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Abstract

We establish the existence of a global solution for a new family of fluid-like equations, which are obtained in certain regimes 
in [24] as the mean-field evolution of the supercurrent density in a (2D section of a) type-II superconductor with pinning and with 
imposed electric current. We also consider general vortex-sheet initial data, and investigate the uniqueness and regularity properties 
of the solution. For some choice of parameters, the equation under investigation coincides with the so-called lake equation from 
2D shallow water fluid dynamics, and our analysis then leads to a new existence result for rough initial data.
© 2017 

1. Introduction

1.1. General overview

We study the well-posedness of the following two fluid-like evolution models coming from the mean-field limit 
equations of Ginzburg–Landau vortices: first, for α ≥ 0, β ∈R, we consider the “incompressible” flow

∂tv = ∇P − α(� + v) curlv + β(� + v)⊥ curlv, div(av) = 0, in R
+ ×R

2, (1.1)

and second, for 0 ≤ λ < ∞, α > 0, β ∈R, we consider the “compressible” flow

∂tv = λ∇(a−1 div(av)) − α(� + v) curlv + β(� + v)⊥ curlv, in R
+ ×R

2, (1.2)

with v :R+ ×R
2 := [0, ∞) ×R

2 →R
2 and curlv ≥ 0, where � :R2 →R

2 is a given forcing vector field, and where 
the weight a := eh is determined by a given “pinning potential” h :R2 →R. Note that the incompressible model (1.1)
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can be seen as the limiting case λ = ∞ of the family of compressible models (1.2). As established in a companion 
paper [24] with Sylvia Serfaty, these equations are obtained in certain regimes as the mean-field evolution of the 
supercurrent density in a (2D section of a) type-II superconductor described by the 2D Ginzburg–Landau equation 
with pinning and with imposed electric current — but without gauge and in whole space, for simplicity. In this context, 
the cases λ = ∞, 0 < λ < ∞, and λ = 0 correspond respectively to a low, an intermediate, and a high vortex density 
regime. Note that in the parabolic case α > 0, β = 0, the incompressible model (1.1) can be seen as a Wasserstein 
gradient flow for the vorticity curlv, but a common gradient flow structure seems to be missing for the whole family 
of equations (1.2) with λ ∈ [0, ∞]. In the conservative case α = 0 with � = 0, the incompressible model (1.1) takes 
the form of the so-called lake equation from 2D shallow water fluid dynamics [26, p. 235] (see also [12,13]), which 
reduces to the usual 2D Euler equation if the weight a is constant.

In the nondegenerate case λ > 0, we investigate existence, uniqueness, and regularity, both locally and globally 
in time, for the Cauchy problems associated with (1.1) and (1.2), and we also consider vortex-sheet initial data. In 
Appendix A jointly written with Julian Fischer, a complete theory is further obtained for the degenerate parabolic case 
λ = β = 0, α > 0.

1.2. Brief discussion of the model

Superconductors are materials that in certain circumstances lose their resistivity, which allows permanent supercur-
rents to circulate without loss of energy. In the case of type-II superconductors, if the external magnetic field is not too 
strong, it is expelled from the material (Meissner effect), while, if it is much too strong, the material returns to a normal 
state. Between these two critical values of the external field, these materials are in a mixed state, allowing a partial pen-
etration of the external field through “vortices”, which are accurately described by the (mesoscopic) Ginzburg–Landau 
theory. Restricting ourselves to a 2D section of a superconducting material, it is standard to study for simplicity the 
2D Ginzburg–Landau equation on the whole plane (to avoid boundary issues) and without gauge (although the gauge 
is expected to bring only minor difficulties). We refer e.g. to [53,52] for further reference on these models, and to [47]
for a mathematical introduction. In this framework, in the asymptotic regime of a large Ginzburg–Landau parameter 
(which is indeed typically the case in real-life superconductors), vortices are known to become point-like, and to in-
teract with one another according to a Coulomb pair potential. In the mean-field limit of a large number of vortices, 
the evolution of the suitably normalized (macroscopic) mean-field density ω :R+ ×R

2 →R of the vortex liquid was 
then naturally conjectured to satisfy the following Chapman–Rubinstein–Schatzman–E equation [25,16]

∂tω = div(|ω|∇(−
)−1ω), in R
+ ×R

2, (1.3)

where (−
)−1ω is indeed the Coulomb potential generated by the vortices. Although the vortex density ω is a priori 
a signed measure, we restrict here (and throughout this paper) to positive measures, |ω| = ω ≥ 0, so that the above is 
replaced by

∂tω = div(ω∇(−
)−1ω), in R
+ ×R

2. (1.4)

More precisely, the mean-field supercurrent density v : R+ × R
2 → R

2 (linked to the vortex density through the 
relation ω = curlv) was conjectured to satisfy

∂tv = ∇P − v curlv, divv = 0, in R
+ ×R

2. (1.5)

Taking the curl of this equation indeed formally yields (1.4), noting that the incompressibility constraint divv = 0
allows to write v = ∇⊥
−1ω.

In the context of superfluidity [1,46], a conservative counterpart of the usual parabolic Ginzburg–Landau equation 
is used as a mesoscopic model. This counterpart is given by the Gross–Pitaevskii equation, which is a particular 
instance of a nonlinear Schrödinger equation. At the level of the mean-field evolution of the corresponding vortices, 
we then need to replace (1.3)–(1.4) by their conservative versions, thus replacing ∇(−
)−1ω by ∇⊥(−
)−1ω. As 
argued in [5], there is also physical interest in rather starting from the “mixed-flow” (or “complex”) Ginzburg–Landau 
equation, which is a mix between the usual Ginzburg–Landau equation describing superconductivity (α = 1, β = 0, 
below), and its conservative counterpart given by the Gross–Pitaevskii equation (α = 0, β = 1, below). The above 
mean-field equation (1.5) for the supercurrent density v is then replaced by the following, for α ≥ 0, β ∈R,
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∂tv = ∇P − αv curlv + βv⊥ curlv, divv = 0, in R
+ ×R

2. (1.6)

Note that in the conservative case α = 0, this equation is equivalent to the 2D Euler equation, as is clear from the 
identity v⊥ curlv = (v · ∇)v − 1

2∇|v|2.
The first rigorous deductions of such (macroscopic) mean-field limit models from the (mesoscopic) 2D Ginzburg–

Landau equation are due to [35,30,48]. As discovered by Serfaty [48], in the dissipative case α > 0, the limiting 
equation (1.6) is only correct in a regime of dilute vortices, while for a higher vortex density it must be replaced by 
the following compressible flow,

∂tv = λ∇(divv) − αv curlv + βv⊥ curlv, in R
+ ×R

2, (1.7)

for some 0 < λ < ∞. In [23, Theorem 8.1.3] we have further shown that for an even higher vortex density the relevant 
limiting equation is (1.7) with λ = 0. In contrast, in the conservative case α = 0, the equation (1.6) is always expected 
to hold in the corresponding mean-field limit. To the best of our knowledge, this compressible model (1.7) with 
0 ≤ λ < ∞ is completely new in the literature.

When an electric current is applied to a type-II superconductor, it flows through the material, inducing a Lorentz-
like force that makes the vortices move, dissipates energy, and disrupts the permanent supercurrents. As most techno-
logical applications of superconducting materials occur in the mixed state, it is crucial to design ways to reduce this 
energy dissipation, by preventing vortices from moving. For that purpose a common attempt consists in introducing 
in the material inhomogeneities (e.g. impurities, or dislocations), which are indeed meant to destroy superconduc-
tivity locally and therefore “pin down” the vortices. This is usually modeled by correcting the 2D Ginzburg–Landau 
equations with a non-uniform equilibrium density a : R2 → [0, 1] (or “pinning weight”), which locally lowers the 
energy penalty associated with the vortices (see e.g. [15,9] for further details). As formally predicted by Chapman and 
Richardson [15], and first completely proven by [31,49] (see also [29,34] for the conservative case), in the asymptotic 
regime of a large Ginzburg–Landau parameter, this non-uniform density a translates at the level of isolated vortices 
into an effective “pinning potential” h = loga, indeed attracting the vortices to the minima of a. As shown in our 
companion paper [24], the mean-field equations (1.6)–(1.7) are then replaced by (1.1)–(1.2), where the forcing �
can be decomposed as � := F⊥ − ∇⊥h in terms of the pinning force −∇h and of some vector field F : R2 → R

2

related to the imposed electric current (see also [51,49]). In the conservative regime α = 0, β = 1, the incompress-
ible model (1.1) takes the form of the following inhomogeneous version of the 2D Euler equation: using the identity 
v⊥ curlv = (v · ∇)v − 1

2∇|v|2, and setting P̃ := P − 1
2 |v|2,

∂tv = ∇P̃ + �⊥ curlv + (v · ∇)v, div(av) = 0, in R
+ ×R

2. (1.8)

In the context of 2D fluid dynamics, this conservative equation is known as the lake equation [26, p. 235] (see also [12,
13]): the pinning weight a corresponds to the effect of a varying depth in shallow water [44], while the forcing � is 
similar to a background flow.

1.3. Relation to previous works

The simplified model (1.4) describes the mean-field limit of the gradient-flow evolution of any particle system 
with Coulomb interactions [22]. As such, it is related to nonlocal aggregation and swarming models, which have 
attracted a lot of mathematical interest in recent years (see e.g. [8,14] and the references therein); they consist in 
replacing the Coulomb potential (−
)−1 by a convolution with a more general kernel corresponding to an attractive 
(rather than repulsive) nonlocal interaction. Equation (1.4) was first studied by Lin and Zhang [39], who established 
global existence for vortex-sheet initial data ω|t=0 ∈P(R2), and uniqueness in some Zygmund space. To prove global 
existence for such rough initial data, they proceed by regularization of the data, then passing to the limit in the 
equation using the compactness given by some very strong a priori estimates obtained by ODE arguments. As our 
main source of inspiration, their approach is described in more detail in the sequel. When viewing (1.4) as a mean-field 
model for the motion of the Ginzburg–Landau vortices in a superconductor, there is also interest in changing sign 
solutions and the correct model is then rather (1.3), for which global existence and uniqueness have been investigated 
in [21,42], but for which an Lp well-posedness theory is still missing. In [4,3], using an energy approach where the 
equation is seen as a formal gradient flow in the Wasserstein space of probability measures à la Otto [45], made 
rigorous by the minimizing movement approach of Jordan, Kinderlehrer, and Otto [32] (see also [2]), analogues of 
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equations (1.3)–(1.4) were studied in a 2D bounded domain, taking into account the possibility of mass entering 
or exiting the domain. In the case of nonnegative vorticity ω ≥ 0, essentially the same existence and uniqueness 
results as those by Lin and Zhang were established in that setting in [4]. In the case ω ≥ 0 on the whole plane, 
still a different approach was developed by Serfaty and Vázquez [50], where equation (1.4) is obtained as a limit of 
nonlocal diffusions, and where uniqueness is further established for bounded solutions using transport arguments à la 
Loeper [41]. Note that no uniqueness is expected to hold for general measure solutions of (1.4) (see [4, Section 8]). In 
the present paper, we focus on the case ω ≥ 0 on the whole plane R2.

The model (1.6) is a linear interpolation between the gradient-flow equation (1.4) (obtained for α = 1, β = 0) and 
its conservative counterpart that is nothing but the 2D Euler equation (obtained for α = 0, β = 1). The theory for the 
2D Euler equation has been well-developed for a long time: global existence for vortex-sheet data is due to Delort [20], 
while the only known uniqueness result, due to Yudovich [54], holds in the class of bounded vorticity (see also [7]
and the references therein). Regarding the general model (1.6), global existence and uniqueness results for smooth 
solutions are easily obtained by standard methods (see e.g. [17]). Although not surprising, global existence for this 
model is further established here for vortex-sheet initial data, as well as uniqueness in the class of bounded vorticity.

In contrast, the compressible model (1.7), first introduced by Serfaty [48], is completely new in the literature. In 
[48, Appendix B], only local-in-time existence and uniqueness of smooth solutions are proven in the non-degenerate 
case λ > 0, using a standard iterative method. In the present paper, in the parabolic regime α > 0, β = 0, global 
existence for vortex-sheet data is further established in the non-degenerate case λ > 0, while in the degenerate case 
λ = 0 global existence with bounded data is obtained by exploiting the particular scalar structure of the corresponding 
equation.

The general equations (1.1)–(1.2), introduced in our companion paper [24], are seen as inhomogeneous versions 
of (1.6)–(1.7) with forcing. Since these models are new in the literature (except in the case (1.8)), we wish to provide 
in the present paper a detailed discussion of local and global existence, uniqueness, and regularity issues. In the 
conservative regime α = 0, β = 1, the incompressible model (1.1) takes the form of the so-called lake equation (1.8), 
which has been studied in a bounded domain by Levermore, Oliver, and Titi [36,37,44] (see also [10]): global existence 
was established for L2 initial vorticity, as well as uniqueness in the class of bounded vorticity. In the present paper, we 
improve on these previous results by establishing for equation (1.8) on the whole plane R2 a global existence result for 
initial data in Lq(R2) with q > 1. It should be clear from the Delort type identity (1.11) below that inhomogeneities 
give rise to important difficulties: indeed, for h non-constant, the first term − 1

2 |v|2∇⊥h in (1.11) does not vanish 
and is clearly not weakly continuous as a function of v (although the second term is, as in Delort’s classical theory 
for the 2D Euler equation [20]), so that the usual Delort’s argument is no longer available to pass to the limit in the 
nonlinearity v curlv. Because of this difficulty and of the lack of strong enough a priori estimates for the conservative 
equation (1.8), we do not manage to reach vortex-sheet initial data in that case, as opposed to the simpler situation of 
the 2D Euler equation.

1.4. Notions of weak solutions for (1.1) and (1.2)

We first introduce the vorticity formulation of equations (1.1) and (1.2), which will be more convenient to work 
with. Setting ω := curlv and ζ := div(av), each of these equations may be rewritten as a nonlinear nonlocal transport 
equation for the vorticity ω,

∂tω = div
(
ω

(
α(� + v)⊥ + β(� + v)

))
, curlv = ω, div(av) = ζ, (1.9)

where in the incompressible case (1.1) we have ζ := 0, while in the compressible case (1.2) ζ is the solution of the 
following transport-diffusion equation (which is highly degenerate as λ = 0),

∂t ζ − λ
ζ + λdiv(ζ∇h) = div
(
aω

( − α(� + v) + β(� + v)⊥
))

. (1.10)

Let us now precisely define our notions of weak solutions for (1.1) and (1.2). (We denote by M+
loc(R

2) the convex 
cone of locally finite non-negative Borel measures on R2, and by P(R2) the convex subset of probability measures, 
endowed with the usual weak-* topology.)
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Definition 1.1. Let h, � ∈ L∞(R2), T > 0, and set a := eh.

(a) Given v◦ ∈ L2
loc(R

2)2 with ω◦ = curlv◦ ∈ M+
loc(R

2) and ζ ◦ := div(av◦) ∈ L2
loc(R

2), we say that v is a 
weak solution of (1.2) on [0, T ) × R

2 with initial data v◦, if v ∈ L2
loc([0, T ) × R

2)2 satisfies ω := curlv ∈
L1

loc([0, T ); M+
loc(R

2)), ζ := div(av) ∈ L2
loc([0, T ); L2(R2)), |v|2ω ∈ L1

loc([0, T ); L1(R2)) (hence also ωv ∈
L1

loc([0, T ) ×R
2)2), and satisfies (1.2) in the distributional sense, that is, for all ψ ∈ C∞

c ([0, T ) ×R
2)2,∫

Rd

ψ(0, ·) · v◦ +
∫∫

R+×Rd

v · ∂tψ = λ

∫∫
R+×Rd

a−1ζ divψ +
∫∫

R+×Rd

ψ · (α(� + v) − β(� + v)⊥)ω.

(b) Given v◦ ∈ L2
loc(R

2)2 with ω◦ := curlv◦ ∈M+
loc(R

2) and div(av◦) = 0, we say that v is a weak solution of (1.1) on 
[0, T ) ×R

2 with initial data v◦, if v ∈ L2
loc([0, T ) ×R

2)2 satisfies ω := curlv ∈ L1
loc([0, T ); M+

loc(R
2)), |v|2ω ∈

L1
loc([0, T ); L1(R2)2) (hence also ωv ∈ L1

loc([0, T ) ×R
2)2), div(av) = 0 in the distributional sense, and satisfies 

the vorticity formulation (1.9) in the distributional sense, that is, for all ψ ∈ C∞
c ([0, T ) ×R

2),∫
Rd

ψ(0, ·)ω◦ +
∫∫

R+×Rd

ω∂tψ =
∫∫

R+×Rd

∇ψ · (α(� + v)⊥ + β(� + v))ω.

(c) Given v◦ ∈ L2
loc(R

2)2 with ω◦ := curlv◦ ∈ M+
loc(R

2) and div(av◦) = 0, we say that v is a very weak solution 
of (1.1) on [0, T ) ×R

2 with initial data v◦, if v ∈ L2
loc([0, T ) ×R

2)2 satisfies ω := curlv ∈ L1
loc([0, T ); M+

loc(R
2)), 

div(av) = 0 in the distributional sense, and satisfies, for all ψ ∈ C∞
c ([0, T ) ×R

2),∫
Rd

ψ(0, ·)ω◦ +
∫∫

R+×Rd

ω∂tψ =
∫∫

R+×Rd

(α∇ψ + β∇⊥ψ) ·
(
�⊥ω + 1

2
|v|2∇h

)

−
∫∫

R+×Rd

aSv : ∇(
a−1(α∇ψ + β∇⊥ψ)

)
,

in terms of the stress–energy tensor Sv := v ⊗ v − 1
2 Id |v|2. ♦

Remarks 1.2.

(i) Weak solutions of (1.2) are defined directly from (1.2), and satisfy in particular the vorticity formula-
tion (1.9)–(1.10) in the distributional sense. Regarding weak solutions of (1.1), they are rather defined in terms 
of the vorticity formulation (1.9), in order to avoid compactness and regularity issues related to the pressure P . 
Nevertheless, if v is a weak solution of (1.1) in the above sense, then under mild regularity assumptions we may 
use the formula v = a−1∇⊥(diva−1∇)−1ω to deduce that v actually satisfies (1.1) in the distributional sense on 
[0, T ) ×R

2 for some distribution P (cf. Lemma 2.8 below for details).
(ii) The definition (c) of a very weak solution of (1.1) is motivated as follows (see also the notion of “general weak 

solutions” of (1.4) in [39]). In the purely conservative case α = 0, there are too few a priori estimates to make 
sense of the product ωv. As is now common in 2D fluid dynamics (see e.g. [17]), the idea is to reinterpret this 
product in terms of the stress–energy tensor Sv , using the following identity: given div(av) = 0, we have for 
smooth enough fields

ωv = −1

2
|v|2∇⊥h − a−1(div(aSv))

⊥, (1.11)

where the right-hand side now makes sense in L1
loc([0, T ); W−1,1

loc (R2)2) whenever v ∈ L2
loc([0, T ) × R

2)2. In 

particular, if ω ∈ Lp

loc([0, T ) ×R
2) and v ∈ Lp′

loc([0, T ) ×R
2) for some 1 ≤ p ≤ ∞, 1

p
+ 1

p′ = 1, then the product 
ωv makes perfect sense and the above identity (1.11) holds in the distributional sense, hence in that case v is a 
weak solution of (1.1) whenever it is a very weak solution. In reference to Delort’s work [20], identity (1.11) is 
henceforth called an “(inhomogeneous) Delort type identity”. ♦
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1.5. Statement of the main results

Global existence and regularity results are summarized in the following theorem. Our approach relies on proving 
a priori estimates for the vorticity ω in Lq(R2) for some q > 1. For the compressible model (1.2), such estimates 
are only obtained in the parabolic regime, hence our limitation to that setting. In parabolic cases, particularly strong 
estimates are available, and existence is then established even for vortex-sheet initial data, thus completely extending 
the known theory for (1.4) (see [39,50]). Note that the additional exponential growth in the boundedness effect (1.12)
below is only due to the forcing �. In the conservative incompressible case, the situation is the most delicate because 
of a lack of strong enough a priori estimates, and only existence of very weak solutions is expected and proven. As 
is standard in 2D fluid dynamics (see e.g. [17]), the natural space for the solution v is L∞

loc(R
+; v̄◦ + L2(R2)2) for a 

given smooth reference field v̄◦ :R2 →R
2.

Theorem 1 (Global existence). Let λ > 0, α ≥ 0, β ∈R, h, � ∈ W 1,∞(R2)2, and set a := eh. Let v̄◦ ∈ W 1,∞(R2)2 be 
some reference map with ω̄◦ := curl v̄◦ ∈P ∩Hs0(R2) for some s0 > 1, and with either div(av̄◦) = 0 in the case (1.1), 
or ζ̄ ◦ := div(av̄◦) ∈ Hs0(R2) in the case (1.2). Let v◦ ∈ v̄◦ + L2(R2)2, with ω◦ := curlv◦ ∈ P(R2), and with either 
div(av◦) = 0 in the case (1.1), or ζ ◦ := div(av◦) ∈ L2(R2) in the case (1.2). The following hold:

(i) Parabolic compressible case (that is, (1.2) with α > 0, β = 0):
There exists a weak solution v ∈ L∞

loc(R
+; v̄◦ + L2(R2)2) on R+ × R

2 with initial data v◦, with ω := curlv ∈
L∞(R+; P(R2)) and ζ := div(av) ∈ L2

loc(R
+; L2(R2)), and with

‖ωt‖L∞ ≤ (αt)−1 + Cα−1eCt , for all t > 0, (1.12)

where the constant C > 0 depends only on an upper bound on α, |β|, and ‖(h, �)‖W 1,∞ . Moreover, if ω◦ ∈
Lq(R2) for some q > 1, then ω ∈ L∞

loc(R
+; Lq(R2)).

(ii) Parabolic incompressible case (that is, (1.1) with α > 0, β = 0, or with α > 0, β ∈R, h constant):
There exists a weak solution v ∈ L∞

loc(R
+; v̄◦ + L2(R2)2) on R+ × R

2 with initial data v◦, with ω := curlv ∈
L∞(R+; P(R2)), and with the boundedness effect (1.12). Moreover, if ω◦ ∈ Lq(R2) for some q > 1, then ω ∈
L∞

loc(R
+; Lq(R2)) ∩ Lq+1

loc (R+; Lq+1(R2)).
(iii) Mixed-flow incompressible case (that is, (1.1) with α > 0, β ∈R):

If ω◦ ∈ Lq(R2) for some q > 1, there exists a weak solution v ∈ L∞
loc(R

+; v̄◦ + L2(R2)2) on R+ ×R
2 with initial 

data v◦, and with ω := curlv ∈ L∞
loc(R

+; P ∩ Lq(R2)) ∩ Lq+1
loc (R+; Lq+1(R2)).

(iv) Conservative incompressible case (that is, (1.1) with α = 0, β ∈R):
If ω◦ ∈ Lq(R2) for some q > 1, there exists a very weak solution v ∈ L∞

loc(R
+; v̄◦ + L2(R2)2) on R+ ×R

2 with 
initial data v◦, and with ω := curlv ∈ L∞

loc(R
+; P ∩ Lq(R2)). This is a weak solution whenever q ≥ 4/3.

We set ζ ◦, ζ̄ ◦, ζ := 0 in the incompressible case (1.1). If in addition ω◦, ζ ◦ ∈ L∞(R2), then we further have v ∈
L∞

loc(R
+; L∞(R2)2), ω ∈ L∞

loc(R
+; L1 ∩ L∞(R2)), and ζ ∈ L∞

loc(R
+; L2 ∩ L∞(R2)). If h, �, v̄◦ ∈ Ws+1,∞(R2)2 and 

ω◦, ω̄◦, ζ ◦, ζ̄ ◦ ∈ Hs(R2) for some s > 1, then v ∈ L∞
loc(R

+; v̄◦ + Hs+1(R2)2) and ω, ζ ∈ L∞
loc(R

+; Hs(R2)). If h, �, 
v◦ ∈ Cs+1(R2)2 for some non-integer s > 0, then v ∈ L∞

loc(R
+; Cs+1(R2)2). ♦

Regarding the regimes that are not described in the above (that is, the mixed-flow compressible case as well as 
the a priori unphysical case α < 0), only local-in-time existence is proven for smooth enough initial data (stated here 
in Sobolev spaces). Note that for the mixed-flow degenerate case λ = 0, α > 0, β �= 0, even local-in-time existence 
remains an open problem.

Theorem 2 (Local existence). Given some s > 1, let h, �, v̄◦ ∈ Ws+1,∞(R2)2, set a := eh, and let v◦ ∈ v̄◦ +
Hs+1(R2)2 with ω◦ := curlv◦, ω̄◦ := curl v̄◦ ∈ Hs(R2), and with either div(av◦) = div(av̄◦) = 0 in the case (1.1), or 
ζ ◦ := div(av◦), ζ̄ ◦ := div(av̄◦) ∈ Hs(R2) in the case (1.2). The following hold:

(i) Incompressible case (that is, (1.1) with α, β ∈R):
There exists T > 0 and a weak solution v ∈ L∞ ([0, T ); v̄◦ + Hs+1(R2)2) on [0, T ) ×R

2 with initial data v◦.
loc



M. Duerinckx, J. Fischer / Ann. I. H. Poincaré – AN 35 (2018) 1267–1319 1273
(ii) Non-degenerate compressible case (that is, (1.2) with α, β ∈R, λ > 0):
There exists T > 0 and a weak solution v ∈ L∞

loc([0, T ); v̄◦ + Hs+1(R2)2) on [0, T ) ×R
2 with initial data v◦.

(iii) Degenerate parabolic compressible case (that is, (1.2) with α ∈R, β = λ = 0):
If �, v̄◦ ∈ Ws+2,∞(R2)2 and ω◦, ω̄◦ ∈ Hs+1(R2), there exists T > 0 and a weak solution v ∈ L∞

loc([0, T ); v̄◦ +
Hs+1(R2)2) on [0, T ) ×R

2 with initial data v◦, and with ω := curlv ∈ L∞
loc([0, T ); Hs+1(R2)). ♦

We now turn to uniqueness issues. No uniqueness is expected to hold for general weak measure solutions of (1.1), 
as it is already known to fail for the 2D Euler equation (see e.g. [7] and the references therein), and as it is also 
expected to fail for equation (1.4) (see [4, Section 8]). In both cases, as already explained, the only known uniqueness 
results are in the class of bounded vorticity. For the general incompressible model (1.1), similar arguments are still 
available and the same uniqueness result holds. For the compressible model (1.2), we only obtain uniqueness in a 
class with stronger regularity, as a consequence of some weak–strong principle stated in Proposition 5.1.

Theorem 3 (Uniqueness). Let λ ≥ 0, α, β ∈ R, T > 0, h, � ∈ W 1,∞(R2), and set a := eh. Let v◦ : R2 → R
2 with 

curlv◦ ∈ P(R2), and with either div(av◦) = 0 in the case (1.1), or div(av◦) ∈ L2(R2) in the case (1.2).

(i) Incompressible case (that is, (1.1) with α, β ∈R):
There exists at most a unique weak solution v on [0, T ) × R

2 with initial data v◦, in the class of all w’s with 
curlw ∈ L∞

loc([0, T ); L∞(R2)).
(ii) Non-degenerate compressible case (that is, (1.2) with α, β ∈R, λ > 0):

There exists at most a unique weak solution v on [0, T ) ×R
2 with initial data v◦, in the class L2

loc([0, T ); v◦ +
L2(R2)2) ∩ L∞

loc([0, T ); W 1,∞(R2)2). ♦

Finally, in Appendix A jointly written with Julian Fischer, we establish the following global well-posedness result 
for the degenerate parabolic case λ = β = 0, α > 0. The proof is of a very different nature from the other cases, 
exploiting the explicit scalar structure of the solution v.

Theorem 4 (Degenerate parabolic compressible case). Let λ = β = 0, α = 1, let v◦, � ∈ W 1,∞(R2)2 with curlv◦ ∈
P(R2). Then there exists a global strong solution v ∈ L∞

loc(R
+; L∞(R2)) ∩L∞

loc(R
+; v◦ +L1(R2)) of (1.2) on R+ ×R

2

with initial data v◦ and with curlv ∈ L∞
loc(R

+; P ∩ L∞(R2)). This solution v is unique in the class of all w’s in 
L∞

loc(R
+ ×R

2) with curlw ∈ L∞
loc(R

+; P ∩ L∞
loc(R

2)).

If in addition for some s ≥ 0 we have v◦, � ∈ W 1∨s,∞(R2)2 and curlv◦, curl� ∈ Ws,∞(R2), then v ∈ W
1,∞
loc (R+;

Ws,∞(R2)2). If for some s ≥ 1 we further have v◦, � ∈ Ws,∞(R2)2, curlv◦ ∈ Hs ∩ Ws,∞(R2), and curl� ∈
Ws,∞(R2), then v ∈ L∞

loc(R
+; v◦ + Hs ∩ Ws,∞(R2)2). ♦

1.6. Roadmap to the proof of the main results

To ease the presentation, various independent PDE results needed in the proofs are isolated in Section 2, including 
general a priori estimates for transport and transport-diffusion equations, some global elliptic regularity results, as 
well as critical potential theory estimates. The interest of such estimates for our purposes should be already clear from 
a quick look at the vorticity formulation (1.9)–(1.10). To the best of our knowledge, most of these PDE results cannot 
be found in this form in the literature, and proofs are included in Appendix B.

We start in Section 3 with the local existence of smooth solutions, summarized in Theorem 2 above. In the non-
degenerate case λ > 0, the proof follows from a standard iterative scheme as in [48, Appendix B]. It is performed here 
in Sobolev spaces, but could be done in Hölder spaces as well. In the degenerate parabolic case λ = β = 0, α > 0, 
a similar argument holds, but requires a more careful analysis of the iterative scheme.

In Section 4 we then turn to global existence. In order to pass from local to global existence, we prove estimates 
for the Sobolev and Hölder norms of solutions through the norm of their initial data. As shown in Section 4.2, these 
estimates essentially follow from an a priori control of the vorticity in L∞(R2). In the work by Lin and Zhang [39]
on the simpler model (1.4), such an a priori estimate for the vorticity is achieved by a direct ODE argument, using 
that for (1.4) the evolution of the vorticity along characteristics can be integrated explicitly. This explicit structure is 
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lost in the more sophisticated models (1.1) and (1.2), but in the parabolic case we still manage to design suitable ODE 
type arguments (cf. Lemma 4.3(iii)). This leads to the nice boundedness effect (1.12) for the vorticity (depending on 
the initial mass 

∫
ω◦ = 1 only!), which of course differs from [39] by the additional exponential growth due to the 

forcing �, and which is at the core of our existence result for vortex-sheet initial data. In the mixed-flow case for the 
incompressible model (1.1), such ODE arguments are no longer available, and only a weaker estimate is obtained, 
controlling for all 1 ≤ q ≤ ∞ the Lq -norm of the solution (as well as its space–time Lq+1-norm if α > 0) by the 
Lq -norm of the initial data (cf. Lemma 4.2). This is proven by a careful examination of the evolution of Lq -norms of 
the vorticity.

In order to handle rough initial data, we regularize the data and then pass to the limit in the equation, using the 
compactness given by the available a priori estimates. As already noticed, for h non-constant, the usual Delort’s 
argument [20] fails (due to the first right-hand side term in (1.11)), so that stronger compactness is needed to pass 
to the limit in the nonlinearity ωv than in the simpler case of the 2D Euler equation. While energy estimates only 
give bounds for v in v̄◦ + L2(R2)2 and for ζ in L2(R2) (cf. Lemma 4.1), the additional estimates for the vorticity in 
Lq(R2), q > 1, turn out to be crucial. As in [39], we need to make use of some compactness result due to Lions [40] in 
the context of the compressible Navier–Stokes equations. The model (1.1) in the conservative case α = 0 is however 
more subtle because of a lack of strong enough a priori estimates: only very weak solutions are then expected and 
obtained (for initial vorticity in Lq(R2) with q > 1), and compactness is in that case carefully proven by hand, which 
is one of the main achievements in this paper (cf. Proposition 4.10(iv)).

Uniqueness issues are addressed in Section 5. Similarly as in [48, Appendix B], weak–strong uniqueness princi-
ples for both (1.1) and (1.2) are established by energy methods in the non-degenerate case λ > 0. In the degenerate 
parabolic case λ = β = 0, α > 0, these energy methods fail: an additional term needs to be added to the usual energy, 
and on this basis a different weak–strong uniqueness principle is obtained. Following the modulated energy strategy 
developed by Serfaty [48], these weak–strong principles are the key to the mean-field limit results for Ginzburg–
Landau vortices in the companion paper [24]. For the incompressible model (1.1), uniqueness in the class of bounded 
vorticity is further obtained using the approach by Serfaty and Vázquez [50] for the simpler model (1.4), which con-
sists in adapting the corresponding uniqueness result for the 2D Euler equation due to Yudovich [54] together with a 
transport argument à la Loeper [41].

Finally, in Appendix A jointly written with Julian Fischer, a global well-posedness result is established for the 
degenerate parabolic case λ = β = 0, α > 0. The proof consists in exploiting the scalar structure of the solution v to 
reduce the equation to a Burgers type equation with additional quadratic damping and forcing terms, and with unit 
initial data. Suitable ODE type arguments then allow to explicitly integrate this equation, and the desired properties 
of the solution easily follow.

Notation
We use the notation C for (unless explicitly stated) universal constants that may vary from line to line. We write �

and � for ≤ and ≥ up to such multiplicative constants C, and we use the notation � if both relations � and � hold. 
We add a subscript in order to indicate the dependence on other parameters. However, as we need to keep track of 
the dependence on various controlled quantities, and as subscripts would quickly become unreadable, we usually do 
not use any subscript and simply indicate in the beginning of each statement or proof on what quantities constants are 
allowed to depend.

For any vector field F = (F1, F2) on R2, we denote F⊥ = (−F2, F1), curlF = ∂1F2 − ∂2F1, and also as usual 
divF = ∂1F1 + ∂2F2. Given two linear operators A, B on some function space, we denote by [A, B] := AB − BA

their commutator. For any exponent 1 ≤ p ≤ ∞, we denote its Hölder conjugate by p′ := p/(p − 1). We denote by 
B(x, r) the ball of radius r centered at x in Rd , and we set Br := B(0, r) and B(x) := B(x, 1). We use the notation 
a ∧ b = min{a, b} and a ∨ b = max{a, b} for all a, b ∈ R. Given a function f : Rd → R, we denote its positive and 
negative parts by f +(x) := 0 ∨ f (x) and f −(x) := 0 ∨ (−f )(x), respectively. The space of Lebesgue-measurable 
functions on Rd is denoted by Mes(Rd), the set of Borel probability measures on Rd is denoted by P(Rd), and for 
all σ > 0, Cσ

b (Rd) stands as usual for the Banach space C�σ�,σ−�σ�
b (Rd) of bounded Hölder functions. For σ ∈ (0, 1), 

we denote by | · |Cσ the usual Hölder seminorm, and by ‖ · ‖Cσ := | · |Cσ + ‖ · ‖L∞ the corresponding norm. We 
denote by Lp

uloc(R
d) the Banach space of functions that are uniformly locally Lp-integrable, with norm ‖f ‖Lp

uloc
:=

supx ‖f ‖Lp(B(x)). Given a Banach space X ⊂ Mes(Rd) and t > 0, we use the notation ‖ · ‖Lp
t X for the usual norm in 

Lp([0, t]; X).
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2. Preliminary results

In this section, we establish various PDE results that are needed in the sequel and are of independent interest. As 
most of them do not depend on the choice of space dimension 2, they are stated here in general dimension d ≥ 1. We 
first recall the following useful proxy for a fractional Leibniz rule, which is essentially due to Kato and Ponce [33]
based on ideas by Coifman and Meyer [18,19] (see e.g. [27, Theorem 1.4]).

Lemma 2.1 (Kato–Ponce inequality). Let d ≥ 1, s ≥ 0, p ∈ (1, ∞), and let 1
pi

+ 1
qi

= 1
p

with pi, qi ∈ (1, ∞] for 

i = 1, 2. Then for f, g ∈ C∞
c (Rd) we have

‖fg‖Ws,p � ‖f ‖Lp1 ‖g‖Ws,q1 + ‖g‖Lp2 ‖f ‖Ws,q2 . ♦

The following gives a general estimate for the evolution of the Sobolev norms of the solutions of transport equations 
(see also [39, equation (7)] for a simpler version), which will be useful in the sequel since the vorticity ω indeed 
satisfies an equation of this form (1.9). The proof is postponed to Appendix B.

Lemma 2.2 (A priori estimate for transport equations). Let d ≥ 1, s ≥ 0, T > 0. Given a vector field w ∈
L∞

loc([0, T ); W 1,∞(Rd)d) with w − W ∈ L∞
loc([0, T ); Hs+1(Rd)d) for some reference map W ∈ Ws+1,∞(Rd)d , let 

ρ ∈ L∞
loc([0, T ); Hs(Rd)) satisfy the transport equation ∂tρ = div(ρw) in the distributional sense on [0, T ) × R

d . 
Then for all t ∈ [0, T ) we have

∂t‖ρt‖Hs �s ‖(∇wt,∇W)‖L∞‖ρt‖Hs + ‖W‖Ws+1,∞‖ρt‖L2

+ min
{‖ρt‖L∞‖div(wt − W)‖Hs + ‖ρt‖W 1,∞‖wt − W‖Hs ; ‖ρt‖L∞‖wt − W‖Hs+1

}
, (2.1)

where we use the notation ‖(∇wt, ∇W)‖L∞ := ‖∇wt‖W 1,∞ ∨ ‖∇W‖W 1,∞ . Moreover, for all t ∈ [0, T ),

‖ρt − ρ◦‖Ḣ−1 ≤ ‖ρ‖L∞
t L2‖w‖L1

t L∞ . ♦ (2.2)

As the evolution of the divergence ζ in the compressible model (1.2) is given by the transport-diffusion equa-
tion (1.10), the following parabolic regularity results will be needed. While items (i) and (ii) are classical, item (iii) 
is less standard (see however [6, Section 3.4] for a variant of this estimate), and a complete proof is included in 
Appendix B.

Lemma 2.3 (A priori estimates for transport-diffusion equations). Let d ≥ 1, T > 0. Let g ∈ L1
loc([0, T ) ×R

d)d , and 
let w satisfy ∂tw − 
w + div(w∇h) = divg in the distributional sense on [0, T ) × R

d with initial data w◦. The 
following hold:

(i) for all s ≥ 0, if ∇h ∈ Ws,∞(Rd)d , w ∈ L∞
loc([0, T ); Hs(Rd)), and g ∈ L2

loc([0, T ); Hs(Rd)d), then we have for 
all t ∈ [0, T ),

‖wt‖Hs ≤ CeCt (‖w◦‖Hs + ‖g‖L2
t H

s ),

where the constant C depends only on an upper bound on s and ‖∇h‖Ws,∞ ;
(ii) if ∇h ∈ L∞(Rd), w◦ ∈ L2(Rd), w ∈ L∞

loc([0, T ); L2(Rd)), and g ∈ L2
loc([0, T ); L2(Rd)), then we have for all 

t ∈ [0, T ),

‖wt − w◦‖Ḣ−1∩L2 ≤ CeCt (‖w◦‖L2 + ‖g‖L2
t L2),

where the constant C depends only on an upper bound on ‖∇h‖L∞;
(iii) for all 1 ≤ p, q ≤ ∞, and all dq

d+q
< s ≤ q , s ≥ 1, if ∇h ∈ L∞(Rd), w ∈ Lp

loc([0, T ); Lq(Rd)), and g ∈
Lp

loc([0, T ); Ls(Rd)), then we have for all t ∈ [0, T ),

‖w‖Lp
t Lq ≤ C(‖w◦‖Lq + κ−1tκ‖g‖Lp

t Ls ) exp
(

inf
2<r<∞ r−1(1 + (r − 2)−r/2)(Ct)r/2

)
,

where κ := d ( 1 + 1 − 1 ) > 0, and where the constant C depends only on an upper bound on ‖∇h‖L∞ . ♦
2 d q s
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Another ingredient that we need is the following string of critical potential theory estimates. The Sobolev em-
bedding for W 1,d (Rd) gives that ‖∇
−1w‖L∞ is almost bounded by the Ld(Rd)-norm of w, while the Calderón–
Zygmund theory gives that ‖∇2
−1w‖L∞ is almost bounded by the L∞(Rd)-norm of w. The following result makes 
these assertions precise in a quantitative way in the spirit of Brézis and Gallouët [11]. Item (iii) can be found e.g. 
in [39, Appendix] in a slightly different form, but we were unable to find items (i) and (ii) in the literature. The proof 
is postponed to Appendix B. (By −
−1 we henceforth mean the convolution with the Green’s kernel.)

Lemma 2.4 (Potential estimates in L∞). Let d ≥ 2. For all w ∈ C∞
c (Rd) the following hold:1

(i) for all 1 ≤ p < d < q ≤ ∞, choosing θ ∈ (0, 1) such that 1
d

= θ
p

+ 1−θ
q

, we have

‖∇
−1w‖L∞ �
(
(1 − d

q
) ∧ (1 − p

d
)
)−1+ 1

d ‖w‖Ld

(
1 + log

‖w‖θ
Lp‖w‖1−θ

Lq

‖w‖Ld

)1− 1
d ;

(ii) if w = div ξ for ξ ∈ C∞
c (Rd)d , then, for all d < q ≤ ∞ and 1 ≤ p < ∞, we have

‖∇
−1w‖L∞ � (1 − d
q
)−1+ 1

d ‖w‖Ld

(
1 + log+ ‖w‖Lq

‖w‖Ld

)1− 1
d + p‖ξ‖Lp ;

(iii) for all 0 < s ≤ 1 and 1 ≤ p < ∞, we have

‖∇2
−1w‖L∞ � s−1‖w‖L∞
(

1 + log
‖w‖Cs

‖w‖L∞

)
+ p‖w‖Lp . ♦

In addition to the Sobolev regularity of solutions of (1.1)–(1.2), we study in the sequel their Hölder regularity as 
well, in the framework of the Besov spaces Cs∗(Rd) := Bs∞,∞(Rd) (see e.g. [6]). These spaces actually coincide with 
the usual Hölder spaces Cs

b(R
d) only for non-integer s ≥ 0 (for integer s ≥ 0 they are strictly larger than Ws,∞(Rd) ⊃

Cs
b(R

d) and coincide with the corresponding Zygmund spaces). The following potential theory estimates are then 
needed both in Sobolev and in Hölder–Zygmund spaces. As we were unable to find item (ii) stated in the literature, 
a short proof is included in Appendix B.

Lemma 2.5 (Potential estimates in Sobolev and Hölder–Zygmund spaces). Let d ≥ 2. For all w ∈ C∞
c (Rd), the 

following hold:

(i) for all s ≥ 0,

‖∇
−1w‖Hs � ‖w‖Ḣ−1∩Hs−1, ‖∇2
−1w‖Hs � ‖w‖Hs ;
(ii) for all s ∈R,

‖∇
−1w‖Cs∗ �s ‖w‖
Ḣ−1∩Cs−1∗ , ‖∇2
−1w‖Cs∗ �s ‖w‖Ḣ−1∩Cs∗ ,

and for all 1 ≤ p < d and 1 ≤ q < ∞,

‖∇
−1w‖Cs∗ �p,s ‖w‖Lp∩L∞∩Cs−1∗ , ‖∇2
−1w‖Cs∗ �q,s ‖w‖Lq∩Cs∗ ,

where the subscripts s, p, q indicate the additional dependence of the multiplicative constants on an upper bound on 
s, (d − p)−1, and q , respectively. ♦

We now state some global elliptic regularity results for the operator − div(b∇) on the whole plane R2. Considering 
both the case of a right-hand side f and that of a right-hand side in divergence form divg, we compare the properties 
of the corresponding solutions in terms of assumptions on (f, g). As no reference was found in the literature for this 
2D setting, a detailed proof is included in Appendix B.

1 A direct adaptation of the proof further shows that in parts (i) and (ii) the L∞-norms in the left-hand sides could be replaced by Hölder Cε -norms 
with ε ∈ [0, 1): the exponents d in the right-hand sides would then need to be all replaced by (1 − ε)−1d > d , and an additional multiplicative 
prefactor (1 − ε)−1 is further needed.
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Lemma 2.6 (2D global elliptic regularity). Let b ∈ W 1,∞(R2)2×2 be uniformly elliptic, that is, Id ≤ b ≤ � Id for 
some � < ∞. Given f ∈ C∞

c (R2) and g ∈ C∞
c (R2)2, we consider the decaying solutions u and v of the following 

equations in R2,

−div(b∇u) = f, and − div(b∇v) = divg.

The following properties hold.

(i) Meyers type estimates: There exists 2 < p0, q0, r0 < ∞ (depending only on an upper bound on �) such that for 
all 2 < p ≤ p0, all q0 ≤ q < ∞, and all r ′

0 ≤ r ≤ r0 with 1
r0

+ 1
r ′
0
= 1,

‖∇u‖Lp ≤ Cp‖f ‖L2p/(p+2) , ‖v‖Lq ≤ Cq‖g‖L2q/(q+2) , ‖∇v‖Lr ≤ C‖g‖Lr ,

for some constant C depending only on an upper bound on �, and for constants Cp and Cq further depending 
on an upper bound on (p − 2)−1 and q , respectively.

(ii) Sobolev regularity: For all s ≥ 0 we have

‖∇u‖Hs ≤ Cs‖f ‖Ḣ−1∩Hs−1, ‖∇v‖Hs ≤ Cs‖g‖Hs ,

where the constant Cs depends only on an upper bound on s and on ‖b‖Ws,∞ .
(iii) Schauder type estimate: For all s ∈ (0, 1) we have

|∇u|Cs ≤ Cs‖f ‖L2/(1−s) , |v|Cs ≤ C′
s‖g‖L2/(1−s) ,

where the constant Cs (resp. C′
s ) depends only on s and on an upper bound on ‖b‖Ws,∞ (resp. on s and on the 

modulus of continuity of b).

In particular, we have

‖∇u‖L∞ ≤ C‖f ‖L1∩L∞ , ‖v‖L∞ ≤ C′‖g‖L1∩L∞ ,

where the constant C (resp. C′) depends only on an upper bound on ‖b‖W 1,∞ (resp. �). ♦

The interaction force v in equation (1.9) is defined by the values of curlv and div(av). The following result shows 
how v is controlled by such specifications. The proof is postponed to Appendix B.

Lemma 2.7. Let a, a−1 ∈ L∞(R2). For all δω, δζ ∈ Ḣ−1(R2), there exists a unique δv ∈ L2(R2)2 such that curl δv =
δω and div(aδv) = δζ . Moreover, for all s ≥ 0, if a, a−1 ∈ Ws,∞(R2) and δω, δζ ∈ Ḣ−1 ∩ Hs−1(R2), we have

‖δv‖Hs ≤ C‖δω‖Ḣ−1∩Hs−1 + C‖δζ‖Ḣ−1∩Hs−1,

where the constant C depends only on an upper bound on s and ‖(a, a−1)‖Ws,∞ . ♦

As emphasized in Remark 1.2(i), weak solutions of the incompressible model (1.1) are rather defined via the 
vorticity formulation (1.9) in order to avoid compactness issues related to the pressure P . Although this will not be 
used in the sequel, we quickly check that under mild regularity assumptions a weak solution v of (1.1) automatically 
also satisfies equation (1.1) in the distributional sense on [0, T ) ×R

2 for some pressure P . The proof is postponed to 
Appendix B.

Lemma 2.8 (Control on the pressure). Let α, β ∈ R, T > 0, h ∈ W 1,∞(R2), and �, v̄◦ ∈ L∞(R2)2. There exists 
some 2 < q0 � 1 large enough (depending only on an upper bound on ‖h‖L∞) such that the following holds: If v ∈
L∞

loc([0, T ); v̄◦ + L2(R2)2) is a weak solution of (1.1) on [0, T ) × R
2 with ω := curlv ∈ L∞

loc([0, T ); P ∩ Lq0(R2)), 
then v satisfies (1.1) in the distributional sense on [0, T ) ×R

2 for some pressure P ∈ L∞
loc([0, T ); Lq0(R2)). ♦
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3. Local-in-time existence of smooth solutions

In this section, we prove the local-in-time existence of smooth solutions of (1.1)–(1.2) as summarized in Theorem 2. 
Note that we choose to work here in the framework of Sobolev spaces, but the results could easily be adapted to Hölder 
spaces (compare indeed with Lemma 4.7). We start with the non-degenerate case λ > 0, using a standard iterative 
scheme as e.g. in [48, Appendix B].

Proposition 3.1 (Local existence, non-degenerate case). Let α, β ∈ R, λ > 0. Let s > 1, and let h, �, v̄◦ ∈
Ws+1,∞(R2)2. Let v◦ ∈ v̄◦ + Hs+1(R2)2 with ω◦ := curlv◦, ω̄◦ := curl v̄◦ ∈ Hs(R2), and with either div(av◦) =
div(av̄◦) = 0 in the case (1.1), or ζ ◦ := div(av◦), ζ̄ ◦ := div(av̄◦) ∈ Hs(R2) in the case (1.2). Then there exists 
T > 0 and a weak solution v ∈ L∞([0, T ); v̄◦ + Hs+1(R2)2) of (1.1) or of (1.2) on [0, T ) ×R

2 with initial data v◦. 
Moreover, T depends only on an upper bound on |α|, |β|, λ, λ−1, s, (s − 1)−1, ‖(h, �, v̄◦)‖Ws+1,∞ , ‖v◦ − v̄◦‖Hs+1 , 
‖(ω◦, ω̄◦, ζ ◦, ζ̄ ◦)‖Hs . ♦

Proof. We focus on the compressible case (1.2), the situation being similar and simpler in the incompressible 
case (1.1). Let s > 1. We set up the following iterative scheme: let v0 := v◦, ω0 := ω◦ = curlv◦ and ζ0 := ζ ◦ =
div(av◦), and for all n ≥ 0 given vn, ωn := curlvn, and ζn := div(avn) we let ωn+1 and ζn+1 solve on R+ ×R

2 the 
linear equations

∂tωn+1 = div
(
ωn+1(α(� + vn)

⊥ + β(� + vn))
)
, ωn+1|t=0 = ω◦, (3.1)

∂t ζn+1 = λ
ζn+1 − λdiv(ζn+1∇h) + div
(
aωn(−α(� + vn) + β(� + vn)

⊥)
)
, ζn+1|t=0 = ζ ◦, (3.2)

and we let vn+1 satisfy curlvn+1 = ωn+1 and div(avn+1) = ζn+1. For all n ≥ 0, let also

tn := sup
{
t ≥ 0 : ‖(ωt

n, ζ
t
n)‖Hs + ‖vt

n − v̄◦‖Hs+1 ≤ C0

}
,

for some C0 ≥ 1 to be suitably chosen (depending on the initial data), and let T0 := infn tn. We show that this iterative 
scheme is well-defined with T0 > 0, and that it converges to a solution of equation (1.2) on [0, T0) ×R

2.
We split the proof into two steps. In this proof, we use the notation � for ≤ up to a constant C > 0 that depends 

only on an upper bound on |α|, |β|, λ, λ−1, s, (s − 1)−1, ‖(h, �, v̄◦)‖Ws+1,∞ , ‖v◦ − v̄◦‖Hs+1 , ‖(ζ ◦, ζ̄ ◦)‖Hs , and 
‖(ω◦, ω̄◦)‖Hs .

Step 1. The iterative scheme is well-defined.
In this step, we show that for all n ≥ 0 the system (3.1)–(3.2) admits a unique solution (ωn+1, ζn+1, vn+1) with 

ωn+1 ∈ L∞
loc(R

+; Hs(R2)), ζn+1 ∈ L∞
loc(R

+; Hs(R2)), and vn+1 ∈ L∞
loc(R

+; v̄◦ + Hs+1(R2)2), and that moreover 
for a suitable choice of 1 ≤ C0 � 1 we have T0 ≥ C−4

0 > 0. We argue by induction. Let n ≥ 0 be fixed, and as-
sume that (ωn, ζn, vn) is well-defined with ωn ∈ L∞

loc(R
+; Hs(R2)), ζn ∈ L∞

loc(R
+; Hs(R2)), and vn ∈ L∞

loc(R
+; v̄◦ +

Hs+1(R2)2). (For n = 0, this is indeed trivial by assumption.)
We first study the equation for ωn+1. By the Sobolev embedding with s > 1, vn is Lipschitz-continuous, and by 

assumption � is also Lipschitz-continuous, hence the transport equation (3.1) admits a unique continuous solution 
ωn+1, which automatically belongs to L∞

loc(R
+; ω◦ + Ḣ−1 ∩ Hs(R2)) by Lemma 2.2. More precisely, for all t ≥ 0, 

Lemma 2.2 together with the Sobolev embedding for s > 1 yields

∂t‖ωt
n+1‖Hs ≤ C(1 + ‖vt

n‖W 1,∞)‖ωt
n+1‖Hs + C‖ωt

n+1‖L∞‖vt
n − v̄◦‖Hs+1

≤ C(1 + ‖vt
n − v̄◦‖Hs+1)‖ωt

n+1‖Hs .

Hence, for all t ∈ [0, tn], we obtain ∂t‖ωt
n+1‖Hs ≤ CC0‖ωt

n+1‖Hs , which proves

‖ωt
n+1‖Hs ≤ eCC0t‖ω◦‖Hs ≤ CeCC0t .

Noting that

‖ω◦ − ω̄◦‖Ḣ−1 ≤ ‖v◦ − v̄◦‖L2 ≤ C,

Lemma 2.2 together with the Sobolev embedding for s > 1 also gives for all t ≥ 0,
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‖ωt
n+1 − ω̄◦‖Ḣ−1 ≤ C + ‖ωt

n+1 − ω◦‖Ḣ−1 ≤ C + Ct‖ωn+1‖L∞
t L2(1 + ‖vn‖L∞

t L∞)

≤ C + Ct‖ωn+1‖L∞
t H s (1 + ‖vn − v̄◦‖L∞

t H s ),

and hence, for all t ∈ [0, tn],
‖ωt

n+1 − ω̄◦‖Ḣ−1 ≤ C(1 + tC0)e
CC0t .

We now turn to ζn+1. Equation (3.2) (with λ > 0) is a transport-diffusion equation and admits a unique solu-
tion ζn+1, which belongs to L∞

loc(R
+; ζ ◦ + Ḣ−1 ∩ Hs(R2)) by Lemma 2.3(i)–(ii). More precisely, for all t ≥ 0, 

Lemma 2.3(i) yields for s > 1

‖ζ t
n+1‖Hs ≤ CeCt

(‖ζ ◦‖Hs + ‖aωn(α(� + vn)
⊥ + β(� + vn))‖L2

t H
s

)
≤ CeCt

(
1 + t1/2‖ωn‖L∞

t H s (1 + ‖vn − v̄◦‖L∞
t H s )

)
, (3.3)

where we have used Lemma 2.1 together with the Sobolev embedding to estimate the terms. Noting that

‖ζ ◦ − ζ̄ ◦‖Ḣ−1 ≤ ‖av◦ − av̄◦‖L2 ≤ C,

Lemma 2.3(ii) together with the Sobolev embedding for s > 1 also gives for all t ≥ 0,

‖ζ t
n+1 − ζ̄ ◦‖Ḣ−1 ≤ C + ‖ζ t

n+1 − ζ ◦‖Ḣ−1 ≤ C + CeCt
(‖ζ ◦‖L2 + ‖aωn(α(� + vn)

⊥ + β(� + vn))‖L2
t L2

)
≤ CeCt

(
1 + t1/2‖ωn‖L∞

t H s (1 + ‖vn − v̄◦‖L∞
t H s )

)
.

Combining this with (3.3) yields for all t ∈ [0, tn],
‖ζ t

n+1‖Hs + ‖ζ t
n+1 − ζ̄ ◦‖Ḣ−1 ≤ CeCt

(
1 + t1/2C0(1 + C0)

) ≤ C(1 + t1/2C2
0)eCt .

We finally turn to vn+1. By the above properties of ωn+1 and ζn+1, Lemma 2.7 ensures that vn+1 is uniquely 
defined in L∞

loc(R
+; v̄◦ + Hs+1(R2)2) with curl(vt

n+1 − v̄◦) = ωt
n+1 − ω̄◦ and div(a(vt

n+1 − v̄◦)) = ζ t
n+1 − ζ̄ ◦ for all 

t ≥ 0. More precisely, Lemma 2.7 gives for all t ∈ [0, tn],
‖vt

n+1 − v̄◦‖Hs+1 ≤ C‖ωt
n+1 − ω̄◦‖Ḣ−1∩Hs + C‖ζ t

n+1 − ζ̄ ◦‖Ḣ−1∩Hs

≤ C + C‖ωt
n+1 − ω̄◦‖Ḣ−1 + C‖ωt

n+1‖Hs + C‖ζ t
n+1 − ζ̄ ◦‖Ḣ−1 + C‖ζ t

n+1‖Hs

≤ C(1 + tC0 + t1/2C2
0)eCC0t .

Hence, we have proven that (ωn+1, ζn+1, vn+1) is well-defined in the correct space, and moreover, combining all 
the previous estimates, we find for all t ∈ [0, tn],

‖(ωt
n+1, ζ

t
n+1)‖Hs + ‖vt

n+1 − v̄◦‖Hs+1 ≤ C(1 + tC0 + t1/2C2
0)eCC0t .

Therefore, choosing C0 = 1 + 3CeC � 1, we obtain for all t ≤ tn ∧ C−4
0 ,

‖(ωt
n+1, ζ

t
n+1)‖Hs + ‖vt

n+1 − v̄◦‖Hs+1 ≤ C0,

and thus tn+1 ≥ tn ∧ C−4
0 . The result follows by induction.

Step 2. Passing to the limit in the scheme.
In this step, we show that up to an extraction the iterative scheme (ωn, ζn, vn) converges to a weak solution of 

equation (1.2) on [0, T0) ×R
2.

By Step 1, the sequences (ωn)n and (ζn)n are bounded in L∞([0, T0]; Hs(R2)2), and the sequence (vn)n is bounded 

in L∞([0, T0]; v̄◦ + Hs+1(R2)2). Up to an extraction, we thus have ωn
∗
⇀ ω, ζn

∗
⇀ ζ in L∞([0, T0]; Hs(R2)), and 

vn
∗
⇀ v in L∞([0, T0]; v̄◦ + Hs+1(R2)2). Comparing with equation (3.1), we deduce that (∂tωn)n is bounded in 

L∞([0, T0]; Hs−1(R2)). Since by the Rellich theorem the space Hs(U) is compactly embedded in Hs−1(U) for any 
bounded domain U ⊂R

2, the Aubin–Simon lemma ensures that we have ωn → ω strongly in C0([0, T0]; Hs−1
loc (R2)). 

This implies in particular ωnvn → ωv in the distributional sense, and hence we may pass to the limit in the weak for-
mulation of equations (3.1)–(3.2), which yields curlv = ω, div(av) = ζ , with ω and ζ satisfying in the distributional 
sense on [0, T0) ×R

2,
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∂tω = div
(
ω(α(� + v)⊥ + β(� + v))

)
, ω|t=0 = ω◦,

∂t ζ = λ
ζ − λdiv(ζ∇h) + div
(
aω(−α(� + v) + β(� + v)⊥)

)
, ζ |t=0 = ζ ◦,

that is, the vorticity formulation (1.9)–(1.10). Let us quickly deduce that v is a weak solution of (1.2). From the above 
equations, we deduce ∂tω ∈ L∞([0, T0]; Ḣ−1 ∩ Hs−1(R2)) and ∂t ζ ∈ L∞([0, T0]; Ḣ−1 ∩ Hs−2(R2)). Lemma 2.7
then implies ∂tv ∈ L∞([0, T0]; Hs−1(R2)2). We may then deduce that the quantity

V := ∂tv − λ∇(a−1ζ ) + α(� + v)ω − β(� + v)⊥ω

belongs to L∞([0, T0]; L2(R2)2) and satisfies curlV = div(aV ) = 0 in the distributional sense. Using the Hodge 
decomposition in L2(R2)2, we easily conclude V = 0, hence v ∈ L∞([0, T0]; v̄◦ + Hs+1(R2)2) is indeed a weak 
solution of (1.2) on [0, T0) ×R

2. �
We turn to the local-in-time existence of smooth solutions of (1.2) in the degenerate case λ = 0. The analysis of 

the iterative scheme needs to be carefully adapted in this case: in particular, ω and v are now on an equal footing with 
regard to regularity. Note that the proof only holds in the parabolic regime β = 0.

Proposition 3.2 (Local existence, degenerate case). Let α ∈ R, β = λ = 0. Let s > 2, and let h ∈ Ws,∞(R2), 
�, v̄◦ ∈ Ws+1,∞(R2)2. Let v◦ ∈ v̄◦ + Hs(R2)2 with ω◦ := curlv◦, ω̄◦ := curl v̄◦ ∈ Hs(R2) and ζ ◦ := div(av◦), 
ζ̄ ◦ := div(av̄◦) ∈ Hs−1(R2). Then, there exists T > 0 and a weak solution v ∈ L∞([0, T ); v̄◦ + Hs(R2)2) of (1.2)
on [0, T ) × R

2, with initial data v◦. Moreover, T depends only on an upper bound on |α|, s, (s − 2)−1, ‖h‖Ws,∞ , 
‖(�, v̄◦)‖Ws+1,∞ , ‖v◦ − v̄◦‖Hs , ‖(ω◦, ω̄◦)‖Hs , and ‖(ζ ◦, ζ̄ ◦)‖Hs−1 . ♦

Proof. We consider the same iterative scheme (ωn, ζn, vn) as in the proof of Proposition 3.1, but with λ = β = 0. Let 
s > 2. For all n ≥ 0, let

tn := sup
{
t ≥ 0 : ‖ωt

n‖Hs + ‖ζ t
n‖Hs−1 + ‖vt

n − v̄◦‖Hs ≤ C0

}
,

for some C0 ≥ 1 to be suitably chosen (depending on initial data), and let T0 := infn tn. In this proof, we use the 
notation � for ≤ up to a constant C > 0 that depends only on an upper bound on |α|, s, (s − 2)−1, ‖h‖Ws,∞ , 
‖(�, v̄◦)‖Ws+1,∞ , ‖v◦ − v̄◦‖Hs , ‖(ζ ◦, ζ̄ ◦)‖Hs−1 , and ‖(ω◦, ω̄◦)‖Hs .

Just as in the proof of Proposition 3.1, we first need to show that this iterative scheme is well-defined and 
that T0 > 0. We proceed by induction: let n ≥ 0 be fixed, and assume that (ωn, ζn, vn) is well-defined with 
ωn ∈ L∞

loc(R
+; Hs(R2)), ζn ∈ L∞

loc(R
+; Hs−1(R2)), and vn ∈ L∞

loc(R
+; v̄◦ + Hs(R2)2). (For n = 0 this is indeed 

trivial by assumption.)
We first study ζn+1. As λ = 0, equation (3.2) takes the form ∂t ζn+1 = −α div(aωn(� + vn)). Integrating this 

equation in time then yields

‖ζ t
n+1‖Hs−1 ≤ ‖ζ ◦‖Hs−1 + |α|

t∫
0

‖ωu
n(� + vu

n)‖Hs du� 1 + t (1 + ‖vn − v̄◦‖L∞
t H s )‖ωn‖L∞

t H s ,

where we have used Lemma 2.1 together with the Sobolev embedding to estimate the last term. Similarly, noting that 
‖ζ ◦ − ζ̄ ◦‖Ḣ−1 ≤ ‖av◦ − av̄◦‖L2 ≤ C, we find for s > 1,

‖ζ t
n+1 − ζ̄ ◦‖Ḣ−1 ≤ C + ‖ζ t

n+1 − ζ ◦‖Ḣ−1 ≤ ‖ζ ◦‖Hs−1 + |α|
t∫

0

‖ωu
n(� + vu

n)‖L2du

� 1 + t (1 + ‖vn − v̄◦‖L∞
t H s )‖ωn‖L∞

t H s .

Hence we obtain for all t ∈ [0, tn],
‖ζ t

n+1‖Hs−1 + ‖ζ t
n+1 − ζ̄ ◦‖Ḣ−1 ≤ C + Ct(1 + C0)C0 ≤ C(1 + tC2

0).

We now turn to the study of ωn+1. As β = 0, equation (3.1) takes the form ∂tωn+1 = α div(ωn+1(� + vn)
⊥). For 

all t ≥ 0, Lemma 2.2 together with the Sobolev embedding for s > 2 then yields (here the choice β = 0 is crucial, 
since otherwise the higher norm ‖vt

n − v̄◦‖Hs+1 would appear in the right-hand side!)
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∂t‖ωt
n+1‖Hs � (1 + ‖vt

n‖W 1,∞)‖ωt
n+1‖Hs + ‖ωt

n+1‖L∞‖ curl(vt
n − v̄◦)‖Hs + ‖ωt

n+1‖W 1,∞‖vt
n − v̄◦‖Hs

� (1 + ‖ωt
n‖Hs + ‖vt

n − v̄◦‖Hs )‖ωt
n+1‖Hs .

For all t ∈ [0, tn], this implies ∂t‖ωt
n+1‖Hs ≤ C(1 + 2C0)‖ωt

n+1‖Hs , and thus

‖ωt
n+1‖Hs ≤ ‖ω◦‖Hs eC(1+2C0)t ≤ CeCC0t .

Moreover, noting that ‖ω◦ − ω̄◦‖Ḣ−1 ≤ ‖v◦ − v̄◦‖L2 ≤ C, and applying Lemma 2.2 together with the Sobolev embed-
ding, we obtain

‖ωt
n+1 − ω̄◦‖Ḣ−1 ≤ C + ‖ωt

n+1 − ω◦‖Ḣ−1

≤ C + Ct(1 + ‖vn‖L∞
t L∞)‖ωn+1‖L∞

t L2

≤ C + Ct(1 + ‖vn − v̄◦‖L∞
t H s )‖ωn+1‖L∞

t L2,

hence for all t ∈ [0, tn]
‖ωt

n+1 − ω̄◦‖Ḣ−1 ≤ C + Ct(1 + C0)‖ωn+1‖L∞
t L2 ≤ C + CC0te

CC0t .

We finally turn to vn+1. By the above properties of ωn+1 and ζn+1, Lemma 2.7 ensures that vn+1 is uniquely 
defined in L∞

loc(R
+; v̄◦ + Hs(R2)2), and for all t ∈ [0, tn] we have

‖vt
n+1 − v̄◦‖Hs ≤ C‖ωt

n+1 − ω̄◦‖Ḣ−1∩Hs−1 + C‖ζ t
n+1 − ζ̄ ◦‖Ḣ−1∩Hs−1

≤ C + C‖ωt
n+1 − ω̄◦‖Ḣ−1 + C‖ωt

n+1‖Hs + C‖ζ t
n+1 − ζ̄ ◦‖Ḣ−1 + C‖ζ t

n+1‖Hs−1

≤ C(1 + tC2
0)eCC0t .

Hence, we have proven that (ωn+1, ζn+1, vn+1) is well-defined in the correct space, and moreover, combining all 
the previous estimates, we find for all t ∈ [0, tn]

‖ωt
n+1‖Hs + ‖ζ t

n+1‖Hs−1 + ‖vt
n+1 − v̄◦‖Hs ≤ C(1 + tC2

0)eCC0t .

Therefore, choosing C0 = 1 + 2CeC � 1, we obtain for all t ≤ tn ∧ C−2
0

‖ωt
n+1‖Hs + ‖ζ t

n+1‖Hs−1 + ‖vt
n+1 − v̄◦‖Hs ≤ C0,

and thus tn+1 ≥ tn ∧ C−2
0 . The conclusion now follows just as in the proof of Proposition 3.1. �

4. Global existence

As local existence is proven above in the framework of Sobolev spaces, the strategy for global existence consists 
in looking for a priori estimates on Sobolev norms. Since we are also interested in Hölder regularity of solutions, we 
establish a priori estimates on Hölder–Zygmund norms as well. As will be seen, the key ingredient is given by some 
a priori estimates for the vorticity ω in Lp(R2) with p > 1.

4.1. A priori estimates

We start with the following elementary energy estimates. Note that in the degenerate case λ = 0, the a priori 
estimate for ζ in L2

loc(R
+; L2(R2)) disappears, which is the main difficulty to establish a global result in that case. 

Although we stick in the sequel to the framework of item (iii), a priori estimates in slightly more general spaces are 
obtained in item (ii) for the compressible model (1.2).

Lemma 4.1 (Energy estimates). Let λ ≥ 0, α ≥ 0, β ∈R, T > 0 and � ∈ W 1,∞(R2). Let v◦ ∈ L2
loc(R

2)2 be such that 
ω◦ := curlv◦ ∈ P ∩ L2

loc(R
2), and such that either div(av◦) = 0 in the case (1.1), or ζ ◦ := div(av◦) ∈ L2

loc(R
2) in the 

case (1.2). Let v ∈ L2
loc([0, T ) ×R

2)2 be a weak solution of (1.1) or of (1.2) on [0, T ) ×R
2 with initial data v◦. Set 

ζ := 0 in the case (1.1). Then the following properties hold.

(i) For all t ∈ [0, T ), we have ωt ∈ P(R2).
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(ii) Localized energy estimate for (1.2): If v ∈ L2
loc([0, T ); L2

uloc(R
2)2) is such that ω ∈ L∞

loc([0, T ); L∞(R2)) and 
ζ ∈ L2

loc([0, T ); L2
uloc(R

2)), then we have for all t ∈ [0, T ),

‖vt‖2
L2

uloc
+ α‖|v|2ω‖L1

t L1
uloc

+ λ‖ζ‖2
L2

t L2
uloc

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CeC(1+λ−1)t‖v◦‖2
L2

uloc
, if α = 0, λ > 0;

Cα−1λ−1(eλt − 1) + Ceλt‖v◦‖2
L2

uloc
, if α > 0, λ > 0;

Cα−1t + C‖v◦‖2
L2

uloc
, if α > 0, λ = 0;

where the constant C depends only on an upper bound on α, |β|, λ, ‖h‖W 1,∞ , ‖�‖L∞ , and additionally on 
‖∇�‖L∞ in the case α = 0.

(iii) Relative energy estimate for (1.1) and (1.2): If there is some v̄◦ ∈ W 1,∞(R2)2 such that v◦ ∈ v̄◦ + L2(R2)2, 
ω̄◦ := curl v̄◦ ∈ L2(R2), and such that either div(av̄◦) = 0 in the case (1.1), or ζ̄ ◦ := div(av̄◦) ∈ L2(R2) in the 
case (1.2), and if v ∈ L∞

loc([0, T ); v̄◦ + L2(R2)), ω ∈ L∞
loc([0, T ); L∞(R2)), ζ ∈ L2

loc([0, T ); L2(R2)), then we 
have for all t ∈ [0, T ),

∫
a|vt − v̄◦|2 + α

t∫
0

du

∫
a|vu − v̄◦|2ωu + λ

t∫
0

du

∫
a−1|ζ u|2

≤

⎧⎪⎪⎨
⎪⎪⎩

Ct(1 + α−1) + ∫
a|v◦ − v̄◦|2, in both cases (1.1) and (1.2), with α > 0;

eCt
(
1 + ∫

a|v◦ − v̄◦|2), in the case (1.1), with α = 0;
C(eC(1+λ−1)t − 1) + eC(1+λ−1)t

∫
a|v◦ − v̄◦|2, in the case (1.2), with α = 0, λ > 0;

where the constant C depends only on an upper bound on α, |β|, λ, ‖h‖W 1,∞ , ‖(�, v̄◦)‖L∞ , ‖ζ̄ ◦‖L2 , and addi-
tionally on ‖ω̄◦‖L2 and ‖(∇�, ∇v̄◦)‖L∞ in the case α = 0. ♦

Proof. Item (i) is a standard consequence of the fact that ω satisfies a transport equation (1.9). It thus remains to check 
items (ii) and (iii). We split the proof into three steps.

Step 1. Proof of (ii).
Let v be a weak solution of the compressible equation (1.2) as in the statement, and let also C > 0 denote any 

constant as in the statement. We prove more precisely, for all t ∈ [0, T ) and x0 ∈R
2,

∫
ae−|x−x0||vt |2 + α

t∫
0

du

∫
ae−|x−x0||vu|2ωu + λ

t∫
0

du

∫
a−1e−|x−x0||ζ u|2 (4.1)

≤

⎧⎪⎨
⎪⎩

eC(1+λ−1)t
∫

ae−|x−x0||v◦|2, if α = 0, λ > 0;
Cα−1λ−1(eλt − 1) + eλt

∫
ae−|x−x0||v◦|2, if α > 0, λ > 0;

Cα−1t + ∫
ae−|x−x0||v◦|2, if α > 0, λ = 0.

Item (ii) directly follows from this, noting that

‖f ‖p

Lp

uloc
� sup

x0∈R2

∫
e−|x−x0||f (x)|pdx

holds for all 1 ≤ p < ∞. So it suffices to prove (4.1). Let x0 ∈ R
2 be fixed, and denote by χ(x) := e−|x−x0| the 

exponential cut-off function centered at x0. From equation (1.2) we compute the following time derivative

∂t

∫
aχ |vt |2 = 2

∫
aχ

(
λ∇(a−1ζ t ) − α(� + vt )ωt + β(� + vt )⊥ωt

) · vt ,

and hence, by integration by parts with |∇χ | ≤ χ ,

∂t

∫
aχ |vt |2 = −2λ

∫
a−1χ |ζ t |2 − 2λ

∫
∇χ · vt ζ t − 2α

∫
aχ |vt |2ωt + 2

∫
aχ(−α� + β�⊥) · vtωt

≤ −2λ

∫
a−1χ |ζ t |2 + 2λ

∫
χ |ζ t ||vt | − 2α

∫
aχ |vt |2ωt + 2

∫
aχ(−α� + β�⊥) · vtωt . (4.2)
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First consider the case α > 0. We may then bound the terms as follows, using the inequality 2xy ≤ x2 + y2,

∂t

∫
aχ |vt |2 ≤ −2λ

∫
a−1χ |ζ t |2 + 2λ

∫
χ |ζ t ||vt | − 2α

∫
aχ |vt |2ωt + 2C

∫
aχ |vt |ωt

≤ −λ

∫
a−1χ |ζ t |2 + λ

∫
aχ |vt |2 − α

∫
aχ |vt |2ωt + Cα−1

∫
aχωt

︸ ︷︷ ︸
≤C

.

As ωt is nonnegative by item (i), the first and third right-hand side terms are nonpositive, and the Grönwall inequality 
yields 

∫
aχ |vt |2 ≤ Cα−1λ−1(eλt − 1) + eλt

∫
aχ |v◦|2 (or 

∫
aχ |vt |2 ≤ Cα−1t + ∫

aχ |v◦|2 if λ = 0). The above 
estimate may then be rewritten as follows,

α

∫
aχ |vt |2ωt + λ

∫
a−1χ |ζ t |2 ≤ Cα−1 + λ

∫
aχ |vt |2 − ∂t

∫
aχ |vt |2

≤ Cα−1eλt + λeλt

∫
aχ |v◦|2 − ∂t

∫
aχ |vt |2.

Integrating in time yields

α

t∫
0

du

∫
aχ |vt |2ωu + λ

t∫
0

du

∫
a−1χ |ζ u|2 ≤ Cα−1λ−1(e−λt − 1) + eλt

∫
aχ |v◦|2 −

∫
aχ |vt |2,

so that (4.1) is proven for α > 0. We now turn to the case α = 0, λ > 0. In that case, using the following Delort type 
identity, which holds here in L∞

loc([0, T ); W−1,1
loc (R2)2),

ωv = a−1ζv⊥ − 1

2
|v|2∇⊥h − a−1(div(aSv))

⊥, Sv := v ⊗ v − 1

2
|v|2 Id,

the estimate (4.2) becomes, by integration by parts with |∇χ | ≤ χ ,

∂t

∫
aχ |vt |2 ≤ −2λ

∫
a−1χ |ζ t |2 + 2λ

∫
χ |ζ t ||vt | − 2α

∫
aχ |vt |2ωt + 2

∫
χ(−α� + β�⊥) · (vt )⊥ζ t

−
∫

aχ(−α� + β�⊥) · ∇⊥h|vt |2 + 2
∫

aχ(α∇�⊥ + β∇�) : Svt + 2
∫

aχ |α�⊥ + β�||Svt |,

and hence, noting that |Svt | ≤ C|vt |2, and using the inequality 2xy ≤ x2 + y2,

∂t

∫
aχ |vt |2 ≤ −2λ

∫
a−1χ |ζ t |2 + 2C

∫
χ |ζ t ||vt | − 2α

∫
aχ |vt |2ωt + C

∫
aχ |vt |2

≤ −λ

∫
a−1χ |ζ t |2 + C(1 + λ−1)

∫
aχ |vt |2.

The Grönwall inequality yields 
∫

aχ |vt |2 ≤ eC(1+λ−1)t
∫

aχ |v◦|2. The above estimate may then be rewritten as fol-
lows,

λ

∫
a−1χ |ζ t |2 ≤ C(1 + λ−1)

∫
aχ |vt |2 − ∂t

∫
aχ |vt |2

≤ C(1 + λ−1)eC(1+λ−1)t

∫
aχ |v◦|2 − ∂t

∫
aχ |vt |2.

Integrating in time, the result (4.1) is proven for α = 0. (Note that this proof cannot be adapted to the incompressible 
case (1.1), due to the lack of a sufficiently good control on the pressure P in (1.1) in general.)

Step 2. Proof of (iii) for (1.2).
We denote by C any positive constant as in the statement of item (iii). From equation (1.2), we compute the 

following time derivative,

∂t

∫
a|vt − v̄◦|2 = 2

∫
a(λ∇(a−1ζ t ) − α(� + vt )ωt + β(� + vt )⊥ωt) · (vt − v̄◦),
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or equivalently, integrating by parts and suitably regrouping the terms,

∂t

∫
a|vt − v̄◦|2 = −2λ

∫
a−1|ζ t |2 + 2λ

∫
a−1ζ t ζ̄ ◦ − 2α

∫
a|vt − v̄◦|2ωt

+ 2
∫

a(−α(� + v̄◦) + β(� + v̄◦)⊥) · (vt − v̄◦)ωt . (4.3)

First consider the case α > 0. We may then bound the terms as follows, using the inequality 2xy ≤ x2 + y2,

∂t

∫
a|vt − v̄◦|2 ≤ −2λ

∫
a−1|ζ t |2 + 2λ

∫
a−1ζ t ζ̄ ◦ − 2α

∫
a|vt − v̄◦|2ωt + 2C

∫
a|vt − v̄◦|ωt

≤ −λ

∫
a−1|ζ t |2 + λ

∫
a−1|ζ̄ ◦|2 − α

∫
a|vt − v̄◦|2ωt + Cα−1,

and the result of item (iii) in the case α > 0 follows by integration. We now turn to the case α = 0, λ > 0. In that case, 
we rather rewrite (4.3) in the form

∂t

∫
a|vt − v̄◦|2 = −2λ

∫
a−1|ζ t |2 + 2λ

∫
a−1ζ t ζ̄ ◦ − 2α

∫
a|vt − v̄◦|2ωt

+ 2
∫

a(−α(� + v̄◦) + β(� + v̄◦)⊥) · (vt − v̄◦)(ωt − ω̄◦)

+ 2
∫

a(−α(� + v̄◦) + β(� + v̄◦)⊥) · (vt − v̄◦)ω̄◦,

so that, using the following Delort type identity, which holds here in L∞
loc([0, T ); W−1,1

loc (R2)2),

(ω − ω̄◦)(v − v̄◦) = a−1(ζ − ζ̄ ◦)(v − v̄◦)⊥ − 1

2
|v − v̄◦|2∇⊥h − a−1(div(aSv−v̄◦))⊥,

we find by integration by parts

∂t

∫
a|vt − v̄◦|2 = −2λ

∫
a−1|ζ t |2 + 2λ

∫
a−1ζ t ζ̄ ◦ − 2α

∫
a|vt − v̄◦|2ωt

+ 2
∫

(−α(� + v̄◦) + β(� + v̄◦)⊥) · (vt − v̄◦)⊥(ζ t − ζ̄ ◦)

−
∫

a(−α(� + v̄◦) + β(� + v̄◦)⊥) · ∇⊥h|vt − v̄◦|2 + 2
∫

a∇(α(� + v̄◦)⊥ + β(� + v̄◦)) : Svt−v̄◦

+ 2
∫

a(−α(� + v̄◦) + β(� + v̄◦)⊥) · (vt − v̄◦) ω̄◦.

We may then bound the terms as follows, using the inequality 2xy ≤ x2 + y2,

∂t

∫
a|vt − v̄◦|2 ≤ −2λ

∫
a−1|ζ t |2 + 2λ

∫
a−1|ζ t ||ζ̄ ◦| − 2α

∫
a|vt − v̄◦|2ωt

+ C

∫
|vt − v̄◦| |ζ t | + C

∫
|vt − v̄◦| |ζ̄ ◦| + C

∫
a|vt − v̄◦|2 + C

∫
a|vt − v̄◦|ω̄◦

≤ −λ

∫
a−1|ζ t |2 + C

∫
a−1|ζ̄ ◦|2 + C

∫
|ω̄◦|2 + C(1 + λ−1)

∫
a|vt − v̄◦|2.

Item (iii) in the case α = 0 then easily follows from the Grönwall inequality.

Step 3. Proof of (iii) for (1.1).
We denote by C any positive constant as in the statement of item (iii). Noting that the identity v − v̄◦ =

a−1∇⊥(diva−1∇)−1(ω − ω̄◦) follows from (B.4) together with the constraint div(av) = div(av̄◦) = 0, and recalling 
that by assumption v− v̄◦ ∈ L2

loc([0, T ); L2(R2)2), we deduce ω− ω̄◦ ∈ L2
loc([0, T ); Ḣ−1(R2)) and (diva−1∇)−1(ω−

ω̄◦) ∈ L2 ([0, T ); Ḣ 1(R2)). In particular, this implies by integration by parts
loc
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∫
a|v − v̄◦|2 =

∫
a−1|∇(diva−1∇)−1(ω − ω̄◦)|2 =

∫
(ω − ω̄◦)(−diva−1∇)−1(ω − ω̄◦). (4.4)

From equation (1.9), we compute the following time derivative

∂t

∫
(ω − ω̄◦)(−diva−1∇)−1(ω − ω̄◦)

= 2
∫

∇(diva−1∇)−1(ω − ω̄◦) · (α(� + v)⊥ + β(� + v))ω

= −2
∫

a(v − v̄◦)⊥ ·
(
α(v − v̄◦)⊥ + β(v − v̄◦) + α(� + v̄◦)⊥ + β(� + v̄◦)

)
ω

= −2α

∫
a|v − v̄◦|2ω − 2

∫
aω(v − v̄◦)⊥ · (α(� + v̄◦)⊥ + β(� + v̄◦)).

Combining this with identity (4.4), we are now in position to conclude exactly as in Step 2 after equation (4.3) (but 
with here ζ, ζ̄ ◦ = 0). �

The energy estimates given by Lemma 4.1 above are not strong enough to deduce global existence, and the key is 
to find an additional a priori Lp-estimate for the vorticity ω with p > 1. We start with the following new result, based 
on a careful examination of the evolution of Lp-norms of the vorticity. The argument can unfortunately not be adapted 
to the mixed-flow compressible case (that is, (1.2) with α ≥ 0, β �= 0), as it would require a too strong additional 
control on the norm ‖ζ t‖Lp+1 ; this is why this case is excluded from our global results in Theorem 1.

Lemma 4.2 (Lp-estimates for vorticity). Let λ, α ≥ 0, β ∈ R, T > 0, h, � ∈ W 1,∞(R2), v̄◦ ∈ L∞(R2)2, and v◦ ∈
v̄◦ + L2(R2)2, with ω◦ := curlv◦ ∈ P(R2), ω̄◦ := curl v̄◦ ∈ P ∩ L∞(R2). In the case (1.1), also assume div(av◦) =
div(av̄◦) = 0. Let v ∈ L∞

loc([0, T ); v̄◦ + L2 ∩ L∞(R2)2) be a weak solution of (1.1) or of (1.2) on [0, T ) × R
2 with 

initial data v◦, and with ω := curlv ∈ L∞
loc([0, T ); P ∩ L∞(R2)). For all 1 < p ≤ ∞ and t ∈ [0, T ),

(i) in the case (1.1) with α > 0, β ∈R, we have(
α(p − 1)

2

)1/p

‖ω‖1+1/p

Lp+1
t Lp+1

+ ‖ωt‖Lp ≤ ‖ω◦‖Lp + Cp, (4.5)

where the constant Cp depends only on an upper bound on (p − 1)−1, α, α−1, |β|, T , ‖(h, �)‖W 1,∞ , 
‖(v̄◦, ω̄◦)‖L∞ , and on ‖v◦ − v̄◦‖L2 ;

(ii) in both cases (1.1) and (1.2) with α ≥ 0, β = 0, λ ≥ 0, the same estimate (4.5) holds, where the constant Cp = C

depends only on an upper bound on α, T , and on ‖(curl�)−‖L∞ . ♦

Proof. It is sufficient to prove the result for all 1 < p < ∞. In this proof, we use the notation � for ≤ up to a constant 
C > 0 as in the statement but independent of p. As explained at the end of Step 1, we may focus on item (i), the 
other being much simpler. Set θ̄◦ := div v̄◦, θ := divv. We repeatedly use the a priori estimate of Lemma 4.1(i) in the 
following interpolated form: for all s ≤ q and t ∈ [0, T ),

‖ωt‖Ls ≤ ‖ωt‖q ′/s′
Lq ‖ωt‖1−q ′/s′

L1 = ‖ωt‖q ′/s′
Lq . (4.6)

We split the proof into three steps.

Step 1. Preliminary estimate for ω (in case (i)): for all 1 < p < ∞ and all t ∈ [0, T ),

α(p − 1)‖ω‖p+1

Lp+1
t Lp+1

+ ‖ωt‖p
Lp ≤ ‖ω◦‖p

Lp + C(p − 1)(t1/p + ‖v‖Lp
t L∞)‖ω‖p−1/p

Lp+1
t Lp+1

. (4.7)

Using equation (1.9) and integrating by parts we may compute

∂t

∫
(ωt )p = p

∫
(ωt )p−1 div(ωt (α(� + vt )⊥ + β(� + vt )))

= −p(p − 1)

∫
(ωt )p−1∇ωt · (α(� + vt )⊥ + β(� + vt ))
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= −(p − 1)

∫
∇(ωt )p · (α(� + vt )⊥ + β(� + vt ))

= (p − 1)

∫
(ωt )p div(α(� + vt )⊥ + β(� + vt )).

In case (i), using the constraint div(av) = 0 to compute div(αv⊥ + βv) = −αω + β divv = −αω − β∇h · v, we find

(p − 1)−1∂t

∫
(ωt )p ≤ −α

∫
(ωt )p+1 + C

∫
(ωt )p(1 + |vt |) ≤ −α

∫
(ωt )p+1 + C(1 + ‖vt‖L∞)

∫
(ωt )p.

By interpolation (4.6), we obtain

α

∫
(ωt )p+1 + (p − 1)−1∂t

∫
(ωt )p ≤ C(1 + ‖vt‖L∞)‖ωt‖p−1/p

Lp+1 ,

and the result (4.7) directly follows by integration with respect to t and by the Hölder inequality. In case (ii) we rather 
have div(α(� + v)⊥ + β(� + v)) = −α(curl� + ω), and hence

α

∫
(ωt )p+1 + (p − 1)−1∂t

∫
(ωt )p ≤ α‖(curl�)−‖L∞

∫
(ωt )p ≤ α‖(curl�)−‖L∞

(∫
(ωt )p+1

)1−1/p

,

from which the conclusion (ii) already follows.

Step 2. Preliminary estimate for v (in case (i)): for all 2 < q ≤ ∞ and t ∈ [0, T ),

‖vt‖L∞ � 1 + (1 − 2/q)−1/2‖ωt‖q ′/2
Lq log1/2(2 + ‖ωt‖Lq ). (4.8)

Let 2 < q ≤ ∞. Note that vt − v̄◦ = ∇⊥
−1(ωt − ω◦) +∇
−1(θ t − θ̄◦). By Lemma 2.4(i) for w := ωt − ω̄◦ and 
Lemma 2.4(ii) for w := θ t − θ̄◦ = div(vt − v̄◦), we find

‖vt‖L∞ ≤ ‖v̄◦‖L∞ + ‖∇
−1(ωt − ω̄◦)‖L∞ + ‖∇
−1(θ t − θ̄◦)‖L∞

� 1 + (1 − 2/q)−1/2‖ωt − ω̄◦‖L2 log1/2(2 + ‖ωt − ω̄◦‖L1∩Lq )

+ ‖θ t − θ̄◦‖L2 log1/2(2 + ‖θ t − θ̄◦‖L2∩L∞) + ‖vt − v̄◦‖L2 .

Noting that θ t − θ̄◦ = −∇h · (vt − v̄◦), using interpolation (4.6) in the form ‖ωt‖L2 � ‖ωt‖q ′/2
Lq , and using the a priori 

estimates of Lemma 4.1 in the form ‖vt − v̄◦‖L2 + ‖ωt‖L1 � 1, we obtain

‖vt‖L∞ � (1 − 2/q)−1/2‖ωt‖q ′/2
Lq log1/2(2 + ‖ωt‖Lq ) + log1/2(2 + ‖vt − v̄◦‖L∞),

and the result follows, absorbing in the left-hand side the last norm of v.

Step 3. Conclusion.
Let 1 < p < ∞. From (4.8) with q = p + 1, we deduce in particular

‖vt‖L∞ � 1 + (1 − 1/p)−1/2‖ωt‖
1
2 (1+1/p)

Lp+1 log1/2(2 + ‖ωt‖Lp+1) � (1 − 1/p)−1/2(1 + ‖ωt‖
3
4 (1+1/p)

Lp+1

)
,

and hence, integrating with respect to t and combining with (4.7),

α(p − 1)‖ω‖p+1

Lp+1
t Lp+1

+ ‖ωt‖p
Lp ≤ ‖ω◦‖p

Lp + Cp
(
1 + ‖ω‖

3
4 (1+1/p)

Lp+1
t Lp+1

)‖ω‖p−1/p

Lp+1
t Lp+1

≤ ‖ω◦‖p
Lp + Cp‖ω‖p−1/p

Lp+1
t Lp+1

+ Cp‖ω‖p+ 3
4

Lp+1
t Lp+1

.

We may now absorb in the left-hand side the last two terms, to the effect of

α(p − 1)

2
‖ω‖p+1

Lp+1
t Lp+1

+ ‖ωt‖p
Lp ≤ ‖ω◦‖p

Lp + C
p
p ,

where the constant Cp further depends on an upper bound on (p − 1)−1, and the conclusion follows. �
The following result partially improves and completes the results of Lemma 4.2 above in the case (1.1) with either 

α = 0 or h constant (cf. item (ii) below), and in both cases (1.1) and (1.2) with α > 0, β = 0 (cf. item (iii) below). For 
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that purpose, inspired by the work of Lin and Zhang [39], we exploit by ODE arguments the very particular structure 
of the transport equation (1.9). In the parabolic case α > 0, β = 0, note that we establish in item (iii) an a priori 
Lp-estimate for the vorticity ω through its initial L1-norm only, which is the key for global existence results with 
vortex-sheet initial data. While in [39] for the simpler model (1.4) such an a priori estimate is achieved by explicitly 
integrating the evolution of the vorticity along characteristics, this explicit structure is lost for the more sophisticated 
models (1.1) and (1.2), and a more subtle argument is required.

Lemma 4.3 (Lp-estimates for vorticity, cont’d). Let λ ≥ 0, α ≥ 0, β ∈ R, T > 0, and h, �, v◦ ∈ W 1,∞(R2)2, 
with ω◦ := curlv◦ ∈ P ∩ C0(R2). Set ζ ◦ := div(av◦), and in the case (1.1) assume that div(av◦) = 0. Let v ∈
W

1,∞
loc ([0, T ); W 1,∞(R2)2) be a weak solution of (1.1) or of (1.2) on [0, T ) × R

2 with initial data v◦. For all 
1 ≤ p ≤ ∞ and t ∈ [0, T ), the following properties hold,

(i) in both cases (1.1) and (1.2), without restriction on the parameters,

‖ωt‖Lp ≤ ‖ω◦‖Lp min

{
exp

(p − 1

p

(
Ct + C|β|‖ζ‖L1

t L∞ + C|β|‖∇h‖L∞‖v‖L1
t L∞

));

exp
(p − 1

p

(
C + Ct + C|β|‖ζ‖L1

t L∞ + Cα‖∇h‖L∞‖v‖L1
t L∞

))}
;

(ii) in the case (1.1) with either β = 0 or α = 0 or h constant, and in the case (1.2) with β = 0, we have

‖ωt‖Lp ≤ CeCt‖ω◦‖Lp ;
(iii) given α > 0, in the case (1.1) with either β = 0 or h constant, and in the case (1.2) with β = 0, we have

‖ωt‖Lp ≤
(
(αt)−1 + Cα−1eCt

)1−1/p;

where the constant C depends only on an upper bound on α, |β|, and on ‖(h, �)‖W 1,∞ . ♦

Remark 4.4. In the context of item (iii), if we further assume � ≡ 0 (i.e. no forcing), then the constant C in Step 2 of 
the proof below may then be set to 0, so that we simply obtain, for all 1 ≤ p < ∞ and all t > 0,

‖ωt‖Lp ≤
(∫

|ω◦|p(1 + αtω◦)1−p

)1/p

≤ (αt)−(1−1/p),

without additional exponential growth. ♦

Proof. We split the proof into two steps, and we use the notation � for ≤ up to a constant C > 0 as in the statement.

Step 1. General bounds.
In this step, we prove (i) (from which (ii) directly follows, noting that choosing a constant implies ∇h ≡ 0). Let us 

consider the flow

∂tψ
t (x) = −α(� + vt )⊥(ψt (x)) − β(� + vt )(ψt (x)), ψt (x)|t=0 = x.

The Lipschitz assumptions ensure that ψ is well-defined in W 1,∞
loc ([0, T ); W 1,∞(R2)2). As ω satisfies the transport 

equation (1.9) with initial data ω◦ ∈ C0(R2), the method of propagation along characteristics yields

ωt(x) = ω◦((ψt )−1(x))|det∇(ψt )−1(x)| = ω◦((ψt )−1(x))|det∇ψt((ψt )−1(x))|−1,

and hence for all 1 ≤ p < ∞ we have∫
|ωt |p =

∫
|ω◦((ψt )−1(x))|p|det∇ψt((ψt )−1(x))|−pdx =

∫
|ω◦(x)|p|det∇ψt(x)|1−pdx, (4.9)

while for P = ∞,

‖ωt‖L∞ ≤ ‖ω◦‖L∞‖(det∇ψt)−1‖L∞ .
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Now let us examine this determinant more closely. By the Liouville–Ostrogradski formula,

|det∇ψt(x)|−1 = exp

( t∫
0

div
(
α(� + vu)⊥ + β(� + vu)

)
(ψu(x))du

)
. (4.10)

A simple computation gives

div(α(vt )⊥ + βvt ) = −α curlvt + β divvt = −αωt + βa−1ζ t − β∇h · vt , (4.11)

hence by non-negativity of ω,

div(α(vt )⊥ + βvt ) ≤ |β|‖a−1‖L∞‖ζ t‖L∞ + |β|‖∇h‖L∞‖vt‖L∞ .

We then deduce from (4.10),

|det∇ψt(x)|−1 ≤ exp
(
tα‖ curl�‖L∞ + t |β|‖div�‖L∞ + |β|‖a−1‖L∞‖ζ‖L1

t L∞ + |β|‖∇h‖L∞‖v‖L1
t L∞

)
,

and thus, combined with (4.9), for all 1 ≤ p ≤ ∞,

‖ωt‖Lp ≤ ‖ω◦‖Lp exp

(
p − 1

p

(
tα‖ curl�‖L∞ + t |β|‖div�‖L∞

+ |β|‖a−1‖L∞‖ζ‖L1
t L∞ + |β|‖∇h‖L∞‖v‖L1

t L∞
))

. (4.12)

On the other hand, noting that

∂th(ψt (x)) = −∇h(ψt (x)) · (α(� + vt )⊥ + β(� + vt ))(ψt (x)),

we may alternatively rewrite

div(α(vt )⊥ + βvt )(ψt (x)) = ( − αωt + βa−1ζ t − β∇h · vt
)
(ψt (x))

= ∂th(ψt (x)) + ( − αωt + βa−1ζ t − α∇⊥h · vt + ∇h · (α�⊥ + β�)
)
(ψt (x)).

Integrating this identity with respect to t and using again the same formula for | det∇ψt |−1, we obtain

‖ωt‖Lp ≤ ‖ω◦‖Lp exp

(
p − 1

p

(
tα‖ curl�‖L∞ + t |β|‖div�‖L∞ + |β|‖a−1‖L∞‖ζ‖L1

t L∞

+ 2‖h‖L∞ + t (α + |β|)‖∇h‖L∞‖�‖L∞ + α‖∇h‖L∞‖v‖L1
t L∞

))
. (4.13)

Combining (4.12) and (4.13), the conclusion (i) follows.

Step 2. Proof of (iii).
It suffices to prove the result for any 1 < p < ∞. Let such a p be fixed. Assuming either β = 0, or ζ ≡ 0 and a

constant, we deduce from (4.9), (4.10), and (4.11),

∫
|ωt |p =

∫
|ω◦(x)|p exp

(
(p − 1)

t∫
0

div
(
α(� + vu)⊥ + β(� + vu)

)
(ψu(x))du

)
dx

≤ eC(p−1)t

∫
|ω◦(x)|p exp

(
− α(p − 1)

t∫
0

ωu(ψu(x))du
)
dx. (4.14)

Let x be momentarily fixed, and set fx(t) := ωt(ψt (x)). We need to estimate the integral 
∫ t

0 fx(u)du. For that purpose, 
we first compute ∂tfx : again using (4.11) (with either β = 0, or ζ ≡ 0 and a constant), we find

∂tfx(t) = div
(
ωt(α(� + vt )⊥ + β(� + vt ))

)
(ψt (x)) − ∇ωt(ψt (x)) · (α(� + vt )⊥ + β(� + vt )

)
(ψt (x))

= ωt(ψt (x))div
(
α(� + vt )⊥ + β(� + vt )

)
(ψt (x))

= −α(ωt (ψt (x)))2 + ( − αωt curl� + βωt div�
)
(ψt (x)),
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and hence

∂tfx ≥ −αf 2
x − Cfx.

We may then deduce fx ≥ gx pointwise, where gx satisfies

∂tgx = −αg2
x − Cgx, gx(0) = fx(0) = ω◦(x).

A direct computation yields

gx(t) = Ce−Ctω◦(x)

C + α(1 − e−Ct )ω◦(x)
,

and hence

t∫
0

fx(u)du ≥
t∫

0

gx(u)du = α−1 log
(

1 + αC−1(1 − e−Ct )ω◦(x)
)
.

Inserting this into (4.14), we obtain for all t > 0∫
|ωt |p ≤ eC(p−1)t

∫
|ω◦(x)|p

(
1 + αC−1(1 − e−Ct )ω◦(x)

)1−p

dx

≤
(

Cα−1eCt

1 − e−Ct

)p−1 ∫
|ω◦(x)|dx =

(
Cα−1eCt

1 − e−Ct

)p−1

.

The result (iii) then follows from the obvious inequality eCt(1 − e−Ct )−1 ≤ eCt + 1 + (Ct)−1 for all t > 0. �
The previous two lemmas establish uniform bounds on the vorticity ω in various regimes. As a preliminary to 

the propagation of regularity, we now show that any uniform bound on ω implies similar bounds on v and on the 
divergence ζ . In the incompressible case of equation (1.1), this already follows from Step 2 of the proof of Lemma 4.2
above, but more analysis is needed in the compressible case (1.2).

Lemma 4.5 (Relative Lp-estimates). Let λ > 0, α ≥ 0, β ∈R, T > 0, h, �, v̄◦ ∈ W 1,∞(R2)2, and v◦ ∈ v̄◦ + L2(R2)2, 
with ω◦ := curlv◦ ∈ P(R2), ω̄◦ := curl v̄◦ ∈ P ∩ L∞(R2), and with either div(av◦) = div(av̄◦) = 0 in the case (1.1), 
or ζ ◦ := div(av◦), ζ̄ ◦ := div(av̄◦) ∈ L2 ∩ L∞(R2) in the case (1.2). Let v ∈ L∞

loc([0, T ); v̄◦ + L2(R2)2) be a weak 
solution of (1.1) or of (1.2) on [0, T ) ×R

2 with initial data v◦, and with ω := curlv ∈ L∞([0, T ]; L∞(R2)). Then we 
have for all t ∈ [0, T )

‖ζ t‖L2∩L∞ ≤ C, ‖div(vt − v̄◦)‖L2∩L∞ ≤ C, ‖vt‖L∞ ≤ C,

where the constant C depends only on an upper bound on α, |β|, λ, λ−1, T , ‖h‖W 1,∞ , ‖(�, v̄◦)‖L∞ , ‖v◦ − v̄◦‖L2 , 
‖ω̄◦‖L1∩L∞ , ‖(ζ ◦, ζ̄ ◦)‖L2∩L∞ , ‖ω‖L∞

T L∞ , and additionally on ‖(∇�, ∇v̄◦)‖L∞ (resp. on α−1) in the case α = 0 (resp. 
α > 0). ♦

Proof. In this proof, we use the notation � for ≤ up to a constant C > 0 as in the statement, and we also set θ := divv

and θ̄◦ := div v̄◦. In the incompressible case (1.1) the conclusion follows from Step 2 of the proof of Lemma 4.2
together with the identity divv = −∇h · v. We may thus focus on the case of the compressible equation (1.2). We split 
the proof into three steps.

Step 1. Preliminary estimate for v: for all t ∈ [0, T ),

‖vt‖L∞ � 1 + ‖θ t − θ̄◦‖L2 log1/2(2 + ‖θ t − θ̄◦‖L2∩L∞). (4.15)

Note that vt − v̄◦ = ∇⊥
−1(ωt − ω̄◦) + ∇
−1(θ t − θ̄◦). By Lemma 2.4(i)–(ii), we may then estimate

‖vt − v̄◦‖L∞ ≤ ‖∇
−1(ωt − ω̄◦)‖L∞ + ‖∇
−1(θ t − θ̄◦)‖L∞

� ‖ωt − ω̄◦‖L2 log1/2(2 + ‖ωt − ω̄◦‖L1∩L∞) + ‖θ t − θ̄◦‖L2 log1/2(2 + ‖θ t − θ̄◦‖L2∩L∞) + ‖vt − v̄◦‖L2,
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so that (4.15) follows from the a priori estimates of Lemma 4.1 (in the form ‖vt − v̄◦‖L2 + ‖ωt‖L1 � 1) and from the 
boundedness assumption ‖ω‖L∞

T L∞ � 1.

Step 2. Boundedness of θ : we prove ‖θ t − θ̄◦‖L2∩L∞ � 1 for all t ∈ [0, T ).
We start with the L2-estimate. As ζ satisfies the transport-diffusion equation (1.10), Lemma 2.3(i) with s = 0 leads 

to

‖ζ t‖L2 � ‖ζ ◦‖L2 + ‖aω(−α(� + v) + β(� + v)⊥)‖L2
t L2

� 1 + ‖ω‖L2
t L∞‖v − v̄◦‖L∞

t L2 + ‖ω‖L2
t L2‖(�, v̄◦)‖L∞,

and hence ‖ζ t‖L2 � 1 follows from the a priori estimates of Lemma 4.1 (in the form ‖vt − v̄◦‖L2 + ‖ωt‖L1 � 1) and 
the boundedness assumption for ω. Similarly, for θ t = a−1ζ t − ∇h · vt , we deduce ‖θ t − θ̄◦‖L2 � 1. We now turn to 
the L∞-estimate. Lemma 2.3(iii) with P = q = s = ∞ gives

‖ζ t‖L∞ � ‖ζ ◦‖L∞ + ‖aω(−α(� + v) + β(� + v)⊥)‖L∞
t L∞ � 1 + ‖ω‖L∞

t L∞(1 + ‖v‖L∞
t L∞), (4.16)

or alternatively, for θ t = a−1ζ t − ∇h · vt ,

‖θ t‖L∞ � 1 + ‖vt‖L∞ + ‖ω‖L∞
t L∞(1 + ‖v‖L∞

t L∞).

Combining this estimate with the result of Step 1 yields

‖θ t‖L∞ � 1 + ‖θ t − θ̄◦‖L2 log1/2(2 + ‖θ t − θ̄◦‖L2∩L∞)

+ ‖ω‖L∞
t L∞(1 + ‖θ − θ̄◦‖L∞

t L2 log1/2(2 + ‖θ − θ̄◦‖L∞
t (L2∩L∞))).

Now the boundedness assumption on ω and the L2-estimate for θ proven above reduce this expression to

‖θ t‖L∞ � log1/2(2 + ‖θ‖L∞
t L∞).

Taking the supremum with respect to t , we may then conclude ‖θ t‖L∞ � 1 for all t ∈ [0, T ).

Step 3. Conclusion.
By the result of Step 2, the estimate (4.15) of Step 1 takes the form ‖vt‖L∞ � 1. The estimate (4.16) of Step 2 then 

yields ‖ζ t‖L∞ � 1, while the L2-estimate for ζ is already established in Step 2. �
4.2. Propagation of regularity

Since local existence is established in Section 3 only for smooth enough data, it is necessary for the global existence 
result to first prove propagation of regularity along the flow. In this section, we show that propagation of regularity 
is a consequence of the boundedness of the vorticity ω, which has itself been proven to hold in various regimes in 
Lemmas 4.2 and 4.3 above. We start with the propagation of Sobolev Hs-regularity.

Lemma 4.6 (Sobolev regularity). Let s > 1. Let λ > 0, α ≥ 0, β ∈R, T > 0, h, �, v̄◦ ∈ Ws+1,∞(R2)2, and v◦ ∈ v̄◦ +
L2(R2)2, with ω◦ := curlv◦, ω̄◦ := curl v̄◦ ∈ P ∩ Hs(R2), and with either div(av◦) = div(av̄◦) = 0 in the case (1.1), 
or ζ ◦ := div(av◦), ζ̄ ◦ := div(av̄◦) ∈ Hs(R2) in the case (1.2). Let v ∈ L∞([0, T ]; v̄◦+Hs+1(R2)2) be a weak solution 
of (1.1) or of (1.2) on [0, T ) ×R

2 with initial data v◦. Then for all t ∈ [0, T ) we have

‖ωt‖Hs ≤ C, ‖ζ t‖Hs ≤ C, ‖vt − v̄◦‖Hs+1 ≤ C, ‖∇vt‖L∞ ≤ C,

where the constant C depends only on an upper bound on s, (s − 1)−1, α, |β|, λ, λ−1, T , ‖(h, �, v̄◦)‖Ws+1,∞ , 
‖v◦ − v̄◦‖L2 , ‖(ω◦, ω̄◦, ζ ◦, ζ̄ ◦)‖Hs , ‖ω‖L∞

T L∞ , and additionally on α−1 in the case α > 0. ♦

Proof. We set θ := divv, θ̄◦ := div v̄◦. In this proof, we use the notation � for ≤ up to a constant C > 0 as in the 
statement. We focus on the compressible case (1.2), the other case being similar and simpler. We split the proof into 
four steps.
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Step 1. Time derivative of ‖ω‖Hs : for all s ≥ 0 and t ∈ [0, T ),

∂t‖ωt‖Hs � (1 + ‖∇vt‖L∞)(1 + ‖ωt‖Hs ) + ‖θ t − θ̄◦‖Hs .

Lemma 2.2 with ρ = ω, w = α(� + v)⊥ + β(� + v), and W = α(� + v̄◦)⊥ + β(� + v̄◦) yields

∂t‖ωt‖Hs � (1 + ‖∇vt‖L∞)‖ωt‖Hs + ‖vt − v̄◦‖Hs+1‖ωt‖L∞ . (4.17)

Using Lemma 2.7, noting that ‖(ωt − ω̄◦, θ t − θ̄◦)‖Ḣ−1 � ‖vt − v̄◦‖L2 , and using Lemma 4.1(iii) in the form 
‖vt − v̄◦‖L2 � 1, we obtain

‖vt − v̄◦‖Hs+1 � ‖ωt − ω̄◦‖Ḣ−1∩Hs + ‖θ t − θ̄◦‖Ḣ−1∩Hs � 1 + ‖ωt − ω̄◦‖Hs + ‖θ t − θ̄◦‖Hs .

Injecting this into (4.17), the claim follows from Lemma 4.5 and the boundedness assumption ‖ω‖L∞
T L∞ � 1.

Step 2. Lipschitz estimate for v: for all s > 1 and t ∈ [0, T ),

‖∇vt‖L∞ � log(2 + ‖ωt‖Hs + ‖θ t − θ̄◦‖Hs ). (4.18)

Since vt − v̄◦ = ∇⊥
−1(ωt − ω̄◦) +∇
−1(θ t − θ̄◦), Lemma 2.4(iii) yields, together with the Sobolev embedding 
of Hs into a Hölder space for all s > 1,

‖∇(vt − v̄◦)‖L∞ ≤ ‖∇2
−1(ωt − ω̄◦)‖L∞ + ‖∇2
−1(θ t − θ̄◦)‖L∞

� ‖ωt − ω̄◦‖L∞ log(2 + ‖ωt − ω̄◦‖Hs ) + ‖ωt − ω̄◦‖L1

+ ‖θ t − θ̄◦‖L∞ log(2 + ‖θ t − θ̄◦‖Hs ) + ‖θ t − θ̄◦‖L2,

and the claim (4.18) then follows from Lemma 4.1(i), Lemma 4.5, and the boundedness assumption on ω.

Step 3. Sobolev estimate for θ : for all s ≥ 0 and t ∈ [0, T ),

‖θ t − θ̄◦‖Hs � 1 + ‖ω‖L∞
t H s . (4.19)

As ζ satisfies the transport-diffusion equation (1.10), Lemma 2.3(i) gives for all s ≥ 0,

‖ζ t‖Hs � ‖ζ ◦‖Hs + ‖aω(−α(� + v) + β(� + v)⊥)‖L2
t H

s .

Using Lemma 2.1 to estimate the right-hand side, we find for all s ≥ 0,

‖ζ t‖Hs � 1 + ‖aω(−α(v − v̄◦) + β(v − v̄◦)⊥)‖L2
t H

s + ‖aω(−α(� + v̄◦) + β(� + v̄◦)⊥)‖L2
t H

s

� 1 + ‖ω‖L∞
t L∞‖v − v̄◦‖L2

t H
s + ‖ω‖L2

t H
s‖v − v̄◦‖L∞

t L∞

+ ‖ω‖L2
t L2(1 + ‖v̄◦‖Ws,∞) + ‖ω‖L2

t H
s (1 + ‖v̄◦‖L∞),

and hence, by Lemma 4.5 and the boundedness assumption on ω,

‖ζ t‖Hs � 1 + ‖ω‖L∞
t H s + ‖v − v̄◦‖L∞

t H s . (4.20)

Lemma 2.7 then yields for all s ≥ 0,

‖ζ t‖Hs � 1 + ‖ω‖L∞
t H s + ‖ω − ω̄◦‖L∞

t (Ḣ−1∩Hs−1) + ‖ζ − ζ̄ ◦‖L∞
t (Ḣ−1∩Hs−1).

Noting that ‖(ω − ω̄◦, ζ − ζ̄ ◦)‖Ḣ−1 � ‖v − v̄◦‖L2 , and using Lemma 4.1(iii) in the form ‖v − v̄◦‖L2 � 1, we deduce

‖ζ t‖Hs � 1 + ‖ω‖L∞
t H s + ‖ζ‖L∞

t H s−1 .

Taking the supremum in time, we find by induction ‖ζ‖L∞
t H s � 1 +‖ω‖L∞

t H s +‖ζ‖L∞
t L2 for all s ≥ 0. Recalling that 

Lemma 4.5 gives ‖θ t − θ̄◦‖L2 � 1, and using the identity θ t = a−1ζ t − ∇h · vt , the claim (4.19) directly follows.

Step 4. Conclusion.
Combining the results of the three previous steps yields, for all s > 1,

∂t‖ωt‖Hs � (1 + ‖ωt‖Hs ) log(2 + ‖ωt‖Hs + ‖θ t − θ̄◦‖Hs ) + ‖θ t − θ̄◦‖Hs

� (1 + ‖ω‖L∞
t H s ) log(2 + ‖ω‖L∞

t H s ),
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hence

∂t‖ω‖L∞
t H s ≤ sup

[0,t]
∂t‖ω‖Hs � (1 + ‖ω‖L∞

t H s ) log(2 + ‖ω‖L∞
t H s ),

and the Grönwall inequality then gives ‖ω‖L∞
t H s � 1. Combining this with (4.18), (4.19) and (4.20), and recalling the 

identity vt − v̄◦ = ∇⊥
−1(ωt − ω̄◦) + ∇
−1(θ t − θ̄◦), the conclusion follows. �
We now turn to the propagation of Hölder regularity. More precisely, we consider the Besov spaces Cs∗(R2) :=

Bs∞,∞(R2). Recall that these spaces coincide with the usual Hölder spaces Cs
b(R

2) only for non-integer s ≥ 0 (for 
integer s > 0, they are strictly larger and coincide with the corresponding Zygmund spaces).

Lemma 4.7 (Hölder–Zygmund regularity). Let s > 0. Let λ > 0, α ≥ 0, β ∈R, T > 0, and h, �, v◦ ∈ Cs+1∗ (R2)2 with 
ω◦ := curlv◦ ∈ P(R2), and with either div(av◦) = 0 in the case (1.1), or ζ ◦ := div(av◦) ∈ L2(R2) in the case (1.2). 
Let v ∈ L∞([0, T ]; Cs+1∗ (R2)2) be a weak solution of (1.1) or of (1.2) on [0, T ) × R

2 with initial data v◦. Then we 
have for all t ∈ [0, T ),

‖ωt‖Cs∗ ≤ C, ‖ζ t‖Cs∗ ≤ C, ‖vt‖
Cs+1∗ ≤ C,

where the constant C depends only on an upper bound on s, s−1, α, |β|, λ, λ−1, T , ‖(h, �, v◦)‖
Cs+1∗ , ‖ζ ◦‖L2 , 

‖ω‖L∞
T L∞ , and additionally on α−1 in the case α > 0. ♦

Proof. We set θ := divv. In this proof, we use the notation � for ≤ up to a constant C > 0 as in the statement. We 
may focus on the compressible equation (1.2), the other case being similar and simpler. We split the proof into four 
steps, and make a systematic use of the standard Besov machinery as presented in [6].

Step 1. Time derivative of ‖ωt‖Cs∗ : for all s > 0 and t ∈ [0, T ),

∂t‖ωt‖Cs∗ � (1 + ‖ωt‖Cs∗)(1 + ‖∇vt‖L∞∩Cs−1∗ ) + ‖θ t‖Cs∗ .

The transport equation (1.9) has the form ∂tω
t = div(ωtwt ) with wt = α(� + vt )⊥ + β(� + vt ). Arguing as in [6, 

Chapter 3.2] (that is, similarly as in the proof of Lemma 2.2, but using the corresponding commutator estimates in 
Besov spaces [6, Lemma 2.100]), we obtain for all s > 0,

∂t‖ωt‖Cs∗ � ‖ωt‖Cs∗‖∇wt‖L∞∩Cs−1∗ + ‖ωt divwt‖Cs∗ .

Using the usual product rules [6, Corollary 2.86] for all s > 0,

∂t‖ωt‖Cs∗ � ‖ωt‖Cs∗‖∇wt‖L∞∩Cs−1∗ + ‖ωt‖L∞‖divwt‖Cs∗ + ‖ωt‖Cs∗‖divwt‖L∞

� ‖ωt‖Cs∗(1 + ‖∇vt‖L∞∩Cs−1∗ ) + ‖ωt‖L∞(1 + ‖ωt‖Cs∗ + ‖θ t‖Cs∗),

and the result follows from the boundedness assumption ‖ω‖L∞
T L∞ � 1.

Step 2. Lipschitz estimate for v: for all s > 0 and t ∈ [0, T ),

‖∇vt‖L∞∩Cs−1∗ � ‖ωt‖
Cs−1∗ + ‖θ t‖

Cs−1∗ + log(2 + ‖ωt‖Cs∗ + ‖θ t‖Cs∗).

Since vt − v◦ = ∇⊥
−1(ωt − ω◦) + ∇
−1(θ t − θ◦), Lemma 2.5(ii) yields for all s ∈R,

‖∇vt‖
Cs−1∗ � 1 + ‖ωt − ω◦‖

Ḣ−1∩Cs−1∗ + ‖θ t − θ◦‖
Ḣ−1∩Cs−1∗ ,

and thus, noting that ‖(ω − ω◦, θ − θ◦)‖Ḣ−1 � ‖v − v◦‖L2 , and using Lemma 4.1(iii) in the form ‖v − v◦‖L2 � 1,

‖∇vt‖
Cs−1∗ � 1 + ‖ωt‖

Cs−1∗ + ‖θ t‖
Cs−1∗ .

Arguing as in Step 2 of the proof of Lemma 4.6 further yields for all s > 0,

‖∇vt‖L∞ � log(2 + ‖ωt‖Cs∗ + ‖θ t − θ◦‖Cs∗),

and the result follows.
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Step 3. Estimate for θ : for all s > 0 and t ∈ [0, T ),

‖θ t‖Cs∗ � 1 + ‖ω‖L∞
t Cs−1∗ .

As ζ satisfies the transport-diffusion equation (1.10), we obtain for all s > 0, arguing as in [6, Chapter 3.4],

‖ζ t‖Cs∗ � ‖ζ ◦‖Cs∗ + ‖aω(−α(� + v) + β(� + v)⊥)‖L∞
t Cs−1∗ ,

and thus, by the usual product rules [6, Corollary 2.86], the boundedness assumption on ω, and Lemma 4.5, we deduce 
for all s > 0,

‖ζ t‖Cs∗ � 1 + ‖ω‖L∞
t (L∞∩Cs−1∗ )

(1 + ‖v‖L∞
t L∞) + ‖ω‖L∞

t L∞(1 + ‖v‖L∞
t (L∞∩Cs−1∗ )

)

� 1 + ‖ω‖L∞
t Cs−1∗ + ‖v‖L∞

t Cs−1∗ ,

or alternatively, in terms of θ t = a−1ζ t − ∇h · vt ,

‖θ t‖Cs∗ � ‖ζ t‖L∞∩Cs∗ + ‖vt‖L∞∩Cs∗ � 1 + ‖ω‖L∞
t Cs−1∗ + ‖v‖L∞

t Cs∗ .

Decomposing vt − v◦ = ∇⊥
−1(ωt − ω◦) + ∇
−1(θ t − θ◦), using Lemma 2.5(ii), and again Lemma 4.1(iii) in the 
form ‖(ω − ω◦, θ − θ◦)‖Ḣ−1 � ‖v − v◦‖L2 � 1, we find

‖vt‖Cs∗ � 1 + ‖ωt − ω◦‖
Ḣ−1∩Cs−1∗ + ‖θ t − θ◦‖

Ḣ−1∩Cs−1∗ � 1 + ‖ωt‖
Cs−1∗ + ‖θ t‖

Cs−1∗ ,

and hence

‖θ‖L∞
t Cs∗ � 1 + ‖ω‖L∞

t Cs−1∗ + ‖θ‖L∞
t Cs−1∗ .

If s ≤ 1, then we have ‖ ·‖
Cs−1∗ � ‖ ·‖L∞ , so that the above estimate, the boundedness assumption on ω, and Lemma 4.5

yield ‖θ‖L∞
t Cs∗ � 1. The result for s > 1 then follows by induction.

Step 4. Conclusion.
Combining the results of the three previous steps yields, for all s > 0,

∂t‖ω‖L∞
t Cs∗ ≤ sup

[0,t]
∂t‖ω‖Cs∗

� (1 + ‖ω‖L∞
t Cs∗)

(‖ω‖L∞
t Cs−1∗ + ‖θ‖L∞

t Cs−1∗ + log(2 + ‖ωt‖Cs∗ + ‖θ t‖Cs∗)
) + ‖θ‖L∞

t Cs∗

� (1 + ‖ω‖L∞
t Cs∗)

(‖ω‖L∞
t Cs−1∗ + log(2 + ‖ω‖L∞

t Cs∗)
)
.

If s ≤ 1, then we have ‖ · ‖
Cs−1∗ � ‖ · ‖L∞ , so that the above estimate and the boundedness assumption on ω yield 

∂t‖ω‖L∞
t Cs∗ � (1 +‖ω‖L∞

t Cs∗) log(2 +‖ω‖L∞
t Cs∗), hence ‖ω‖L∞

t Cs∗ � 1 by the Grönwall inequality. The conclusion for 
s > 1 then follows by induction. �
4.3. Global existence of solutions

With Lemma 4.6 at hand, together with the a priori bounds of Lemmas 4.2 and 4.3 on the vorticity, it is now 
straightforward to deduce the following global existence result from the local existence statement of Proposition 3.1.

Corollary 4.8 (Global existence of smooth solutions). Let s > 1. Let λ > 0, α ≥ 0, β ∈ R, h, �, v̄◦ ∈ Ws+1,∞(R2)2, 
and v◦ ∈ v̄◦ + L2(R2)2, with ω◦ := curlv◦, ω̄◦ := curl v̄◦ ∈ P ∩ Hs(R2), and with either div(av◦) = div(av̄◦) = 0 in 
the case (1.1), or ζ ◦ := div(av◦), ζ̄ ◦ := div(av̄◦) ∈ Hs(R2) in the case (1.2). Then,

(i) there exists a global weak solution v ∈ L∞
loc(R

+; v̄◦ + Hs+1(R2)2) of (1.1) on R+ ×R
2 with initial data v◦, and 

with ω := curlv ∈ L∞
loc(R

+; P ∩ Hs(R2));
(ii) if β = 0, there exists a global weak solution v ∈ L∞

loc(R
+; v̄◦ + Hs+1(R2)2) of (1.2) on R+ × R

2 with initial 
data v◦, and with ω := curlv ∈ L∞

loc(R
+; P ∩ Hs(R2)) and ζ := div(av) ∈ L∞

loc(R
+; Hs(R2)). ♦
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Proof. We may focus on item (ii), the first item being completely similar. In this proof we use the notation � and 
� for = and ≤ up to positive constants that depend only on an upper bound on α, α−1, |β|, λ, λ−1, s, (s − 1)−1, 
‖(h, �, v̄◦)‖Ws+1,∞ , ‖v◦ − v̄◦‖L2 , ‖(ω◦, ω̄◦, ζ ◦, ζ̄ ◦)‖Hs .

Given v̄◦ ∈ Ws+1,∞(R2)2 and v◦ ∈ v̄◦ + L2(R2)2 with ω◦, ω̄◦ ∈ P ∩ Hs(R2) and ζ ◦, ζ̄ ◦ ∈ Hs(R2), Proposi-
tion 3.1 gives a time T > 0, T � 1, such that there exists a weak solution v ∈ L∞([0, T ); v̄◦ + Hs(R2)2) of (1.2) on 
[0, T ) ×R

2 with initial data v◦. For all t ∈ [0, T ), Lemma 4.3(ii) (with β = 0) then gives ‖ωt‖L∞ � 1, which implies 
by Lemma 4.6,

‖ωt‖Hs + ‖ζ t‖Hs + ‖vt − v̄◦‖Hs+1 � 1,

and moreover by Lemma 4.1(i) we have ωt ∈ P(R2) for all t ∈ [0, T ). These a priori estimates show that the solution 
v can be extended globally in time. �

We now extend this global existence result beyond the setting of smooth initial data. We start with the following 
result for L2-data, which is easily deduced by approximation.

Corollary 4.9 (Global existence for L2-data). Let λ > 0, α ≥ 0, β ∈ R, h, � ∈ W 1,∞(R2)2. Let v̄◦ ∈ W 1,∞(R2)2 be 
some reference map with ω̄◦ := curl v̄◦ ∈ P ∩ Hs(R2) for some s > 1, and with either div(av̄◦) = 0 in the case (1.1), 
or ζ̄ ◦ := div(av̄◦) ∈ Hs(R2) in the case (1.2). Let v◦ ∈ v̄◦ + L2(R2)2, with ω◦ := curlv◦ ∈ P ∩ L2(R2), and with 
either div(av◦) = 0 in the case (1.1), or ζ ◦ := div(av◦) ∈ L2(R2) in the case (1.2). Then,

(i) there exists a global weak solution v ∈ L∞
loc(R

+; v̄◦ +L2(R2)2) of (1.1) on R+ ×R
2 with initial data v◦, and with 

v ∈ L2
loc(R

+; v̄◦ + H 1(R2)2) and ω := curlv ∈ L∞
loc(R

+; P ∩ L2(R2));
(ii) if β = 0, there exists a global weak solution v ∈ L∞

loc(R
+; v̄◦ + L2(R2)2) of (1.2) on R+ ×R

2 with initial data v◦, 
and with v ∈ L2

loc(R
+; v̄◦+H 1(R2)2), ω := curlv ∈ L∞

loc(R
+; P∩L2(R2)) and ζ := div(av) ∈ L2

loc(R
+; L2(R2)). 

♦

Proof. We may focus on the case (ii) (with β = 0), the other case being exactly similar. In this proof we use the nota-
tion � for ≤ up to a positive constant that depends only on an upper bound on α, α−1, λ, (s −1)−1, ‖(h, �, v̄◦)‖W 1,∞ , 
‖(ω̄◦, ζ̄ ◦)‖Hs , ‖v◦ − v̄◦‖L2 , and ‖(ω◦, ζ ◦)‖L2 . We use the notation �t if it further depends on an upper bound on 
time t .

Let ρ ∈ C∞
c (R2) with ρ ≥ 0, 

∫
ρ = 1, and ρ(0) = 1. Define ρε(x) := ε−dρ(x/ε) for all ε > 0, and set ω◦

ε :=
ρε ∗ ω◦, ω̄◦

ε := ρε ∗ ω̄◦, ζ ◦
ε := ρε ∗ ζ ◦, ζ̄ ◦

ε := ρε ∗ ζ̄ ◦, aε := ρε ∗ a and �ε := ρε ∗ �. For all ε > 0, we have ω◦
ε , 

ω̄◦
ε ∈ P ∩ H∞(R2), ζ ◦

ε , ζ̄ ◦
ε ∈ H∞(R2), and aε , a−1

ε , �ε ∈ C∞
b (R2)2. By construction, we have aε → a, a−1

ε → a−1, 
�ε → � in W 1,∞(R2), ω̄◦

ε − ω̄◦, ζ̄ ◦
ε − ζ̄ ◦ → 0 in Ḣ−1 ∩ Hs(R2), and ω◦

ε − ω◦, ζ ◦
ε − ζ ◦ → 0 in Ḣ−1 ∩ L2(R2). The 

additional convergence in Ḣ−1(R2) indeed follows from the following computation with Fourier transforms,

‖ω◦
ε − ω◦‖2

Ḣ−1 =
∫

|ξ |−2|ρ̂(εξ) − 1|2|ω̂◦(ξ)|2dξ ≤ ε2‖∇ρ̂‖2
L∞‖ω◦‖2

L2,

and similarly for ω̄◦
ε , ζ ◦

ε , and ζ̄ ◦
ε . Lemma 2.7 then gives a unique v◦

ε ∈ v◦+H 1(R2)2 and a unique v̄◦
ε ∈ v̄◦+Hs+1(R2)2

such that curlv◦
ε = ω◦

ε , curl v̄◦
ε = ω̄◦

ε , div(aεv
◦
ε ) = ζ ◦

ε , div(aεv̄
◦
ε ) = ζ̄ ◦

ε , and we have v◦
ε − v◦ → 0 in H 1(R2)2 and 

v̄◦
ε − v̄◦ → 0 in Hs+1(R2)2. In particular, the assumption v̄◦ ∈ W 1,∞(R2)2 yields by the Sobolev embedding with 

s > 1, for ε > 0 small enough,

‖v̄◦
ε‖W 1,∞ � ‖v̄◦

ε − v̄◦‖Hs+1 + ‖v̄◦‖W 1,∞ � 1,

and the assumption v◦ − v̄◦ ∈ L2(R2)2 implies

‖v◦
ε − v̄◦

ε‖L2 ≤ ‖v◦
ε − v◦‖L2 + ‖v◦ − v̄◦‖L2 + ‖v̄◦

ε − v̄◦‖L2 � 1.

Corollary 4.8 then gives a solution vε ∈ L∞
loc(R

+; v̄◦
ε + H∞(R2)2) of (1.2) on R+ × R

2 with initial data v◦
ε , and 

with (a, �) replaced by (aε, �ε). Lemma 4.1(iii) and Lemma 4.3(ii) (with β = 0) give for all t ≥ 0,

‖vε − v̄◦
ε‖L∞

t L2 + ‖ζε‖L2
t L2 + ‖ωε‖L∞

t L2 �t 1,

hence by Lemma 2.7, together with the obvious estimate ‖(ωε − ω̄◦
ε , ζε − ζ̄ ◦

ε )‖Ḣ−1 � ‖vε − v̄◦
ε‖L2 ,
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‖vε − v̄◦
ε‖L2

t H
1 � ‖vε − v̄◦

ε‖L2
t L2 + ‖ζε − ζ̄ ◦

ε ‖L2
t L2 + ‖ωε − ω̄◦

ε‖L2
t L2 �t 1.

As v̄◦
ε is bounded in H 1

loc(R
2)2, we deduce up to an extraction vε ⇀ v in L2

loc(R
+; H 1

loc(R
2)2), and also ωε ⇀ ω, 

ζε ⇀ ζ in L2
loc(R

+; L2(R2)), for some functions v, ω, ζ . Comparing equation (1.9) with the above estimates, we 
deduce that (∂tωε)ε is bounded in L1

loc(R
+; W−1,1

loc (R2)). Since by the Rellich theorem the space L2(U) is compactly 
embedded in H−1(U) ⊂ W−1,1(U) for any bounded domain U ⊂R

2, the Aubin–Simon lemma ensures that we have 
ωε → ω strongly in L2

loc(R
+; H−1

loc (R2)). This implies ωεvε → ωv in the distributional sense. We may then pass to 
the limit in the weak formulation of equation (1.2), and the result follows. �

We turn to the case of rougher initial data. Using the a priori estimates of Lemmas 4.2 and 4.3(ii), we estab-
lish global existence for Lq -data with q > 1. In the parabolic regime α > 0, β = 0, the finer a priori estimates of 
Lemma 4.3(iii) further imply global existence for vortex-sheet data ω◦ ∈P(R2). Arguing by approximation, the main 
work consists in passing to the limit in the nonlinear term ωv. For that purpose, as in [39], we make a crucial use of 
some compactness result due to Lions [40] in the context of the compressible Navier–Stokes equations. The conser-
vative regime (iv) below is however more subtle due to a lack of strong enough a priori estimates: only very weak 
solutions are then expected and obtained, and compactness needs to be carefully proven by hand.

Proposition 4.10 (Global existence for general data). Let λ > 0, α ≥ 0, β ∈ R, and h, � ∈ W 1,∞(R2)2. Let v̄◦ ∈
W 1,∞(R2)2 be some reference map with ω̄◦ := curl v̄◦ ∈P ∩ Hs(R2) for some s > 1, and with either div(av̄◦) = 0 in 
the case (1.1), or ζ̄ ◦ := div(av̄◦) ∈ Hs(R2) in the case (1.2). Let v◦ ∈ v̄◦ + L2(R2)2 with ω◦ = curlv◦ ∈ P(R2), and 
with either div(av◦) = 0 in the case (1.1), or ζ ◦ := div(av◦) ∈ L2(R2) in the case (1.2). Then the following hold.

(i) Case (1.2) with α > 0, β = 0: There exists a weak solution v ∈ L∞
loc(R

+; v̄◦ + L2(R2)2) on R+ ×R
2 with initial 

data v◦, and with ω = curlv ∈ L∞(R+; P(R2)) and ζ = div(av) ∈ L2
loc(R

+; L2(R2)).
(ii) Case (1.1) with α > 0, and either β = 0 or a constant: There exists a weak solution v ∈ L∞

loc(R
+; v̄◦ + L2(R2)2)

on R+ ×R
2 with initial data v◦, and with ω = curlv ∈ L∞(R+; P(R2)).

(iii) Case (1.1) with α > 0: If ω◦ ∈ Lq(R2) for some q > 1, there exists a weak solution v ∈ L∞
loc(R

+; v̄◦ + L2(R2)2)

on R+ ×R
2 with initial data v◦, and with ω = curlv ∈ L∞

loc(R
+; P ∩ Lq(R2)).

(iv) Case (1.1) with α = 0: If ω◦ ∈ Lq(R2) for some q > 1, there exists a very weak solution v ∈ L∞
loc(R

+; v̄◦ +
L2(R2)2) on R+ ×R

2 with initial data v◦, and with ω = curlv ∈ L∞
loc(R

+; P ∩ Lq(R2)). This is a weak solution 
whenever q ≥ 4/3. ♦

Proof. We split the proof into three steps, first proving item (i), then explaining how the argument has to be adapted 
to prove items (ii) and (iii), and finally turning to item (iv).

Step 1. Proof of (i).
In this step, we use the notation � for ≤ up to a positive constant that depends only on an upper bound on α, α−1, 

λ, ‖(h, �, v̄◦)‖W 1,∞ , ‖(ω̄◦, ζ̄ ◦)‖Hs , ‖v◦ − v̄◦‖L2 , and ‖ζ ◦‖L2 . We use the notation �t (resp. �t,U ) if it further depends 
on an upper bound on time t (resp. and on the size of U ⊂R

2).
Let ρ ∈ C∞

c (R2) with ρ ≥ 0, 
∫

ρ = 1, ρ(0) = 1, and ρ|R2\B1
= 0, define ρε(x) := ε−dρ(x/ε) for all ε > 0, and 

set ω◦
ε := ρε ∗ ω◦, ω̄◦

ε := ρε ∗ ω̄◦, ζ ◦
ε := ρε ∗ ζ ◦, ζ̄ ◦

ε := ρε ∗ ζ̄ ◦. For all ε > 0, we have ω◦
ε , ω̄◦

ε ∈ P ∩ H∞(R2), ζ ◦
ε , 

ζ̄ ◦
ε ∈ H∞(R2). As in the proof of Corollary 4.9, we have by construction ω̄◦

ε − ω̄◦, ζ̄ ◦
ε − ζ̄ ◦ → 0 in Ḣ−1 ∩ Hs(R2), 

and ζ ◦
ε − ζ ◦ → 0 in Ḣ−1 ∩ L2(R2). The assumption v◦ − v̄◦ ∈ L2(R2)2 further yields ω◦ − ω̄◦ ∈ Ḣ−1(R2), which 

implies ω◦
ε − ω̄◦

ε → ω◦ − ω̄◦, hence ω◦
ε − ω◦ → 0, in Ḣ−1(R2). Lemma 2.7 then gives a unique v◦

ε ∈ v◦ + L2(R2)2

and a unique v̄◦
ε ∈ v̄◦ + Hs+1(R2)2 such that curlv◦

ε = ω◦
ε , curl v̄◦

ε = ω̄◦
ε , div(aεv

◦
ε ) = ζ ◦

ε , div(aεv̄
◦
ε ) = ζ̄ ◦

ε , and we 
have v◦

ε − v◦ → 0 in L2(R2)2 and v̄◦
ε − v̄◦ → 0 in Hs+1(R2)2. In particular, arguing as in the proof of Corollary 4.9, 

the assumption v̄◦ ∈ W 1,∞(R2)2 yields ‖v̄◦
ε‖W 1,∞ � 1 by the Sobolev embedding with s > 1, and the assumption 

v◦ − v̄◦ ∈ L2(R2)2 implies ‖v◦
ε − v̄◦

ε‖L2 � 1.
Corollary 4.9 then gives a global weak solution vε ∈ L∞

loc(R
+; v̄◦

ε + L2(R2)2) of (1.2) on R+ × R
2 with initial 

data v◦
ε , and Lemma 4.1(iii) yields for all t ≥ 0,

‖vε − v̄◦
ε‖L∞

t L2 + ‖ζε‖L2
t L2 �t 1, (4.21)
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while Lemma 4.3(iii) (with β = 0) yields after time integration for all 1 ≤ p < 2,

‖ωε‖Lp
t Lp �

( t∫
0

(
u1−p + eCu

)
du

)1/p

�t (2 − p)−1/p.

Using this last estimate for P = 3/2 and 11/6, and combining it with Lemma 4.1(i) in the form ‖ωε‖L∞
t L1 ≤ 1, we 

deduce by interpolation

‖ωε‖L2
t (L4/3∩L12/7) �t 1.

Now we need to prove more precise estimates on vε . First recall the identity

vε = vε,1 + vε,2, vε,1 := ∇⊥
−1ωε, vε,2 := ∇
−1 divvε. (4.22)

On the one hand, as ωε is bounded in L2
loc(R

+; L4/3 ∩ L12/7(R2)), we deduce from Riesz potential theory that vε,1 is 
bounded in L2

loc(R
+; L4 ∩ L12(R2)2), and we deduce from the Calderón–Zygmund theory that ∇vε,1 is bounded in 

L2
loc(R

+; L4/3(R2)). On the other hand, decomposing

vε,2 = ∇
−1 div(vε − v̄◦
ε ) + v̄◦

ε − ∇⊥
−1ω̄◦
ε ,

noting that vε − v̄◦
ε is bounded in L∞

loc(R
+; L2(R2)2) (cf. (4.21)), that v̄◦

ε is bounded in L2
loc(R

2)2, and that 
‖∇
−1ω̄◦

ε‖L2 � ‖ω̄◦
ε‖L1∩L∞ � 1 (cf. Lemma 2.4), we deduce that vε,2 is bounded in L∞

loc(R
+; L2

loc(R
2)2). Further, 

decomposing

vε,2 = ∇
−1(a−1(ζε − ζ̄ ◦
ε )) − ∇
−1(∇h · (vε − v̄◦

ε )) + v̄◦
ε − ∇⊥
−1ω̄◦

ε ,

we easily check that ∇vε,2 is bounded in L2
loc(R

+; L2
loc(R

2)2). We then conclude from the Sobolev embedding that 
vε,2 is bounded in L2

loc(R
+; Lq

loc(R
2)2) for all q < ∞. For our purposes it is enough to choose q = 4 and 12. In 

particular, we have proven that for all bounded subset U ⊂R
2,

‖ωε‖L2
t L4/3 + ‖ζε‖L2

t L2 + ‖vε‖L∞
t L2(U)

+ ‖vε,1‖L2
t (L4∩L12) + ‖∇vε,1‖L2

t L4/3 + ‖vε,2‖L2
t (L4∩L12(U)) + ‖∇vε,2‖L2

t L2(U) �t,U 1. (4.23)

Therefore we have up to an extraction ωε ⇀ ω in L2
loc(R

+; L4/3(R2)), ζε ⇀ ζ in L2
loc(R

+; L2(R2)), vε,1 ⇀ v1 in 
L2

loc(R
+; L4(R2)2), and vε,2 ⇀ v2 in L2

loc(R
+; L4

loc(R
2)2), for some functions ω, ζ, v1, v2. Comparing the above 

estimates with equation (1.9), we deduce that (∂tωε)ε is bounded in L1
loc(R

+; W−1,1
loc (R2)). Moreover, we find by 

interpolation for all |ξ | < 1 and all bounded domain U ⊂R
2, denoting by U1 := U + B1 its 1-fattening,

‖vε − vε(· + ξ)‖L2
t L4(U) ≤ ‖vε,1 − vε,1(· + ξ)‖L2

t L4(U) + ‖vε,2 − vε,2(· + ξ)‖L2
t L4(U)

≤ ‖vε,1 − vε,1(· + ξ)‖1/4
L2

t L4/3(U)
‖vε,1 − vε,1(· + ξ)‖3/4

L2
t L12(U)

+ ‖vε,2 − vε,2(· + ξ)‖2/5
L2

t L2(U)
‖vε,2 − vε,2(· + ξ)‖3/5

L2
t L12(U)

≤ 2‖vε,1 − vε,1(· + ξ)‖1/4
L2

t L4/3(U)
‖vε,1‖3/4

L2
t L12(U1)

+ 2‖vε,2 − vε,2(· + ξ)‖2/5
L2

t L2(U)
‖vε,2‖3/5

L2
t L12(U1)

≤ 2|ξ |1/4‖∇vε,1‖1/4
L2

t L4/3(U1)
‖vε,1‖3/4

L2
t L12(U1)

+ 2|ξ |2/5‖∇vε,2‖2/5
L2

t L2(U1)
‖vε,2‖3/5

L2
t L12(U1)

,

and hence by (4.23),

‖vε − vε(· + ξ)‖L2
t L4(U) �t,U |ξ |1/4 + |ξ |2/5.

Let us summarize the previous observations: up to an extraction, setting v := v1 + v2, we have

ωε ⇀ ω in L2
loc(R

+;L4/3(R2)), vε ⇀ v in L2
loc(R

+;L4
loc(R

2)2),

(∂tωε)ε bounded in L1
loc(R

+;W−1,1
loc (R2)),

sup‖vε − vε(· + ξ)‖L2
t L4(U) → 0 as |ξ | → 0, for all t ≥ 0 and all bounded subset U ⊂R

2.

ε>0
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We may then apply [40, Lemma 5.1], which ensures that ωεvε → ωv holds in the distributional sense. This allows to 
pass to the limit in the weak formulation of equation (1.2), and the result follows.

Step 2. Proof of (ii) and (iii).
The proof of item (ii) is again based on Lemma 4.3(iii), and is completely analogous to the proof of item (i) above. 

Regarding item (iii), Lemma 4.3(iii) does no longer apply in that case, but, since we further assume ω◦ ∈ Lq(R2) for 
some q > 1, Lemma 4.2 gives the following a priori estimate: for all t ≥ 0

‖ω‖
Lq+1

t Lq+1 + ‖ω‖L∞
t Lq �t 1, (4.24)

hence in particular by interpolation ‖ω‖Lp
t Lp �t 1 for all 1 ≤ p ≤ 2. (Here we use the notation �t for ≤ up to a 

constant that depends only on an upper bound on t , (q − 1)−1, α, α−1, |β|, ‖(h, �)‖W 1,∞ , ‖v◦ − v̄◦‖L2 , and ‖ω◦‖Lq .) 
The conclusion follows from a similar argument as in Step 1.

Step 3. Proof of (iv).
We finally turn to the incompressible equation (1.1) in the conservative regime α = 0. Let q > 1 be such that 

ω◦ ∈ Lq(R2). Lemma 4.2 or 4.3(ii) ensures that ωε is bounded in L∞
loc(R

+; L1 ∩ Lq(R2)), and hence, for q > 4/3, 
replacing the exponents 4/3 and 12/7 of Step 1 by 4/3 and q , the argument of Step 1 can be immediately adapted to 
this case, for which we thus obtain global existence of a weak solution. In the remaining case 1 < q < 4/3, the product 
ω∇�−1ω (hence the product ωv, cf. (4.22)) does not make sense any more for ω ∈ Lq(R2). Since in the conservative 
regime α = 0 no additional regularity is available (in particular, (4.24) does not hold), we do not expect the existence 
of a weak solution, and we need to turn to the notion of very weak solutions as defined in Definition 1.1(c), where the 
product ωv is reinterpreted à la Delort. Let 1 < q ≤ 4/3. We establish the global existence of a very weak solution. 
(For the critical exponent q = 4/3, the integrability of v found below directly implies by Remark 1.2(ii) that the 
constructed very weak solution is automatically a weak solution.) In this step, we use the notation � for ≤ up to 
a constant C that depends only on an upper bound on (q − 1)−1, |β|, ‖(h, �, v̄◦)‖W 1,∞ , ‖v◦ − v̄◦‖L2 , ‖ω̄◦‖L2 , and 
‖ω◦‖Lq , and we use the notation �t (resp. �t,U ) if it further depends on an upper bound on time t (resp. on t and on 
the size of U ⊂R

2).
Let ω◦

ε , ω̄◦
ε , v◦

ε , v̄◦
ε be defined as in Step 1 (with of course ζ ◦

ε = ζ̄ ◦
ε = 0), and let vε ∈ L∞

loc(R
+; v̄◦

ε + L2(R2)2) be a 
global weak solution of (1.1) on R+ ×R

2 with initial data v◦
ε , as given by Corollary 4.9. Lemmas 4.1(iii) and 4.3(ii) 

then give for all t ≥ 0,

‖ωε‖L∞
t (L1∩Lq ) + ‖vε − v̄◦

ε‖L∞
t L2 �t 1. (4.25)

As v̄◦
ε is bounded in L2

loc(R
2)2, we deduce in particular that vε is bounded in L∞

loc(R
+; L2

loc(R
2)). Moreover, using the 

Delort type identity

ωεvε = −1

2
|vε |2∇⊥h − a−1(div(aSvε ))

⊥,

we then deduce that ωεvε is bounded in L∞
loc(R

+; W−1,1
loc (R2)2). Let us now recall the following useful decomposition,

vε = vε,1 + vε,2, vε,1 := ∇⊥
−1ωε, vε,2 := ∇
−1 divvε. (4.26)

By Riesz potential theory vε,1 is bounded in L∞
loc(R

+; Lp(R2)2) for all 2 < p ≤ 2q
2−q

, while as in Step 1 we check that 

vε,2 is bounded in L∞
loc(R

+; H 1
loc(R

2)2). Hence by the Sobolev embedding, for all bounded domain U ⊂ R
2 and all 

t ≥ 0,

‖(vε, vε,1)‖L∞
t L2q/(2−q)(U) �t,U 1. (4.27)

Up to an extraction we then have vε
∗
⇀ v in L∞

loc(R
+; L2

loc(R
2)2) and ωε

∗
⇀ ω in L∞

loc(R
+; Lq(R2)), for some functions 

v, ω, with necessarily ω = curlv and div(av) = 0.
We now need to pass to the limit in the nonlinearity ωεvε . For that purpose, for all η > 0, we set vε,η := ρη ∗ vε

and ωε,η := ρη ∗ωε = curlvε,η , where ρη(x) := η−dρ(x/η) is the regularization kernel defined in Step 1, and we then 
decompose the nonlinearity as follows,

ωεvε = (ωε,η − ωε)(vε,η − vε) − ωε,ηvε,η + ωε,ηvε + ωεvε,η.
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We study each right-hand side term separately, and split the proof into four further substeps.

Substep 3.1. We prove that (ωε,η − ωε)(vε,η − vε) → 0 holds in the distributional sense (and even strongly in 
L∞

loc(R
+; W−1,1

loc (R2)2)) as η ↓ 0, uniformly in ε > 0.
For that purpose, we use the Delort type identity

(ωε,η − ωε)(vε,η − vε) = a−1(vε,η − vε)div(a(vε,η − vε)) − 1

2
|vε,η − vε |2∇⊥h − a−1(div(aSvε,η−vε ))

⊥.

Noting that the constraint 0 = a−1 div(avε) = ∇h · vε + divvε yields

a−1 div(a(vε,η − vε)) = ∇h · vε,η + divvε,η = ∇h · (ρη ∗ vε) + ρη ∗ divvε = ∇h · (ρη ∗ vε) − ρη ∗ (∇h · vε),

the above identity becomes

(ωε,η − ωε)(vε,η − vε) = (vε,η − vε)
(∇h · (ρη ∗ vε) − ρη ∗ (∇h · vε)

)
− 1

2
|vε,η − vε |2∇⊥h − a−1(div(aSvε,η−vε ))

⊥.

First, using the boundedness of vε (hence of vε,η) in L∞
loc(R

+; L2
loc(R

2)2), we may estimate, for all bounded domain 
U ⊂R

2, denoting by Uη := U + Bη its η-fattening,∫
U

∣∣(vε,η − vε)
(∇h · (ρη ∗ vε) − ρη ∗ (∇h · vε)

)∣∣

≤ ‖(vε, vε,η)‖L2(U)

(∫
U

(∫
ρη(y)|∇h(x) − ∇h(x − y)||vε(x − y)|dy

)2
dx

)1/2

� ‖(vε, vε,η)‖2
L2(Uη)

(∫
ρη(y)

∫
U

|∇h(x) − ∇h(x − y)|2dxdy
)1/2

,

where the right-hand side converges to 0 as η ↓ 0, uniformly in ε. Second, using the decomposition (4.26), and setting 
vε,η,1 := ρη ∗ vε,1, vε,η,2 := ρη ∗ vε,2, the Hölder inequality yields for all bounded domain U ⊂R

2,∫
U

|(vε − vε,η) ⊗ (vε − vε,η)| ≤
∫
U

|vε − vε,η||vε,1 − vε,η,1| +
∫
U

|vε − vε,η||vε,2 − vε,η,2|

≤ ‖(vε, vε,η)‖L2q/(2−q)(U)‖vε,1 − vε,η,1‖L2q/(3q−2)(U) + ‖(vε, vε,η)‖L2(U)‖vε,2 − vε,η,2‖L2(U).

Recalling the choice 1 < q ≤ 4/3, we find by interpolation

‖vε,1 − vε,η,1‖L2q/(3q−2)(U) ≤ ‖vε,1 − vε,η,1‖
4−3q
2−q

L2(U)
‖vε,1 − vε,η,1‖2 q−1

2−q

Lq (U)

≤ η
2 q−1

2−q ‖(vε,1, vε,η,1)‖
4−3q
2−q

L2(U)
‖∇vε,1‖2 q−1

2−q

Lq ,

and hence by the Calderón–Zygmund theory,

‖vε,1 − vε,η,1‖L2q/(3q−2)(U) � η
2 q−1

2−q ‖(vε,1, vε,η,1)‖
4−3q
2−q

L2(U)
‖ωε‖2 q−1

2−q

Lq ,

while as in Step 1 we find

‖vε,2 − vε,η,2‖L2
t L2(U) ≤ η‖∇vε,2‖L2

t L2(Uη) �U η.

Combining this with the a priori estimate (4.27), we may conclude

t∫
0

∫
U

|(vε − vε,η) ⊗ (vε − vε,η)|�t,U η
2 q−1

2−q + η,

and the claim follows.
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Substep 3.2. We set vη := ρη ∗ v, ωη := ρη ∗ω = curlvη, and we prove that −ωε,ηvε,η +ωε,ηvε +ωεvε,η → −ωηvη +
ωηv + ωvη in the distributional sense as ε ↓ 0, for any fixed η > 0.

As q < 2 < q ′, the weak convergences vε
∗
⇀ v in L∞

loc(R
+; L2

loc(R
2)2) and ωε

∗
⇀ ω in L∞

loc(R
+; Lq(R2)) imply 

for instance vε,η
∗
⇀ vη in L∞

loc(R
+; W 1,q ′

loc (R2)2) and ωε,η
∗
⇀ ωη in L∞

loc(R
+; H 1(R2)) as ε ↓ 0, for any fixed η > 0

(note that these are still only weak-* convergences because no regularization occurs with respect to the time vari-
able t ). Moreover, examining equation (1.9) together with the a priori estimates obtained at the beginning of this 
step, we observe that ∂tωε is bounded in L∞

loc(R
+; W−2,1

loc (R2)), hence ∂tωε,η = ρη ∗ ∂tωε is also bounded in the 
same space. Since by the Rellich theorem the space Lq(U) is compactly embedded in W−1,q(U) ⊂ W−2,1(U) for all 
bounded domain U ⊂R

2, the Aubin–Simon lemma ensures that we have ωε → ω strongly in L∞
loc(R

+; W−1,q

loc (R2)), 
and similarly, since H 1(U) is compactly embedded in L2(U) ⊂ W−2,1(U), we also deduce ωε,η → ωη strongly in 
L∞

loc(R
+; L2

loc(R
2)). This proves the claim.

Substep 3.3. We prove that −ωηvη + ωηv + ωvη → − 1
2 |v|2∇⊥h − a−1(div(aSv))

⊥ holds in the distributional sense 
as η ↓ 0.

For that purpose, we use the following Delort type identity,

−ωηvη + ωηv + ωvη = −a−1(vη − v)div(a(vη − v)) + 1

2
|vη − v|2∇⊥h + a−1(div(aSvη−v))

⊥

+ a−1v div(av) − 1

2
|v|2∇⊥h − a−1(div(aSv))

⊥.

Noting that the limiting constraint 0 = a−1 div(av) = ∇h · v + divv gives

a−1 div(a(vη − v)) = ∇h · vη + divvη = ∇h · (ρη ∗ v) + ρη ∗ divv = ∇h · (ρη ∗ v) − ρη ∗ (∇h · v),

the above identity takes the form

−ωηvη + ωηv + ωvη = −a−1(vη − v)
(∇h · (ρη ∗ v) − ρη ∗ (∇h · v)

) + 1

2
|vη − v|2∇⊥h + a−1(div(aSvη−v))

⊥

− 1

2
|v|2∇⊥h − a−1(div(aSv))

⊥,

and it is thus sufficient to prove that the first three right-hand side terms tend to 0 in the distributional sense as η ↓ 0. 
This is proven just as in Substep 3.1 above, with vε,η, vε replaced by vη, v.

Substep 3.4. Conclusion.
Combining the three previous substeps yields ωεvε → − 1

2 |v|2∇⊥h − a−1(div(aSv))
⊥ in the distributional sense 

as ε ↓ 0. Passing to the limit in the very weak formulation of equation (1.9), the conclusion follows. �
5. Uniqueness

We turn to the uniqueness results stated in Theorem 3. Using similar energy arguments as in the proof of 
Lemma 4.1, in the spirit of [48, Appendix B], we prove a general weak–strong uniqueness principle. Note that in 
the degenerate case λ = 0 an additional term needs to be added to the usual energy, in link with the fact that ω and 
v are then on an equal footing with regard to regularity. In the incompressible case, we further prove uniqueness in 
the class of bounded vorticity, based on transport arguments à la Loeper [41] (see also [50]), but these tools are not 
available in the compressible case.

Proposition 5.1 (Uniqueness). Let α, β ∈ R, λ ≥ 0, T > 0, and h, � ∈ W 1,∞(R2)2. Let v◦ : R2 → R
2 with ω◦ :=

curlv◦ ∈ P(R2), and in the incompressible case (1.1) further assume that div(av◦) = 0.

(i) Weak–strong uniqueness principle for (1.1) and (1.2) in the non-degenerate case λ > 0, α ≥ 0:
If (1.1) or (1.2) admits a weak solution v ∈ L2

loc([0, T ); v◦ +L2(R2)2) ∩L∞
loc([0, T ); W 1,∞(R2)2) on [0, T ) ×R

2

with initial data v◦, then it is the unique weak solution of (1.1) or of (1.2) on [0, T ) × R
2 in the class 

L2 ([0, T ); v◦ + L2(R2)2) with initial data v◦.
loc
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(ii) Weak–strong uniqueness principle for (1.2) in the degenerate parabolic case λ = β = 0, α ≥ 0:
Let E2

T ,v◦ denote the class of all w ∈ L2
loc([0, T ); v◦ + L2(R2)2) with curlw ∈ L2

loc([0, T ); L2(R2)). If (1.2)

admits a weak solution v ∈ E2
T ,v◦ ∩ L∞

loc([0, T ); L∞(R2)2) on [0, T ) × R
2 with initial data v◦, and with ω :=

curlv ∈ L∞
loc([0, T ); W 1,∞(R2)), then it is the unique weak solution of (1.2) on [0, T ) × R

2 in the class E2
T ,v◦

with initial data v◦.
(iii) Uniqueness for (1.1) with bounded vorticity, α, β ∈R:

There exists at most a unique weak solution v of (1.1) on [0, T ) ×R
2 with initial data v◦, in the class of all w’s 

such that curlw ∈ L∞
loc([0, T ); L∞(R2)).

Moreover, in items (i)–(ii), the condition α ≥ 0 may be dropped if we further restrict to weak solutions v such that 
curlv ∈ L∞

loc([0, T ); L∞(R2)). ♦

Proof. In this proof, we use the notation � for ≤ up to a constant C > 0 that depends only on an upper bound on α, 
|β|, λ, λ−1, and ‖(h, �)‖W 1,∞ , and we add subscripts to indicate dependence on further parameters. We split the proof 
into four steps, first proving item (i) in the case (1.1), then in the case (1.2), and finally turning to items (ii) and (iii).

Step 1. Proof of (i) in the case (1.1).
Let α ≥ 0, β ∈ R, and let v1, v2 ∈ L2

loc([0, T ); v◦ + L2(R2)2) be two weak solutions of (1.1) on [0, T ) ×R
2 with 

initial data v◦, and assume v2 ∈ L∞
loc([0, T ); W 1,∞(R2)2). Set δv := v1 − v2 and δω := ω1 − ω2. As the constraint 

div(aδv) = 0 yields δv = a−1∇⊥(diva−1∇)−1δω, and as by assumption δv ∈ L2
loc([0, T ); L2(R2)2), we deduce 

δω ∈ L2
loc([0, T ); Ḣ−1(R2)) and (diva−1∇)−1δω ∈ L2

loc([0, T ); Ḣ 1(R2)). Moreover, the definition of a weak solution 
ensures that ωi := curlvi ∈ L∞([0, T ); P(R2)) (cf. Lemma 4.1(i)), and |vi |2ωi ∈ L1

loc([0, T ); L1(R2)), for i = 1, 2, 
so that all the integrations by parts below are directly justified. From equation (1.9), we compute the following time 
derivative

∂t

∫
δω(−diva−1∇)−1δω = 2

∫
∇(diva−1∇)−1δω ·

(
(α(� + v1)

⊥ + β(� + v1))ω1

− (α(� + v2)
⊥ + β(� + v2))ω2

)

= −2
∫

aδv⊥ ·
(
(α(δv)⊥ + βδv)ω1 + (α(� + v2)

⊥ + β(� + v2))δω
)

= −2α

∫
a|δv|2ω1 − 2

∫
aδωδv⊥ · (α(� + v2)

⊥ + β(� + v2)). (5.1)

As v2 is Lipschitz-continuous, and as the definition of a weak solution ensures that ω1v1 ∈ L1
loc([0, T ); L1(R2)2), the 

following Delort type identity holds in L1
loc([0, T ); W−1,1

loc (R2)2),

δωδv⊥ = 1

2
|δv|2∇h + a−1 div(aSδv).

Combining this with (5.1) and the non-negativity of αω1 yields

∂t

∫
δω(−diva−1∇)−1δω ≤ −

∫
a|δv|2∇h · (α(� + v2)

⊥ + β(� + v2))

+ 2
∫

aSδv : ∇(α(� + v2)
⊥ + β(� + v2))

≤ C(1 + ‖v2‖W 1,∞)

∫
a|δv|2.

The uniqueness result δv = 0 then follows from the Grönwall inequality, since by integration by parts∫
a|δv|2 =

∫
a−1|∇(diva−1∇)−1δω|2 =

∫
δω(−diva−1∇)−1δω.

Note that if we further assume ω1 ∈ L∞([0, T ); L∞(R2)), then the non-negativity of α can be dropped: it indeed 
suffices to estimate in that case −2α

∫
a|δv|2ω1 ≤ C‖ω1‖L∞

∫
a|δv|2, and the result then follows as above. A similar 

observation also holds in the context of item (ii).
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Step 2. Proof of (i) in the case (1.2).
Let α ≥ 0, β ∈ R, λ > 0, and let v1, v2 ∈ L2

loc([0, T ); v◦ + L2(R2)2) be two weak solutions of (1.2) on 
[0, T ) × R

2 with initial data v◦, and assume v2 ∈ L∞
loc([0, T ); W 1,∞(R2)2). The definition of a weak solution en-

sures that ωi := curlvi ∈ L∞([0, T ); P(R2)) (cf. Lemma 4.1(i)), ζi := div(avi) ∈ L2
loc([0, T ); L2(R2)), and |vi |2ωi ∈

L1
loc([0, T ); L1(R2)), for i = 1, 2, and hence the integrations by parts below are directly justified. Set δv := v1 − v2, 

δω := ω1 − ω2, and δζ := ζ1 − ζ2. From equation (1.2), we compute the following time derivative

∂t

∫
a|δv|2 = 2

∫
aδv ·

(
λ∇(a−1δζ ) − α(� + v1)ω1 + β(� + v1)

⊥ω1 + α(� + v2)ω2 − β(� + v2)
⊥ω2

)

= −2λ

∫
a−1|δζ |2 − 2α

∫
a|δv|2ω1 + 2

∫
aδωδv · (α(� + v2) − β(� + v2)

⊥)
.

As v2 is Lipschitz-continuous, and as the definition of a weak solution implies ω1v1 ∈ L1
loc([0, T ) ×R

2)2, the follow-

ing Delort type identity holds in L1
loc([0, T ); W−1,1

loc (R2)2),

δωδv = a−1δζ δv⊥ − 1

2
|δv|2∇⊥h − a−1(div(aSδv))

⊥.

The above may then be estimated as follows, after integration by parts,

∂t

∫
a|δv|2 ≤ −2λ

∫
a−1|δζ |2 − 2α

∫
a|δv|2ω1 + C(1 + ‖v2‖L∞)

∫
|δζ ||δv| + C(1 + ‖v2‖W 1,∞)

∫
a|δv|2,

and thus, using the choice λ > 0, the inequality 2xy ≤ x2 + y2, and the non-negativity of αω1,

∂t

∫
a|δv|2 ≤ C(1 + λ−1

ε )(1 + ‖v2‖2
W 1,∞)

∫
a|δv|2.

The Grönwall inequality then implies uniqueness, δv = 0.

Step 3. Proof of (ii).
Let λ = β = 0, α = 1, and let v1, v2 ∈ L2

loc([0, T ); v◦ + L2(R2)2) be two weak solutions of (1.2) on [0, T ) ×
R

2 with initial data v◦, and with ωi := curlvi ∈ L2
loc([0, T ); L2(R2)) for i = 1, 2, and further assume v2 ∈

L∞
loc([0, T ); L∞(R2)2) and ω2 ∈ L∞

loc([0, T ); W 1,∞(R2)). The definition of a weak solution ensures that ωi :=
curlvi ∈ L∞([0, T ); P(R2)) (cf. Lemma 4.1(i)), ζi := div(avi) ∈ L2

loc([0, T ); L2(R2)), and |vi |2ωi ∈ L1
loc([0, T );

L1(R2)), for i = 1, 2, and hence the integrations by parts below are directly justified. Denoting δv := v1 − v2 and 
δω := ω1 − ω2, equation (1.2) yields

∂t δv = −(� + v2)δω − ω1δv, (5.2)

while equation (1.9) takes the form

∂t δω = div((� + v2)
⊥δω) + div(ω1δv

⊥)

= div((� + v2)
⊥δω) + ∇ω1 · δv⊥ − ω1δω

= div((� + v2)
⊥δω) + ∇ω2 · δv⊥ + ∇δω · δv⊥ − ω1δω. (5.3)

Testing equation (5.2) against δv yields, by non-negativity of ω1,

∂t

∫
|δv|2 = −2

∫
|δv|2ω1 − 2

∫
δv · (� + v2)δω ≤ C(1 + ‖v2‖L∞)

∫
|δv||δω|.

Testing equation (5.3) against δω and integrating by parts yields, by non-negativity of ω1 and ω2,

∂t

∫
|δω|2 = −

∫
∇|δω|2 · (� + v2)

⊥ + 2
∫

δω∇ω2 · δv⊥ +
∫

∇|δω|2 · δv⊥ − 2
∫

|δω|2ω1

= −
∫

|δω|2(curl� + ω2) + 2
∫

δω∇ω2 · δv⊥ +
∫

|δω|2(ω1 − ω2) − 2
∫

|δω|2ω1

≤ C

∫
|δω|2 + 2‖∇ω2‖L∞

∫
|δv||δω|.
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Combining the above two estimates and using the inequality 2xy ≤ x2 + y2, we find

∂t

∫
(|δv|2 + |δω|2) ≤ C(1 + ‖(v2,∇ω2)‖L∞)

∫
(|δv|2 + |δω|2),

and the uniqueness result follows from the Grönwall inequality.

Step 4. Proof of (iii).
Let α, β ∈ R, and let v1, v2 denote two solutions of (1.1) on [0, T ) × R

2 with initial data v◦, and with ω1, ω2 ∈
L∞

loc([0, T ); L∞(R2)). First we prove that vt
1, v

t
2 are log-Lipschitz for all t ∈ [0, T ) (compare with the easier situation 

in [50, Lemma 4.1]). For i = 1, 2, using the identity vt
i = ∇⊥
−1ωt

i + ∇
−1 divvt
i with divvt

i = −∇h · vt
i , we may 

decompose for all x, y,

|vt
i (x) − vt

i (y)| ≤ |∇
−1ωt
i (x) − ∇
−1ωt

i (y)| + |∇
−1(∇h · vt
i )(x) − ∇
−1(∇h · vt

i )(y)|.
By the embedding of the Zygmund space C1∗(R2) = B1∞,∞(R2) into the space of log-Lipschitz functions (see e.g. [6, 
Proposition 2.107]), we may estimate

|vt
i (x) − vt

i (y)|� (‖∇2
−1ωt
i‖C0∗ + ‖∇2
−1(∇h · vt

i )‖C0∗
)|x − y|(1 + log−(|x − y|)),

and hence, applying Lemma 2.5(ii) and recalling that L∞(R2) is embedded in C0∗(R2) = B0∞,∞(R2), we find for all 
1 ≤ p < ∞,

|vt
i (x) − vt

i (y)|�p

(‖ωt
i‖L1∩C0∗ + ‖∇h · vt

i‖Lp∩C0∗
)|x − y|(1 + log−(|x − y|))

�
(‖ωt

i‖L1∩L∞ + ‖vt
i‖Lp∩L∞

)|x − y|(1 + log−(|x − y|)).
Noting that vt

i = a−1∇⊥(diva−1∇)−1ωt
i , the elliptic estimates of Lemma 2.6 yield ‖vt

i‖Lp0∩L∞ � ‖ωt
i‖L1∩L∞ for 

some exponent 2 < p0 � 1. For the choice P = p0, the above thus takes the following form,

|vt
i (x) − vt

i (y)|� ‖ωt
i‖L1∩L∞|x − y|(1 + log−(|x − y|)) ≤ (1 + ‖ωt

i‖L∞)|x − y|(1 + log−(|x − y|)), (5.4)

which proves that vt
1, v

t
2 are log-Lipschitz for all t ∈ [0, T ).

For i = 1, 2, as the vector field α(� + vi) +β(� + vi)
⊥ is log-Lipschitz in space, the associated flow ψi : [0, T ) ×

R
2 →R

2 is well-defined globally,

∂tψi(x) = −(α(� + vi) + β(� + vi)
⊥)(ψi(x)).

As the transport equation (1.9) ensures that ωt
i = (ψt

i )∗ω◦ for i = 1, 2, the 2-Wasserstein distance between the solu-
tions ωt

1, ω
t
2 ∈ P(R2) is bounded by

W2(ω
t
1,ω

t
2)

2 ≤ Qt :=
∫

|ψt
1(x) − ψt

2(x)|2ω◦(x)dx. (5.5)

Now the time derivative of Q is estimated by

∂tQ
t = −2

∫
(ψt

1(x) − ψt
2(x)) · ((α� + β�⊥)(ψt

1(x)) − (α� + β�⊥)(ψt
2(x))

)
ω◦(x)dx

− 2
∫

(ψt
1(x) − ψt

2(x)) · ((αvt
1 + β(vt

1)
⊥)(ψt

1(x)) − (αvt
2 + β(vt

2)
⊥)(ψt

2(x))
)
ω◦(x)dx

≤ CQt + C(Qt)1/2
(∫

|vt
1(ψ

t
1(x)) − vt

2(ψ
t
2(x))|2ω◦(x)dx

)1/2

≤ CQt + C(Qt)1/2(T t
1 + T t

2 )1/2,

where we have set

T t
1 :=

∫
|(vt

1 − vt
2)(ψ

t
2(x))|2ω◦(x)dx, T t

2 :=
∫

|vt
1(ψ

t
1(x)) − vt

1(ψ
t
2(x))|2ω◦(x)dx.

We first study T1. Using that vi = a−1∇⊥(diva−1∇)−1ωi , we find
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T t
1 =

∫
|vt

1 − vt
2|2ωt

2 ≤ ‖ωt
2‖L∞

∫
|vt

1 − vt
2|2 = ‖ωt

2‖L∞
∫

|∇(diva−1∇)−1(ωt
1 − ωt

2)|2

� ‖ωt
2‖L∞

∫
|∇
−1(ωt

1 − ωt
2)|2.

(Here, we use the fact that if − div(a−1∇u1) = −
u2 with u1, u2 ∈ H 1(R2), then 
∫

a−1|∇u1|2 = ∫ ∇u1 · ∇u2 ≤
1
2

∫
a−1|∇u1|2 + 1

2

∫
a|∇u2|2, hence 

∫
a−1|∇u1|2 ≤ ∫

a|∇u2|2.) Loeper’s inequality [41, Proposition 3.1] and the 
bound (5.5) then imply

T t
1 ≤ ‖ωt

2‖L∞(‖ωt
1‖L∞ ∨ ‖ωt

2‖L∞)W2(ω
t
1,ω

t
2)

2 ≤ ‖(ωt
1,ω

t
2)‖2

L∞Qt.

We finally turn to T2. Using the log-Lipschitz property (5.4) and the concavity of the function x �→ x(1 + log− x)2, 
we obtain by Jensen’s inequality,

T t
2 � ‖ωt

1‖2
L∞

∫
(1 + log−(|ψt

1 − ψt
2|))2|ψt

1 − ψt
2|2ω◦

≤ ‖ωt
1‖2

L∞
(

1 + log−
∫

|ψt
1 − ψt

2|2ω◦)2
∫

|ψt
1 − ψt

2|2ω◦

� ‖ωt
1‖2

L∞(1 + log− Qt)2 Qt.

We may thus conclude ∂tQ � (1 +‖(ω1, ω2)‖L∞)(1 + log− Q) Q, and the uniqueness result follows from a Grönwall 
argument. �
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Appendix A. Degenerate parabolic case (jointly written with Julian Fischer)

We now turn to the study of the compressible equation (1.2) in the degenerate parabolic case λ = β = 0, α = 1, 
that is,

∂tv = −(� + v) curlv, in R
+ ×R

2, (A.1)

with initial data v|t=0 = v◦. A local existence result is already established in Proposition 3.2 above, and uniqueness is 
obtained in Proposition 5.1(ii), but the absence of strong enough a priori estimates on the divergence divv due to the 
degeneracy of the equation makes the question of global existence delicate. In the present appendix, jointly written 
with Julian Fischer, we show how to exploit the particular scalar structure of the solution v to establish global existence 
and finer uniqueness results. More precisely, we establish the following, which in particular implies Theorem 4.

Proposition 5.2. Let λ = β = 0, α = 1, let v◦, � ∈ L∞
loc(R

2)2 with curlv◦, curl� ∈ L∞
loc(R

2) and curlv◦ ≥ 0, and 
assume that v◦ and � are log-Lipschitz, that is, for all x, y,

|v◦(x) − v◦(y)| + |�(x) − �(y)| ≤ C|x − y|(1 + log−(|x − y|)).
There exists a unique global strong solution v ∈ L∞

loc(R
+ ×R

2) of (A.1) with curlv ∈ L∞
loc(R

+ ×R
2) and curlv ≥ 0. 

Moreover the following hold:

(i) if v◦, � ∈ W 1,∞(R2)2, then the solution v satisfies curlv ∈ L∞
loc(R

+; L∞(R2)), and if in addition curlv◦ ∈
P(R2), then there holds v ∈ L∞ (R+; v◦ + L1 ∩ L∞(R2)2) and curlv ∈ L∞ (R+; P ∩ L∞(R2));
loc loc
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(ii) if for some s ≥ 0 we have v◦, � ∈ Ws∨1,∞(R2)2 and curlv◦, curl� ∈ Ws,∞(R2), then for all 0 ≤ u ≤ s the 
solution v belongs to Wu+1,∞

loc (R+; Ws−u,∞(R2)2);
(iii) if for some s ≥ 1 we have v◦, � ∈ Ws,∞(R2)2, curlv◦ ∈ Hs ∩ Ws,∞(R2), and curl� ∈ Ws,∞(R2), then the 

solution v belongs to L∞
loc(R

+; v◦ + Hs ∩ Ws,∞(R2)2). ♦

We start with a suitable reduction of equation (A.1), making its scalar structure appear. Assume that v ∈
W

1,∞
loc (R+; L∞

loc(R
2)) is a strong solution of (A.1) with curlv ∈ L∞

loc(R
+ × R

2). Since the forcing vector field � is 
time-independent, equation (A.1) for v can be rewritten as follows,

∂t (� + v) = −(� + v) curlv, (� + v)|t=0 = � + v◦,

which implies for all x ∈R
2 and t ≥ 0,

(� + vt )(x) = κt (x)(� + v◦)(x), κt (x) := exp
(

−
t∫

0

curlvs(x) ds
)
, (A.2)

together with the following scalar equation for κ ,

∂tκ = −κ curlv, κ|t=0 = 1.

Assuming curl� ∈ L∞
loc(R

2), the definition (A.2) of κ in the form v = −� + κ(� + v◦) and the assumption curlv ∈
L∞

loc(R
+ ×R

2) ensure that the directional derivative ((� +v◦)⊥ ·∇)κ is well-defined in L∞
loc(R

+ ×R
2), and the above 

scalar equation for κ turns into

∂tκ = κ ((� + v◦)⊥ · ∇)κ − κ2 curlv◦ + κ(1 − κ) curl�, κ|t=0 = 1. (A.3)

Along the characteristic curves of the vector field (� + v◦)⊥, this equation takes the form of a Burgers’ equation 
with additional quadratic damping and forcing terms. Although such a Burgers’ equation may in general develop 
discontinuities in finite time (shock waves), we show that this cannot occur for constant initial data κ|t=0 = 1 as 
considered here. Recall that we focus on the case with nonnegative vorticity curlv◦ ≥ 0.

Lemma 5.3. Let W ∈ L∞
loc(R

2)2 be log-Lipschitz (that is, |W(x) −W(y)| ≤ C|x − y|(1 + log−(|x − y|)) for all x, y), 
and let f, g ∈ L∞

loc(R
2) with f ≥ 0. We consider the following Cauchy problem on R+ ×R

2,

∂tκ = κ (W · ∇)κ − κ2f + κ(1 − κ)g, κ|t=0 = 1, (A.4)

where (W · ∇)κ denotes the directional derivative of κ along the flow of W . There exists a global strong solution 
κ ∈ W

1,∞
loc (R+; L∞

loc(R
2)) ∩ L∞(R+ ×R

2) with 1
κ
, (W · ∇)κ ∈ L∞

loc(R
+ ×R

2). This solution is unique in the class

C := {
κ ∈ W

1,∞
loc (R+;L∞

loc(R
2)) : (W · ∇)κ ∈ L∞

loc(R
+ ×R

2)
}
.

Moreover the following hold:

(i) if f, g ∈ L∞(R2) and W ∈ W 1,∞(R2)2, then the solution κ satisfies 1
κ
, (W · ∇)κ ∈ L∞

loc(R
+; L∞(R2)), and if in 

addition f ∈ L1(R2), then there holds 1 − κ ∈ L∞
loc(R

+; L1 ∩ L∞(R2));
(ii) if for some s ≥ 0 we have W ∈ Ws∨1,∞(R2)2 and f, g ∈ Ws,∞(R2), then for all 0 ≤ u ≤ s the solution κ belongs 

to Wu+1,∞
loc (R+; Ws−u,∞(R2));

(iii) if for some s ≥ 1 we have f ∈ Hs ∩Ws,∞(R2), W ∈ Ws,∞(R2)2, and g ∈ Ws,∞(R2), then the solution κ satisfies 
1 − κ ∈ L∞

loc(R
+; Hs(R2)). ♦

Proof. Let W ∈ L∞
loc(R

2)2 be log-Lipschitz, and let f, g ∈ L∞
loc(R

2) with f ≥ 0. Then the flow ψ : R × R
2 → R

2 :
(s, x) �→ ψs

x associated with the vector field −W is well-defined globally on R ×R
2,

∂sψ
s
x = −W(ψs

x), ψs
x |s=0 = x.

We have ψ ∈ C1(R; C(R2)), and for all s ∈ R the map ψs : R2 → R
2 is a homeomorphism with inverse ψ−s . More 

precisely, since W is log-Lipschitz, the map ψs is a Hölder homeomorphism in the following sense: we have for all 
s, x, y,
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e−eC|s|
(1 ∧ |x − y|)eC|s| ≤ 1 ∧ |ψs

x − ψs
y | ≤ e(1 ∧ |x − y|)e−C|s|

.

We split the proof into three steps.

Step 1. Uniqueness.
In this step, we show that for all x ∈ R

d and σ ◦ ∈ R there exists a unique global solution σx(σ
◦) : R+ → R : t �→

σ t
x(σ

◦) of

∂tσx(σ
◦) = 1 −

σx(σ ◦)∫
σ ◦

f (ψs
x) exp

(
−

σx(σ ◦)∫
s

(f + g)(ψu
x ) du

)
ds, σx(σ

◦)|t=0 = σ ◦, (A.5)

and that the corresponding map σ t
x :R →R is invertible on R. In addition, assuming that for some T > 0 there exists 

a local strong solution κ ∈ W
1,∞
loc ([0, T ); L∞

loc(R
2)) of (A.4) on [0, T ) × R

2 with (W · ∇)κ ∈ L∞
loc([0, T ) × R

2), we 
show that such a solution κ is necessarily given by the following explicit formula,

κt (x) = 1 −
0∫

(σ t
x)−1(0)

f (ψs
x) exp

(
−

0∫
s

(f + g)(ψu
x )du

)
ds. (A.6)

This implies the stated uniqueness result.
Setting κ̂ t

x(s) := κt (ψs
x), and noting that ∂s κ̂

t
x(s) = −(W · ∇κt )(ψs

x), we deduce by assumption κ̂x ∈
W

1,∞
loc ([0, T ) × R) for almost all x. Picard’s existence theorem then ensures the local existence and uniqueness of 

the flow σx on R associated with the vector field κ̂x : for almost all x, for all σ ◦, there exists 0 < Tx(σ
◦) ≤ T and a 

unique local solution σx(σ
◦) ∈ C1([0, Tx(σ

◦))) of the Cauchy problem

∂tσ
t
x(σ

◦) = κ̂ t
x(σ

t
x(σ

◦)), σ t
x(σ

◦)|t=0 = σ ◦. (A.7)

Now note that by definition the function t �→ κ̂ t
x(σ

t
x(σ

◦)) belongs to W 1,∞
loc ([0, Tx(σ

◦))) and satisfies

∂t

(
κ̂ t
x(σ

t
x(σ

◦))
) = −(

κ̂ t
x(σ

t
x(σ

◦))
)2

f (ψ
σ t

x(σ ◦)
x ) + κ̂ t

x(σ
t
x(σ

◦))
(
1 − κ̂ t

x(σ
t
x(σ

◦))
)
g(ψ

σ t
x(σ ◦)

x ), (A.8)

κ̂ t
x(σ

t
x(σ

◦))|t=0 = 1.

For f, g ∈ L∞
loc(R

2), this equation admits a unique global solution in W 1,∞
loc ([0, Tx(σ

◦))), which must be given by the 
explicit formula

κ̂ t
x(σ

t
x(σ

◦)) = 1 −
σ t

x (σ ◦)∫
σ 0

f (ψs
x) exp

(
−

σ t
x (σ ◦)∫
s

(f + g)(ψu
x ) du

)
ds. (A.9)

On the one hand, since the positive part 0 ∨ κ̂x(σx(σ
◦)) belongs to W

1,∞
loc ([0, Tx(σ

◦))) and also satisfies equation (A.8), 
we deduce by uniqueness that κ̂x(σx(σ

◦)) must remain nonnegative. Moreover, formula (A.9) with f ≥ 0 ensures that 
κ̂x(σx(σ

◦)) remains bounded above by 1, so that it is actually [0, 1]-valued on its domain. On the other hand, due to 
formula (A.9), equation (A.7) takes on the following guise,

∂tσx(σ
◦) = Z(σx(σ

◦), σ ◦), σx(σ
◦)|t=0 = σ ◦, (A.10)

where we have set

Z(σ,σ ◦) := max

{
0 ; 1 −

σ∫
σ 0

f (ψs
x) exp

(
−

σ∫
s

(f + g)(ψu
x )du

)
ds

}
.

As 0 ≤ Z(σ, σ ◦) ≤ 1, we deduce σ ◦ ≤ σ t
x(σ

◦) ≤ σ ◦+ t for all t ≥ 0. Since in addition for f, g ∈ L∞
loc(R

2) we have Z ∈
W

1,∞
loc (R ×R), the flow σx(σ

◦) must exist globally. We may therefore choose Tx(σ
◦) = T and the representation (A.9)

holds for all 0 ≤ t < T .
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It remains to invert (A.9) and deduce the formula (A.6) for the solution κ itself. For that purpose, we need to invert 
the (non-decreasing) map σ t

x : R → R globally for all t ≥ 0. Since we have shown κ̂ t
x(σ

t
x(σ

◦)) = Z(σ t
x(σ

◦), σ ◦) ∈
[0, 1] for all t ∈ [0, T ), equation (A.10) leads to

∂t

∂σ t
x(σ

◦)
∂σ ◦ = f (ψσ ◦

x ) exp
(

−
σ t

x(σ ◦)∫
σ ◦

(f + g)(ψu
x )du

)

+ ∂σ t
x(σ

◦)
∂σ ◦

(
− f (ψ

σ t
x(σ ◦)

x ) + (f + g)(ψ
σ t

x(σ ◦)
x )

σ t
x(σ ◦)∫
σ ◦

f (ψs
x) exp

(
−

σ t
x(σ ◦)∫
s

(f + g)(ψu
x )du

)
ds

)
. (A.11)

For all x, t, σ ◦, define the compact set Kt
x(σ

◦) := B + {ψs
x : σ ◦ ≤ s ≤ σ ◦ + t}, where B is the closed unit Euclidean 

ball at the origin in R2. Hence, for f, g ∈ L∞
loc(R

2) with f ≥ 0, we find for almost all x, for all t ∈ [0, T ),

∂t

∂σ t
x(σ

◦)
∂σ ◦ ≥ −∂σ t

x(σ
◦)

∂σ ◦

(
‖f ‖L∞(Kt

x(σ ◦)) + ‖g‖L∞(Kt
x(σ ◦))‖f ‖L∞(Kt

x(σ ◦))

σ t
x (σ ◦)∫
σ ◦

e
(σ t

x(σ ◦)−s)‖g‖L∞(Kt
x (σ◦))ds

)

≥ −∂σ t
x(σ

◦)
∂σ ◦ ‖f ‖L∞(Kt

x(σ ◦))
(

1 + e
(σ t

x(σ ◦)−σ ◦)‖g‖L∞(Kt
x (σ◦))

)

≥ −2
∂σ t

x(σ
◦)

∂σ ◦ ‖f ‖L∞(Kt
x(σ ◦)) e

t‖g‖L∞(Kt
x (σ◦)) ,

while from (A.9) we deduce

∂t

∂σ t
x(σ

◦)
∂σ ◦ = f (ψσ ◦

x ) exp
(

−
σ t

x(σ ◦)∫
σ ◦

(f + g)(ψu
x )du

)

+ ∂σ t
x(σ

◦)
∂σ ◦

(
(1 − κ̂ t

x(σ
t
x(σ

◦))) g(ψ
σ t

x(σ ◦)
x ) − κ̂ t

x(σ
t
x(σ

◦)) f (ψ
σ t

x(σ ◦)
x )

)

≤ e
t‖g‖L∞(Kt

x (σ◦))‖f ‖L∞(K0
x (σ ◦)) + ∂σ t

x(σ
◦)

∂σ ◦ ‖g‖L∞(Kt
x(σ ◦)).

For almost all x, for all t ∈ [0, T ), this implies

exp
(

− 2t‖f ‖L∞(Kt
x(σ ◦))e

t‖g‖L∞(Kt
x (σ◦))

)
≤ ∂σ t

x(σ
◦)

∂σ ◦ ≤ (
1 + t‖f ‖L∞(K0

x (σ ◦))
)
e
t‖g‖L∞(Kt

x (σ◦)) ,

which shows that the map σ t
x :R →R is a Lipschitz diffeomorphism, with also

(
1 + t‖f ‖L∞(K0

x (σ ◦))
)−1

e
−t‖g‖L∞(Kt

x (σ◦)) ≤ ∂(σ t
x)

−1(σ ◦)
∂σ ◦ ≤ exp

(
2t‖f ‖L∞(Kt

x(σ ◦))e
t‖g‖L∞(Kt

x (σ◦))

)
. (A.12)

The representation (A.9) applied to σ ◦ = (σ t
x)

−1(0) then yields the desired result (A.6).

Step 2. Existence.
Let κ, σ be given by (A.5)–(A.6). Noting that for all σ there holds

0 = ∂t

(
(σ t

x)
−1(σ t

x(σ ))
) = (∂t (σ

t
x)

−1)(σ t
x(σ )) + ∂tσ

t
x(σ )

∂(σ t
x)

−1

∂σ0
(σ t

x(σ )),

equation (A.7) leads to the relation

∂t (σ
t
x)

−1(0) = −κt (x)
∂(σ t

x)−1

∂σ0
(0).

The definition (A.6) and the estimate (A.12) then ensure that κ ∈ W
1,∞
loc (R+; L∞

loc(R
2)). We now check that (W ·∇)κ ∈

L∞ (R+ ×R
2). For almost all x and for all t, σ ◦, rewriting equation (A.5) in the form
loc
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∂tσψr
x
(σ ◦) = 1 −

r+σψr
x
(σ ◦)∫

r+σ ◦
f (ψs

x) exp
(

−
r+σψr

x
(σ ◦)∫

s

(f + g)(ψu
x ) du

)
ds,

we easily find that the map r �→ σ t
ψr

x
(σ ◦) belongs to W 1,∞

loc (R). Using the relation

∂r(σ
t
ψr

x
)−1(0) = −(

∂rσ
t
ψr

x

)(
(σ t

ψr
x
)−1(0)

) ∂(σ t
ψr

x
)−1

∂σ ◦ (0),

it follows that the map r �→ (σ t
ψr

x
)−1(0) also belongs to W 1,∞

loc (R). For almost all x and for all t , writing (W ·∇)κt (x) =
−∂rκ

t (ψr
x )|r=0, and using the definition (A.6) in the form

κt (ψr
x ) = 1 −

r∫
r+(σ t

ψr
x
)−1(0)

f (ψs
x) exp

(
−

r∫
s

(f + g)(ψu
x )du

)
ds,

we then easily deduce that (W · ∇)κ ∈ L∞
loc(R

+ × R
2). We now check that κ is a strong solution of the Cauchy 

problem (A.4). By construction, the map t �→ κt (ψ
σ t

x(σ ◦)
x ) is given by (A.9) and thus satisfies

∂t

(
κt (ψ

σ t
x(σ ◦)

x )
) = −(

κt (ψ
σ t

x(σ ◦)
x )

)2
f (ψ

σ t
x(σ ◦)

x ) + κt (ψ
σ t

x(σ ◦)
x )

(
1 − κt (ψ

σ t
x(σ ◦)

x )
)
g(ψ

σ t
x(σ ◦)

x ),

or alternatively,

(
∂tκ

t − κt (W · ∇)κt
)
(ψ

σ t
x(σ ◦)

x ) = ( − (κt )2f + κt (1 − κt )g
)
(ψ

σ t
x(σ ◦)

x ).

As this holds for almost all x and for all σ ◦, we indeed deduce that κ is a strong solution of (A.4). It remains to check 
that 1

κ
∈ L∞

loc(R
+ ×R

2). For that purpose, we note that equation (A.4) implies∣∣∂t

(|κt (x)|−1)∣∣ ≤ |κt (x)|−1(|(W · ∇)κt (x)| + (1 + |κt (x)|)|g(x)|) + |f (x)|,
which easily implies by a Grönwall argument that 1

κ
∈ L∞

loc(R
+ ×R

2).

Step 3. Regularity and integrability.
The additional regularity statement (ii) in Ws,∞(R2) is a straightforward consequence of formulas (A.6)–(A.5), 

together with the identity (A.11) and the estimate (A.12). Also note that for f, g ∈ L∞(R2) and W ∈ W 1,∞(R2) the 
argument in Step 2 ensures that 1

κ
, (W · ∇)κ ∈ L∞

loc(R
+; L∞(R2)).

We now turn to the additional integrability (i) for 1 − κ . Assume that f ∈ L1 ∩ L∞(R2), W ∈ W 1,∞(R2), and 
g ∈ L∞(R2). For all R ≥ 1, denote by χR(x) := e−|x|/R the exponential cut-off function at scale R. We compute

∂t

∫
R2

χR|1 − κt | ≤
∫
R2

χRκtW · ∇|1 − κt | +
∫
R2

χR(κt )2f +
∫
R2

χR|κtg||1 − κt |,

and hence, after integration by parts, using the property |∇χR| ≤ χR of the exponential cut-off function, for all R ≥ 1,

∂t

∫
R2

χR|1 − κt | ≤ ‖κt‖2
L∞‖f ‖L1 + (‖χ−1

R div(κtχRW)‖L∞ + ‖κtg‖L∞)

∫
R2

χR|1 − κt |

≤ ‖κt‖2
L∞‖f ‖L1 + (‖(W · ∇)κt‖L∞ + ‖κt‖L∞‖W‖W 1,∞ + ‖κt‖L∞‖g‖L∞)

∫
R2

χR|1 − κt |.

Applying the Grönwall inequality, and letting R ↑ ∞, we deduce 1 − κ ∈ L∞
loc(R

+; L1(R2)).
We finally turn to the Hs -regularity. Let s ≥ 1 be fixed. Assume that f ∈ Hs ∩ Ws,∞(R2), W ∈ Ws,∞(R2)2, 

g ∈ Ws,∞(R2). For all R ≥ 1, denote by χ̃R(x) := exp(−(1 + |x|2)1/2/R) a smooth exponential cut-off function at 
scale R. We compute
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∂t‖χ̃R(1 − κt )‖2
Hs = −2

∫
R2

〈∇〉s(χ̃R(1 − κt )
)〈∇〉s(κt χ̃RW · ∇κt

)

− 2
∫
R2

〈∇〉s(χ̃R(1 − κt )
)〈∇〉s( − χ̃R(κt )2f + χ̃Rκt (1 − κt )g

)
. (A.13)

Decomposing

−2〈∇〉s(κt χ̃RW · ∇κt
) = 2[〈∇〉s , κtW ·]∇(χ̃R(1 − κt )) + 2κtW · ∇〈∇〉s(χ̃R(1 − κt ))

− 2〈∇〉s((1 − κt )κtW · ∇χ̃R

)
,

we find, after integration by parts in the second right-hand side term,

∂t‖χ̃R(1 − κt )‖2
Hs = 2

∫
R2

〈∇〉s(χ̃R(1 − κt )
)[〈∇〉s , κtW ·]∇(χ̃R(1 − κt )) −

∫
R2

|〈∇〉s(χ̃R(1 − κt ))|2 div(κtW)

− 2
∫
R2

〈∇〉s(χ̃R(1 − κt )
)〈∇〉s((1 − κt )κtW · ∇χ̃R − χ̃R(κt )2f + χ̃Rκt (1 − κt )g

)
,

and hence,

∂t‖χ̃R(1 − κt )‖Hs � ‖[〈∇〉s , κtW ·]∇(χ̃R(1 − κt ))‖L2 + ‖κt‖2
Ws,∞‖χ̃Rf ‖Hs

+ (‖div(κtW)‖L∞ + ‖χ̃−1
R κtW · ∇χ̃R‖Ws,∞ + ‖κtg‖Ws,∞

)‖χ̃R(1 − κt )‖Hs .

Applying the Kato–Ponce commutator estimate [33, Lemma X1] in the form (B.2) with s ≥ 1 in order to estimate the 
first right-hand side term, we find

∂t‖χ̃R(1 − κt )‖Hs �
(‖κtW‖Ws,∞ + ‖χ̃−1

R κtW · ∇χ̃R‖Ws,∞ + ‖κtg‖Ws,∞
)‖χ̃R(1 − κt )‖Hs

+ ‖κt‖2
Ws,∞‖χ̃Rf ‖Hs ,

and thus, for all R ≥ 1, using the properties of the smooth exponential cut-off function χ̃R,

∂t‖χ̃R(1 − κt )‖Hs � ‖κt‖Ws,∞‖(W,g)‖Ws,∞‖χ̃R(1 − κt )‖Hs + ‖κt‖2
Ws,∞‖f ‖Hs ,

Applying the Grönwall inequality, using the regularity result for the solution κ in Ws,∞(R2), and letting R ↑ ∞, this 
implies 1 − κ ∈ L∞

loc(R
+; Hs(R2)). �

We may now conclude with the proof of Proposition 5.2.

Proof of Proposition 5.2. Let v◦, � ∈ L∞
loc(R

2)2 be log-Lipschitz vector fields with curlv◦, curl� ∈ L∞
loc(R

2) and 
curlv◦ ≥ 0. We start with the existence part. By Lemma 5.3 with W := (� +v◦)⊥, f := curlv◦, and g := curl�, there 
exists a global strong solution κ ∈ W

1,∞
loc (R+; L∞

loc(R
2)) of (A.3) with 1

κ
, ((� + v◦)⊥ · ∇)κ ∈ L∞

loc(R
+ × R

2). Then 

the function v := −� + κ(� + v◦) ∈ W
1,∞
loc (R+; L∞

loc(R
2)) is by construction a global strong solution of (A.1) with 

initial data v◦ and with curlv ∈ L∞
loc(R

+ × R
2). The additional regularity statements follow from the corresponding 

statements for κ in Lemma 5.3 together with the representation v − v◦ = −(1 − κ)(v◦ + �).
We now turn to the uniqueness part. Assume that v1, v2 ∈ L∞

loc([0, T ) × R
2) are strong solutions of (A.1) on 

[0, T ) × R
2 with curlv1, curlv2 ∈ L∞

loc([0, T ) × R
2) and curlv1, curlv2 ≥ 0. From (A.2), it follows that for i = 1, 2

we have vi = −� + κi(� + v◦) where κi is given by

κt
i (x) := exp

(
−

t∫
0

curlvs
i (x) ds

)
.

As vi is a strong solution of (A.1) on [0, T ) × R
2, we deduce that κi is a strong solution of equation (A.3)

on [0, T ) × R
2, and the boundedness assumption on curlvi implies that κi ∈ W

1,∞
loc ([0, T ); L∞

loc(R
2)) satisfies 

1
κi

, ((� + v◦)⊥ · ∇)κi ∈ L∞
loc([0, T ) × R

2). The conclusion κ1 = κ2 then follows from the uniqueness statement in 
Lemma 5.3. �
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Appendix B. Proof of the preliminary results

In this appendix, we prove the various preliminary results stated in Section 2. We start with the a priori estimate 
for transport equations, stated in Lemma 2.2.

Proof of Lemma 2.2. We split the proof into two steps: we first prove (2.1) as a corollary of the celebrated Kato–
Ponce commutator estimate, and then we check estimate (2.2), which is but a straightforward observation.

Step 1. Proof of (2.1).
Let s ≥ 0. The time derivative of the Hs-norm of the solution ρ can be computed as follows, using the notation 

〈∇〉 := (1 + |∇|2)1/2,

∂t‖ρt‖2
Hs = 2

∫
(〈∇〉sρt )(〈∇〉s div(ρtwt )) = 2

∫
(〈∇〉sρt )[〈∇〉s div,wt ]ρt + 2

∫
(〈∇〉sρt )(wt · ∇〈∇〉sρt )

= 2
∫

(〈∇〉sρt )[〈∇〉s div,wt ]ρt −
∫

|〈∇〉sρt |2 divwt

≤ 2‖ρt‖Hs‖[〈∇〉s div,wt ]ρt‖L2 + ‖(divwt)−‖L∞‖ρt‖2
Hs ,

and hence,

∂t‖ρt‖Hs ≤ ‖[〈∇〉s div,wt − W ]ρt‖L2 + ‖[〈∇〉s div,W ]ρt‖L2 + 1

2
‖(divwt)−‖L∞‖ρt‖Hs . (B.1)

Now we recall the following forms of the Kato–Ponce commutator estimate [33, Lemma X1] (see e.g. [38]): given 
p ∈ (1, ∞), and 1

pi
+ 1

qi
= 1

p
with pi, qi ∈ (1, ∞] for i = 1, 2, we have for all f, g ∈ C∞

c (Rd),

‖[〈∇〉s∇, f ]g‖Lp �s,p,p1,p2 ‖f ‖Ws+1,q1 ‖g‖Lp1 + ‖∇f ‖Lp2 ‖g‖Ws,q2 ,

and also

‖[〈∇〉s , f ]∇g‖Lp �s,p,p1,p2 ‖f ‖Ws,q1 ‖g‖W 1,p1 + 1s≥1‖∇f ‖Lp2 ‖g‖Ws,q2 . (B.2)

Together with the Kato–Ponce inequality of Lemma 2.1, these estimates yield on the one hand

‖[〈∇〉s div,W ]ρt‖L2 �s ‖W‖Ws+1,∞‖ρt‖L2 + ‖∇W‖L∞‖ρt‖Hs ,

and

‖[〈∇〉s div,wt − W ]ρt‖L2 �s ‖ρt‖L∞‖wt − W‖Hs+1 + ‖∇(wt − W)‖L∞‖ρt‖Hs ,

and on the other hand,

‖[〈∇〉s div,wt − W ]ρt‖L2 ≤ ‖ρt div(wt − W)‖Hs + ‖[〈∇〉s , (wt − W)· ]∇ρt‖L2

�s ‖∇(wt − W)‖L∞‖ρt‖Hs + ‖ρt‖L∞‖div(wt − W)‖Hs + ‖ρt‖W 1,∞‖wt − W‖Hs .

Injecting these estimates into (B.1), the result (2.1) follows.

Step 2. Proof of (2.2).
Let ε > 0. We denote by û the Fourier transform of a function u on Rd . Set G := ρw, so that the equation for ρ

takes the form ∂tρ = divG. Rewriting this equation in Fourier space and testing it against (ε + |ξ |)−2(ρ̂t − ρ̂◦)(ξ), 
we find

∂t

∫
(ε + |ξ |)−2|ρ̂t (ξ) − ρ̂◦(ξ)|2dξ = 2i

∫
(ε + |ξ |)−2ξ · Ĝt (ξ)(ρ̂t (ξ) − ρ̂◦(ξ))dξ

≤ 2
∫

(ε + |ξ |)−1|ρ̂t (ξ) − ρ̂◦(ξ)||Ĝt (ξ)|dξ,

and hence, by the Cauchy–Schwarz inequality,

∂t

(∫
(ε + |ξ |)−2|ρ̂t (ξ) − ρ̂◦(ξ)|2dξ

)1/2

≤
(∫

|Ĝt (ξ)|2dξ

)1/2

.



1310 M. Duerinckx, J. Fischer / Ann. I. H. Poincaré – AN 35 (2018) 1267–1319
Integrating in time and letting ε ↓ 0, we obtain

‖ρt − ρ◦‖Ḣ−1 ≤ ‖G‖L1
t L2 ≤ ‖ρ‖L∞

t L2‖w‖L1
t L∞ ,

that is, (2.2). �
We turn to the proof of the a priori estimates for transport-diffusion equations, stated in Lemma 2.3.

Proof of Lemma 2.3. We split the proof into three steps, proving items (i), (ii), and (iii) separately.

Step 1. Proof of (i).
Denote G := g −w∇h, so that w satisfies ∂tw−
w = divG. Set 〈ξ〉 := (1 +|ξ |2)1/2, and let û denote the Fourier 

transform of a function u on Rd . Let s ≥ 0 be fixed, and assume that ∇h, w, g are as in the statement of (i) (which 
implies G ∈ L2

loc([0, T ); Hs(Rd)) as shown below). In this step, we use the notation � for ≤ up to a constant C as in 
the statement. For all ε > 0, rewriting the equation for w in Fourier space and testing it against (ε+|ξ |)−2〈ξ〉2s∂t ŵ(ξ), 
we obtain∫

(ε + |ξ |)−2〈ξ〉2s |∂t ŵ
t (ξ)|2dξ + 1

2

∫ |ξ |2
(ε + |ξ |)2 〈ξ〉2s∂t |ŵt (ξ)|2dξ

= i

∫
(ε + |ξ |)−2〈ξ〉2sξ · Ĝt (ξ)∂t ŵt (ξ)dξ,

and hence, integrating over [0, t], and using the inequality 2xy ≤ x2 + y2,

t∫
0

∫
(ε + |ξ |)−2〈ξ〉2s |∂uŵ

u(ξ)|2dξdu + 1

2

∫ |ξ |2
(ε + |ξ |)2 〈ξ〉2s |ŵt (ξ)|2dξ

= 1

2

∫ |ξ |2
(ε + |ξ |)2 〈ξ〉2s |ŵ◦(ξ)|2dξ + i

t∫
0

∫
(ε + |ξ |)−2〈ξ〉2sξ · Ĝu(ξ)∂uŵu(ξ)dξdu

≤ 1

2

∫
〈ξ〉2s |ŵ◦(ξ)|2dξ + 1

2

t∫
0

∫
〈ξ〉2s |Ĝu(ξ)|2dξdu + 1

2

t∫
0

∫
(ε + |ξ |)−2〈ξ〉2s |∂uŵ

u(ξ)|2dξdu.

Absorbing in the left-hand side the last right-hand side term, and letting ε ↓ 0, it follows that

∫
〈ξ〉2s |ŵt (ξ)|2dξ ≤

∫
〈ξ〉2s |ŵ◦(ξ)|2dξ +

t∫
0

∫
〈ξ〉2s |Ĝu(ξ)|2dξdu,

or equivalently

‖wt‖Hs ≤ ‖w◦‖Hs + ‖G‖L2
t H

s .

Lemma 2.1 yields

‖G‖L2
t H

s ≤ ‖g‖L2
t H

s + ‖w∇h‖L2
t H

s � ‖g‖L2
t H

s + ‖∇h‖Ws,∞‖w‖L2
t L2 + ‖∇h‖L∞‖w‖L2

t H
s

� ‖g‖L2
t H

s + ‖w‖L2
t H

s ,

so that we obtain

‖wt‖2
Hs � ‖w◦‖2

Hs + ‖g‖2
L2

t H
s +

t∫
0

‖wu‖2
Hs du,

and item (i) now follows from the Grönwall inequality.
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Step 2. Proof of (ii).
Set again G := g − w∇h, and let ∇h, w◦, w, g be as in the statement of (ii). For all ε > 0, rewriting the equation 

for w in Fourier space and then integrating it against (ε + |ξ |)−2(ŵt − ŵ◦)(ξ), we may estimate

∂t

∫
(ε + |ξ |)−2|(ŵt − ŵ◦)(ξ)|2dξ = 2

∫
(ε + |ξ |)−2(ŵt − ŵ◦)(ξ)∂t ŵ

t (ξ)dξ

≤ − 2
∫ |ξ |2

(ε + |ξ |)2 |(ŵt − ŵ◦)(ξ)|2 + 2
∫ |ξ |2

(ε + |ξ |)2 |(ŵt − ŵ◦)(ξ)||ŵ◦(ξ)|

+ 2
∫

(ε + |ξ |)−1|(ŵt − ŵ◦)(ξ)||Ĝt (ξ)|dξ

≤
∫ |ξ |2

(ε + |ξ |)2 |ŵ◦(ξ)|2 +
∫

(ε + |ξ |)−2|(ŵt − ŵ◦)(ξ)|2dξ +
∫

(1 + |ξ |2)−1|Ĝt (ξ)|2dξ,

that is

∂t

∫
(ε + |ξ |)−2|(ŵt − ŵ◦)(ξ)|2dξ ≤

∫
(ε + |ξ |)−2|(ŵt − ŵ◦)(ξ)|2dξ + ‖w◦‖2

L2 + ‖Gt‖2
H−1,

and hence by the Grönwall inequality,∫
(ε + |ξ |)−2|(ŵt − ŵ◦)(ξ)|2dξ ≤ et

(
t‖w◦‖2

L2 + ‖G‖2
L2

t H
−1

)
.

Letting ε ↓ 0, it follows that wt − w◦ ∈ Ḣ−1(R2) with

‖wt − w◦‖Ḣ−1 ≤ eCt (‖w◦‖L2 + ‖G‖L2
t H

−1) ≤ eCt (‖w◦‖L2 + ‖g‖L2
t H

−1 + ‖∇h‖L∞‖w‖L2
t L2).

Combining this with (i) for s = 0, item (ii) follows.

Step 3. Proof of (iii).
Let 1 ≤ p, q ≤ ∞, and assume that w ∈ Lp([0, T ); Lq(Rd)), ∇h ∈ L∞(Rd), and g ∈ Lp([0, T ); Lq(Rd)). In this 

step, we use the notation � for ≤ up to a constant C as in the statement. Denoting by �t(x) := Ct−d/2e−|x|2/(2t) the 
heat kernel, Duhamel’s representation formula yields

wt(x) = �t ∗ w◦(x) + φt
g(x) −

t∫
0

∫
∇�u(y) · ∇h(x − y)wt−u(x − y)dydu,

where we have set

φt
g(x) :=

t∫
0

∫
∇�u(y) · gt−u(x − y)dydu.

We find by the triangle inequality

‖wt‖Lq ≤ ‖w◦‖Lq

∫
|�t(y)|dy + ‖φt

g‖Lq + ‖∇h‖L∞

t∫
0

‖wt−u‖Lq

∫
|∇�u(y)|dydu,

hence by a direct computation

‖wt‖Lq � ‖w◦‖Lq + ‖φt
g‖Lq +

t∫
0

‖wt−u‖Lq u−1/2du.

Integrating with respect to t , and using the triangle and the Hölder inequalities, we find
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‖w‖Lp
t Lq � t1/p‖w◦‖Lq + ‖φg‖Lp

t Lq +
( t∫

0

( t∫
0

1u<v‖wv−u‖Lq u−1/2du
)p

dv

)1/p

� t1/p‖w◦‖Lq + ‖φg‖Lp
t Lq +

t∫
0

‖w‖Lp
u Lq (t − u)−1/2du

� t1/p‖w◦‖Lq + ‖φg‖Lp
t Lq + (1 − r ′/2)−1/r ′

t
1
2 − 1

r

( t∫
0

‖w‖r

Lp
u Lq du

)1/r

,

for all r > 2. Noting that (1 − r ′/2)−1/r ′ � 1 + (r − 2)−1/2, and optimizing in r , the Grönwall inequality then leads to

‖w‖Lp
t Lq � (t1/p‖w◦‖Lq + ‖φg‖Lp

t Lq ) exp
(

inf
2<r<∞

Cr

r
(1 + (r − 2)−r/2) tr/2

)
. (B.3)

Now it remains to estimate the norm of φg . A similar computation as above yields ‖φg‖Lp
t Lq � t1/2‖g‖Lp

t Lq , but a 
more careful estimate is needed. For 1 ≤ s ≤ q , we may estimate by the Hölder inequality

|φt
g(x)| ≤

t∫
0

(∫
|∇�u|s′/2

)1/s′(∫
|∇�u(x − y)|s/2|gt−u(y)|sdy

)1/s

du,

and hence, by the triangle inequality,

‖φt
g‖Lq ≤

t∫
0

(∫
|∇�u|s′/2

)1/s′(∫
|∇�u|q/2

)1/q(∫
|gt−u|s

)1/s

du.

Assuming that κ := d
2

( 1
d

+ 1
q

− 1
s

)
> 0 (note that κ ≤ 1/2 follows from the choice s ≤ q), a direct computation then 

yields

‖φt
g‖Lq �

t∫
0

uκ−1‖gt−u‖Ls du.

Integrating with respect to t , we find by the triangle inequality

‖φg‖Lp
t Lq �

t∫
0

uκ−1
( t−u∫

0

‖gv‖p
Ls dv

)1/p

du � κ−1tκ‖gv‖Lp
t Ls ,

and the result (iii) follows from this together with (B.3). �
We turn to the proof of the potential estimates in L∞(Rd), stated in Lemma 2.4.

Proof of Lemma 2.4. Recall that −
−1w = gd ∗ w, where we define gd(x) := cd |x|2−d if d > 2 and g2(x) :=
−c2 log |x| if d = 2. The stated results are based on suitable decompositions of this Green’s integral. We split the 
proof into three steps, separately proving items (i), (ii) and (iii).

Step 1. Proof of (i).
Let 0 < γ ≤ � < ∞. The obvious estimate |∇
−1w(x)| � ∫ |x − y|1−d |w(y)|dy may be decomposed as

|∇
−1w(x)|�
∫

|x−y|<γ

|x − y|1−d |w(y)|dy +
∫

γ<|x−y|<�

|x − y|1−d |w(y)|dy +
∫

|x−y|>�

|x − y|1−d |w(y)|dy.

Let 1 ≤ p < d < q ≤ ∞. We use the Hölder inequality with exponents (q/(q − 1), q) for the first term, (d/(d − 1), d)

for the second, and (p/(p − 1), p) for the third, which yields after straightforward computations
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|∇
−1w(x)|� (q ′(1 − d/q))−1/q ′
γ 1−d/q‖w‖Lq + (log(�/γ ))(d−1)/d‖w‖Ld

+ (p′(d/p − 1))−1/p′
�1−d/p‖w‖Lp .

Item (i) now easily follows, choosing γ 1−d/q = ‖w‖Ld /‖w‖Lq and �d/p−1 = ‖w‖Lp/‖w‖Ld , noting that γ ≤ � fol-
lows from interpolation of Ld between Lp and L∞, and observing that

(q ′(1 − d/q))−1/q ′ � (1 − d/q)−1+1/d , (p′(d/p − 1))−1/p′ � (1 − p/d)−1+1/d .

Step 2. Proof of (ii).
Let 0 < γ ≤ 1 ≤ � < ∞, and let χ� denote a cut-off function with χ� = 0 on B�, χ� = 1 outside B�+1, and 

|∇χ�| ≤ 2. We may then decompose

−∇
−1w(x) =
∫

|x−y|<γ

∇gd(x − y)w(y)dy +
∫

γ≤|x−y|≤�

∇gd(x − y)w(y)dy

+
∫

�≤|x−y|≤�+1

∇gd(x − y)(1 − χ�(x − y))w(y)dy

+
∫

|x−y|≥�

∇gd(x − y)χ�(x − y)w(y)dy.

Using w = div ξ and integrating by parts, the last term becomes∫
∇gd(x − y)χ�(x − y)w(y)dy

= −
∫

∇gd(x − y) ⊗ ∇χ�(x − y) · ξ(y)dy −
∫

χ�(x − y)∇2gd(x − y) · ξ(y)dy.

Choosing � = 1, we may then estimate

|∇
−1w(x)|�
∫

|x−y|<γ

|x − y|1−d |w(y)|dy +
∫

γ≤|x−y|≤2

|x − y|1−d |w(y)|dy +
∫

|x−y|≥1

|x − y|−d |ξ(y)|dy.

Using the Hölder inequality just as in Step 1 for the first two terms, with d < q ≤ ∞, and using the Hölder inequality 
with exponents (p/(p − 1), p) for the last term, we obtain, for any 1 ≤ p < ∞,

|∇
−1w(x)|� (q ′(1 − d/q))−1/q ′
γ 1−d/q‖w‖Lq + (log(2/γ ))(d−1)/d‖w‖Ld + (d(p′ − 1))−1/p′ ‖ξ‖Lp ,

so that item (ii) follows from the choice γ 1−d/q = 1 ∧ (‖w‖Ld /‖w‖Lq ), observing that (d(p′ − 1))−1/p′ ≤ p.

Step 3. Proof of (iii).
Given 0 < γ ≤ 1, using the integration by parts∫

|x−y|<γ

∇2gd(x − y)dy =
∫

|x−y|=γ

n ⊗ ∇gd(x − y)dy,

we may decompose

|∇2
−1w(x)|�
∣∣∣∣

∫
|x−y|<γ

(x − y)⊗2

|x − y|d+2 w(y)dy

∣∣∣∣ +
∣∣∣∣

∫
γ≤|x−y|<1

(x − y)⊗2

|x − y|d+2 w(y)dy

∣∣∣∣ +
∣∣∣∣

∫
|x−y|≥1

(x − y)⊗2

|x − y|d+2 w(y)dy

∣∣∣∣

�
∣∣∣∣

∫
|x−y|<γ

(x − y)⊗2

|x − y|d+2 (w(x) − w(y))dy

∣∣∣∣ + |w(x)|
∣∣∣∣

∫
|x−y|=γ

x − y

|x − y|d dy

∣∣∣∣

+
∣∣∣∣

∫
(x − y)⊗2

|x − y|d+2 w(y)dy

∣∣∣∣ +
∣∣∣∣

∫
(x − y)⊗2

|x − y|d+2 w(y)dy

∣∣∣∣.

γ≤|x−y|<1 |x−y|≥1
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Let 0 < s ≤ 1 and 1 ≤ p < ∞. Using the inequality |w(x) − w(y)| ≤ |x − y|s |w|Cs , and then applying the Hölder 
inequality with exponents (1, ∞) for the first three terms, and (p/(p − 1), p) for the last one, we obtain after straight-
forward computations

|∇2
−1w(x)|� s−1γ s |w|Cs + ‖w‖L∞ + | logγ |‖w‖L∞ + (d(p′ − 1))−1/p′ ‖w‖Lp .

Item (iii) then follows for the choice γ s = ‖w‖L∞/‖w‖Cs ≤ 1. �
We turn to the proof of the potential estimates in Sobolev and Hölder–Zygmund spaces, stated in Lemma 2.5.

Proof of Lemma 2.5. As item (i) is obvious via Fourier transform, we focus on item (ii). Let s ∈R, let χ ∈ C∞
c (Rd)

be a fixed even function with χ = 1 in a neighborhood of the origin, and let χ(∇) denote the corresponding pseudo-
differential operator. Applying [6, Proposition 2.78] to the operator (1 − χ(∇))∇
−1, we find

‖∇
−1w‖Cs∗ ≤ ‖(1 − χ(∇))∇
−1w‖Cs∗ + ‖χ(∇)∇
−1w‖Cs∗ �s ‖w‖
Cs−1∗ + ‖χ(∇)∇
−1w‖Cs∗ .

Let k denote the smallest nonnegative integer ≥ s. Noting that ‖v‖Cs∗ �
∑k

j=0 ‖∇j v‖L∞ holds for all v, we deduce

‖∇
−1w‖Cs∗ � ‖w‖
Cs−1∗ +

k∑
j=0

‖∇jχ(∇)∇
−1w‖L∞,

and similarly

‖∇2
−1w‖Cs∗ � ‖w‖Cs∗ +
k∑

j=0

‖∇jχ(∇)∇2
−1w‖L∞ .

Writing ∇jχ(∇)∇
−1w = ∇j χ̂ ∗ ∇
−1w, we find

‖∇jχ(∇)∇
−1w‖L∞ ≤ ‖∇j χ̂‖L2‖∇
−1w‖L2 = ‖∇j χ̂‖L2‖w‖Ḣ−1,

and the first two estimates in item (ii) follow. Rather writing ∇jχ(∇)∇
−1w = ∇
−1(∇j χ̂ ∗ w), and using the 
estimate |∇
−1v(x)| � ∫ |x − y|1−d |v(y)|dy as in the proof of Lemma 2.4, we find for all 1 ≤ p < d ,

‖∇jχ(∇)∇
−1w‖L∞ � sup
x

∫
|x−y|≤1

|x − y|1−d |∇j χ̂ ∗ w(y)|dy + sup
x

∫
|x−y|>1

|x − y|1−d |∇j χ̂ ∗ w(y)|dy

�p ‖∇j χ̂ ∗ w‖Lp∩L∞ ≤ ‖∇j χ̂‖L1‖w‖Lp∩L∞ ,

and the third estimate in item (ii) follows. The last estimate in item (ii) is now easily obtained, arguing similarly as in 
the proof of Lemma 2.4(iii). �

We turn to the proof of the 2D global elliptic regularity results stated in Lemma 2.6.

Proof of Lemma 2.6. We split the proof into three steps, first proving (i) as a consequence of Meyers’ perturbative 
argument, then turning to the Sobolev regularity (ii), and finally to the Schauder type estimate (iii). The additional 
L∞-estimate for v directly follows from item (i) and the Sobolev embedding, while the corresponding estimate for 
∇u follows from items (i) and (iii) by interpolation: for 2 < p ≤ p0 and s ∈ (0, 1), we indeed find

‖∇u‖L∞ � ‖∇u‖Lp + |∇u|Cs ≤ Cp‖f ‖L2p/(p+2) + Cs‖f ‖L2/(1−s) ≤ Cp,s‖f ‖L1∩L∞ .

In the proof below, we use the notation � for ≤ up to a constant C > 0 that depends only on an upper bound on �, 
and we add subscripts to indicate dependence on further parameters.

Step 1. Proof of (i).
We start with the norm of v. By Meyers’ perturbative argument [43], there exists some 1 < r0 < 2 (depending only 

on �) such that ‖∇v‖Lr � ‖g‖Lr holds for all r0 ≤ r ≤ r ′
0, 1

r
+ 1′ = 1. On the other hand, decomposing the equation 
0 r0
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for v as

−
v = div(g + (b − 1)∇v),

we deduce from Riesz potential theory that for all 1 < r < 2

‖v‖L2r/(2−r) �r ‖g + (b − 1)∇v‖Lr � ‖g‖Lr + ‖∇v‖Lr ,

and hence ‖v‖L2r/(2−r) �r ‖g‖Lr for all r0 ≤ r < 2, that is, ‖v‖Lq �q ‖g‖L2q/(q+2) for all 2r0
2−r0

≤ q < ∞.
We now turn to the norm of ∇u. The proof follows from a suitable adaptation of Meyers’ perturbative argu-

ment [43], again combined with Riesz potential theory. For the reader’s convenience a complete proof is included. First 
recall that the Calderón–Zygmund theory yields ‖∇2
w‖Lp ≤ Kp‖w‖Lp for all 1 < p < ∞ and all w ∈ C∞

c (R2), 
where the constants Kp’s moreover satisfy lim supp→2 Kp ≤ K2, while a simple energy estimate allows to choose 
K2 = 1. Now rewriting the equation for u as

−
u = 2

� + 1
f + div

(
2

� + 1

(
b − � + 1

2

)
∇u

)
,

we deduce from Riesz potential theory and from the Calderón–Zygmund theory (applied to the first and to the second 
right-hand side term, respectively), for all 2 < p < ∞,

‖∇u‖Lp ≤ 2

� + 1
‖∇
−1f ‖Lp +

∥∥∥∥∇
−1 div

(
2

� + 1

(
b − � + 1

2

)
∇u

)∥∥∥∥
Lp

≤ 2Cp

� + 1
‖f ‖L2p/(p+2) + 2Kp

� + 1

∥∥∥(
b − � + 1

2

)
∇u

∥∥∥
Lp

≤ 2Cp

� + 1
‖f ‖L2p/(p+2) + Kp(� − 1)

� + 1
‖∇u‖Lp ,

where the last inequality follows from Id ≤ b ≤ � Id. Since we have �−1
�+1 < 1 and lim supp→2 Kp ≤ K2 = 1, we may 

choose P0 > 2 close enough to 2 such that Kp(�−1)

�+1 < 1 holds for all 2 ≤ p ≤ p0. This allows to absorb the last 
right-hand side term, and to conclude ‖∇u‖Lp �p ‖f ‖L2p/(p+2) for all 2 < p ≤ p0.

Step 2. Proof of (ii).
We focus on the result for u, as the argument for v is very similar. A simple energy estimate yields∫

|∇u|2 ≤
∫

∇u · b∇u =
∫

f u ≤ ‖f ‖Ḣ−1‖∇u‖L2,

hence ‖∇u‖L2 ≤ ‖f ‖Ḣ−1 , that is, (ii) with s = 0. The result (ii) for any integer s ≥ 0 is then deduced by induction, 
successively differentiating the equation. It remains to consider the case of fractional values s ≥ 0. We only display the 
argument for 0 < s < 1, while the other cases are similarly obtained after differentiation of the equation. Let 0 < s < 1
be fixed. We use the following finite difference characterization of the fractional Sobolev space Hs(R2): a function 
w ∈ L2(R2) belongs to Hs(R2), if and only if it satisfies ‖w − w(· + h)‖L2 ≤ K|h|s for all h ∈R

2, for some K > 0, 
and we then have ‖w‖Ḣ s ≤ K . This characterization is easily checked, using e.g. the identity ‖w − w(· + h)‖2

L2 �∫ |1 − eiξ ·h|2|ŵ(ξ)|2dξ , where ŵ denotes the Fourier transform of w, and noting that |1 − eia| ≤ 2 ∧ |a| holds for all 
a ∈R. Now applying finite difference to the equation for u, we find for all h ∈R

2,

−div(b(· + h)(∇u − ∇u(· + h))) = div((b − b(· + h))∇u) + f − f (· + h),

and hence, testing against u − u(· + h),∫
|∇u − ∇u(· + h)|2 ≤ −

∫
(∇u − ∇u(· + h)) · (b − b(· + h))∇u +

∫
(u − u(· + h))(f − f (· + h))

≤ |h|s |b|Cs‖∇u‖L2‖∇u − ∇u(· + h)‖L2 + ‖f − f (· + h)‖Ḣ−1‖∇u − ∇u(· + h)‖L2 ,

where we compute by means of Fourier transforms

‖f − f (· + h)‖2
Ḣ−1 �

∫
|ξ |−2|1 − eiξ ·h|2|f̂ (ξ)|2dξ �

∫
|ξ |−2|ξ · h|2s |f̂ (ξ)|2dξ � |h|2s‖f ‖2

Ḣ−1∩Hs−1 .
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Further combining this with the L2-estimate for ∇u proven at the beginning of this step, we conclude

‖∇u − ∇u(· + h)‖L2 � |h|s(|b|Cs‖∇u‖L2 + ‖f ‖Ḣ−1∩Hs−1) � |h|s(1 + |b|Cs )‖f ‖Ḣ−1∩Hs−1,

and the result follows from the above stated characterization of Hs(R2).

Step 3. Proof of (iii).
We focus on the result for u, while that for v is easily obtained as an adaptation of [28, Theorem 3.8]. Let x0 ∈R

2

be fixed. The equation for u may be rewritten as

−div(b(x0)∇u) = f + div((b − b(x0))∇u).

For all r > 0, let wr ∈ u + H 1
0 (B(x0, r)) be the unique solution of − div(b(x0)∇wr) = 0 in B(x0, r). The difference 

vr := u − wr ∈ H 1
0 (B(x0, r)) then satisfies in B(x0, r)

−div(b(x0)∇vr) = f + div((b − b(x0))∇u).

Testing this equation against vr itself, we obtain
∫

|∇vr |2 ≤
∣∣∣∣

∫
B(x0,r)

f vr

∣∣∣∣ +
∫

B(x0,r)

|b − b(x0)||∇u||∇vr | ≤
∣∣∣∣

∫
B(x0,r)

f vr

∣∣∣∣ + rs |b|Cs‖∇u‖L2(B(x0,r))
‖∇vr‖L2 .

We estimate the first term as follows∣∣∣∣
∫

B(x0,r)

f vr

∣∣∣∣ =
∣∣∣∣

∫
B(x0,r)

∇vr · ∇
−1(1B(x0,r)f )

∣∣∣∣ ≤ ‖∇vr‖Lp′
(B(x0,r))

‖∇
−1(1B(x0,r)f )‖Lp ,

and hence by Riesz potential theory, for all 2 < p < ∞,∣∣∣∣
∫

B(x0,r)

f vr

∣∣∣∣�p ‖∇vr‖Lp′
(B(x0,r))

‖f ‖L2p/(p+2)(B(x0,r))
.

The Hölder inequality then yields, choosing q := 2
1−s

> 2,

∣∣∣∣
∫

B(x0,r)

f vr

∣∣∣∣�p r
2
p′ −1‖∇vr‖L2 r

1+ 2
p
− 2

q ‖f ‖Lq = r
2(1− 1

q
)‖∇vr‖L2‖f ‖Lq = r1+s‖∇vr‖L2‖f ‖L2/(1−s) .

Combining the above estimates, we deduce∫
|∇vr |2 � r2(1+s)‖f ‖2

L2/(1−s) + r2s |b|2Cs‖∇u‖2
L2(B(x0,r))

.

We are now in position to conclude exactly as in the classical proof of the Schauder estimates (see e.g. [28, Theo-
rem 3.13]). �

We turn to the proof of Lemma 2.7, concerning the reconstruction of v from the knowledge of curlv and div(av).

Proof of Lemma 2.7. We split the proof into two steps.

Step 1. Uniqueness.
We prove that at most one function δv ∈ L2(R2)2 can be associated with a given couple (δω, δζ ). For that purpose, 

we assume that δv ∈ L2(R2)2 satisfies curl δv = 0 and div(aδv) = 0, and we deduce δv = 0. By the Hodge decompo-
sition in L2(R2)2, there exist functions φ, ψ ∈ H 1

loc(R
2) such that aδv = ∇φ + ∇⊥ψ with ∇φ, ∇ψ ∈ L2(R2)2. Now 

note that 
φ = div(aδv) = 0 and div(a−1∇ψ) + curl(a−1∇φ) = curl δv = 0, which implies ∇φ = 0 and ∇ψ = 0, 
hence δv = 0.
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Step 2. Existence.
Given δω, δζ ∈ Ḣ−1(R2), we observe that ∇(diva−1∇)−1δω and ∇(diva∇)−1δζ are well-defined in L2(R2)2. 

The vector field

δv := a−1∇⊥(diva−1∇)−1δω + ∇(diva∇)−1δζ

is thus well-defined in L2(R2)2, and trivially satisfies curl δv = δω, div(aδv) = δζ . The additional estimate follows 
from Lemmas 2.1 and 2.6(ii). �

Finally, we turn to the control on the pressure stated in Lemma 2.8.

Proof of Lemma 2.8. In this proof, we use the notation � for ≤ up to a constant C depending only on an upper 
bound on ‖(h, �, v̄◦)‖L∞ . Let 2 < p0, q0 � 1 and r0 = p0 be as in Lemma 2.6(i) (with b replaced by a or a−1), and 
note that q0 can be chosen large enough such that 1

p0
+ 1

q0
≤ 1

2 . Assume that ω ∈ L∞
loc([0, T ); P ∩ Lq0(R2)) holds for 

this choice of the exponent q0. By Lemma 2.6(i), the function

P := (−diva∇)−1 div(aω(−α(� + v) + β(� + v)⊥))

is well-defined in L∞
loc([0, T ); Lq0(R2)) and satisfies for all t ≥ 0,

‖P t‖Lq0 � ‖aωt (−α(� + vt ) + β(� + vt )⊥)‖L2q0/(2+q0)

� ‖� + v̄◦‖L∞‖ωt‖L2q0/(2+q0) + ‖vt − v̄◦‖L2‖ωt‖Lq0

� (1 + ‖vt − v̄◦‖L2)‖ωt‖L1∩Lq0 .

Now note that the following Helmholtz–Leray type identity follows from the proof of Lemma 2.7: for any vector field 
F ∈ C∞

c (R2)2,

F = a−1∇⊥(diva−1∇)−1 curlF + ∇(diva∇)−1 div(aF ). (B.4)

This implies in particular, for the choice F = ω
( − α(� + v) + β(� + v)⊥

)
,

a−1∇⊥(diva−1∇)−1 div
(
ω(α(� + v)⊥ + β(� + v))

)
= a−1∇⊥(diva−1∇)−1 curl

(
ω(−α(� + v) + β(� + v)⊥)

)
= ω

( − α(� + v) + β(� + v)⊥
) + ∇P. (B.5)

For φ ∈ C∞
c ([0, T ) ×R

2)2, it follows from Lemma 2.6(i) that (diva−1∇)−1 curl(a−1φ) ∈ C∞
c ([0, T ); Lq0(R2)) and 

that ∇(diva−1∇)−1 curl(a−1φ) ∈ C∞
c ([0, T ); L2 ∩ Lp0(R2)). With the choice 1

p0
+ 1

q0
≤ 1

2 , the Lq0 -regularity of ω
then allows to test the weak formulation of (1.9) (which defines weak solutions of (1.1), cf. Definition 1.1(b)) against 
(diva−1∇)−1 curl(a−1φ), to the effect of∫

ω◦(diva−1∇)−1 curl(a−1φ(0, ·)) +
∫∫

ω(diva−1∇)−1 curl(a−1∂tφ)

=
∫∫

ω(α(� + v)⊥ + β(� + v)) · ∇(diva−1∇)−1 curl(a−1φ).

As by (B.4) the constraint div(av) = 0 implies v = a−1∇⊥(diva−1∇)−1ω and v◦ = a−1∇⊥(diva−1∇)−1ω◦, and as 
by definition ω ∈ L∞

loc([0, T ); L1 ∩ L2(R2)), Lemma 2.6(i) implies v ∈ L∞
loc([0, T ); Lp0(R2)2). We may then integrate 

by parts in the weak formulation above, which yields∫
φ(0, ·) · v◦ +

∫∫
∂tφ · v = −

∫∫
a−1φ · ∇⊥(diva−1∇)−1 div(ω(α(� + v)⊥ + β(� + v))),

and the result now directly follows from the decomposition (B.5). �
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