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Abstract

We consider d × d tensors A(x) that are symmetric, positive semi-definite, and whose row-divergence vanishes identically. We 
establish sharp inequalities for the integral of (detA)

1
d−1 . We apply them to models of compressible inviscid fluids: Euler equations, 

Euler–Fourier, relativistic Euler, Boltzman, BGK, etc. We deduce an a priori estimate for a new quantity, namely the space–time 
integral of ρ

1
n p, where ρ is the mass density, p the pressure and n the space dimension. For kinetic models, the corresponding 

quantity generalizes Bony’s functional.
© 2017 
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Notations. The integer d ≥ 2 is the number of independent variables, which are often space–time coordinates. It 
serves also for the size of square matrices. If 1 ≤ j ≤ d and x ∈ Rd are given, we set x̂j = (. . . , xj−1, xj+1, . . .) ∈
Rd−1; the projection x �→ x̂j ignores the j -th coordinate. The transpose of a matrix M is MT . If A ∈ Md(R), its 
cofactor matrix Â satisfies

ÂT A = AÂT = (detA)Id, det Â = (detA)d−1.

Because we shall deal only with symmetric matrices, we have simply ÂA = A Â = (detA)Id . The space of d × d

symmetric matrices with real entries is Symd . The cones of positive definite, respectively positive semi-definite, 
matrices are SPDd and Sym+

d . If u ∈ Rd , u ⊗ u ∈ Sym+
d denotes the rank-one matrix of entries uiuj .

The unit sphere of Rd is Sd−1. The Euclidean volume of an open subset � of Rd is denoted |�|. If the boundary 
∂� is rectifiable, we denote the same way |∂�| its area, and ds(x) the area element. For instance, the ball Br of 
radius r and its boundary, the sphere Sr , satisfy |Br | = r

d
|Sr |. If � has a Lipschitz boundary, its outer unit normal �n

is defined almost everywhere.
If f : � →R is integrable, its average over � is the number

−
ˆ

�

f (x)dx := 1

|�|
ˆ

�

f (x)dx.
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Given a lattice � of Rd , and f : Rd → R a �-periodic, locally integrable function, we denoteˆ

Rd/�

f (x) dx

the value of the integral of f over any fundamental domain. We define as above the average value

−
ˆ

Rd/�

f (x) dx.

For our purpose, a tensor is a matrix-valued function x �→ T (x) ∈ Mp×q(R). If q = d and if the derivatives make 
sense (say as distributions), we form

DivT =
⎛
⎝ d∑

j=1

∂j tij

⎞
⎠

1≤i≤p

,

which is vector-valued. We emphasize the uppercase letter D in this context. We reserve the lower case operator div
for vector fields.

If 1 ≤ p ≤ ∞, its conjugate exponent is p′.
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1. Introduction

We first define the mathematical object under consideration.

Definition 1.1. Let � be an open subset of Rd . A divergence-free positive symmetric tensor (in short, a DPT) is a 
locally integrable tensor x �→ A(x) over � with the properties that A(x) ∈ Sym+

d almost everywhere, and DivA = 0.

The following fact is obvious.

Lemma 1.1 (Congruence.). If A is a DPT and P ∈ GLd(R) is given, then the tensor

B(y) := PA(P −1y)P T

is also a DPT.

1.1. Motivations: Where do the divergence-free positive symmetric tensors occur?

Most of our examples, though not all of them, come from fluid dynamics, where a DPT contains a stress tensor.

Compressible gas. In space dimension n ≥ 1, a gas is described by a mass density ρ ≥ 0, a velocity u and a pressure 
p ≥ 0. These fields obey the Euler equations (conservation of mass and momentum)

∂tρ + divy(ρu) = 0, ∂t (ρu) + Divy(ρu ⊗ u) + ∇yp = 0.

Here x = (t, y) and d = 1 + n. The tensor

A(t, y) =
(

ρ ρuT

ρu ρu ⊗ u + pIn

)
is a DPT.
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Rarefied gas. It is described by a density function f (t, y, v) ≥ 0 where v ∈Rn is the particle velocity. The evolution 
is governed by a kinetic equation

(∂t + v · ∇y)f = Q[f (t, y, ·)].
The left-hand side is the transport operator, while the right-hand side, a non-local operator acting on the velocity 
variable, accounts for the interaction between particles. This class contains the Boltzman equation, as well as the 
discrete kinetic models or the BGK model. When the collisions are elastic, the mass, momentum and energy are 
conserved. This is reflected by the propertiesˆ

Rn

Q[g](v) dv = 0,

ˆ

Rn

Q[g](v)v dv = 0,

ˆ

Rn

Q[g](v)|v|2 dv = 0

for every reasonable function g(v). Integrating the kinetic equation against dv, v dv and 1
2 |v|2dv, we obtain again, 

at least formally, the conservation laws

∂tρ + divym = 0, ∂tm + DivyT = 0, ∂tE + divyQ = 0,

where

ρ(t, y) :=
ˆ

Rn

f (t, x, v) dv, m(t, y) :=
ˆ

Rn

f (t, x, v) v dv, E :=
ˆ

Rn

f (t, y, v)
1

2
|v|2dv

are the mass density, linear momentum and energy, while

T :=
ˆ

Rn

f (t, y, v) v ⊗ v dv, Q :=
ˆ

Rn

f (t, y, v)
1

2
|v|2v dv

are fluxes. The tensor

A(t, y) =
(

ρ mT

m T

)
is again a DPT.

Steady / self-similar flows. Let us go back to gas dynamics. If the flow is steady, then on the one hand div(ρu) = 0, 
and on the other hand Div(ρu ⊗ u) + ∇p = 0. Therefore the tensor A = ρu ⊗ u + pIn is a DPT in the physical 
domain � ⊂Rn.
If instead the flow is self-similar, in the sense that ρ, u and p depend only upon ξ = y

t
(this is reminiscent to the 

multi-D Riemann Problem), then it obeys to the reduced system

divξ (ρv) + nρ = 0, Divξ (ρv ⊗ v) + ∇ξp + (n + 1)ρv = 0, (1)

where v := u(ξ) − ξ is the pseudo-velocity. The tensor A := ρv ⊗ v + pIn is not a DPT, because of the source 
term (n + 1)ρv. However it is positive semi-definite, and we shall be able to handle such a situation.

Relastivistic gas dynamics. In the Minkowski space, the Euler equations write DivT = 0 where T is the stress-
energy tensor. This is another instance of a DPT.

Periodic homogenization of elliptic operators. This is a completely different context, for which we refer to [1,23]. 
A �-periodic symmetric tensor A(x) is given, which satisfies the bounds

α|ξ |2 ≤ ξT A(x)ξ ≤ β|ξ |2, ∀ ξ ∈Rd ,

where 0 < α ≤ β < +∞ are constants. The differential operator Lu = div(A∇u) is uniformly elliptic. Given a vector 
ξ , the problem

div(A(ξ + ∇u)) = 0

admits a unique �-periodic solution uξ ∈ H 1
loc , up to an additive constant. A PDE such as (4) below governs the tem-

perature or the electric potential at equilibrium in a periodic non-homogeneous medium. The macroscopic behaviour 
of the medium is well described by the effective tensor Aeff, whose definition is
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Aeffξ = −
ˆ

Rd/�

A(x)(ξ + ∇uξ ) dx.

An equivalent formulation is

ξT Aeffξ = −
ˆ

Rd/�

(ξ + ∇uξ )
T A(x)(ξ + ∇uξ ) dx = inf

w∈H 1
per

−
ˆ

Rd/�

(ξ + ∇w)T A(x)(ξ + ∇w)dx. (2)

In particular, Aeff ∈ SPDd . The effective tensor is known to obey the sharp bounds

A− ≤ Aeff ≤ A+ (3)

where A± are the harmonic and arithmetic means of A(x):

A+ = −
ˆ

Rd/�

A(x)dx, A− =
⎛
⎜⎝ −

ˆ

Rd/�

A(x)−1 dx

⎞
⎟⎠

−1

.

Proposition 1.1. The effective tensor Aeff equals the upper bound A+ if, and only if, A is a DPT.

Although this is a classical and simple fact, we recall the proof. Taking w ≡ 0 in (2), we obtain the upper bound 
ξT Aeffξ ≤ ξT A+ξ . If Aeff = A+, this implies that the infimum is attained precisely at constants; in other words 
∇uξ ≡ 0. But then div(A(ξ + ∇uξ )) = 0 writes div(Aξ) = 0. This being true for every ξ , we have DivA = 0. The 
converse is immediate: if DivA = 0, then uξ is just a constant, and therefore ξT Aeffξ = ξT A+ξ .

The role of the effective tensor is the following. Given f ∈ H−1(�) and a small scale ε > 0, the solution uε of the 
Dirichlet boundary-value problem

div
(
A(

x

ε
)∇uε

)
= f (x), uε|∂� = 0 (4)

remains bounded in H 1(�) and converges weakly as ε → 0 towards the solution ū of the same problem with the 
effective matrix:

div (Aeff∇ū) = f (x), ū|∂� = 0.

When f ∈ L2(�) instead, the sequence uε remains bounded in H 2(�) only if Aeff coincides with A+, see [7]. This 
is due to the fact that the first corrector in the expansion of uε in terms of ε becomes trivial.

1.1.1. When divergence-free symmetric tensors are not positive
It is fair to list a few important examples in which our approach does not apply because of the lack of positiveness.

Compressible Navier–Stokes equations. The system that governs a viscous compressible fluid differs slightly from 
the Euler equation. The conservation of mass remains the same, but the conservation of momentum becomes

∂t (ρu) + Divy(ρu ⊗ u − λ(∇uT + ∇u)) + ∇y(p − μdivu) = 0.

The divergence-free tensor(
ρ ρuT

ρu ρu ⊗ u − λ(∇uT + ∇u) + (p − μdivu) In

)
is not positive in general.

Mean-field equations. One form of kinetic models is

(∂t + v · ∇y)f + F(t, y) · ∇vf = 0, (5)

where the force F is coupled to the density ρ = ´
f dv through F = −∇yE,
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E := φ ∗y ρ =
ˆ

Rn

φ(y − z)ρ(z) dz.

The potential φ is a characteristic of the model. For instance a Coulomb force or the gravity yield the coupling

�E = βρ

where β is a constant that can be positive (attractive force) or negative (repulsive force). With this choice, (5) implies 
formally the hydrodynamic system

∂tρ + divym = 0, ∂tm + DivyT = 0,

where as usual ρ and m are the moments of f of order 0 and 1, and

T =
ˆ

Rn

f (t, y, v)v ⊗ v dv + 1

β
(F ⊗ F − 1

2
|F |2In).

Because T does not have a definite sign, the tensor 
(

ρ mT

m T

)
is not positive in general.

Added in proofs. Here is a short list of divergence-free symmetric tensors in other models from physics or mechanics. 
1) The energy–momentum tensor of the electromagnetic field in vacuum, when normalizing the light speed to c = 1; 
its symmetry is related to the Lorentz invariance of the Lagrangian ω �→ L(ω) where ω = (E · dx) × dt + (B ×
dx) · dx denotes the electromagnetic field. The Lagrangian needs not be quadratic. 2) The mass-momentum tensor 
in a Schrödinger equation. 3) The energy–momentum tensor in hyper-elasticity, written in Eulerian coordinates; the 
symmetry is related to the conservation of angular momentum (frame indifference). Only the last one may be positive 
semi-definite; this arises when the stored energy ε(F T F ) (F the deformation tensor) is a monotonous non-increasing 
function of C := FT F . This usually requires that the medium be compressed, C ≤ I3.

1.2. �-concave functions

Let K be a convex subset of some space RN and F : K → R be a continuous function. We consider measurable 
functions u : � → K (say, bounded ones). Let us recall that F is concave if, and only if the inequality

−
ˆ

�

F(u)dx ≤ F

⎛
⎝−
ˆ

�

udx

⎞
⎠ (6)

for every such u. This is just a reformulation of Jensen’s inequality. In particular, the equality holds true for every u
if, and only if F is affine.

A general question, first addressed by F. Murat and L. Tartar [18,22] is whether a differential constraint imposed 
to u allows some non-concave functions F to satisfy (6). For instance, the following is known [3]. If � = Rd/�, 
and u = ∇φ (hence F applies to d × m matrices, and curlu = 0) is �-periodic, then the equality holds true in (6)
whenever F is a linear combination of minors. And the inequality is valid for every polyconcave function, that is a 
concave function of all the minors.

The same question is addressed here, when RN = Symd , the cone K is Sym+
d and the differential constraint 

is DivA = 0. Every concave function satisfies it, in a trivial manner because the inequality does not involve the 
differential constraint. A fundamental example of that situation is the function

A �→ (detA)
1
d ,

which is concave over Sym+
d (see [19] Section 6.6).

A necessary condition. Let us recall a construction due to Tartar [22]. Let B, C ∈ Sym+
d be given, such that C − B

is singular (that is det(C − B) = 0). Then there exists a non-zero vector ξ such that (C − B)ξ = 0. This ensures that 
for every characteristic function g :R → {0, 1}, the tensor
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A(x) := g(x · ξ)B + (1 − g(x · ξ))C

is a DPT. If F satisfies (6) then in particular we have

−
ˆ

Rd/Zd

F (g(x · ξ)B + (1 − g(x · ξ))C)dx ≤ F

⎛
⎜⎝ −

ˆ

Rd/Zd

(g(x · ξ)B + (1 − g(x · ξ))C)dx

⎞
⎟⎠ .

With θ the mean value of g, this is

θF (B) + (1 − θ)F (C) ≤ F(θB + (1 − θ)C).

The restriction of F to the segment [B, C] must therefore be concave. We say that F is �-concave, where � is the 
cone of singular symmetric matrices.

Let us go back to the trivial example of A �→ (detA)
1
d . Is it possible to improve the exponent 1

d
while keeping the 

�-concavity? The answer is positive:

Proposition 1.2. For an exponent α > 0, the map

A �−→ (detA)α

Sym+
d → R+

is �-concave if, and only if α ≤ 1
d−1 .

Proof. Let A, A +B ∈ Sym+
d be such that detB = 0 and denote f (t) = (det(A + tB))

1
d−1 . To prove that f is concave 

over [0, 1], it is enough to prove that f (t) ≤ f (0) + tf ′(0). Using a congruence, we may assume that A = Id . Another 
congruence, by an orthogonal matrix P , allows us to assume that in addition, B is diagonal: B = diag(b1, . . . , bd−1, 0). 
Then, using the geometric–arithmetic mean inequality,

f (t) =
d−1∏
j=1

(1 + tbj )
1

d−1 ≤ 1

d − 1

d−1∑
j=1

(1 + tbj ) = f (0) + tf ′(0).

If α < 1
d−1 , then the function Fα under consideration is a composition φα ◦F 1

d−1
where φα(s) = sα(d−1). Since φα

is concave increasing and F 1
d−1

is concave, Fα is concave.

Conversely, if Fα is �-concave and B = diag(b1, . . . , bd−1, 0) is singular, diagonal with all bj > 0, then

t �→
d−1∏
j=1

(1 + tbj )
α

must be concave. In particular it must be sub-linear, which implies α ≤ 1
d−1 . �

Remark added in proof
When a system DivA = 0 represents some physical phenomenon, then we can attribute physical dimensions to the 

coordinates xj and the components aij , respectively Lj (for instance time and length) and Mij . The consistency of the 
ith conservation law tells us that Mij = miLj for some dimension mi . If the tensor is symmetric, then miLj = mjLi

ensures that mi = RLi for some dimension R. Then detA is homogeneous of dimension RdV 2, where V is a volume. 
It is therefore natural, from a physical point of view, to consider integrals of powers of this determinant.

1.3. Two special families of DPTs

Once we know that Fα passes the test of �-concavity, it becomes natural to ask whether it satisfies a functional 
inequality, such as (6) when � =Rd/�, or something similar when � is a bounded domain.

Clues are provided by two particular cases:
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Diagonal case. A diagonal DPT is a map x �→ diag(g1(x̂1), . . . , gd(x̂d)), where the j -th function (non-negative) does 
not depend upon xj . Such a tensor is periodic whenever the gj ’s are so, and the lattice is parallel to the axes. This 
situation enjoys an inequality due to Gagliardo [12]:

−
ˆ

Rd/�

⎛
⎝ d∏

j=1

gj (x̂j )

⎞
⎠

1
d−1

dx ≤
d∏

j=1

⎛
⎜⎝ −

ˆ

Rd−1/�j

gj (x̂j ) dx̂j

⎞
⎟⎠

1
d−1

, (7)

where the lattice �j is the projection of � on the hyperplane xj = 0. The right-hand side can be viewed as the 
average of a power of detA, while the left-hand side is the power of the determinant of the average matrix.

Cofactors of Hessian. Let φ ∈ W 2,d−1(�) be a convex function over a convex domain �. Let us form its Hessian 
matrix ∇2φ, and then the positive symmetric tensor A = ∇̂2φ.

Lemma 1.2. The tensor defined above is a DPT.

The proof consists in remarking that the differential form ωj := ∑
i aij dxj is nothing but the exterior product 

· · · ∧ dφj−1 ∧ dφj+1 ∧ · · · , where only the factor dφj has been omitted. This (d − 1)-form is obviously closed, 
and this translates into the identity 

∑
i ∂iaij = 0.

It turns out that (detA)
1

d−1 = det∇2φ is itself an exterior derivative, for instance that of φjωj . Therefore

ˆ

�

(detA)
1

d−1 dx

is actually a boundary integral.
In the periodic case, we assume that only ∇2φ is �-periodic, and we write φ(x) = 1

2xT Sx + linear + ψ(x) where 
ψ is �-periodic. Then we have

−
ˆ

Rd/�

(detA)
1

d−1 dx = −
ˆ

Rd/�

det(S + ∇2ψ)dx = detS,

because the determinant of S + ∇φ2 is the sum of detS and a linear combination of minors of ∇2φ, each one 
being a divergence, thus integrating to zero. On the other hand we have

−
ˆ

Rd/�

A(x)dx = −
ˆ

Rd/�

̂S + ∇2ψ = Ŝ

for the same reason. We infer a remarkable identity:

Proposition 1.3. The formula A = ̂S + ∇2ψ , where ψ is �-periodic and x �→ 1
2 xT Sx +ψ(x) is convex, provides 

a DPT, which satisfies

−
ˆ

Rd/�

(detA)
1

d−1 dx =
⎛
⎜⎝det −

ˆ

Rd/�

A(x)dx

⎞
⎟⎠

1
d−1

.

Both particular cases above are given in a periodic context but have counterparts in bounded convex domains. We 
shall explain below how they embed into results that are valid for every DPT. The version in a bounded convex domain 
will involve the trace A�n, an object that makes sense just because of the divergence-free assumption.
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Outline of the paper
The next two sections contain our results. Up to our knowledge, they have not been uncovered so far, perhaps 

because the DPT structure has been overlooked, or has been examined only at the linear level. Our results are two-fold. 
On the one hand we make general statements about DPTs, which are proved in Sections 4 and 5. The moral of these 
results is that the row-wise divergence operator displays a small amount of ellipticity; when a control of DivA is 
coupled with the assumption of symmetry and semi-definiteness, then detA enjoys a slightly better integrability than 
A itself. On the other hand, we give several applications to gas dynamics. They concern either the Euler system of a 
compressible fluid, or the kinetic models, for instance that of Boltzmann. Details are given in Section 6.

2. General statements

We present two abstract results about DPTs, which cover the periodic case and that of a convex bounded domain. 
The central object here is the application F 1

d−1
:

A �−→ (detA)
1

d−1 ,

Sym+
d −→ R+.

2.1. Periodic case

Theorem 2.1. Let the DPT x �−→ A(x) be �-periodic, with A ∈ L1(Rd/�). Then (detA)
1

d−1 ∈ L1(Rd/�) and there 
holds

−
ˆ

Rd/�

(detA(x))
1

d−1 dx ≤
⎛
⎜⎝det −

ˆ

Rd/�

A(x)dx

⎞
⎟⎠

1
d−1

. (8)

An easy consequence is the following, which displays a little gain of integrability.

Corollary 2.1. Let � be an open set of Rd . Let Ā ∈ SPDd be given, and A be a DPT over �, such that A − Ā is 
compactly supported. Then

−
ˆ

�

A(x)dx = Ā and −
ˆ

�

(detA(x))
1

d−1 dx ≤
⎛
⎝det −

ˆ

�

A(x)dx

⎞
⎠

1
d−1

.

The inequality (8) of Theorem 2.1 is actually sharp:

Proposition 2.1. In the situation of Theorem 2.1, suppose that x �→ detA is a smooth function, bounded by below 
and by above. Then the equality case in (8) is achieved if, and only if A = ∇̂2θ , where θ is a convex function whose 
Hessian is periodic.

We expect that the assumptions that detA is smooth and bounded below by a positive constant can be removed, 
though we do not dwell into more details here.

Another interesting consequence is the following (recall that d ≥ 2).

Corollary 2.2. Let θ ∈ W
2,d−1
loc (Rd) be a convex function, whose Hessian is �-periodic. Then det D2θ is integrable 

over Rd/�.

Proof. Just apply Theorem 2.1 to A = D̂2θ . �
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Within the context of periodic homogenization, (8) applies to the case where Aeff = A+. One might wonder whether 
it is a particular case of a more general inequality, once Aeff differs from A+. We leave this question open, but it is 
easy to rule out the tempting inequality

−
ˆ

Rd/�

(detA(x))
1

d−1 dx
?≤ (detAeff)

1
d−1 . (9)

As a matter of fact, the upper bound in (3) and the monotonicity of the determinant tell us that

detAeff ≤ det −
ˆ

Rd/�

A(x)dx.

If the inequality (9) was true, then the average of F(A) := (detA)
1

d−1 would be bounded above by F of the average, 
for every x �→ A(x) taking values in SPDd . This would imply the concavity of F = F 1

d−1
over SPDd , which we know 

is false (Proposition 1.2).

2.1.1. Extension to general symmetric positive tensors
When A is not divergence-free, we still have the following surprising result.

Theorem 2.2. Let x �−→ A(x) be �-periodic, taking values in Sym+
d . Assume that A ∈ L1(Rd/�) and DivA is a 

bounded measure over Rd/�. Then

(detA)
1

d−1 ∈ L1(Rd/�).

Theorem 2.2 can be compared with Sobolev embeddings and elliptic regularity. If the assumption that DivA is 

a bounded measure is replaced by the fact that every derivative ∂iajk is a bounded measure, then A ∈ L
d

d−1 and 
the conclusion follows immediately. Even if we only assume that P(D)A is integrable for some elliptic first-order 

differential operator P(D), we know that A ∈ L
d

d−1 −ε for every ε > 0. The Theorem says that the operator Div
displays a (very weak) form of ellipticity, when combined to the symmetry and positivity of the tensor.

This comparison leads us to the following question, which we leave open.

Open Question 2.1. In Theorem 2.2, assume instead that A and DivA belong to Lp(Rd/�) with 1 < p < d . Is it true 
that (detA)

1
d belongs to Lp∗

(Rd/�) with 1
p∗ = 1

p
− 1

d
?

2.2. Bounded domain

We assume now that the domain � is convex. We recall that if a divergence-free vector field �q belongs to Lp(�), 

then it admits a normal trace γν �q which belongs to the Sobolev space W− 1
p

,p
(∂�). It is defined by duality, by the 

formula

〈γν �q, γ0w〉 =
ˆ

�

�q · ∇w dx, ∀w ∈ W 1,p′
(�),

where γ0 is the standard trace operator from W 1,p′
(�) into W

1
p

,p′
(∂�).

When �q is a smooth field, γν �q coincides with the pointwise normal trace �q|∂� · �n. We say that �q has an integrable 
normal trace if the distribution γν �q coincides with an integrable function; then we write �q · �n instead. For instance, 
and this is the case below, the row-wise trace γνA of a DPT of class Ld(�) makes sense in W− 1

d
,d (∂�), and we 

denote this trace A�n when it is integrable.

Theorem 2.3. Let � be a bounded convex open subset in Rd . Let A be a DPT over � that belongs to L
d

d−1
loc (Rd) and 

has an integrable normal trace. Then there holds
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ˆ

�

(detA(x))
1

d−1 dx ≤ 1

d|Sd−1| 1
d−1

‖A�n‖
d

d−1

L1(∂�)
. (10)

If A is only symmetric non-negative, but DivA is a bounded measure (therefore A is not a DPT), then we haveˆ

�

(detA(x))
1

d−1 dx ≤ 1

d|Sd−1| 1
d−1

(‖A�n‖L1(∂�) + ‖DivA‖M(�)

) d
d−1 , (11)

where the second norm is the total mass of the measure |DivA|.

The inequalities (8) and (10) can be viewed as non-commutative analogues of the Gagliardo inequality (7).
Remark that a somehow more elegant form of (10) happens when � is a ball:

−
ˆ

Br

(detA(x))
1

d−1 dx ≤
⎛
⎜⎝−
ˆ

Sr

|A�n|ds(x)

⎞
⎟⎠

d
d−1

. (12)

Once again, the inequality (10) is sharp, and we have

Proposition 2.2. In the situation of Theorem 2.3, suppose that x �→ detA is a smooth function, bounded by below and 
by above. Then the equality case in (10) is achieved if, and only if A = ∇̂2θ , where θ is a convex function such that 
∇θ(�) is a ball centered at the origin.

On a qualitative side, we have the following result.

Proposition 2.3. Let � be a bounded open subset of Rd with a Lipschitz boundary. Let A be a DPT over �. If 
�nT A�n ≡ 0 over ∂�, then A vanishes identically over �.

2.2.1. Gain of integrability
The following result is more in the spirit of Theorem 2.1.

Theorem 2.4. Let � be an open domain of Rd , and A be a symmetric, positive semi-definite tensor of class L1
loc(�)

and such that DivA is locally a bounded measure. Then

(detA)
1

d−1 ∈ L1
loc(�).

It is interesting to compare this statement with what we obtain when applying S. Müller’s Theorem in [17] (see 
also Coifman et al. [6]) to a vector field u = ∇θ and A := D̂2θ . Theorem 1 in [6] tells us that if θ ∈ W

2,d
loc , then 

f := det D2θ belongs locally to the Hardy space H1 (a strict subspace of the L1
loc that the Hölder inequality would 

give us). If moreover θ is convex, then f ≥ 0 and this amounts to saying that f log(1 + f ) ∈ L1
loc, which is Müller’s 

statement. If instead we assume that every minor of D2θ of size d −1 is locally integrable (this is achieved for instance 

if θ ∈ W
2,d−1
loc ), then A ∈ L1

loc and Theorem 2.4 tells us that (detA)
1

d−1 = f ∈ L1
loc. Our result is actually implicit in 

[17], where the inequality (2) meets our Theorem 2.3 (10) when the vector field is a gradient, except for a non-optimal 
constant; that inequality is attributed to H. Federer, Thm. 4.5.9 (31) [10].

It would be interesting to understand the gain of integrability when θ ∈ W
2,p

loc where p ∈ (d − 1, d).

2.2.2. Application to the isoperimetric inequality
Taking A(x) ≡ Id , which is obviously a DPT, (10) yields

|�| ≤ 1

d|Sd−1| 1
d−1

|∂�| d
d−1 ,

that is
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|�|
|B1| ≤

( |∂�|
|S1|

) d
d−1

.

Although the proof above works only for convex domains, it can be adapted to general domains E. The following 
argument is due to G. de Philippis (personal communication). Choose a ball �, which strictly contains E. Apply (11)
to the tensor A := 1EId , noticing the identity DivA = ∇1E . We obtain

|E| ≤ 1

d|Sd−1| 1
d−1

‖DivA‖
d

d−1
M(�)

= 1

d|Sd−1| 1
d−1

per(E)
d

d−1 ,

where per(E) is the perimeter of E in the sense of Caccioppoli. This inequality is the isoperimetric one.
We shall see that the proof of Theorems 2.1 and 2.3 are based upon mass transportation. A link between isoperi-

metric inequalities and mass transportation had already been noted by M. Gromov [13]. However, Gromov’s proof 
involves Knothe’s map, whereas ours uses Brenier’s map of optimal transport; it is therefore closer to that of Figalli 
et al. [11].

3. Applications to gas dynamics

We intend to apply or adapt Theorem 2.3 in a situation where the first independent variable is a time variable, and 
the other ones represent spatial coordinates. We therefore set d = 1 + n and x = (t, y) where t ∈ R and y ∈ Rn. We 
write a DPT blockwise

A(t, y) =
(

ρ mT

m S

)
,

where ρ ≥ 0 and m can be interpreted as the densities of mass and linear momentum. We begin with an abstract result.

Theorem 3.1. Let A be a DPT over a slab (0, T ) ×Rn. We assume

A ∈ L1((0, T ) ×Rn) ∩ L
d

d−1
loc ((0, T ) ×Rn).

There exists a constant cn, depending only upon the space dimension (but neither on T , nor on A) such that, with the 
notations above

T̂

0

dt

ˆ

Rn

(detA)
1
n dy ≤ cn

(‖m(0, ·)‖L1(Rn) + ‖m(T , ·)‖L1(Rn)

)⎛
⎝ˆ

Rn

ρ(0, y) dy

⎞
⎠

1
n

.

3.1. Euler equations

For a compressible, inviscid gas, the flux of momentum is given by

S = m ⊗ m

ρ
+ pIn,

where the pressure p ≥ 0 is given by an equation of state. The latter is expressed in terms of the density ρ (if the gas 
is barotropic or isentropic) or of the density and the temperature ϑ (adiabatic gas). In both cases, the Euler system 
DivA = 0 accounts for the conservation of mass and momentum, and is supplemented by an energy balance law

∂tE + divy

[
(E + p)

m

ρ

]
≤ 0, E := |m|2

2ρ
+ ρe,

where e ≥ 0 is the internal energy per unit mass. This inequality is an equality in the adiabatic case. Its main role is to 
provide an a priori energy estimate

sup
t≥0

ˆ

Rn

E(t, y) dy ≤ E0 :=
ˆ

Rn

E(0, y) dy,

whenever the total energy E0 at initial time is finite.
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For reasonable equations of state, like those of a polytropic gas (p = aργ for a constant γ > 1) or a perfect gas 
(p = (γ − 1)ρe), the internal energy per unit volume ρe dominates the pressure:

p ≤ Cρe (13)

for some finite constant C.
For a flow whose mass and energy are locally finite (a rather reasonable assumption), the tensor A is locally 

integrable. Applying Theorem 2.4, we deduce that ρ
1
n p is locally integrable in space and time. This is already a 

different and somehow better integrability than the ones obtained directly from the conservation of mass and energy 
decay.

If in addition the total energy E0 is finite, we have that S ∈ L1((0, T ) ×Rn). If the total mass

M0 :=
ˆ

Rn

ρ(0, y) dy

is finite too, then A ∈ L1((0, T ) ×Rn) (remark that the total mass remains constant in time). Applying Theorem 3.1
to the Euler system, we infer the estimate

T̂

0

dt

ˆ

Rn

ρ
1
n p dy ≤ 2cn M

1
2 + 1

n

0 (2E0)
1/2.

This inequality can be sharpened after remarking that the left-hand side does not depend upon the Galilean frame, 
while the right-hand side, more precisely E0, does. We may replace in the inequality above the initial velocity u0 =
m
ρ
(0, ·) by u0 − �c where �c is an arbitrary constant (this constant represents the velocity of a Galilean frame with respect 

to a reference frame). Eventually, we may choose the vector �c which minimizes the resulting quantityˆ

Rn

(
1

2
ρ0|u0 − �c|2 + ρ0e0

)
dx.

This yields the following result.

Theorem 3.2. We assume that the equation of state implies (13).
Consider an admissible (in the sense above) flow, solution of the Euler equations of a compressible fluid in (0, T ) ×

Rn. We assume a finite mass M0 and energy E0, and that the tensor A belongs to L
d

d−1
loc ((0, T ) × Rn). Then the 

following estimate holds true:

T̂

0

dt

ˆ

Rn

ρ
1
n p dy ≤ 2cn M

1
n

0 D
1
2
0 , (14)

where

D0 :=
ˆ

Rn

ρ0dy

ˆ

Rn

(ρ0|u0|2 + 2ρ0e0) dy −
∣∣∣∣∣∣
ˆ

Rn

ρ0u0dy

∣∣∣∣∣∣
2

.

Remarks.

• A careful examination gives the following value of the constant in (14):

cn = (n + 1)
1

2n
− 1

2

|Sn| 1
n
√

n
.

• For full gas dynamics, the quantity D0 is an invariant of the flow. For a barotropic flow, the energy may decay, 
but the mass and linear momentum are preserved; the corresponding quantity D(t) is therefore non-increasing.
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• The kinetic part in D0 can be written in a more symmetric way:

ˆ

Rn

ρ0dy

ˆ

Rn

ρ0|u0|2dy −
∣∣∣∣∣∣
ˆ

Rn

ρ0u0dy

∣∣∣∣∣∣
2

= 1

2

ˆ

Rn

ˆ

Rn

ρ0(y)ρ0(y
′)|u0(y

′) − u0(y)|2dy dy′,

in which the independence upon the choice of the Galilean frame becomes obvious.
• We did not make any local hypothesis about the equation of state. We did not even ask for hyperbolicity. Thus 

(14) could be used to control the blow-up for models with phase transition (Van der Waals gas). Our assumption 
(13) is merely of a global nature. For instance, if the gas is barotropic, then ρ �→ p, e are linked by p = ρ2e′ and 
our assumption is just that

ρ
de

dρ
≤ Ce

for some finite constant C.
• When the solution is globally defined, we even have

∞̂

0

dt

ˆ

Rn

ρ
1
n p dy ≤ 2cn M

1
n

0 D
1
2
0 . (15)

• Our estimate shows that the fluid cannot concentrate, unless ρ
1
n p = O(ρ) as ρ → +∞. This rules out the so-

called delta-shocks for most of the reasonable equations of state.

Polytropic gas. When p(ρ) = cst · ργ with adiabatic constant γ > 1, (14) is an estimate of ρ in L
γ+ 1

n
t,y , which up to 

our knowledge is new. Combining this with the estimates of ρ in L∞
t (L1

y) (conservation of total mass) and in L∞
t (L

γ
y )

(decay of total energy), and using the Hölder inequality, we infer estimates of ρ in Lq
t (Lr

y) for every (q, r) such that 

the point 
(

1
q
, 1

r

)
lies within the triangle whose vertices are

(0,1),

(
0,

1

γ

)
and

(
n

nγ + 1
,

n

nγ + 1

)
.

A similar interpolation argument, which involves the decay of energy, ensures that

T̂

0

⎛
⎝ˆ

Rn

ρα|m|dy

⎞
⎠2

dt < ∞, α := 1

2

(
1

n
+ γ − 1

)
.

When T = +∞, (15) can be compared with other dispersion estimates, for instance (see [21])ˆ

Rn

ργ dy = O
(
(1 + t)−n(γ−1)

)
,

when the gas has finite inertia

I0 :=
ˆ

Rn

ρ(0, y)
|y|2

2
dy.

Perfect non-isentropic gas. When p = (γ − 1)ρe, a similar argument yields an estimate of ρ1+ 1
nq er in Lq

t (L1
x), 

whenever 1 ≤ q ≤ ∞ and r − 1 ≤ 1
q

≤ r .

Euler–Fourier system. The Euler–Fourier system governs the motion of an inviscid but heat-conducting gas. 
The only difference with the Euler system is that the conservation law of energy incorporates a dissipative term 
divy(κ∇yϑ), where ϑ is the temperature and κ > 0 the thermal conductivity. Because the conservation of mass and 
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momentum still writes DivA with the same A as before, and because the total energy is conserved, Theorem 3.2
applies to this case.

On the contrary, our theorem does not apply to the Navier–Stokes system for a compressible fluid, because then 
the divergence-free tensor is not positive semi-definite.

The role of Estimate (14). Theorem 3.2 is an a priori estimate which suggests a functional space where to search 
for admissible solutions of the Euler equation. For finite initial mass and energy, one should look for a flow satisfying 
the following three requirements: – the total mass is conserved, – the total energy is a non-increasing function of time 
(a constant in the adiabatic case), – and ρ

1
n p ∈ L1

t,y .
To this end, the construction of a solution to the Cauchy problem should involve an approximation process which is 

consistent with these estimates. For this purpose, a vanishing viscosity approach (say, the compressible Navier–Stokes 
equation) does not seem suitable. As we shall see below, the Boltzmann equation is more appropriate, but this obser-
vation just shifts the consistency problem to an other level. An other approach is to design numerical schemes, which 
are consistent with the Euler equations and meanwhile with the above requirements. There exist several schemes that 
preserve the symmetric positive structure, for instance the Lax–Friedrichs and Godunov schemes in space dimen-
sion one, or their multi-dimensional variants. However they provide approximations for which the mass of the Radon 
measure DivA�t,�y tends to +∞ as �t, �y → 0. The second part of Theorem 2.3 yields

ˆ

�

(detA�t,�y)
1

d−1 dy dt ≤ 1

d|Sd−1| 1
d−1

(‖A�t,�y �n‖L1(∂�) + ‖DivA�t,�y‖M(�)

) d
d−1 ,

where the right-hand side tends to +∞ when �t, �y → 0. Thus it is unclear whether the limit of such schemes 
satisfies the estimate (14).

Notice that we must not require the integrability A ∈ L
d

d−1 , which is only a technical need for our proof. As a 
matter of fact, the various entries aij have distinct physical dimensions, so that such an integrability hardly makes 
sense. On the contrary, detA is a well-defined quantity from the physical point of view.

We also point out that, although our new estimate is a genuine improvement, it is still not sufficient to ensure the 
local integrability of the energy flux(

1

2
ρ|u|2 + ρe + p

)
u,

and therefore to give sense to the conservation law of energy.

3.2. Self-similar flows

We now consider the problem (1) in space dimension n. The tensor A = ρv ⊗ v + pIn (recall that v is the 
pseudo-velocity), though positive semi-definite, is not a DPT. The second part of Theorem 2.3, plus the formula 
detA = pn−1(p + ρ|v|2), yield

ˆ

�

p(p + ρ|v|2) 1
n−1 dξ ≤ 1

n|Sn−1| 1
n−1

⎛
⎝‖p�n + ρ(v · �n)v‖L1(∂�) + (n + 1)

ˆ

�

ρ|v|dξ

⎞
⎠

n
n−1

(16)

≤ 1

n|Sn−1| 1
n−1

⎛
⎝ˆ

∂�

(p + ρ|v|2) ds(ξ) + (n + 1)

ˆ

�

ρ|v|dξ

⎞
⎠

n
n−1

for every convex subdomain �. For a ball Br of radius r and arbitrary center, this writes

−
ˆ

B

p(p + ρ|v|2) 1
n−1 dξ ≤

⎛
⎜⎝ −
ˆ

∂B

(p + ρ|v|2) ds(ξ) + n + 1

n
r −
ˆ

B

ρ|v|dξ

⎞
⎟⎠

n
n−1

(17)
r r r
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Remark that, contrary to the situation of the Cauchy problem, we do not have the freedom to choose among equivalent 
coordinate frames. There is no improvement of (16) or (17) similar to (14).

Riemann problem. The Riemann problem is a special form of the Cauchy problem, where the initial data (density, 
momentum, energy) is positively homogeneous of degree zero; for instance, the initial density has the form ρ0(

y
|y| ) . 

In practice, we suppose that the physical space Rn is partitioned into conical cells with polygonal sections, and that 
the data is constant in each cell. Such a data depends on finitely many parameters.

Because the Euler equations are PDEs of homogeneous degree one, the admissible solution, whether there exists a 
unique one, must be self-similar too. The density satisfies ρ(t, x) = ρ̄( x

t
) and so on. Denoting ξ = x

t
the self-similar 

variable, every conservation law ∂tf + divyq = 0 becomes divξ q = ξ · ∇ξ f . For instance, dropping the bars, we have 
divξ (ρu) = ξ · ∇ρ. These new equations involve explicitly the independent variable ξ , but the introduction of the 
pseudo-velocity v(ξ) := u(ξ) − ξ allows us to get rid of it. In terms of ρ, v, p, e and ξ -derivatives, the reduced Euler 
system becomes

div(ρv) + nρ = 0, Div(ρv ⊗ v) + ∇p + (n + 1)ρv = 0 (18)

and

div

(
(
1

2
ρ|v|2 + ρe + p)v

)
+

(n

2
+ 1

)
ρ|v|2 + n(ρe + p) = 0. (19)

The initial data to the Riemann problem becomes a data at infinity for the reduced system. Let us mention that for an 
isentropic flow, (19) is not an equation but merely an inequation, which plays the role of an entropy inequality.

The 3-dimensional RP is still widely open. We therefore limit ourselves to the 2-dimensional case (n = 2). The 
tools and strategy for the analysis of the Riemann problem are described in the review paper [20]. The plane splits 
into a compact subsonic region �sub and its complement the supersonic domain �sup. Subsonic means that |v| ≤ c
where c is the sound speed, a function of the internal variables ρ and p. In the supersonic region, the system is of 
hyperbolic type and one can solve a kind of Cauchy problem, starting from the data at infinity. This Cauchy problem 
has an explicit solution outside some ball BR(0). It is made of constant states separated by simple waves depending 
only on one coordinate; these waves are shocks, rarefaction waves and/or contact discontinuities. An a priori estimate 
of the radius R is available. The situation in the rest of the supersonic region may be more involved, with genuinely 
2-D interactions of simple waves; even the interface between �sup and �sub is not fully explicit, a part of it being a 
free boundary. But these facts do not raise obstacles for the following calculations.

The conservation laws of mass and energy allow us to establish two a priori estimates. On the one hand, we have 
(recall that n = 2)

2
ˆ

BR(0)

ρ dξ = −
ˆ

BR(0)

div(ρv)dξ = −
ˆ

SR(0)

ρv · �ndξ,

where the last integral is computed explicitly because of our knowledge of the solution over SR. On the other hand, 
we have

2
ˆ

BR(0)

(ρ|v|2 + ρe + p)dξ ≤ −
ˆ

SR(0)

(
1

2
ρ|v|2 + ρe + p)v · �ndξ,

where again the right-hand side is known explicitly. In the non-isentropic case, we also have a minimum principle 
for the physical entropy s, which is nothing but the second principle of thermodynamics: s ≥ smin where smin is the 
minimum value of s in the data. Let us assume a polytropic gas (p = cst · ργ ) or a perfect gas (p = (γ − 1)ρe) law. 
In the latter case, we have p ≥ (γ − 1)esminργ . Therefore the energy estimate yields an upper bound forˆ

BR(0)

ργ dξ and
ˆ

BR(0)

ρ|v|2dξ. (20)

In particular, a so-called Delta-shock cannot take place in this situation.
These estimates can be completed by applying (16) to the tensor A = ρv ⊗ v + pI2 in the ball BR(0). To this end, 

we show that the right-hand side is fully controlled. On the one hand, the boundary integral
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ˆ

SR(0)

(p + ρ|v|2) ds(ξ)

is estimated explicitly as before. On the other hand, the last integral is bounded by⎛
⎜⎝ ˆ

BR(0)

ρ dξ

⎞
⎟⎠

1
2
⎛
⎜⎝ ˆ

BR(0)

ρ|v|2 dξ

⎞
⎟⎠

1
2

,

where both factors have been estimated previously. We therefore obtain an estimate ofˆ

BR(0)

ρ2γ dξ and
ˆ

BR(0)

ργ+1|v|2dξ. (21)

This integrability is significantly better than that in (20).

3.3. Relativistic gas dynamics

In the Minkowski space–time R1+n of special relativity, an isentropic gas is governed by the Euler system (see 
[16])

∂t

(
ρc2 + p

c2 − |v|2 − p

c2

)
+ divy

(
ρc2 + p

c2 − |v|2 v

)
= 0,

∂t

(
ρc2 + p

c2 − |v|2 v

)
+ Divy

(
ρc2 + p

c2 − |v|2 v ⊗ v

)
+ ∇p = 0,

where the constant c > 0 is the speed of light. Here ρ is the mass density at rest, and p is the pressure. The fluid 
velocity is constrained by |v| < c.

It is a simple exercise to verify that the stress-energy tensor

A =
⎛
⎝ ρc2+p

c2−|v|2 − p

c2
ρc2+p

c2−|v|2 vT

ρc2+p

c2−|v|2 v
ρc2+p

c2−|v|2 v ⊗ v + pIn

⎞
⎠

is positive semi-definite. Our Theorems 2.3 and 3.1 therefore apply. What is perhaps surprising is that the determinant 
of A is unchanged! Its value is still ρpn. We infer

T̂

0

dt

ˆ

Rn

ρ
1
n p dy ≤ cn

⎛
⎜⎝ ˆ

Rn

ρc2 + p

c2 − |v|2 |v|dy

∣∣∣∣∣∣
t=0

+ (same)

∣∣∣∣∣∣
t=T

⎞
⎟⎠

⎛
⎝ˆ

Rn

ρc4 + p|v|2
c2(c2 − |v|2) dy

⎞
⎠

1
n

t=0

.

We warn the reader that mass and energy are related to each other in relativity theory. The last integral in the inequality 
above accounts for both. We denote below its value μ0.

Suppose an equation of state of the form p = a2ρ, where a > 0 is a constant. When a2 = c2

3 , this follows directly 
from the Stefan–Boltzmann law for a gas in thermodynamical equilibrium, as discussed page 12 of A.M. Anile’s book 
[2]. Then the contribution of the momentum can be estimated after using |v| ≤ 1

2ca
(c2 + a2|v|2):

ˆ

Rn

ρc2 + p

c2 − |v|2 |v|dy ≤ c2 + a2

2a
μ0.

We deduce the a priori estimate

T̂

0

dt

ˆ

Rn

ρ1+ 1
n dy ≤ cn

c2 + a2

a3 μ
1+ 1

n

0 . (22)
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3.4. Kinetic equations

We now turn to the class of kinetic equations

(∂t + v · ∇y)f (t, y, v) = Q[f (t, y, ·)] (23)

where Q is compatible with the minimum principle f ≥ 0 and with the conservation of mass, momentum and energy. 
This includes the Boltzman equation, the BGK model and most of the discrete velocity models. Then we apply 
Theorem 2.3 to the non-negative tensor

A(t, y) :=
ˆ

Rn

f (t, y, v)

(
1
v

)
⊗

(
1
v

)
dv.

The following result is a far-reaching extension of an estimate that J.-M. Bony [4] obtained for a one-dimensional 
discrete velocity model.

Theorem 3.3. Consider an admissible flow of a kinetic equation of the form (23). Assume a finite mass an energy

M0 =
ˆ

Rn

dy

ˆ

Rn

f0(y, v) dv, E0 =
ˆ

Rn

dy

ˆ

Rn

f0(y, v)
|v|2

2
dv,

and that the moments

ρ(t, y) =
ˆ

Rn

f (t, y, v) dv, TrS(t, y) =
ˆ

Rn

f (t, y, v)|v|2 dv

belong to L
d

d−1
loc ((0, T ) ×Rn). Then the following estimate holds true:

T̂

0

dt

ˆ

Rn

dy

⎛
⎝ 1

d!

⊗(n+1)ˆ

Rn

f (t, y, v0) · · ·f (t, y, vn)(�(v0, . . . , vn))2dv0 · · ·dvn

⎞
⎠

1
n

≤ 2cn M
1
n

0 D
1/2
0 , (24)

where

�(v0, . . . , vn) :=
∣∣∣∣ 1 · · · 1
v0 · · · vn

∣∣∣∣
is n! times the volume of the simplex spanned by (v0, . . . , vn), and

D0 = 1

2

⊗4ˆ

Rn

f0(y, v)f0(y
′, v′)|v′ − v|2dydy′dvdv′.

Again, this estimate suggests to narrow the functional space where to search for a solution. Besides the usual 
constraints

sup
t

ˆ

Rn

ˆ

Rn

(1 + |x|2 + |v|2 + log+ f )f dv dx < ∞,

we should impose that the expression

IT :=
T̂

0

dt

ˆ

Rn

dy

⎛
⎝ 1

d!
ˆ

· · ·
⊗(n+1)ˆ

Rn

f (t, y, v0) · · ·f (t, y, vn)(�(v0, . . . , vn))2dv0 · · ·dvn

⎞
⎠

1
n

be finite. An open problem is to understand the physical meaning of IT .



1226 D. Serre / Ann. I. H. Poincaré – AN 35 (2018) 1209–1234
Comments.

• The d × d determinant �(v0, . . . , vn) vanishes precisely when the points v0, . . . , vn are affinely dependent in the 
space Rn, therefore are non generic. The estimate (24) tends to force the support of f (t, y, ·) to keep close to 
some affine hyperplane �(t, y).

• Of course, Boltzman’s H -theorem, which tends to force f (t, y, ·) to be close to a Maxwellian distribution, has 
the opposite effect. The combination of both estimates is expected to produce a nice control of the density f .

• Our estimate controls the (t, y)-integrability of an expression homogeneous in f of degree 1 + 1
n

. This is slightly 
but strictly better than the controls given by the mass and energy (both linear in f ) or by the H-Theorem (control 
in f logf ). The price to pay is an integration in the time variable; this looks like what happens in Strichartz 
estimates for dispersive PDEs.
The little gain in integrability raises the question whether the Boltzmann equation admits weak solutions for large 
data, and not only renormalized ones. Using this gain, C. Cercignani [5] proved the existence of weak solutions 
to the Cauchy problem in dimension n = 1.

• If we had just applied the Jensen inequality, the exponent in (24) would have been 1
n+1 , and the (t, y)-integrand 

should be homogeneous of degree 1, conveying an information already contained in the mass and energy.

3.4.1. Renormalized solutions
The existence of distributional solutions to the Cauchy problem for the Boltzmann equation has not yet been 

proved, except in space dimension n = 1. R. DiPerna & P.-L. Lions [9] proved the existence of a weaker notion of 
solutions, called renormalized. We shall not even give a precise definition of this notion, but we content ourselves to 
recall that it implies the conservation of mass and a weak form of the conservation of momentum, in the sense that

∂t

ˆ

Rn

f dv + divy

ˆ

Rn

f v dv = 0, ∂t

ˆ

Rn

f v dv + Divy

⎛
⎝ˆ

Rn

f v ⊗ v dv + �

⎞
⎠ = 0. (25)

Compared to what is formally expected, the second equation above contains an additional term, called the defect 
measure �, which takes values in Sym+

n ; see [15]. Finally, it is known that the total energy

E(t) := 1

2

ˆ

Rn

ˆ

Rn

f (t, y, v)|v|2dv dy + 1

2

ˆ
Tr�(t, ·)

is a non-increasing function of time and satisfies

E(t) ≤ E0 := 1

2

ˆ

Rn

ˆ

Rn

f0(y, v)|v|2dv dy.

The equations (25) can be recast by saying that the following tensor is a DPT

A =
( ´

Rn f dv
´
Rn f vT dv´

Rn f v dv
´
Rn f v ⊗ v dv + �

)
.

The components ρ, m of A�et are still the mass density and linear momentum. Theorem 3.1 yields an inequality

T̂

0

dt

ˆ

Rn

(detA)
1
n dy ≤ cnM

1
n

0 (‖m(0)‖L1(Rn) + ‖m(T )‖L1(Rn)),

from which we may extract two informations, using the monotonicity of the determinant. On the one hand, we have( ´
Rn f dv

´
Rn f vT dv´

Rn f v dv
´
Rn f v ⊗ v dv

)
≤ A,

from which we infer the same estimate (24) as in the case of distributional solutions. On the other hand, the Schur 
complement formula (see [19] Proposition 3.9) gives
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detA = ρ det

⎛
⎝ˆ

Rn

f v ⊗ v dv − 1´
Rn f dv

ˆ

Rn

f v dv ⊗
ˆ

Rn

f v dv + �

⎞
⎠ ≥ ρ det�,

because the tensorˆ

Rn

f dv

ˆ

Rn

f v ⊗ v dv −
ˆ

Rn

f v dv ⊗
ˆ

Rn

f v dv

is positive semi-definite. We infer an estimate of the defect measure against the mass density:

T̂

0

dt

ˆ

Rn

(ρ det�)
1
n ≤ c′

nM
1
n

0 D
1
2
0 . (26)

Notice that, because �(t, ·) is a Radon measure taking values in Sym+
n and det

1
n is homogeneous of degree one 

over this cone, the expression (det�(t, ·)) 1
n makes sense as a bounded measure.

4. Convex domain

4.1. Proof of Theorem 2.3

In this paragraph, we consider a DPT over a bounded convex domain �. To prove Theorem 2.3, it is enough to 
consider the case where A is uniformly positive definite: just replace A(x) by A(x) + δId with δ > 0 (such a tensor is 
still a DPT) and then pass to the limit as δ → 0+.

From now on, we therefore assume that � has a smooth boundary and that A(x) ≥ δId for some δ > 0 independent 
of x.

Let f denote the function (detA)
1

d−1 . One has f = (f detA)
1
d . The density of C∞(�) in L1(�) provides a se-

quence of smooth functions fε : � → R that satisfies the following requirements. To begin with, δ
2 ≤ fε(x) ≤ Cε for 

every x, where Cε is a finite constant depending on ε. Thenˆ

�

fε(x) dx =
ˆ

�

f (x)dx,

and finally

‖fε − f ‖L1(�)

ε→0−→ 0.

From the latter, we deduce that f 1/d
ε → f 1/d in Ld(�) and therefore f 1/d

ε f 1−1/d → f in L1(�). It will thus be 
enough to estimateˆ

�

f 1/d
ε f 1−1/d dx =

ˆ

�

(fε detA)1/ddx.

To do so, we consider the ball Br = Br(0), centered at the origin, whose volume equals the integral of f (that is, that 
of fε) over �. A theorem due to Y. Brenier (see Theorem 2.12 in [24], or Theorem 3.1 in [8]) ensures the existence 
and uniqueness of an optimal transport from the measure fε(x) dx to the Lebesgue measure over Br . This transport 
is given by a gradient map ∇ψε, which is the solution of the Monge–Ampère equation

det∇2ψε = fε in �

such that ψε is convex and ∇ψε(�) = Br ; see Theorem 4.10 of [24] or Theorem 3.3 of [8]. Finally, ψε is a smooth 
function (Theorem 4.13 of [24]). In particular, the image of the boundary ∂� under ∇ψε is the sphere Sr .

We therefore have

(fε detA)
1
d = (detA · det∇2ψε)

1
d = (det(A∇2ψε))

1
d .
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Let λ1(x), . . . , λd(x) be the spectrum of the matrix A∇2ψε . This is not a symmetric matrix, but because it is the 
product of a positive definite matrix and a positive semi-definite one, it is diagonalisable with non-negative real 
eigenvalues: the λj ’s are real and ≥ 0 (Proposition 6.1 in [19]). Applying the geometric–arithmetic mean inequality 
(AGI), we have

(det(A∇2ψε))
1
d =

⎛
⎝ d∏

j=1

λj

⎞
⎠

1
d

≤ 1

d

d∑
j=1

λj = 1

d
Tr (A∇2ψε).

Because A is divergence-free, one has Tr (A∇2ψε) = div(A∇ψε). We inferˆ

�

fε(x)
1
d f (x)1− 1

d dx ≤ 1

d

ˆ

�

div(A∇ψε)dx = 1

d

ˆ

∂�

(A∇ψε) · �nds(x) = 1

d

ˆ

∂�

(A�n) · ∇ψε ds(x).

Because ∇ψε takes values in Br , there comesˆ

�

f (x)dx = lim
ε→0

ˆ

�

fε(x)
1
d f (x)1− 1

d dx ≤ r

d
‖A�n‖L1(∂�).

We complete the proof of the theorem by the calculation of the radius r :

rd

d
|Sd−1| = |Br | =

ˆ

�

f (x)dx.

If instead DivA is a bounded measure, then we have Tr (A∇2ψε) = div(A∇ψε) − (DivA)∇ψε . The same calcula-
tion yields the boundˆ

�

f (x)dx ≤ r

d

(‖A�n‖L1(∂�) + ‖DivA‖M(�)

)
and the conclusion follows.

About the symmetry assumption: in the proof above as well as in other forthcoming proofs, we use the property 
that for a positive semi-definite d × d matrix A, one has (det(AS))1/d ≤ 1

d
Tr (AS) for every S ∈ SPDd . For this to 

hold true, the assumption on A is not only sufficient, it is also necessary: if M ∈ Md(R) with detM > 0 is such that 
(det(MS))1/d ≤ 1

d
Tr (MS) for every S ∈ SPDd , then M ∈ SPDd . To see this, just use the polar factorization M = QH

(Q orthogonal and H ∈ SPDd ) and choose S = H−1. One obtains 1 ≤ 1
d

TrQ, which implies Q = Id because the Q
is diagonalizable with eigenvalues of unit modulus.

4.2. The equality case: proof of Proposition 2.2

Since we assume that f is smooth and bounded below and above, we may take fε = f . Let us examine the proof 
above. In order to have equalities everywhere, we need in particular that the AGI be an equality, that is the λj ’s be 
equal to each other. Then the diagonalisable matrix A∇2ψ , with only one eigenvalue λ(x), must equal λ(x)Id . In 
other words, there is a scalar field a > 0 such that A(x) = a(x)∇̂2ψ . In particular ∇̂2ψ is positive definite. Because 
both A and ∇̂2ψ are divergence-free (Lemma 1.2), we find that (∇̂2ψ)∇a = 0, that is ∇a = 0. Thus a is a constant. 
Up to replacing ψ by a−1/(d−1)ψ , we infer that A = ∇̂2ψ . By construction the image of � by ∇ψ is a ball centered 
at the origin.

Conversely, if ψ is such a convex function, and A(x) := ∇̂2ψ , then we know that A is a DPT. Let us examine 
the calculations of the previous paragraph. There is no need of an fε, we can just keep f itself. Likewise, we take ψ
instead of ψε . Because A∇2ψ = (det∇2ψ)Id , the AGI is actually an equality and we haveˆ

f (x)dx = 1

d

ˆ
div(A∇ψ)dx = 1

d

ˆ
(A∇ψ) · �ndx = 1

d

ˆ
(A�n) · ∇ψ dx.
� � ∂� ∂�
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We claim that A�n and ∇ψ are positively colinear along the boundary. It amounts to proving that �n and A−1∇ψ are 
so. But the latter vector equals

1

det∇2ψ
∇2ψ ∇ψ = 1

det∇2ψ
∇

(
|∇ψ |2

)
.

Because |∇ψ |2 is ≤ r everywhere, but equals r on ∂�, its gradient is normal to the boundary and points outward. 
This proves the claim.

We therefore have (A�n) · ∇ψ = |A�n| · |∇ψ | = r|A�n| over ∂�, and we infer
ˆ

�

f (x)dx = r

d
‖A�n‖1,∂�.

This ends the proof of the proposition.

4.3. Proof of Proposition 2.3

Because A(x) is positive semi-definite, �nT A�n = 0 implies A�n = 0. This ensures that the extension of A to Rd by 
A ≡ 0 over Rd \�, is still a DPT over Rd . Let us denote it A, which is compactly supported. Let φε be a non-negative 
mollifier and set Aε = φε ∗ A. This is a compactly supported DPT, of class C∞. Its Fourier transform is therefore in 
the Schwartz class. The divergence-free constraint translates into FAε(ξ)ξ ≡ 0. Taking η ∈ Sd−1 and r > 0, we have 
FAε(rη)η = 0. Letting r → 0+, we obtain FAε(0)η = 0. In other words FAε(0) = 0d , that is

ˆ

Rd

Aε(x) dx = 0d .

From there, the non-negativity of Aε(x) for all x implies Aε ≡ 0d . Passing to the limit as ε → 0+, we infer A ≡ 0d .

Proof of Theorem 2.4. Let B be a ball such that B̄ ⊂ �. As in the previous section, we may assume that A is 
uniformly positive definite: A(x) ≥ δId for almost every x. We begin by mollifying A, defining Aε = φε ∗ A, where

φε(x) = 1

εd
φ

(x

ε

)
, φ ∈ D+(Rd) and

ˆ

Rd

φ(x) dx = 1.

This makes sense in B whenever ε > 0 is small enough that B + Bε ⊂ �. The resulting Aε is a smooth, uniformly 
positive symmetric tensor in B .

Let χ ∈D+(B) be given. We apply (11) to the non-negative tensor χAε over the domain B . Because χ is compactly 
supported, we obtain

ˆ

B

χ
d

d−1 (detAε)
1

d−1 dx ≤ 1

|Sd−1| 1
d−1

‖Div(χAε)‖
d

d−1
M(B)

. (27)

Because Div(χAε) = χDiv(Aε) + Aε∇χ and

‖DivAε‖M(B) ≤ ‖DivA‖M(B+Bε), ‖Aε‖L1(B) ≤ ‖A‖L1(B+Bε)
,

the right-hand side of (27) remains bounded as ε → 0+. Because Aε → A in L1(B), we have, up to the extraction of 
a sub-sequence, Aε(x) → A(x) almost everywhere and therefore detAε(x) → detA(x). Passing to the limit in (27)
and using Fatou’s Lemma, we obtain that

ˆ

B

χ
d

d−1 (detA)
1

d−1 dx < ∞.

This proves the theorem. �
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5. Periodic tensors: proofs

5.1. Proof of Theorem 2.1

Reduction. As in the previous section, we may assume that A is uniformly positive definite: A(x) ≥ δId for almost 
every x. Also, we may approximate A by a smooth DPT Aε = φε ∗ A as above. This Aε is smooth and still satisfies 
Aε(x) ≥ δId . It converges towards A in L1

loc , and we may assume that Aε(x) → A(x) almost everywhere. In particular, 

(detAε)
1

d−1 converges almost everywhere towards (detA)
1

d−1 . If we know that (detAε)
1

d−1 ∈ L1(Rd/�) and that the 
inequality (8) holds true for Aε , then we may pass to the limit and Fatou’s Lemma implies that (8) holds true for A
too.

We therefore may restrict to the case where A is smooth and uniformly positive definite.

The proof. We start as in the previous section, by writing

f = (f detA)
1
d .

We apply Theorem 2.2 of [14]: given a matrix S ∈ SDPd such that

detS = −
ˆ

Rd/�

f (x) dx, (28)

there exists a �-periodic function φS ∈ C∞ such that det(S + ∇2φS) = f , and S + ∇2φS(x) ∈ SPDd . In other words, 
the function ψS(x) = 1

2 xT Sx + φS(x) is a convex solution of the Monge–Ampère equation det∇2ψS = f .
Proceeding as in the bounded case, we have the inequality

f ≤ 1

d
Tr (A∇2ψS) = 1

d
div(A∇ψS) = 1

d
div(A(Sx + ∇φS)).

Integrating over a fundamental domain, we obtain

−
ˆ

Rd/�

f (x) dx ≤ 1

d
−
ˆ

Rd/�

(Tr (AS) + div(A∇φS)) dx = 1

d
Tr (A+S). (29)

There remains to minimize Tr (A+S) under the constraint (28). The minimum is achieved with S = λ Â+ , where 
λ is determined by

λd(detA+)d−1 = −
ˆ

Rd/�

f (x) dx.

With this choice, (29) becomes

−
ˆ

Rd/�

f (x) dx ≤ λdetA+,

which is nothing but (8).
The proof of Proposition 2.1 (the case of equality) is the same as that of Proposition 2.2.

Proof of Corollary 2.1. Let B(x) := A(x) − Ā, which satisfies DivB ≡ 0 and is compactly supported. Integrating by 
parts twice and using the assumption, we haveˆ

�

bij dx =
ˆ

�

bij ∂ixidx = −
ˆ

�

xi∂ibij dx =
∑
k �=i

ˆ

�

xi∂kbkj dx = −
∑
k �=i

ˆ

�

bkj ∂kxidx = 0,

whence the equality
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−
ˆ

�

A(x)dx = Ā.

Let K be a cube containing �. We extend A to K by setting Â(x) = Ā whenever x ∈ K \ �. Next we extend Â by 
periodicity to Rd , K being a fundamental domain. This Â is a periodic DPT and has mean Ā. Applying (8) to Â, we 
have ˆ

�

(detA)
1

d−1 dx =
ˆ

K

(detA)
1

d−1 dx − (|K| − |�|)(det Ā)
1

d−1 ≤ (|K| − (|K| − |�|))(det Ā)
1

d−1 ,

from which the obtain the desired inequality. �
5.2. Proof of Theorem 2.2

Let us establish first an a priori estimate when the tensor A is smooth. We introduce as above the solution ψS(x) =
1
2xT Sx +φS(x) of the Monge–Ampère equation det D2ψS = f := (detA)

1
d−1 , where S ∈ SPDd is constrained by (28)

and φS is periodic. We still have

f = (f detA)
1
d = (det(AD2ψS))

1
d ≤ 1

d
Tr (AD2ψS),

which writes now as

f ≤ 1

d
(Tr (AS) + div(A∇φS) − (DivA)∇φS).

Integrating over a fundamental domain, we obtain

−
ˆ

Rd/�

f (x) dx ≤ 1

d
Tr

⎛
⎜⎝S −

ˆ

Rd/�

A(x)dx

⎞
⎟⎠ + 1

d
‖DivA‖M sup

x
|∇φS(x)|.

To estimate the supremum of ∇φS , we involve the convexity of ψS . For every pair of points x, x′, we have

ψS(x′) ≥ ψS(x) + ∇ψS(x) · (x′ − x),

that is

1

2
(x′ − x)T S(x′ − x) + φS(x′) ≥ φS(x) + ∇φS(x) · (x′ − x).

When x′ − x =: γ is an element of the lattice �, the periodicity of φS yields

1

2
γ T Sγ ≥ ∇φS(x) · γ.

Replacing γ by −γ , we actually have

|∇φS(x) · γ | ≤ 1

2
γ T Sγ, ∀γ ∈ � and x ∈Rd . (30)

We now select a basis (γ1, . . . , γd) of �, and form the matrix M whose rows are the vectors γj . Writing ∇φS =
M−1M∇φS and using (30), we obtain the estimate

|∇φS(x)| ≤ ‖M−1‖�∞→�2 max
j

1

2
γ T
j Sγj ≤ c�‖S‖.

Because S is non-negative, it satisfies ‖S‖ ≤ Tr S. We therefore have

−
ˆ

d

f (x) dx ≤ 1

d
TrS

⎛
⎜⎝ −

ˆ

d

A(x) dx + c� ‖DivA‖MId

⎞
⎟⎠ . (31)
R /� R /�
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We choose as before

S = λ

⎛
⎜⎝ −

ˆ

Rd/�

A(x)dx + c� ‖DivA‖MId

⎞
⎟⎠

where λ is determined by the condition (28), and obtain the estimate

−
ˆ

Rd/�

(detA(x))
1

d−1 dx ≤
⎛
⎜⎝det

⎛
⎜⎝ −

ˆ

Rd/�

A(x)dx + c� ‖DivA‖MId

⎞
⎟⎠

⎞
⎟⎠

1
d−1

. (32)

We now turn to the general case. Proceeding as in the proof of Theorem 2.1, we find a sequence of smooth positive 
definite symmetric tensors Aε(x) = εId +φε ∗A, such that Aε → A in L1(Rd/�). In addition, DivAε = φε ∗ (DivA)

converges vaguely towards DivA. At last, up to an extraction, we may assume that Aε(x) → A(x) almost everywhere. 
We apply (32) to each tensor Aε . Because of ‖DivAε‖M ≤ ‖DivA‖M, we have

−
ˆ

Rd/�

(detAε(x))
1

d−1 dx ≤
⎛
⎜⎝det

⎛
⎜⎝ −

ˆ

Rd/�

Aε(x) dx + c� ‖DivA‖MId

⎞
⎟⎠

⎞
⎟⎠

1
d−1

.

We pass now to the limit as ε → 0+. Because of

−
ˆ

Rd/�

Aε(x) dx −→ −
ˆ

Rd/�

A(x)dx,

and using Fatou’s Lemma, we recover (32) for the tensor A. In particular, (detA(x))
1

d−1 is integrable over the torus.

6. Gas dynamics with finite mass and energy

6.1. Proof of Theorem 3.1

Let us apply Theorem 2.3 in the bounded convex domain � = (0, T ) × BR for some R > 0. We have

T̂

0

dt

ˆ

BR

(detA)
1
n dy ≤ 1

(n + 1)|Sn| 1
n

‖A�n‖1+ 1
n

1,∂�. (33)

The boundary consists in three parts: an initial ball {0} ×BR, a final ball {T } ×BR , and a lateral boundary (0, T ) ×SR . 
The latter contributes to

g(R) :=
T̂

0

dt

ˆ

SR

∣∣∣∣A y

|y|
∣∣∣∣ dy.

Because A is integrable, we have g ∈ L1(0, +∞) and therefore there is a subsequence Rm → +∞ such that g(Rm) →
0. Passing to the limit in (33), we obtain

T̂

0

dt

ˆ

Rn

(detA)
1
n dy ≤ 1

(n + 1)|Sn| 1
n

(‖(ρ,m)(0)‖L1(Rn) + ‖(ρ,m)(T )‖L1(Rn)

)1+ 1
n . (34)

The latter estimate has the drawback that it is not homogeneous from a physical point of view. The density ρ and the 
momentum m have different dimensions and the norm
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‖(ρ,m)‖L1(Rn) =
ˆ

Rn

√
ρ2 + |m|2 dy

is not physically meaningful.
To recover the homogeneity, we introduce a scaling

t ′ = λt, y′ = y, ρ′ = λ2ρ, m′ = λm, p′ = p.

The corresponding A′ is a DPT over the slab (0, T ′) ×Rn where T ′ = λT . Applying (34) to A′, we infer

λ1+ 2
n

T̂

0

dt

ˆ

Rn

(detA)
1
n dy ≤ 1

(n + 1)|Sn| 1
n

(
‖(λ2ρ,λm)(0)‖L1(Rn) + ‖(λ2ρ,λm)(T )‖L1(Rn)

)1+ 1
n
.

Simplifying by λ and then defining λ =: μn+1, this becomes

T̂

0

dt

ˆ

Rn

(detA)
1
n dy ≤ 1

(n + 1)|Sn| 1
n

(
‖(μnρ,μ−1m)(0)‖L1(Rn) + ‖(μnρ,μ−1m)(T )‖L1(Rn)

)1+ 1
n

≤ 1

(n + 1)|Sn| 1
n

(
2μnM0 + μ−1(‖m(0)‖L1(Rn) + ‖m(T )‖L1(Rn))

)1+ 1
n
.

We are free to choose the parameter μ > 0, and we make the choice

λ = μn+1 = ‖m(0)‖L1(Rn) + ‖m(T )‖L1(Rn))

M0
.

This yields the estimate in Theorem 3.1.

6.2. The Euler and kinetic equations

For the Euler equation, we only have to remark that A is positive semi-definite and detA = ρpn.
Likewise, for a kinetic equation, we only have to calculate the determinant of

A(t, y) =
( ´

Rn f (t, y, v) dv
´
Rn f (t, y, v)vT dv´

Rn f (t, y, v)v dv
´
Rn f (t, y, v)v ⊗ v dv

)
.

The formula∣∣∣∣
´
Rn f (v) dv

´
Rn f (v)vT dv´

Rn f (v)v dv
´
Rn f (v)v ⊗ v dv

∣∣∣∣ = 1

d!
ˆ

· · ·
ˆ

(Rn)n+1

f (v0) · · ·f (vn)(�(v0, . . . , vn))2dv0 · · ·dvn

is a particular case of Andréiev Identity

det

((ˆ
φiφjdμ(v)

))
1≤i,j≤N

= 1

N !
⊗Nˆ (

det((φi(vj ) ))1≤i,j≤N

)2
dμ(v1) · · ·dμ(vN). (35)

To prove (35), we develop the left-hand side as∑
σ∈SN

ε(σ )
∏
i

ˆ
φi(v)φσ(i)(v) dv

and write

∏ˆ
φi(v)φσ(i)(v) dv = 1

N !
⊗Nˆ ∑ ∏

φi(v
ρ(i))φσ(i)(v

ρ(i)) dμ(v1) · · ·dμ(vN).
i ρ∈SN i
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There remains to verify

∑
σ∈SN

ε(σ )
∑

ρ∈SN

∏
i

φi(v
ρ(i))φσ(i)(v

ρ(i)) =
⎛
⎝ ∑

λ∈SN

ε(λ)
∏
i

φi(v
λ(i))

⎞
⎠2

,

which is immediate.
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