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Abstract

We study a model introduced by Perthame and Vauchelet [19] that describes the growth of a tumor governed by Brinkman’s 
Law, which takes into account friction between the tumor cells. We adopt the viscosity solution approach to establish an optimal 
uniform convergence result of the tumor density as well as the pressure in the incompressible limit. The system lacks standard 
maximum principle, and thus modification of the usual approach is necessary.
© 2017 
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1. Introduction

We study the following model, which was introduced by Perthame and Vauchelet in [19]. It describes the growth 
of tumors at the cellular level by providing a law relating the cell density, pressure, and cell multiplication. The tumor 
cell density nk :Rn × [0, ∞) → R satisfies,{

∂tnk − div(nkDWk) = nkG(pk),

−ν�Wk + Wk = pk,
(1.1)

where the pressure pk is given by,

pk = k

k − 1
(nk)

k−1.

Here ν is a positive constant and G is a given function that describes the effect that the pressure has on the growth of 
the tumor. We assume G satisfies,

G ∈ C1(R), G′(·) ≤ −ᾱ < 0, and G(PM) = 0 for some PM > 0 and ᾱ > 0. (1.2)
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The main results of [19] concern the limit as k → ∞, or the so-called incompressible limit, of (1.1). This connects 
(1.1) to a system that involves a moving front. If the parameter ν were zero (in other words, if the tumor were governed 
by Darcy’s Law), then the system (1.1) would become,

∂tnk − div(nkDpk) = nkG(pk).

This model for tumor growth has been widely studied, and we refer the reader to the introduction of [19] for a variety 
of references, both about modeling and rigorous mathematical analysis. In particular, in [18], Perthame, Quiròs and 
Vázquez find that the incompressible limit of the above equation is the Hele–Shaw problem with a forcing term. Kim 
and Pozar [16] used viscosity solution methods to improve the result in [18]. The model that we study, (1.1) with 
ν > 0, has been proposed as a better description of tumor growth. Here, the tumor is governed by Brinkman’s Law, 
which takes into account the friction between the tumor cells, and not just of the tumor with its environment. These 
modeling issues are discussed in, for example, [24,6]. For fixed k, the system (1.1) was also studied by Trivisa and 
Webber in [23], who established existence of weak solutions and found a convergent numerical method for (1.1).

Of particular interest in the asymptotic limit is the limiting pressure, which represents the incompressibility condi-
tion. In the inviscid model (ν = 0), the limiting pressure solves a Hele–Shaw type problem and is continuous as long 
as the pressure zone is reasonably regular [18]. However, as illustrated in [19], in the viscous model that we study here 
the limiting pressure is strictly positive on the boundary of its support, and thus is discontinuous. This is an interesting 
contrast to the inviscid model.

Our goal in this paper is to obtain pointwise convergence results in the framework of viscosity solutions theory, 
improving the L1 convergence obtained in [19]. Due to the discontinuity of the limiting pressure, the optimal pointwise 
convergence result one expects is uniform convergence away from the pressure boundary. This is precisely what we 
obtain. In addition, knowing that the pressure converges uniformly then allows us to improve the convergence of the 
Wk as well (see Theorem 1.1 below).

We point out that the system (1.1) does not enjoy the comparison principle – in fact, it is strongly coupled – and 
thus one needs to modify the existing theory in the analysis. To achieve this we follow the approach in [15], where we 
rely on the fact that one component of the system can be considered almost fixed due to its strong convergence: in our 
case that turns out to be the Wk , though their convergence is still weaker than what is available in [15].

Heuristics. Let us briefly recall the formal derivation of the limiting system given in [19] to illustrate additional 
challenges and main ingredients of our analysis in more detail. We denote the limit of (pk, nk, Wk) by (p∞, n∞, W∞). 
Perhaps the easiest equation to guess is the one for W∞:

−ν�W∞ + W∞ = p∞. (1.3)

Next we expect that p∞ is either zero or satisfies p∞ − νG(p∞) = W∞. This is because we can write the nk equation 
in terms of pk as

∂tpk − Dpk · DWk = (k − 1)ν−1pk(Wk − (Id − νG)(pk)), (1.4)

which then translates p∞ as a singular limit of reaction–diffusion equations. Thus it is reasonable to think that p∞
will take value either zero or (Id − νG)−1(W∞). In other words, we expect to have p∞ = (Id − νG)−1(W∞)χ�t for 
some region �t . The question now is to characterize �t .

We recall that there is a third component here, namely nk . Manipulating the equation for nk and then using the 
equation that Wk satisfies yields,

∂tnk − Dnk · DWk = nk(�Wk + G(pk)) = nk

ν
(Wk − pk + νG(pk)). (1.5)

The region �t is where the pk converge to the positive value (Id − νG)−1(W∞), so by definition we know that the 
nk converge to 1 there. When the pk converge to 0 (in other words, on �c

t ) we expect the nk to converge to zero if 
initially this is the case (see the discussion in the outline below). Notice that in both situations, the right-hand side of 
the previous equation is zero. Thus we expect n∞ to equal χ�t and solve,

∂tn∞ − Dn∞ · DW∞ = 0, (1.6)
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yielding the normal velocity law for the set �t . Thus, we expect the triple (p∞, n∞, W∞) to solve the system,⎧⎪⎨
⎪⎩

−ν�W∞ + W∞ = p∞,

p∞ = (Id − νG)−1(W∞)χ{n∞>0}, n∞ = χ{n∞>0},
∂tn∞ − Dn∞ · DW∞ = 0.

(1.7)

The above heuristics are indeed true when the limiting density n∞ is initially a patch. Then it follows from the 
transport equation (1.6) that n∞ is always zero or one at later times. In general the limiting system (1.7) is invalid 
with the presence of the region {0 < n∞ < 1}, due to the interaction of the two convergence regions as k → ∞. In the 
inviscid model (ν = 0), this was studied by Kim and Pozar [16] and Mellet, Perthame and Quiròs [17]. In our situation 
the normal velocity of the pressure zone in this general setting remains open.

Initial data. Let us now state the conditions on the limiting initial data with the notation

F := (Id − νG)−1, (1.8)

as given in [19] (where H is used instead of F ). We assume,

n0∞ = χ�0 , p0∞ = F(W 0∞)χ�0 , −ν�W 0∞ + W 0∞ = p0∞, (1.9)

where �0 ⊂ R
n is a compact set with measure zero boundary. The last two equations are, as mentioned in [19], to 

avoid initial layers in the limit system. As for the approximating system, we impose

lim inf
k→∞ ∗pk(x,0) > 0 on �0 and lim inf

k→∞ dist
({x|pk(x,0) > 0}, (�̄0)

c
)
> 0, (1.10)

where dist is the usual distance function. The assumptions (1.10) that we make on the initial data are very similar to 
those in [19]. They are neither more nor less general, as discussed below.

Main result. Now we are ready to state our main result.

Theorem 1.1. Let �0 be a compact set in Rn and let nk and Wk solve (1.1) with initial data satisfying (1.10). Then, 
along a subsequence:

(a) the Wk converge strongly to W∞ in L∞((0, T ), W 2,p
loc (Rn)),

(b) the pk converge locally uniformly to p∞ on (Rn × (0, ∞)) \ ∂{n∞ > 0},
(c) the nk converge locally uniformly to n∞ on (Rn × (0, ∞)) \ ∂{n∞ > 0},

where (p∞, n∞, W∞) solve (1.7) with initial data (1.9). Moreover, ∂{n∞ > 0} has measure zero.

As stated in the theorem, the limiting density has its support evolving by the geometric flow (1.6). Since our 
goal here is to obtain the convergence of the density and pressure in a strong sense – namely, locally uniformly – 
we therefore need to employ a sufficiently strong notion of solution for (1.6). For this reason we consider viscosity 
solutions to (1.6). This allows us to use barrier arguments with smooth test functions, as well as stability properties, 
to yield the (locally) uniform convergence results that we desire. Since a priori estimates only yield DW∞ to be 
integrable in time and log-Lipschitz in space, (1.6) is not covered by standard viscosity solutions theory. Thus, a key 
part of our work is to define a notion of viscosity solution for (1.6); establish basic results such as stability, existence 
and a comparison theorem; and describe the unique viscosity solution of (1.6) in terms of the associated flow map. In 
fact, in the proof of the main result we identify n∞ with the function given by (2.7) of Theorem 2.7, with V = −DW∞.

Before we discuss the main ingredients of the proof in more detail, some remarks on the theorem are in order.

Size of ∂{n∞ > 0}. Theorem 1.1 tells us the limiting behavior of the pressure and density everywhere except on 
∂{n∞ > 0}. In Lemma 9.1 we show that ∂{n∞ > 0} has Lebesgue measure zero for all times. If DW∞ were Lipschitz 
in space, then the flow generated by DW∞ would also be Lipschitz, and, for example, the Hausdorff dimension of 
∂{n∞ > 0} would be preserved under the flow. This is not quite the case for us: see Section 9.2 for more discussion.
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Relationship of our work and [19]. Our results strengthen those of [19] in several ways. First, we obtain locally 
uniform convergence of pk and nk , improving the L1

loc convergence in [19]. Second, we characterize n∞ as an indi-
cator function. This confirms what was suggested in the numerical examples in [19, Section 3], but was not proven 
there. Third, as a consequence of the stronger convergence of the pk, we improve the convergence of the Wk from 
L1((0, T ), W 1,q

loc (Rn)) to L∞((0, T ), W 2,p
loc (Rn)).

We now discuss in detail the relationship between our assumption on the initial data (1.10) and the analogous 
assumption in [19]. Indeed, [19] assumes that pk(x, 0) converge almost everywhere to H(W∞) on �0, and are iden-
tically zero on �c

0. These assumptions of [19] do not imply that (1.10) holds, because convergence in the almost 
everywhere sense is weaker than what is needed for (1.10) to hold. On the other hand, our assumptions do not imply 
that those in [19] hold. We do not need to assume convergence of the pk(x, 0) to F(W∞) on �0; for us it is enough 
only to assume that the pk are uniformly positive there. In addition, we do not require all of the pk(x, 0) to have 
the same zero set; we simply require a convergence of the zero sets. Thus, our assumptions are neither stronger nor 
weaker than those in [19].

The initial time. We discuss the behavior of the pk near the initial time. First, we point out a difference between the 
assumptions on the initial data for the limiting system (1.9) and for the system at the k-level (1.10) – the second 
condition in (1.9) states p0∞ = F(W 0∞)χ�0 ; however, at the k-level we assume only lim inf ∗pk(x, 0) > 0 on �0. 
Despite this, we are able to establish that the pk converge locally uniformly to p∞ for t > 0 (and off of ∂{n∞ > 0}).

To see why this should be the case, we look at the equation that pk satisfies, (1.4), and explain the heuristics. We 
see that if pk is even a little bit positive initially, it will approach the stable root of the reaction term for positive times 
as k approaches infinity. This causes a possible “jump” at time 0: indeed, it is even possible for the initial data pk(x, 0)

to converge to something other than p0∞, and yet for the pk to still converge to p∞ for t > 0.

Main challenges and ingredients. As mentioned above, our goal here is to obtain the convergence of the pk in a 
strong sense – namely, locally uniformly – using the viscosity solution approach. We illustrate the main ingredients 
and challenges of the proof below.

Viscosity solutions for the transport equation. A key part of our work is defining and establishing basic properties 
for viscosity solutions of (1.6). We prove a comparison result, Theorem 2.4, that is essential to the rest of the paper, 
and implies that solutions to (1.6) with continuous initial data are unique. In addition, we also establish uniqueness 
for solutions to (1.6) that have a characteristic function as initial data (see Theorem 2.7). This is an interesting and 
subtle point – in general, it is possible for a Hamilton Jacobi equation ∂tu + H(x, t, Du) = 0 to enjoy uniqueness for 
continuous solutions, but not discontinuous solutions (see the counterexample of Barles, Soner and Souganidis in [3, 
Proposition 4.4] where non-uniqueness occurs for ∂tu + (x − t)|Du| = 0 due to nucleation).

Literature on the transport equation. There is a wide literature on renormalized solutions (in the sense of DiPerna–
Lions [11]) and distributional solutions to the transport equation with quite general vector fields. In particular, 
Ambrosio’s [1, Theorem 4.1] establishes uniqueness of distributional solutions to

∂tu + Du · b(x, t) = 0

where b(·, t) ∈ BVloc(R
n) for almost all t and satisfies div(b) ∈ L1((0, T ), L∞

loc(R
n)). Our vector field DW∞ satisfies 

these hypotheses. However, the aforementioned result concerns solutions in the distributional sense. We do not know 
whether or not a viscosity solution is a distributional solution, and thus cannot immediately deduce uniqueness or 
comparison for our situation, so we establish comparison for viscosity solutions of (1.6) directly.

Generalized set evolution. Understanding the evolution of the set ∂{n∞ > 0} is key to finding the asymptotic behavior 
of our system. The heuristics indicate that this region travels with normal velocity DW∞. We want a precise and 
direct way to describe and study such evolution. For this, we extend the definition given by Barles and Souganidis 
in [2] of generalized flow to velocities that are only integrable in time. Heuristically, the definition involves testing a 
subset of Rn from the “inside” or “outside” by smoothly evolving sets. Whether a region �t is a generalized flow with 
velocity DW∞ is closely related to whether the indicator of �t is a viscosity solution of (1.6) (this is made precise in 
Theorem 3.2).
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In [2], the authors also introduce a way of studying the development of interfaces in asymptotic limits of reaction–
diffusion equations. In [15], such methods were used to study a system with no comparison principle. Although the 
methods of [2] and [15] provided a lot of inspiration for our work, we do not use the so-called “abstract approach” 
introduced in [2], and are able to proceed with more basic barrier arguments. This is mostly due to the fact that the 
equation (1.4) for pk is first order.

Issues of uniqueness. It is not known whether the solutions to (2.1) or (1.7) are unique. However, if we are given 
two triplets solving (1.7) but with the same W∞, then the pressures and densities must agree. In other words, if 
(p∞, n∞, W∞) and (p′∞, n′∞, W∞) solve (1.7), then we must have (n∞)∗ ≤ n′∞ ≤ (n∞)∗, and similarly for the pres-
sures (here u∗ and u∗ denote, respectively, the upper and lower semicontinuous envelopes of u). This is a consequence 
of Theorem 2.7, which establishes uniqueness for discontinuous viscosity solutions of the transport equation (1.6). 
This also implies, by an argument very similar to that of [3, Section 2] for classical viscosity solutions, that ∂{n∞ > 0}
enjoys the empty interior property.

Obtaining the main result. Once we have introduced the notion of generalized flow, we establish:

Proposition 1.2. For t ≥ 0, define the sets Ak , �1
t and �2

t by,

Ak
t = {x|pk(x, t) > 0}, �1

t = {x| lim inf
k→∞ ∗pk(x, t) > 0} and �2

t = {x| lim inf
k→∞ ∗dist (x,Ak

t ) > 0}.
Under the hypotheses of Theorem 1.1, we have,

(1) (�1
t )

int is a generalized superflow with velocity −DW∞, and,

(2) (�̄2
t )

c is a generalized subflow with velocity −DW∞.

(Here lim inf ∗ and lim sup ∗ are the usual weak limits. We write down the definition in Definition 4.1 for the 
convenience of the reader.) We view this proposition as the heart of our paper. It captures the basic idea that the 
limiting behavior of (1.1) can be expressed by saying where the limit of the pk is zero, where it is positive, and how 
these two regions evolve in time.

We remark on the definition of �2
t . It says that the pk are eventually zero, uniformly on compact subsets of �2

t . 
Knowing x ∈ �2

t is strictly stronger than simply lim sup ∗pk(x, t) = 0. (As an elementary example, consider the 
sequence of functions fk(x) ≡ 1/k. This sequence satisfies lim sup ∗fk = 0, and yet the fk are never eventually zero.) 
In addition, lim sup ∗pk(x, t) = 0 does not imply that the limit of the nk(x, t) is zero, but x ∈ �2

t does.
In order to deduce Theorem 1.1 from Proposition 1.2, we also study the sets �1

t and �2
t at the initial time, and 

compare them to the set �0 appearing in the hypotheses on the initial data. Then we establish that in �1
t , not only are 

the pk uniformly positive, but that they in fact converge to (Id − G)−1(W∞). Finally, use these results, together with 
estimates on the size of ∂{n∞ > 0}, to obtain the improved convergence of the Wk.

Structure of our paper. Viscosity solutions and generalized flows are defined in Section 2 and Section 3, respectively. 
There we state basic properties of these two notions and of their relationship to each other. We could not find these 
results elsewhere in our precise setting so we include their proofs. However, since this is not the main focus of our 
work, these proofs are sketched in the appendices. Section 4 is short and covers some preliminary results about (1.1)
that we use in the rest of the paper. Then, Section 5 and Section 6 are devoted to the proofs of items (1) and (2), 
respectively, of Proposition 1.2. We study the limiting behavior at the initial time in Section 7. Section 8 is devoted to 
studying the limit of the pk in the positive region. We put all of the ingredients together in Section 9 and establish our 
main result.

2. Viscosity solutions

We define a notion of solution for

∂tu + Du · V (x, t) = 0 (2.1)
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for V uniformly bounded, log-Lipschitz in x and L1 in t . Our precise hypotheses are that there exist M > 0 and N > 0
with:

|V (x, t)| ≤ M for all x, t; (2.2)

|V (x, t) − V (y, t)| ≤ σ(|x − y|) for all x, y, t, where σ(r) = Nr| ln(r)|; (2.3)

t �→ V (x, t) is integrable on (0, T ) for any x. (2.4)

We use USC and LSC to denote, respectively, the classes of real-valued upper-semicontinuous and lower-
semicontinuous functions on Rn. We will also employ the upper-semicontinuous and lower-semicontinuous envelopes, 
which we denote for a given function u by u∗ and u∗, respectively.

We follow Ishii [13] in defining viscosity solutions for (2.1). We use H to denote,

H(x, t, q) = V (x, t) · q. (2.5)

First we define:

Definition 2.1. For any open set Q ⊂R
n × [0, T ], (x0, t0) ∈ Q, and q0 ∈R

n we define H+ as:

H+(x0, t0, q0) = {(G,b) such that G ∈ C(Q ×R
n), b ∈ L1(0, T ),

G(x, t, q) + b(t) ≥ H(x, t, q) for all (x, q) ∈ Bδ(x0, q0),

almost all t ∈ Bδ(t0), some δ > 0}.
The definition H−(x0, t0, q0) is identical, except ≥ is replaced with ≤.

Definition 2.2. Let Q be an open subset of Rn.

(1) u ∈ USC is called a viscosity subsolution (resp. supersolution) in Q × (0, T ) if

∂tφ(x0, t0) + G(x0, t0,Dφ(x0, t0)) ≤ 0 (resp. ≥ 0)

holds for any φ ∈ C1(Q × (0, T )), (x0, t0) ∈ Q × (0, T ), and (G, b) ∈ H−(x0, t0, Dφ(x0, t0)) (resp. H+) such 
that

(x, t) �→ u(x, t) +
t∫

0

b(s) ds − φ(x, t)

has a local maximum (resp. minimum) at (x0, t0).
(2) u is called a viscosity solution on Q × (0, T ) with initial data u0 if u∗ is a supersolution, u∗ is a subsolution, 

u∗(x, 0) ≥ (u0)∗(x) for all x ∈ Q, and u∗(x, 0) ≤ (u0)
∗(x) for all x ∈ Q.

From now on, we often use “solution” to refer to “viscosity solution”, and similarly for sub- and super-solutions. 
We remark that if u0 and u are continuous, then u being a viscosity solution with initial data u0 simply means that u
is both a sub- and a super-solution, and equals u0 at time 0.

2.1. Basic properties

It follows directly from the definitions that if H is continuous in t , then a viscosity solution in this sense is also a 
viscosity solution in the usual sense. We record this as:

Lemma 2.3. Suppose H is continuous in t , u ∈ USC (resp. LSC) is a viscosity subsolution (resp. supersolution), 
φ ∈ C1, and u − φ has a local maximum (resp. minimum) at (x0, t0). Then

∂tφ(x0, t0) + H(x0, t0,Dφ(x0, t0)) ≤ 0 (resp. ≥ 0).
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An important property of classical viscosity solution is stability – if there is a uniformly convergent sequence of 
viscosity solutions, then the limit is also a viscosity solution. The notion of viscosity solutions we define also enjoys 
such a property. For a precise statement, we refer the reader to [13, Proposition 7.1]. The proof there carries over to 
this situation with no modifications.

We establish the following comparison theorem for viscosity solutions:

Theorem 2.4. Suppose V satisfies hypotheses (2.2), (2.3) and (2.4). Suppose u ∈ USC(Rn × [0, T ]) and v ∈
LSC(Rn × [0, T ]) are, respectively, a sub and super solution to (2.1) on Rn × [0, T ]. Then,

sup
Rn×[0,T ]

(u − v) ≤ sup
Rn

(u(x,0) − v(x,0))+.

This result is essential to our work. The proof is essentially a doubling-variables argument. It has two parts. First, 
we establish that u(x, t) − v(x, t) is a subsolution to a certain equation. This part of the proof follows [13]. These 
techniques have also been used by Bourgoing [5,4] to establish comparison and existence for solutions of second order 
PDEs with L1 time dependence. However, V is not regular enough in the space variable for any of these results to 
apply directly. The second part of the proof of Theorem 2.4 is to use that V satisfies the log-Lipschitz hypothesis (2.3)
to construct a supersolution to the equation that u(x, t) − v(y, t) satisfies, thus yielding the desired bound from above. 
The second part of the proof uses ideas from two papers that study Hamilton–Jacobi equations with coefficients that 
are not necessary Lipshitz. These are [8] of Crandall, Ishii and Lions, as well as Stromberg’s [21]. We provide the 
proof in Appendix A.

Next we prove existence and basic regularity for viscosity solutions of (2.1).

Theorem 2.5. Let V satisfy (2.2), (2.3) and (2.4). Let u0 ∈ L∞(Rn) be uniformly continuous. Then there exists a 
solution u to (2.1) on Rn with initial data u0.

Moreover, u is uniformly continuous in x and t , with modulus that depends only on the modulus of continuity of 
u0, T , and the constants M , N in (2.2) and (2.3).

The main idea of the proof is that, if V were “regular enough,” then simply the method of characteristics would 
provide a solution of (2.1). It turns out that the assumptions (2.2), (2.3) and (2.4) are enough for us to be able to 
regularize V , obtain classical solutions using the method of characteristics, and then take a limit. In fact, the description 
of u in terms of characteristics remains valid even after taking the limit, and we have:

Theorem 2.6. Under the hypotheses of Theorem 2.5, there exists unique X : (0, T ) × (0, T ) ×R
n →R

n satisfying,

X(s, t, x) = x +
s∫

t

V (X(r, t, x), r) dr, (2.6)

and we have u(x, t) = u0(X(0, t, x)). Moreover, for every t > 0 the map �t defined by, �t(x) = X(t, 0, x) is Holder 
continuous with exponent exp(−Nt), where N is the constant in (2.3).

This characterization of u is useful to us for several reasons. First, it will allow us to deduce information about 
the size and regularity of the set ∂{n∞ > 0}, which, according to Theorem 1.1, is the only region on which we “don’t 
know” what the limit of the pk is. Second, it connects the notion of generalized flow that we introduce in the next 
section and use in the rest of the paper with more classical notions. The proofs of Theorem 2.5 and Theorem 2.6 are 
in Appendix B.

2.2. Discontinuous viscosity solutions to (2.1)

It is clear that Theorem 2.4 implies uniqueness of continuous viscosity solutions to (2.1). The situation for discon-
tinuous solutions is more subtle. In fact, as described in the introduction, there are equations for which uniqueness 
holds in the class of continuous solutions, but not in the class of discontinuous solutions. We use Theorem 2.4, together 
with Theorem 2.6, to establish existence and uniqueness of viscosity solutions to (2.1) with initial data a characteristic 
function:
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Theorem 2.7. Let �0 be an open, bounded domain in Rn and let V satisfy (2.2), (2.3) and (2.4). Then there exists a 
viscosity solution u of (2.1) with initial data u0(x) := χ�0(x). Moreover, we have,

u(x, t) = χ�t (x), where �t := {x : X(0, t, x) ∈ �0}, (2.7)

where X is the unique map satisfying (2.6). And, u is unique, in the sense that any other viscosity solution of (2.1) is 
between u and u∗ = χ�̄t

.

In order to establish the uniqueness result stated here, we are taking advantage of the special form of u in terms of 
the flow X. The proof is at the end of Appendix B.

3. Generalized flows

We introduce a notion of generalized flows with velocity V (x, t), where V satisfies (2.2), (2.4) and (2.3). Through-
out, we use �int to denote the interior of the set �.

Definition 3.1. Let (�t)t∈(a,b) be a family of open subsets of Rn, and let V satisfy (2.2), (2.3), and (2.4).

• The family (�t )t∈(a,b) is called a generalized superflow with velocity V if for all x̄ ∈R
n, t ∈ (a, b), r > 0, α > 0

and for all smooth functions φ : Rn →R such that

{x : φ(x) ≥ 0} ⊂ �t ∩ Br(x̄),

with |Dφ| 
= 0 on {x : φ(x) = 0}, there exists h̄ > 0 such that for all h ∈ (0, h̄),⎧⎨
⎩x : φ(x) −

t+h∫
t

V (x, s) · Dφ(x)ds − hα > 0

⎫⎬
⎭ ∩ B̄r (x̄) ⊂ �t+h,

and h̄ depends only on α, ||φ||C3(Br (x̄)), and the constant M that appears in the hypotheses (2.2), (2.3), and (2.4).
• The family (�t )t∈(a,b) is called a generalized subflow with velocity V if for all x̄ ∈ R

n, t ∈ (a, b), r > 0, α > 0
and for all smooth functions φ : Rn →R such that

{x : φ(x) ≤ 0} ⊂ �̄c
t ∩ Br(x̄),

with |Dφ| 
= 0 on {x : φ(x) = 0}, there exists h̄ > 0 such that for all h ∈ (0, h̄),⎧⎨
⎩x : φ(x) −

t+h∫
t

V (x, s) · Dφ(x)ds − hα < 0

⎫⎬
⎭ ∩ B̄r (x̄) ⊂ �̄c

t+h,

and h̄ depends only on α, ||φ||C3(Br (x̄)), and the constant M that appears in the hypotheses (2.2), (2.3), and (2.4).

Whether �t is a generalized flow with velocity V is closely related to whether χ� − χ�̄c is a solution of (2.1). 
Precisely:

Theorem 3.2. Let V satisfy (2.2), (2.3), and (2.4).

(1) (χ�(x, t) − χ�̄c (x, t))∗ is a supersolution of (2.1) on Rn × [0, T ] if and only if (�int
t )t∈[0,T ] is a generalized 

superflow with velocity V .
(2) (�int

t )t∈[0,T ] is a generalized subflow with velocity V if and only if (χ�(x, t) − χ�̄c (x, t))∗ is a subsolution of 
(2.1) on Rn × [0, T ].

The proof follows along the lines of the proof of Theorem 2.4 of [2]. The key idea is that, for any (smooth enough) 
function φ, the function ψ defined by,
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ψ(x, r) = φ(x) −
r∫

t

H (x, s,Dφ(x)) ds − (r − t)α/2

“should be” a subsolution of the equation (2.1). Indeed, if H were differentiable in x and continuous in t , we’d have,

Dψ(x, r) = Dφ(x) −
r∫

t

Hp(x, s,Dφ(x))D2φ(x) + Hx(x, s,Dφ(x)) ds,

and hence Dψ(x, r) = Dφ(x) + O(|r − t |). Taking the derivative of ψ in r yields,

ψr(x, t) = H(x, r,Dφ(x)) − α/2,

and since Dψ(x, r) = Dφ(x) +O(|r − t |), we find that the right-hand side of the previous line is bounded from above 
by H(x, r, Dψ(x, r)) for r close enough to t .

To make these ideas precise, we regularize H in the space variable before carrying out this argument. We do so in 
the following lemma, which will also be useful to us in Section 5. The proofs of the lemma and of Theorem 3.2 are 
in Appendix C.

Lemma 3.3. Let φ ∈ C3(Rn) and let α > 0. We take H(x, t, p) = p · V (x, t), where V satisfies (2.2), (2.3), and (2.4). 
Let ρ be a standard bump function, supported on B1(0) and with 0 ≤ ρ ≤ 1 everywhere, and let ρε(x) = 1

εn ρ
(

x
ε

)
. 

Define Hε as the convolution in x of H and ρ; namely,

Hε(x, t, q) =
∫

y∈Rn

H(x − y, t, q)ρε(y) dy.

Define ψε and ψ̄ε by,

ψε(x, r) = φ(x) −
r∫

t

H ε(x, s,Dφ(x)) ds − (r − t)α/2 (3.1)

and

ψ̄ε(x, r) = φ(x) −
r∫

t

H ε(x, s,Dφ(x)) ds + (r − t)α/2.

There exist constants ε1 > 0 and h̄ > 0, both depending only on α, ||φ||C3(Rn) and the constant N in (2.3), such that 
ψε1 is a subsolution and ψ̄ε1 is a supersolution of (2.1) on Rn × (t, t + h̄). Moreover, for this same ε1 we have, for all 
x ∈R

n and for all t ,

|Hε1(x, t,Dφ(x)) − H(x, t,Dφ(x))| ≤ α

4
. (3.2)

4. Preliminaries

Now that we have introduced the notions of viscosity solution and generalized flow that we will be using, we are 
almost ready to study the limit of our system. However, we first need to take care of a few preliminaries. We recall 
that pk satisfies (1.4). For the remainder of the paper we take ν = 1. Indeed, if pk , Wk , G are as in the introduction, 
then p̃k , W̃k , G̃ given by,

p̃k(x, t) = pk(
√

νx, νt); W̃k = Wk(
√

νx, νt); G̃(u) = νG(u),

satisfy{
∂tpk − Dpk · DWk = kpk(Wk − pk + G(pk)),

−ν�Wk + Wk = pk.
(4.1)
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(We have also renumbered, so that k + 1 becomes k.) Thus our assumption ν = 1 does not result in any loss of 
generality. We will focus on (4.1) for the remainder of the paper.

First, we recall for the reader the standard definition of weak limit that we use throughout the paper:

Definition 4.1. Let {uk} be a sequence of functions. We define:

lim inf
k→∞ ∗uk(x, t) = lim

k→∞ inf{uj (y, s) : j ≥ k and |(x, t) − (y, s)| ≤ k−1},
and,

lim sup
k→∞

∗uk(x, t) = lim
k→∞ sup{uj (y, s) : j ≥ k and |(x, t) − (y, s)| ≤ k−1}.

Next, we summarize the results on the system (4.1) that we will use from [19].

Lemma 4.2. Let pk and Wk satisfy (4.1) with initial data satisfying (1.10). We have,

0 ≤ Wk ≤ PM and (4.2)

0 ≤ pk ≤ PM. (4.3)

In addition, there exists W∞ ∈ C(Rn × (0, T )) ∩L∞((0, T ), W 1,∞(Rn)) satisfying (1.3) and such that DW∞ satisfies 
(2.2), (2.3) and (2.4) and, along a subsequence (still denoted by Wk),

DWk converge strongly in L1((0, T ),L∞
loc(R

n)) to DW∞ (4.4)

and the Wk converge to W∞ locally uniformly.

Proof. Items (4.3) and (4.4), as well as the fact that DW∞ satisfies (2.2) and (2.4), follow directly from the statement 
of [19, Lemma 2.1]. Item (4.2) follows from (4.3) and the maximum principle for the equation that Wk satisfies. That 
W∞ satisfies (1.3) is exactly [19, equation (1.14)]. Since p∞ is, in particular, a function in L∞, classical results (see, 
for example, [20]) yield that DW∞ satisfies (2.3).

The uniform estimates Wk ∈ L∞((0, T ), W 1,q (Rd)) and ∂tWk ∈ L1((0, T ), Lq(Rd)), for 1 ≤ q ≤ ∞ of [19, 
Lemma 2.1] imply that the Wk are equicontinuous. According to (4.2) the Wk are also uniformly bounded. Hence, by 
the Arzela Ascoli Theorem, we also have that the Wk converge locally uniformly to W∞ along a further subsequence. 
In particular, we conclude W∞ is continuous. �

Finally we establish some elementary properties of G and of the reaction term in (4.1) that we will use throughout 
the remainder of the paper.

Lemma 4.3. Suppose G satisfies (1.2) and that the family Wk satisfies (4.2). Then we have:

G(u) ≥ ᾱ(PM − u), (4.5)

u(Wk − u + G(u)) ≥ u(ᾱPM − (1 + ᾱ)u), and (4.6)

u(Wk − u + G(u)) ≤ u(1 + ᾱ)PM (4.7)

for all u ∈ [0, PM ]. In addition, we have F ′(u) ∈ (0, 1) for all u, and F(W∞(x, t)) ∈ (0, PM ] for any (x, t), where 
W∞ is as in Lemma 4.2 and F is given by (1.8).

Proof. First we examine the function G. The properties of G in (1.2) imply, for u ∈ [0, PM ],

−G(u) = G(PM) − G(u) =
PM∫
u

G′(r) dr ≤
PM∫
u

−ᾱ dr = −ᾱ(PM − u),

which implies that (4.5) holds. Next we use (4.5) to obtain a lower bound on our reaction term:

u(Wk − u + G(u)) ≥ u(Wk − u + ᾱ(PM − u)) = u(Wk + ᾱPM − (1 + ᾱ)u).
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Using Wk ≥ 0, we find,

u(Wk − u + G(u)) ≥ u(ᾱPM − (1 + ᾱ)u).

To obtain the bound from above we use the estimate Wk ≤ PM and obtain,

u(Wk − u + G(u)) ≤ u(PM − u + G(u)).

Since −G is increasing and u ≥ 0, we have u − G(u) ≥ −G(0). Since, by (4.5), G(0) ≥ ᾱPM , we have,

u(Wk − u + G(u)) ≤ u(1 + ᾱ)PM. (4.8)

The first assertion about F is line (1.7) of [19], where H is used instead of F . We have that (Id − G) maps 
[−G(0), PM ] onto [0, PM ], and G(0) > 0. Hence if u ∈ [0, PM ], we have F(u) ≤ PM . Moreover, F(−G(0)) = 0. 
Together with the fact that F is increasing, this implies that F(u) > 0 holds for u > 0. According to Lemma 4.2, 
0 ≤ W∞ ≤ PM . Thus the second assertion about F holds as well. �
5. Superflow

Now we will establish item (1) of Proposition 1.2. In this section we use Vk and V to denote,

Vk = DWk and V = DW∞. (5.1)

And, we use f (u) and ā to denote,

f (u) = u(ᾱPM − (1 + ᾱ)u), ā = ᾱPM(1 + ᾱ)−1.

According to (4.6) of Lemma 4.3, pk is a supersolution of

∂tu − Du · Vk − kf (u) = 0. (5.2)

In the following lemma we construct a barrier that we will use in this proof.

Lemma 5.1. Assume the hypotheses of Theorem 1.1. Let x0 ∈ R
n, r > 0, t0 > 0 and let φ be a smooth function with 

{φ ≥ 0} ⊂ Br(x0). Let a ∈ (0, ā), β > 0. There exists h̄ > 0, that does not depend on β or a, and a subsolution 
�k,β,a(x, t) of (5.2) in Rn × (t0, t0 + h̄) such that

�k,β,a(·, t0) ≤ aχ{φ≥β} (5.3)

for all k large. And, if (x, h) ∈ Br(x0) × (0, h̄) is such that

φ(x) +
t0+h∫
t0

V (x, s) · Dφ(x)ds − hα > 2β (5.4)

holds, then

lim inf
k→∞ ∗�k,β,a(x, t0 + h) = a.

Proof of Lemma 5.1. Let us assume, without loss of generality, t0 = 0.
Let (Vk)

ε be the regularization of Vk in space defined in Lemma 3.3. We define ψ and ψk by:

ψ(x, t) = φ(x) +
t∫

0

Dφ(x) · V (x, s) ds − tα − 2β,

ψk(x, t) = φ(x) +
t∫
Dφ(x) · (Vk)

ε(x, s) ds − t
α

2
− 2β.
0
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Notice that ψk = ψε − 2β , where ψε is as defined in Lemma 3.3. In particular, since, according to Lemma 4.2, we 
have that the Vk satisfy (2.2) and (2.3) uniformly in k, Lemma 3.3 implies that there exists ε > 0 and h̄ such that for 
all k, ψε , and therefore ψk , is a viscosity subsolution of

∂tψ
k − Dψk · Vk ≤ 0 (5.5)

on Rn × (0, h̄). Moreover, since each of the Vk is continuous in t , Lemma 2.3 implies that ψk satisfies (5.5) in the 
classical viscosity sense.

We also recall that, according to Lemma 3.3,

|Dφ(x) · Vk(x, s) − Dφ(x) · (Vk)
ε(x, s)| ≤ α

4

for all x and for all s > 0. We use this to estimate the difference in size between ψ and ψk :

ψ(x,h) − ψk(x,h) =
h∫

0

(V (x, s) − (Vk)
ε(x, s)) · Dφ(x)ds − α

2
h

≤
h∫

0

(V (x, s) − Vk(x, s)) · Dφ(x)ds − α

4
h

≤ ||Dφ||∞
h∫

0

|V (x, s) − Vk(x, s)|ds − α

4
h.

Since Vk → V in L1((0, T ), L∞(Rn))), we have that the right-hand side of the previous line is non-positive for all k
large enough and for all x, s. Thus we find,

ψ(x, s) ≤ ψk(x, s) (5.6)

for all x, for all k large enough, and for all s > 0.
Next let us take q : R → [0, a] to be a smooth non-decreasing function on R with q(−1) = 0 and q(1) = a, and 

define �k,β,a by,

�k,β,a(x, t) = q(kψk(x, t)).

Since β and a are fixed throughout this proof, we will no longer write them in the superscript. We remark that 
f (�k) ≥ 0 holds since 0 ≤ q(ζ ) < a < ā for all ζ and f ≥ 0 on [0, ā]. We have,

∂t�
k − Vk(x, t) · D�k = q̇kψk

t − q̇kVk(x, t) · Dψk = q̇k[ψk
t − Vk(x, t) · Dψk] ≤ 0,

where the inequality holds for t ∈ (0, h̄), and follows from (5.5) and because q̇ ≥ 0. Finally, since f (�k) ≥ 0, we 
find,

∂t�
k − Vk(x, t) · D�k ≤ kf (�k),

so that �k is a subsolution to (5.2) on (0, h̄).
Let us now check the behavior of the �k at time 0. The definitions of �k and ψk yield:

�k(x,0) = q(k(φ(x) − 2β)). (5.7)

Let us suppose x is such that φ(x) < β . This implies that, for all k ≥ 1/β ,

φ(x) ≤ 2β − k−1.

The previous line holds if and only if

k(φ(x) − 2β) ≤ −1.

Applying q , which is non-decreasing, yields,
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q(k(φ(x) − 2β)) ≤ q(−1) = 0.

Together with (5.7), this implies that if x is such that φ(x) < β , then �k(x, 0) = 0. In addition, �k(x, 0) ≤ a for all x. 
Thus, we have shown that (5.3) holds.

Now we study the lim inf of the �k . Since q is non-decreasing for each k, (5.6) implies,

q(kψ(x, t)) ≤ q(kψk(x, t)) = �k(x, t), (5.8)

where the equality is simply the definition of �k.
Now suppose (x, t) is such that (5.4) holds (with t0 = 0 and t instead of h). This says exactly that ψ(x, t) > 0, 

so that ψ(y, s) > 0 for all (y, s) ∈ Br̃(x, t) for some r̃ ≥ 0. Therefore there exists K such that kψ(y, s) > 1 for all 
(y, s) ∈ Br̃(x, t) and for k ≥ K . Applying q , which is non-decreasing, and then using that q(1) = a yields,

q(kψ(y, s)) ≥ q(1) = a for all (y, s) ∈ Br̃(x, t).

We now use (5.8) to estimate the left-hand side of the previous line from above and find,

�k(y, s) ≥ a for all (y, s) ∈ Br̃(x, t).

Therefore, taking lim inf ∗ gives lim infk→∞ ∗�k(x, t) ≥ a. �
Proof of item (1) of Proposition 1.2. Let x̄ ∈ R

n, t ∈ (0, T ), r > 0, α > 0 and let φ : Rn → R be a smooth function 
such that

{x : φ(x) ≥ 0} ⊂ (�1
t )

int ∩ Br(x̄),

with |Dφ| 
= 0 on {x : φ(x) = 0}. Let us use Aβ,h to denote,

Aβ,h =
⎧⎨
⎩x|φ(x) +

t+h∫
t

V (x, s) · Dφ(x)ds − hα > 2β

⎫⎬
⎭ .

Let h̄ be as given by Lemma 5.1. We fix some β > 0 for the remainder of the proof. We will establish that for 
h ∈ (0, h̄),

Aβ,h ⊂ (�1
t+h)

int .

Since β is arbitrary, establishing the previous line will complete the proof.
That {x : φ(x) ≥ 0} is contained in (�1

t )
int ∩ Br(x̄) implies that there exists a > 0 with lim inf ∗pk ≥ 2a on {x :

φ(x) ≥ 0}, and so, for all k large enough and x such that φ(x) ≥ 0, we have pk(x, t) ≥ a. Since pk ≥ 0 everywhere, 
we find, for all k large enough, and for all x,

pk(x, t) ≥ aχ{φ≥0}(x, t) ≥ aχ{φ≥β}(x, t). (5.9)

Let us use �k(x, t) to denote �k,β,a(x, t) as given in Lemma 5.1. According to (5.9) and (5.3),

pk(x, t) ≥ �k(x, t) for all x ∈ R
n.

In addition, �k is a subsolution of (5.2) on (t, t + h̄), and pk is a supersolution of (5.2). Therefore, we have, for all 
h ∈ (0, h̄),

pk(x, t + h) ≥ �k(x, t + h) for all x ∈R
n.

Now let y ∈ Aβ,h. Since Aβ,h is an open set, there exists r̃ such that Br̃(y) ⊂ Aβ,h. Thus let take x ∈ Br̃(y) and take 
lim inf∗ of the previous line and find,

lim inf ∗pk(x, t + h) ≥ lim inf ∗�k(x, t + h).

Since x ∈ Aβ,h, Lemma 5.1 implies that the right-hand side of the previous line equals a. Therefore, lim inf∗ pk(x,

t + h) ≥ a > 0, which means x ∈ �1
t+h, and hence y ∈ (�1

t+h)
int , as desired. �
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6. Subflow

In this section we prove item (2) of Proposition 1.2. As in the previous section, we will employ the notation (5.1). 
In addition, we will use that, according to (4.7) and (4.1), pk is a subsolution of,

∂tu − Du · Vk − ku(1 + ᾱ)PM = 0. (6.1)

We first construct suitable supersolutions to (6.1) in:

Lemma 6.1. Assume the hypotheses of Theorem 1.1. Let x0 ∈ R
n, t0 ≥ 0, r > 0, and let φ be a smooth function with 

{φ ≤ 0} ⊂ Br(x0). There exists h̄ > 0 and a supersolution �k(x, t) of (6.1) in Rn × (t0, t0 + h̄) such that

�k(·, t0) ≥ PMχ{φ>0} (6.2)

for all k. And, if (x, h) ∈ Br(x0) × (0, h̄) is such that

φ(y) +
t0+h′∫
t0

V (y, s) · Dφ(y)ds + h′α < 0 holds for (y,h′) ∈ B̄r̃ (x, h) (6.3)

for some r̃ > 0, then there exists K such that

�k(y, t0 + h′) = 0 for (y,h′) ∈ B̄r̃ (x, h) for all k ≥ K.

Proof. The proof of this lemma is similar to that of Lemma 5.1, so we omit some details. Without loss of generality 
we take t0 = 0, and we write t instead of h. We take ψ̄k as in Lemma 3.3 and ψ̄ to be:

ψ̄(x, t) = φ(x) +
t∫

0

Dφ(x) · V (x, s) ds + tα,

ψ̄k(x, t) = φ(x) +
t∫

0

Dφ(x) · (Vk)
ε(x, s) ds + t

α

2
.

As in Lemma 5.1, we find that there exists ε > 0 and h̄ such that for all k, ψ̄k is a viscosity solution (in the classical 
sense) of

∂t ψ̄
k − Dψ̄k · Vk ≥ 0 (6.4)

on Rn × (0, h̄). And, again similarly to Lemma 5.1, we find

ψ̄(x, s) ≥ ψ̄k(x, s) (6.5)

for all x and for all s > 0.
Next let us take q : R → [0, a] to be a smooth non-decreasing function on R with q(−1) = 0 and q(0) = PM , and 

define �k by,

�k(x, t) = q(kψ̄k(x, t))ek(1+ᾱPM)t .

We have,

∂t�k − Vk(x, t) · D�k = k(1 + ᾱPM)�k + q̇kψ̄k
t ek(1+ᾱPM)t − q̇kVk(x, t) · Dψ̄ek(1+ᾱPM)t

= k(1 + ᾱPM)�k + q̇k[ψ̄k
t − Vk(x, t) · Dψ̄]ek(1+ᾱPM)t

≥ k(1 + ᾱPM)�k,

where the last line holds for t ∈ (0, h̄), and follows from (6.4) and because q̇ ≥ 0. Thus we find that �k is a superso-
lution to (6.1) on (0, h̄).
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Let us now check the behavior of the �k at time 0. The definitions of �k and ψ̄k yield:

�k(x,0) = q(kψ̄(x)). (6.6)

Let us suppose x is such that ψ̄(x) > 0. Applying q , which is non-decreasing, yields,

q(kψ̄(x)) ≥ q(0) = PM.

Together with (6.6), this implies that if x is such that ψ̄(x) > 0, then �k(x, 0) = PM . In addition, �k(x, 0) ≥ 0 for 
all x. Thus, we have shown that (6.2) holds.

Now suppose (x, t) is such that (6.3) holds on B̄r̃ (x, t) for some r̃ . This says exactly that ψ̄(y, s) < 0 on B̄r̃ (x, t). 
Since ψ̄ is continuous, there exists α > 0 so that

ψ̄(y, s) < −α for (y, s) ∈ B̄r̃ (x, t),

and hence there exists K so that for k ≥ K ,

kψ̄(y, s) ≤ −1 for (y, s) ∈ B̄r̃ (x, t).

Applying q yields,

q(kψ̄(y, s)) ≤ q(−1) = 0,

so that, upon multiplying by ek(1+ᾱPM)s we find,

�k(y, s) = q(kψ̄(y, s))ek(1+ᾱPM)s ≤ 0,

and therefore �k(y, s) = 0 for k ≥ K and (y, s) ∈ B̄r̃ (x, t). �
We are now ready to present:

Proof of item (2) of Proposition 1.2. The claim of this proposition is that ((�̄2
t )

c)t is a generalized subflow. Let us 
recall that �̄c

t appears in the definition of � being a generalized subflow. Taking �t = ((�̄2
t )

c)t yields

�̄c
t = (�2

t )
int .

Thus, let us take x̄ ∈ R
n, t0 ∈ (0, T ), r > 0, α > 0, and a smooth function φ such that

{x : φ(x) ≤ 0} ⊂ (�2
t )

int ∩ Br(x̄),

and with |Dφ| 
= 0 on {φ = 0}. Let us use Eh to denote,

Eh =
⎧⎨
⎩x|φ(x) +

t+h∫
t

V (x, s) · Dφ(x)ds + hα < 0

⎫⎬
⎭ .

Let h̄ be as given by Lemma 6.1. We will establish Eh ⊂ (�2
t+h)

int for h ∈ (0, h̄).
That {x : φ(x) ≤ 0} is contained in (�2

t )
int ∩ Br(x̄) implies that there exists K such that pk(x, t) = 0 on {x :

φ(x) ≤ 0} for all k ≥ K . Since pk ≤ PM everywhere (this is exactly equation (4.3) of Lemma 4.2), we find, for all 
k ≥ K , and for all x,

pk(x, t) ≤ PMχ{φ>0}(x, t). (6.7)

Let �k be as given in Lemma 6.1. According to (6.7) and (6.2), we have,

pk(x, t) ≤ �k(x, t) for all x ∈ R
n.

In addition, we have that �k is a supersolution of (6.1) on (t, t + h̄), and pk is a subsolution of (6.1). Therefore, we 
have, for all h ∈ (0, h̄),

pk(x, t + h) ≤ �k(x, t + h) for all x ∈R
n.
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Now let x ∈ Eh. Since

(x,h) �→ φ(x) +
t+h∫
t

V (x, s) · Dφ(x)ds + hα

is continuous, we find there exists r̃ such that y ∈ Eh′ for (y, h′) ∈ B̄r̃ (x, h). Thus, according to Lemma 6.1, there 
exists K such that for all k ≥ K and all (y, h′) ∈ B̄r̃ (x, h), we have �k(y, t + h′) = 0. The previous line therefore 
implies

pk(y, t + h′) = 0 for (y,h′) ∈ B̄r̃ (x, h), k ≥ K.

We recall Ak
t+h′ = {x|pk(x, t + h′) > 0}, so from the previous line we find,

dist (y,Ak
t+h′) ≥ r̃/2 for (y,h′) ∈ Br̃/2(x,h), k ≥ K,

and hence

lim inf ∗dist (y,Ak
t+h) > 0 for y ∈ Br̃/4(x).

This means exactly y ∈ (�2
t+h)

int . Thus Eh ⊂ (�2
t+h)

int , as desired. �
7. Limiting behavior at the initial time

We established that, for t > 0, (�1
t )

int is a superflow, and (�̄2
t )

c is a subflow, with velocity −DW∞. In this section 
we will study these sets at the initial time t = 0.

Proposition 7.1. Under the assumptions of Theorem 1.1,

(1) �int
0 ⊂ (�1

0)
int , and

(2) (�̄0)
c ⊂ (�2

0)
int .

7.1. Positive region

We prove the first part of Proposition 7.1. We use f to denote,

f (u) = u(αPM − (1 + α)u).

We will construct a barrier from the solution to the ODE described in the following lemma:

Lemma 7.2. For each ξ ∈ R there exists a unique solution ω(ξ, t) of the ODE,

∂tωt = f (ω) for t ∈ [0,∞); ω(0) = ξ,

with ∂ξω(ξ, s) > 0 on R × (0, ∞), and ∂tω(ξ, s) ≥ 0 on (0, ∞) × (0, ∞).

Proof. This ODE has the solution: ω(0, t) ≡ 0, and for ξ > 0 we have,

ω(ξ, t) = ᾱPM

1 + ᾱ + (ᾱPMξ−1 − (1 + ᾱ))e−ᾱPMt
.

From this we can explicitly verify that ω has the desired properties. �
Proof of first part of Proposition 7.1. According to (4.6), we have that pk is a supersolution of,

∂tu − Vk · Du = kf (u).

Let x0 ∈ (�0)
int , so that there exists r > 0 with B2r (x0) ⊂ �0. Assumption (1.10) implies that there exists a > 0

such that, for k large enough and x ∈ B2r (x0), we have pk(x, 0) ≥ a. Let ψ be a smooth function with,
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0 ≤ ψ ≤ a in R
n, ψ = 0 on R

n \ B2r (x0), ψ = a on Br(x0).

We remark that ψ is chosen so that,

ψ(x) ≤ pk(x,0) for all x ∈R
n and all k large enough. (7.1)

Let ω(ξ, t) be as in Lemma 7.2. We define wk by,

wk(x, t) = ω((ψ(x) − Kt), kt),

where we take K to be K = 1/(M sup |Dψ |). We have,

∂twk − Vk · Dwk − kf (wk) = −K∂ξω + k∂tω − Vk · (∂ξωDψ) − kf (ω).

The sum of the second and fourth terms is zero, due to the ODE that ω satisfies. Thus we find,

∂twk + Vk · Dwk − kf (wk) = ∂ξω(−K − Vk · Dψ).

Since ∂ξω > 0, our choice of K implies that the right-hand side of the previous line is non-positive, and thus wk is a 
subsolution to the equation for uk . In addition, at time 0 we have,

wk(x,0) = ω(ψ(x),0) = ψ(x).

Together with (7.1), this implies that, for all k large enough, wk(x, 0) ≤ pk(x, 0) for all x ∈ R
n. The comparison 

principle thus implies that for all k large enough,

wk(x, t) ≤ pk(x, t) for all (x, t) ∈ R
n × (0,∞). (7.2)

We will now establish an appropriate bound from below on wk, and then use (7.2) to deduce the desired estimate 
on the limit of the pk . By definition of ψ , we have ψ(x) = a for x ∈ Br(x0). Together with the definition of wk this 
implies, for x ∈ Br(x0),

wk(x, t) = ω((a − Kt), kt).

For t ≤ aK−1/2, we have a − Kt ≥ a/2. Since ω is non-decreasing in ξ , we find that for x ∈ Br(x0) and for t ≤
aK−1/2,

ω((a − Kt), kt) ≥ ω(a/2, kt).

In addition, since ω is non-decreasing in t for ζ > 0, we have, for all t ,

ω(a/2, kt) ≥ ω(a/2,0) = a/2,

where the equality follows since ω satisfies ω(ξ, 0) = ξ . Putting the three previous lines together thus yields, for 
x ∈ Br(x0) and for t ≤ aK−1/2,

wk(x, t) ≥ a/2.

We use this to bound the left-hand side of (7.2) from below and find,

a/2 ≤ pk(x, t) for x ∈ Br(x0) and for t ≤ aK−1/2.

Thus we have for x ∈ Br/2(x0),

lim inf ∗pk(x0,0) ≥ a/2 > 0,

which means x0 ∈ (�1
0)

int , as desired. �
7.2. Zero region

In this subsection we study the behavior of lim sup ∗pk at time zero and establish the second part of Proposition 7.1. 
In the following lemma we construct a barrier.
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Lemma 7.3. Let M > 0, r > 0 and x0 ∈ R
n. The equation

∂tv − M|Dv| = 0

has a solution v̄(x, t) on B2r (x0) × [0, r
2M

] with v̄(x, 0) ≡ 0 on Br(x0), v̄(x, t) = PM on ∂B2r (x0) ×
[
0,

r

2M

]
, and 

v̄(x, t) ≡ 0 on Br/2(x0) ×
(

0,
r

2M

)
.

Proof of Lemma 7.3. Let φ : R → [0, PM ] be a smooth and non-decreasing function satisfying,

φ(ξ) = 0 for ξ ≤ r, φ(ξ) = PM for ξ ≥ 2r,

and define,

v̄(x, t) = φ(|x − x0| + Mt).

We remark that, although |x − x0| + Mt is not differentiable at x = x0, we still have that v̄(x, t) is differentiable at x0
so long as Mt ≤ r , which is the case in the region we consider. The desired properties thus follow in a straight-forward 
way from the definitions. �
Proof of second part of Proposition 7.1. Let us take x0 ∈ (�̄0)

c . Let r > 0 be such that B̄2r (x0) ⊂ (�̄0)
c. Our as-

sumption (1.10) on pk(x, 0) implies that there exists K large so that for k ≥ K we have

pk(x,0) = 0 for all x ∈ B̄2r (x0). (7.3)

Let v̄ be as in Lemma 7.3, and define,

wk(x, t) = v̄(x, t)e(1+ᾱPM)kt .

We check that wk is a supersolution to the equation for pk . To this end, we compute:

∂twk = (∂t v̄ + v̄(x, t)(1 + ᾱPM)k)e(1+ᾱPM)kt = ∂t v̄e(1+ᾱPM)kt + (1 + ᾱPM)kwk,

and

−Vk · Dwk = −e(1+ᾱPM)ktVk · Dv̄ ≥ −e(1+ᾱPM)ktM|Dv̄|,
where the inequality follows from the uniform bound (2.2) on Vk of Lemma 4.2. Putting this together with ∂twk yields

∂twk − Vk · Dwk ≥ (1 + ᾱPM)kwk + (∂t v̄ − M|Dv̄|)e(1+ᾱPM)kt ≥ (1 + ᾱPM)kwk,

where the last inequality follows because of the equation that v̄ satisfies. By the estimate (4.7) on the reaction term of 
the equation for pk , we have that pk is a subsolution of,

∂tu − Vk · Du = (1 + ᾱPM)ku.

Using (7.3), (4.3) and Lemma 7.3, it is easy to check that pk(x, 0) ≤ wk(x, 0) holds on the parabolic boundary of 
B2r (x0) × (0, r

2M
) (we omit the details). The comparison principle therefore implies,

pk(x, t) ≤ wk(x, t) on B2r (x0) ×
(

0,
r

2M

)
and for k ≥ K .

Let us now take x ∈ Br/2(x0) and t ∈ (0, r/2M). According to Lemma 7.3, we have v̄(x, t) = 0. Therefore, the 
definition of wk says that we have wk(x, t) = 0 · e(1+ᾱPM)kt = 0. The previous line therefore implies

pk(x, t) ≤ 0 on Br/2(x0) ×
(

0,
r

2M

)
and for k ≥ K .

Therefore,

dist (x,Ak
t ) ≥ r/4M for (x, t) ∈ Br/4(x0) ×

(
0,

r

4M

)
and for k ≥ K.

This implies,

lim inf ∗dist (x,Ak
0) > 0 on Br/4(x0),

so in particular x0 ∈ (�2)int
0 , as desired. �
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8. Convergence in the positive region

So far we have shown that the region

�1
t = {x| lim inf ∗pk(x, t) > 0}

is a superflow with velocity −DW∞. Now we will establish:

Proposition 8.1. Let Q be a compact subset of {(x, t)|t > 0, x ∈ (�1)int
t }. Then pk converges uniformly on Q to 

F(W∞(x, t)), where F is given by (1.8).

Proof. Let (x0, t0) ∈ Q. We will establish,

lim inf ∗pk(x0, t0) ≥ (Id − G)−1(W∞(x0, t0)) ≥ lim sup ∗pk(x0, t0),

which implies the desired result.
There exists r0 < 1 with Br0(x0) ⊂ �1

t for |t − t0| ≤ r0, and t0 − r0 > 0. Thus there exists a > 0 such that, for k
large enough,

pk(x, t) ≥ a/2 for (x, t) ∈ Qr0(x0, t0), (8.1)

where we use Qr(x0, t0) to denote the cylinder, Qr(x0, t0) = Br(x0, t0) × [t0 − r, t0 + r].
Let us fix ε > 0. Due to the uniform convergence of the Wk (see Lemma 4.2), we have that there exists r ∈ (0, r0)

such that for all k large enough,

|Wk(x, t) − W∞(x0, t0)| ≤ ε for (x, t) ∈ Qr(x0, t0). (8.2)

For the remainder of this proof we use β to denote β = W∞(x0, t0). According to Lemma 4.3,

F(β) ∈ (0,PM ]. (8.3)

Step one. In this step we will establish,

lim sup ∗pk(x0, t0) ≤ F(β). (8.4)

Using (8.2) and (4.1), together with the uniform bound (4.3), yields that pk is a subsolution of,

∂tpk − Dpk · DWk ≤ kPM(W∞(x0, t0) + ε − pk + G(pk)) (8.5)

on Qr(x0, t0), where we assume without loss of generality PM ≥ 1.
Let ψ : R+ →R be a smooth non-decreasing function such that,

1 ≤ ψ ≤ PM, ψ(z) ≡ 1 for z ≤ r/4, ψ(z) ≡ PM

F(β)
for z ≥ r/2.

(According to (8.3), we have PM

F(β)
∈ (1, ∞), and hence such a ψ exists.) Define

g(t) = F(β) + PMe−k(t−(t0−r/8M)) + ε,

and

v(x, t) = g(t)ψ(|x − x0| + M(t − (t0 − r/8M))).

First we establish that v ≥ pk holds on the parabolic boundary of Q := Br(x0) × (t0 − r/8M, t0 + r/8M). To this end, 
we first take x ∈ ∂Br(x0) and t ∈ (t0 − r/8M, t0 + r/8M). We have,

|x − x0| + M(t − (t0 − r/8M)) ≥ |x − x0| = r.

Since ψ is non-decreasing, we find

ψ(|x − x0| − M(t − (t0 − r/8M))) ≥ ψ(r) = PM

F(β)
,

where the equality follows from our choice of ψ . Thus we have,
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v(x, t) ≥ g(t)
PM

F(β)
≥ PM.

Next we take x ∈ Br(x0) and look at the initial time t0 − r/8M , to find,

v(x, t0 − r/8M) ≥ g(t0 − r/8M) = (F (β) + PM + ε) ≥ PM

where the first inequality follows since ψ ≥ 1 everywhere.
Next we will show that v is a supersolution to (8.5). We have,

∂tv − Dv · DWk = g′(t)ψ + Mg(t)ψ ′ − g(t)(ψ ′)(x − x0) · DWk

= g′(t)ψ + g(t)(ψ ′)(M − (x − x0) · DWk)

= g′(t)ψ + g(t)|ψ ′|(M − (x − x0) · DWk),

where ψ and ψ ′ are evaluated at (|x − x0| + M(t − (t0 − r/8M)) throughout, and the last equality follows since ψ
is non-decreasing. According to the uniform supremum bound on DWk given in (2.2) we have, |(x − x0) · DWk| ≤
rM ≤ M (since r < 1), so we find,

∂tv − Dv · DWk ≥ g′(t)ψ.

Thus,

∂tv − Dv · DWk− kPM(β + ε − v + G(v)) ≥ g′(t)ψ − kPM(β + ε − v + G(v))

= −kPMe−k(t−(t0−r/8M))ψ − kPM(β + ε − (Id − G)(v)).

We would like to show that the right-hand side of the previous line is non-negative (and thus v is a supersolution 
of (8.6)). In order to do this, we need to estimate the difference between (Id −G)(v) and β = (Id −G)(F(β)). First, 
since (Id − G) is increasing and ψ ≥ 1, we find,

(Id − G)(v) ≥ (Id − G)(g) = (Id − G)(F(β) + PMe−k(t−(t0−r/8M)) + ε).

Next, we recall that G is C1 and, moreover, G′ ≤ −α, so that (Id − G)′ ≥ (1 + α). We use this to estimate the 
right-hand side of the previous line from below and find,

(Id − G)(v) ≥ (Id − G)(F(β)) + (1 + α)(PMe−k(t−(t0−r/8M)) + ε).

Recalling that (Id − G) and F are inverses, we find

(Id − G)(v) ≥ β + (1 + α)(PMe−k(t−(t0−r/8M)) + ε).

Thus we have,

β + ε − (Id − G)(v) ≤ (β + ε) − β − (1 + α)(PMe−k(t−(t0−r/8M)) + ε)

≤ −(1 + α)(PMe−k(t−(t0−r/8M))).

We use this to estimate from below the last term on the right-hand side of the equation for v and find,

∂tv − Dv · DWk− kPM(β + ε − v + G(v)) ≥
≥ −kPMe−k(t−(t0−r/8M)))ψ + kPM(1 + α)(PMe−k(t−(t0−r/8M)))

= kPMe−k(t−(t0−r/8M))(−ψ + (1 + α)PM)).

We use ψ ≤ PM ≤ (1α)PM to estimate from below the last term on the right-hand side of the previous line and obtain,

∂tv − Dv · DWk − kPM(β + ε − v + G(v)) ≥ 0,

and hence v is a supersolution of (8.5). Since v ≥ pk on the parabolic boundary of Q, comparison principle implies 
v ≥ pk on all of Q.

Consider (x, t) ∈ Qr/16M(x0, t0) ⊂ Q. Then t ∈ (t0 − r/16M, t0 + r/16M), and so, since g is decreasing in t ,

g(t) ≤ F(β) + PMe−k(t0−r/16M−(t0−r/8M)) + ε ≤ F(β) + PMe−k(r/16M) + ε.
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In addition,

|x − x0| + M(t − (t0 − r/8M)) ≤ r/16M + M(r/16M + r/8M) ≤ r/4

where we use M ≥ 1. Thus, since ψ is increasing,

ψ(|x − x0| + M(t − (t0 − r/8M))) ≤ ψ(r/4) = 1.

Therefore, for (x, t) ∈ Qr/16M(x0, t0), we have,

pk(x, t) ≤ v(x, t) ≤ F(β) + PMe−k(r/16M) + ε.

Taking lim sup ∗ thus yields,

lim sup ∗pk(x, t) ≤ F(β) + ε

for (x, t) ∈ Qr/16M(x0, t0), where r depends on ε. Since (x0, t0) ∈ Qr/16M(x0, t0) for any r , we find that

lim sup ∗pk(x0, t0) ≤ F(β) + ε

holds for any ε > 0. Thus we conclude that the desired result (8.4) holds.
Step two. Next we establish,

lim inf ∗pk(x0, t0) ≥ F(β).

The proof is very similar to that of (8.4), and we provide only a sketch. Using (8.2) to bound from below the right-hand 
side of the equation (4.1) for pk implies that pk is a supersolution of,

∂tu − Du · DWk = ku(β − ε − u + G(u)).

In addition, F(β − ε) is a solution of the equation in the previous line. Thus,

p̃k := min{pk,F (β − ε)}
is also a supersolution of that equation (here we mean supersolution in the classical viscosity sense, which suffices for 
the remainder of this proof). According to (8.1), we have pk ≥ a/2 on Qr(x0, t0). This implies

lim sup ∗pk(x0, t0) ≥ a/2.

Thus, the inequality (8.4) that we established in the first step yields F(β) ≥ a/2. Hence, for ε small enough, 
F(β − ε) ≥ a/4. Therefore, p̃k ≥ a/4 on Qr(x0, t0) as well. Therefore, p̃k is a supersolution of,

∂tu − DuDWk = k(W∞(x0, t0) − ε − u + G(u))a/4 (8.6)

on Qr(x0, t0). We will now construct a certain subsolution to this equation. Let φ : R+ → R be a smooth non-
increasing function such that,

0 ≤ φ ≤ 1, φ(z) ≡ 1 for z ≤ r/8, φ(z) ≡ 0 for z ≥ r/2.

Define h(t) = F(β)(1 − e− a
4 k(t−(t0−r/8M))) − ε and

w(x, t) = h(t)φ(|x − x0| + M(t − (t0 − r/8M))).

Just as in the previous step, we find w ≤ pk on the parabolic boundary of Q, and that w is a subsolution of (8.6). Since 
p̃k is a supersolution of (8.6) on Q, and w ≤ pk on the parabolic boundary of Q, the comparison principle implies,

p̃k ≥ w on Q.

Similarly to the previous step, we find that for (x, t) ∈ Qr/16M(x0, t0),

w(x, t) ≥ F(β)(1 − e− a
4 k(9r/16M))) − ε.

The two previous lines, together with the definition of p̃k imply,

pk(x, t) ≥ F(β)(1 − e− a
4 k(9r/16M))) − ε on Qr/16M(x0, t0).

Taking lim inf ∗ yields,
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lim inf ∗pk(x, t) ≥ F(β) − ε on Qr/16M(x0, t0),

where r depends on ε. However, since (x0, t0) ∈ Qr/16M(x0, t0) for all r , we find

lim inf ∗pk(x0, t0) ≥ F(β) − ε

holds for all ε, and the desired result thus follows. �
9. Proof of the main result

This section puts together the results of the previous ones to establish our main result. Throughout this section we 
will use the auxiliary function θ , which we define to be the unique solution of{

∂t θ − Dθ · DW∞ = 0 for (x, t) ∈ R
n × (0,∞),

θ(x,0) = d(x, ∂�0) for x ∈R
n,

(9.1)

where d is the signed distance function, given by,

d(x, ∂�0) =
{

dist (x, ∂�) ∧ 1 for x ∈ �0,

−dist (x, ∂�) ∨ −1 for x /∈ �0.
(9.2)

(According to Theorems 2.5 and 2.4, as well as the assumption that �0 is compact, θ is well-defined.)

9.1. Proof of parts (b) and (c) of the main result

For the sake of presentation, we prove items (b) and (c) of Theorem 1.1 first. We will deduce item (a) in the next 
subsection.

Proof of parts (b), (c) of Theorem 1.1. We establish:

• If Q is a compact subset of {(x, t)|t > 0, θ(x, t) > 0}, then the pk converge uniformly on Q to F(W∞), and the 
nk converge uniformly on Q to 1.

• If Q is a compact subset of {(x, t)|t > 0, θ(x, t) < 0}, then there exists K large enough such that pk ≡ 0 on Q
and nk ≡ 0 on Q for k ≥ K .

Together, the two bullet points imply that pk converge locally uniformly to p∞ = F(W∞)χ{p∞>0}, and nk to χ{p∞>0}, 
on (Rn × (0, ∞)) \ {θ = 0}. Moreover, this identifies {θ > 0} with {n∞ > 0} and {θ = 0} with ∂{n∞ > 0}.

We establish the first bullet-point. Let us fix ε > 0. We take φε to be a smooth, non-decreasing function such that

φε(u) =
{

1 for u > 2ε,

−1 for u < ε,

and define vε by,

vε(x, t) = φε(θ(x, t)).

Since θ is a viscosity solution of (9.1), and φε is non-decreasing, a direct computation implies that vε(x, t) is also a 
subsolution of (9.1). (Indeed, here we are using that the equation (9.1) is geometric. See, for example, [22, Lemma 1.3]
for further discussion of this property in a more general context.)

According to item (1) of Proposition 1.2, if �1
t is given by �1

t = {x| lim inf ∗pk > 0} then (�1
t )

int is a generalized 
superflow with velocity −DW∞. Theorem 3.2 thus implies that w given by w(x, t) = χ(�1

t )
int (x) − χ

�̄1
t

c (x) is a 

viscosity supersolution of (9.1).
We now aim to establish,

vε(x,0) ≤ w(x,0).
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To this end, let us take x such that vε(x, 0) > −1 (for any other x we have that the previous line automatically holds, 
as w ≥ −1 everywhere). The definition of vε implies that x is such that θ(x, 0) ≥ ε. The definition of θ(x, 0) therefore 
implies x ∈ �int

0 . Applying Proposition 7.1, we find x ∈ (�1
0)

int . Therefore w(x, 0) = 1 ≥ vε(x, 0), as desired.
We may now apply the comparison principle of Theorem 2.4 to find, for all t ,

vε(x, t) ≤ w(x, t). (9.3)

Let Q be a compact subset of {(x, t)|t > 0, θ(x, t) > 0}. Since (according to Theorem 2.5) θ is continuous, there 
exists δ > 0 such that θ(x, t) ≥ δ for (x, t) ∈ Q. Because the φε are non-decreasing, we find, for (x, t) ∈ Q,

vε(x, t) = φε(θ(x, t)) ≥ φε(δ).

Let us take ε = δ/2. Then the right-hand side of the previous line equals 1. Thus vε(x, t) = 1 for (x, t) ∈ Q. Now 
we use (9.3) to find w = 1 on Q, which implies Q ⊂ (�t

1)
int . Hence Proposition 8.1 implies that the pk converge 

uniformly to (Id − G)−1(W∞) on Q.
The proof of the first bullet-point is now complete, and the statement in the second one is proved similarly. In 

particular, we use the definition of �2
t , the fact that it is a generalized subflow (proved in Proposition 1.2), and the 

second part of Proposition 7.1. We omit the details. �
9.2. Proof of part (a) of the main result

To establish part (a) of the main result we need to investigate the “size” of the zero set of θ . We do this in the 
following lemma. Only item (1) is used in the proof of Theorem 1.1; we include item (3) in order to provide a better 
description of the zero set of θ .

Throughout this section we use |A| to denote the Lebesgue measure of A ⊂R
n and, for t > 0, �t := {x|θ(x, t) = 0}.

Lemma 9.1. Assume the hypotheses of Theorem 1.1.

(1) Let Q be a compact subset of Rn and let ε > 0. There exists an open set Aε such that |Aε| ≤ ε and Q ∩ �t ⊂ Aε .
(2) For any t > 0 we have |�t | = 0.
(3) We have,

dimH (�t ) ≤ exp(Nt)dimH (�0),

where dimH is Hausdorff dimension and N is the constant from assumption (2.3).

Proof. We provide only a sketch. Due to the characterization of θ provided by Theorem 2.6, �t is exactly the image 
of �0 under the map �t defined in Theorem 2.6. We recall that �t is Holder continuous. Our assumption that �0 is 
compact implies that locally ∂�0 is a graph of a uniformly continuous function. Together these two facts imply the 
claim of item (1) by a standard real analysis argument.

Item 1 implies that |Q ∩ �t | = 0 for any compact set Q. Since there exists a countable cover of Rn by compact 
sets, we find that |�t | = 0, as desired.

The definition and basic properties of Hausdorff dimension may be found in [12]. In particular, if f : Rn → R
n is 

Holder with exponent α, and E ⊂R
n, then we have,

dimH (f (E)) ≤ 1

α
dimH (E).

Item (3) follows from this and the fact that �t is Holder continuous with exponent exp(−Nt). �
Remark 9.2. The estimate in item (3) is fairly weak – in particular, for times t larger than N−1 ln(n/ dimH (�0)), the 
estimate says only dimH (�t ) ≤ n, which holds trivially. However, as far as we can tell, this is the best that we can do, 
because the map �t is only Holder continuous, but not (necessarily) Lipschitz.

Proof of part (a) of Theorem 1.1. Let Q ⊂⊂ Q′ ⊂⊂R
n and let p > 0. Let us use Zk(x, t) to denote,

Zk(x, t) = W∞(x, t) − Wk(x, t).
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We have that W∞ and Wk satisfy (1.3) and (4.1), respectively. Subtracting (4.1) from (1.3) we find that Zk satisfies,

−�Zk + Zk = p∞ − pk.

Thus, standard estimates for elliptic equations (see, for example, [14, Theorem 9.11]) yield,

||Zk||W 2,p(Q) ≤ C(||p∞ − pk||Lp(Q′) + ||Zk||Lp(Q′))

where the constant C depends on Q, Q′, n and p.
Let ε > 0. According to Lemma 4.2 the Wk converge to W∞ locally uniformly. Thus we have that for k large 

enough, the last term on the right-hand side of the previous line is bounded from above by ε/2C.
According to Lemma 9.1, there exists an open set A such that Q′ ∩ �t ⊂ A and |A|p ≤ ε/8CPM . Let us use Q1, 

Q2, and Q3 to denote,

Q1 = Q′ ∩ {θ > 0} ∩ Ac, Q2 = Q′ ∩ {θ < 0} ∩ Ac, Q3 = Q′ ∩ A.

Thus we have,

||p∞ − pk||Lp(Q′) ≤
∑

i=1,2,3

||p∞ − pk||Lp(Qi).

According to Theorem 1.1, we have that pk → p∞ locally uniformly on compact subsets of either {θ > 0} or {θ < 0}. 
Since Q1 and Q2 are compact subsets of {θ > 0} and {θ < 0}, respectively, we find that for k large enough and 
i = 1, 2, ||p∞ − pk||Lp(Qi) ≤ ε/8C. In addition, we have ||pk||L∞(Rn) ≤ PM , so we find,

||p∞ − pk||Lp(Q3) ≤ |A|p2|PM | ≤ ε

4C
.

Putting everything together yields

||Zk||W 2,p(Q) ≤ ε

for k large enough, as desired. �
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Appendix A

In this appendix we establish the comparison result Theorem 2.4 using a doubling-variables argument. Thus the 
strategy has two parts: (1) establish that the difference of a subsolution and a supersolution is a subsolution to the 
appropriate equation, and (2) construct an appropriate family of test functions (or penalization functions) for that 
equation.

Step (1) is encapsulated in the following lemma, which is the analogy of [13, Lemma 8.2]. The two differences 
are the regularity of H in x and the fact that now u is USC and v is LSC, while in [13, Lemma 8.2] they are both 
continuous. The proof is almost identical to that of [13, Lemma 8.2], and we use much of the same notation, and thus 
is omitted.

Lemma A.1. Suppose V satisfies hypotheses (2.2), (2.3) and (2.4). Let u, v be, respectively, an USC subsolution and a 
LSC supersolution of (2.1). Let Q be an open subset of Rn ×R

n × (0, T ) and let H̄ : Rn ×R
n × (0, T ) ×R

n ×R
n → R

be defined by,

H̄ (x, y, t, q, q ′) = −σ(|x − y|)|q| − M|q + q ′|. (A.1)
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Then w(x, y, t) defined by

w(x,y, t) = u(x, t) − v(y, t)

is a viscosity subsolution (in the classical sense) in Q of,

∂tw + H̄ (x, y,Dxw,Dyw) ≤ 0. (A.2)

The remainder of the proof of the theorem involves constructing the appropriate penalization function for the 
doubling-variables argument. The one we use here is different from those often appearing in viscosity theory due to 
the fact H is not Lipschitz in space, but only log-Lipschitz. The presentation of the remainder of the proof closely 
follows Stromberg [21]. In fact, the ideas we use from there can also be seen in the earlier work [8] of Crandall, Ishii 
and Lions.

For the remainder of this section we take r ∈ [0, ∞) and α ∈ (0, ∞). Let us use θ to denote,

θ(r) =
{

0 if r = 0,

∞ otherwise.

We will define θα(r) that converges to θ(r) as θ → ∞ for all r . We first define Gα and θα by,

Gα(r) = 1

α
exp

⎛
⎝−

1∫
r

1

σ(s)
ds

⎞
⎠ and θα(r) = Gα((α2 + r2)1/2).

For future use we compute, for r ∈ [0, 1],
1∫

r

1

σ(s)
ds =

1∫
r

1

Ns| ln(s)| ds = − 1

N

0∫
| ln(r)|

1

u
du = 1

N
[ln(u)]| ln(r)|

0 = 1

N
ln(| ln(r)|),

so that

Gα(r) = 1

α
exp(− 1

N
ln(| ln(r)|)) = e− 1

N

α

1

| ln r| .
According to the definition of θα we have,

θα(r) = Gα((α2 + r2)1/2) = e− 1
N

α

1

| ln(α2 + r2)1/2| . (A.3)

We summarize some properties of θα in the following lemma.

Lemma A.2. Let θα be defined as above. We have,

(1) θα is non-negative, increasing and smooth on [0, ∞) for each α > 0,
(2) Dxθα(|x − y|) = −Dyθα(|x − y|),
(3) |Dxθα(|x − y|)| ≤ θα(|x − y|)

σ (|x − y|) ,

(4) θα(r) → θ(r) for all r as α → 0,
(5) if rα → r , then

θ(r) ≤ lim inf
α→0

θα(rα). (A.4)

Proof. Item (1) holds because Gα is non-negative, increasing and smooth on [0, ∞). Item (2) follows directly from 
the definition of θα and item (1). To establish item (3), we compute,

G′
α(r) = Gα(r)

,

σ(r)
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and so,

θ ′
α(r) = G′

α((α2 + r2)1/2)
r

(α2 + r2)1/2 = Gα((α2 + r2)1/2)

σ ((α2 + r2)1/2)

r

(α2 + r2)1/2 .

Taking absolute value yields,

|θ ′
α(r)| ≤ Gα((α2 + r2)1/2)

σ ((α2 + r2)1/2)
= θα(r)

σ ((α2 + r2)1/2)
,

where the equality follows from the definition of θ . Since σ is increasing, we have σ((α2 + r2)1/2) ≥ σ(r), and hence 
we find,

|θ ′
α(r)| ≤ θα(r)

σ (r)
. (A.5)

Now let us consider θα(|x − y|) for x, y ∈ R
n. We have,

Dxθα(|x − y|) = θ ′
α(|x − y|) (x − y)

|x − y| ,

so taking absolute value and then applying (A.5) with r = |x − y| yields item (3).
To establish item (4), we take r = 0 in (A.3) and then take the limit α → ∞, to find,

lim
α→0

θα(0) = lim
α→0

1

α

1

| lnα| = 0.

If r 
= 0, then, again using (4), we find,

lim
α→0

θα(r) = lim
α→0

e− 1
N

α

1

| ln(α2 + r2)1/2| = ∞.

This means that θα converges pointwise to θ , as desired.
To establish item (5), we consider the cases r = 0 and r 
= 0. First, let us suppose r = 0. Then (A.4) holds because 

its left-hand side is zero, and we already know that the θα are non-negative. Now let us suppose r 
= 0. Then for all α
small enough we have rα ≥ r/2. Since θα is increasing for all α we find,

θα(rα) ≥ θα(r/2).

Taking lim inf yields,

lim inf
α→0

θα(rα) ≥ lim inf
α→0

θα(r/2) = ∞ = θ(r),

where the equalities follow from the first part of the lemma. �
We abuse notation and use θ(x, y, t) as well as θ(x, y) to mean θ(|x − y|), and similarly for θα .

Lemma A.3. Let Q be a compact subset of Rn and let W be upper-semicontinuous and bounded on Q × Q × [0, T ]. 
Let �α denote,

�α(x, y, t) = W(x,y, t) − θα(|x − y|).
Let (xα, yα, tα) ∈ Q × Q × [0, T ] be where the maximum of �α is achieved on Q × Q × [0, T ]. Suppose that, along 
a subsequence, the (xα, yα, tα) converge to some (x̄, ȳ, ̄t) as α → 0. Then:

x̄ = ȳ, (A.6)

max
x∈Q, t∈[0,T ]W(x,x, t) = W(x̄, x̄, t̄), and (A.7)

lim
α→0

θα(|xα − yα|) = 0. (A.8)
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This lemma is very similar to ones appearing in standard viscosity theory (see for example, [9, Proposition 3.7] or 
[7, Lemma 4.1]). However, we cannot directly apply any of those results because our penalization function θα is not 
of the form α�(x, y). Nevertheless the proof of this lemma is so similar to those in the literature that we omit it. We 
remark that items (5) and (A.4) of Lemma A.2 are used in its proof.

Proof of Theorem 2.4. Step 1. In this step we reduce the situation from all of Rn to compact subsets Sβ , which we 
define for β > 0 as,

Sβ = {(x, t) ∈ R
n × [0, T ] : f (x, t) ≤ β}, for f (x, t) = t + 1

M
(1 + |x|2)1/2.

(Note Df = 1
M

x
(1+|x|2)1/2 , so that |Df | < 1/M .) We define the functions g and ψβ by,

g(β) = ln(2 + max
Sβ

(u − v)+) and ψβ(x, t) = exp(g(β)(1 + f (x, t) − β)).

We have that g is positive and non-decreasing and limβ→∞ ψβ(x, t) = 0 holds for all (x, t) ∈ R
n × [0, T ]. We also 

find,

∂tψβ − M|Dψβ | = ψβg(β)(∂tf − M|Df |) > ψβg(β)(1 − M
1

M
) = 0. (A.9)

Step 2. We seek to establish that for all β ,

(u − v − ψβ)(x, t) ≤ sup
Rn

(u − v)+(x,0) for (x, t) ∈ Sβ.

If this holds, then we may take the limit β → 0 of the previous line, use that limβ→∞ ψβ(x, t) = 0, and find that the 
desired inequality holds, completing the proof.

We proceed to establish the previous line by contradiction. Thus, assume that there exists β > 0 such that the 
previous line fails. This implies that there exists c > 0 with,

sup
(x,t)∈Sβ

(u(x, t) − v(x, t) − ψβ(x, t) − ct) > sup
Rn

(u − v)+(x,0).

We now stop writing the subscript β , as it is fixed. We use W(x, y, t) to denote,

W(x,y, t) = u(x, t) − v(y, t) − ψβ(y, t) − ct,

so that the previous line becomes,

sup
(x,t)∈S

W(x, x, t) > sup
Rn

(u − v)+(x,0). (A.10)

Let us consider,

�α(x, y, t) = u(x, t) − v(y, t) − ψβ(y, t) − ct − θα(|x − y|),
where θα is as defined in the previous subsection. Let (xα, yα, tα) be a maximum of �α on S ×S ×[0, T ]. Notice that 
this exists as S is compact and �α is upper-semicontinuous.

Step 3. In this step, we establish, for all α small enough:

• tα > 0, and,
• (xα, tα) and (yα, tα) are contained in the interior of S.

Let us suppose that the first statement is not true. That means that there exists a subsequence (xαj
, yαj

, tαj
) converging 

to (x̄, ȳ, 0). We now apply Lemma A.3. We find that x̄ = ȳ and,

max
x∈S, t∈[0,T ]W(x,x, t) = W(x̄, x̄,0) = u(x̄,0) − v(x̄,0) − ψ(x̄,0) ≤ u(x̄,0) − v(x̄,0),

where the second equality follows from the definition of W . We now use (A.10) to bound the left-hand side of the 
previous line from below and find,
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sup
Rn

(u − v)+(x,0) < u(x̄,0) − v(x̄,0),

which is impossible. Therefore the first item must hold.
Now let us suppose the second item does not hold. This means that there exists a subsequence (xαj

, yαj
, tαj

)

converging to (x̄, x̄, ̄t) with (x̄, ̄t) ∈ ∂S (the xαj
and yαj

converge to the same point due to Lemma A.3). The definition 
of S as the sub level set of f implies, f (x̄, ̄t) = β . The definitions of ψ and g therefore imply,

ψ(x̄, t̄) = exp(g(β)) = 2 + max
S

(u − v)+.

Using this in the definition of W yields,

W(x̄, x̄, t̄) = u(x̄, t̄) − v(x̄, t̄) − ψ(x̄, t̄) − ct̄ = u(x̄, t̄) − v(x̄, t̄) − (2 + max
S

(u − v)+) − ct̄ < 0.

We again apply Lemma A.3 and find,

max
x∈S, t∈[0,T ]W(x,x, t) = W(x̄, x̄, t̄).

We had just shown that the right-hand side of the previous line is negative, which contradicts (A.10), as the right hand 
side of (A.10) is non-negative.

Step 4. Let us recall that, according to Lemma A.1, we have that w(x, y, t) = u(x, t) − v(y, t) is a subsolution 
(in the standard viscosity sense) to (A.2) with H̄ given by (A.1). The claim we established in step 3, together with the 
fact that (xα, yα, tα) is a maximum of �α on S × S × [0, T ], therefore yields,

∂tψ(yα, tα) + c + H̄ (xα, yα, tα,Dxθα(|xα − yα|),Dyψ(yα, tα) + Dyθα(|xα − yα|)) ≤ 0.

The definition of H̄ thus gives,

∂tψ(yα, tα) + c − σ(|xα − yα|)|Dxθα(|xα − yα|)| − M|Dyψ(yα, tα)| ≤ 0,

where we have also used that Dxθα(|xα − yα|) = −Dyθα(|xα − yα|). According to (A.9), the sum of the first and last 
terms is non-negative, so we find,

c − σ(|xα − yα|)|Dxθα(|xα − yα|)| ≤ 0.

We use item (3) of Lemma A.2 to estimate the left-hand side from below and find,

c − σ(|xα − yα|)θα(|xα − yα|)
σ (|xα − yα|) ≤ 0,

which becomes,

c ≤ θα(|xα − yα|).
However, equation (A.8) of Lemma A.3 says that the limit as α goes to zero of the right hand side of the previous line 
is zero. This yields the desired contradiction, completing the proof. �
Appendix B

In this section we establish Theorem 2.5, Theorem 2.6, and Theorem 2.7. Classical results (see, for example, 
[10, Chapter 1]) assert that if V ∈ C1 satisfies (2.2) and (2.3), then there exists a unique flow X generated by V
satisfying (2.6). Moreover, if u0 ∈ C1(Rn), then u defined on Rn × (0, T ) by,

u(x, t) = u0(X(0, t, x)) (B.1)

is a classical solution of,{
∂tu + V · Du = 0 in R

n × (0, T ),

u(x,0) = u0(x).
(B.2)

We now establish some regularity results for u, which depend only on the constants in (2.2) and (2.3). For this we 
need two lemmas about the regularity of the flow X. We phrase them in terms of its trajectories, s �→ X(s, t, x), which 
we denote by γ (s).
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Lemma B.1. Let V be continuous and satisfy (2.2) and (2.3). Let t0 ≤ t1, t2 ≤ T , x1, x2 ∈ R
n with |x1 − x2|,

|t1 − t2| ≤ 1, and for i = 1, 2, let γi solve the ODEs,{
γ̇i (s) = V (γi(s), s) on (t0, T ),

γi(ti) = xi.

Then for s ∈ [t0, T ],
|γ1(s) − γ2(s)| ≤ |x1 − x2|exp(−N(T −t0)) + (M|t1 − t2|)exp(−N(T −t0)).

Proof. We only present the case t1 = t2 for simplicity. Note that

γ1(s) − γ2(s) = x1 − x2 +
s∫

t1

V (γ1(r), r) − V (γ2(r), r) dr.

Taking absolute value and using (2.3) yields, for all s,

|γ1(s) − γ2(s)| ≤ |x1 − x2| +
s∫

t1

σ(|γ1(r) − γ2(r)|) dr. (B.3)

Let us use R(s) to denote the quantity on the right-hand side of the previous line. Using a generalized Gronwall’s 
inequality and the explicit expression σ(r) = Nr| ln(r)| we may compute,

R(s) ≤ |x1 − x2|exp(−N(s−t1)) ≤ |x1 − x2|exp(−N(T −t0)).

Together with (B.3), this implies that the desired claim holds. �
We write the bounds in the previous lemma so explicitly to highlight the fact that they depend only on the constants 

M , N , and not on the C1 norm of V . The following proposition is a direct consequence of the previous lemma.

Proposition B.2. Assume V ∈ C1 satisfies (2.2) and (2.3), let X be the flow associated with V and let u be given 
by (B.1). Assume that there exists a modulus of continuity ω with,

|u0(x) − u0(y)| ≤ ω(|x − y|).
We have ||u||L∞ ≤ ||u0||L∞ and u is uniformly continuous, with modulus that depends only on ω, T , N and M .

We now present the proofs of Theorem 2.5 and Theorem 2.6.

Proof of Theorem 2.5 and Theorem 2.6. Let ρε(x, t) and ρ̃ε(x) be standard mollifiers with integral 1. We regular-
ize V by convolution in both x and t :

V ε(x, t) =
∫

Rn×R

V (x − y, t − s)ρε(y, s) dy ds,

where V (x, r) has been extended to be zero for r /∈ (0, T ), as in [13, Lemma 8.1]. Since V satisfies (2.2) and (2.3), 
V ε does as well. We also have V ε ∈ C1, and hence the classical ODE results summarized above yield the existence 
of Xε satisfying,

Xε(s, t, x) = x +
s∫

t

V ε(Xε(r, t, x), r) dr. (B.4)

We also regularize the initial data: we define,

uε
0(x) =

∫
Rn

u0(x − y)ρ̃ε(y) dy,

so that uε is C1 and uniformly continuous with modulus independent of ε.
0
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Let uε(x, t) = uε
0(X

ε(0, t, x)), so that according to the classical results described above, uε satisfies,{
∂tu

ε + V ε · Duε = 0 in R
n × (0, T ),

uε(x,0) = uε
0(x).

According to Proposition B.2, the uε are uniformly continuous in x and t with modulus independent of ε and 
||uε||L∞ ≤ ||u0||L∞ < ∞. By the Arzela–Ascoli Theorem there exists a subsequence which converges locally uni-
formly to some u.

Let Q be a compact subset of Rn × (0, T ). The arguments of [13, Lemma 8.1], together with an estimate similar 
to (3.2), imply that the V ε converge to V in L1((0, T ), C(Q)) (indeed, Lemma 8.1 of [13] concerns regularizing 
via convolution in time, while (3.2) is an estimate regarding convolution in space). Thus, by the stability result [13, 
Proposition 7.1], we conclude that u is a viscosity solution of (2.1). The stated regularity of u is a consequence of the 
regularity of the uε given in Proposition B.2.

We have thus completed the proof of Theorem 2.5, and continue with this setup to establish Theorem 2.6. According 
to Lemma B.1, for s, t ∈ (0, T ), the map (s, t, x) �→ Xε(s, t, x) is Holder continuous, uniformly in ε. The L∞ bound 
(2.2) on V implies |Xε(s, t, x)| ≤ |x| +T M for s, t ∈ (0, T ). Thus the Arzela–Ascoli theorem implies that there exists 
a subsequence of εj → 0 as j → ∞ and an X such that Xεj converge to X locally uniformly on (0, T ) × (0, T ) ×R

n. 
In addition, X is therefore also Holder continuous.

Since V εj converge to V in L1((0, T ), C(Q)) for any compact set Q and satisfy (2.3) uniformly in εj , we find that 
for any s, t ∈ (0, T ),

lim
j→∞

s∫
t

V εj (Xεj (r, t, x), r) dr =
s∫

t

V (X(r, t, x), r) dr.

Thus taking a (pointwise) limit of (B.4) along the subsequence εj implies that X satisfies (2.6).
Since Xεj converge to X locally uniformly, we find uε

0(X
ε(0, t, x)) converges to u0(X(0, t, x)). Thus,

u(x, t) = lim
j→∞u

εj

0 (Xεj (0, t, x)) = u0(X(0, t, x)),

as desired. The regularity of the map � follows from the regularity of X. �
We now have the ingredients needed to establish Theorem 2.7.

Proof. Let us first approximate the initial data u0 from below by u−,k
0 and from above u+,k

0 , where u±,k
0 are continuous 

functions from Rn to [0, 1]. We construct these functions such that u±,k
0 = 1 in �−,k

0 := {x : d(x, �C
0 ) ≥ 1/k} and 

u
±,k
0 = 0 outside of �+,k

0 := {x : d(x, �0) ≤ 1/k}.
Next, let u−,k and u+,k be the corresponding unique viscosity solutions of (2.1) with aforementioned initial data 

u
−,k
0 and u+,k

0 . Due to Theorem 2.7 we have representation formulas for these solutions. In particular we have

u±,k = 1 in �
−,k
t := {x : X(0, t, x) ∈ �

−,k
0 }

and

u±,k = 0 in �
+,k
t := {x : X(0, t, x) ∈ �

+,k
0 }.

The properties of the flow map X summarized in Theorem 2.6, including invertibility and continuity with respect to 
x and t , imply,

lim sup
k→∞

∗u−,k(·, t) = lim sup
k→∞

∗u+,k(·, t) = χ�̄t
(B.5)

and

lim inf ∗u−,k(·, t) = lim inf ∗u+,k(·, t) = χ�t . (B.6)

k→∞ k→∞
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Due to the standard stability property of viscosity solutions, χ�̄t
= u∗ is a subsolution of (1.6), and u∗ = (u0)

∗ due to 
the continuity of X(0, t, x) with respect to t . Similarly we have u is a supersolution of (1.6) with u∗ = (u0)∗. So we 
have at least one solution of (1.6) with initial data u0.

Now if there is any other solution w of (1.6) with initial data u0, then by comparison principle w∗ ≤ u+,k and 
w∗ ≥ u−,k . Taking lim sup and lim inf, respectively, of these inequalities, and then using (B.5) and (B.6) yields,

w∗ ≤ χ�̄t
= u∗ and w∗ ≥ χ�t = u.

Putting the previous two statements of the previous line together yields the desired result:

u ≤ w∗ ≤ w ≤ w∗ ≤ u∗. �
Appendix C

Proof of Lemma 3.3. We fix α > 0. Throughout, we us use C1 to denote,

C1 = ||φ||C3(Rn).

Step one. We first establish (3.2). The definitions of Hε and H , and that V satisfies (2.3) yield,

|Hε(x, t, q) − H(x, t, q)| ≤
∫

ρε(y)|q|σ(y)dy = |q|
∫

1

εn
ρ

(y

ε

)
σ(y)dy = |q|

∫
ρ(z)σ (εz) dz.

The right-hand side of the previous line is a continuous decreasing function whose limit as ε → 0 is 0. Thus, there 
exists ε1 > 0 such that for ε ≤ ε1,

C1

∫
ρ(z)σ (εz) dz ≤ α

4
.

Combining the previous two lines yields (3.2). Similar computations yield,

|DxH
ε(x, t, q)| ≤ ε−1M|q|C, (C.1)

where C = ∫
Dρ(z) dz. Now that we’ve fixed ε, we take h̄ to be,

h̄ = α

16M(MC1 + MCC1ε−1)
. (C.2)

Step two. Next we establish that ψε is a subsolution of (2.1) on Rn × (t, t + h̄) (the proof that ψ̄ε is a supersolution 
is analogous). To this end, we suppose γ ∈ C1(Rn ×[0, T ]), (x0, r0) ∈ R

n × (t, t + h̄), G, b ∈ H−(x0, r0, Dγ (x0, r0)), 
and

(x, r) �→ ψε(x, r) +
r∫

0

b(s) ds − γ (x, r) (C.3)

has a local maximum at (x0, r0). We want to show,

γr(x0, r0) + G(x0, r0,Dγ (x0, r0)) ≤ 0.

We proceed by contradiction and suppose that the previous line does not hold. Thus there exists some a > 0 such that,

2a ≤ γr(x0, r0) + G(x0, r0,Dγ (x0, r0)).

The continuity of γ , its derivatives, and G implies,

a ≤ γr(x0, r) + G(x0, r,Dγ (x0, r)),

for r near r0, for instance on (r1, r0) for some r1 < r0. Integrating the previous line thus yields,

a(r0 − r1) ≤ γ (x0, r0) − γ (x0, r1) +
r0∫

G(x0, r,Dγ (x0, r)) dr.
r1
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Since (x0, r0) is a local maximum of the function given in (C.3), we find,

γ (x0, r0) − γ (x0, r1) ≤ ψε(x0, r0) − ψε(x0, r1) +
r0∫

r1

b(s) ds.

The two previous lines thus imply,

a(r0 − r1) ≤ ψε(x0, r0) − ψε(x0, r1) +
r0∫

r1

b(r) dr +
r0∫

r1

G(x0, r,Dγ (x0, r)) dr.

The definition of ψε yields,

a(r0 − r1) ≤ −
r0∫

r1

Hε(x0, r,Dφ(x0)) dr − (r0 − r1)α/2 +
r0∫

r1

b(r) dr +
r0∫

r1

G(x0, r,Dγ (x0, r)) dr.

Next, we use the estimate (3.2) to bound the first term on the right-hand side of the previous line from above, and 
find,

a(r0 − r1) ≤ −
r0∫

r1

H(x0, r,Dφ(x0)) dr − (r0 − r1)α/4 +
r0∫

r1

b(r) dr +
r0∫

r1

G(x0, r,Dγ (x0, r)) dr. (C.4)

We now want to estimate the difference between Dφ and Dγ in order to compare the first and last terms on 
the right-hand side of the previous line. To this end, we first note that, since (x0, r0) is a local maximum of the 
differentiable function (C.3),

Dxγ (x0, r0) = Dxψε(x0, r0)

= Dφ(x0) −
r0∫

t

∂pHε(x0, s,Dφ(x0))D
2φ(x0) + ∂xH

ε(x0, s,Dφ(x0)) ds.

Rearranging the previous line and taking absolute value yields,

|Dxγ (x0, r0) − Dφ(x0)| ≤
r0∫

t

|∂pHε(x0, s,Dφ(x0))D
2φ(x0) + ∂xH

ε(x0, s,Dφ(x0))|ds.

The definition of H (2.5), together with the assumed bound (2.2) on V yields

|∂pHε(x0, s,Dφ(x0))| = |V (x0, s)| ≤ M.

Together with our estimate (C.1), as well as the estimate ||φ||C3(Rn) ≤ C1, this yields,

|Dxγ (x0, r0) − Dφ(x0)| ≤
r0∫

t

MC1 + MCC1ε
−1 ds = (r0 − t)(MC1 + MCC1ε

−1).

Since r0 ≤ t + h̄ we find that the right-hand side of the previous line is bounded from above by h̄(MC1 +MCC1ε
−1). 

Since Dγ is continuous in r , we have, for r near r0,

|Dxγ (x0, r) − Dφ(x0)| ≤ 2h̄(MC1 + MCC1ε
−1) ≤ α

8M
,

where the second inequality follows by our choice of h̄ in (C.2), and since h ≤ h̄. Thus we find,

|H(x, r,Dxγ (x0, r)) − H(x, r,Dφ(x0))| ≤ M|Dxγ (x0, r) − Dφ(x0)| ≤ α

8
.

We are now ready to complete the proof of the lemma. We may assume that r1 is close enough to r0 so that the 
previous line holds. Thus, the previous line together with (C.4) imply,
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a(r0 − r1) ≤ −
r0∫

r1

H(x0, r,Dγ (x0, r)) dr − (r0 − r1)α/8 +
r0∫

r1

b(r) dr +
r0∫

r1

G(x0, r,Dγ (x0, r)) dr.

The fact that we took G, b ∈ H−(x0, r0, Dγ (x0, r0)) implies that, for r1 close enough to r0, the sum of the first, third, 
and fourth terms on the right-hand side of the previous line is non-positive. Thus we find,

a(r0 − r1) ≤ −(r0 − r1)α/8,

which yields the desired contradiction (since r0 > r1) and completes the proof of the lemma. �
Proof of Theorem 3.2 item (1). We provide the proof of item (1); the proof of the other item is analogous. We use 
W to denote,

W(x, t) = (χ�(x, t) − χ�̄c (x, t))∗.
We establish that if W is a supersolution then �t is a superflow. The proof of the other direction is very similar to that 
of Theorem 2.4 of [2], and we omit it.

Let us suppose W is a supersolution of (2.1) on Rn × [0, T ]. We aim to show that (�int
t )t∈[0,T ] is a generalized 

superflow with velocity −H . To this end, let us take x̄ ∈ R
n, t ∈ (0, T ), r > 0, α > 0 and a smooth function φ :

R
n →R such that

{x : φ(x) ≥ 0} ⊂ �int
t ∩ Br(x̄), (C.5)

with |Dφ| 
= 0 on {x : φ(x) = 0}. By modifying φ outside B2r(x0), we may assume, without loss of generality, 
||φ||C3(Rn) < ∞ and ||φ||C3(Rn) depends on r and ||φ||C3(Br(x0))

. Let us use C1 to denote,

C1 = ||φ||C3(Rn).

Let ψε be as defined in Lemma 3.3, and fix ε = ε1. Notice that ψε(x, t) = φ(x), so according to (C.5) we have 
ψ(x, t) ≤ W(x, t) for all x ∈ R

n. Since, according to Lemma 3.3, ψε is a subsolution of (2.1), we can apply the 
comparison theorem and conclude that ψε(x, r) ≤ W(x, r) holds on Rn × (t, t + h̄). Due to the definition of W this 
implies, for h ∈ (0, h̄),

{x : ψε(x, t + h) > 0} ⊂ �int
t+h. (C.6)

Let us take h ∈ (0, h̄) and x ∈ B̄r (x̄) such that

φ(x) −
t+h∫
t

H (x, s,Dφ(x)) ds − hα > 0.

Rearranging and then using the estimate (3.2) yields,

φ(x) >

t+h∫
t

H (x, s,Dφ(x)) ds + hα ≥
t+h∫
t

H ε(x, s,Dφ(x)) − α

4
ds + hα

=
t+h∫
t

H ε(x, s,Dφ(x)) ds + hα/2 = φ(x) − ψε(x, t + h),

where last equality follows from the definition of ψ . So, we find ψε(x, t + h) > 0 holds for such x, h.
Thus, we have shown that for h ∈ (0, h̄),

B̄r (x̄) ∩
⎧⎨
⎩x : φ(x) −

t+h∫
t

H (x, s,Dφ(x)) ds − hα > 0

⎫⎬
⎭ ⊂ {x : ψ(x, t + h) > 0}.

According to (C.6), the set on the right-hand side of the previous line is contained in �int
t+h, which completes the 

proof. �
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