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Abstract

We classify all solutions to

−ut detD2u = f (x) in R
n+1− ,

where f ∈ Cα(Rn) is a positive periodic function in x. More precisely, if u is a parabolically convex solution to above equation, 
then u is the sum of a convex quadratic polynomial in x, a periodic function in x and a linear function of t . It can be viewed as 
a generalization of the work of Gutiérrez and Huang in 1998. And along the line of approach in this paper, we can treat other 
parabolic Monge–Ampère equations.
© 2017 

Résumé

Nous classifions toutes les solutions à

−ut detD2u = f (x) in R
n+1− ,

où f ∈ Cα(Rn) est une fonction périodique positive en x. Plus précisément, si u est une solution paraboliquement convexe de 
l’équation ci-dessus, alors u est la somme d’un polynôme quadratique convexe en x, une fonction périodique en x et une fonction 
linéaire de t . Cela peut être considéré comme une généralisation du travail de Gutiérrez et Huang en 1998. Et le long de la ligne 
d’approche dans cet article, nous pouvons traiter d’autres équations paraboliques Monge–Ampère.
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1. Introduction

A celebrated result of Jörgens (n = 2 [15]), Calabi (n ≤ 5 [7]) and Pogorelov (n ≥ 2 [23]) states that any classical 
convex solutions to the Monge–Ampère equation

detD2u = 1 in R
n (1)

must be a quadratic polynomial. A simpler and more analytical proof was given by S.Y. Cheng and S.T. Yau [8]. J. Jost 
and Y.L. Xin showed a quite different proof in [16]. L. Caffarelli [3] extended above result for classical solutions to 
viscosity solutions. L. Caffarelli and Y.Y. Li [5] considered

detD2u = f in R
n, (2)

where f is a positive continuous function and is not equal to 1 only on a bounded set. They proved that for n ≥ 3, 
the convex viscosity solution u is very close to quadratic polynomial at infinity. More precisely, for n ≥ 3, there exist 
c ∈R, b ∈R

n and an n × n symmetric positive definite matrix A with detA = 1, such that

lim sup
|x|→∞

|x|n−2|u(x) − (
1

2
xT Ax + b · x + c)| < ∞.

In a subsequent work [6], L. Caffarelli and Y.Y. Li proved that if f is periodic, then u must be the sum of a quadratic 
polynomial and a periodic function. To be concrete, for n ≥ 2, there exist b ∈ R

n and a symmetric positive definite 
n × n matrix A with detA = ffl

�1≤i≤n[0,ai ] f , such that v := u − [ 1
2xT Ax + bT x] is ai -periodic in ith variable, i.e., 

v(x + aiei) = v(x), ∀ x ∈ R
n, 1 ≤ i ≤ n. In recent paper [24], E. Teixeira and L. Zhang obtained that if f ∈ C1,α(Rn)

is asymptotically close to a periodic function, then the difference between u and a parabola is asymptotically close to 
a periodic function at infinity, for n ≥ 3.

Above famous Jörgens, Calabi and Pogorelov theorem was extended by C.E. Gutiérrez and Q. Huang [11] to 
solutions of the following parabolic Monge–Ampère equation

−ut detD2u = 1, (3)

where u = u(x, t) is parabolically convex, i.e., u is convex in x and nonincreasing in t , and D2u denotes the Hessian 
of u with respect to the variable x. They got

Theorem 1.1. Let u ∈ C4,2(Rn+1− ) be a parabolically convex solution to the parabolic Monge–Ampère equation (3)
in Rn+1− := R

n × (−∞, 0], such that there exist positive constants m1 and m2 with

−m1 ≤ ut (x, t) ≤ −m2, ∀(x, t) ∈ R
n+1− . (4)

Then u must have the form u(x, t) = C1t + p(x), where C1 < 0 is a constant and p is a convex quadratic polynomial 
on x.

and they gave an example to show that viscosity solutions to (3) may not be of the form given by above theorem. 
Recently, J. Bao and J. Xiong [1] extended this theorem to general parabolic Monge–Ampère equations.

This type of parabolic Monge–Ampère operator was first introduced by N.V. Krylov [17]. Owing to its importance 
in stochastic theory, he further considered it in [18–20]. This operator is relevant in the study of deformation of 
a surface by Gauss–Kronecker curvature [9]. Indeed, K. Tso [26] solved this problem by noting that the support 
function to the surface that is deforming satisfies an initial value problem involving that parabolic operator. And the 
operator plays an important role in a maximum principle for parabolic equations [25].
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Solutions of elliptic Monge–Ampère equations with periodic right-hand side appear in several contexts of geometry 
and applied mathematics: when lifting the equation from a Hessian manifold, in problems of optimal transportation, 
vorticity arrays, homogenization, etc. And the solutions to some kind of parabolic Monge–Ampère equations with the 
same periodic right-hand side can be considered as a flow of above problems.

In the present paper we extend the Liouville theorem of L. Caffarelli and Y.Y. Li [6] to this parabolic Monge–
Ampère equation:

−ut detD2u = f (x), in R
n+1− , (5)

where f is a positive periodic function, i.e.,

f (x + aiei) = f (x) > 0, ∀x ∈R
n, 1 ≤ i ≤ n, (6)

where e1 = (1, 0, · · · , 0), · · · , en = (0, · · · , 0, 1). And assuming that

−∞ < −m1 ≤ ut ≤ −m2 < 0, (7)

then we obtain

Theorem 1.2. Let f ∈ Cα(Rn), 0 < α < 1, satisfy (6), and let u ∈ C2,1(Rn+1− ) be a parabolically convex solution to 
(5) satisfying (7). Then there exist τ < 0, b ∈ R

n and a symmetric positive definite n × n matrix A with −τ detA =ffl
�1≤i≤n[0,ai ] f , such that

v(x) := u(x, t) − [τ t + 1

2
xT Ax + b · x]

is ai periodic in the ith variable, i.e.,

v(x + aiei) = v(x), x ∈R
n, 1 ≤ i ≤ n.

Next we give some remarks on above theorem.

Remark 1.3. The theorem of Jörgens, Calabi, and Pogorelov for (3) is an easy consequence of the above theorem.

Remark 1.4. Because of the affine invariance, we only need to establish Theorem 1.2 for ai = 1 ∀i and for f satisfying 
in additionˆ

[0,1]n
f = 1 (8)

Remark 1.5. From the regularity theorem obtained by the first author [30], we are able to get the above theorem under 
the weaker condition f ∈ V MOψ(Rn).

In the paper we work on the parabolic Monge–Ampère equation (5), but our methods can be applied to other 
parabolic Monge–Ampère equations, such as

ut = (detD2u)
1
n + f (x), (9)

ut = log detD2u + f (x). (10)

Taking (10) for example, we have

Corollary 1.6. Let f ∈ Cα(Rn), 0 < α < 1, satisfy (6), and let u ∈ C2,1(Rn+1− ) be a convex solution to (10) satisfying

m̂ ≤ ut ≤ M̂ (11)

Then there exist τ ∈ R, b ∈ R
n and a symmetric positive definite n × n matrix A with τ − log detA = ffl

�1≤i≤n[0,ai ] f , 
such that
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v(x) := u(x, t) − [τ t + 1

2
xT Ax + b · x]

is ai periodic in the ith variable.

Proof. Let

u(x, t) = u(x, t) − (1 + M̂)t.

Then u ∈ C2,1(Rn+1− ) is a solution to

ut = log detD2u + f ,

where m̂ − 1 − M̂ ≤ ut ≤ −1, f = f − (1 + M̂). Then

1

C
≤ detD2u = exp (ut − f ) ≤ C

where C > 0 depends on m̂, M̂ and minRn f and maxRn f . Therefore we get the density of parabolic Monge–Ampère 
measure associated to u, −ut detD2u, is bounded away from 0 and ∞. Now following almost the same line of the 
proof of above theorem, we get the corollary. �

The existence and uniqueness (modulo constants) of solutions to periodic elliptic Monge–Ampère equations were 
studied by Y.Y. Li.

Theorem 1.7. ([22]) Let Tn be a flat torus, f ∈ Cα(Tn) be a positive function, and let A be a symmetric positive 
definite n × n matrix satisfying

detA =
 

Tn

f. (12)

Then there exists a function v ∈ C2,α(Tn) satisfying

det(A + D2v) = f, on T
n, (13)

A + D2v > 0, on T
n. (14)

Moreover, condition (12) is necessary for the solvability of (13), and solutions of (13) and (14) are unique up to 
addition of constants.

Remark 1.8. Considering

−ṽt det(A + D2ṽ) = f, on T
n × (−∞,0], (15)

with A + D2ṽ > 0 on Tn × (−∞, 0] and detA = ffl
Tn f , we may easily find a solution to above equation. In fact, 

ṽ = −t + v(x), and v(x) satisfies det(A + D2v) = f on Tn with A + D2v > 0 on Tn.

In our proof of Theorem 1.2, we need a homogenization type estimate. It states that a solution w of the parabolic 
Monge–Ampère equation with periodic right-hand side differs from the corresponding solution w, with constant 
right-hand side, a power of the diameter of the lattice. Let Q∗ ⊂R

n+1− be a bowl-shaped domain satisfying

Bε0(0) × [−ε1,0] ⊂ Q∗ ⊂ B2 × [−ε2,0], (16)

where ε0, ε1 and ε2 depending only on n, m1 and m2. And let w ∈ C0(Q∗) ∩C∞(Q∗) denote the parabolically convex 
solution of⎧⎪⎨⎪⎩

−wtdetD2w = 1 in Q∗,
w = 0 on ∂pQ∗,
−C ≤ wt ≤ −C−1 in Q∗,

see [28].



W. Zhang, J. Bao / Ann. I. H. Poincaré – AN 35 (2018) 1143–1173 1147
Let ε̃1, · · · , ε̃n be n linearly independent vectors in Rn, and let g ∈ C0(Rn) be a positive function satisfying

g(x + ε̃i ) = g(x), ∀x ∈R
n, 1 ≤ i ≤ n, (17) 

	i

g = 1, (18)

where 	i = {x ∈ R
n : x = ∑n

i=1 ti ε̃i , 0 ≤ ti ≤ 1} in the fundamental domain for the periodicity.
Considering{

−wt detD2w = g, in Q∗,
w = 0 on ∂pQ∗,

(19)

then we give an estimate to the L∞ norm of |w − w| on Q∗:

Theorem 1.9. Let ε̃1, ε̃2, · · · , ε̃n ∈ R
n and Q∗ ⊂R

n+1− be as above, g ∈ C0(Rn) be a positive function satisfying (17)
and (18), and let w ∈ C2(Q∗) ∩ C0(Q∗) be the parabolically convex solution of (19). Then we have

‖w − w‖L∞(Q∗) ≤ C

n∑
i=1

|ε̃i |β, (20)

for some constants β and C, depending only on n and the upper bound of g.

Remark 1.10. We have estimate (20) with the constant C independent of the smoothness of g, then g can be approx-
imated by smooth gj .

Next we give the local maximum principle for sub-solution of linearized parabolic Monge–Ampère equation:

Theorem 1.11. Let Q∗ be a bowl-shaped domain in Rn+1 satisfying (16), and let φ ∈ C2,1(Q∗) be a parabolically 
convex function satisfying, for some constants λ and ,⎧⎪⎨⎪⎩

0 < λ ≤ −φt detD2φ ≤  < ∞, in Q∗,
φ = 0, on ∂pQ∗,
−m1 ≤ φt (x, t) ≤ −m2, in Q∗.

(21)

Assume that ω ∈ C2,1(Q∗) satisfies

Lφω = ωt

φt

+ trace ((D2φ(x, t))−1D2ω) ≥ 0, ω ≥ 0, in Q∗.

Then for any r > s > 0,

max
X∈Q∗,dist (X,∂pQ∗)>r

ω ≤ C

ˆ

X∈Q∗,dist (X,∂pQ∗)>s

ω,

where X = (x, t), C depends only on n, λ, , m1, m2, r and s.

This theorem can be viewed as an affine invariant counterpart of the classical local maximum principle for heat 
equation, parabolic version of Caffarelli and Gutiérrezs’ [4] local maximum principle for linearized elliptic Monge–
Ampère equation, and an extension of Huang’s [14] local maximum principle for linearized parabolic Monge–Ampère 
equation to general φ(x, t). And we should note that the theorem is valid for other linearized parabolic Monge–
Ampère equations, (9) and (10), once the density of parabolic Monge–Ampère measure associated to φ is bounded 
away from 0 and ∞.

Our paper is organized as follows. In Section 2, we list some preliminary facts. Theorem 1.9 is established in 
Section 3. We give a proof of our main theorem, Theorem 1.2, in Section 4. In the last section, the local maximum 
principle (Theorem 1.11) is obtained.
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2. Preliminary results

In this section, we list some results that are used in the text.
First we recall some notations about the sections of parabolically convex functions. Let Q ⊂R

n+1 and t ∈ R, then 
we define

Q(t) = {x : (x, t) ∈ Q}. (22)

If Q be a bounded set and t̃ = inf{t : Q(t) �= ∅}. The parabolic boundary of the bounded domain Q is defined by

∂pQ = (Q(t̃)) ∪
⋃
t∈R

(∂Q(t) × {t}),

where Q(t̃) denotes the closure of Q(t̃) and ∂Q(t) denotes the boundary of Q(t). We say that Q is a bowl-shaped 
domain if Q(t) is convex for each t and Q(t1) ⊂ Q(t2) for t1 ≤ t2. A function φ(x, t) is parabolically convex in Q if 
it is convex in x and nonincreasing in t . Given X0 = (x0, t0) ∈ Q, �X0 is a supporting affine function, or supporting 
hyperplane for φ(·, t0) at x = x0, if �X0 = φ(x0, t0) + p · (x − x0) and φ(x, t0) ≥ �X0(x) for all x ∈ Q(t0). When 
φ ∈ C1(Q), we have p = Dφ(x0, t0).

Given h > 0, we define

Qφ(X0, h) = {(x, t) : φ(x, t) ≤ �X0(x) + h and t ≤ t0}, (23)

and

Sφ(x0|t0, h) = {x : φ(x, t0) ≤ �X0(x) + h}. (24)

We can always normalize u so that

u(0,0) = 0, u(x, t) ≥ 0 in R
n+1− .

Let

QH = {(x, t) ∈ R
n+1− : u(x, t) < H }.

In fact, QH is Qu((0, 0), H). Denote v(x) = u(x, 0). Let

	H = {x ∈ R
n : v(x) < H }.

Indeed, 	H is Su(0|0, H). By a normalization lemma of John-Cordoba and Gallegos, there exists some affine trans-
formation

TH (x) = aH x + bH

with detaH = 1 such that BαnR(0) ⊂ TH (	H ) ⊂ BR(0), where αn = n− 3
2 .

Let

vH (y) = 1

R2 v(a−1
H (Ry)), y ∈ OH := 1

R
aH (	H ). (25)

From Proposition 2.12 in [5], B1/C(0) ⊂ OH ⊂ B2(0).
It is clear that vH (0) = 1

R2 v(0) = 0

detD2vH (y) = f (a−1
H (Ry))

−(uH (y,0))t
, y ∈ OH ,

and

vH |∂OH
= H

R2 ∈ (
1

C
, C). (26)

Then, by the convexity of vH , 0 ≤ vH ≤ C in OH .
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Lemma 2.1. (Lemma 2.9 in [5]) For λ > 0 and r ≥ 2, let v ∈ C2((−3, 3)n−1 × (−r, r)) satisfy

D2v > 0, detD2v ≥ λ, in (−3,3)n−1 × (−r, r),

and

0 ≤ v ≤ 1 in (−2,2)n.

Then, for some positive constant C = C(n) > 0,

max|yn|≤r
v(0′, yn)

n ≥ (
rλ

C
− 1).

Let

E = {k1e1 + · · · + knen; k1, · · · , kn are integers, k2
1 + · · · + k2

n > 0}.
For e ∈ E, let

ẽ = 1

R
aH (e). (27)

Lemma 2.2. For some positive constants α ∈ (−1, 1) and C, depending only on n, m1, m2, maxRn f and minRn f ,

|ẽ| ≤ C

R1+α
|e|, e ∈ E. (28)

Proof. For any y ∈ ∂OH , we have, by [2],

vH (y) ≤ CvH (
y

2
),

where C > 2 depends on n, m1, m2, maxRn f and minRn f . Then we deduce

vH (y) ≤ CkvH (
y

2k
)

for all y ∈ ∂OH . Scaling back, the above inequality implies that for any x ∈R
n satisfying |x| > 1,

v(x) ≤ Ckv(
x

2k
),

where k is an integer such that 2k−1 < |x| ≤ 2k . Choosing α′ > 0 such that C = 21+α′
, we have

v(x) ≤ 2k(1+α′)v(
x

2k
) ≤ C|x|1+α′

,

where α′ depends on n, m1, m2, maxRn f and minRn f .
For λe ∈ ∂	H , we get

H = v(λe) ≤ C|λe|1+α′
(29)

from above inequality. Then (26) and (29) imply that

1

|λ| ≤ C

R2/(1+α′) |e|. (30)

On the other hand, since 1
R

aH (λe) ∈ ∂OH ⊂ B2, we have

|λ||ẽ| = | 1

R
aH (λe)| ≤ 4,

i.e.,

|ẽ| ≤ 4

|λ| ≤ C

R1+α
|e|, ∀e ∈ E,

from (30), where α = 1−α′
′ ∈ (−1, 1). �
1+α
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Let

(y, s) := �H (x, t) = (
aH x

R
,

t

R2 ), (y, s) ∈ Q∗
H := �H (QH ),

and

w(y, s) = 1

R2 u(�−1
H (y, s)) = 1

R2 u(Ra−1
H y,R2s), (y, s) ∈ Q∗

H . (31)

Clearly

−wsdetD2w = f (Ra−1
H y) := g(y) in Q∗

H .

By Proposition 3.1 in [29],

w = H

R2 ∈ (C−1,C) on ∂pQ∗
H . (32)

From Proposition 3.2 in [29],

Bε0(0) × [−ε1,0] ⊂ Q∗
H ⊂ B2(0) × [−ε2,0].

By [28], there exists a unique parabolically convex solution w ∈ C0(Q∗
H ) 

⋂
C∞(Q∗

H ) of⎧⎪⎨⎪⎩
−wsdetD2w = 1 in Q∗

H ,

w = H
R2 ∈ (C−1,C) on ∂pQ∗

H ,

−C ≤ ws ≤ −C−1 in Q∗
H .

And for every δ > 0, there exists some positive constant C = C(δ) such that for all (y, s) ∈ Q∗
H and distp((y, s),

∂pQ∗
H ) ≥ δ, we have

C−1I ≤ D2w(y, s) ≤ CI, |D3w(y, s)| ≤ C. (33)

Lemma 2.3. ([28]) Let Q∗ ⊂ R
n+1 be a bowl-shaped domain satisfying (16), and let w ∈ C2,1(Q∗) ∩ C0(Q∗) be a 

parabolically convex solution of{
−wt detD2w = 1, in Q∗,
w = 0, on ∂pQ∗.

(34)

Then for some positive constants Ck and βk , depending only on n and k,

|Dkw(X)| ≤ Ckdist (X, ∂pQ∗)−βk , X ∈ Q∗, k = 1,2, · · · . (35)

3. Proof of Theorem 1.9

In this section we prove Theorem 1.9.

Proof of Theorem 1.9. Throughout the proof, and unless otherwise stated, μi ∈ (0, 1) and Ci > 1 denote various 
positive constants depending only on n and the upper bound of g. Let

m = max
Q∗

|w − w|. (36)

By a barrier function argument [28],

−C1dist (X, ∂pQ∗)β1 ≤ w ≤ 0, (37)

and

−C1dist (X, ∂pQ∗)β1 ≤ w ≤ 0. (38)

Particularly m ≤ C1.
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We will only treat the case

m = max
Q∗

(w − w) > 0,

since the other case can be settled similarly.
Let X := (x̄, ̄t) ∈ Q∗ be a maximum point of w − w: m = w(X) − w(X). By w ≤ 0 and (38),

dist (X, ∂pQ∗) ≥ μ1m
1/β1 . (39)

Let

u(x, t) = w(x, t) + m

122 |x − x|2 + m

9ε2
|t − t |. (40)

Then (u − w)(x, t) = m. On the other hand, since

|u − w| = | m

122 |x − x|2 + m

9ε2
|t − t || ≤ 2m

9
, in Q∗, (41)

we have

u − w ≤ 2m

9
, on ∂pQ∗

So for some interior point X̃ := (x̃, ̃t) ∈ Q∗,

(u − w)(x̃, t̃) = max
Q∗

(u − w) ≥ m. (42)

From (41) and (42),

(w − w)(x̃, t̃) = [(u − w) − (u − w)](x̃, t̃ ) ≥ m − 2m

9
= 7m

9
. (43)

It follows, by (37) and (38), that

dist (X̃, ∂pQ) ≥ μ1m
1/β1 , in Q∗, (44)

where the values of μ1 is smaller than previous one.
Let ξ ∈ C∞(Rn) be the unique solution of

det(D2[1

2
xT D2w(x̃, t̃)x + ξ(x)]) = g(x)

m1
, in R

n, (45)

satisfying

D2[1

2
xT D2w(x̃, t̃)x + ξ(x)]) > 0, x ∈R

n, (46)

ξ(x + ε̃i ) = ξ(x), x ∈ R
n, 1 ≤ i ≤ n, (47)

and ˆ

	i

ξ = 0. (48)

The existence and uniqueness of ξ follows from Theorem 2.2 in [22].
Now we claim that

‖ξ‖L∞(Rn) ≤ 2C2

n∑
i=1

|ε̃i |2μ−β2
1 m−β2/β1 . (49)

In fact, let ϕ(x) = 1
2xT D2w(x̃, ̃t)x + ξ(x), x ∈ R

n, and for any fixed y ∈ R
n and 1 ≤ i ≤ n, let h(t) = ξ(y + t ε̃i ), 

t ∈R. Since D2ϕ > 0 in Rn, we have d2

2 ϕ(y + t ε̃i ) > 0 for t ∈ R. Since

dt
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d2

dt2 ϕ(y + t ε̃i ) = ε̃i
T D2w(x̃, t̃)ε̃i + h′′(t) ≥ 0,

we then get, from (35) and (44),

h′′(t) ≥ −ε̃i
T D2w(x̃, t̃)ε̃i ≥ −|ε̃i |2‖D2w(x̃, t̃)‖ ≥ −C2|ε̃i |2μ−β2

1 m−β2/β1 .

Since h is a periodic function of period 1, we can let t ∈ [−1, 0] be a point where h′ = 0. For all 0 < t < s < 1, we 
have, by the above lower bound of h′′ and (35), that

h(s) − h(t) =
sˆ

t

h′(τ1)dτ1 =
sˆ

t

τ1ˆ

t

h′′(τ2)dτ2dτ1 ≥ −2C2|ε̃i |2μ−β2
1 m−β2/β1 .

So we have

‖ξ‖L∞(Rn) ≤ oscRnh ≤ 2C2

n∑
i=1

|ε̃i |2μ−β2
1 m−β2/β1 .

Since (x̃, ̃t) is an interior maximum point of u − w, we have

D2(u − w)(x̃, t̃) ≤ 0, (50)

that is,

0 < D2w(x̃, t̃) = D2(u − m

122 |x − x|2 − m

9ε2
|t − t |)(x̃, t̃ ) ≤ D2w(x̃, t̃) − 2m

122 I. (51)

Let

v(x, t) = w(x, t) + ξ(x) − m

122 |x − x|2 + m

242 |x − x̃|2 − m

9ε2
|t − t | + m

18ε2
|t − t̃ |. (52)

Then

w(x, t) − v(x, t) = u(x, t) − (w(x, t) + ξ(x) + m

242 |x − x̃|2 + m

18ε2
|t − t̃ |) (53)

From (35) and (44) we can find β3 and C3 such that

|D3w(x, t)| ≤ C3m
−β3 , |D2wt(x, t)| ≤ C3m

−β3 , ∀(x, t) ∈ Bmβ3 /C3
(x̃, t̃) ∩ Q∗.

Thus we can find larger β4 and C4 such that

Bmβ4/C4
(x̃, t̃ ) ⊂ Bmβ3/C3

(x̃, t̃ ), β4 − β3 = 1,

D2v(x, t) = D2w(x, t) + D2ξ(x) − m

96
I

≤ D2w(x̃, t̃) + n2C3m
−β3(|x − x̃| + |t − t̃ |)I + D2ξ(x) − m

96
I

≤ D2w(x̃, t̃) + 2n2C3

C4mβ3−β4
I − m

96
I + D2ξ(x)

< D2w(x̃, t̃) + D2ξ(x), ∀(x, t) ∈ Bmβ4/C4
(x̃, t̃ ).

Then we get

detD2v(x, t) < det(D2w(x̃, t̃) + D2ξ(x)) = g(x)

m1
= − wt

m1
detD2w(x, t) ≤ detD2w(x, t), (54)

for all (x, t) ∈ Bmβ4 /C4
(x̃, ̃t) with D2v(x, t) ≥ 0.

Now (53) at (x̃, ̃t) implies that

(w − v)(x̃, t̃) = (u − w)(x̃, t̃) − ξ(x̃) ≥ (u − w)(x̃, t̃) − 2C2

n∑
|ε̃i |2μ−β2

1 m−β2/β1 .
i=1
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Since (u − w)(x̃, ̃t) is the maximum value of u − w, we have, for all (x, ̃t) ∈ ∂Bmβ4 /C4
(x̃, ̃t), that

(w − v)(x, t̃) = (u − w)(x, t̃) − ξ(x) − m

242 |x − x̃|2 ≤ (u − w)(x̃, t̃) + 2C2

n∑
i=1

|ε̃i |2μ−β2
1 m−β2/β1 − m1+2β4

(24C4)2 .

If

4C2

n∑
i=1

|ε̃i |2μ−β2
1 m−β2/β1 ≥ m1+2β4

(24C4)2 ,

we have done, that is,

m ≤ (2304C2
4C2μ

−β2
1

n∑
i=1

|ε̃i |2)
1

1+2β4+ β2
β1 .

Otherwise,

(w − v)(x, t̃) < (w − v)(x̃, t̃), ∀(x, t̃) ∈ ∂Bmβ4 /C4
(x̃, t̃ ).

Let x1 ∈ Bmβ4/C4
(x̃, ̃t) be an interior maximum point (w − v)(x, ̃t), then D2v(x1, ̃t) ≥ D2w(x1, ̃t) > 0 and 

detD2v(x1, ̃t) ≥ detD2w(x1, ̃t). This contradicts (54). Theorem 1.9 is established. �
4. Proof of Theorem 1.2

In this section we prove Theorem 1.2. We divide it into two steps.
Step 1. Modulo an affine transformation (AT (n) × AT (1)), the behavior of u at infinity is −t + 1

2 |x|2, where 
AT (n) denotes the group of all invertible affine transformations on Rn:

Proposition 4.1. There exist some τ ∈ R−, and some n × n symmetric positive definite matrix A with −τ detA = 1, 
and some positive constants 0 < ε < 1 and C > 1, such that

|u(x, t) − (τ t + 1

2
xT Ax)| ≤ C(

√
|x|2 + |t |)2−ε, |x|2 + |t | ≥ 1. (55)

Owing to Lemma 2.2 and Theorem 1.9, we have

‖w − w‖L∞(Q∗
H ) ≤ C

n∑
i=1

|ε̃i |β = C̃

Rθ
, (56)

where θ = min{1, (1 + α)β}.
Let (y, 0) be the unique minimum point of w in Q∗

H . For w(y, 0) < H̃ ≤ H , let

SH̃ (0,0) = {(y, s) ∈ R
n+1− : 1

2
yT D2w(y,0)y + ws(y,0)s = H̃ },

EH̃ (0,0) = {(y, s) ∈ R
n+1− : 1

2
yT D2w(y,0)y + ws(y,0)s < H̃ },

SH̃ (y,0) = {(y, s) ∈ R
n+1− : 1

2
(y − y)T D2w(y,0)(y − y) + ws(y,0)s = H̃ },

EH̃ (y,0) = {(y, s) ∈ R
n+1− : 1

2
(y − y)T D2w(y,0)(y − y) + ws(y,0)s < H̃ }.

We also denote that

mEH̃ (0,0) = {(y, s) : 1

2
yT D2w(y,0)y + ws(y,0)s < m2H̃ },m ∈ R

+,

mEH̃ (y,0) = {(y, s) : 1
(y − y)T D2w(y,0)(y − y) + ws(y,0)s < m2H̃ },m ∈R

+,

2



1154 W. Zhang, J. Bao / Ann. I. H. Poincaré – AN 35 (2018) 1143–1173
and

mQH = {(y′, s′) = (my,m2t) : (y, s) ∈ QH },m ∈R
+.

Proposition 4.2. There exist k and C, depending only on n and f , such that for ε = θ
3 , H = 2(1+ε)k/θ and 2(k−1)/θ ≤

H ′ ≤ 2k/θ , we have

(
H ′

R2 − C2− 3εk
2θ )

1
2 E1(0,0) ⊂ �H (QH ′) ⊂ (

H ′

R2 + C2− 3εk
2θ )

1
2 E1(0,0), ∀k ≥ k. (57)

Proof. Clearly, it follows from Proposition 3.1 in [29] and (31) that

C−12−εk/θ ≤ H ′

R2 ≤ C2−εk/θ , C−12
(1+ε)k

2θ ≤ R ≤ C2
(1+ε)k

2θ ,

and

{w <
H ′

R2 } := {(y, s) : w(y, s) <
H ′

R2 } = �H (QH ′) ⊂ Q∗
H .

By (56),

|w − w| ≤ C̃

Rθ
≤ C̃C2− 1+ε

2 k in Q∗
H .

Since

H ′

R2 � C̃

Rθ
, as R → ∞,

the level surface of w can be well approximated by the level surface of w:

{w <
H ′

R2 − C̃

Rθ
} ⊂ {w <

H ′

R2 } ⊂ {w <
H ′

R2 + C̃

Rθ
}.

By (56), the fact w ≥ 0 and w(0, 0) = 0, we have

− C̃

Rθ
≤ w(y,0) − C̃

Rθ
≤ w(y,0) ≤ w(0,0) ≤ w(0,0) + C̃

Rθ
= C̃

Rθ
.

Therefore by (33) and Lemma 2.3 in [29],

|w(y, s) − w(y,0) − ws(y,0)s − 1

2
(y − y)T D2w(y,0)(y − y)| ≤ C(|y − y|2 + |s|) 3

2 ,

distp((y, s), (y, 0)) < 1
C

and

2C−1I ≤ D2w(y,0) ≤ 2CI.

On one hand, we take a positive constant C1 to be determined. For (y, s) ∈ (H ′
R2 − C12− 3εk

2θ )
1
2 E1(y, 0), then

ws(y,0)s + 1

2
(y − y)T D2w(y,0)(y − y) <

H ′

R2 − C12− 3εk
2θ ,

1

C
|s| + 1

C
|y − y|2 <

H ′

R2 − C12− 3εk
2θ ,

|y − y|2 + |s| < C(
H ′

R2 − C12− 3εk
2θ ).

We can take k1 satisfying for k ≥ k1,

|y − y|2 + |s| < C(
H ′

2 − C12− 3εk
2θ ) ≤ 1

2 .

R C
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Thus,

w(y, s) ≤ w(y,0) + ws(y,0)s + 1

2
(y − y)T D2w(y,0)(y − y) + C(|y − y|2 + |s|) 3

2

≤ C̃

Rθ
+ H ′

R2 − C12− 3εk
2θ + C

5
2 (

H ′

R2 − C12− 3εk
2θ )

3
2

≤ C̃

Rθ
+ H ′

R2 − C12− 3εk
2θ + C

5
2 (

H ′

R2 )
3
2

≤ C̃

Rθ
+ H ′

R2 − C12− 3εk
2θ + C42− 3

2θ
εk

= C̃

Rθ
+ H ′

R2 + (C4 − C1)2
− 3εk

2θ .

We can take C1 > C4 satisfying 2C̃C
C1−C4 < 1, then

2
C̃

Rθ
≤ 2C̃C2− (1+ε)k

2 < (C1 − C4)2− 3εk
2θ .

For k ≥ k1, we can obtain

w(y, s) ≤ C̃

Rθ
+ H ′

R2 + (C4 − C1)2
− 3εk

2θ <
H ′

R2 − C̃

Rθ
.

In conclusion, we have

(
H ′

R2 − C12− 3εk
2θ )

1
2 E1(y,0) ⊂ {w <

H ′

R2 − C̃

Rθ
}, ∀k ≥ k1.

On the other hand, we take a positive constant C2 to be determined. In order to prove

{w <
H ′

R2 + C̃

Rθ
} ⊂ (

H ′

R2 + C22− 3εk
2θ )

1
2 E1(y,0),

using the fact

(y,0) ∈ {w <
H ′

R2 + C̃

Rθ
} ∩ (

H ′

R2 + C22− 3εk
2θ )

1
2 E1(y,0),

we only need to prove

(
H ′

R2 + C22− 3εk
2θ )

1
2 S1(y,0) ⊂ {w <

H ′

R2 + C̃

Rθ
}c.

For (y, s) ∈ (H ′
R2 + C22− 3εk

2θ )
1
2 S1(y, 0), then

ws(y,0)s + 1

2
(y − y)T D2w(y,0)(y − y) = H ′

R2 + C22− 3εk
2θ ,

1

C
|s| + 1

C
|y − y|2 <

H ′

R2 + C22− 3εk
2θ ,

|y − y|2 + |s| < C(
H ′

R2 + C22− 3εk
2θ ).

Taking k2 satisfying for k ≥ k2,

|y − y|2 + |s| < C(
H ′

2 + C22− 3εk
2θ ) ≤ 1

2 .

R C
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Thus,

w(y, s) ≥ w(y,0) + ws(y,0)s + 1

2
(y − y)T D2w(y,0)(y − y) − C(|y − y|2 + |s|) 3

2

≥ − C̃

Rθ
+ H ′

R2 + C22− 3εk
2θ − C

5
2 (

H ′

R2 + C22− 3εk
2θ )

3
2

≥ − C̃

Rθ
+ H ′

R2 + C22− 3εk
2θ − C

5
2 (2

H ′

R2 )
3
2

≥ − C̃

Rθ
+ H ′

R2 + C22− 3εk
2θ − C42

3
2 2− 3

2θ
εk

= − C̃

Rθ
+ H ′

R2 + (C2 − 2
3
2 C4)2− 3εk

2θ .

We can take C2 > 2
3
2 C4 satisfying C2−2

3
2 C4

2C̃Cθ > 1, then

2
C̃

Rθ
≤ 2C̃Cθ 2− (1+ε)k

2 < (C2 − 2
3
2 C4)2− 3εk

2θ .

For k ≥ k2, we can obtain

w(y, s) ≥ − C̃

Rθ
+ H ′

R2 + (C2 − 2
3
2 C4)2− 3εk

2θ >
H ′

R2 + C̃

Rθ
.

In conclusion, we have

{w <
H ′

R2 + C̃

Rθ
} ⊂ (

H ′

R2 + C22− 3εk
2θ )

1
2 E1(y,0), ∀k ≥ k2.

Therefore, if we take C3 > max{C1, C2} and k = max{k1, k2}, then

(
H ′

R2 − C32− 3εk
2θ )

1
2 E1(y,0) ⊂ {w <

H ′

R2 } ⊂ (
H ′

R2 + C32− 3εk
2θ )

1
2 E1(y,0) ∀k ≥ k. (58)

Finally, we want to obtain (57). We first show that

∂p(Q∗̃
H+w(y,0)

(w)) ⊂ Nδ1(SH̃ (y,0)), 0 < H̃ ≤ H

R2 − w(y,0), δ1 ≤ CH̃
1
2 , (59)

and neighborhood N is measured by parabolic distance

distp[(y1, s1), (y2, s2)] := (|y1 − y2|2 + |s1 − s2|) 1
2 .

In fact, for (y, s) ∈ ∂p(Q∗̃
H+w(y,0)

(w)), by the mean value theorem, (33) and Lemma 2.3 in [29], we have

H̃ = w(y, s) − w(y,0)

= w(y, s) − w(y,0) + w(y,0) − w(y,0)

= ws(y, s′)s + 1

2
(y − y)T D2w(y′,0)(y − y)

≥ 1

2C
(|s| + |y − y|2),

where (y′, s′) ∈ Q∗̃
H+w(y,0)

(w). Writing

H̃ = w(y, s) − w(y,0)

= ws(y,0)s + (ws(y, s′) − ws(y,0))s + 1

2
(y − y)T D2w(y,0)(y − y)

+1
(y − y)T (D2w(y′,0) − D2w(y,0))(y − y),
2
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for (y, s) ∈ ∂p(Q∗̃
H+w(y,0)

(w)), then

|H̃ − ws(y,0)s − 1

2
(y − y)T D2w(y,0)(y − y)|

= |(ws(y, s′) − ws(y,0))s + 1

2
(y − y)T (D2w(y′,0) − D2w(y,0))(y − y)|

≤ C|s| + C|y − y|2
≤ CH̃ .

For any (y, s) ∈ ∂p(Q∗̃
H+w(y,0)

(w)) and any (ỹ, ̃s) ∈ SH̃ (y, 0), by the above inequality, we have

|ws(y,0)̃s + 1

2
(ỹ − y)T D2w(y,0)(ỹ − y) − ws(y,0)s − 1

2
(y − y)T D2w(y,0)(y − y)| ≤ CH̃ .

Taking ̃y, y, y on the same line l with ̃y and y on the same side of the line l with respect to y (rotating the coordinates 
again so that l is parallel to some axis), we have

||̃y − y|2 − |y − y|2| ≥ |y − ỹ|2.
Then for s = s̃, we get

1

2C
||̃y − y|2 − |y − y|2| ≤ CH̃ .

In fact, there exists an orthogonal matrix O such that D2w(y, 0) = OT diag{λ1, · · · , λn}O , and the length of a vector 
in Euclidean space is invariant in orthogonal transformation. Therefore, we get

|y − ỹ|2 ≤ CH̃ .

Similarly, for y = ỹ,

|ws(y,0)̃s − ws(y,0)s| ≤ CH̃ .

So we get

|s − s̃| ≤ CH̃ .

This completes the proof of (59).
Next we estimate the distance between (0, 0) and (y, 0). By (56), we have

0 ≤ w(0,0) − w(y,0)

= (w(0,0) − w(0,0)) + (w(0,0) − w(y,0)) + (w(y,0) − w(y,0))

≤ 2C̃

Rθ
,

so (0, 0) ∈ Q∗
2C̃

Rθ +w(y,0)
(w), and by (59) (taking H̃ = 2C̃

Rθ ), we have

∂p(Q∗
2C̃

Rθ +w(y,0)
(w)) ⊂ Nδ1(S 2C̃

Rθ

(y,0)), δ1 ≤ C(
2C̃

Rθ
)1/2,

thus we get

distp((0,0), (y,0)) ≤ C(
2C̃

Rθ
)1/2.

So by (58), we have

(
H ′

R2 − C32− 3εk
2θ − C2 2C̃

Rθ
)

1
2 E1(0,0) ⊂ {w <

H ′

R2 } ⊂ (
H ′

R2 + C32− 3εk
2θ + C2 2C̃

Rθ
)

1
2 E1(0,0) ∀k ≥ k.

Since 2− 3εk
2θ � 1

θ and let C = 2C2C̃ + C3, then we can obtain (57). �

R
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Let Ẽ denote the set {(y, s) ∈R
n+1− : 1

2 |y|2 − s < 1}, then we have the following proposition.

Proposition 4.3. There exist positive constants k̂, Ĉ, some real invertible upper-triangular matrices {Tk}k≥k̂ and 
negative number {τk}k≥k̂ such that

−τk detT T
k Tk = 1, ‖TkT

−1
k−1 − I‖ ≤ Ĉ2− εk

4θ , |τkτ
−1
k−1 − 1| ≤ Ĉ2− εk

4θ , (60)

and

(1 − Ĉ2− εk
2θ )

√
H ′Ẽ ⊂ �k(QH ′) ⊂ (1 + Ĉ2− εk

2θ )
√

H ′Ẽ, ∀2(k−1)/θ ≤ H ′ ≤ 2k/θ , (61)

where �k = (Tk, −τk). Consequently, for some invertible T and τ ,

−τ detT T T = 1, ‖Tk − T ‖ ≤ Ĉ2− εk
2θ , |τk − τ | ≤ Ĉ2− εk

2θ . (62)

Proof. Let H = 2(1+ε)k/θ and 2(k−1)/θ ≤ H ′ ≤ 2k/θ . By Proposition 4.2, there exist some positive constants C and k
depending only on n and f such that

(
H ′

R2 − C2− 3εk
2θ )

1
2 E1(0,0) ⊂ �H (QH ′) ⊂ (

H ′

R2 + C2− 3εk
2θ )

1
2 E1(0,0), ∀k ≥ k.

Then

(H ′ − C2− 3εk
2θ R2)

1
2 E1(0,0) ⊂ (aH , id)(QH ′) ⊂ (H ′ + C2− 3εk

2θ R2)
1
2 E1(0,0),

(1 − C2− 3εk
2θ

R2

H ′ )
1
2
√

H ′E1(0,0) ⊂ (aH , id)(QH ′) ⊂ (1 + C2− 3εk
2θ

R2

H ′ )
1
2
√

H ′E1(0,0).

Since

C−12−εk/θ ≤ H ′

R2 ≤ C2−εk/θ ,

we can get

(1 − CC2− εk
2θ )

1
2
√

H ′E1(0,0) ⊂ (aH , id)(QH ′) ⊂ (1 + CC2− εk
2θ )

1
2
√

H ′E1(0,0).

On one hand, we take C1 > CC
2 , k5 satisfying when k ≥ k5, 2

kε
2θ ≥ C

2
1

2C1−CC
, and k6 = max{k5, k}, then if k ≥ k6, we 

have

C
2
1 ≤ 22

kε
2θ C1 − 2

kε
2θ CC,

2−εk/θC
2
1 ≤ 22− kε

2θ C1 − 2− kε
2θ CC,

2−εk/θC
2
1 − 22− kε

2θ C1 ≤ −2− kε
2θ CC,

2−εk/θC
2
1 − 22− kε

2θ C1 + 1 ≤ 1 − 2− kε
2θ CC,

(1 − C12− kε
2θ )2 ≤ 1 − 2− kε

2θ CC.

Therefore,

(1 − C12− kε
2θ )

√
H ′E1(0,0) ⊂ (aH , id)(QH ′), k ≥ k6.

On the other hand, if we also take C2 > CC
2 , then for any k ≥ k, we have

(1 + CC2− kε
2θ )

1
2 ≤ (1 + C22− kε

2θ ).

So

(aH , id)(QH ′) ⊂ (1 + C22− kε
2θ )

√
H ′E1(0,0), k ≥ k.
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In conclusion, if we take Ĉ > CC
2 , ̂k = k6, then

(1 − Ĉ2− kε
2θ )

√
H ′E1(0,0) ⊂ (aH , id)(QH ′) ⊂ (1 + Ĉ2− kε

2θ )
√

H ′E1(0,0), k ≥ k̂. (63)

Let Q be the real symmetric positive definite matrix satisfying Q2 = QT Q = D2w(y, 0) and O be an orthogonal 
matrix such that

Tk := OQaH is the upper-triangular.

And we also define τk = ws(y, 0) and �k = (Tk, −τk). Clearly,

−τkdetT T
k Tk = −ws(y,0)(detaH )2detD2w(y,0) = 1.

Now we claim that Ẽ = (OQ, −τk)E1(0, 0). ∀(y, s) ∈ E1(0, 0), (x, t) = (OQy, −τks), xT x = yT QT OT OQy =
yT D2w(y, 0)y, t = −τks = −ws(y, 0)s. Recall that

1

2
yT D2w(y,0)y + ws(y,0)s = 1,

so (x, t) ∈ Ẽ, and vice versa. From (63), we have

(1 − Ĉ2− kε
2θ )

√
H ′Ẽ ⊂ �k(QH ′) ⊂ (1 + Ĉ2− kε

2θ )
√

H ′Ẽ, k ≥ k̂.

If we take H = 2(1+ε)k/θ and H ′ = 2(k−1)/θ , we can obtain

(1 − Ĉ2− kε
2θ )

√
2k−1Ẽ ⊂ �k(Q2k−1) ⊂ (1 + Ĉ2− kε

2θ )
√

2k−1Ẽ, (64)

and if we take H = 2(1+ε)(k−1)/θ and H ′ = 2(k−1)/θ , we can get

(1 − Ĉ2− (k−1)ε
2θ )

√
2k−1Ẽ ⊂ �k−1(Q2k−1) ⊂ (1 + Ĉ2− (k−1)ε

2θ )
√

2k−1Ẽ,

then

(1 − Ĉ2− (k−1)ε
2θ )

√
2k−1�−1

k−1Ẽ ⊂ Q2k−1 ⊂ (1 + Ĉ2− (k−1)ε
2θ )

√
2k−1�−1

k−1Ẽ, (65)

(1 − Ĉ2− (k−1)ε
2θ )

√
2k−1�k�

−1
k−1Ẽ ⊂ �k(Q2k−1) ⊂ (1 + Ĉ2− (k−1)ε

2θ )
√

2k−1�k�
−1
k−1Ẽ. (66)

From the left hand of (66) and the right hand of (64), we see

(1 − Ĉ2− (k−1)ε
2θ )

√
2k−1�k�

−1
k−1Ẽ ⊂ (1 + Ĉ2− kε

2θ )
√

2k−1Ẽ,

thus

�k�
−1
k−1Ẽ ⊂ 1 + Ĉ2− kε

2θ

1 − Ĉ2− (k−1)ε
2θ

Ẽ = (1 + Ĉ2− (k−1)ε
2θ + Ĉ2− kε

2θ

1 − Ĉ2− (k−1)ε
2θ

)Ẽ.

Since

lim
k→+∞ 2

εk
2θ

Ĉ2− (k−1)ε
2θ + Ĉ2− kε

2θ

1 − Ĉ2− (k−1)ε
2θ

= lim
k→+∞

Ĉ2
ε

2θ + Ĉ

1 − Ĉ2− ε(k−1)
2θ

= Ĉ2
ε

2θ + Ĉ,

by taking k sufficiently large, we can obtain

�k�
−1
k−1Ẽ ⊂ (1 + Ĉ2− (k−1)ε

2θ + Ĉ2− kε
2θ

1 − Ĉ2− (k−1)ε
2θ

)Ẽ ⊂ (1 + Ĉ2− εk
2θ )Ẽ.

At the same time, from the left hand of (64) and the right hand of (66), we get

(1 − Ĉ2− kε
2θ )

√
2k−1Ẽ ⊂ (1 + Ĉ2− (k−1)ε

2θ )
√

2k−1�k�
−1
k−1Ẽ,

thus

(1 − Ĉ2− (k−1)ε
2θ + Ĉ2− kε

2θ̂ − (k−1)ε
)Ẽ = 1 − Ĉ2− kε

2θ̂ − (k−1)ε
Ẽ ⊂ �k�

−1
k−1Ẽ.
1 + C2 2θ 1 + C2 2θ
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Since

lim
k→+∞ 2

εk
2θ

Ĉ2− (k−1)ε
2θ + Ĉ2− kε

2θ

1 + Ĉ2− (k−1)ε
2θ

= lim
k→+∞

Ĉ + Ĉ2
ε

2θ

1 + Ĉ2− ε(k−1)
2θ

= Ĉ + Ĉ2
ε

2θ ,

by taking k sufficiently large, we can obtain

(1 − Ĉ2− εk
2θ )Ẽ ⊂ (1 − Ĉ2− (k−1)ε

2θ + Ĉ2− kε
2θ

1 + Ĉ2− (k−1)ε
2θ

)Ẽ ⊂ �k�
−1
k−1Ẽ.

So we have

(1 − Ĉ2− εk
2θ )Ẽ ⊂ �k�

−1
k−1Ẽ ⊂ (1 + Ĉ2− εk

2θ )Ẽ, k ≥ k̂.

Since �k�
−1
k−1 is still upper-triangular, we apply Lemma 2.1 in [29] (with U = �k�

−1
k−1) to obtain that

‖�k�
−1
k−1 − I‖ ≤ C(n)Ĉ2− εk

2θ , k ≥ k̂.

Estimate (60) and (61) have been established. The existence of T , τ and (62) follow by an elementary considera-
tion. �
Proof of Proposition 4.1. From Proposition 4.3, we can define

� = (T ,−τ),

and let ŵ = u ◦ �−1, then

−ŵsdetD2ŵ = 1, in R
n+1− \ �(QH ),

in fact, ŵs = −ut

τ
, detD2ŵ = (detT −1)2 detD2u,

−ŵs detD2ŵ = 1

τ

1

(detT )2 ut detD2u = 1

from (62). Since {(y, s) : ŵ(y, s) < H ′} = �(QH ′) and

QH ′√
H ′ = (diag{ 1√

H ′ ,
1√
H ′ , · · · ,

1√
H ′ },

1

H ′ )QH ′ ,

then we can deduce from (61) and (62) that

�(QH ′) − �k(QH ′) ⊂ Ĉ2− εk
2θ

√
H ′Ẽ,

�(QH ′) ⊂ (1 + 2Ĉ2− εk
2θ )

√
H ′Ẽ,

and

�k(QH ′) − �(QH ′) ⊂ Ĉ2− εk
2θ

√
H ′Ẽ,

(1 − 2Ĉ2− εk
2θ )

√
H ′Ẽ ⊂ �(QH ′).

In particular, if we take H ′ = 2k/θ , then

(1 − 2Ĉ(H ′)−
ε
2 )

√
H ′Ẽ ⊂ {(y, s) : ŵ(y, s) < H ′} ⊂ (1 + 2Ĉ(H ′)−

ε
2 )

√
H ′Ẽ, ∀H ′ ≥ 2k̂ .

So we have

(1 − 2Ĉ(ŵ(y, s))−
ε
2 )2ŵ(y, s) < −s + 1 |y|2 < (1 + 2Ĉ(ŵ(y, s))−

ε
2 )2ŵ(y, s).
2
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On one hand, we see

−s + 1

2
|y|2 < (1 + 2Ĉ(ŵ(y, s))−

ε
2 )2ŵ(y, s),

−s + 1

2
|y|2 < ŵ(y, s) + 4Ĉ(ŵ(y, s))1− ε

2 + 4Ĉ2(ŵ(y, s))1−ε,

−s + 1

2
|y|2 < ŵ(y, s) + (4Ĉ + 4Ĉ2)(ŵ(y, s))1− ε

2 ,

ŵ(y, s) − (−s + 1

2
|y|2) > −(4Ĉ + 4Ĉ2)(ŵ(y, s))1− ε

2 .

Meanwhile we show

(1 − 2Ĉ(ŵ(y, s))−
ε
2 )2ŵ(y, s) < −s + 1

2
|y|2,

ŵ(y, s) − 4Ĉ(ŵ(y, s))1− ε
2 + 4Ĉ2(ŵ(y, s))1−ε < −s + 1

2
|y|2,

ŵ(y, s) − (−s + 1

2
|y|2) < 4Ĉ(ŵ(y, s))1− ε

2 − 4Ĉ2(ŵ(y, s))1−ε,

ŵ(y, s) − (−s + 1

2
|y|2) < 4Ĉ(ŵ(y, s))1− ε

2

Combining the above inequalities, we get

|ŵ(y, s) − (−s + 1

2
|y|2)| < ̂̂C(ŵ(y, s))1− ε

2 .

Consequently, by the fact C−1ŵ(y, s) ≤ |y|2 + |s|, we get

|ŵ(y, s) − (−s + 1

2
|y|2)| ≤ C(|y|2 + |s|) 2−ε

2 ,

√
|y|2 + |s| ≥ 2k. (67)

Note that ŵ(y, s) = u(T −1y, s
−τ

). Then we have

|u(x, t) − (τ t + 1

2
xT T T T x)| ≤ C(

√
|x|2 + |t |)2−ε, |x|2 + |t | ≥ 22k.

Taking A = T T T , we complete the proof. �
One consequence of Proposition 4.1 is that for some positive constant C,

‖aH ‖, ‖a−1
H ‖ ≤ C, ∀H ≥ 1.

Let F(−ut , D2u) = (−ut detD2u)
1

n+1 .

Lemma 4.4. Let f satisfies (6) (with ai = 1), and let u satisfy (5). Then for every e ∈ E,

(u(x + e, t) + u(x − e, t) − 2u(x, t))t

ut (x, t)
+ uijDij (u(x + e, t) + u(x − e, t) − 2u(x, t)) ≥ 0, in R

n+1− ,

where (uij ) is the inverse of (uij ).

Proof. By the concavity of F , the equation of u, and the periodicity of f , we have

F(−wt,D
2w) ≥ 1

2
[F(−ut (x + e, t),D2u(x + e, t)) + F(−ut (x − e, t),D2u(x − e, t))]

= 1

2
[f (x + e) + f (x − e)] = f (x),

where w(x, t) = 1 (u(x + e, t) + u(x − e, t)).
2
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On the other hand, from the concavity of F and the equation of u,

F(−wt,D
2w) ≤ F(−ut ,D

2u) − Fa(w − u)t + FijDij (w − u) = f − Fa(w − u)t + FijDij (w − u). (68)

So we have

(u(x + e, t) + u(x − e, t) − 2u(x, t))t

ut (x, t)
+ uijDij (u(x + e, t) + u(x − e, t) − 2u(x, t)) ≥ 0. �

Step 2: L∞ estimate of the Hessian of u.

Proposition 4.5. There exists some positive constant C such that

I

C
≤ D2u(x, t) ≤ CI, ∀(x, t) ∈R

n+1− . (69)

For nonzero e ∈ R
n, we introduce a notation of the second incremental quotient:

�2
eu(x, t) = u(x + e, t) + u(x − e, t) − 2u(x, t)

|e|2 .

The following lemma is a consequence of Theorem 1.11, a result of authors on the linearization of the parabolic 
Monge–Ampère equation, which will be proved in Section 5.

Lemma 4.6. For r > 0 and e ∈ E, there exists H0, depending on n, r and |e|, such that for all H ≥ H0,
ˆ

Y∈Q∗
H , dist (Y,∂pQ∗

H )>r

�2
ẽuH ≤ C, (70)

and

0 < �2
ẽuH (Y ) ≤ C, ∀Y ∈ Q∗

H , dist (Y, ∂pQ∗
H ) > r, (71)

where C depends only on n, r , maxRn f , minRn f , m1 and m2.

Proof. Let e ∈ E, �2
ẽ
uH is positive since u is strictly convex. By Lemma 2.2, |ẽ| → 0 as H → ∞ (H ≈ R2). So there 

exists H0 such that for H ≥ H0, |ẽ| ≤ r
8 . Let L be a line parallel to ẽ, we have, by Lemma A.1 in Appendix A in [6], 

that ˆ

L∩{Y∈Q∗
H , dist (Y,∂pQ∗

H )>r}
�2

ẽuH ≤ C, (72)

where C depends on n, r , maxRn f , minRn f , m1 and m2, not depends on H . Integrating the above over all such lines, 
we could get (70).

By Lemma 4.4, w := �2
ẽ
uH satisfies

ws(Y )

(uH (Y ))s
+ u

ij
H (Y )Dijw(Y ) ≥ 0, Y ∈ Q∗

H , dist (Y, ∂pQ∗
H ) >

r

2
. (73)

Combining (70) and Theorem 1.11, we obtain (71). �
Lemma 4.7.

γ := sup
e∈E

sup
(x,t)∈Rn+1−

�2
eu(x, t) < ∞.
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Proof. For e ∈ E and (x, t) ∈R
n+1− , let Y = (y, s) = (

aH (x)
R

, t
R2 ). Taking H large so that (x, t) ∈ QH/2, by Lemma 2.3 

in [29], we have

dist (Y, ∂pQ∗
H ) ≥ 1

C
,

for some C depending only on n, minRn f , maxRn f , m1 and m2. Then from (71), we see

�2
eu(x, t) = u(x + e, t) + u(x − e, t) − 2u(x, t)

‖e‖2

= ‖aH (e)‖2

‖e‖2

[u(a−1
H (Ry + Rẽ),R2s) + u(a−1

H (Ry − Rẽ),R2s) − 2u(a−1
H Ry,R2s)]

‖aH (e)‖2

= ‖aH (e)‖2

‖e‖2 �2
ẽuH (y, s) ≤ C‖aH ‖2 ≤ C. �

Lemma 4.8. Let g ∈ C2(B1) be a positive function, and let u ∈ C4,2(E1) ∩ C(E1) be a parabolically convex function 
satisfying

−ut detD2u = g(x), in E1,

−m1 ≤ ut ≤ −m2,

and u(0, 0) = 0, where E1 = {(x, t) ∈ R
n+1− : |x|2 − t < 1}. Assume that

0 < μ ≤ u ≤ 1

μ
on ∂pE1.

Then for some r0 ∈ (0, 1) and C > 0, depending only on n, μ, minB1
g and ‖g‖C2(B1)

, we have that

|D2u| ≤ C, in Er0 .

Proof. We only to show that there exists some r > 0, depending only on μ, such that

B2r ⊂ {x ∈ B1 : v(x) = u(x,0) <
μ

2
}. (74)

Since Qμ
2
(0) = Sv(x)(0, μ2 ), from Lemma 2.1 in [12] we have for 0 < λ < 1 that

λB2r ⊂ λQμ
2
(0) ⊂ Q(1−(1−λ)

αn
2 )

μ
2
(0).

If (x, t) ∈ λB2r × [−r1
μ
2 , 0], then

u(x, t) = u(x,0) −
0ˆ

t

ut (x, τ )dτ

≤ (1 − (1 − λ)
αn

2
)
μ

2
− m1t

≤ (1 − (1 − λ)
αn

2
+ m1r1)

μ

2

<
μ

2

for λ and r1 sufficiently small. Taking r0 = min{rλ, r1
2 }, we could get the estimate.

Next, we prove (74). Let v(x) = μ
2 , by the convexity of v,

v(x) ≥ v(x) + Dv(x) · (x − x), ∀x ∈ B1.

In particular,

0 = v(0) ≥ v(x) − Dv(x) · x,
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i.e.,

μ

2
= v(x) ≤ |Dv(x)||x|.

Taking x ∈ ∂B1 such that Dv(x) and x − x point the same direction, we have

1

μ
≥ v(x) ≥ v(x) + |Dv(x)||x − x| = v(x) + |Dv(x)|(1 − |x|),

i.e.,

1
μ

− μ
2

1 − |x| ≥ |Dv(x)|.

Then we obtain

μ

2
≤ |Dv(x)||x| ≤ ( 1

μ
− μ

2 )|x|
1 − |x| ,

that is,

μ2

2
≤ |x|.

Let r = μ2

6 . (74) is established. �
Remark 4.9. In fact, from the regularity theorem obtained by the first author [30], we are able to get the above 
conclusion in weaker condition g ∈ V MOψ(Rn).

Proof of Proposition 4.5. For fixed (x, t) ∈R
n+1− , let

ũ(z, τ ) = u(z + x, τ + t) − (u(x, t) + Du(x, t) · z), in R
n+1− .

Then

ũ(0,0) = 0, ũ ≥ 0 in R
n+1− .

Since

sup
e∈E

sup
(z,τ )∈Rn+1−

�2
e ũ(z, τ ) = sup

e∈E

sup
(x,t)∈Rn+1−

�2
eu(x, t) ≤ γ,

using supe∈E �2
e ũ(0, 0) ≤ γ and the convexity of ũ(·, 0), we have

sup
Br

ũ(x,0) ≤ C(n,m1,m2)γ r2, 1 ≤ γ < ∞.

On the other hand, for z ∈ ∂Br , from supe∈E �2
eũ( z

2 , 0) ≤ γ , we have

ũ(
z

2
+ e,0) + ũ(

z

2
− e,0) − 2ũ(

z

2
,0) ≤ γ |e|2, ∀e ∈ E.

It follows, by the convexity of ũ(·, 0) and the fact that ũ(0, 0) = 0, that

ũ(z,0) ≤ 2ũ(
z

2
,0) + C(n)γ ≤ ũ(z,0) + C(n)γ, ∀z ∈ z

2
+ (−2,2)n.

Applying Lemma 2.1 to ũ( z
2 , 0)/(ũ(z, 0) + C(n)γ ), taking z

|z| as en, we have

ũ(z,0)n = max ũ(
z + s

z
,0) ≥ (

r minRn f

n
− 1)(ũ(z̃,0) + C(n)γ )n.
|s|≤|z|/2 2 |z| m1C(n)[ũ(z̃,0) + γ )]
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If ũ(z, 0) ≤ γ , then

ũ(z,0)n ≥ γ n(
r minRn f

m1C(n)γ n
− 1).

Fix some suitably large r , depending only on n, γ , minRn f and m1, such that

γ n(
r minRn f

m1C(n)γ n
− 1) ≥ 1,

we have ũ(z, 0) ≥ 1. Hence, for such r , we have

min
∂Br

ũ(z,0) ≥ min{γ,1}.

Recall that Er = {(z, τ) : |z|2 − τ ≤ r2}. From

u(x,−r2) ≤ u(x,0) + m1r
2 ≤ C(n,m1,m2)γ r2 + m1r

2 = C(n,m1,m2, γ )r2, x ∈ Br,

we then obtain

max
∂pEr

ũ ≤ C(n,m1,m2, γ )r2.

Similarly, we have

min
∂pEr

ũ ≥ C(n,m1,m2, γ ).

Since

−ũτ detD2ũ(z, τ ) = f (z + x − [x]),
where [x] denotes the integer part of x. We get, by Lemma 4.8, that

|D2u(x, t)| = |D2ũ(0,0)| ≤ C(r).

Combining

0 <
minRn f

m1
≤ detD2u ≤ maxRn f

m2
,

we arrive at the conclusion. �
Proof of Theorem 1.2. For (x0, t0) ∈ R

n+1− , we will show that ut (x0, t0) = ut (0, 0). Since (x0, t0) is arbitrary, u must 
be have the form u(x, t) = τ t + p(x), where τ = ut (0, 0) < 0. Consequently, by (5),

detD2p(x) = detD2u(x, t) = f (x)

−ut (x, t)
= f (x)

−τ
:= f̃ (x).

From Theorem 0.1 in [6], we obtain p(x) is the sum of a quadratic polynomial and a periodic function, i.e.,

p(x) = 1

2
xT Ax + b · x + v(x),

with detA = ffl
�n

i=1[0,ai ] f̃ and v(x + aiei) = v(x). Theorem 1.2 is established.

We may assume u ∈ C4,2. Otherwise, ut is substituted with u(x,t+h)−u(x,t)
h

for h < 0. Differentiating (5) with 
respect to t we get

− (ut )t

ut

− trace((D2u)−1D2ut ) = 0.

Condition (7) and Proposition 4.5 yield a uniformly parabolic equation. And by Harnack inequality [21], we see

|ut (x0, t0) − ut (0,0)|
(|x0|2 + |t0|)α ≤ C

‖ut‖L∞(Rn+1− )

Rα
,

for R > 1, R > 2|x0|, R2 > −2t0 and some 0 < α < 1. Sending R → ∞, we obtain

ut (x0, t0) = ut (0,0). �



1166 W. Zhang, J. Bao / Ann. I. H. Poincaré – AN 35 (2018) 1143–1173
5. Proof of Theorem 1.11

In this section, we give the proof of Theorem 1.11, that is, the local maximum principle for sub-solutions to the 
following equation:

Lφu = ut

φt

+ trace((D2φ(x, t))−1D2u) = 0. (75)

We now recall the notion of normalization of the section Sφ(x0|t0, h) given by (24). Let T be the affine transfor-
mation that normalizes Sφ(x0|t0, h), that is,

Bαn(0) ⊂ T (Sφ(x0|t0, h)) ⊂ B1(0), αn = n−3/2.

And we define the transformation

Tp(x, t) = (T x,
t − t0

h
),

and its corresponding inverse

T −1
p (y, s) = (T −1y, t0 + sh).

In the following, we introduce the notions of normalization of the functions. Set

ψh(y, s) = φ(T −1
p (y, s))

h
= φ(T −1y, t0 + sh)

h
, (76)

and

u∗(y, s) = u(T −1
p (y, s)) = u(T −1y, t0 + sh). (77)

It is easy to check that

S∗ = T (Sφ(x0|t0, h)) = Sψh
(T x0|0,1), (78)

Q∗ = Tp(Qφ(X0, h)) = Qψh
(Tp(X0),1). (79)

In fact, �X0(x) = φ(X0) + Dφ(X0) · (x − x0) is a supporting hyperplane of φ(·, t0) at x = x0 if and only if �(y) =
ψh(Tp(X0)) + (T −1)t

h
Dφ(X0) · (y −T x0) is a supporting hyperplane of ψh(·, t0 + sh) at y = T x0. Since T normalizes 

Sφ(x0|t0, h), we see that |T Sφ(x0|t0, h)| ≈ C(n). Then we have

|detT | · |Sφ(x0|t0, h)| ≈ C(n).

Under the normalization, we get

ut = u∗
s

h
,

D2u = T tD2u∗T ,

D2φ = hT tD2ψhT ⇔ (D2φ)−1 = T −1(D2ψh)
−1(T −1)t

h
,

and

φt = (ψh)s .

It follows from (75) that

1

h

u∗
s

(ψh)s
+ trace(

1

h
T −1(D2ψh)

−1(T −1)t · T tD2u∗T ) = 0.

After simplification, we see that u∗ satisfies the following equation:

u∗
s + trace((D2ψh)

−1D2u∗) = 0. (80)

(ψh)s
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The parabolic Monge–Ampère measure μ generated by φ satisfies the following doubling condition: there exist 
constants C and 0 < α < 1 such that

μ(Qφ(X,h)) ≤ Cμ(αQφ(X,h)) (81)

for every section Qφ(X, h). Let μ∗ denote the parabolic Monge–Ampère measure generated by ψh. It follows that

μ∗(Q∗) =
ˆ

Tp(Qφ(X0,h))

−(ψh)s detD2ψhdyds

=
ˆ

Qφ(X0,h)

−φt detD2φ
(detT )−2

hn

detT

h
dxdt

= 1

hn+1 detT
μ(Qφ(X0, h)).

On the other hand, since μ satisfies doubling condition, μ∗ also satisfies the same one. We then define the normaliza-
tion of φ, φ∗, by

φ∗(y, s) = ψh(y, s) − �(T x0,0)(y) − 1, (82)

where �(T x0,0)(y) is the supporting hyperplane of ψh(·, 0) at y = T x0. Obviously, the parabolic Monge–Ampère 
measure generated by φ∗ is exactly μ∗. Meanwhile φ∗ = 0 on ∂pQ∗, and −1 = φ∗(T x0, 0) ≤ φ∗ ≤ 0 on Q∗. Then 
we have μ∗(Q∗) ≈ C(n, λ, , m1, m2), i.e.,

hn+1 detT ≈ C(n,λ,,m1,m2)μ(Qφ(X0, h)). (83)

Lemma 5.1. ([13], Lemma 4.6) Let Qφ(X0, 1) be a normalized section. There exist positive constants C and p such 
that, if 0 < r1 < r2 < 1 and X′ ∈ Qφ(X0, r1), then

Qφ(X′, r ′) ⊂ Qφ(X0, r2) (84)

for r ′ ≤ C̃(r2 − r1)
p .

Lemma 5.2. ([12], Lemma 2.1 and Theorem 2.1) There exist 0 < τ, λ < 1 such that for all x0, t0 and h > 0,

βSφ(x0|t0, h) ⊂ Sφ(x0|t0, (1 − (1 − β)
αn

2
)h), 0 < β < 1,

and

Sφ(x0|t0, τh) ⊂ λSφ(x0|t0, h).

Lemma 5.3. Given β > 1 there exists C depending only on n, λ, , m1 and m2 such that

μ(Qφ(X,βh)) ≤ Cβ
n+2

2 μ(Qφ(X,h)) (85)

for any section Qφ(X, h).

Proof. By Lemma 3.1 in [11], we have

ε0Sφ(x|t, h) × [−ε1h + t, t] ⊂ Qφ(X,h) ⊂ Sφ(x|t, h) × [−ε2h + t, t], (86)

where ε0, ε1 and ε2 depend on n, m1 and m2. Meanwhile from Corollary 3.2.4 in [10], we obtain

C1h
n
2 ≤ |Sφ(x|t, h)| ≤ C2h

n
2 , (87)

where C1 and C2 depend on n, λ, , m1 and m2.
(85) is a simple consequence of (86) and (87). �
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Lemma 5.4. Let φ satisfy 0 < λ ≤ −φt detD2φ ≤  < ∞ and −m1 ≤ φt (x, t) ≤ −m2. Suppose that X1 = (x1, t1) ∈
Qφ(X0, h). Then there exist θ1 and θ2 depending only on the n, λ1, 2, m1 and m2 such that

Sφ(x0|t0, h) ⊂ Sφ(x1|t1, θ1h), (88)

and

μ(Qφ(X0, h)) ≤ 

λ
μ(Qφ(X1, θ2h)). (89)

Proof. Consider Sφ(x0|t0, 2h) and let T be the affine transformation normalizing Sφ(x0|t0, 2h) and the function

ϕ(y, s) = 1

h
(φ − �X0)(T

−1y, t0 + sh).

Then Tp(Qφ(X0, 2h)) = Qϕ((T x0, 0), 2) is normalized. We have minQϕ((T x0,0),2) ϕ = ϕ(T x0, 0) = 0, ϕ = 2 on 
∂pQϕ((T x0, 0), 2) and −m1 ≤ ϕs ≤ −m2.

Let (y1, s1) ∈ Qϕ((T x0, 0), 1) then

|Dϕ(y1, s1)| ≤ 2

dist ((y1, s1), ∂Qϕ((T x0,0),2)(s1))
≤ C

by Theorem 2.1 in [11]. If y ∈ Sϕ(y0|s0, 1) then ϕ(y, s0) < 1. And since m2 ≤ |ϕs | ≤ m1, we get ϕ(y, s1) < C. Now

|�(y1,s1)(y)| = |ϕ(y1, s1) + Dϕ(y1, s1)(y − y1)| ≤ C1.

Hence

(φ − �(y1,s1))(y, s1) ≤ C + C1 := θ1.

We conclude that y ∈ Sϕ(y1|s1, θ1). Going back to φ we obtain (88) by affine invariance.
By the Lemma 3.1 in [11],

Qφ(X0, h) ⊂ Sφ(x0|t0, h) × (− h

m2
+ t0, t0].

Since (x1, t1) ∈ Qφ(X0, h), we have, by (88),

Sφ(x0|t0, h) ⊂ Sφ(x1|t1, θ1h).

From Lemma 5.2,

Sφ(x1|t1, τ θ1h

τ
) ⊂ λkSφ(x1|t1, θ1h

τk
) ⊂ Sφ(x1|t1, (1 − (1 − λk)

αn

2
)
θ1h

τk
),

where k will be chosen later. For any x ∈ Sφ(x0|t0, h), t1 − t ≤ h
m2

φ(x, t) = φ(x, t1) +
tˆ

t1

φt (x, t ′)dt ′

≤ (1 − (1 − λk)
αn

2
)
θ1h

τk
− m1(t − t1)

≤ (1 − (1 − λk)
αn

2
+ m1τ

k

m2θ1
)
θ1h

τk
.

Then we choose k sufficient large such that 1 − (1 − λk)αn

2 + m1τ
k

m2θ1
< 1. Denoting θ2 = θ1

τk , we obtain

μ(Qφ(X0, h)) ≤ 

λ
μ(Qφ(X1, θ2h)). �

The following proposition establishes a crucial property of the super-solutions of Lφu = 0, namely, the uniform 
critical density of their level sets.
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Proposition 5.5. There are two constants M0 > 1 and 0 < ε0 < 1, depending only on n, λ, , m1 and m2, such that 
for any section Qφ(X0, h) and any nonnegative super-solution u to Lφu = 0 satisfying

inf{u(X) : X ∈ Qφ(X0,
h

2
)} ≤ 1,

we have that

μ({X ∈ Qφ(X0, h) : u(X) < M0}) ≥ ε0μ(Qφ(X0, h)). (90)

Proof. By the previous argument, u∗(y, s) satisfies

u∗
s

(ψh)s
+ trace((D2ψh)

−1D2u∗) ≤ 0, in Q∗, (91)

φ∗(y, s) = 0 on ∂pQ∗; −1 ≤ φ∗(y, s) ≤ 0 in Q∗; (92)

−1 ≤ φ∗(y, s) ≤ −1

2
in Q∗

1/2 = Tp(Qφ(X0),
h

2
)) = Qψh

(T x0,0),
1

2
). (93)

Consider the auxiliary function

w(y, s) = u∗(y, s) + 4φ∗(y, s).

Let �(w−) denote the parabolic concave envelope in Q∗ of the negative part w and Aw be the contact set, i.e.,

Aw = {(y, s) ∈ Q∗ : w < 0, w = −�(w−)}.
By the geometric–arithmetic mean inequality, we obtain the following estimate on Aw

−ws detD2w = −ws detD2w

−φ∗
s detD2φ∗ (−φ∗

s detD2φ∗)

≤ (

−ws−φ∗
s

+ tr((D2φ∗)−1D2w)

n + 1
)n+1(−φ∗

s detD2φ∗)

= (
Lφh

w

n + 1
)n+1(−(ψh)s detD2ψh)

≤ 4n+1(−(ψh)s detD2ψh).

We may assume that

u∗(y′, s′) = inf{u∗(y, s) : (y, s) ∈ Q∗
1/2} ≤ 1 (94)

where (y′, s′) ∈ Q∗
1/2. It was proved in [27] that �(w−) is C1,1 and (supQ∗ w−)n+1 is controlled by the volume of the 

image of Aw under the transformation

(y, s) → (D�(w−)(y, s),�(w−)(y, s) − yD�(w−)(y, s)).

By parabolic Alexandrov–Bakelman estimate [25], we have

(w−(y′, s′))n+1 ≤ C(diam(S∗))n
ˆ

Aw

|(�(w−))s detD2(�(w−))|dyds. (95)

Obviously, w ≥ −�(w−) in Q∗. It is easy to check that on Aw

D2w ≥ D2(−�(w−)) ≥ 0, ws ≤ (−�(w−))s ≤ 0,

and

inf
Q∗

1/2

w ≤ −1

by (93) and (94). It follows that
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1 ≤ C

ˆ

Aw

(−w)s detD2wdyds.

Noting that Aw ⊂ {(y, s) ∈ Q∗ : u∗(y, s) < 4}, we obtain

1 ≤ C

ˆ

{(y,s)∈Q∗:u∗(y,s)<4}
(−(ψh)s detD2ψh)dyds

= C

ˆ

{(x,t)∈Qφ(X0,h):u(x,t)<4}
(−φt

(detT )−2

hn
detD2φ

detT

h
)dxdt

= Cμ({(x, t) ∈ Qφ(X0, h) : u(x, t) < 4})
hn+1 detT

.

Since hn+1 detT ≈ C(n, λ, , m1, m2)μ(Qφ(X0, h)), we have

C(n,λ,,m1,m2)

C
μ(Qφ(X0, h)) ≤ μ({(x, t) ∈ Qφ(X0, h) : u(x, t) < 4}),

i.e.,

ε0μ(Qφ(X0, h)) ≤ μ({(x, t) ∈ Qφ(X0, h) : u(x, t) < M0}),
where ε0 ∈ (0, 1) and M0 = 4. �
Proposition 5.6. Let ε0 and M0 > 1 be the numbers in Proposition 5.5 and δ ∈ (0, 1) be a constant. Let u be a 
nonnegative sub-solution to Lφu = 0 in the section Qφ(X, h) and assume that

μ({Y ∈ Qφ(X,h) : u(Y ) > h′}) ≤ C1(h
′)−1μ(Qφ(X,h)), ∀h′ > 0. (96)

Let ν = M0

M0− 1
2

> 1. Suppose that at a point X0 ∈ Qφ(X, δh/2) and for a positive integer j we have: (a) u(X0) ≥
νj−1M0; (b) ( ρ

h
)

n+2
2 ≥ C1C2

ε0
(
νj M0

2 )−1, for some ρ < C̃(δ/2)ph, where C̃ and p are the exponent in Lemma 5.1. Then

sup
Qφ(X0,ρ)

u > νjM0. (97)

Proof. By renormalizing the section Qφ(X, h) as at the beginning of the proof of Proposition 5.5, we may assume 
that this section is normalized and h = 1. Let us assume by contradiction that (97) is false and let

υ(x, t) = νjM0 − u(x, t)

νj−1(ν − 1)M0
.

By condition (a) we have υ(x0, t0) ≤ 1. Then by Proposition 5.5

μ({X ∈ Qφ(X0, ρ) : υ(X) ≥ M0}) ≤ (1 − ε0)μ(Qφ(X0, ρ)), ρ > 0. (98)

Let

A = {Y ∈ Qφ(X, δ) : u(Y ) >
vjM0

2
}

and

B = {Y ∈ Qφ(X0, ρ) : υ(Y ) ≥ M0}.
We claim that

Qφ(X0, ρ) ⊂ A ∪ B.

In fact, since X0 ∈ Qφ(X, δ/2), by Lemma 5.1 Qφ(X0, ρ) ⊂ Qφ(X, δ) for ρ < C̃(δ/2)p , and note that u(Y ) <
νj M0 ⇔ υ(Y ) > M0 by the definition of υ , the claim is easily obtained. Then by (96) and (98) we have
2
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μ(Qφ(X0, ρ)) ≤ μ(A) + μ(B) ≤ C1(
νjM0

2
)−1μ(Qφ(X, δ)) + (1 − ε0)μ(Qφ(X0, ρ))

< C1(
νjM0

2
)−1μ(Qφ(X,1)) + (1 − ε0)μ(Qφ(X0, ρ))

which implies

μ(Qφ(X0, ρ)) <
C1

ε0
(
νjM0

2
)−1μ(Qφ(X,1)). (99)

On the other hand, since X0 ∈ Qφ(X, 1), by Lemma 5.3 and Lemma 5.4, we have

μ(Qφ(X,1)) ≤ 

λ
μ(Qφ(X0, θ2)) ≤ Cμ(Qφ(X0,1)) = Cμ(Qφ(X0,

1

ρ
ρ))

≤ C2(
1

ρ
)

n+2
2 μ(Qφ(X0, ρ)), for ρ < 1,

that is,

μ(Qφ(X0, ρ)) ≥ ρ
n+2

2

C2
μ(Qφ(X,1)).

From condition (b),

μ(Qφ(X0, ρ)) ≥ C1

ε0
(
νjM0

2
)−1μ(Qφ(X,1)).

This is a contradiction to (99). �
Proposition 5.7. There exists a constant C > 1 depending only on n, λ, , m1 and m2, such that if u is a classical 
nonnegative sub-solution to Lφu = 0 in the section Qφ(X, h) and satisfies (96) then

sup
Qφ(X, δh

3 )

u ≤ C. (100)

Proof. By renormalizing the section, we may assume that Qφ(X, h) is normalized and h = 1. Let us take

ρj = (
C1C2

ε0
)

2
n+2 (

νjM0

2
)−

2
n+2 , j = 1,2, · · ·

Since ν > 1, we pick m sufficiently large so that∑
j≥m

ρ
1/p
j ≤ δ

100
. (101)

We claim that

sup
Qφ(X, δ

4 )

u ≤ νm−1M0.

Suppose that the claim is not true. Then there would exist Xm ∈ Qφ(X, δ4 ) such that u(Xm) > νm−1M0. By the choice 
of ρj we have

μ(Qφ(Xm,ρm)) ≥ C1

ε0
(
νmM0

2
)−1μ(Qφ(X,1)),

then by Proposition 5.6,

sup
Q (X ,ρ )

u > νmM0.

φ m m
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Consequently, there exists Xm+1 ∈ Qφ(Xm, ρm) such that u(Xm+1) > νmM0. Now, Xm ∈ Qφ(X, δ4 ) then by 
Lemma 5.1 Xm+1 ∈ Qφ(X, δ4 + (

ρm

C̃
)1/p). Again, by the choice of ρj and Proposition 5.6, we would have a point 

Xm+2 ∈ Qφ(Xm+1, ρm+1) such that u(Xm+2) > νm+1M0, and by Lemma 5.1 we would get Xm+2 ∈ Qφ(X, δ4 +
(
ρm

C̃
)1/p + (

ρm+1

C̃
)1/p).

We can then repeat this process, getting a sequence of points {Xj}∞j=m such that

u(Xj ) ≥ νj−1M0, Xj ∈ Qφ(Xj−1, ρj−1) ⊂ Qφ(X,
δ

4
+ (

ρm

C̃
)1/p + · · · + (

ρj−1

C̃
)1/p). (102)

From (101), we obtain Xj ∈ Qφ(X, 104
400δ) ⊂ Qφ(X, δ3 ). Since ν > 1, it follows that {u(Xj )} would be an unbounded 

sequence in Qφ(X, δ3 ). This is impossible because u is continuous in Qφ(X, δ
2 ). �

Proof. (Proof of Theorem 1.11) By normalizing the section Qφ(X, h), we consider

u∗
ε = u∗

‖u∗‖L1(Q∗,dμ∗) + ε
.

We have ‖u∗
ε‖L1(Q∗,dμ∗) ≤ 1 and

μ∗({Y ∈ Q∗ : u∗
ε(Y ) > h′}) ≤ 1

h′ ‖u∗
ε‖L1(Q∗,dμ∗)

≤ C1(h
′)−1μ∗(Q∗), ∀h′ > 0.

Applying Proposition 5.6 and Proposition 5.7, we get

sup
Q∗

δ/3

u∗
ε ≤ C, (103)

that is,

sup
Q∗

δ/3

u∗ ≤ C(‖u∗‖L1(Q∗, dμ∗) + ε),

after letting ε → 0,

sup
Q∗

δ/3

u∗ ≤ C‖u∗‖L1(Q∗, dμ∗). (104)

Rescaling u∗, we obtain

sup
Qφ(X, δh

3 )

u ≤ C‖u‖L1(Qφ(X,h), dμ)

μ(Qφ(X,h))
. (105)

This theorem is proved. �
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