσ)-a.e. on �,

σ ∗
n ≡ 1 Hn−1-a.e. where inequality (5.30) is strict on ∂�,

σ ∗
n ≡ −1 Hn−1-a.e. on ∂� ∩ {u+ < �} ,

and ∫
(�−u+)+ d(−divσ) =

∫
(�−u+)+ dς . (5.31)
� �
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Now, in view of (2.6) the first identity is equivalent with the equality �σ, Du+�∗
uo

= |Du| of measures on � and thus 
with the validity of (3.14) for μ := − divσ . The second line then clearly corresponds to μ(� ∩ {u+ > �}) = 0, that 
is to (3.15). The boundary portion in the third identity is quickly identified by observing that the strict inequality 
a+−b+ < (a−b)+ holds if and only if one has b > a+ or b < −a−. In the case of (5.30), the second alternative can 
not occur because u+ = max{uint

∂�, (uo)
int
∂�} ≥ (uo)

int
∂� holds Hn−1-a.e. on ∂�. So, the boundary portion in the third 

identity turns out to be the one where u+−(uo)
int
∂� > [�−(uo)

int
∂�]+ or, equivalently, uint

∂� > max{�, (uo)
int
∂�} holds. In 

view of this observation, the third identity coincides with (3.17). The fourth identity is (only) a part of (3.18), since 
indeed it requires σ ∗

n ≡ −1 only on the portion {u+ < �} of {uint
∂� < max{�, (uo)

int
∂�} = {u+ < �} ∪ {uint

∂� < (uo)
int
∂�}

(all sets taken in ∂�). However, we have already obtained (3.14), and by (2.8) the validity of (3.14) on ∂� turns 
out to mean 

[
(u−uo)

int
∂�

]
+ − [

(u−uo)
int
∂�

]
−σ ∗

n = |(u−uo)
int
∂�| on ∂�. Thus the equality σ ∗

n ≡ −1 on the other portion 

{uint
∂� < (uo)

int
∂�} is already contained in (3.14) (compare Remark 3.11), and hence (3.18) is fully justified. Finally, 

since Proposition 2.11 generally asserts − divσ ≤ ς as measures on �, the remaining identity (5.31) means nothing 
but − divσ = ς on � ∩ {u+ < �}, that is (3.16). �
6. The obstacle problem for the area functional

In this final section, we briefly explain how to adapt the proofs in the preceding sections to the case of the area 
functional.

6.1. Convex conjugates and duality for non-degenerate p-energies

In order to specify the approximating problems, we introduce the non-degenerate p-energies

Ap
�(u) :=

∫
�

fp(Du) dx for u ∈ W1,p(�) ,

where we defined

fp(z) := (
1+|z|2) p

2 for z ∈ Rn

for p ∈ [1,∞). In particular, with this convention, the functional A1
� coincides with the area A� on W1,1 functions. 

The convex conjugate

f ∗
p (z∗) := sup

z∈Rn

[z∗ · z − fp(z)] (6.1)

can be computed in terms of the inverse �p(z∗) := (∇fp)−1(z∗) of the gradient ∇fp(z) = (1+|z|2) p−2
2 z as

f ∗
p (z∗) = z∗ · �p(z∗) − (

1+|�p(z∗)|2) p
2 for z∗ ∈Rn .

In the case p = 1, the above formula is only valid for |z∗| < 1 since, otherwise, �1 is undefined. However, in this case 
we have the explicit formula

f ∗
1 (z∗) =

{
−√

1−|z∗|2 if |z∗| ≤ 1

∞ if |z∗| > 1

for all z∗ ∈Rn. As a consequence of fp ≤ fq for p ≤ q we have

f ∗
p ≥ f ∗

q whenever 1 ≤ p ≤ q . (6.2)

In addition, we observe:

Lemma 6.1. In the limit p ↘ 1 we have

f ∗
p (z∗) → f ∗

1 (z∗) monotonically, for all z∗ ∈ Rn . (6.3)
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Proof. In the case |z∗| ≤ 1 the claim can be checked, for example, by choosing z = z∗√
λ2−|z∗|2 in the supremum of 

(6.1), with arbitrary λ > 1. Letting first p ↘ 1 and then λ ↘ 1, we infer the estimate

lim
p↘1

f ∗
p (z∗) ≥ −

√
1−|z∗|2 = f ∗

1 (z∗) .

Since we have f ∗
p (z∗) ≤ f ∗

1 (z∗) as a consequence of (6.2), this implies the claimed convergence (6.3) for |z∗| ≤ 1. In 
the case |z∗| > 1, however, we choose z = λz∗ in (6.1). After letting p ↘ 1, this implies

lim
p↘1

f ∗
p (z∗) ≥ λ

(
|z∗|2 −

√
1
λ2 + |z∗|2

)
,

and the right-hand side tends to ∞ = f ∗
1 (z∗) in the limit λ → ∞. This completes the proof of (6.3). �

In the case p = 1, the Fenchel inequality gives

z∗ · z ≤ f1(z) + f ∗
1 (z∗) =

√
1+|z|2 −

√
1−|z∗|2 for z, z∗ ∈Rn with |z∗| ≤ 1 . (6.4)

This inequality induces a corresponding estimate for the Anzellotti pairings. Indeed, from [35, Lemma 5.5], we obtain 
the following proposition, which serves as a replacement for Proposition 2.8.

Proposition 6.2. Consider a bounded open set � ⊂Rn with (2.1), uo ∈ W1,1(Rn) ∩ L∞(�), u ∈ BVuo(�) ∩ L∞(�), 
and σ ∈ S∞− (�). Then we have the inequalities of measures∣∣�σ,Du+�uo

∣∣ ≤
√

1+|Du|2 −
√

1−|σ |2 Ln on � (6.5)

and ∣∣�σ,Du+�∗
uo

∣∣ ≤
√

1+|Du|2 −
√

1−|σ |2 Ln on �. (6.6)

We recall that equality in the Fenchel inequality (6.4) holds if and only if z and z∗ are coupled by z∗ = ∇f1(z) =
z√

1+|z|2 . As a consequence, for any u ∈ W1,1(�) and σ ∈ S∞− (�) we have the equivalence

σ · Du =
√

1 + |Du|2 −
√

1−|σ |2 ⇐⇒ σ = Du√
1 + |Du|2 .

In this sense, the case of equality in (6.5) and (6.6), respectively, can be understood as a generalization of the identity 
σ = Du√

1+|Du|2 a.e. on � to BV functions u.

The classical arguments of Section 4 apply also to the non-degenerate p-energies Ap

� with p > 1. In particular, the 
unique minimizer u of Ap

� in Kp
�(�) satisfies the variational inequality∫

�

∇fp(Du) · D(v−u)dx ≥ 0 for all v ∈ K
p
�(�) ,

and the bounds in Lemma 4.2 hold analogously. Hence, we have the following analog of Proposition 4.3.

Proposition 6.3. Consider a bounded domain � ⊂Rn, boundary values uo ∈ W1,q (�) ∩L∞(�) and a bounded Borel 
function � : � → R with (3.1) and (3.2) for q > 1. Then, for every p ∈ (1, q], it holds

min
u∈K

p
�(�)

∫
�

fp(Du)dx = max
σ∈S

p′
− (�)

(
�σ,D��uo

(�) −
∫
�

f ∗
p (σ )dx

)
. (6.7)

Indeed, for the minimizer u ∈ K
p
�(�) of the left-hand side, the right-hand side is maximized by

σ := ∇fp(Du) = p(1+|Du|2) p−2
2 Du ∈ S

p′
− (�) ,

i.e. for this choice of σ we have
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∫
�

fp(Du)dx = �σ,D��uo
(�) −

∫
�

f ∗
p (σ )dx . (6.8)

6.2. The duality formula in the limit p ↘ 1

Sketch of proof for Theorem 3.5. In large parts, the proof is analogous to the arguments that have been carried out 
in detail in Section 5.1. One difference, however, is that the applications of Proposition 2.8 now are replaced by the 
corresponding estimate from Proposition 6.2. In particular, the easy inequality in the claimed duality identity (3.9)
follows from (6.5) and Proposition 2.11 by estimating

�σ,D��uo
(�) = �σ,Du+�uo

(�) +
∫
�

(�−u+)d(−divσ)

≤A�(u) −
∫
�

√
1−|σ |2 dx +

∫
�

(�−u+)+dς

=A�;�(u) −
∫
�

√
1−|σ |2 dx

for all u ∈ BVuo(�) ∩ L∞(�) and σ ∈ S∞− (�). For a sequence pi ↘ 1, we next choose minimizers upi
∈ K

pi

� (�) ∩
L∞(�) of the left-hand side in (6.7) and the corresponding maximizers σi := pi(1+|Dupi

|2) p−2
2 Dupi

∈ S
p′

i− (�) of 

the right-hand side in (6.7). Analogously to Section 5.1, we can achieve convergence upi

∗
⇁ u weakly∗ in BVuo(�)

and in L∞(�) as well as σi ⇁ σ weakly in Lq ′
(�, Rn), where σ has non-positive distributional divergence. Us-

ing the lower semicontinuity of A�;� according to Theorem 2.13, Hölder’s inequality and the identity (6.8) for the 
solutions upi

, we deduce

A�;�(u) ≤ lim inf
i→∞

(∫
�

(1+|Dupi
|2) pi

2 dx

) 1
pi

= lim inf
i→∞

(
�σi,D��uo

(�) −
∫
�

f ∗
pi

(σi)dx

)
. (6.9)

Repeating the arguments from (5.16) and (5.17), we have

lim sup
i→∞

�σi,D��uo
(�) ≤ �σ,D��uo

(�) . (6.10)

The two preceding estimates imply, in particular,

lim sup
i→∞

(
−

∫
�

f ∗
pi

(σi)dx

)
> −∞ . (6.11)

From the monotonic dependence (6.2) of f ∗
p on p and the weak upper semicontinuity of the concave functional 

− 
∫
�

f ∗
p ( · )dx we infer

lim sup
i→∞

(
−

∫
�

f ∗
pi

(σi)dx

)
≤ lim sup

i→∞

(
−

∫
�

f ∗
1+ε(σi)dx

)
≤ −

∫
�

f ∗
1+ε(σ )dx

for every ε > 0. Next, we exploit that f ∗
1+ε converges monotonically to f ∗

1 as ε ↘ 0 according to (6.3). Therefore, we 
can pass to the limit ε ↘ 0 in the last integral to infer

lim sup
i→∞

(
−

∫
f ∗

pi
(σi)dx

)
≤ −

∫
f ∗

1 (σ )dx .
� �
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In view of (6.11) and the fact f ∗
1 (z∗) = ∞ for |z∗| > 1, this implies |σ | ≤ 1 a.e. on �, i.e. σ ∈ S∞− (�). Consequently, 

we can rewrite the preceding formula to

lim sup
i→∞

(
−

∫
�

f ∗
pi

(σi)dx

)
≤

∫
�

√
1−|σ |2 dx . (6.12)

Plugging (6.10) and (6.12) into (6.9), we deduce the final estimate

A�;�(u) ≤ �σ,D��uo
(�) +

∫
�

√
1−|σ |2 dx .

This yields the remaining inequality needed for the claimed identity (3.9). �
Remark 6.4. Compared to the proof of the TV-case in Section 5.1, in the preceding proof we obtained the estimate 
|σ | ≤ 1 a.e. on � in a slightly different way. In fact, in Section 5.1 we avoided the use of convex conjugate functions 
and employed a truncation argument instead. However, the approach of this section would also be applicable in the 
TV-case.

6.3. The duality formula for general obstacles

Sketch of proof for Theorem 3.9. Here, we follow, up to minor modifications, the line of argument from Section 5.2. 
Analogously to (5.19), now replacing the application of Proposition 2.8 by the estimate (6.6) from Proposition 6.2, 
we deduce

A�;�(u) ≥ �σ,D��∗
uo

(�) +
∫
�

√
1−|σ |2 dx

for all u ∈ BVuo(�) ∩ L∞(�) and σ ∈ S∞− (�). This readily implies one inequality in the claimed identity (3.13). 
The other inequality follows by the three-step approximation procedure of Section 5.2. In each of the steps, the 
behavior of the pairings �σk, Dψk �∗

uo
in the limit k → ∞ can be controlled by exactly the same arguments as in 

Section 5.2. The only difference in the case of the area functional is that we additionally have to deal with the integrals ∫
�

√
1−|σk|2 dx that now occur in the dual formulation. However, these integrals can be handled by using the weak∗

upper semicontinuity of the concave functional 
∫
�

√
1−| · |2 dx on sub-unit L∞ vector fields. Also taking into account 

the lower semicontinuity of A�;� due to Theorem 2.13, it is now straightforward to modify the proof of Theorem 3.6
and to establish Theorem 3.9. �
6.4. Derivation of the optimality relations

Sketch of proof for Corollary 3.13. We proceed exactly as in (5.29), now applying the estimate (6.6) instead of 
Proposition 2.8. This yields, for every pair of competitors (u, σ) ∈ BVuo(�) × S∞− (�) in (3.13), the chain of inequal-
ities

�σ,D��∗
uo

(�) +
∫
�

√
1−|σ |2 dx

≤ �σ,Du+�∗
uo

(�) +
∫
�

√
1−|σ |2 dx

+
∫
�

(�−u+)d(−divσ) +
∫
∂�

(1−σ ∗
n )(�−u+)+ dHn−1

≤ A�(u) +
∫

(�−u+)+ d(−divσ) + 2
∫

(�−u+)+ dHn−1
� ∂�
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≤ A�(u) +
∫
�

(�−u+)+ dς +
∫
∂�

(�−u+)+ dς

=A�;�(u) .

Again, we deduce that (u, σ) is a minimizer–maximizer pair if and only if all inequalities are equalities, and a discus-
sion of the cases of equality gives the claims. Indeed, (3.15), (3.16), (3.17), (3.18) come out in the same fashion as in 
the proof of Corollary 3.10, and the only slightly different discussion concerns the case of equality in the estimate

�σ,Du+�∗
uo

(�) ≤ A�(u) −
∫
�

√
1−|σ |2 dx . (6.13)

However, in view of (6.6) equality in (6.13) is equivalent to the first identity in (3.22), and we obtain the claimed 
characterization.

In the case that � ≤ (uo)
int
∂� holds Hn−1-a.e. on ∂�, the preceding chain of inequalities holds without the boundary 

integrals, and as a consequence, we arrive at (6.13) with �σ, Du+�∗
uo

(�) replaced by �σ, Du+�uo
(�). In view of (6.5)

it is then possible to replace �σ, Du+�∗
uo

by �σ, Du+�uo
also in (3.22) and the claimed characterization (compare with 

Remark 3.12 in the TV case).
Finally, the redundancy of the boundary information in (6.13) is a consequence of the discussion in Remark 3.11, 

and the proof of Corollary 3.13 is complete. �
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