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Abstract

We classify all solutions to
—u;det D%u = f(x) in R™F1,

where f € C*(R") is a positive periodic function in x. More precisely, if u is a parabolically convex solution to above equation,
then u is the sum of a convex quadratic polynomial in x, a periodic function in x and a linear function of ¢. It can be viewed as
a generalization of the work of Gutiérrez and Huang in 1998. And along the line of approach in this paper, we can treat other
parabolic Monge—Ampere equations.

© 2017 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous classifions toutes les solutions a
—u;det D%u = f(x) in R™F1,

ol f € C¥(R") est une fonction périodique positive en x. Plus précisément, si u est une solution paraboliquement convexe de
I’équation ci-dessus, alors u est la somme d’un polyndme quadratique convexe en x, une fonction périodique en x et une fonction
linéaire de ¢. Cela peut étre considéré comme une généralisation du travail de Gutiérrez et Huang en 1998. Et le long de la ligne
d’approche dans cet article, nous pouvons traiter d’autres équations paraboliques Monge—Ampere.
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1. Introduction

A celebrated result of Jorgens (n =2 [15]), Calabi (n <5 [7]) and Pogorelov (n > 2 [23]) states that any classical
convex solutions to the Monge—Ampere equation

detD*’u=1inR" (1)

must be a quadratic polynomial. A simpler and more analytical proof was given by S.Y. Cheng and S.T. Yau [8]. J. Jost
and Y.L. Xin showed a quite different proof in [16]. L. Caffarelli [3] extended above result for classical solutions to
viscosity solutions. L. Caffarelli and Y.Y. Li [5] considered

det D’u = f in R", )

where f is a positive continuous function and is not equal to 1 only on a bounded set. They proved that for n > 3,
the convex viscosity solution u is very close to quadratic polynomial at infinity. More precisely, for n > 3, there exist
c €R, b eR" and an n x n symmetric positive definite matrix A with det A = 1, such that

: n—2 1 T

limsup [x|" " “|u(x) — (zx" Ax+b-x +¢)| < 0.

|x]—00 2
In a subsequent work [6], L. Caffarelli and Y.Y. Li proved that if f is periodic, then # must be the sum of a quadratic
polynomial and a periodic function. To be concrete, for n > 2, there exist b € R" and a symmetric positive definite
n x n matrix A with detA = fnl<i<n[0 ail f,such that v :=u — [%xTAx +bTx]is a;-periodic in ith variable, i.e.,

v(x +aje;) =v(x),Yx € R", 1 <i <n.Inrecent paper [24], E. Teixeira and L. Zhang obtained that if f € Cl""(R”)
is asymptotically close to a periodic function, then the difference between u and a parabola is asymptotically close to
a periodic function at infinity, for n > 3.

Above famous Jorgens, Calabi and Pogorelov theorem was extended by C.E. Gutiérrez and Q. Huang [11] to
solutions of the following parabolic Monge—Ampere equation

—u;det D*u =1, (3)

where u = u(x, t) is parabolically convex, i.e., u is convex in x and nonincreasing in ¢, and D?u denotes the Hessian
of u with respect to the variable x. They got

Theorem 1.1. Let u € C*2(R™*!) be a parabolically convex solution to the parabolic Monge—Ampeére equation (3)

in R™ =R x (—00, 0], such that there exist positive constants m| and my with

—my <up(x,t) < —ma, V(x,1) e R" 4)

Then u must have the form u(x,t) = Cit + p(x), where C1 < 0 is a constant and p is a convex quadratic polynomial
on x.

and they gave an example to show that viscosity solutions to (3) may not be of the form given by above theorem.
Recently, J. Bao and J. Xiong [ 1] extended this theorem to general parabolic Monge—Ampere equations.

This type of parabolic Monge—Ampere operator was first introduced by N.V. Krylov [17]. Owing to its importance
in stochastic theory, he further considered it in [18-20]. This operator is relevant in the study of deformation of
a surface by Gauss—Kronecker curvature [9]. Indeed, K. Tso [26] solved this problem by noting that the support
function to the surface that is deforming satisfies an initial value problem involving that parabolic operator. And the
operator plays an important role in a maximum principle for parabolic equations [25].
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Solutions of elliptic Monge—Ampere equations with periodic right-hand side appear in several contexts of geometry
and applied mathematics: when lifting the equation from a Hessian manifold, in problems of optimal transportation,
vorticity arrays, homogenization, etc. And the solutions to some kind of parabolic Monge—Ampere equations with the
same periodic right-hand side can be considered as a flow of above problems.

In the present paper we extend the Liouville theorem of L. Caffarelli and Y.Y. Li [6] to this parabolic Monge—
Ampere equation:

—uydet D*u = f(x), inR™, (5)
where f is a positive periodic function, i.e.,

f(x+aje))= f(x)>0, VxeR", 1<i<n, (6)
where ¢; = (1,0,---,0),---, €, =(0,---,0,1). And assuming that

—o0o<—mp<u <—mp<0, @)

then we obtain

Theorem 1.2. Let f € C*(R"), 0 <« < 1, satisfy (6), and let u € C“(RTH) be a parabolically convex solution to
(5) satisfying (7). Then there exist T <0, b € R" and a symmetric positive definite n x n matrix A with —tdet A =

fnl<i<n (0.q;1 /> Such that

1
v(x) =ulx, 1) —[tt + ExTAx +b-x]
is a; periodic in the ith variable, i.e.,
v(x +aje)) =v(x), xeR" 1<i<n.
Next we give some remarks on above theorem.

Remark 1.3. The theorem of Jorgens, Calabi, and Pogorelov for (3) is an easy consequence of the above theorem.

Remark 1.4. Because of the affine invariance, we only need to establish Theorem 1.2 for a; = 1 Vi and for f satisfying
in addition

/ F=1 ®)
[0,1]"

Remark 1.5. From the regularity theorem obtained by the first author [30], we are able to get the above theorem under
the weaker condition f € VMOV (R").

In the paper we work on the parabolic Monge—Ampere equation (5), but our methods can be applied to other
parabolic Monge—Ampere equations, such as

uy = (det D2u)r + f (x), ©)
u; =logdet D*u + f(x). (10)
Taking (10) for example, we have
Corollary 1.6. Let f € C*(R"), 0 <« < 1, satisfy (6), and let u € cz1 (errl) be a convex solution to (10) satisfying
m<u <M 1)

Then there exist T € R, b € R" and a symmetric positive definite n x n matrix A with Tt —logdetA = Jcl'I1<-< [0.a;] £
such that o
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1
v(x):=u(x,t) — [ttt + ExTAx +b-x]

is a; periodic in the ith variable.

Proof. Let
T, t) =u(x,t) — (1 + M)t.
Then z € C21(R™™!) is a solution to
s :logdetD2ﬁ+7,
where i — 1 — M <i, < —1, f= f — (1 + M). Then

1 —
c <detD*i=exp@@;, — f)<C

where C > 0 depends on 77, M and ming» f and maxg» f. Therefore we get the density of parabolic Monge—Ampere
measure associated to u, —u; det D%, is bounded away from 0 and oco. Now following almost the same line of the
proof of above theorem, we get the corollary. O

The existence and uniqueness (modulo constants) of solutions to periodic elliptic Monge—Ampere equations were
studied by Y.Y. Li.

Theorem 1.7. (/22]) Let T" be a flat torus, f € C*(T") be a positive function, and let A be a symmetric positive
definite n x n matrix satisfying

detA = ][ I (12)
']Tn
Then there exists a function v € C>%(T") satisfying
det(A+ D*v)=f, onT", (13)
A+D*v>0, onT" (14)

Moreover, condition (12) is necessary for the solvability of (13), and solutions of (13) and (14) are unique up to
addition of constants.

Remark 1.8. Considering
—3,det(A+ D*0) = f, onT" x (—o0, 0], (15)

with A + D?3 > 0 on T" x (—00, 0] and detA = fw f, we may easily find a solution to above equation. In fact,
U = —t 4 v(x), and v(x) satisfies det(A + D?v) = f on T" with A + D?*v > 0 on T".

In our proof of Theorem 1.2, we need a homogenization type estimate. It states that a solution w of the parabolic
Monge—Ampere equation with periodic right-hand side differs from the corresponding solution w, with constant
right-hand side, a power of the diameter of the lattice. Let Q* C R™ lhea bowl-shaped domain satisfying

By, (0) x [—¢€1,01 C Q* C By x [—&2, 0], (16)

where ¢¢, €1 and &> depending only on n, m| and m;. And let w € Co(ﬁ) NC*®(Q*) denote the parabolically convex
solution of

—w,detD*w=1 in Q%,
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Let €, - - -, €, be n linearly independent vectors in R”, and let g € CO(R") be a positive function satisfying
gx+é)=gkx), VxeR' 1<i<n, 17
][ g=1, (18)
Qi

where Q; ={x e R" : x = Z?:l ti€;,0 <t; <1} in the fundamental domain for the periodicity.
Considering

—w,;detD*w =g, in Q*,
wy de w=g, inQ (19)
w=0 ond,0%
then we give an estimate to the L> norm of |w — w| on Q*:
Theorem 1.9. Let €,6, -+, €, € R" and Q* C R be as above, g € C O(R") be a positive function satisfying (17)
and (18), and let w € C2(Q*) N Co(w) be the parabolically convex solution of (19). Then we have
n
lw =Wl Loy <C Y I61P, (20)

i=1

for some constants B and C, depending only on n and the upper bound of g.

Remark 1.10. We have estimate (20) with the constant C independent of the smoothness of g, then g can be approx-
imated by smooth g;.

Next we give the local maximum principle for sub-solution of linearized parabolic Monge—Ampere equation:

Theorem 1.11. Let Q* be a bowl-shaped domain in R"t! satisfying (16), and let ¢ € C*>1(Q*) be a parabolically
convex function satisfying, for some constants A and A,

0<i<—¢detD%p <A <oo, inQ*,
$»=0, ond,Q" @n

—my < (x,1) < —my, in Q.
Assume that w € C>1(Q*) satisfies
Lew=2t 2 ~1p2 -
P = 3 + trace (D¢ (x,t))” D"w)>0, w=>0, inQ".
t
Then for any r > s > 0,

max w<C w,
XeQ* dist(X,d,0%)>r
XeQ*,dist(X,d,0%)>s

where X = (x,t), C depends only on n, A, A, mi, myp, r and s.

This theorem can be viewed as an affine invariant counterpart of the classical local maximum principle for heat
equation, parabolic version of Caffarelli and Gutiérrezs’ [4] local maximum principle for linearized elliptic Monge—
Ampere equation, and an extension of Huang’s [14] local maximum principle for linearized parabolic Monge—Ampere
equation to general ¢ (x, ). And we should note that the theorem is valid for other linearized parabolic Monge—
Ampere equations, (9) and (10), once the density of parabolic Monge—Ampere measure associated to ¢ is bounded
away from 0 and oco.

Our paper is organized as follows. In Section 2, we list some preliminary facts. Theorem 1.9 is established in
Section 3. We give a proof of our main theorem, Theorem 1.2, in Section 4. In the last section, the local maximum
principle (Theorem 1.11) is obtained.
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2. Preliminary results

In this section, we list some results that are used in the text.
First we recall some notations about the sections of parabolically convex functions. Let Q € R**! and r € R, then
we define

Q@) ={x:(x,1) € O} (22)
If Q be a bounded set and 7 = inf{z : Q(t) # ¥}. The parabolic boundary of the bounded domain Q is defined by

0,0 =(0M)U|J@O) x (1),

teR

where Q(7) denotes the closure of Q(f) and dQ(t) denotes the boundary of Q(t). We say that Q is a bowl-shaped
domain if Q(¢) is convex for each t and Q(#1) C Q(#2) for t; < t>. A function ¢ (x, ) is parabolically convex in Q if
it is convex in x and nonincreasing in ¢. Given X = (xo, o) € O, {x, is a supporting affine function, or supporting
hyperplane for ¢ (-, o) at x = xo, if £x, = ¢ (x0, %) + p - (x — x0) and ¢ (x, 19) > £x,(x) for all x € O(t). When
¢ € C'(Q), we have p = D¢ (xo, to).

Given h > 0, we define

Q¢(Xo, h) ={(x,1) : p(x,1) < Lx,(x) +hand 1 <10}, (23)
and

Sy (xolto, h) = {x : p(x,10) < Lx,(x)+h}. (24)

We can always normalize u so that

u(0,0)=0, u(x,r)>0 inR",
Let

On={(x,0)eR" 1ux,1) < H}.
In fact, Qg is Q,((0,0), H). Denote v(x) = u(x, 0). Let

Qup={xeR":v(x) < H}.

Indeed, Qg is S, (0|0, H). By a normalization lemma of John-Cordoba and Gallegos, there exists some affine trans-
formation

Ty(x)=agx +by

[ST[08}

with detay =1 such that By, g (0) C Ty (2y) C Br(0), where o, =n" 2.
Let

1 1
vH@>=Eywm%Rw» V€ On = pan(Qm). (25)

From Proposition 2.12 in [5], By;c(0) C Oy C B2(0).
It is clear that vy (0) = %U(O) =0

flay' (Ry))
det D? =H7, Oy,
R ) PR
and
H 1
vHldoy ZF G(E, C). (26)

Then, by the convexity of vy, 0 <vy < C in Op.
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Lemma 2.1. (Lemma 2.9 in [5]) For A > 0 and r > 2, let v e C*((=3,3)""! x (=r, 1)) satisfy
D*v>0, detD*v>x, in(=3,3)""'x(-rr),

and
O0<v<l in(=2,2)".

Then, for some positive constant C = C(n) > 0,

A
max v(0/, y,)" > (% —1).

[ynl=r

Let
E ={kie1 +---+kpen; ki,---,k, are integers, k%+-~-+k,21 > 0}.
Fore e E, let

e= %aH(e). Q27)

Lemma 2.2. For some positive constants o € (—1, 1) and C, depending only on n, my, mo, maxgr [ and mingn f,

. C
|e|§m|e|, eck. (28)

Proof. For any y € 0Oy, we have, by [2],

v () = Con(3).

where C > 2 depends on n, m1, m>, maxg: f and ming~ f. Then we deduce
v () = Com ()

for all y € d0p. Scaling back, the above inequality implies that for any x € R” satisfying |x| > 1,
v = o).

where k is an integer such that k=1 o [x] < 2k, Choosing o’ > 0 such that C = 2”"‘/, we have
v(x) = 2050 () < Cll

where o depends on n, m1, my, maxgs f and ming» f.

For Le € 0Q2, we get

H =v(he) < Clre|' T (29)

from above inequality. Then (26) and (29) imply that

1 C

] = e el GO

On the other hand, since %ay (Ae) € 00y C By, we have
1
Allel =|—=au(re)| <4,
[Allel IRaH( e)| <
ie.,

——e|], VeekE,

from (30), where o = i;g: e(—-1,1). O
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Let

agx t s
(y,8):=THux,1)= (T, ﬁ), (y,$) € Qy =Tu(Qn),

and

1 _ 1 _
w(y,s) = ﬁu(l"H] (v,5)) = Fu(RaH‘y, R%s), (v.s)€ Q. (31)
Clearly
—wydetD?w = f(Ray'y) :=g(y) in Q.
By Proposition 3.1 in [29],
w="1 ¢ (c',c) ona,0% (32)
- R2 ’ PXH:
From Proposition 3.2 in [29],
B, (0) x [—£1,0] C QF C B2(0) x [—&2,0].
By [28], there exists a unique parabolically convex solution w € C 0(Q—*;,) (N C>(Q3,) of
—wydetD*w =1 in Q%,
w=4e(C',C) ond,0,
—C<wy<-C7! in Q3.
And for every § > 0, there exists some positive constant C = C(§) such that for all (y,s) € Q}‘i and dist,((y,s),
0, 07%) =8, we have

Cc~'1 <D*w(y,s) <CI, |D*w(y,s)|<C. (33)

Lemma 2.3. (/28]) Let Q* C R"*! be a bowl-shaped domain satisfying (16), and let w € C>1(Q*) N C(Q*) be a
parabolically convex solution of

—w,;detD*w=1, in Q*,

_ (34)
w=0, ond,Q"
Then for some positive constants Cy and By, depending only on n and k,
|D*w(X)| < Crdist (X, BPQ*)_ﬁk, XeQ" k=12,---. (35)

3. Proof of Theorem 1.9
In this section we prove Theorem 1.9.

Proof of Theorem 1.9. Throughout the proof, and unless otherwise stated, u; € (0, 1) and C; > 1 denote various
positive constants depending only on n and the upper bound of g. Let

m=max |w — w|. (36)
0
By a barrier function argument [28],
~Cidist(X,9,0%P" <w <0, (37
and
—Cidist(X,9,0%)P' <w <0, (38)

Particularly m < Cj.
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We will only treat the case

m =max(w —w) > 0,
Q*
since the other case can be settled similarly. - -
Let X := (X, 7) € Q* be a maximum point of w — w: m = w(X) — w(X). By w <0 and (38),

dist(X,3,0%) > pum'/Pr (39)
Let
u(x,t):w(x,t)+%|x—f|2+9%|t—?|. (40)
Then (u — w) (X, f) = m. On the other hand, since
m —2 m _ 2m J—
Iu—w|=lﬁlx—XI +EII—IIIST, in Q%, 41
we have

_ 2m "
u—wfj, on d, 0

So for some interior point X = (%,1) € OF,

(u — W) (X, 1) = max(u — w) >m. (42)
Q*

From (41) and (42),

e _ -~ 2m  Tm

(w—w)(x,t)Z[(u—w)—(u—W)](x,t)zm—727. (43)
It follows, by (37) and (38), that

dist(X,8,Q) > uym'P1, in Q*, (44)
where the values of w1 is smaller than previous one.

Let & € C*°(R") be the unique solution of
1 ~
det(Dz[ExTDzw()E, Hx + &) = @, in R, (45)
mi
satisfying
2 1 T2/~ 7 n

D [Ex Dwix,t)x +&x)]) >0, xeR”, (46)

Ex+é&)=E(x), xeR", 1<i=<n, “7)
and

/5 =0. (48)

Q;

The existence and uniqueness of & follows from Theorem 2.2 in [22].
Now we claim that

n
Il Loery <2C2 Y 162, PPm P/, (49)
i=1
In fact, let p(x) = %xTDzw(i, Hx + &(x), x € R", and for any fixed y € R” and 1 <i <n, let h(t) = £(y + 1€;),

t € R. Since D?¢ > 0 in R", we have %go(y +1€;) > 0 for r € R. Since
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2
Tae0 F1é) =& D*wW(E, Dé +h'(1) >0,

we then get, from (35) and (44),

h'(t) > =& D*w(E, Dé > —|& PID*W(E, DIl = —Cal& Py P>m=F2/P1.

Since £ is a periodic function of period 1, we can let 7 € [—1, 0] be a point where #’ = 0. Forall 0 <7 <5 < 1, we

have, by the above lower bound of #” and (35), that

s

s T
h(s) —h(r) Z/h/(fl)dfl Z///’l//(fz)dl’zdf] > —2C2|6~i|2ufﬁzm_ﬁ2/ﬂ1_
t t 7
So we have

n
18|l L@y < oscpnh <2C2 Y 1& Py Pm= PP,
i=1

Since (¥, ) is an interior maximum point of # — w, we have

D*(u —w)(%,7) <0,

that is,
2 ~ 2 — 2m
0<D w(x,t):D(u— |x— | ——|t—t|)(x t)<D wx, 1) — 22I
Let
V0L ) =006 1) 4+ E(X) — oy = TP ey — FP = T =
O ’ 122 242 9¢, 18¢, '
Then
, 1) — , 1) = ) —(wx, t . —|t =1
w(x, ) —vx, 1) =ux,t) — (w(x )+$(x)+242|x 7|2 +18 |t —1])

From (35) and (44) we can find 83 and C3 such that

IDYW(x, )] < Cam™,  |D*w,(x,1)| < Cym™, V(x,1) € B,y 0, (F, 1) N Q.
Thus we can find larger 84 and C4 such that

Bpsyc,(¥,0) C Bps o, (X,1),  Pa—P3=1,

D*v(x, 1) = D*W(x, 1) + D2E(x) — =1

96
< DYW(E, 1) +n2Cym P (|x — F| + |t — DI + D2E(x) — ;"—61
2~ > 2n2C3 2
<D w(x,t)+—1——I+D E(x)

CymP3—Pa 926
W(E, D)+ D*E(x), V(x,1) € By e, (%, 1)
Then we get
8 _
mi
for all (x, 1) € B,p ¢, (%, 1) with D*v(x, 1) > 0.
Now (53) at (X, 7) implies that

det D*v(x, 1) < det(D*W(X, ) + D*£(x)) =

(w—)E 1) = — D)%, 1) — §@) > ( —D)(F, D) —2C2 Y _ &P P*m~P/P1.
i=1

w
_r detDzw(x, 1) < detDzw(x, 1),
1

(50)

(D

(52)

(53)

(54)
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Since (u — w) (X, 7) is the maximum value of u — w, we have, for all (x, 7) € B8 c, (X, 1), that

(W —v)(x, ) = (u —W)(x, ) —E(x) = 2|x—x| < w—w) f)+2CZZ|€|M m~P/Pr —
i=1
If
parpy o M
—2 1
4CZZ|e| wy > ac

we have done, that is,

1+2ﬂ4+ i

m < (2304C3Cap; " Z|

Otherwise,

(w—v)x,f) <(w—-v)&, 1), VY&, f)e B8 c, (X, f).

1153

mit2Bs
(24C4)%"

Let x; € Bmﬂ4/c4(i,t~) be an interior maximum point (w — v)(x,7), then D?v(xy,7) > D*w(x1,7) > 0 and

det D*v(xy, 7) > det D>w(xy, 7). This contradicts (54). Theorem 1.9 is established. O
4. Proof of Theorem 1.2

In this section we prove Theorem 1.2. We divide it into two steps.

Step 1. Modulo an affine transformation (AT (n) x AT (1)), the behavior of u at infinity is —¢ + %|x|2, where

AT (n) denotes the group of all invertible affine transformations on R”":

Proposition 4.1. There exist some t € R_, and some n x n symmetric positive definite matrix A with —t detA =1,

and some positive constants 0 < & < 1 and C > 1, such that

1
lu(x, 1) — (1 + ExTAxn <CGIXP+ D>, xP+1r > 1.

Owing to Lemma 2.2 and Theorem 1.9, we have

2’|<'1z

lw =Wl Lo () < CZ 1P =
i=1

where & = min{1, (1 + «)B}. L _
Let (3, 0) be the unique minimum point of w in Q7F,. For w(y,0) < H < H, let

1 ~
S7(0,0) = {(y,s) e R EyTDzm, 0)y + W, (3,0)s = H},
1 ~
Ef(0,0) = {(y,s) e R™: EyTDzm, 0)y +ws(¥,0)s < H),
_ 1 o .
SF(3,0)={(y,s) eR™: S0 = W D*w(3,0)(y —3) + W, (v, 0)s = H},

1 ~
(=N D*WF,0)(y — ) + Wy (3, 0)s < H}.

E7(3,0)={(y,s) e R"*!: 5

We also denote that

1 -
mE7(0,0)={(y,s): 5yTDzw(y, 0)y + wy(y,0)s <m>H},m e RT,

~ (5 () — l T 2 L= 277 +
mEH(y,O)—{(y,S)-z(y ¥ Dw@,0)(y—y)+ws(y,0s <m H},meR"™,

(55)

(56)
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and

mQu ={(y',s") = (my,m*0) : (v,5) € Qu},m € R,
Proposition 4.2. There exist k and C, depending only on n and f, such that for € = %, H = 20+9k/0 gpg 2(k=1D/0 <
H' <2K% we have

/ /

(——C2 2ﬁ)2E1(0 O)CFH(QH/)C(£+C2_W)2E1(O 0), Vk>k. (57)

Proof. Clearly, it follows from Proposition 3.1 in [29] and (31) that

!/

Cclpek/f < % <cokb 1S <R <2

and
H' H'

(< o3h={0.9) 1w, 9) < o5} =T (Qn) C Q.

By (56)
C ~ c

W= < o5 < o5 in 03,
Since

H _C

ﬁ > F’ as R — oo
the level surface of w can be well approximated by the level surface of w:

_ H C H __ H C

{w<ﬁ_ﬁ}C{w<ﬁ}C{w<ﬁ+ﬁ}'

By (56), the fact w > 0 and w(0, 0) = 0, we have

~ ~ ~

C c C
<w(y, 0)——<w(i,0)ﬁw(0,0)§w(0,0)+ﬁ=R—

Therefore by (33) and Lemma 2.3 in [29],

1 k
[W(y,9) =W, 0) = W, 3, 005 = 5y = T DXH(F. 0)(y — 7)< C(ly — 12 + Is)) 2.

disty((y.s). 3.0)) < & and
2¢7'1 < D*W(y,0) <2CI.

On one hand, we take a positive constant C to be determined. For (y, s) € (;’—2, -C 12’%)% E1(y,0), then

H/

Wy (7, 0)s + = (y y) D2w<y,0)(y N <= G2
/

R2

/
3ek

H _ 3¢k
[y =31 +1sl < 5 — 127 ).

36/\

— <
C|S|+ Iy v

We can take k| satisfying for k > k1,

/

H 1
ly =31 tlsl<Clpgmr — G127 29)<E'
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Thus,

1
im»nsw@ﬁrmm@ﬁn+Ew—yfb%mMMy—@+cm~iﬁ+mﬁ

5 H’ 3k s H 3k 3
SF_FF_CIZ 20 +C2(_2_C12 20)2
¢ H 5 3 3
—F’LF_CIZ +C ( )
!
< % % —C27F 4 ek
5 H'

3ek
W+—+M'mrw

We can take C; > C* satisfying C21€€4 < 1, then

C ~ 4ok 4y ek
2F§2CC2 27 < (C;—CMH2™ 27,

For k > k|, we can obtain

_ C H s H C
w(y,s)_—+—+(C4 CO2™ W < 3 = 25
In conclusion, we have
H/ H/ 6 —
(R2 Ci2™ 29)2E1(y O)C{w<R2 ﬁ}’ Vk > k.

On the other hand, we take a positive constant C; to be determined. In order to prove
’ ~ H'

H
@<+ }c( S+ 027 IE(,0),

using the fact
H/ N H'

5.0 efw<—5 ) }ﬂ( 5 + G227 3)IEN3,0),
we only need to prove

H’ ek 1 _ H C .

(F+C22 20)251(y,0)C{w<ﬁ+ﬁ}-
For (v,5) € (2 + €227 %) §1(7, 0), then

/

= = 1 T 2o~ - _H 3k
ws(y,O)erE(y—y) D w(y,O)(y—y)=—+C22 0,

1 H’
—lsl+ = Iy P <— +C22
C
H’ 3ek
|y—ﬂ?Hﬂ<cg§+Cﬂ—wy
Taking k2 satisfying for k > ka,

/

H 1
ly =3P tlsl < Clpz + G227 29)<E'
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Thus,

1 3
Wy, ) 2 W, 0) + s (7, 05 + 5 (v - W D*W(3,0)(y —y) — C(ly = I* +1s])2

C ! _ 3¢k H/ 3ek 3
2 gt T G2 —C2(—+C22 )2

C H ek s H' 3
Z—ﬁ+—2+c22 20 —C2(2ﬁ)2

C ' 4n3 -2 ck
> — %7 + — =2 4+ Cr2~ 5 —C"222 ¢

c H 3 g ek
=—qg T (-2

3
Cy—22¢*

Secr > 1, then

We can take Cp > 23 ¢4 satisfying

C ~ g (HOk 3 g3k
ZFSZCC 2777 < (Cp—=22CM)2

For k > k5, we can obtain
_ C H H C
(.5 2 =25 + 3 +(C2= 230N T > S5 4
In conclusion, we have
’ ~ H'

@<+ }c( S+ C2 F)IE(.0), Vk=ho.

Therefore, if we take C3 > max{Cy, C,} and k= max{zl , Ez}, then

/ ! /!

(R — G2 E)IEG, 0)C{w<§2}c( +C32 F)IE(3,0) Vk=F. (58)

Finally, we want to obtain (57). We first show that

— — ~ H _ _ ~1
00(Q% 0 @) C N (SGTL0). 0< H < 25 —W(F.0). 81 <CHZ, (59)
and neighborhood N is measured by parabolic distance

1
dist,[(y1,51), (2, 52)]:= (Iy1 — y21> + Is1 — s2]) 2.

*
In fact, for (y,s) € 9 (QH+w(y 0)

(w)), by the mean value theorem, (33) and Lemma 2.3 in [29], we have
H=w(y,s) —w(y,0)

1
=ws(y, 55 + 50 = W D*w(y, 0)(y — )

>
> 2C(ISI-i-Iy ).

where (y', s (w). Writing

/
) € Q?H—E(i,O)
H=1w(y,s) —w(7,0)

1
=Wy (¥, 0)s + (Ws (v, s") — W, (3, 0))s + E(y - D, 0(y - )

Lo - 0) - DBE.O) -
SOy w(y’, 0) w(y, 0y —),
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for (y,s5) € 3,(Q% (w)), then

H+ (,0)
5 = 1 —T 2~ =
|[H —w,(y,0)s — E(y—y) D*w(y,0)(y — )l

1
=15 (3, 8) = W (T, 0)s + 5 (v = WH(D*W(y',0) — D*W(F,0)(y — )|
<Cls|+Cly -3
<CH.

For any (y,s) € 9,(Q% (w)) and any (y,5) € Si (¥, 0), by the above inequality, we have

H+w(y,0)
U LU 1 o~
[, 3, 005 + 5 (7 - W D*w(3,0)(F —5) — s (¥, 0)s — S0 - ! D*W(y,0)(y —¥)| < CH.

Taking y, y, y on the same line [ with ¥ and y on the same side of the line [ with respect to y (rotating the coordinates
again so that / is parallel to some axis), we have

15 =317 =y =3P =1y -5
Then for s =75, we get
eI =3P Iy =3P <CA.
In fact, there exists an orthogonal matrix O such that D%(y, 0) = oTdi ag{ii, -+, Ay} 0, and the length of a vector
in Euclidean space is invariant in orthogonal transformation. Therefore, we get
ly—51><CH.
Similarly, for y =5,
W, (7, 0)5 — W, (7, 0)s| < CH.
So we get
ls—5|<CH.

This completes the proof of (59).
Next we estimate the distance between (0, 0) and (y, 0). By (56), we have

0=w(0,0) —w(y,0)
= (0,0) —w(0,0)) + (w(0,0) —w(y,0)) + (w(y,0) —w(y,0)

2C
SF’
0,0) € O* - W), and by (59) (taking H = 2€), we h
so (0,0) Qi—g-i-w(y,O)(w) and by (59) (taking Rg) we have

d (QZC (@) C Ny, (S22 (7,0, 81 <c< )1/2

7 +w(y.0)

thus we get

. _ 2C
dist,((0,0), (3,0)) < C(FWZ.
So by (58), we have
H' _ 3ek H’ H’
(ﬁ—cgz » —C? —)2E1(0 0)C{w< 2}c( +C32™ 3 42 —)2E1(0 0) Vk=>k.

Since 2~ 5 > 77 7 and let C =2C2C + C3, then we can obtain (57). O
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Let E denote the set {(v,5) € R %|y|2 — s < 1}, then we have the following proposition.

o~

Proposition 4.3. There exist positive constants k, C, some real invertible upper-triangular matrices {Ty}; -3 and
negative number {ty}, - such that

—ndet T Ti=1, BT, —11<C2 %, |ug —11<C2 ¥, (60)
and
(1= C2 %WHE CSi(Qy) C(1+C25)WHE, v2*k=D/% < g’ <ok 61)

where Xy = (Ty, —t). Consequently, for some invertible T and t,
—rdetTTT =1, |Tt—TI<C2 %, |g—t|<C2 %. (62)

Proof. Let H = 2U0+9k/0 and 2D/ < g’ < 2k/9 By Proposition 4.2, there exist some positive constants C and k
depending only on n and f such that

H' _
(— —C2 )2 E1(0,0) CTy(Qy) C (—+c2 3)IE0,0), Vk>k.
Then
(H' = T2~ % R)IE(0,0) C (an, id)(Qp) C (H' +C2™ % R?)I E1(0,0),
_ 3 R _ s RY
(1 —czfﬁﬁ)wH/El(o, 0) C (ay,id)(Qy) C (1+C2’Wﬁ)?\/H/E1(O, 0).
Since
C*lz*ék/e < i/ < C27€k/9’
=g s
we can get

(1= CC2=5):VHE(0,0) C (ap, id)(Qn) C (1 + CC2~%)2H E| (0, 0).

=2

On one hand, we take C; > %, ks satisfying when k > ks, 25 > and ke = max({ks, k}, then if k > k¢, we

1
26| -cc’
have

ke —

C; <22%C, —2%CC,
2-kI9CT <2075 C| —27% CC,
2-k/9CT 2075 C) < 275 CC,
2=ek/0CT _ 2075 C+1<1-27%CC,
(1-C2 %) <1-2"%CC.

Therefore,

(1- 612_%)@&(0, 0) C (an,id)(Qn), k> ke.
On the other hand, if we also take C; > ETC, then for any k > k, we have

(14 CC27%)2 < (14 Cr27%).
So

(am.id)(Qn) C (1 + C22"5)WHE (0,0), k=K.
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In conclusion, if we take C> %, k= ke, then

(1= C27%)H E(0,0) C (ay,id)(Qp) C (1+ C2~%)H E((0,0), k=>Fk. (63)

Let Q be the real symmetric positive definite matrix satisfying 0> = Q7 Q = D?w (¥, 0) and O be an orthogonal
matrix such that

Ty := O Qap 1is the upper-triangular.
And we also define 7y = w, (¥, 0) and Xy = (T}, —tx). Clearly,
—gdetT] Ty = —w(3, 0)(detay ) *detD*w (¥, 0) = 1.
Now we claim that E = (0Q, —t)E1(0,0). Y(y,s) € E1(0,0), (x,1) = (0Qy, —s), xTx =y 0T 0T0Qy =
yID*w(y,0)y, t = —11s = —w, (7, 0)s. Recall that
1 TD2w(y W, (y =
5y DWE, 0y +ws(y, 0)s =1,
so (x,t) € E and vice versa. From (63), we have
(1-C29)WWHE c 5 (Qn) c 1+ C2#)WHE, k>F.
If we take H = 2(49k/¢ and ' =2*=D/? e can obtain
(1 — C275)W2k=1E € £4(Qpe1) C (1 + C275)y/2k-1E, (64)

and if we take H = 2U0+OG&=1/8 and g’ = 2¢=D/? e can get

(k (k—1)e

(1= C2 " T IW2TE € 5y (@) € (1+ €2 7)1 E,

then
(- C2 " F W5 Ec 0 c 4+ 825 W5 E, (65)
(1= C2~ %)Wk s 57 B € Si(Qyien) € (14 C27 5 )Wk Txy 57! E. (66)

From the left hand of (66) and the right hand of (64), we see

(1= C2~ %)Wk s s E € (1+ C2 %)k E,

thus
1+C2 % Cr 5 £ G2 5
1 = ~ ~
XN EC T~ G T ¢ ~_ —De )E.
1—-C2™ 1—-C2~ »
Since
27" + C2 % C23 +C
€k -~ € o~
lim 229 —— = lim ——a o = C2% + C,
ko0 1-C2~ % k>too) _C2~"

by taking k sufficiently large, we can obtain

~ _(k=De  ~ ke

C27725 4+C272%
~ _ (k=De

1-C2" 2w
At the same time, from the left hand of (64) and the right hand of (66), we get

(1= C2~ % )\W2ok—1E c 1+ C2~ % )\Wok-1x, 57! E,
k—1

nzi Ecd+ VE C (1+C2-%)E.

thus
~ k=De o~ ke
C2 720 +C27 2% ~
~__ (k—De VE = -
1+C27 1+C2

(1-
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Since
Co~% C+C2%  ~ o~
lim 22 +(1< The = lim i—s(kl) C+C2w,
k=00 +C2- k=>to0 1 4 €2~

by taking k sufﬁ01ently large, we can obtain

o~ 7( )e ~ ke
C277 25 4+(C27%
-~ (k—1)e

1+C2™

(1—C2%)Ec(l— VE C Z 3 E.

So we have
(1—C2~%)E C ez Eca +C2E, k>k

Since ¥ X, 1 is still upper-triangular, we apply Lemma 2.1 in [29] (with U = X X 1) to obtain that
Imst — I =coC2 ¥, k>k.

Estimate (60) and (61) have been established. The existence of 7', T and (62) follow by an elementary considera-
tion. O

Proof of Proposition 4.1. From Proposition 4.3, we can define

X =(T, —1),

andlet w =u o X!, then
—gdetD’>H =1, inR*\ =(Qp),

in fact, Wy = —“r—', det D% = (det T )2 det D2u,

11
—iydet D*) = — ———u, det D*u = 1

7 (detT)2
from (62). Since {(v, s) : w(y,s) < H'} = 2(Qpy’) and
1 1
CH' _ (diag )0,

Vi v

then we can deduce from (61) and (62) that
S(Qn) — Tk(Qu) € C2 5 VHE,
S(Qy) C (1 +2C2~5)WHE,
and
Q) — B(Qu) € C2 9 VH'E,
(1-2C2"5%5)\WH'E C S(0p).
In particular, if we take H' = 25/%  then
(1= 2CH) S )WH'E C{(7,s): 0(y,5) < H}) C (1 +2C(H) " 5)WHE, VH' >2F.

So we have

-~ € 1 - €
(1 —2C@W(y, )~ 2)*D(y,s) < —s + §|y|2 < (1+2C@W(y, )~ 2)*D(y, s).
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On one hand, we see
s ipp Ci(y. )52
s+2|y| <A +2Cw(,s) ) wy,s),
1 R ~ . e n _
—s+5|y|2<w(y,s>+4C<w(y,s))1 2 4C (W (y, ),
1 R ~ n _e
—s+ 5|y|2 < i(y,s) + (4C +4CH(W(y, $)' 72,
. 1 ~ A _e
w(y,s) — (—s+ Elylz) > —(4C +4C?) (W (y, ) ' 2.
Meanwhile we show
~ o~ _€.9 A 1
(1 =2CW(y, ) )2 W(y,s) < —s + §|y|2,
~ =/ 1-£ N2 /A 1—e 1 2
w(y,s) —4C(w(y,s)) 2 +4C“(w(y,s)) <—s+§|y| ,
A o l 2y < 4C@ =5 _ 424 1—e
w(y,s) —( S+2Iyl ) <4Cw(y,s)) Co(w(y,s)) ~°,
N 1 ~ . e
W(y,s) — (—s + 5|y|2> <4C(W(y,s))' 2
Combining the above inequalities, we get
~ 1 ESUIN _€
|w(y,s)—(—s+5|y|2)| <C((y,s)' 2.
Consequently, by the fact Cl'o(y,s) < |y>+|s|, we get

N 1 2-¢ T
Iw(y,S)—(—S+§|y|2)|SC(|y|2+|SI) T, IR +Isl =25 (67)

Note that w(y, s) = u(T 'y, =-). Then we have

1 —
lu(x, 1) — (1 + ExTTTTxn <SCGIXP+1D* x4+ (e = 2%,

Taking A =TT T, we complete the proof. [

One consequence of Proposition 4.1 is that for some positive constant C,
-1
lagll, llag Il=C, VH=L.
1
Let F(—Ltt, Dzu) = (—Mz det Dzu)m

Lemma 4.4. Let f satisfies (6) (with a; = 1), and let u satisfy (5). Then for every e € E,

(u(x+e,t)tulx—e, t) —2u(x,t)); n

u Dij(u(x +e.t) +ulx —e, 1) = 2u(x, 1) >0, inR",
ur(x, 1)

where (u'l) is the inverse of (uj).
Proof. By the concavity of F', the equation of u, and the periodicity of f, we have
F(—w;, D*w) > %[F(—u,(x +e,1), D*u(x +e, 1) + F(—u; (x —e, 1), D*u(x — e, 1))]
= o+ =)l = f ),
where w(x, t) = %(u(x +e,t)+u(x —e,t)).
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On the other hand, from the concavity of F and the equation of u,
F(—wy, D*w) < F(—u;, D*u) — Fa(w — u); + Fij Dij(w —u) = f — Fo(w —u); + F;jDij(w —u).  (68)
So we have

(ux+et)y+ulx—e, t) —2u(x,t));
u;(x,t)

+u Diju(x +e,t) +u(x —e, t) —2u(x,1)) > 0. O

Step 2: L™ estimate of the Hessian of u.
Proposition 4.5. There exists some positive constant C such that

< D%u(x,t) <CI, V(x,t)eR"™, (69)

Al ~

For nonzero e € R”, we introduce a notation of the second incremental quotient:

ulx+e,t)+ulx—e,t) —2u(x,t)

Agu(x,t) = BE

The following lemma is a consequence of Theorem 1.11, a result of authors on the linearization of the parabolic
Monge—Ampere equation, which will be proved in Section 5.

Lemma 4.6. For r > 0 and e € E, there exists Hy, depending on n, r and |e|, such that for all H > H,

Auy <C, (70)

YeQ%. dist(Y,9,Q%)>r
and

0<A2up(Y)<C, VYeQy, dist(Y,d,0%) >r, (71
where C depends only on n, r, maxg» f, minge f, my and my.
Proof. Lete € E, A%uH is positive since u is strictly convex. By Lemma 2.2, || — 0 as H — 0o (H ~ R?). So there
exists Hy such that for H > Hy, |e| < %. Let L be a line parallel to e, we have, by Lemma A.1 in Appendix A in [6],
that

Ajup <C, (72)

LO{Y€Q%, dist(Y,0,0%)>r)

where C depends on n, r, maxg» f, mings f, m| and my, not depends on H . Integrating the above over all such lines,
we could get (70).
By Lemma 4.4, w := A%uH satisfies

w; (Y)
(ug(Y))s
Combining (70) and Theorem 1.11, we obtain (71). O

U (NDyw(Y) >0, Y e QY. dist(Y.d,0%) > % (73)

Lemma 4.7.

y i=sup sup Agu(x,t) < 00.
ecE (x’t)eerrl
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Proof. Fore € E and (x,7) e R™! letY = (y,s5) = (”ngx), #). Taking H large so that (x, ) € Q /2, by Lemma 2.3
in [29], we have

dist(Y,3,0%) > %
for some C depending only on n, ming» f, maxg: f, m; and m>. Then from (71), we see
u(x+e,t) +tulx—e,t)—2u(x,t)
llell
_llan(@)? [u(ay' (Ry + R), R%s) + u(ay;' (Ry — Ré), R%s) — 2u(ay;' Ry, R%s)]
T lell? law(e)]?

_Nlau (@)
llell?

Agu(x, t)=

Alup(y,s) <Cllagl|*<C. D

Lemma 4.8. Let g € C>(By) be a positive function, and let u € C**(E1) N C(E)) be a parabolically convex function
satisfying

—u,detDzu =g(x), inkEy,
—m] Zuy < —mpy,

and u(0,0) =0, where E1 ={(x,1) € R |x|2 —t < 1}. Assume that
1
O<pu=su<— ondpE.
m

Then for some ro € (0, 1) and C > 0, depending only on n, i, minB—lg and ||g||C2(B—I), we have that
|D%u| < C, in Ey,.
Proof. We only to show that there exists some r > 0, depending only on wu, such that
By C{x€By: v(x)=u(x,0) < %}. (74)
Since Q% (0) = Sy(x) (0, 5), from Lemma 2.1 in [12] we have for 0 < 1 < 1 that
AByr CA0u(0) C O—(1-3)%)%(0).
If (x,t) € ABy, X [—r] %, 0], then

0

u(x,t)=u(x,0) — /ut(x, T)dTt

t

<(1-(-nFH5—mr

< (= =HF +mr)5

uw
<

2

for A and r; sufficiently small. Taking ro = min{rA, %‘}, we could get the estimate.
Next, we prove (74). Let v(X) = 5, by the convexity of v,

v(x) >v(X) + Dv(x) - (x —X), Vxe€B.
In particular,

0=12(0) > v(¥) — Dv(¥) - ¥,
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ie.,

% _ o —

5= v(x) < |Dv(X)]|x].
Taking x € 9 By such that Dv(Xx) and x — X point the same direction, we have

% > v(x) = V() + D@ |lx — ¥ = v(®) + [DvE|(1 — [T,

ie.,
1_u
L2 > |Du()l.
1 — x|

Then we obtain

G — B

< DvX)|x| £ ——=—
1 — x|

I

o=

that is,
2
)
2

Letr = %2. (74) is established. O

Remark 4.9. In fact, from the regularity theorem obtained by the first author [30], we are able to get the above
conclusion in weaker condition g € VM oV (RM).

Proof of Proposition 4.5. For fixed (x,t) € ]R'i+1 , let

i(z,T) =u(z+x,74+1) — W, 1)+ Du(x,1) -z), inR"
Then

i(0,00=0, >0 inR"*"L
Since

sup  sup Agﬁ(z, T)=sup sup Agu(x, )<y,
¢€E (z,r)er"*! ¢€E (x,ner"!

using sup,c g Agﬁ(O, 0) < y and the convexity of u(-, 0), we have

supit(x,0) < C(n,ml,mz)yrz, 1<y <oo.

B,

On the other hand, for z € 9B, from sup,.g Agﬁ(%, 0) <y, we have
a(g +¢,0) +ﬁ(§ —e,0)— 2&(;0) <yle|’, VeeE.

It follows, by the convexity of i(-, 0) and the fact that (0, 0) = 0, that
u(z,0) < Zﬁ(g, 0O+Cn)y <u(z,00)+Cm)y, Vze g +(=2,2)".

Applying Lemma 2.1 to @ (%, 0)/(ii(z, 0) + C(n)y), taking % as e,, we have

o .z z rmingr f
1(Z,0)" = max (= +s—,0)>( —
@O = Gt O 2 GGG 0 4

- D@@E, 0+ Cmyy)".
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If u(z,0) <y, then

r minge f
miCmy"
Fix some suitably large r, depending only on n, y, ming» f and m1, such that

iz, 0" = y"( 1.

y”(% D>,
mC(n)y"
we have i(z, 0) > 1. Hence, for such r, we have

inii(z, 0) > min{y, 1}.
minii(z, 0) = min{y, 1}

Recall that E, = {(z, 7) : |z|*> — T < r?}. From
u(x, —rz) <u(x,0) +m1r2 <C(n, ml,mz)yr2 +m1r2 =Cn,my,my, )/)rz, X € By,
we then obtain

maxu < C(n,my,my, )/)”2'
a])Er

Similarly, we have

mini > C(n,my,my,y).
apEr

Since
—ii; det D%ii(z,7) = f(z +x — [x]),
where [x] denotes the integer part of x. We get, by Lemma 4.8, that
|D%u(x, 0 = |D%i(0,0)] < C(r).
Combining
ming» f < detD% < maxgr f ’
mi mjy
we arrive at the conclusion. 0O

0<

Proof of Theorem 1.2. For (xq, ty) € R"*!, we will show that uy (xo, to) = u; (0, 0). Since (xg, #p) is arbitrary, # must
be have the form u(x, t) = ¢ + p(x), where T = u;(0, 0) < 0. Consequently, by (5),

fx)  fx)

—u;(x, 1) —t

Fo.

From Theorem 0.1 in [6], we obtain p(x) is the sum of a quadratic polynomial and a periodic function, i.e.,

det D? p(x) = det D*u(x, 1) =

1
px) = ExTAx +b-x+vx),

with det A = fnn [0.a;] f and v(x + a;je;) = v(x). Theorem 1.2 is established.
i=11Y:di

We may assume u € C*2. Otherwise, u, is substituted with M for h < 0. Differentiating (5) with
respect to ¢ we get

(r)s

1223

— trace((D*u) "' D?u,) = 0.
Condition (7) and Proposition 4.5 yield a uniformly parabolic equation. And by Harnack inequality [21], we see

Jur (xo. 10) = ur 0,0)] _ el
(xP+lohe = R

for R > 1, R > 2|xg], R? > —2ty and some 0 < o < 1. Sending R — 0o, we obtain

bl

Uy (x()s fO) = M;(O, O) O
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5. Proof of Theorem 1.11

In this section, we give the proof of Theorem 1.11, that is, the local maximum principle for sub-solutions to the
following equation:

Lou— U 2 192~ _
oU = ¢t + trace((D“¢ (x,t))” D“u) =0. (75)

We now recall the notion of normalization of the section Sy (xgltg, ) given by (24). Let T be the affine transfor-
mation that normalizes Sy (xolt9, 1), that is,

B, (0) C T(Sp(xolto, h)) C B1(0), ay=n">"2
And we define the transformation

t — I
T,(x,1) = (Tx, TO)’

and its corresponding inverse

T, (y,9) =Ty, 10+ sh).

In the following, we introduce the notions of normalization of the functions. Set

(T, (v, s)) _ ¢yt +sh)

Yn(y.s) = A I , (76)
and

w*(y, ) =u(T, ' (y,9) =u(T "y, 10+ sh). (77
It is easy to check that

8% =T (Sg(xo0lto, 1)) = Sy, (Tx0l0, 1), (78)

0" =T, (Q¢(Xo, ) = Qy,, (Tp(Xo), D). (79)

In fact, £x,(x) = ¢ (Xo) + Dp(Xp) - (x — xp) is a supporting hyperplane of ¢ (-, #p) at x = x¢ if and only if £(y) =

Y (T (Xo)) + (T:)t D¢ (Xp) - (v — T xp) is a supporting hyperplane of ¥, (-, to + sh) at y = T x¢. Since T normalizes
Ss (xolto, h), we see that |T Sy (xolto, #)| =~ C(n). Then we have

|detT| - |Sg(xolt0, )| ~ C(n).

Under the normalization, we get

=5

Uur =

D*u =T'D*u*T,
T-YD> )~ N1~
- ,

D*¢p =hT'D*y, T < (D*¢) "' =
and

&t = (Yn)s-
It follows from (75) that

ul | I SR N AP
— + trace(=T (DY)~ (T™°) - T'D“u™T) =0.
7 s i v

After simplification, we see that u™ satisfies the following equation:

*

% 4 trace((D*y) "' D2u*) =0 (80)
(Wn)s )
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The parabolic Monge—Ampere measure p generated by ¢ satisfies the following doubling condition: there exist
constants C and 0 < « < 1 such that

n(Qgp (X, ) < Cu(aQ¢(X, h)) (81)
for every section Q4 (X, ). Let u* denote the parabolic Monge—Ampere measure generated by . It follows that

Q%) = / —(Yn)s det D2ydyds
Tp(Q¢(X0,h))

(detT) 2 detT
- dedt

= / —¢, det D*¢ m

Q¢ (Xo,h)
1
= — Xo, h)).
h”+1detT'u(Q¢( 0, h))

On the other hand, since u satisfies doubling condition, p* also satisfies the same one. We then define the normaliza-
tion of ¢, ¢*, by

O* (v, 8) = Vn(y,9) = Lrxg,0) () — 1, (82)

where Z(TX(),O) (y) is the supporting hyperplane of ¥, (-, 0) at y = T'xo. Obviously, the parabolic Monge-Ampere
measure generated by ¢* is exactly u*. Meanwhile ¢* =0 on 9, 0%, and —1 = ¢*(T x0,0) < ¢* <0 on Q*. Then
we have u*(Q*)~C(n, A, A,mi,my), i.e.,

W' det T ~ C(n, . A, my, ma)u(Qg(Xo, h)). (83)

Lemma 5.1. (/13], Lemma 4.6) Let Q(Xo, 1) be a normalized section. There exist positive constants C and p such
that, if 0 <ry <ry < land X' € Q4(Xo, r1), then

Qp(X', 1) C Qp (X0, 12) (34)
forr' < C(ry —r)P.
Lemma 5.2. ([12], Lemma 2.1 and Theorem 2.1) There exist 0 < t, A < 1 such that for all xo, ty and h > 0,

BSs(xolto. h) C Sp(xolto, (1 — (1 — ﬂ)%”)h), 0<p<l,
and

Sg(xolto, Th) C ASg(xolto, h).

Lemma 5.3. Given 8 > 1 there exists C depending only on n, A, A, my and m> such that

n(Qq(X, Bh)) < Cﬁ#M(Qd)(X, h)) (85)
for any section Qy(X, h).

Proof. By Lemma 3.1 in [11], we have

€08y (x|t, h) x [—e1th +1,t] C Qp(X,h) C Sp(x|t,h) x [—exh +1,1], (86)
where €, €1 and €, depend on n, m| and m>. Meanwhile from Corollary 3.2.4 in [10], we obtain

Cih2 <|Sp(xlt. )| < Cah?, (87)

where Cy and C, depend on n, A, A, m and m5.
(85) is a simple consequence of (86) and (87). O
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Lemma 5.4. Let ¢ satisfy 0 < A < —¢, det D2¢ <A <ooand —my < ¢:(x,t) < —my. Suppose that X1 = (x1,11) €
Q¢(Xo, h). Then there exist 61 and 60, depending only on the n, Ay, Ay, my and my such that

Se(xolto, h) C Sp(x1lt1,01h), (88)

and
A
n(Q¢(Xo, h)) < IM(Qq&(Xla 6ah)). (89)
Proof. Consider Sg(xolfo, 2h) and let T be the affine transformation normalizing Sg(xo|?0, 2) and the function

1
(. 9)= 19— Ex ) (T y, 1o+ sh).

Then T,(Q¢(Xo,2h)) = Qu((Tx0,0),2) is normalized. We have min@((Tx0’0)72)¢ = @(Txp,0) =0, ¢ =2 on
8p 0y ((Tx0,0),2) and —m; < @, < —m».
Let (y1,51) € Qp((Txp,0), 1) then
2
<C
51), 004 ((Tx0,0),2)(s1))
by Theorem 2.1 in [11]. If y € Sy, (yolso, 1) then ¢(y, s0) < 1. And since my < |p;| <my, we get p(y, s1) < C. Now

Do(y1,s1)| <
|De(y1 s1)|_dist((y1,

€y, s = le(y1,s1) + De(y1, s1)(y — y1)| < Cy.
Hence
(@ —Ly,s)(y,s1) <C+Cp:=01.
We conclude that y € Sy, (y1]s1, 61). Going back to ¢ we obtain (88) by affine invariance.
By the Lemma 3.1 in [11],
h
Q¢ (Xo, h) C Sy (xolto, h) x (—m—2 + 19, o).
Since (x1,t1) € Qy(Xo, h), we have, by (88),
Se(xolto, h) C Sp(x1lt1, 01h).
From Lemma 5.2,

O1h k O1h & O O1h
Sp(x11t1, TT) C A Sy (x1lt1, 7) CSpxilt, (I —(1 -2 )7)7),

where k will be chosen later. For any x € Sy (xolto, h), 11 — 1 < miz

t
¢(x,r>=¢<x,n)+/¢t(x,t’)dr’
n

=U0-0=-2)7)— —mi@—1n)
271
a, mitk oh

=(1-a-2H7 i) TE

k
Then we choose k sufficient large such that 1 — (1 — )Lk)%" + ;’i‘zzl < 1. Denoting 6, = f—}(, we obtain

A
1(Qg(Xo, h)) = —1u(Qp (X1, 02h). O

The following proposition establishes a crucial property of the super-solutions of Lgu = 0, namely, the uniform
critical density of their level sets.
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Proposition 5.5. There are two constants My > 1 and 0 < g9 < 1, depending only on n, A, A, m| and m», such that
for any section Q4 (Xo, h) and any nonnegative super-solution u to Lyu = 0 satisfying

h
inf{u(X) : X € Q4 (Xo, 5)} <1,
we have that

n(X € Qp(Xo, h) - u(X) < Mo}) = o (Qy(Xo, h)). (90)

Proof. By the previous argument, u*(y, s) satisfies

*

u _
S 4 trace((D*y) "' D%u*) <0, in QF, 91)
(n)s
¢*(y,5)=0 on 93,0% —-1<¢*(y,s)<0 in Q% (92)
1 h 1
—1<¢"(y,5) < —5 in 07/, =T,(Q¢(Xo), 5)) = Qy, (T'xo, 0), 5)- (93)

Consider the auxiliary function
w(y,s) =u"(y,s) +4¢™(y,s).
Let I'(w™) denote the parabolic concave envelope in Q* of the negative part w and A,, be the contact set, i.e.,
Ap={(,5)€e0*: w<0, w=-T(w)}.
By the geometric—arithmetic mean inequality, we obtain the following estimate on A,
—wy det D?
—wydet D?w = —2 2 W (4% det D2¢¥)
—¢ det D2¢p*
g +1r((D*¢*) ' D*w)
n+1
Ly, w
= G2y (= () det DY)
n+1
< 4" (—(yn)s det D).

We may assume that

u*(y',s") =influ*(y,8) 1 (y,8) € 01 p} < 1 (94)

)" (— ¢} det D*¢*)

where (y,s') € QT/z' It was proved in [27] that T'(w ™) is clland (supQ* w™)" ! is controlled by the volume of the
image of A,, under the transformation

(y.8) = (DT (w)(y,s), F(w ) (y,s) — yDL(w)(y,s)).

By parabolic Alexandrov—Bakelman estimate [25], we have

W™ (. N < Cdiam(S*))" / |(D(w™))s det D*(I'(w ™)) dyds. (95)
Ay
Obviously, w > —'(w™) in Q*. It is easy to check that on A,
D*w>D*(-T(w™) 20, wy;<(-T(w ), =<0,
and

igf w<-1
1/2

by (93) and (94). It follows that
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1 <C [ (—w), det D*wdyds.
Auw

Noting that Ay, C {(y,s) € Q* :u*(y, s) < 4}, we obtain

1<c / (—(Wn)s det D>yi)dyds
{(v.s)eQ*:u*(y,s)<4}

(detT)~2

a7

detT
2
hn det D ¢T)dxdt

—c / (—0
{(x,0)€Qp (X0, h):u(x,t) <4}
_ Cu{(x,1) € Qp(Xo, h) sulx,t) <4})
- hn+ldet T '
Since "t detT ~ C(n, A, A, my, m2)i(Qy(Xo, h)), we have
Cn,A\,A,mi,mp)
C

m(Qp(Xo, h) < n({(x,1) € Qp(Xo, h) 1 ulx, 1) <4}),
1.€.,

eop(Qyp(Xo, h)) < u({(x,1) € Qp(Xo, h) :ulx, 1) < Mo}),
where ¢g € (0,1) and My =4. O

Proposition 5.6. Let ¢g and My > 1 be the numbers in Proposition 5.5 and § € (0, 1) be a constant. Let u be a
nonnegative sub-solution to Lyu = 0 in the section Qy(X, h) and assume that

1({Y € Qp(X, h) :u(Y) > h'}) < C1(h") "' w(Qyp(X, b)), Vi >0. (96)

Let v = MM"I > 1. Suppose that at a point Xo € Q¢ (X, 5h/2) and for a positive integer j we have: (a) u(Xo) =
0—2

vI=IMy; (b) (%)% > C}g—ocz(%)_l,for some p < é(S/Z)ph, where C and p are the exponent in Lemma 5.1. Then

sup  u > v/ M. o7
0¢(Xo,p)

Proof. By renormalizing the section Q4(X, &) as at the beginning of the proof of Proposition 5.5, we may assume
that this section is normalized and & = 1. Let us assume by contradiction that (97) is false and let

vIMy —u(x,t)

v(x,t)= m.
By condition (a) we have v(xg, #p) < 1. Then by Proposition 5.5

n({X € Qp(Xo, p) 1 v(X) > Mo}) < (1 —e0)u(Q¢(Xo, p)), p>0. (98)
Let

A={Y € 0p(X.8):u(Y) > v Mo,

and

B ={Y € Qy(Xo, p) : v(Y) = Mo}.
We claim that

Q¢ (Xo,p) CAUB.

In fact, since Xo € Q¢(X,4/2), by Lemma 5.1 Q4 (X0, p) C Qp(X,8) for p < 6(8/2)1’, and note that u(Y) <
v/ % < v(Y) > My by the definition of v, the claim is easily obtained. Then by (96) and (98) we have
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M
n(Q¢(Xo, p)) < (A) + (B) = i D) Qg (X, 8) + (1 — £0)in(Qp(Xo. p))

vIMy _,
< Ci( > ) m(Q¢(X, 1) + (1 — o) (Qg(Xo, p))

which implies

99)

On the other hand, since Xg € Qy(X, 1), by Lemma 5.3 and Lemma 5.4, we have
A 1
n(Qg¢(X, 1) = XM(Q¢(X0, 02)) = Cu(Q¢(Xo, 1)) = Cu(Qgp(Xo, ;,0))

1 ni2
§C2(;) 2 u(Qy(Xo, p)), forp <1,

that is,
n+2

W(0y(Xo, p) > %M(qux, ).

From condition (b),

This is a contradiction to (99). O
Proposition 5.7. There exists a constant C > 1 depending only on n, A, A, m| and my, such that if u is a classical
nonnegative sub-solution to Lyu = 0 in the section Qy(X, h) and satisfies (96) then

sup u<C. (100)
Q4 (X, %)

Proof. By renormalizing the section, we may assume that Q4(X, /) is normalized and & = 1. Let us take

J
C]Cz)%(v My

__2 .
,Oj=( Yy ez, j=1,2,---

Since v > 1, we pick m sufficiently large so that

Wr o 2 101
D op" < 00 (101

j=m
We claim that

sup u < V"1 Mo.
0s(X. %)

Suppose that the claim is not true. Then there would exist X, € Qp (X, %) such that #(X,,) > v ~! M. By the choice
of p; we have

M(qu(xms pm) =

then by Proposition 5.6,

sup u > v" M.
sz(xmsﬂm)
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Consequently, there exists X,41 € Q¢(Xm, pm) such that u(X;,41) > V" My. Now, X,, € Qu(X, %) then by
Lemma 5.1 X401 € Qg (X, % + (%m)l/l’). Again, by the choice of p; and Proposition 5.6, we would have a point
Xm12 € Qp(Xpmt1, pmt1) such that u(X,,42) > vm+1M0, and by Lemma 5.1 we would get X, 42 € Q4 (X, % +
(22)1/P 4 (221 1/),

We can then repeat this process, getting a sequence of points {X j}?im such that

- 5 P Pj—1
u(Xj) = v/~ My, X,»eQ¢(Xj,1,p,-,1)cQ¢(X,Z+(F’”)1/”+~~-+(’T)”f’). (102)

From (101), we obtain X ; € Q4(X, %8) C O¢(X, %). Since v > 1, it follows that {u(X ;)} would be an unbounded

sequence in Q4 (X, %). This is impossible because u is continuous in Q4 (X, %). O

Proof. (Proof of Theorem 1.11) By normalizing the section Q4 (X, h), we consider

*

% u

u, = .
€ ”M*”LI(Q*,(]}L*)-’_S

We have [|ug]l1g gu) < 1 and

1
W {Y € Q" ui(Y) > h')) < ﬁ””:”L'(Q*,du*)
<Ci() ™t (QH), V' > 0.
Applying Proposition 5.6 and Proposition 5.7, we get

supu; <C, (103)
53

that is,

supu® < C(lu*ll L1 gx, apr) + €
53

after letting ¢ — 0,

sup M* < C””*”LI(Q*, dp*)- (104)
053

Rescaling u*, we obtain

Cllullp
wp = LU (Qo(Xh). di) (105)

Q(P(X’%) - M(Q(P(th))

This theorem is proved. O
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