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Abstract

Initial-boundary value problems in a half-strip with different types of boundary conditions for two-dimensional Zakharov—
Kuznetsov equation are considered. Results on global existence, uniqueness and long-time decay of weak and regular solutions are
established.
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1. Introduction. Description of main results

The two dimensional Zakharov—Kuznetsov equation (ZK)
ur + by + uyxy +Mxyy+uux=f(t,X,Y) (L.1)

(b is a real constant) is a reduction of the three-dimensional one which was derived in [35] for description of ion-
acoustic waves in magnetized plasma. Now this equation is considered as a model of two-dimensional nonlinear
waves in dispersive media propagating in one preassigned (x) direction with deformations in the transverse (y) di-
rection. A rigorous derivation of the ZK model can be found, for example, in [19,21]. It is one of the variants of
multi-dimensional generalizations for Korteweg—de Vries equation (KdV) u; 4+ buy 4 uyyx + uu, = f(¢, x).

The theory of solubility and well-posedness for ZK equation and its generalizations is most developed for the
pure initial-value problem. For the considered two-dimensional case the corresponding results in different functional
spaces can be found in [32,6,7,2,26,27,31,15,3,18,30,16,17]. For initial-boundary value problems the theory is most
developed for domains of a type I x R, where [ is an interval (bounded or unbounded) on the variable x, that is, the
variable y varies in the whole line ([8,9,11,10,33,12,5]).
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On the other hand, from the physical point of view boundary-value problems for this equation in domains, where the
variable y varies in a bounded interval, seem at least the same important. Unfortunately certain technique developed for
the case y € R (especially related to profound investigation of the corresponding linear equation) up to this moment
is extended to the case of bounded y only partially. An initial-boundary value problem in a strip R x (0, L) with
periodic boundary conditions was considered in [28] for ZK equation and local well-posedness result was established
in the spaces H* for s > 3/2. This result was improved in [30] where s > 1, in addition, in the space H' appropriate
conservation laws provided global well-posedness.

Another way of the study is based on the use of certain weighted spaces. Initial-boundary value problems in a
strip R x (0, L) with homogeneous boundary conditions of different types — Dirichlet, Neumann or periodic — were
considered in [1] for ZK equation with more general nonlinearity and results on global well-posedness in classes of
weak solutions with power weights when x — +o00 were established. Similar results in the case of exponential weights
for ZK equation itself under homogeneous Dirichlet boundary conditions can be found in [14]. Global well-posedness
results for ZK equation with certain parabolic regularization also for the initial-boundary value problem in a strip
R x (0, L) with homogeneous Dirichlet boundary conditions were obtained in [13,14,23,24]. Global well-posedness
results for a bounded rectangle can be found in [5,34].

An initial-boundary value problem in a half-strip R4 x (0, L) with homogeneous Dirichlet boundary conditions
was studied in [25,22] and global well-posedness in Sobolev spaces with exponential weights when x — +00 was
proved.

In the present paper we consider initial-boundary value problems in a domain IT% = (0, T) x £, where ¥, =
Ry x(0,L)={(x,y):x>0,0<y < L} is ahalf-strip of a given width L and T > 0 is arbitrary, for equation (1.1)
with an initial condition

u(0,x,y) =uo(x,y), (x,y) € Xy, (1.2)
a boundary condition
u(t,0,y) =pn(,y), (t,y) € Br =(0,T) x (0, L), (1.3)

and boundary conditions for (¢, x) € Q7 1 = (0, T) x R of one of the following four types:
whether a)u(t,x,0)=u(t,x,L)=0,
or b)uy(t,x,0) =uy(,x,L)=0,

(1.4)
or c)u(t,x,0)=uy(t,x,L)=0,

or d) u is an L-periodic function with respect to y.

We use the notation “problem (1.1)—(1.4)” for each of these four cases.

The main results consist of theorems on global solubility and well-posedness in classes of weak and regular solu-
tions in certain weighted (when x — +00) Sobolev spaces. Both power and exponential weights are allowed. We do
not use parabolic regularization of the equation, which is essential for the study in the whole strip in [1,14] and is used,
for example, in [25,33,34]. Our approach is based on the investigation of the corresponding linearized problem (in par-
ticular, with the use of Fourier technique) and consequent application of the contraction principle and global a priori
estimates. The main differences of the obtained results from the already known ones are listed below in Remarks 1.4,
1.6, 1.8.

Besides that, results on large-time decay of small solutions similar to the ones from [25,22], when u =0, f =0,
are established in the cases a) and c). In our opinion, the presented proof is more transparent, than the one from [25,
22].

All global existence results are based on conservation laws, which in the case u =0, f = 0 for smooth solutions
are written as follows:

L
d 2 2
E//u dxdy—i—/ux}xzody:O, (1.5)
> 0

L

d 1
o //(ui +uj - §u3)dxdy +/(u§x +bu3)| _,dy =0. (1.6)
oI 0
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In what follows (unless stated otherwise) j, k, [, m, n mean non-negative integers, p € [1, +o0o], s € R. For any
multi-index o = (a1, a) let 3% = 0y 952,

1/2
Dol =Y "0?) ", IDgl=ID"¢l.
loe|<k
Let L, =L,(Zy), Wy . =Wh(Z,), H] = H'(Z,).

Introduce special function spaces taking into account boundary conditions (1.4). Let ¥ =R x (0, L), S(T) be a
space of infinitely smooth on ¥ functions ¢(x, y) such that (1 + [x])*0%p(x, ¥)| < c(n, ) for any n, multi-index «,
(x,y) e Zand 97"¢| _,=08]"¢| _, =0inthecasea), 8" | _ =087 _, =0inthecaseb), 8" ¢| =
8§m+1¢ly:L =0 1in the caseNC),_B;”go|y:0 = 8;”<p|y:L in th(icase d) for any m. N

Let H*® be the closure of 8(X) in the norm H*(X) and H be the restriction of H® on X .

Itis easy to see, that H) = L, ;; for j > 1 inthe case a) H] = {p € H] 93" ply=0 = 09;"ply=r =0, 2m < j},in
the case b) I:IVi = {p e Hi : 8§m+ltp|y:0 = 8)2,m+1<p|y:1‘ =0, 2m+1 < j}, in the case d) ﬁfr ={pe Hi 10y @ly=0 =
a;,l(p|y=La m < .]}

We also use an anisotropic Sobolev space Hio’k) which is defined as the restriction on ¥ of a space H*F), where

— k
the last space is the closure of S(X) in the norm Y || 8;"90 2,

m=0
We say that p(x) is an admissible weight function if p is an infinitely smooth positive function on R such that
| ,o(j )(x)| < c(j)p(x) for each natural j and all x > 0. Note that such a function satisfies an inequality p(x) < ce*
for certain positive constants cg, ¢ and all x > 0. It was shown in [12] that p*(x) for any s € R is also an admissible
weight function. Any exponent ¢?** as well as (1 4+ x)>* are admissible weight functions.
As an another important example of admissible functions, we define po(x) =1+ % arctan x. Note that both pg and
p, are admissible weight functions.

For an admissible weight function p (x) let ﬁ_]ﬁ’p @ bea space of functions ¢ (x, y) such that gp'/?(x) € H i (similar
definitions for A7 PO Let L5 = AP = {p(x, y) 1 9p'/2(x) € La,1}. Obviously, L = Ly ..
We construct solutions to the considered problems in spaces X ﬁ’p (x)(l'l}') and X%-° (x)(l'['}') for admissible weight
functions p(x), such that p’(x) are also admissible weight functions, consisting of functions u (¢, x, y) such that in the
k,p(x) 7+
case Xy (I17)

du e C,y([0, TY; B3Py A Ly0, 73 B340 (1.7)

(the symbol C,, denotes the space of weakly continuous mappings) for k > 3;j >0 (let X 5,()‘)(1'[;) = x%° (x)(HJTr)),
while in the case X*-°) (ITTL) the weak continuity with respect to 7 in (1.7) is substituted by the strong one. The gain
of regularity is the reflection of the so-called local smoothing effect (see, for example, [6,7]).
Define also
T xo+1 L

A, T) = sup/ / /uzdydxdt. (1.8)
x0>0
0 x O

Let ¥;(y), I =1,2..., be the orthonormal in L3(0, L) system of the eigenfunctions for the operator (—y"") on
the segment [0, L] with corresponding boundary conditions v (0) = ¥ (L) = 0 in the case a), ¥'(0) = ¥'(L) =0 in
the case b), ¥ (0) = ¥'(L) = 0 in the case c), ¥ (0) = (L), ¥’ (0) = ¥'(L) in the case d), A; be the corresponding
eigenvalues. Such systems are well-known and can be written in trigonometric functions.

For description of properties of the boundary data x introduce anisotropic functional spaces. Let B = R’ x (0, L).
Define the functional space S(B) similarly to S(X), where the variable x is substituted by 7. Let H*/3*(B) be the
closure of $(B) in the norm 115/3'3 (B).

More exactly, for any u € S(B),0 eRand! let

G / / ey (), y) didy. (1.9)
B
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~ +00 1/2 ~
Then the norm in H*/3(B) is defined as (Z (101273 +1)s/27(0, 1) HZ(RQJ and the norm in H*/3-5(I x (0, L))
=1

for any interval / C R as the restriction norm.
The use of these norm is justified by the following fact. Let v(z, x, y) be the appropriate solution to the initial value
problem

Vr + Uxxx + Uxyy = 0, v’t=0 =10.

Then according to [10] uniformly with respect to x € R

1/3

2 2 2
”D UH H (R?) + H 8)6”” H> (R?) + ” ayv” HI @2~ ””0”?13'(11{2) (1.10)

(here D¥ denotes the Riesz potential of the order —«).
Introduce the notion of weak solutions to the considered problems.

Definition 1.1. Let up € Lo 4+, u € Lo(Br), f € L1(0,T; L2’+)~. A function u € Loo(0, T; Lo 4+) is called a weak
solution to problem (1.1)—(1.4) if for any function ¢ € L>(0, T'; H}r), such that ¢;, @xxx, Pxyy € LZ(HJT’), ¢|t:T =0,
|,y =bx|,_o =0 the following equality holds:

/// M((,b[ +b¢x + ¢xxx +¢x;v) + M ¢x + f(f):l dxdydt

//uoﬁb}t OdXdy+//M¢xx = Odydt 0. (1.11D)

Remark 1.2. Note that the integrals in (1.11) are well defined (in particular, since ¢, € L,(0,T; H_%_) C
L>(0,T; Loo,4))-

Now we can formulate the main results of the paper concerning existence and uniqueness.

Theorem 1.3. Let ug € L§(+), feli(0,T; Lp(x)) for certain T > 0 and an admissible weight function p(x), such

that p’(x) is also an admissible weight function. Let . € T) for certain s > . Then there exists a weak so-
hat p'(x) is al dmissibl h L H$/33(Br) 3/2. Then th k
lution to problem (1.1)—(1.4)u € Xﬁm(HJTr), moreover, AT (|Du|; T) < +oo. If, in addition, pl/z(x) <cp'(x)Vx >0,
then this solution is unique in X 5)()6)(1'[‘}').

Remark 1.4. The exponential weight p(x) = e?**, o > 0, satisfies both existence and uniqueness assumptions. The
power weight p(x) = (1 + x)**, « > 0, satisfies existence assumptions and for « > 1 — uniqueness assumptions. If
uo € Lo+, f € L1(0,T; Ly 4+) there exists a weak solution u € Cy, ([0, T]; L2.+), AT (|Du|; T) < +o0o. Note that
weak solutions of the type, constructed in Theorem 1.3, are not considered in [25,22].

Theorem 1.5. Let ug € H1 e , feLx0,T; H1 p(x)) for certain T > 0 and an admissible weight function p(x),
such that p'(x) is also an admzsszble welghtfunctlon Let 1 € H2/3: 2(By), w(0,y) =up(0, y). Then there exists a
solution to problem (1.1)—(1.4) u € X1 p(x)(l'l‘;), moreover, AT (|D?ul; T) < +o0. If. in addition, p’(x) > 1 Vx >0,
then this solution is unique in X1 pm(l’ﬁ)
Remark 1.6. According to (1.10) the assumptions on the boundary data p are natural. The exponential weight
p(x) = e2** a > 0, satisfies both existence and uniqueness assumptions. The power welght px)y=0+ x)2°‘ o >0,
satisfies existence assumptions and for o > 1/2 — uniqueness assumptions. If ug € H! L. feLi(0,T; H ) there ex-
ists a weak solution u € Cy ([0, T]; H+), A+(|D2u|, T) < 4+00. Solutions, similar to the ones from Theorem 1.5,
are constructed in [22] in the case of homogeneous Dirichlet boundary conditions and only for exponential weights
(which are convenient, but, of course, restrictive). Moreover, for uniqueness results it is also assumed there, that weak
solutions are limits of regular ones.
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Theorem 1.7. Letug € H", f € L1(0, T3 HYV* ™)Ly 0, T: ™), f, € L1(0, T; L) for certain T > 0
and an admissible weight function p(x), such that p'(x) is also an admissible weight function and p'(x) > 1 Vx > 0.

Let n € ﬁ4/3*4(BT), w(0,y) =ug(0, y). Then there exists a unique solution to problem (1.1)—(1.4) u € X3’p(")(l'[?).

Remark 1.8. According to (1.10) the assumptions on the boundary data p are natural. Both the exponential weight
px) = X o > 0 and the power weight p(x) = (1 + x)2°‘, o > 1/2, satisfy the hypothesis of the theorem. In [25]
for construction of regular solutions only exponential weights are used and only homogeneous Dirichlet boundary
conditions are considered. Moreover, what seems the most important, for the constructed regular solutions existence of
Uyyy, lying in weighted L>-spaces uniformly with respect to 7, is not obtained there in comparison with Theorem 1.7.

As an application of the obtained results we establish large-time decay of solutions. Here we use only exponential
weights.

Theorem 1.9. Let Lo = 400 if b <0, and if b > 0 there exists Lo > 0, such that in both cases for any L € (0, Lg) there
exist g > 0, €9 > 0 and B > 0, such that if ug € L;zo_: for a € (0,0, uollL,, <e€o, f=0, u=0, in the cases a)

and c) in (1.4) the corresponding unique weak solution u(t, x,y) to problem (1.1)—(1.4) from the space Xewzw (IT}')
VT > 0 satisfies an inequality

le™u(t, -, )7, <e e uolz,, Vi =0, (1.12)
~ 20x
If, in addition, ug € HJlr’e , up(0, ) =0, then for certain constant c, depending on b, o, 8, ||M0||ﬁ]'62ax,
+

e u(t, -, )%, <ce @ vi>0. (1.13)

!

Further, let n(x) denotes a cut-off function, namely, 7 is an infinitely smooth non-decreasing function on R such
that n(x) =0 when x <0, n(x) =1whenx>1,n(x)+n(1 —x)=1.

Let S(B.) be the restriction of S(B) on B = Kl x [0, L].

We drop limits of integration in integrals over the whole half-strip X .

The following interpolating inequality generalizing the one from [20] for weighted Sobolev spaces is crucial for
the study.

Lemma 1.10. Let p1(x), p2(x) be two admissible weight functions, such that p1(x) < cop2(x) Yx > 0 for some
constant co > 0. Then for any q € [2, +00) there exists a constant ¢ > 0 such that for every function ¢(x,y), satisfying
|D(p|pll/2(x) elsy, <p,021/2(x) € Ly 4, the following inequality holds:

1-2s
Ly

2s
Ly +

1/2—s 1/2

leeipy* " @), =cliDgley* )] =

ooy ()] )2

+elen ™|, - (1.14)

1 1
where s = 37 If<p|y_0 =0or <p’y_L =0, then the constant c in (1.14) is uniform with respect to L.
4 = =

Proof. For the whole strip ¥ =R x (0, L) this inequality was proved in [14]. For X the proof is the same. O

Lemma 1.11. For an admissible weight function p(x) introduce a functional space H_f__l’o) P {0 =90+ @11 :
Yo, ¢1 € Lgy(f_)} endowed with the natural norm. Then for j =1and j =2
||8){¢||L’2),(f < C(p)(”(pxxx”HJ(:LO),/J(X) + ||§0||Hi'—1,p<x))- (1.15)

Proof. For functions, defined on the real line, the corresponding analogue of such an inequality follows from the
Fourier transform approach and an inequality

1P
J
1§17 < Tz

+ A+ 1gp
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Then the extension for the functions, defined on the half-line, and for weighted spaces is performed via simple but
tedious calculations. The presence of the additional variable is unessential. O

We also use the following obvious interpolating inequality:

L

12 172
/<p21xzody5c(//¢§p’dxdy) (// <p2pdxdy) —I—c// 02 pdxdy (1.16)

0

(the constant ¢ depends on the properties of an admissible weight function p).
For the decay results, we need Steklov’s inequalities in the following form:

L L2 L

o
[woay =25 [wo) e, (1.17)
0 0

where 0 = 1if y € H} (0, L), 0 =4if y € H'(0, L), 1//|y:0 =0.

The paper is organized as follows. Auxiliary linear problems are considered in Section 2. Section 3 is devoted to the
existence results for the original problems. Results on uniqueness and continuous dependence are proved in Section 4.
Decay of solutions is studied in Section 5.

2. Auxiliary linear problems

Consider an initial-boundary value in IT}r for a linear equation
ut+bux+uxxx+uxyy=f(t7x»}’) (2.1

with initial and boundary conditions (1.2)—(1.4). Weak solutions to this problem are understood similarly to Defini-
tion 1.1, moreover, due to the absence of nonlinearity one can take solutions from more wide space LQ(H}').

Lemma 2.1. A generalized solution to problem (2.1), (1.2)—(1.4) is unique in the space Lz(H'}').

Proof. The proof of uniqueness is based on existence of smooth solutions to the corresponding adjoint problem.
Consider a problem in lT; for an equation

Uy — bty — Uxy — yyy = f(t,x,y) € CO°(IF) (2.2)
with zero initial data (1.2), boundary data (1.4) and boundary data on Br

ul, g =ux|,o=0. 2.3)
Let {p;(x):j=1,2,...} be aset of linearly independent functions complete in the space {¢ € H3(R+) 1(0) =0}.
We use the Galerkin method and seek an approximate solution in the form ux (¢, x, y) = i ckji(®)ej(xX) Y (y) via
conditions fori,m =1, ...k, t € [0, T] e

f / (k001 (X)) + i (B m + 9" + G} 1)) dxdy — f f o1 dxdy =0, (2.4)
¢kj1(0) = 0. Multiplying (2.4) by 2c¢y;, (t) and summing with respect to i, m, we find that

Nkl Lo ©.7:L2 ) S WS llLy0.73054)- (2.5)

Next, putting in (2.4) r = 0, multiplying by c};,, (0) and summing with respect to i, m, we derive that uy, | o =0.Then
differentiating (2.4) with respect to 7, multiplying by 2c;, . (t) and summing with respect to i, m, we find similarly to
(2.5) that

Nkt | Lo 0.7: L5, ) < WSl L10.7: L0 4)- (2.6)
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Finally, since 1,0,512") (y) = (—=Am)" ¥ () it follows from (2.4) that similarly to (2.5) for any n

9% kel Lo 0,73 25, 4) = N9 fllLy 0,714 2.7
Estimates (2.5), (2.6), (2.7) provide existence of a weak solution u(t, x, y) to the Sonsidered problem such that
u, Uy, 8;’14 € Loo(0, T; Ly +) Vn in the following sense: for any function ¢ € L2(0, T'; Hf_), such that @;, @xxx, Pxyy €
L2(I'I4T'), ¢|[:T =0, ¢|x:0 = 0, the following equality holds:

JJ[ 1166 = b6, = 6152 = 91000 + s6] axayar =o. 28)
n+

Note, that the traces of the function u satisfy conditions (1.2) for ug = 0 and (1.4). Moreover, it follows from (2.8)
that B;fuxxx € Lo(0, T, Hi_l’o)’l) Vn, therefore, inequality (1.15) for j = 1 yields that a;ux € Lo(0,T; Ly 4) Vn
and one more application of (2.8) yields that 8;’uxxx € Ls(0,T; Ly 1) Vn, the function u satisfies equation (2.2) a.e.
in IT; and its traces satisfy (2.3).

The end of the proof of the lemma is standard. O

With the use of Galerkin method we prove one result on solubility of the considered problem in an infinitely smooth
case.

Lemma 2.2. Let ug =0, u € Cgo(B+), f =0. Then there exists a solution u(t,x,y) to problem (2.1), (1.2)—(1.4),
such that 3] 3%u € Cp (@;; L, ) for any j and multi-index o (here and further index ‘b’ means a bounded map).

Proof. Let v(f,x,y) =u(t,x,y) — u(t, y)n(l — x), then the original problem is equivalent to the problem for the
function v of (2.1), (1.2)—(1.4) type with homogeneous initial-boundary conditions and f = —u,n(1 —x) —bun'(1 —
x) = un"' (1 —x) — pyyn'(1 — x).
k
Seek an approximate solution in the form v (¢, x, y) = Y ¢ i1(1)@; ()Y (y) (the functions ¢; are the same as in
j.l=1

the proof of Lemma 2.1) via conditions fori,m =1,...,k,t € [0, T]
J[ s+ bt vt + v w1 dndy = [[ Fortndndy =0, e =0. 2.9)
Multiplying (2.9) by 2c¢kinm () and summing with respect to i, m, we find that
L
4 cdxdy + [ vi,| _,dy=2 [ fuocdxd (2.10)
T vi dxdy Viex |y 4y = vpdxdy. .
0

Note that ||vg(?, -, )L, doesn’t increase if ¢+ > T for certain T. Then the consequent argument from the proof
of Lemma 2.1 can be applied here ((2.8) must be substituted by the corresponding analogue of (1.11)). Thus, first

. . —t . . . . . .
existence of a solution v such that 8{ 3;11) e Cp(R Loy for all j and n is obtained; then with the use of induction

with respect to m one can find that B,j 8;’ 8;’"1) eCyp (ﬁ;; Lry). O

Before the continuation of the study of the problems in the half-strip consider the corresponding problems in the
whole strip.

For ug € $§(X) define similarly to (1.9) for £ € R and [

wo(€,1) = f f e Y (Vuo(x, y) dxdy, (2.11)
>
+00 1 I S
S(tx, yiuo) =) 5 / i TDEERD) 15X 0 (&, 1) dE Y (). (2.12)

=1"" g
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It is easy to see that for all s € R the function S(z, x, y; ug) € Cp(R’; ﬁ‘v) and for any € R
1S(, -, s uo)ll gs = luoll gs- (2.13)

This property gives an opportunity to extend the notion of the function S(¢, x, y; up) to any function u( € HS for any
s € R via closure in the space Cp(R’; HS ), then, of course, equality (2.13) holds.

Let ¢;(£) = €3 — b& + A€, This function increases monotonically if A; > b on the whole real line and for & <
—/(b—=x)/3 and £ > /(b —X)/3 if ,; < b. Let i;(9) = (pl_l(é), which is defined for all 8 if A; > b and for
6] = 2((b — 11)/3)*/? if 4 < b (then |i;(0)| = 2/(B — 21)/3).

Lemma 2.3. If ug € H® for certain s € R, then S(t, x, y; ug) € Cp(R*; HS+D/35+H (T T) x (0, L)) and for any
xeR

IS, x, -5 up) ”ﬁ(ﬁl)/l”l((—T,T)X(O,L)) < c(T)llug ||ﬁs . (2.14)

Proof. Without loss of generality assume that ug € g(f). There exists Ip such that for / > [y and all £ and there exists
&y > 1 such that for |&| > &y and all [
Q) =3 —b+ = c(E +1). (2.15)

Divide u( into two parts:

lo
upo(x, y) = Zﬁt;l [@o(&, Dn(Eo+ 1= 1ED] )Y (y),  uor(x, y) = uo(x,y) — uoo(x, y). (2.16)
I=1

After the change of variables in the corresponding analog of the integral in (2.12) 6 = ¢;(£) (without loss of generality
one can assume also that ¢, 1(6?) = k;(0)) we derive that for the obviously defined function x(&,/) (in particular,

x(&, 1) =0forl <lo, ] < &0o)

+00
S, %, yiwon) = Y 57 [ OT i), Dif @) x 610, D | 0 () 2.17)
=1

and uniformly with respect to x

”S(v X, MOI) ||H(.r+|)/3,s+l(3)
= 2/3 | 12\(s+1)/2~ / —1/2 2 172 2
= (Z||<|w<5)| +1HCTV g€, D (9] 5)) x(s,l)||L2(Rg)) < clluoll;,- (2.18)

=1
Finally note that

lo
S(, x, y;ugo) = Y F; [ O, hnEo + 1 — 1ED] () (y)

=1

and one can easily show that for any j and n uniformly with respect to r € R
18703 S(t, -, -3 uo0) ||, < c(s, j,m)lluollgs- O

Next, we introduce the notation

t

K, x,y; f)E/S(t—r,x,y; f(z,-,))dr. (2.19)

0
Obviously, if £ € L{(0, T; H®) for certain s € R, then K (¢, x, y; f) € C([0, T]; H*) and

K, f)”c([(),r];ﬁ.v) = ||f||L]((),T;17x)- (2.20)
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Lemma 24.If s € [—1,2], f € L2(0, T; H*), then the function K (t,x,y; f) € Cp(R*; HOTD/35H(B1Y) and for
anyx R, 10 € (0, T]

1/3—5/6

1K Cx, 5 Pllgosvnsag,y < €1 Ly 0.8 2.21)

Proof. For s = —1 it follows from (2.14) that
1/2

1K x5 Pl < SO 0 < o1 001
Next,

03K (1, x,y; f)=K(t,x,y; 0} f),

0K (t,x,y; f)=f(t,x,y) + K(t,x, y; (bdy + 0} + 0,97 f),
and again applying (2.14) for s = —1 we derive that

1K Coxsss Pl < €D Lo,

For intermediate values of s the result follows by interpolation. 0O

Ifug e Lr(X), f € L1(0,T; L2(X)), then a function
u(t,x,y) =S, x, y;uo) + K, x,y; f) (2.22)

is a week solution to an initial-boundary value problem in a strip X to problem (2.1), (1.2) (for (x, y) € X), (1.4) (for
(t,x) € (0, T) x R) (see, for example, [1]).
In what follows, we need some properties of solutions to an algebraic equation

=N —bz+p=0, p=e+ifeC. (2.23)

For ¢ > 0 we denote by zo(p, ) the unique root of this equation, such that fizy < 0.

Lemma 2.5. There exists

lim z0(e +i6,1) =r0(0,1) = p(©, 1) +iq(®. 1), (2.24)
e—+

where ro(-,1) € C(R), ro(—0,1) =ro(0,1), p0,0),q0,]) € R and

ro@0, D] < (1" + 1> +1b1'/?), ¢ =const> 0. (2.25)
If A\; > b, then

pO,1) < —co(10]'P+ = b)'/?). o =const>0. (2.26)
If \j < b, then for |6] > 2((b — A;)/3)3/?

p0,1) < —co(lci ()| —2/(b—1)/3),  co=const>0, (2.27)
while for 0] < 2((b — A;)/3)3/?

p@,) =0, |q@,D|<v®b—-21)/3, q(9,l)=<pfl(9). (2.28)

Proof. This lemma evidently follows from the Cardano formula. In particular, if A; < b then for |6] > 2((b —
M) /3)3?

3] 36 02 (b-—xr)3 3|0 02  (b—n)3
p(9,1)=—£ O, 102 -7 30 67 G-r) |
2 [\27V3 27 2\ 3 27

therefore, it is easily verified that
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p'(0,1)signd < — |6]=%/3.

1
24/3\/§
Since obviously ¢/ (&) > ¢/ (€) for |&| > 25/(5 — A7)/3 and s0 6~2/3 > i/ (6) inequality (2.27) follows. O

Now we introduce a special solution of equation (2.1) for f = 0 of “boundary potential” type.

Definition 2.6. Let 1 € S(B). Define for x > 0

+00
Jxyiw = YT [ ODRO.D] 0v ), (2.29)
=1

where (0, 1) is given by formula (1.9).

Remark 2.7. Since J (6, x,[; 1) = e @DX[(6, 1) and %Rro(6, 1) <0, then J (¢, x, 15 1) € Cp(R'; H¥/> (B)) for any
se€Rand

”J(’ s M)”Cb(ﬁi;ﬁs/lx(B)) =< ”M”ﬁs/&x- (230)

Therefore, the notion of the function J (¢, x, y; ) can be extended in the space Cp (@i; H/ 3-5(B)) for any function
w € H*3(B)) for certain s € R with conservation of inequality (2.30). It is obvious, that J (¢, 0, y; ) = u(z, y).

Note, that in the most important for us case s > 0 the function J can be equivalently defined simply by formula
(2.29).

Lemma 28.If u € H*/35(B) for certain s > 0, then for any n < s there exists 3}J(t,x,y; 1) €
Cb(ﬁi; HS=M/35=1(BYY and uniformly with respect to x > 0

1807 6. -3 1 Femmson iy < €@l s - (231)

Proof. The proof is similar to the proof of inequality (2.30) with the use of (2.25). O

Lemma 29.If u € ﬁ(Hl)B'HI(B) for certain s > 0, then for any j < s/3 there exists 8th(t,x,y;pL) €
Cp(R7; ﬁf;w ) and uniformly with respect to t € R

197 I, -, - Wl gs=2s = el gorvasei(p)- (2.32)
Proof. Without loss of generality one can assume that u € g(E). Let s be integer. Then for3j +n+4+m =s

+oo

. 1 . .

o LTIt x. yi )=y Z/(i@)’r{}(@,l)e”ee’(’(e’l)xﬁ(e,l)dé)wl(m)(y). (2.33)
=1 R

Divide the expression in the right side of (2.33) into two parts. Let /y be such that A; < b for / <[y and let I be the
part of the right side of (2.33) with the sum from [ =1 to / = [y and the integral over |6]| < 2((b — A)/3)3/2 (it is
absent if A; > b VI) and let I, be the rest part.

First consider I1. According to (2.28) ro(6,1) =iq(0,1) and changing variables & = g (0, [) we derive that

lo
1 ; Ex NN
n=) 5 / 1O (1 (£)) (16) @1 (8), D] €) dEW™ ().
= g <y
Thus, similarly to (2.13) uniformly with respect to € R
M1,z <clltllLyB)-

For I we use the following fundamental inequality from [4]: if certain continuous function y («) satisfies an inequality
Ny (k) < —e¢lk| for some ¢ > 0 and all k¥ € R, then
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H/e‘y('()xf(lc) dx <c@OINflL,®-
R

RY)

Changing variables 6 = ¢; (k) we derive with the use of (2.25)—(2.27) that uniformly with respect to ¢ € R for y (k) =

—co(lk| =2/ =) /3), x(0,1) = 1for |0 > 2((b— 1;)/3)*/?) (then || > 2/(b — x;)/3) and x (6, 1) = O for other
values of 0 if I <y, y (k) = —colk|, x(@,1) =1if [ > Iy

121,

1 +00 - . )
_ E(ZH/QM{)’(Q’ l)elteero(b‘,l)xﬁ(a %@, 1) d@‘
=1

(m) ‘

172
L, (0, L))

ZH/OC _I_l2)(3j+n)/261/(x)x|M(¢1(K) D) x (¢ (x), l)ng(K)dKH ]RX) )1/2

Ly(RY)

i A 2 1/2
<eci (le (0P + D20, D7 o) = et e g
=1

Finally, use interpolation for non-integer values of s. O
Lemma 2.10. Let p € H3/3s (B) for certain s > —1/2. Then forany T >0and j <s/3+1/6

1070 Coms st )y o ey < €T )il s - (2.34)
Proof. Without loss of generality one can assume that u € g(E). By virtue of (2.26), (2.27) there exists [y such that
for [ > Iy and all 6 and there exists 8y > 1 such that for |6]| > 6y and all [

p(@.1) < —co(l0]'* +1) (2.35)
Similarly to (2.16) divide u into two parts:

lo
po(,y) =) I, [@O, Do+ 1= 16D ]V (y),  mi(t, y) = p(t, y) — po(t, y). (2.36)
=1

Let s + 1/2 be an integer, then if 3j +n 4+ m = s + 1/2 we derive from equality (2.33) and inequalities (2.25),
(2.35) that for the obviously defined function x (6, /) (in particular, x (8,1) =0 for [ <y, |6| < 6p)

||a,fa;la§"1(~, SO ly®xsy)

. 1/2
_ jon —2p@,0)x H (m)
(ZH@ r0(9,l)<fe dx) ae.nx@.0| v LZ(O’L))
I=1 R,
1/2
<c(ZH(|e|f<|9|2/3+l )=D12 30, l>|d9H 12’") < crliel o my- 2.37)

For 1 inequality (2.32) yields that for any s¢ > 0
Jj 1/21qJ .
”3 J( EREIE I'LO)”LZ(O T: ﬁSO) <T / ”a J( 5Ty Ty MO)”C},(R‘;ﬁiO)
< T2\ ol oo/t iso 1435 (B =¢1 Tl/zll,ullgs/z,s(g). (2.38)
To finish the proof we again use interpolation. O
Corollary 2.11. Let u € ﬁ”“(B)for certain s > 1/2. Then forany T > 0 and j, k, such that3j +k <s — 1/2,

107 TG 075wty = €Tl s sy- (2.39)
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Proof. Estimate (2.39) obviously follows from (2.34) and the well-known embedding H _]ﬁ]” - W(fo’ L O

Lemma 2.12. Let j1 € ﬁ”“(B)for certain s € R. Then the function J (t, x, y; ) is infinitely differentiable for x > 0,
(t,y) € B and satisfies equation (2.1), where f =0. Moreover, forany T > 0, xg > 0 and j,n

sup (107 J (. x, 3 il 713 gy < (T x0, 1 o)l osss gy (2.40)

X=X

Proof. Without loss of generality one can assume that € g(E). By virtue of (2.29)

+00
0 x v = YT 0. DO, D | 0.
=1

Again divide p into two parts as in (2.36). Then by virtue of (2.25) and (2.35)

. 2
||8::J(, Xy M1)||ﬁj,3j(3)

+00
i — 1340~
<c ) 0P +12)H3D2em o0 WITHDZ @, DT ) g0 < 00 Il s -
=1

For 1 apply estimate (2.32) similarly to (2.38).
Equality (2.1) foru = J, f =0 follows from (2.23), (2.24). O

Lemma 2.13. Let t € Lo(B) and u(t,y) =0 for t <O, then the function J(t,x,y; u) for any T > 0 is a weak
solution (from Lz(H';)) to problem (2.1) (for f =0), (1.2) (for ug =0), (1.3), (1.4).

Proof. First let u € C;°(B4). Consider the smooth solution u(z, x, y) to the considered problem constructed in
Lemma 2.2. For any p = ¢ 4 i6, where ¢ > 0, define the Laplace—Fourier transform-coefficients

L
ﬁ(p,x,l)E//e_ml//z(y)u(f,x,y)dydf
Ry O

(similar definition for 1i(p, 1)). The function u(p, x, ) solves a problem

pu(p,x, ) +bitx(p, x,1) + xxx(p, x,1) — Miix(p,x,1) = 0,u(p,0,1) = u(p, 1),
whence, since i (p, x,1) — 0 as x — +00, it follows, that

@(p.x, 1) =[(p, e,

where zo(p, ) is defined in (2.23). Using the formula of inversion of the Laplace transform we find, that

+00
u(t,x, ) = Y T il +i0. e ().
=1

Passing to the limit as ¢ — +0, we derive that u (¢, x,y) = J (¢, x, y; ).

In the general case approximate the function © by smooth ones, pass to the limit on the basis of estimate (2.34) for
s = 0 (note, that this estimate is superfluous, the corresponding more weak estimate in L2(H‘TF) is sufficient) and use
the uniqueness result. O

Corollary 2.14. Let up € Lo 4, i € ﬁ1/3'1(BT), feLx0,T; Ly ) for certain_T > 0. Then there exists a unique
solution to problem (2.1), (1.2)—(1.4), such thatu € C([0, T]; L2 +), u, ux € Co(Ry; L2(B7)), given by a formula
u(t,x,y) =S, x,y;uo) + K, x,y; f)+J,x,y; 0 — S, -, -;up) — K@, -, -; ), (2.41)

where for the construction of the functions S and K the functions ug and f are extended somehow in the same classes
for x < 0 and for the construction of the function J the function u — S(0, -, -; ug) — K (0, -, -; f) is extended by zero
for t <0 and somehow in the same class as i fort > T.
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Proof. This assertion directly succeeds from (2.13), (2.14), (2.20), (2.21), (2.22), (2.31), (2.32) and Lemma 2.13. O

‘We introduce certain additional function space. Let ge +p(Z4) denotes a space of infinitely smooth functions ¢ (x, y)
in X, such that "*|3%p(x, y)| < c(n, @) for any n, multi-index o, (x, y) € X4 and 8}2,’”<p|y20 = 8y2m¢|y:L =0in

the case a), 8§m+l<p|yzo = 8y2’”+]go|y=L =0 in the case b), 8y2’”<p|y=0 = 8y2m+]¢)|y=L =0 in the case c), 8;"g0|
a’y"<p|y=L = 0 in the case d) for any m.
Let E)o(x, y) =uo(x, y) and for j > 1

y=0~"

G, y) =0/ 0.2, y) — B+ 83 + 8,011 (x, y).

Lemma 2.15. Let ug € S(E) ﬂSexp(2+) fe C°°( [0,2TT; S(E) ﬂSexp(ZJr)) W e 8(B+) and 3] ,u(O y) = 5j(0, y)
for any j. Then there exists a unique solution to problem (2.1), (1.2)-(1.4) u € C*® ([O T, SLXP(EJF))

Proof. Let w(z,x,y) = S(t, x,y; uo)j— K(t,ic, v; f) be the solution to initial-boundary value problem (2.1), (1.2),
(1.4) from the space u € Coo([O, 2T1; 8(X) N Sexp (§+)) (see, for example, [1]).

Let ii(t, y) = (,u(t, y) —w(t,0, y))n(2 —t/T). Extend this function to the whole strip B by zero for t < 0. Such
an extension can be performed by virtue of the compatibility conditions on the line 7 =0, x = 0. Then [ € g(E).

Then formula (2.41) provides the solution to the considered problem such that 8,’ ueC(0,T], H f) for all j and k
(see Lemma 2.9).

Finally, let v(z, x, y) = u(¢, x, y)n(x — 1). The function v solves an initial value problem in a strip X of (2.1),
(1.2) type, where f, uq are substituted by corresponding functions F, vg from the same classes and [1] provides that
Ve C®([0,T]; 8p(T4)). O

Remark 2.16. In further lemmas of this section we first consider smooth solutions constructed in Lemma 2.15 and
then pass to the limit on the basis of obtained estimates.

Lemma 2.17. Let 1 =0, p(x) be an admissible weight function, such that p'(x) is also an admissible weight func-

tion, uo € L5Y, f = fo+ fux+ fo where fo € Li0, T: L5, fi € a0, T3 L 7' 9), fop¥/4 o) /(o' ()4 €

L4/3(1'I+) Then there exist a (unique) weak solution to problem (2.1), (1.2)—(1 4) from the space X”(")(l—ﬁ) and a
function v € Ly(Br), such that for any function ¢ € L2(0, T, ) 1y Pxxxs Pxyy € Lz(l'IT) ¢’t T =0, ¢|x 0= =0,
the following equality holds:

//:/ u(¢l +b¢x + Prxx +¢xn) + (fO + f2)¢ f1¢x] dxdydt

/ / uod|,_odxdy — / / oy | _odydt = (2.42)

Moreover, fort € (0, T]
Nl xooo ity + IVIL28) < C(T)<||M0||L/2>(x) + ”fOHLl(o,z;Lf’(”)

+1Al 2w, + 1220 (x))”“nmm) (2.43)

Ly(0.1;L5

t
ff u2(t,x,y)p(x)dxdy+// Gu? +ul — bu*)p'(x) dxdydt + p(0) ff v dydt
0

t
=f/ ugp(x)dxdy+/// u? ”’(x)dxdydr+2// (fo+ fup(x)dxdydt
0
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t
2 / f filup(x). dxdydr. (2.44)
0

If f1 = f2, =0, then in equality (2.44) one can put p = 1.

Proof. Multiplying (2.1) by 2u(¢, x, y)p(x) and integrating over ¥ we find that

L
d
E//u2pdxdy+p(0)/u§|x:0dy+//(3ux—i—u_%—bu2)p/dxdy
0

= // u’p" dxdy +2/[(f0 + Hupdxdy — 2/ fi1(up)x dxdy. (2.45)

Note that

| / f faupdidy| < 1u(p'0) Py 1 20> ) Ly
2 o P12 P 1 ¥ 0D
<o [[1Dupst axdy -+ e ooy, ([[aodxar)”
el a0 P ([ [ w?pdrar) (2.46)

| / Fiwp)e dxdy| < ell fip (o)™ Ly el 4+ e (o) 2 s

< c[I1Dule) ')

<e / / (3 +u?)p dxdy + @I i1 2000y (2.47)
2,+

where ¢ > 0 can be chosen arbitrarily small. Equality (2.45) and inequalities (2.46), (2.47) imply that that for smooth
solutions

el oo iy + it | ol o7y < €
The end of the proof is standard. O
Remark 2.18. The method of construction of weak solution in Lemma 2.17 via closure ensures that u|,—o = 0 in
the trace sense (this fact can be also easily derived from equality (2.42), since u, € L2((0, T) x (0, xg) x (0, L)) for
certain xo > 0). Moreover, if it is known, in addition, that u, € Cy, ([0, xo]; L2(Br)) for certain xo > 0, then equality

(2.42) yields that u, |y=o = v (for example, one can put ¢ = xn(1 — x/h)w(t, y) for h > 0 and any w € C3°(Br) and
then tend 4 to zero).

Lemma 2.19. Let i =0, p(x) be an admissible weight function, such that p'(x) is also an admissible weight function,
~ ~ 2 /
wo € HyP™, uo| _y =0, f = fo+ fi. where fo € Ly, T; Hy?™), fi € La(0, T; LY /7). Then there exist

a (unique) weak solution to problem (2.1), (1.2)—(1.4) from the space Xl’p(x)(l'['}') and a function vy € Ly(Bt) such
that for any t € (0, T']

||“||X1.p(X)(1'[[+) +lvillL,)

< o) (luol o 1 oll g oy H AL Mpzm/pf(x))), (2.48)
” o 4+

t
//(Lé +u})pdxdy + / / GBu, +4ub, +ul, —buy —bus)p' dxdyde
0
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+f W3+ 2viuyp’ + bulp — u,ch”)|x:0dydf = //(M(z)x + M%)y)PdXdy
By

t t
+// (u§+u§)p”/dxdydr+2// (foxttx + foyuy)p dxdydrt
0 0

t
+2 / / (fouep)|_gdydz —2 f / Fillusp)s +tyy pldxdyds. (2.49)
B, 0

Proof. In the smooth case multiplying (2.1) by —2((ux (t, x, y)p(x))x +uyy (2, x, y),o(x)) and integrating over X,
one obtains an equality:

d
o //(uz + ui)pdxdy + //(3u§x +4u)2cy + uf,y — bu? — bui)p/dxdy

L
-~ // 3 +u3)p" dxdy + f(uixp + 2uxuxp —uzp” +buip)| _ody
0

L
=2 / f (fortty + foyity)pdxdy +2 f fouep)|_gdy —2 f Fillusp)s + uyypldxdy. (2.50)
0

Since the trace of u, on the plane x = 0 is already estimated in (2.43) (here v = u,|y=0, see Remark 2.18) equality
(2.50) provides that

”u”Xl.p(x)(n‘}') + [luxx |x:0||L2(BT) <c. 0O

Lemma 2.20. Let the hypothesis of Lemma 2.19 be satisfied in the case p(x) = ¢*** for certain a > 0. Consider the
weak solution u € Xl’p(")(l'[‘}') to problem (2.1), (1.2)—(1.4). Then for any t € (0, T] the following equality holds:

t
1 3 b 3 7
—3 u (t,x,y)p(x)dxdy+§ u’ p dxdydr
0

t t
+2// (Uxx +uyy)uuxpdxdydt+// (Uyyx —i—uyy)uz,o’dxdydr
0 0

!
1
:—gf/ugpdxdy—// fu’pdxdydr. (2.51)
0

Proof. In the smooth case multiplying (2.1) by —u>(z, x, y)p(x) and integrating one instantly obtains equality (2.51).
In the general case this equality is established via closure. Note that by virtue of (1.14) (for ¢ =4, p1 = p2 = p) if
u € X"PO)(TTY) then

ueC(0.T1: LYY), |Dule Ly(0.T; L5Y)

and this passage to the limit is easily justified. O

Lemma 2.21. Let i =0, p(x) be an admissible weight function, such that p'(x) is also an admissible weight function,

o € Hy"™, uo| _y =0 and uorry. toryy € L5, f € C([0, T1; LE'Y), moreover, f = fo+ fix, where fo, fo €

L P L7 P2/ (x) . .
Ly(0,T; L5, fi, fir € L2(0,T5 L5 ). Then for the (unique) weak solution to problem (2.1), (1.2)—(1.4)
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from the space Xp(x)(I"IJTr) there exists u; € X"(x)(HJTr), which is the weak solution to problem of (2.1), (1.2)—(1.4)
type, where f is substituted by f;, ug — by (f|t:0 — bugy — Uoxxx — quyy): u=0.

Proof. The proof for the function v = u, is similar to Lemma 2.17. O

Lemma 2.22. Let the hypotheses of Lemma 2.19 and Lemma 2.2 1 be satisfied and, in addition, feL(0,T; ﬁio’z)’p ) ).
Then there exists a (unique) solution to problem (2.1), (1.2)—(1.4) from the space Xz*p(x)(l'I“TL) and forany t € [0, T']

2

2 2 2
u <c(T ( Uugy u
e e N T4 ey

T t
2 2 2
+ ”u”C([O,t];ﬁL”(”) + r:l(lol,)z] // Syyltyyp dxdyds‘ + // (uy, + uyy)pdxdydt
0 0
t
+ / / (F2+u?+ b2 + buiy)p/dxdydr). (2.52)
0

Proof. For smooth solutions differentiating equality (2.1) twice with respect to y, multiplying the obtained equality
by 2uyy(t, x, y)p(x) and integrating over X we derive similarly to (2.45) that

L
d
E// uiy,odxdy+,0(0)/u)2€yy|x=0dy+/f(3u§yy —I—uiyy —buiy)p/dxdy
0

= f / uy,p" dxdy +2 / Fyyttyypdxdy, (2.53)
whence obviously follows that
lluyy ”xp(X)(nJTr) =c. (2.54)

Hence, for the weak solution also uy, € X?*)(IT}). Lemmas 2.19 and 2.21 provide that u € X'"*(IT}), u; €
XP)(IT3). Write equality (2.1) in the form

Uxxx = f —us — buy — Uxyy- (2.55)
Then, inequality (1.15) for j =2 and (2.55) yield that

llotxx ||L§(X) = C(p)(”uxxx Il g -1.00.000 + ”u”ﬁip(n)
+
=c(p, b)(llfllL/z)’(f + ”ut”Lg,(i) + ”uyy”Lg,(i‘) + IIMllﬁlpm)- (2.56)

Since

//ui},pdxdy://uxxuyypdxdy+//uy),uxp’dxdy,

estimates (2.54) and (2.56) yield that u € C([0, T]; ;") and
fluz, -, ')”ﬁi‘ﬂm < C(||f||L§1(i> + ”u’”Lé’ff + ||”yy||L§‘(i) + ||M||ngr.p(x>). (2.57)

Next,

//uixy,o’dxdyz//u”xuxyyp’dxdy+/f Uyyyttxxp” dxdy

L
+/-(uxyyuxx;0/)|x=0dy
0
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and inequality (1.16) provides that

L
// xxy'o dXdy <//(uxxx +ux)y)’0/dxa'y+/”J2CYY|X:Ody+C// MJ%X’OdXdy' (258)
0

From equality (2.55) we derive that

// u, .p dxdy < C-//(f2 +u? +b%u? + u)%yy)p’dxdy (2.59)
and combining (2.53), (2.57)—(2.59) finish the proof. O
Lemma 2.23. Let =0, p(x) be an admissible weight function, such that p’(x) is also an admissible weight
function, ug € H}*®, up(0.y) =0, f € C(0.T1: L5 and f = fo + fix, where fo € Lo(0.T: HP®) n
L. T: oY), fo € LiO. T L), fi € La©.T: L5 77D, fiy € Ly, T3 AP0/ py, e

L>(0,T; Lg,_:x)/p (x)). Then there exists a (unique) solution to problem (2.1), (1.2)—(1.4) from the space X3’p(x)(l'I4T')
and for any t € (0, T]

el x3.000 (1) < C(T)(””O”ﬁi.p(ﬂ + ”fHC([o,z];L;’fjr')) 1ol .0 710w
+ ||f0>’yy”L1(0,z;L§fjr')) + ||f0t||L1(0,,;L§,<i>) + ”fl”L2(0’t;L§,2+(x)/P/(x))
il o, + Wil 1A rmn) (2.60)
Proof. First of all note that hypotheses of Lemmas 2.17 (for f> = 0), Lemmas 2.19, 2.21 and 2.22 are satisfied.
Therefore, taking into account also Remark 2.18 we derive for smooth solutions that
el oy + it glaapy + el ooty + el ooy < e (2.61)

Next, differentiating equality (2.1) twice with respect to y, multiplying the obtained equality by —2uyy,(f, x, y) o (x)
and integrating over X} we derive similarly to (2.53) that

L
d 2 2 2
E//uyyypdxdy+p(0)/uxyyy|x:0dy+/ Guxyyy + 3y, — y}y)p dxdy
0

= // uf,yyp"’dxdy +2// Soyyytyyypdxdy — 2/ Fiyyttyyyypdxdy. (2.62)

‘ // flyy”yynpdx‘iy‘ <8// Wy dxdy + - / flyy dxdy,

where ¢ > 0 can be chosen arbitrarily small, and equality (2.62) ylelds that

Here

||Myyy||xp(x)(n;r) + ||uxyyy}x=0||L2(BT) <c. (2.63)
Again apply equality (2.55). Then it follows from (2.63) that we have the suitable estimate on u, in the space
Ly(0,T; Hy HoP (x)) and, in particular, on uyyyy in L2(0, T; Lp (x)) (for similar argument see (2.58)). One more ap-

plication of (2.55) yields the estimate on uyxy in L2(0, T; Lp (x)) As aresult
flall

Consider the extensions of the functions # and f for y € (L,2L] and y € [—L,0) in the case a) by the even
reflections through y = L and y = 0, in the case b) — by the odd ones, in the case c) — by the corresponding combination
of these methods, in the case d) — by the periodic extension. Then the functions u and f remain smooth in the more

Ly 40y = € (2.64)
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wide domain [0, T'] x @+ X L—L, 2L], and equality (2.1) also remains valid. Let nz(y) =n(1 + y/L)n(2 — y/L),
u(t,x,y)=u(t,x, y)nL(y), f(, x,y) = f(, x,y)nL(y). Now we apply the inequality (see, e.g. [29]) for the domain
RZ ={(x,y); x > 0}

”g”Hz(Rﬁ_) = C(”Ag”Lz(Ri) + ||g’x=0||H3/2(1R) + ||g||H1(R3_))
for the function g =7, p'/?(x). Note that
Ax,y(alxpl/z) = (f_ Uy — bl + 2uxy77/L +ux 71,11);01/2 + 20l (01/2)/ + iy (;01/2)”-
It follows from (2.61) that
~ 1/2
| Ay y@xp / )“C([O,T];Lz(Ri) =c.

Moreover, by virtue of (2.61), (2.63) and embedding H*(R? ) C H3/?({x =0} x R) (see [29])

et | ol cqo.r1: 3@y < luox | —oll w32y
172 12
+ 2l ol 0,1y 10x Lol 0. 3y = €
Therefore,

””x”C([o,T];Hi"‘”) <c. (2.65)

Estimates (2.61), (2.63)—(2.65) provide the desired result. 0O
3. Existence of solutions

Consider an auxiliary equation
up+buy +uyx + Uxyy + (g)x+ W, x, Mu)x = f(t,x,y). 3.1
The notion of a weak solution to problem (3.1), (1.2)—(1.4) is similar to Definition 1.1.
Lemma 3.1. Let g € C'(R), g(0) =0, |g'(w)| <cVueR, ¢ € L0, T; Loo+), up€ Loy, feLi1(0,T; Ly ) and

up(x,y) = f(t,x,y) =0 if x > R for certain R > 0, u = 0. Then problem (3.1), (1.2)—(1.4) has a unique weak
solution u(t, x,y), such that u € Xp(x)(l'l}')for any a > 0 and p(x) = 2**.

Proof. We apply the contraction principle. Fix o > 0 and p(x) = €2**. For to € (0, T] define a mapping A on
Xp(x)(l'[;g) as follows: u = Av € X”(x)(l'lj(;) is a weak solution to a linear problem

ur + by +uyyy + Uxyy = f—8W)x — (Yrv)x (3.2)

in l'[j(; with initial and boundary conditions (1.2)—(1.4).
Note that p2(p")~ /% ~ p, |g(v)| < c|v| and, therefore, Lemma 2.17 provides that the mapping A exists. Moreover,
for functions v, 7 € XP&) (I'I;g) according to inequality (2.43) (where f> =0)

| Av— AE”Xﬂ(x)(]'[%) <c(To(t)llv — 5”)@(%)(1‘[%),

where w(tp) — 0 as fo — 40 and » depends on the properties of continuity of the primitives of the function
Iz, -, ')”%oo . on [0, T']. Since the constant in the right side of this inequality is uniform with respect to uo and
f, one can construct the solution on the whole time segment [0, 7'] by the standard argument. O

Now we pass to the results of existence in Theorem 1.3.

Proof of Existence Part of Theorem 1.3. First of all we make zero boundary data for x = 0. Let

Y, x,y)=JE x, y; Wn2—x), (3.3)
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where for the construction of the boundary potential J the function u is extended to the whole strip B in the same
class. Then the results of Section 2 provide that

U=V + bV + Yaar + Yy € CX(7), ¥ =0 forx>2,
Y € C(10,T1; La,s) N La(0, T3 HY) N La(0, T WL ), (3.4)
¥ eC(0,21; H'/> (Br)), | _y=m. V. €C0,2]; La(Br)).
Consider a function
Ut,x,y)=u(t,x,y) =y (1, x,y). (3.5)

Then u € Xﬁ)(x)(l'[JTr) is a weak solution to problem (1.1)—(1.4) iff U € Xﬁ,(x)(l'[JTr) is a weak solution to an initial-
boundary value problem in I'IJTr for an equation

Ui +bUy + Usxy + Usyy + UUs + (YU) = F = f — — yrify, (3.6)
with initial and boundary conditions
Ul—g=Uo=uo—vl|,_p Ul,_,=0 (3.7)

and the same boundary conditions on 7 4 as (1.4). Note also that the functions Uy, F satisfy the same assumptions
as the corresponding functions uq, f in the hypothesis of the theorem.
For h € (0, 1] consider a set of initial-boundary value problems in l'I“TL

Ui +bUy + Uyxx + nyy + (gh(U))x + (wU)x =Fy (38)
with boundary conditions (1.4) and

Ul,_o=Uon, Ul _,=0, (3.9)
where

Fpt,x,y)=F@,x,y)n(1/h —x),  Uon(x,y)=Uon(l/h —x) (3.10)

and

u

ot = [ [on— hioD) +

0

2sign6

n(h] — 1)] d6

Note that gj (u) = u?/2if [u| < 1/h, |g},(u)| <2/h Yu € R and |g}, (u)| < 2|u| uniformly with respect to /.

. . . . . 20
According to Lemma 3.1, there exists a unique solution to this problem Uy, € X¢*" (IT}') for any o > 0.
Next, establish appropriate estimates for functions Uj uniform with respect to & (we drop the index % in in-

termediate steps for simplicity). First, note that g’(U)Uy, YUy, ¥ U, F € L1(0,T; Lp (x)) and so the hypothesis of
Lemma 2.17 is satisfied (for f; = f> =0). Then the equality (2.44) provides that

t
// Uzpdxdy+///(3U3+Uy2)p/dxdydr
0
t t
S/f U§pdxdy+c/ff Uzpdxdydt+2f// FUpdxdydt
f//(wp —wx,o)Uzdxdydr+2//f / (0)9d0 o dxdydr. (3.11)

Choosing p = 1, we obtain, that uniformly with respect to 4 (and also uniformly with respect to L)

lunllcqo, L, ) <c. (3.12)
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Note that
U
[ ¢ @ods|<civr. (3.13)
0

Applying interpolating inequality (1.14) for p; = pp = p’, we obtain that

/ \UPp’ dxdy < ([/ U?dxdy // U4(,0/)2dxdy)l/2 < c(// Uzd)cdy>l/2
x [(//|DU|2p/dxdy)l/2(f/ U2p’dxdy)l/2+// Uzp’dxdy] (3.14)

(note that here the constant ¢ is also uniform with respect to L in the cases a) and c)). Since the norm of the functions
uy, in the space L, is already estimated in (3.12), it follows from (3.11)—(3.14) that uniformly with respect to &

”uhnxp(x)(n;r) =c (3.15)

Finally, write down the analogue of (3.11), where p(x) is substituted by po(x — xo) for any xo > 0. Then it easily
follows that (see (1.8))

AP (| Duy|; T) <c. (3.16)

From equation (3.8) itself, estimate (3.12) and the well-known embedding L + C H 72, it follows that uniformly
with respect to h

”uht”L](O,T;H;% =c. (3.17)
Estimates (3.15)—(3.17) by the standard argument provide existence of a weak solution to problem (1.1)—(1.4)
u e XPO(I1y), At (|Dul; T) < oo (see, for example, [12]) as a limit of functions u; when & — +0. O

We now proceed to solutions in spaces H"“*®™ and first estimate a lemma analogous to Lemma 3.1.

Lemma 3.2. Let g(u) = u?/2, ¥ € L2(0, T; Wk ) N La(0, T3 H2), ug € HL, uo| _,y=0, f € Ly(0,T; H}) and
up(x,y) = f@t,x,y) =v¢(t,x,y) =0 if x > R for certain R > 0, u = 0. Then problem (3.1), (1.2)—(1.4) has a
unique weak solution u(t, x, y), such that u € Xl’p(x)(l'l}')for any o > 0 and p(x) = e>*~.

Proof. Fix « > 0 and p(x) = ¢>**. For to € (0, T] define a mapping A on Xl'p(")(l'[;g) as follows: u = Av €
xte (")(H,Jg) is a weak solution to a linear problem
up+buy +uycy + Uxyy = S —vvy — (Yv)x (3.18)

in IT;, with initial and boundary conditions (1.2)—(1.4).
Note that by virtue of (1.14) for py = pp=p >1

fo

1/2

1/2,2 1/2)2 1/4 2

ool 1050 = [ f lvep' 2117, , oo/ ||L4,+dr] <cty/ Il (3.19)
0

In particular, the hypothesis of Lemma 2.19 is satisfied (since p>(p")~!/? ~ p) and, therefore, the mapping A exists.

Moreover, by virtue of (2.48) it is easy to see, that for small #y, depending on ||ug|| P it is a contraction on a
+

certain ball, which verifies existence of the unique weak solution to the considered problem in the space X 1) (Hg).

In order to finish the proof, we establish the following a priori estimate: if u € X!-* (x)(l'[}',) is a solution to the
considered problem for some 77 € (0, T] and v (¢, x, y) = 0 for x > R, then

||u||X1,p(X)(n;r/) = C(””O”ﬁl.p(x)v ”f”Lz(()’T;ﬁlyP(X))v “w”LZ(O,T?WoIo,mﬁb)' (3.20)

First of all note that similarly to (3.12), (3.15) one can derive from (2.44) that
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el o mt,) =< ¢ (3.21)

Next, since the hypotheses of Lemma 2.19 and, consequently, Lemma 2.20 are satisfied, write down the corresponding
analogues of equalities (2.49), (2.51) and sum them, then

// uy +u )pdxdy+// (3uxx+4uxy+u)y),o dxdydt

3
< f/(u%x +u%y - %)pdxdy +c// (u)% —i—ui)pdxdydr +2/ // Muip’dxdydr
0 0

t t
— f/ (txx + uyy)up' dxdydr + f/ Q2 frutx + 2 fyuy — fu)pdxdydt

1
/f |x 0dydr+c// 2|x odydt — /// 7S S u ,odxdydr

—//(wuip)|x=0dydz—f/ wx(3u§+u§)pdxdydz+// ¥ (u +ul)p dxdydt
B, 0 0

1 1
—2// wyuxuy,odxdydr—Z// (Yxxuuty + Yyyuuy)pdxdydr. (3.22)
0 0
Interpolating inequality (1.16) provides that
L
/((1 + 1y hu)],_ody sa// w3 o' dxdy
0
+ece)(1+ sup y?) / / u?pdxdy, (3.23)
(x.y)eT4

where ¢ > 0 can be chosen arbitrarily small. Next, since p(x) < c(R)p’(x) for x € [0, R]

‘// lﬁxxuux,odxdy’ SC(// wfx dxdy>]/2<// u4p2dxdy ff ui,o’,oa’xdy)l/4
fef/lDux|2p’dxdy+c(8)[// w2, dxdy—l—l](/ |Du|2,odxdy+1>. (3.24)

Other integrals from (3.22) can be estimated, for example, similarly to the ones from the proof of Theorem 1.2 from
[14], where for the sake of the use in the sequel can be assumed only that o and p’ are admissible weight functions.
Then (3.20) follows. O

Proof of Existence Part of Theorem 1.5. Introduce the function v by formula (3.3). Then in addition to properties
(3.4) it follows from the results of Section 2 that

¥ € C([0,T); H) N L0, T; H2) N C ([0, 2]; H***(Br)),
Yy € C([0,21; H32(Br)),  ¥ux € C((0,2]; La(Br)).

Again introduce the function U (¢, x, y) by formula (3.5) and consider problem (3.6), (3.7), (1.4) instead of (1.1)—(1.4).
Note that here (3.4), (3.25) provide that the properties of the functions Uy, F, are the same as the corresponding ones
for the functions ug, f in the hypothesis of the theorem.

(3.25)
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For h € (0, 1], consider a set of initial-boundary value problems in I'IJTr
U +bUx +Uxyx + Uyyy + UUx + (Y U)y = Fy (3.26)

with boundary conditions (3.7), (1.4), where Fj, and Uy, are given by (3.10).
Repeating the argument in (3.11)—(3.14) for g(u) = u?/2 and (3.22)—(3.24) we derive that uniformly with respect
toh

”uh”Xl,p(x)(n;t) <c. (3.27)
Similarly to (3.16) one can obtain that

AT(D?up|; T) <c. (3.28)
Estimates (3.27), (3.28) and (3.17) provide existence of a weak solution to the considered problem u €
xbromd). o

Finally, we consider regular solutions.

Lemma 3.3. Let g(u) = u?/2, u = 0, the functions uo and f satisfy the hypothesis of Theorem 1.7, ¥ € X3’p(x)(1'l';) N
Ly(0, T, W;H), Y € L2(0,T; Loo,+) and ¥ (¢, x,y) =0 if x > R for certain R > 0. Then problem (3.1), (1.2)—(1.4)
has a unique solution u € X3’p()‘)(HJTr).

Proof. For g€ (0,T],ve X>*™ (1) letu = Av € X3*@(IT;7) be a solution to linear problem (3.18), (1.2)~(1.4).
Apply Lemma 2.23, where f stands for fj, —(%/2 + yrv) —for fi. We have:

lvvy + Yo + WXUHC([OJ()];LQ(:;)) < lluouox + (KHIZOMO)X ”sz,(i)

S [CER TR U PR (329)
where with the use of the embedding H_% C Loo,+
2
lluouox ”Lgff = clluoll Lo+ lnox ”Lg’fj_’ <ci IIuollﬁim), (3.30)
1ol g0 < (] ol + 19|l ol o (3.31)

then since p’(x) > 1
fo
1/2
100l gy = [ 19912 el
0

1/2

1/2
+llvep' Ly, ||v,<p’p>”4||L4,+] dt < ety oll oo it 10 s - (3.32)

Next,

fo
172
1722 2
100l e, < / 100! 21 ol g )
0

1/2
= Ct()/ ”U”XZ,/J(X)(H;S)||v||x3.ﬂ(x)(nt*('))v (3.33)

(VVx)yy = VUxyy + 20y Vyxy + Uy Vyy, where similarly to (3.33)

1/2
[vvryy|l ,ng(x)/p/(x)) = Ct()/ ”v”le(x)(n;(r)) ”U”X&p(«r)(n%)s (3.34)
2+

L>(0,19
fo
12
1722 1722
”vyvxy ”Lz((),t();Lgﬁx)/p/(x)) = </ ”vy,O ”L4,+ ”vxyp ||L4_+ dt)
0

1/2
< ety oll a0 i 10l s o0 (3.35)
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and similar estimate holds for v,vy,. Moreover, the assumptions on the function ¥ ensure that the corresponding
boundary conditions on the function f] are satisfied for y = 0 and y = L. Therefore, the mapping A exists and one
can use estimate (2.60) to derive inequalities

~ 1/2 2
||AU||X3./>(x)(1'[[*(')) <c+ C(T)to/ (”W”xip()c)(n;)”U”XB,/?(X)(H;;) + ||v||X3<p(x)(H:(;))’ (3.36)
~ 1/2 ~
lAv— Av”x&p(k)(n%) = C(T)t()/ (”W ||X3,p(Jr)(1T;) lv— v”xlp(X)(n;S)

+ (0l + 19 s iy 0 = Bl sy ) (3.37)

where the constant ¢ depends on the properties of functions ug, f, ¥. Hence, existence of the unique solution to the
considered problem in the space X 3’“”(1'[?5) on the time interval [0, 7], depending on ||ug|| 30 follows by the
+

standard argument.
Now establish the following a priori estimate: if u € X3 (HJTF,) is a solution to the considered problem for some
T’ € (0, T], then

x =g, 3.38
ll Il 3.0 (1) = 4 ( )

where the constant ¢ depends on T and the properties of the functions ug, f, ¥ from the hypothesis of the present
lemma.
According to (3.20)

”’/‘Hxl.p(x)(n;/) =c (3.39)

Next, since the hypothesis of Lemma 2.21 is fulfilled write down the corresponding analogue of equality (2.44) for
the function u;:

t
/ / u?pdxdy + / / / Gup, +up)p' dxdydr
0

t
=< //(f —buy —uyxx — Uxyy — UUx — (1ﬂu)x)2|,:0,0d)6dy +Cf // uzzp dxdydt
0

t t
+2//f(f — (Yu)y)ruspdxdydr +2f/:/ uus(up)y dxdydr. (3.40)
0 0

Here since p’ > 1 and estimate (3.39) holds

Z/f ut; (U p)y dxdy =/ (up' — uyp)u? dxdy

12
< c(//(u,%ﬁl +u2) dxdy // uf,o’pdxdy) /
0
1/2
§c1[(f |Dut|2p’dxdy//u,2,odxdy) / +ff utz,odxdy],
‘// %xuuzpdxdy‘
1/2 1/4
§c(R)</ I/ftzxdxdy> / (// u4,02dxdy// u?,o’,odxdy) /
< 8// |Duy|*p dxdy + c(e, R)[// Y2 dxdy + 1](// u?pdxdy + 1),

where € > 0 can be chosen arbitrarily small. Other terms in (3.40) are estimated in a obvious way and, consequently,

”ut”X/J(x)(r[;/) =c. (341
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Now apply Lemma 2.22, then inequality (2.52) and estimates (3.39), (3.41) yield that for any r < T’

2 2
||u||xz,p(x)(l—[t+) <c+ C”uux”C([O,tJ;Lg_(f)
T t
+c zl(lopt] ///(f—uux — (wu)x)yyuyypdxdyds‘ —l—c// (uix —i—u?,y),odxdy (3.42)
R 0
We have

1/2

2 2 2
el gy < cllexp 1L, , < el 1Duxl [0 + (@),

where ¢ > 0 can be chosen arbitrarily small;

1
/ () yyttyyp dxdy = 3 //(uxp — upyu3, dxdy +2// Uyltxyllyyp dxdy,

where again since p’ > 1

2 4 4\ 172
‘ uyuxyuyypdxdy) < ( uypdxdy (uyy +uyy)p pdxdy)
302 7 2,12 172
§C1( |D ul”p" dxdy |D“ul pdxdy) .
Integral of (uyp — up’ )”,%y is estimated in a similar way and it follows from (3.42) that

||u||x2~p(x)(n;r/) =c (3.43)
Finally, apply Lemma 2.23 on the basis of the already obtained estimates (3.41), (3.43), then inequality (2.60) and
estimates (3.29)—(3.35) applied to v = u provide similarly to (3.36) that for any 7o € (0, T"]
~ 1/2
”u”Xl/’("')(H?{)) <c+ C(T)to/ (Hwnxlﬂ()c)(n;) + ||u||x2,ﬂ()c)(n;,))||u||X3,p(x)(1'[;8)7

whence (3.38) follows. O

Proof of Theorem 1.7. Introduce the functions ¥, U by formulas (3.3), (3.5) and consider problem (3.6), (3.7), (1.4).
Then the functions vy, F ~ f and Uy ~ ug satisfy the hypothesis of Lemma 3.3 and the result is immediate. O

4. Uniqueness and continuous dependence

Theorem 4.1. Let p(x) be an admissible weight function, such that p'(x) is also an admissible weight function and
p'2(x) < cop’(x) Yx > 0 for certain positive constant co. Then for any T > 0 and M > 0 there exists a con-
stant ¢ = ¢(T, M), such that for any two weak solutions u(t, x,y) and u(t, x,y) to problem (1.1)—(1.4), satisfying
X091y ||m|x5}‘>(n;f) < M, with corresponding data u, iy € Lg)(f, w. i€ HY3\(By), f. f € L1(0, T; Lg’(i))
the following inequality holds:

flael

ot = &ll g gy = (o = Toll o + Nt = By + 1 = Flly o 7000 4.1
Proof. Let the function v is defined by formula (3.3), the function 1; in a similar way for ;£ and ¥ = v — 1/~f Then,
in particular,

Il o0 iy < €Dl = Bl gy (4.2)
Let Up=ug —tig — ¥|,_o. F = f — [ — (W + bWy + Wypx + Yoyy), then

1Uoll g0 < g =Bl o) + (T it = Bl 151y 4.3)

1F 0720y < 15 = Tl gy + €@t = Bllsa oy “4)
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The function U (¢, x, y) = u(t, x, y) — u(t, x, y) — W(¢, x, y) is a weak solution to an initial-boundary value problem
in lT; for an equation

U +bUyx + Uxyx + nyy =F — (uuy — uiy) 4.5)
with initial and boundary conditions (1.4),

Ul,— = Vo, Ul,_o=0. (4.6)
Apply Lemma 2.17 where f> = —(uu, — uiii, ). Note that assumptions on the function p provide that p(p")~1/3 <

173 5" and by virtue of (1.14)

T
1/3 2/3
oo < [([[utparay) ([ [ e anay) " ar
4/3
0

co

<eilul)) L, < +00.

Loo (OTL“”) L2(0,T;Hy

Therefore, we derive from (2.44) that for t € (0, T]

t
f/ Uz,odxdy+// (U +U}p dxdydr
0
t t
5// U§pdxdy+c/// U2pdxdydr+2f//(F— (uuy — Wiiy))Up dxdyd-. 4.7)
0 0

—2//(uux —un,)Up dxdy =/ (u+u)({U +W)(Up),dxdy. (4.8)

Here

Then by virtue of (1.14) and the assumptions on the function p (which yield that (p/p")> < cp’p)

/ lu(U + W)Uy |p dxdy

§c(// u*(p/p)? dxdy ff(U4+‘I'4)p/pdxdy)l/4(// Uﬁp/dxdy>]/2

1/2 / 3/4
<1l ool + ||u||me / / (IDUP + D)o dxdy)
/ (U2+\I'2)pdxdy / (U2+\Ifz)pdxdy] 4.9)

and, therefore,

t t
f/ |u(U+\IJ)Ux|pdxdydr§8/f (IDU + |DW|?)p’ dxdydt

t
+c(s)/y(r)//(U2+w2)pdxdydr, (4.10)
0

where ¢ > 0 can be chosen arbitrarily small and y =1 + ||u||2 € L1(0,T). Then estimates (4.2)—(4.4), (4.10)

Lo/ @)
H+

and inequality (4.7) provide the desired result. O

Remark 4.2. Theorems 1.3 and 4.1 show that under the hypothesis of Theorem 1.3 problem (1.1)—(1.4) is globally
well-posed in the space X 5()‘)(1'[";).
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Theorem 4.3. Let p(x) be an admissible weight function, such that p'(x) is also an admissible weight func-
tion and p’'(x) > co Vx > 0 for certain positive constant co. Then for any T > 0 and M > 0 there exists a
constant ¢ = ¢(T, M), such that for any two weak solutions u(t,x,y) and u(t,x,y) to problem (1.1)—-(1.4), sat-
isfying ||ul| X500 1ty 2|l xbroty = < M, with corresponding data ug, o € L2 +), W, € ﬁ1/3’1(BT), f,fe

L0, T, Lp(x)) inequality (4.1) holds.

Proof. The proof mostly repeats the proof of Theorem 4.1. The difference is related only to the nonlinear term. Here
we apply Lemma 2.17 where f; = —w?-u )/2 Note that for any ¢ € [0, T']

||u ”Lpz(x)/p o = ||u|| lpw>
Hy

in particular, u? e L(0,T; Lp R (x)) Write down inequality (4.7). In comparison with (4.8) we transform the
integral of the nonlinear term in the following way:

2/ (uuy — i) Updxdy = 5/ (u~+u)U*pdxdy

— %//(u—i—ﬁ)Uzp’dxdy—l—/ ((w+u)W¥) Updxdy.

f/ e [(U? + W) p dxdy < (ff ui%dxdy/ (U4+\1’4)p/,0dxdy)l/2
< c[(//(|DU|2 +DWP)p dxdy //(U2 —|—‘I/2),odxdy>l/2
+/ (U2+\112)pdxdy],
/ luW,U|pdxdy < c(// u4p2dxdy // U4,0/,odxdy)1/4(// \11)2“0 dxdy)l/2
58//|DU|2p/dxdy+c(8)/f Uzp/dxdy—i-//\llipdxdy.

Wl 0,700 = €Ml = Il g1/ gy (4.11)

Here

Note that similarly to (4.2)

since W = 0 for x > 2. Then the desired result succeeds from inequality (4.7). O

Theorem 4.4. Let p(x) be an admissible weight function, such that p'(x) is also an admissible weight function
and ,01/3(x) < cop’(x) Yx > 0 for certain positive constant co. Then for any T > 0 and M > O there exists a
constant ¢ = ¢(T, M), such that for any two weak solutions u(t,x,y) and u(t,x,y) to problem (1.1)~(1.4), sat-

isfying ||MJX;J,0<X)(H;), ||'L7||Xllu,p(x)(n}r) < M, with corresponding data ug, iy € I-NI_ilr’p(x), w, e HY32(By), f fe
Ly, T, HJ]r’p(x)), uo(0, ¥) = (0, y), up(0, y) = 11(0, y), the following inequality holds:
llu — 'lzllxlldpm(n;) <c(lluo — ﬁollHLpu) + e = il g2z + 1f — flle(OyT;Hme)). (4.12)
Proof. First of all note that the hypothesis of Theorem 4.3 holds and, consequently, inequality (4.1) is satisfied.
Introduce the same functions W, Uy, F, U as in the proof of Theorem 4.1. Note that
||\I"||x1,p()c)(n;) <c(Mpn— ﬁ||H2/3.2(BT)’
1ol 1000 < Nluo = @oll 100 + (DIt = Bl p232087)

”F”LZ(O,T;HL’)(")) <|f- f”Lz(o,T;HL”(")) + (Ml — il 232,
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Apply Lemma 2.19. Note that since p*(p)~! < ¢p3/?(p/)!/?
1,2
// wlu p?(p') " Ldxdy < c(/:/ u*p? dxdy /f ui,dpdxdx)
2 7 2
<e [[4DusPo+ o) dxay.

2 /
In particular, uu, € Ly(0, T; L‘;,frx)/ P'™)) Then inequality (2.49) for y = 1 (together with (1.16)) yields that for
te(0,T]

'
//(Uf—i—Uf,)pdxdy—i—[/ |ID?U|?p’ dxdydt
0
t t
2 2 2 2 2 2 2
5//(UOX+U0y)pdxdy+c/f (U; —i-Uy)pdxdydT—i—// (Fy+F,+F Ypdxdydt
0 0

t
+ 2/[ (i, — Wiy [(Uy p)x + Uyypldxdydr. (4.13)
0

The last integral in the right side of (4.13) is not greater than
t
2 2 2y
8///(Uxx +Uj, +Up)p dxdydt
0

t
2
+c(e) f //[(ui +UDU? + V) + ? + 0D (U7 + V)] p—/ dxdydr,
P
0
where & > 0 can be chosen arbitrarily small. Here again since p2(p')~! < cp3/%(p)!/?
02
// ui(U? + W) — dxdy
0
4 4, ah 2 172
Sc( u,p pdxdy ™ +vHp dxdy)

< //(|DU|2+|Dn11|2)pdxdy+c1[//|Dux|2p’dxdy+1]/ (U2 + W) pdxdy,

where the first multiplier in the last term belongs to the space L1(0, 7)) and the second one is estimated uniformly
with respect to ¢ according to (4.1) and (4.2). Finally,

02
// u?(U? + w,%); dxdy

1/2
< c(// utp?dxdy //(U;1 + lIli),o’,od)cdy)
2 2\ ./ 2 2 172 2 2
501(//(|DUXI + | DYy | )p dxdy/ U; +\IJX),0dxdy) +/ Uy +¥)pdxdy.
As a result, the statement of the theorem follows from inequality (4.13). O
Remark 4.5. Theorems 1.5, 4.3 and 4.4 show that under the hypothesis of Theorem 1.5 and additional assumption

3 (x) < cop’(x) Vx >0 problem (1.1)—(1.4) is globally well-posed in the space X llu’p &) (HJ{). This additional as-
sumption holds for any exponential weight ¢2**, o > 0, and for the power weight (1 + x)2* if o > 3/4.
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For regular solutions we prefer to present well-posedness in another form.

Theorem 4.6. Let T > 0 and p(x) be an admissible weight function, such that p'(x) is also an admissible weight
function and p'(x) > 1 Vx > 0. Denote by F the space of functions f(t,x,y), defined on l'IJTr and satisfying the
hypothesis of Theorem 1.7, endowed with the natural norm. Then the mapping (uo, i, f) — u, where u is the corre-
sponding solution of problem (1.1)—(1.4) and uo(0, y) = u(0, y), is Lipschitz continuous on any ball in the norm of
the mapping ﬁj_’p(x) X ﬁ4/3*4(BT) x F — le(x)(l"['}).

Proof. Let M > 0, let the functions ug, i, f satisfy the hypothesis of Theorem 1.7 and

”(MOs M, f)”ﬁi’pu)xﬁ“/l“(lfr)xf <M,

then it follows from (3.38) that ||u||X3,p<x)(H;r) < co(M). Define the functions ¥ and U by formulas (3.3) and (3.5). Let

the triplet (i, I, f ) be another one satisfying the same assumptions, define similarly the functions J and U. Then
similarly to (3.29)—(3.37) for 1y € (0, T']

v — U”X&ﬂ(ﬂ(]‘[%) = C(M)(”L‘O — | N3vﬂ(X) + - '22”174/3’4(3T) +If = fllF
1 2
oI = Tllseoa)-

Taking into account also that |[¢r — Iﬁ ||X3,p(x)(n;r) <c(T)pn— /7”174/3*4(Br) we finish the proof by the standard argu-
ment. O

5. Large-time decay of small solutions

Proof of Theorem 1.9. Let a > 0, p(x) = 2**, ug € H;"™, ug(0,y) =0, w =0, f = 0. Consider the solution to

problem (1.1)—(1.4) (in the cases a) and c)) u € Xllu’p(x)(l'IJT“) VT. Note that uu, € L(0, T; Lp(x)) (see, for example,
(3.19)).
Apply Lemma 2.17, then equality (2.44) for p = 1 provides, in fact, the conservation law (1.5), in particular,

N, - Ly < lluollL,, Vr=0. (5.1)

20x .

Next, write down equality (2.44) for p=e

//u pdxdy+f/ il _ dydr+2a// (Bu +u3)pdxdydr
—2a(b +4ot2)f//u ,odxdydr_//uopdxdy+—/f/u pdxdydr. 5.2)

Since u3p € Loo (0, T'; L1 +) equality (5.2) provides the following equality in a differential form: for a.e. # > 0

L

d

E//uzpdxdy—i-/ui!x:()dy—i-&x/ (3ui+u§)pdxdy
0

2
—2a(b + 4a?) // ulpdxdy = ?" // W3 pdxdy. (5.3)
Continuing inequality (3.14), we find with the use of (5.1) that uniformly with respect to L
2 1
; f / W pdxdy < 3 / f |Dulpdxdy + c(luollLy., + luol, ) / / Wpdxdy. (5.4)

Inequality (1.17) yields that for certain constant cp

Y 2 paxay = < ([ w2paxa (5.5)
2 I/ty,O y—L2 u-p Y- .
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Combining (5.3)—(5.5) we find that uniformly with respect to o and L

L

d

E//uzpdxdy+/u§|xzody+a/ |Du|2,0dxdy
0

co
+°‘<ﬁ_2b 8a? — c(lluollz,,, + lluollz, ,) //uzpdxdyio- (5.:6)

1
Choose Ly = 3 Cb_o ifb>0, ag= \é—z—o, € > 0 satisfying an inequality €y + e% < 82%’ B = 46%. Then it follows
from (5.6) that

L

d

E/fuzpdxdy—kfuﬂxzody—i—a//|Du|2pdxdy+ot,3// u*pdxdy <0. (5.7)
0

In particular, inequality (5.7) provides estimate (1.12) if ug € Iﬁ-lvi’p (x), uo(0, y) = 0. In the general case ug € Lp )
this estimate is obtained via closure with the use of Theorem 4.1.
Moreover, since inequality (5.7) can be written in a form

L
7 [e"‘ﬂt // uz,odxdy] + P [/ u)zc|x=0dy +a/ |Du|2,0dxdy] <0,
0

we find (again if ug € ;"™ 1o(0, y) = 0) that

t L

/e"‘ﬁf [/ uy|,_ody +a/ |Du|2,odxdy] dr < ||uo||i§(i). (5.8)

0 0

Summing equality (2.49) (for fi = —uu,) and equality (2.51) (for f = —uu,), differentiating, multiplying by ¢*#’
and again integrating with respect to ¢, we derive the following inequality:

t
1
apt //(uz + ui — §u3)pdxdy + 20{/6“‘%/ (3u?, +4u)2(y + ugy),odxdydr

<a(2b+ﬂ+8a)/ /f(u +u )pdxdydt—i—(Sa —b)/ /u | odydt

+4(x/ /fuuxpdxdydr—Za/ /fu (uxx +uyy)pdxdydr
- %(/3—1—219) / Pt / / W3 pdxdydr. (5.9)
0

Estimating the integrals in the right side of (5.9) with the help of (1.12) and (5.8) yields:

1
pt ff(ui +u§ — §u3)pdxdy <c,
where

%// u3,0dxdy§c[(//|Du|2pdxdy)l/2/f Wpdxdy + (// uzpdxdy>3/2],

and (1.13) follows. O
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