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Abstract

We consider a system modelling the motion of a piston in a cylinder filled by a viscous heat conducting gas. The piston is 
moving longitudinally without friction under the influence of the forces exerted by the gas. In addition, the piston is supposed to 
be thermally insulating (adiabatic piston). This fact raises several challenges which received a considerable attention, essentially 
in the statistical physics literature. We study the problem via the methods of continuum mechanics, specifically, the motion of 
the gas is described by means of the Navier–Stokes–Fourier system in one space dimension, coupled with Newton’s second law 
governing the motion of the piston. We establish global in time existence of strong solutions and show that the system stabilizes to 
an equilibrium state for t → ∞.
© 2017 
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1. Introduction and statement of the main results

The adiabatic piston problem received a considerable attention, namely in the statistical physics oriented literature, 
during the last two decades (see, for instance, Lieb [15], Gruber et al. [10,9,11], Neishtadt and Sinai [19], Wright 
[25–27] and the references therein). This problem consists in studying the dynamics of a system composed of a 
gas in a cylindrical container with a piston which can move freely in the longitudinal direction. The piston and the 
exterior walls are supposed to be thermally insulating. Most of the above results are obtained using discrete models 
for the gas, meaning, the gas is supposed to be formed by a finite number of particles. Gruber [9] uses the kinetic 
approach, where the gas is modelled by a Boltzmann type equation. A fundamental question raised and discussed 
in these references is the large time behavior of the trajectories of the associated dynamical system. Making various 
assumptions, namely that the number of gas particles on each side of the piston is finite, that these particles make 
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purely elastic collisions on the boundaries of the cylinder and on the piston, and that the mass of the piston is much 
larger than the mass of the gas, the results in [11], [25] or [26] assert that the system evolves in at least two stages. 
First, the system relaxes to a state where the forces exerted by the gas on each side of the piston are equal, but with 
possibly different gas temperatures on each side. In the second, much longer stage, the system moves to a state where 
the temperatures of the gas on the two sides of the piston equilibrate. Thus, in a certain sense, the piston is no longer 
adiabatic.

To the best of our knowledge, the problem has never been analyzed in the framework of continuum mechanics. 
The latter describes the state of the system by means of the macroscopic observable variables: The mass density ρ, 
the absolute temperature θ , the fluid velocity u, and the piston position h. Given the geometry with dominating 
longitudinal coordinate, the restriction to only one space variable seems appropriate. Accordingly, the trajectory of 
the piston being described by the curve

γh = {(t, h(t)) ∈ [0, T ] × (−1,1) | t ∈ [0, T ]}, (1.1)

the time evolution of the state variables is governed by the Navier–Stokes–Fourier system of equations

∂tρ + ∂x(ρu) = 0 (1.2)

∂t (ρu) + ∂x(ρu2) + ∂xp = μ∂x,xu (1.3)

cv (∂t (ρθ) + ∂x(ρθu)) − ∂x (κ∂xθ) = μ|∂xu|2 − p∂xu. (1.4)

satisfied in the open set

QT ⊂ (0, T ) × (−1,1), QT = QL
T ∪ QR

T ,

QL =
{
(t, x)

∣∣∣ t ∈ (0, T ), x ∈ (−1, h(t))
}

,

QR =
{
(t, x)

∣∣∣ t ∈ (0, T ), x ∈ (h(t),1)
}

.

Here, μ > 0, cv > 0, and κ > 0 stand for the gas viscosity, the specific heat at constant volume, and the heat conduc-
tivity, respectively; the pressure p is given by the ideal gas law.

p = p(ρ, θ) = ρθ. (1.5)

The dynamics of the piston is coupled to the gas motion via two equations. The first one asserts that the velocity of 
the piston coincides with the gas velocities on both sides of the piston and it can be written

dh

dt
(t) = u(t, h(t)−) = u(t, h(t)+). (1.6)

The second condition comes from Newton’s second law and the assumption that the only forces acting on the piston 
are those exerted by the gas. The corresponding equation is

M
d2h

dt2 (t) = [ μ∂xu − p ]x→h(t)+
x→h(t)− , (1.7)

where M > 0 is the mass of the piston.
We close the system by prescribing the remaining boundary conditions at the extremal points x = ±1, specifically,

∂xθ(t,−1) = ∂xθ(t, h(t)−) = ∂xθ(t, h(t)+) = ∂xθ(t,1) = 0, (1.8)

and

u(t,−1) = u(t,1) = 0, (1.9)

meaning the piston is thermally insulating, and the whole system is both mechanically and thermally closed.
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Note that the complementary problem involving a perfectly thermally conducting piston has been tack-
led in Shelukhin [21]. The main results in [21] assert that the system admits global in time strong solu-
tions and that the state trajectories converge towards an equilibrium where the densities and the tempera-
tures have constant values which are the same on both sides of the piston. Strangely enough, this result co-
incides with the scenario expected by statistical mechanics for the thermally insulating piston. In contrast 
with the prognosis of statistical mechanics, the dynamics of the continuous model with a thermally insulat-
ing piston features rather complex behavior that may depend sensitively on the initial state. As we show be-
low, problem (1.2)–(1.9) admits a continuum of equilibria including those for which the ultimate temperature 
attained can be different on the two sides of the piston. Although each individual trajectory approaches an 
equilibrium state in the asymptotic limit t → ∞, the latter is basically unpredictable in terms of the initial 
state.

Note also that simplified versions of these models, where the compressible Navier–Stokes equations were re-
placed by the one-dimensional viscous Burgers equation has been studied in Vázquez and Zuazua [23] and Cîn-
dea et al. [4]. To complete the above list of quotations, we mention that the free piston problem, without con-
sidering thermal effects, has been studied in Shelukhin [20] for viscous gases and Liu [17] in the non viscous 
case.

We end this introduction by briefly describing the strategy adopted to prove our main results.

• To begin, we establish existence and uniqueness of strong solutions defined globally in time. In contrast with the 
situation treated by Shelukhin [21], we consider a larger class of initial data giving rise to the strong rather than 
classical solutions obtained in [21]. Because of technical difficulties connected with the no-heat flux condition 
imposed on the piston, we introduce an additional hypothesis that the heat conductivity coefficient κ is a coercive 
function of the temperature, specifically,

0 < κ(1 + θα) � κ(θ) � κ(1 + θα), (1.10)

where κ, κ are strictly positive constants and α � 2. As already mentioned, the above condition on α is essentially 
of technical nature. Its use is physically justified in certain high temperature regimes, see, for instance, Zel’dovich 
and Raizer [28, Ch. 3].

• In accordance with the Second law of thermodynamics, the equilibrium solutions minimizing the entropy produc-
tion rate represent the terminal states for t → ∞. We show that they are uniquely determined by the total energy 
of the system, the mass of the gas in the domain left and right to the piston, and by the limit entropy attained for 
t → ∞.

• Finally, we use the relative energy functional introduced in [7] to show that each individual trajectory approaches 
an equilibrium solution for t → ∞.

The paper is organized as follows. In Section 2, we introduce the preliminary material and rigorously state our main 
results. Section 3 addresses the problem of existence and uniqueness of global-in-time solutions. The convergence to 
equilibrium solutions is shown in Section 4.

2. Main results

In this section, we introduce the necessary definitions and state our main results on the existence of global-in-time 
solutions and their asymptotic behavior for large times.

2.1. Existence of global-in-time strong solutions

We start by a definition of (strong) solutions to problem (1.2)–(1.9) supplemented with the initial data

ρ(0, ·) = ρ0, θ(0, ·) = θ0, u(0, ·) = u0, h(0) = h0. (2.1)

Definition 2.1. We say that ρ, θ, u, h is a (strong) solution to problem (1.2)–(1.9) on the time interval (0, T ) with the 
initial data (2.1) if:
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• h : [0, T ] → (−1, 1) is a Lipschitz continuous function;
• the functions ρ, θ , u, along with their distributional derivatives ∂tρ, ∂t θ , ∂tu, ∂xρ, ∂xθ , ∂xu, and ∂2

x θ , ∂2
xu belong 

to L2(QL
T ) ∩ L2(QR

T );

• ρ > 0, θ > 0 in QL
T ∪ QR

T ;
• equations (1.2)–(1.4) are satisfied1 a.e. in QL

T and QR
T ;

• the boundary conditions (1.6)–(1.9) hold for a.e. t ∈ (0, T );
• the initial conditions (2.1) are satisfied.

In view of the embedding theorems for anisotropic Sobolev spaces, see Besov, Iljin, Nikolskij [2, Chapter III, 
Theorem 10.4], the functions θ , u are Hölder continuous on the sets QL

T and QR
T , in particular, their boundary and 

initial traces are well defined. Similarly, the density ρ, being determined by the transport equation (1.2), satisfies

ess sup
t∈(0,T )

‖∂xρ‖L2(−1,h(t)) + ess sup
t∈(0,T )

‖∂xρ‖L2(h(t),1) < ∞,

therefore, by [12, Lemma 2.2], ρ is Hölder continuous on the sets QL
T , QR

T . Finally, we have

∂xu(t, h(t)−), ∂xu(t, h(t)+), ∂xθ(t, h(t)−), ∂xθ(t, h(t)+) ∈ L2(0, T );
whence the free boundary conditions (1.7), (1.8) are well defined a.e. in (0, T ).

We claim the following existence result.

Theorem 2.2. Let the initial data

h0 ∈ (−1,1),

ρ0 ∈ W 1,2(−1, h0) ∪ W 1,2(h0,1), ρ0 > 0,

θ0 ∈ W 1,2(−1, h0) ∪ W 1,2(h0,1), θ0 > 0,

u0 ∈ W
1,2
0 (−1,1)

be given. Let κ ∈ C2[0, ∞) satisfy hypothesis (1.10) with α � 2.

Then, for every T > 0, the problem (1.2)–(1.9) admits a strong solution ρ, θ , u, h in (0, T ), unique in the class 
specified in Definition 2.1.

Theorem 2.2 is proved in Section 3 using the description of the problem in Lagrangian mass coordinates.

2.2. Entropy and equilibrium solutions

Dividing the thermal energy balance by θ we obtain the entropy balance equation

∂t (ρs(ρ, θ)) + ∂x(ρs(ρ, θ)u) − ∂x

(
κ(θ)

θ
∂xθ

)
= 1

θ

(
μ|∂xu|2 + κ(θ)|∂xθ |2

θ

)
(2.2)

satisfied in QL
T and QR

T , where the specific entropy is given as

s(ρ, θ) = log

(
θcv

ρ

)
(ρ, θ > 0). (2.3)

Equilibrium solutions [ρ∞, θ∞, u∞, h∞] are those with vanishing entropy production rate. Accordingly, we get

∂xu∞ = 0 yielding, in view of (1.9), u∞ ≡ 0,

1 Hereinafter, ‘a.e.’ stands for ‘almost everywhere’ or ‘almost every’.
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and h∞ = const. By the same token

∂xθ∞ = 0 in (−1, h∞) ∪ (h∞,1);
whence

θ∞ =
{

θL = θL(t) for x ∈ (−1, h∞),

θL = θR(t) for x ∈ (h∞,1)

Moreover, plugging u = u∞ = 0 in the field equations (1.2), (1.3) we get

∂tρ∞ = 0, ∂xp = ∂x(ρ∞θ∞) = θ∞∂xρ∞ = 0

yielding

ρ∞ =
{

ρL for x ∈ (−1, h∞),

ρR for x ∈ (h∞,1)
,

where ρL, ρR are positive constants. Similarly, we deduce from (1.4) that ∂t θ∞ = 0 concluding that θL, θR are positive 
constants independent of time.

Finally, we observe that the free boundary constraint (1.7) enforces continuity of the pressure therefore

ρLθL = ρRθR. (2.4)

Obviously, any choice of (positive) ρL, ρR , θL, θR , h∞ satisfying the compatibility condition (2.4) give rise to a 
strong (equilibrium) solution of problem (1.2)–(1.9). In particular, the states [ρL, θL], [ρR, θR] may be different.

2.3. Long-time behavior

The long time behavior of solutions to problem (1.2)–(1.9) is determined by several flow invariants. We start by 
recalling a version of transport theorem

∫
QL

τ

[∂t (ρD) + ∂x(ρDu)] dx dt =
h(τ)∫
−1

ρD(τ, ·) dx −
h(0)∫

−1

ρD(0, ·) dx

∫
QR

τ

[∂t (ρD) + ∂x(ρDu)] dx dt =
1∫

h(τ)

ρD(τ, ·) dx −
1∫

h(0)

ρD(0, ·) dx, 0 ≤ τ ≤ T ,

(2.5)

which can be easily verified by means of the Sobolev version of Gauss–Green theorem (see e.g. Chen, Torres, Ziemer 
[3]) for any solution ρ, u of problem (1.2)–(1.9) belonging to the regularity class specified in Definition 2.1 and any

D ∈ W 1,2(QL
T ) ∪ W 1,2(QR

T ).

2.3.1. Mass conservation
Applying (2.5) to D = 1 we get

mL =
h(τ)∫
−1

ρ dx =
h0∫

−1

ρ0 dx, mR =
1∫

h(τ)

ρ dx =
1∫

h0

ρ0 dx for any τ ≥ 0, (2.6)

which can be seen as a mathematical formulation of the conservation of mass.
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2.3.2. Energy conservation
Multiplying momentum equation (1.3) by u and taking the sum with (1.4) we deduce the energy balance

∂t

(
ρ

[
1

2
u2 + cvθ

])
+ ∂x

(
ρ

[
1

2
u2 + cvθ

]
u

)
= −∂x (ρθu) + μ∂x (∂xuu) + ∂x(κ(θ)θx) (2.7)

satisfied in each set QL
T , QR

T . Consequently, integrating (2.7) over QL
τ , QR

τ , applying (2.5) with

D =
[

1

2
u2 + cvθ

]
,

and using (1.6), (1.7), (1.8), we deduce that

1∫
−1

[
1

2
ρu2 + cvρθ

]
(τ, ·) dx + M

2

∣∣∣∣ d

dt
h(τ )

∣∣∣∣2 =
1∫

−1

[
1

2
ρ0u

2
0 + cvρ0θ0

]
dx + M

2
|u0(h0)|2 ≡ E0 (2.8)

meaning the total energy of the system is a constant of motion. Note that (2.8) holds for any solution belonging to the 
regularity class in Definition 2.1.

2.4. Entropy production

Applying (2.5) with D = s(ρ, θ) to (2.2) and using (1.8) we finally observe that the functions

τ 
→
h(τ)∫
−1

ρs(ρ, θ) dx, τ 
→
1∫

h(τ)

ρs(ρ, θ) dx

are non-decreasing for τ � 0. Further, as −ρ logρ ≤ e−1, ρ log θ ≤ ρθ and the total energy of the system remains 
bounded by (2.8), it is easy to check that these functions admit an upper bound and consequently

h(τ)∫
−1

ρs(ρ, θ) dx → SL,

1∫
h(τ)

ρs(ρ, θ) dx → SR as τ → ∞. (2.9)

2.5. Stabilization to equilibria

We show that the long time behavior of solutions to problem (1.2)–(1.9) is completely determined by the constants 
mL, mR , SL, SR identified in (2.6), (2.9) and the total energy of the system E0. Note that, unlike mL, mR , E0

that are fixed by the choice of the initial data, the asymptotic values of the entropy SL, SR are a priori unknown 
parameters.

The rather obvious idea, justified by rigorous arguments in Section 4, asserts that:

• Solution trajectories stabilize to equilibrium solutions.
• The limit equilibrium is uniquely identified by mL, mR , SL, SR and E0.
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Theorem 2.3. Under the hypotheses of Theorem 2.2, let ρ, θ , u, h be a global-in-time (defined on [0, T ] for any 
T > 0) solution to problem (1.2)–(1.8) emanating from the initial data (2.1).

Then

h(t) → h∞ ∈ (−1,1) (2.10)

ρ|u|2(t, ·) → 0 in L1(−1,1) (2.11)

ρ(t, ·) → ρ∞ in Lq(−1,1) for any 1 ≤ q < ∞ (2.12)

θ(t, ·) → θ∞ in L1(−1,1) (2.13)

as t → ∞, where

ρ∞ =
{

ρL for x ∈ (−1, h∞)

ρR for x ∈ (h∞,1),

θ∞ =
{

θL for x ∈ (−1, h∞)

θR for x ∈ (h∞,1),

ρL, ρR , θL, θR positive constant satisfying

ρLθL = ρRθR = 1

2cv

E0,

(1 + h∞)ρL = mL, (1 − h∞)ρR = mR,

(1 + h∞)ρLs(ρL, θL) = SL,

(1 − h∞)ρRs(ρR, θR) = SR,

(2.14)

with the quantities mL, mR , E0, and SL, SR identified through (2.6), (2.8), and (2.9), respectively.

Theorem 2.3 will be proved in Section 4. It is easy to see that the equilibrium solution h∞, ρ∞, θ∞ is uniquely 
determined by the constants mL, mR , E0, SL, SR . Indeed we deduce that

ρLs(ρL, θL) = SL

h∞ + 1
, ρRs(ρR, θR) = SR

1 − h∞
, (2.15)

and, furthermore,

log

(
cv

θ
cv+1
L

E0

)
= log

(
θ

cv

L

ρL

)
= s(ρL, θL) = SL

mL

,

log

(
cv

θ
cv+1
R

E0

)
= log

(
θ

cv

R

ρR

)
= s(ρR, θR) = SR

mR

.

(2.16)

Finally, it is also easy to check that the equilibrium state with ρL = ρR , θL = θR actually maximizes the limit 
entropy of the system

1∫
−1

ρ∞s(ρ∞, θ∞) dx

under the given constraints mL, mR and E0. This can be seen as a kind of “stability” of this state reflected by the 
predictions made by the statistical approach.
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3. Global-in-time existence

3.1. Result statement using Lagrangian mass coordinates

Our goal in this section is to prove Theorem 2.2. Following the standard approach (see e.g. Kazhikhov and 
Shelukhin [14]) we consider the problem in Lagrangian mass coordinates, choosing h(t), supposed to lie in (−1, 1)

(see (1.1)), as origin for the space variable. More precisely, we set

y = 	(t, x), 	(t, x) =
x∫

h(t)

ρ(t, ξ)dξ (t � 0, x ∈ [−1,1]). (3.1)

Accordingly,

	(t,−1) = −r1, 	(t,1) = r2, (t � 0), (3.2)

where

r1 = mL =
h0∫

−1

ρ0(x)dx, r2 = mR =
1∫

h0

ρ0(x)dx.

More precisely, for every t � 0, 	(t, ·) is one to one from [−1, h(t)] onto [−r1, 0] and from [h(t), 1] onto [0, r2]. It 
follows that the problem in Lagrangian mass coordinates is considered on a fixed domain. For each t � 0 we denote 
by 	−1(t, ·) the inverse map of 	(t, ·).

The specific volume in Lagrangian mass coordinates is defined by{
ṽ(t, y) = 1

ρ(t,	−1(t,y))
,

ρ(t, x) = 1
ṽ(t,	((t,x))

,
(t � 0, y ∈ [−r1, r2] \ {0}, x ∈ [−1,1] \ {h(t)}). (3.3)

Similarly, the velocity field in Lagrangian mass coordinates writes

ũ(t, y) = u(t,	−1(t, y)), u(t, x) = ũ(t,	(t, x)) (t � 0, y ∈ [−r1, r2], x ∈ [−1,1]). (3.4)

Finally, the temperature field in Lagrangian mass coordinates writes{
θ̃ (t, y) = θ(t,	−1(t, y)),

θ(t, x) = θ̃ (t,	((t, x)),
(t � 0, y ∈ [−r1, r2] \ {0}, x ∈ [−1,1] \ {h(t)}). (3.5)

With the above notation, the system formed by (1.2)–(1.9), can be written in the form:

∂t ṽ − ∂yũ = 0 (t � 0, y ∈ (−r1, r2) \ {0}), (3.6)

∂t ũ + ∂y

(
θ̃

ṽ

)
= μ∂y

(
1

ṽ
∂y ũ

)
(t � 0, y ∈ (−r1, r2) \ {0}), (3.7)

cv∂t θ̃ − ∂y

(
κ(θ̃)

ṽ
∂y θ̃

)
= μ

1

ṽ
|∂yũ|2 − θ̃

ṽ
∂y ũ (t � 0, y ∈ (−r1, r2) \ {0}), (3.8)

ũ(t,−r1) = ũ(t, r2) = 0 (t � 0), (3.9)

ũ(t,0±) = g(t), M
dg

dt
(t) =

[
μ

ṽ
∂yũ − 1

ṽ
θ̃

]y→0+

y→0−
(t � 0), (3.10)

∂y θ̃(t,0±) = ∂yθ̃(t,−r1) = ∂yθ̃(t, r2) = 0 (t � 0), (3.11)

g(0) = g0, (3.12)

ṽ(0, y) = ṽ0(y), ũ(0, y) = ũ0(y) (y ∈ (−r1, r2) \ {0}), (3.13)

where g(t) := dh (t) for every t � 0 and
dt
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ṽ0(y) = 1

ρ0(	−1(0, y))
, ũ0(y) = u0(	

−1(0, y)), θ̃0(y) = θ0(	
−1(0, y)) (y ∈ (−r1, r2) \ {0}).

As is well known, see Wagner [24], formulation (3.6)–(3.13) is equivalent to the original problem (1.2)–(1.9), (2.1)
even at the level of weak solutions as long as the specific volume v satisfies,

0 < v � v � v.

We claim the following result on global in time existence of strong solutions of (3.6)–(3.13):

Theorem 3.1. Assume that κ ∈ C2[0, ∞) satisfies (1.10) for some α � 2. Let the initial data g0, ṽ0, ũ0, θ̃0 be given in 
the class

ṽ0 ∈ W 1,2(−r1,0) ∪ W 1,2(0, r2), ṽ0 > 0 (3.14)

ũ0 ∈ W
1,2
0 (−r1, r2), ũ0(0) = g0 (3.15)

θ̃0 ∈ W 1,2(−r1,0) ∪ W 1,2(0, r2), θ̃0 > 0. (3.16)

Then for any τ > 0, the system (3.6)–(3.13) admits a solution [g, ṽ, ũ, θ̃ ] on the time interval [0, τ ], unique in the 
class

g ∈ W 1,2(0, τ ), (3.17)

ṽ ∈ C([0, τ ];W 1,2(−r1,0)) ∩ C([0, τ ];W 1,2(0, r2)), (3.18)

ṽ(t, ·) � v(t) > 0 (t ∈ [0, τ ]), (3.19)

ũ ∈ C([0, τ ];W 1,2
0 (−r1, r2)), (3.20)

∂t ũ, ∂y,y ũ ∈ L2([0, τ ];L2[−r1,0]) ∪ L2([0, τ ];L2[0, r2]), (3.21)

θ̃ ∈ C([0, τ ];W 1,2(−r1,0)) ∪ C([0, τ ];W 1,2(0, r2)), (3.22)

∂t θ̃ , ∂y,y θ̃ ∈ L2([0, τ ];L2[−r1,0]) ∪ L2([0, τ ];L2[0, r2]), (3.23)

θ̃ (t, ·) � θ(t) > 0 (t ∈ [0, τ ]). (3.24)

Remark 3.2. Besides the fact that we consider an insulating piston and a temperature dependent heat conductivity 
coefficient, the above theorem requires definitely less regularity of the data compared to Shelukhin’s corresponding 
result [21] based on classical solution framework.

Moreover, the obtained ṽ is bounded from above and bounded away from zero and therefore, going back to the 
eulerian density (see (3.3)),

0 < mτ � ρ(t, x) �Mτ < ∞ (t ∈ [0, τ ], x �= h(t)),

h(t)∫
−1

ρ(t, x)dx = r1,

1∫
h(t)

ρ(t, x)dx = r2 (t ∈ [0, τ ]),

where h(t) = h0 + ∫ τ

0 g(σ ) dσ , with h0 ∈ (−1, 1). The above facts imply the expected property

h(t) ∈ (−1,1) (t ∈ [0, τ ]).

Passing to the original Eulerian variables we easily check that Theorem 3.1 yields strong solutions in the regularity 
class specified in Definition 2.1; whence justifying the existence statement claimed in Theorem 2.2. On the other hand, 
any solution enjoying the level of smoothness imposed by Definition 2.1 has the regularity claimed in Theorem 3.1
when expressed in the Lagrangian coordinates. Indeed relations (3.21), (3.23) in fact imply continuity claimed in 
(3.20), (3.22), respectively, while the continuity of the specific volume ṽ obtained in (3.18) follows from the fact that 
the density ρ > 0 satisfies the transport equation (1.2) in the Eulerian coordinates and therefore can be computed on 
the streamlines by the method of characteristics. In other words, the statement of Theorem 3.1 implies Theorem 2.2. 
In the remaining part of this section, we therefore focus on the proof of Theorem 3.1.
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3.2. Local existence and uniqueness of solutions

In this subsection we give a local in time existence and uniqueness result, whose precise statement requires some 
notation. More precisely, for every R > 0 we denote by BR the closed ball of radius R centered at the origin in X, 
where

X =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

ṽ0
ũ0
g0

θ̃0

⎤⎥⎥⎦
∣∣∣∣∣∣∣∣
ṽ0 ∈ W 1,2(−r1,0) ∩ W 1,2(0, r2)

ũ0 ∈ W
1,2
0 (−r1, r2)

g0 ∈R

θ̃0 ∈ W 1,2(−r1,0) ∩ W 1,2(0, r2)

and ũ0(0) = g0

⎫⎪⎪⎬⎪⎪⎭ . (3.25)

Moreover, given R, m0, m1 > 0, with m0 < m1, we denote by BR,m0,m1 the subset of BR formed by the states 
satisfying

m1 � ṽ0(y) � m0 (y ∈ (−r1,0) ∪ (0, r2)) , (3.26)

m1 � θ̃0(y) � m0 (y ∈ (−r1,0) ∪ (0, r2)) , (3.27)

‖ṽ0‖W 1,2(−r1,0) + ‖ṽ0‖W 1,2(0,r2)
+ ‖ũ0‖W 1,2(−r1,r2)

+ ‖θ̃0‖W 1,2(−r1,0) + ‖θ̃0‖W 1,2(0,r2)
� R.

Our local in time existence and uniqueness states as follows:

Theorem 3.3. Let R > 0 and m1 > m0 > 0. Let 

⎡⎢⎢⎣
ṽ0
ũ0
g0

θ̃0

⎤⎥⎥⎦ ∈ BR,m0,m1 . Then there exists T > 0, depending only on m0, 

m1 and R such the system (3.6)–(3.13) admits an unique solution (in the sense of Theorem 3.1) on [0, T ].

An important point is that the proof of the above theorem is based on a “monolithic” linearization of the system 
(3.6)–(3.13), followed by an application of the Banach fixed point theorem. The term monolithic linearization designs 
the fact that the linearized system is still a coupled one, in which both the velocities of the gas and of the piston are 
supposed to be the unknowns. Using this type of linearization is important in order to obtain the local existence and 
uniqueness in spaces which are less regular than those used in the existing literature.

With the exception of the above mentioned point, the proof of Theorem 3.3 is based on standard maximal regu-
larity theory for linear parabolic equations and on standard Sobolev embedding theorems. We refer to the proof of 
Theorem 3.1 in Debayan et al. [18] for a detailed presentation of the method in a situation which is close to the one 
encountered in Theorem 3.3.

In the remaining part of this section we deduce the main estimates which are necessary to show that the local in 
time solution constructed in Theorem 3.3 can be extended to a solution defined on [0, τ) for every τ > 0. Our approach 
has numerous common points with the methodology used by Shelukhin [21], Antontsev et al. [1] and Kazhikhov [13]
but it requires new estimates in order to tackle the fact that the piston is assumed thermally insulating, which gives the 
homogeneous Neumann boundary condition for the temperature on the piston.

3.3. Energy type estimates and first density and temperature bounds

In this subsection and for the remaining part of this section 0 < τ < ∞ is fixed and 

⎡⎢⎢⎣
ṽ

ũ

g

θ̃

⎤⎥⎥⎦ is a solution of 

(3.6)–(3.11) on [0, T ] ⊂ [0, τ) having the properties stated in Theorem 3.3. All the constants appearing in the es-
timates below may depend on τ and on the constants m0, m1, R in Theorem 3.3, but are independent of T .

In this subsection we derive, following closely ideas from [21], some energy bounds and we provide the first 
estimates on the density and temperature fields.

Denote, recalling that g(t) := dh
dt

(t) and that the constructed local solution satisfies θ̃ > 0 and ṽ > 0 on the existence 
domain,
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E1(t) =
∥∥∥∥cvθ̃(t, ·) + 1

2
ũ2(t, ·)

∥∥∥∥
L1[−r1,r2]

+ M
g2(t)

2
(t ∈ [0, T ]), (3.28)

E2(t) =
∥∥∥∥∥cvφ

(
θ̃ (t, ·)

a

)
+ φ

(
ṽ(t, ·)

b

)
+ ũ2(t, ·)

2a

∥∥∥∥∥
L1[−r1,r2]

+ M

2a
g2(t) (t ∈ [0, T ]),

E3(t) =
∥∥∥∥∥
(

κ(θ̃)

θ̃2 ṽ

∣∣∣∂x θ̃

∣∣∣2) (t, ·) +
(

μ

ṽ θ̃
|∂xũ|2

)
(t, ·)

∥∥∥∥∥
L1[−r1,r2]

(t ∈ [0, T ]), (3.29)

where a, b are arbitrary positive constants and

φ(θ) = θ − ln θ − 1 (θ > 0). (3.30)

Lemma 3.4. We have

E1(t) = E1(0) (t ∈ [0, T ]), (3.31)

‖ṽ(t, ·)‖L1[−r1,r2] = ‖ṽ0‖L1[−r1,r2] := β (t ∈ [0, T ]), (3.32)

E2(t) +
t∫

0

E3(s)ds = E2(0) (t ∈ [0, T ]). (3.33)

Proof. Taking the product of both sides of (3.7) by ũ, integrating on [−r1, 0], on [0, r2], using (3.9) and summing up 
the obtained results it follows that, for every t � 0,

1

2

d

dt

r2∫
−r1

ũ2(t, y)dy + g(t)

[
μ

ṽ
∂yũ − θ̃

ṽ

]y→0+

y→0−
(t) +

r2∫
−r1

∂yũ(t, y)

(
μ

ṽ
∂yũ − θ̃

ṽ

)
(t, y)dy = 0.

By combining the above formula and (3.10) it follows that, for every t � 0,

1

2

d

dt

r2∫
−r1

ũ2(t, y)dy + M

2

d

dt
g2(t) +

r2∫
−r1

(∂yũ)(t, y)

(
μ

ṽ
∂yũ − θ̃

ṽ

)
(t, y)dy = 0. (3.34)

On the other hand, integrating (3.8) on [−r1, 0], on [0, r2], using (3.11) and summing up the obtained results it follows 
that, for every t � 0,

d

dt

r2∫
−r1

cvθ̃(t, y)dy −
r2∫

−r1

∂yũ

[(
μ

ṽ
∂yũ − θ̃

ṽ

)]
(t, y)dy = 0.

Summing up the above formula and (3.34) we obtain (3.31).
In order to prove (3.32), it suffices to integrate (3.6) on [−r1, 0], on [0, r2], to sum up the obtained results and to 

use the first condition in (3.10).

In order to prove (3.33) we multiply (3.8) by 1
a
φ′
(

θ̃
a

)
= 1

a
− 1

θ̃
, we integrate on [−r1, 0] and on [0, r2] and finally 

we sum up. For the first term we obtain

1

a

0∫
−r1

cv

(
∂t θ̃ (t, y)

)
φ′
(

θ̃ (t, y)

a

)
dy + 1

a

r2∫
0

cv∂t θ̃ (t, y)φ′
(

θ̃ (t, y)

a

)
dy

= d

dt

r2∫
−r1

cvφ

(
θ̃ (t, y)

a

)
dy (t ∈ [0, T ]). (3.35)
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The same operations and integration by parts applied to the second term in (3.8) give

− 1

a

0∫
−r1

∂y

(
κ(θ̃)

ṽ
∂y θ̃

)
φ′
(

θ̃

a

)
dy − 1

a

r2∫
0

∂y

(
κ(θ̃)

ṽ
∂y θ̃

)
φ′
(

θ̃

a

)
dy

=
r2∫

−r1

(
κ(θ̃)

ṽ

∣∣∣∂yθ̃

∣∣∣2 1

θ̃2

)
dy (t ∈ [0, T ]). (3.36)

To evaluate the contribution of the third term in (3.8), we note that

− 1

a

r2∫
−r1

{
∂yũ

(
μ

ṽ
∂yũ − θ̃

ṽ

)}
φ′
(

θ̃

a

)
dy = −1

a

r2∫
−r1

{
∂yũ

(
μ

ṽ
∂yũ − θ̃

ṽ

)}
dy

+
r2∫

−r1

(
μ

ṽ θ̃

∣∣∂yũ
∣∣2) dy −

r2∫
−r1

(
1

ṽ
∂y ũ

)
dy (t ∈ [0, T ]). (3.37)

Summing up (3.35)–(3.37) and using (3.6) we obtain that

d

dt

r2∫
−r1

{
cvφ

(
θ̃

a

)
− ln

(
ṽ

b

)}
dy = −

r2∫
−r1

(
κ(θ̃)

ṽ

∣∣∣∂y θ̃

∣∣∣2 1

θ̃2

)
dy

−
r2∫

−r1

(
μ

ṽ θ̃

∣∣∂yũ
∣∣2) dy + 1

a

r2∫
−r1

{
∂yũ

(
μ

ṽ
∂yũ − θ̃

ṽ

)}
dy (t ∈ [0, T ]). (3.38)

On the other hand, multiplying (3.7) by 1
a
ũ and integrating on [−r1, 0] and on [0, r2] we obtain

1

2a

d

dt

r2∫
−r1

ũ2 dy + 1

a

r2∫
−r1

{
∂yũ

(
μ

ṽ
∂yũ − θ̃

ṽ

)}
dy + M

2a

d

dt
|g(t)|2 = 0 (t ∈ [0, T ]). (3.39)

Taking the sum of (3.38), (3.39) and using (3.32) we obtain the conclusion (3.33). �
Lemma 3.5. Denote

σ(t, y) = μ

ṽ(t, x)
∂yũ(t, y) − θ̃ (t, y)

ṽ(t, y)
(t ∈ [0, T ], y ∈ [−r1, r2] \ {0}). (3.40)

Then, for every t ∈ [0, T ] and every y ∈ [−r1, r2] \ {0} we have

ṽ(t, y) =
⎛⎝ṽ0(y) +

t∫
0

1

μ
θ̃(ξ, y) exp

⎧⎨⎩−
ξ∫

0

1

μ
σ(s, y)ds

⎫⎬⎭ dξ

⎞⎠ exp

⎛⎝ t∫
0

1

μ
σ(s, y)ds

⎞⎠ , (3.41)

t∫
0

σ(s, y)ds = − 1

β

t∫
0

‖ũ2(s, ·) + θ̃ (s, ·)‖L1[−r1,r2] ds + A(t, y) + B(t, y), (3.42)

where β is the constant in (3.32) and
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βA(t, y) =
r2∫

−r1

ṽ(t, ξ)

⎧⎪⎨⎪⎩
y∫

ξ

ũ(t, η)dη −
y∫

0

ũ0(η)dη

⎫⎪⎬⎪⎭ dξ

+
r2∫

−r1

ṽ0(ξ)

ξ∫
0

ũ0(η)dη dξ (t ∈ [0, T ], y ∈ [−r1, r2]),

βB(t, y) = −M

t∫
0

g2(s)ds − (‖ṽ(t, ·)‖L1[0,r2] M g(t) − ‖ṽ0‖L1[0,r2] M g0) (t ∈ [0, T ], y ∈ [−r1,0)),

βB(t, y) = −M

t∫
0

g2(s)ds + (‖ṽ(t, ·)‖L1[−r1,0] M g(t) − ‖ṽ0‖L1[−r1,0] M g0) (t ∈ [0, T ], y ∈ (0, r2]).

Proof. By combining (3.6) and (3.40) it follows that

∂t ṽ(t, y) = 1

μ
(σ(t, y)ṽ(t, y) + θ̃ (t, y)) (t ∈ [0, T ], y ∈ [−r1, r2] \ {0}), (3.43)

so that (3.41) is nothing else but the variation of constants formula applied to (3.43), seen as a linear ODE of unknown 
ṽ(·, y) and depending on the parameter y ∈ [−r1, r2] \ {0}.

In order to prove (3.42) we set

γ (t, y) =
t∫

0

σ(s, y)ds +
y∫

0

ũ0(η)dη (t ∈ [0, T ], y ∈ (0, r2)). (3.44)

Using the fact that equation (3.8) rewrites ∂t ũ = ∂yσ , it follows that

∂tγ (t, y) = σ(t, y), ∂yγ (t, y) = ũ(t, y) (t ∈ [0, T ], y ∈ [−r1, r2] \ {0}). (3.45)

Consequently, for t ∈ [0, T ] and y ∈ [−r1, r2] \ {0} we have

∂t (ṽ γ ) = (∂yũ)γ + ∂yũ − θ̃ = (
∂y,yγ

)
γ + ∂y,yγ − θ̃ = ∂y,yγ + ∂y

[
(∂yγ )γ

]− (
∂yγ

)2 − θ̃ .

Integrating the above formula on [0, t] × [−r1, 0], on [0, t] × [0, r2] and summing up we obtain:

r2∫
−r1

ṽ(t, y)γ (t, y)dy −
r2∫

−r1

ṽ0(y)

y∫
0

ũ0(ξ)dξ dx =
t∫

0

g(s)(γ (s,0−) − γ (s,0+))ds

−
t∫

0

‖ũ2(s, ·) + θ̃ (s, ·)‖L1[−r1,r2] ds (t ∈ [0, T ]). (3.46)

Using the facts that

γ (s,0−) =
s∫

0

∂tγ (η,0−)dη + γ (0,0−) =
s∫

0

σ(η,0−)dη,

γ (s,0+) =
s∫

0

∂tγ (η,0+)dη + γ (0,0+) =
s∫

0

σ(η,0+)dη,

it follows that
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γ (s,0−) − γ (s,0+) = −
s∫

0

[σ(η, ·)]y→0+
y→0− dη = −M

s∫
0

ġ(τ )dτ = −M(g(s) − g0).

Inserting the above formula in (3.46) yields

r2∫
−r1

ṽ(t, y)γ (t, y)dy = −M

t∫
0

g(s)(g(s) − g0)ds −
t∫

0

‖ũ2(s, ·) + θ̃ (s, ·)‖L1[−r1,r2] ds

+
r2∫

−r1

ṽ0(y)

y∫
0

ũ0(η)dη dy (t ∈ [0, T ]).

Since

t∫
0

g(s)ds =
t∫

0

ũ(s,0)ds =
t∫

0

0∫
−r1

∂yũ(s, y)dy ds

=
0∫

−r1

t∫
0

∂s ṽ(s, y)ds dy = ‖ṽ(t, ·)‖L1[−r1,0] − ‖ṽ0‖L1[−r1,0] (t ∈ [0, T )),

we deduce that

r2∫
−r1

ṽ(t, y)γ (t, y)dy = −M

t∫
0

g2(s)ds + Mg0
(‖ṽ(t, ·)‖L1[−r1,0] − ‖ṽ0‖L1[−r1,0]

)

−
t∫

0

‖ũ2(s, ·) + θ̃ (s, ·)‖L1[−r1,r2] ds +
r2∫

−r1

ṽ0(y)

y∫
0

ũ0(η)dη dy (t ∈ [0, T ]). (3.47)

On the other hand, by combining (3.44) and the second formula in (3.45) it follows that

t∫
0

σ(s, y)ds = γ (t, ξ) +
y∫

ξ

ũ(t, η)dη −
y∫

0

ũ0(η)dη + ζ(t, ξ), (3.48)

for every t ∈ [0, T ], y ∈ (0, r2) and ξ ∈ (−r1, r2), where, for every t ∈ [0, T ]

ζ(t, ξ) =
{

0 if ξ ∈ (0, r2]∫ t

0 [σ(s, ·)]0 = M(g(t) − g0) if ξ ∈ [−r1,0).

Multiplying (3.48) by ṽ(t, ξ) and integrating with respect to ξ it follows that

β

t∫
0

σ(s, y)dy =
r2∫

−r1

ṽ(t, ξ)γ (t, ξ)dξ +
r2∫

−r1

ṽ(t, ξ)

⎛⎜⎝ y∫
ξ

ũ(t, η)dη −
y∫

0

ũ0(η)dη

⎞⎟⎠ dξ

+ ‖ṽ(t, ·)‖L1[−r1,0]M(g(t) − g0) (t ∈ [0, T ]).
Combining the above formula and (3.47) we obtain (3.42) for y ∈ (0, r2]. The proof of (3.42) for y ∈ [−r1, 0) is 
completely similar so it can be omitted. �

By combining (3.42) with (3.32) and (3.33) we obtain:
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Corollary 3.6. With the notation in Lemma 3.5, there exists a constant c > 0 such that∣∣∣∣∣∣
t∫

0

σ(s, y)ds

∣∣∣∣∣∣� c (t ∈ [0, T ], y ∈ [−r1, r2] \ {0}). (3.49)

Given a function f : [0, T ] × [−r1, 0) ∪ (0, r2] → (0, ∞), we denote, for the remaining part of this work

mf (t) = inf
y∈[−r1,0)∪(0,r2]

f (t, y), Mf (t) = sup
y∈[−r1,0)∪(0,r2]

f (t, y) (t ∈ [0, T ]).

Lemma 3.7. With φ defined in (3.30), we have the inequalities:

Mθ̃(t) � 4a

{
1 + K0

∥∥∥∥∥φ
(

θ̃ (t, ·)
a

)∥∥∥∥∥
L1[−r1,r2]

Mṽ(t) J (t)

}
(t ∈ [0, T ]), (3.50)

where K0 is a universal constant, a = max{r−1
1 E1(0), r−1

2 E1(0)}, where E1 has been defined in (3.28) and

J (t) =

∥∥∥∥∥∥∥
⎛⎜⎝
∣∣∣∂yθ̃

∣∣∣2
ṽ θ̃2

⎞⎟⎠ (t, ·)

∥∥∥∥∥∥∥
L1[−r1,r2]

(t ∈ [0, T ]). (3.51)

Proof. In order to prove (3.50) we fix t ∈ [0, T ] and we show that θ̃ (t, y) is smaller than the right hand side of (3.50)
for every y ∈ [−r1, 0]. The proof of the similar estimate for y ∈ [0, r2] can be done following line by line the same 
steps.

To achieve this goal, we first note that from the energy estimate (3.31) it follows that

min
y∈[−r1,0] θ̃ (t, y) � E1(0)

cvr1
.

Then we distinguish two cases. Firstly, if we assume that

max
y∈[−r1,0] θ̃ (t, y) � 2E1(0)

cvr1
, (3.52)

then (3.50) is obviously verified.
If (3.52) is false then, using the continuity of the map y 
→ θ̃ (t, y) on [−r1, 0] it follows that there exists y1 ∈

[−r1, 0] (depending on t ) such that

θ̃ (t, y1) = E1(0)

cvr1
.

In this case, if y is such that θ̃ (t, y) � 4E1(0)
cvr1

then there is nothing to prove. We can thus assume, without loss of 

generality, that θ̃ (t, y) > 4E1(0)
cvr1

. In this case we define

�1(t, y) =
θ̃ (t,y)∫

θ̃ (t,y1)

1

s

√
φ

(
s

a1

)
ds, (3.53)

where a1 := E1(0) and φ has been defined in (3.30). We have

cvr1
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|�1(t, y)| =
∣∣∣∣∣∣

y∫
y1

∂η�1(t, η)dη

∣∣∣∣∣∣�
0∫

−r1

∣∣∂η�1(t, η)
∣∣ dη =

0∫
−r1

∣∣∣∣∣∣ 1

θ̃ (t, η)

√√√√φ

(
θ̃ (t, η)

a1

)
∂θ̃

∂η
(t, η)

∣∣∣∣∣∣ dη

�

⎛⎝ 0∫
−r1

φ

(
θ̃ (t, η)

a1

)
dη

⎞⎠
1
2
⎛⎝ 0∫

−r1

1

θ̃2(t, η)

∣∣∣∣∣∂θ̃

∂η
(t, η)

∣∣∣∣∣
2

dη

⎞⎠
1
2

�
(∥∥∥∥∥φ

(
θ̃ (t, ·)

a1

)∥∥∥∥∥
L1[−r1,r2]

Mṽ(t)J (t)

) 1
2

. (3.54)

On the other hand, (3.53) and elementary inequalities imply that there exists an universal constant K0 > 0 such that 
for every y ∈ [−r1, 0] with θ̃ (t, y) > 4a1 we have

�1(t, y) =
θ̃ (t,y)

a1∫
1

√
φ(s)

s
ds � K

−1/2
0

θ̃ (t,y)
a1∫

1

1√
s

ds = 2K
−1/2
0

⎛⎝√ θ̃ (t, y)

a1
− 1

⎞⎠ � K
−1/2
0

√
θ̃ (t, y)

a1
.

The last inequality and (3.54) imply the announced estimate. �
3.4. Pointwise density and temperature bounds

Lemma 3.8. There exists c > 0 such that

c−1 � ṽ(t, y) � c (t ∈ [0, T ], y ∈ (−r1, r2)). (3.55)

Proof. Using (3.49) in (3.41) and the positivity of θ̃ we obtain the first inequality in (3.55).
To prove the second one, we use again (3.49) and (3.41) to obtain that there exists a constant c > 0 such that

Mṽ(t) � c + c

t∫
0

Mθ̃(s)ds (t ∈ [0, T ]).

Inserting (3.50) into the last inequality we obtain that there exists a constant c > 0 such that

Mṽ(t) � c + c

t∫
0

{
1 +

∥∥∥∥∥φ
(

θ̃

a

)
(s, ·)

∥∥∥∥∥
L1[−r1,r2]

Mṽ(s)J (s)ds

}
, (3.56)

where J has been defined in (3.51). The above inequality, combined with Gronwall’s lemma and with (3.33), implies 
the second inequality (the upper bound) in (3.55). �

By combining estimate (3.33) with Lemma 3.7 and Lemma 3.8 we obtain the following upper bound for the 
temperature

Corollary 3.9. There exists c > 0 such that

t∫
0

Mθ̃(s)ds � c (t ∈ [0, T ]).

We also have the following upper bound for the velocity ũ.

Corollary 3.10. There exists c > 0 such that

t∫
0

Mũ2(s)ds � c (t ∈ [0, T ]). (3.57)
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Proof. Note that, using a simple Sobolev embedding and the Cauchy–Schwarz inequality,

M|ũ|(s) � ‖∂xũ(s, ·)‖L1[−r1,r2] �
∥∥∥∥∥ 1√

ṽ θ̃
∂yũ(s, ·)

∥∥∥∥∥
1
2

L2[−r1,r2]
‖(
√

ṽ θ̃ )(s, ·)‖
1
2
L2[−r1,r2].

The above inequality together with (3.31) and (3.55) yield

Mũ2(s) �
c

μ
E1(0)E3(s) (s ∈ [0, t], t ∈ [0, T ]),

where E1 and E3 have been defined in (3.28) and (3.29), respectively. Integrating the above inequality with respect to 
time and using (3.33) we obtain the conclusion (3.57). �

Let us now show that the temperature θ̃ admits a strictly positive lower bound on [0, T ] × [−r1, r2].

Proposition 3.11. There exists c > 0 such that

mθ̃(t) � c (t ∈ [0, T ]).

Proof. We define w = 1
θ̃

. By equation (3.8)

cv∂tw − ∂y

(
κ(θ̃)

ṽ
∂yw

)
= 1

4μṽ
− 1

ṽθ̃2

(
√

μ∂yũ − θ̃

2
√

μ

)2

− 2κ(θ̃)

θ̃ ṽ

(
1

θ̃
∂y θ̃

)2

. (3.58)

Multiplying the above formula by wp−1, with p > 1, and integrating over (−r1, r2) we obtain

cv‖w(t, ·)‖p−1
p

d

dt
‖w(t, ·)‖p �

∥∥∥∥ 1

4μṽ(t, ·)
∥∥∥∥

p

‖w(t, ·)‖p−1
p . (3.59)

This yields

cv

d

dt
‖w(t, ·)‖p � 1

4μ

∥∥∥∥ 1

ṽ(t, ·)
∥∥∥∥

p

(3.60)

and, after integration with respect to time, we obtain

‖w(t, ·)‖p � ‖w(0)‖p + 1

4cvμ

t∫
0

∥∥∥∥ 1

ṽ(s, ·)
∥∥∥∥

p

ds. (3.61)

Tending with p to infinity in the above estimate and using Lemma 3.8 it follows that

sup
t∈[0,T ]

∥∥∥∥ 1

θ̃ (t, ·)
∥∥∥∥∞

= sup
t∈[0,T ]

‖w(t, ·)‖� c. � (3.62)

Proposition 3.12. There exists c > 0 such that

∥∥∂yṽ(t, ·)∥∥2
L2[−r1,r2] +

t∫
0

∥∥∂yṽ(s, ·)∥∥2
L2[−r1,r2] ds � c (t ∈ [0, T ]). (3.63)

Proof. Let q = ũ − μ∂y(ln ṽ) = ũ − μ
ṽ

∂y ṽ. Using (3.7) it follows that

∂tq(t, y) = −∂y

(
θ̃

ṽ

)
(t, y) (t ∈ [0, T ), y ∈ [−r1, r2] \ {0}) .

Multiplying the above equation by q and integrating on [−r1, r2] we obtain
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1

2

d

dt
‖q(t, ·)‖2

L2[−r1,r2] +
∥∥∥∥∥μ θ̃

ṽ3

∣∣∂yṽ
∣∣2 (t, ·)

∥∥∥∥∥
L1[−r1,r2]

= F3(t) (t ∈ [0, T )), (3.64)

where

F3(t) =
r2∫

−r1

(
ũ

θ̃

ṽ2 (∂y ṽ) − 1

ṽ
(∂y θ̃) ũ + μ

ṽ2 (∂y ṽ)(∂y θ̃)

)
dy (t ∈ [0, T ]).

Using elementary inequalities it is easily checked that

F3(t) �
1

2

∥∥∥∥∥μ θ̃

ṽ3

∣∣∂yṽ
∣∣2 (t, ·)

∥∥∥∥∥
L1[−r1,r2]

+ c(μ)

r2∫
−r1

θ̃

ṽ
ũ2 dy + c(μ)

r2∫
−r1

μ

ṽ θ̃

∣∣∣∂y θ̃

∣∣∣2 dy,

where J has been defined in (3.51). Using (3.55) and Proposition 3.11 it follows that there exists c > 0 such that

F3(t) �
1

2

∥∥∥∥∥μ θ̃

v3

∣∣∂yṽ
∣∣2 (t, ·)

∥∥∥∥∥
L1[−r1,r2]

+ c(μ)Mũ2(t)

r2∫
−r1

θ̃ dy + c(μ)

r2∫
−r1

∣∣∣∂yθ̃

∣∣∣2 dy.

The above inequality and (3.64) yield

1

2

d

dt
‖q(t, ·)‖2

L2[−r1,r2] + 1

2

∥∥∥∥∥μ θ̃

ṽ3

∣∣∂yṽ
∣∣2 (t, ·)

∥∥∥∥∥
L1[−r1,r2]

� c(μ)Mũ2(t)

r2∫
−r1

θ̃ dy

+ c(μ)

r2∫
−r1

∣∣∣∂y θ̃

∣∣∣2 dy (t ∈ [0, T ]). (3.65)

On the other hand, we note that from (3.31) it follows that

r2∫
−r1

θ̃ (s, y)dy � E1(0)

cv

(s ∈ [0, T ]),

whereas (3.33), combined with Lemma 3.8 and Corollary 3.10, implies that there exist c > 0 such that

t∫
0

⎛⎝Mũ2(s) +
r2∫

−r1

∣∣∣∂y θ̃(s, y)

∣∣∣2
⎞⎠ dy ds < cE2(0) + c (t ∈ [0, T ]).

Therefore, integrating (3.65) with respect to time, using again the lower bound for θ̃ and the upper bound for ṽ, 
together with some elementary inequalities, we obtain the conclusion (3.63). �
3.5. Proof of Theorem 3.1

In this paragraph we derive the last estimates necessary to prove our main existence result and we give the formal 
proof of Theorem 3.1.

Proposition 3.13. There exists a constant c > 0 such that

∥∥∂yũ(t, ·)∥∥2
L2[−r1,r2] +

t∫
0

∥∥∂y,y ũ
∥∥2

L2[−r1,r2] dt � c (t ∈ [0, T ]). (3.66)
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Proof. We multiply (3.7) by −∂y,y ũ and we integrate on [−r1, 0] and on [0, r2]. We get

−
r2∫

−r1

(∂t ũ) (∂y,y ũ)dy +
r2∫

−r1

μ

ṽ

∣∣∂y,y ũ
∣∣2 dy =

r2∫
−r1

1

ṽ2 (∂y ṽ)(∂yũ)(∂y,y ũ) dy

+
r2∫

−r1

1

ṽ
(∂y θ̃) (∂y,y ũ)dy −

r2∫
−r1

1

ṽ2 (∂y ṽ) θ̃ (∂y,y ũ)dy (t ∈ [0, T ]). (3.67)

Integrating by parts the first term in the left hand side of the above formula and using (1.6), we see that

−
r2∫

−r1

(∂t ũ) (∂y,y ũ)dy = −
0∫

−r1

(∂t ũ)(∂y,y ũ)dy −
r2∫

0

(∂t ũ) (∂y,y ũ)dy

=
0∫

−r1

(∂t,y ũ) (∂yũ)dy − dg

dt
(t) (∂yũ)(t,0−) +

r2∫
0

(∂t,y ũ)(∂yu)dy + dg

dt
(t) (∂yũ)(t,0+)

= 1

2

r2∫
−r1

∂t

∣∣∂yũ
∣∣2 dy + dg

dt
(t)

[
∂yũ(t, ·)]y→0+

y→0− (t ∈ [0, T ]).

For the last term in the right hand side of the above formula we have that

dg

dt
(t)

[
∂yũ(t, ·)]y→0+

y→0− � c
dg

dt
(t)

(∥∥∂yũ(t, ·)∥∥
C[−r1,0] + ‖∂yũ(t, ·)‖C[0,r2]

)
= c

1

M

[(
μ

ṽ
∂yũ − 1

ṽ
θ̃

)
(t, ·)

]y→0+

y→0−

(∥∥∂yũ(t, ·)∥∥
C[−r1,0] + ‖∂yũ(t, ·)‖C[0,r2]

)
� c

(∥∥∂yũ
∥∥2

L∞[−r1,r2] + ‖θ̃‖2
W 1,2(−r1,0)

+ ‖θ̃‖2
W 1,2(0,r2)

)
(t ∈ [0, T ]),

where we have used (3.10) and (3.55). On the other hand, Gagliardo–Nirenberg inequality together with Young’s 
inequality yield

∥∥∂yũ
∥∥

L∞[−r1,r2] � c‖ũ‖
3
4
W 2,2(−r1,0)∩W 2,2(0,r2)

‖ũ‖
1
4
L2[−r1,r2]

� ε
∥∥∂y,y ũ

∥∥
L2[−r1,r2] + ε

∥∥∂yũ
∥∥

L2[−r1,r2] + c(ε)‖ũ‖L2[−r1,r2],

where ε > 0 is arbitrary and c(ε) > 0 depends only on ε. Inserting the last two estimates into (3.67) and using again 
Young’s inequality we get

1

2

r2∫
−r1

∂t

∣∣∂yũ
∣∣2 dy +

r2∫
−r1

∣∣∂y,y ũ
∣∣2 dy � ε

∥∥∂y,y ũ
∥∥2

L2[−r1,r2] + c(ε)

⎛⎝∥∥∂yũ
∥∥2

L2[−r1,r2] + ‖ũ‖2
L2[−r1,r2]

+
r2∫

−r1

∣∣∂yṽ
∣∣2 ∣∣∂yũ

∣∣2 dy +
∥∥∥∂y θ̃

∥∥∥2

L2[−r1,r2]
+ ∥∥∂yṽ

∥∥2
L2[−r1,r2]

⎞⎠ . (3.68)

For ε small enough we may absorb first term on the right hand side. Since α � 2 in (1.10), Lemma 3.4 yields ∫ T

0

∥∥∥∂y θ̃

∥∥∥2

L2[−r1,r2]
� c. Consequently, it suffices to integrate (3.68) with respect to time, to use Proposition 3.12

and Gronwall’s inequality in order to obtain the desired estimate. �
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Proposition 3.14. There exists a constant c > 0 such that

∥∥∥∂y θ̃(t, ·)
∥∥∥2

L2[−r1,r2]
+

t∫
0

∥∥∥∂t θ̃

∥∥∥2

L2[−r1,r2]
dt � c (t ∈ [0, T ]). (3.69)

Proof. We multiply (3.8) by κ(θ̃)∂t θ̃ and we integrate over interval (−r1, r2). Using the fact that ∂y

(
κ(θ̃)∂t θ̃

)
=

∂t

(
κ(θ̃)∂y θ̃

)
, we get

r2∫
−r1

cvκ(θ̃)

∣∣∣∂t θ̃

∣∣∣2 dy + d

dt

r2∫
−r1

1

ṽ

∣∣∣κ(θ̃)∂y θ̃

∣∣∣2 dy �

r2∫
−r1

1

2ṽ2
|∂t ṽ|

∣∣∣κ(θ̃)∂y θ̃

∣∣∣2 dy +
r2∫

−r1

∂yũ

(
1

ṽ
∂y ũ − θ̃

ṽ

)
κ(θ̃)∂t θ̃ dy. (3.70)

Due to (3.6) and Proposition 3.13 we have ∂t ṽ ∈ L2([0, T ], L∞[−r1, r2]). We use Young inequality in order to esti-
mate the last term and we may absorb part of it to the left hand side. By Gronwall inequality we get the claim. �

We are now in a position to prove our main existence and uniqueness result.

Proof of Theorem 3.1. Let R, m0, m1 > 0 be such that 

⎡⎢⎢⎣
ṽ0
ũ0
g̃0

θ̃0

⎤⎥⎥⎦ ∈ BR,m0,m1 (recall that BR,m0,m1 is defined at the be-

ginning of Subsection 3.2). Due to Theorem 3.3 there exists a strong solution defined on [0, T ], with T > 0 depending 
only on R, m0, m1. This solution can obviously be extended to a maximal one defined on [0, τ), with τ ∈ [0, ∞]. 
Assume, by contradiction, that τ < ∞. Then, combining Lemma 3.4, Lemma 3.8, Propositions 3.11, 3.12, 3.13 and 

3.14 it follows that 

⎡⎢⎢⎣
ṽ(t, ·)
ũ(t, ·)
g(t)

θ̃ (t, ·)

⎤⎥⎥⎦ ∈ BR̃,m̃0,m̃1
, with R̃, ̃m0, ̃m1 depending only on R, m0, m1 and τ . Applying again 

Theorem 3.3 it follows that there exists T > 0 such that our strong solution can be defined on [t, t + T ] for every 
t ∈ [0, τ), which contradicts the supposed maximality of this solution. �
4. Long time behavior

Our ultimate goal is to show Theorem 2.3. To this end, we first derive bounds on global-in-time solutions that are 
uniform in time. We denote by c(data) a constant depending only on the initial data, in particular, independent of time.

4.1. Mass conservation, energy and entropy estimates

We recall the following estimates proved in Section 2.3.

Proposition 4.1. Denote mL = ∫ h0
−1 ρ0(x) dx, mR = ∫ 1

h0
ρ0(x) dx.

Then the mass of gas on each side of the piston is conserved, specifically,

h(τ)∫
ρ(τ, x) dx = mL,

1∫
ρ(τ, x) dx = mR (τ � 0). (4.1)
−1 h(τ)



E. Feireisl et al. / Ann. I. H. Poincaré – AN 35 (2018) 1377–1408 1397
In addition, the total energy is conserved, i.e.,

1∫
−1

(
1

2
(ρu2)(τ, x) + cv(ρθ)(τ, x)

)
dx + M

2
|u(τ,h(τ))|2 = E0 (τ � 0), (4.2)

where

E0 =
1∫

−1

(
1

2
ρ0(x)u2

0(x) + cvρ0(x)θ0(x)

)
dx + M

2
|u(0, h0)|2 . (4.3)

Finally, the entropy is being produced in the course of motion,

τ∫
0

⎡⎢⎣ h(t)∫
−1

1

θ

(
μ|∂xu|2 + κ(θ)|∂xθ |2

θ

)
dx +

1∫
h(t)

1

θ

(
μ|∂xu|2 + κ(θ)|∂xθ |2

θ

)
dx

⎤⎥⎦ dt

=
⎡⎣ h(t)∫

−1

ρs(ρ, θ) dx

⎤⎦t=τ

t=0

+
⎡⎢⎣ 1∫
h(t)

ρs(ρ, θ) dx

⎤⎥⎦
t=τ

t=0

(τ � 0).

(4.4)

4.2. Uniform bounds for the temperature and density fields

As a consequence of Proposition 4.1 we get the following uniform bounds for the temperature.

Proposition 4.2. Under the hypotheses of Theorem 2.3, let ρ, θ, u, h be a strong solution in [0, ∞) of problem 
(1.2)–(1.9), (2.1). Then there exists a positive function � ∈ L2(0, ∞), with ‖�‖L2(0,∞) � c(data) such that

max
x∈[−1,1] | log(θ)(τ, x)| � c(data)

[
1 + �(τ)

]
(τ � 0), (4.5)

max
x∈[−1,1] θ(τ, x) � c(data)

[
1 + �(τ)

]
(τ � 0). (4.6)

Proof. We first note that the terms on the right-hand side of (4.4) evaluated at t = 0 are controlled by the initial data. 
Consequently, using (4.1), (4.2) and hypothesis (1.10) we may infer that for every τ � 0 we have

τ∫
0

1∫
−1

1

θ
|∂xu|2 dx dt � c(data), (4.7)

τ∫
0

⎡⎢⎣ h(t)∫
−1

(
|∂xθ |2 + |∂x log(θ)|2

)
dx +

1∫
h(t)

(
|∂xθ |2 + |∂x log(θ)|2

)
dx

⎤⎥⎦ dt � c(data), (4.8)

and

1∫
−1

ρ| log(θ)|(τ, x) dx +
1∫

−1

ρ| log(ρ)|(τ, x) dx � c(data). (4.9)

To proceed we need the following observation proved in [8, Lemma 3.1]:

max
x∈I

|w(x)| �
∫

|∂xw| dx + 1

m

∫
ρ|w| dx (4.10)
I I
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for any interval I ⊂ (−1, 1), any w absolutely continuous in I , and any non-negative measurable ρ,∫
I

ρ dx = m > 0.

Applying (4.10) to w = log(θ) we obtain, in accordance with (4.1), (4.9)

max
x∈[−1,h(t)]

| log(θ)(t, x)| �
h(t)∫

−1

|∂x log(θ)|(t, ·) dx + 1

r1

h(t)∫
−1

ρ| log(θ)|(t, ·) dx

� c(data)

⎡⎢⎣1 +
⎛⎝ h(t)∫

−1

|∂x log(θ)|2 dx

⎞⎠1/2⎤⎥⎦ ,

where, by virtue of (4.8), the integral on the right-hand side belongs to L2(0, ∞). Repeating the same arguments on 
the interval (h(t), 1) we obtain the conclusion (4.5).

The method of the proof of (4.6) is similar. It is sufficient to use (4.2) instead of (4.9), so we skip it. �
Remark 4.3. A simple but important observation is that the piston always maintains a positive distance from the fixed 
boundary of both chambers, namely

−1 < h(data)� h(t) � h(data) < 1 (t � 0). (4.11)

Indeed it follows from (4.1), (4.9) that

0 < mL =
h(t)∫

−1

ρ(t, x) dx =
∫

x∈(−1,h(t)),ρ(t,x)�K

ρ(t, x) dx +
∫

x∈(−1,h(t)),ρ(t,x)>K

ρ(t, x) dx

� K(h(t) + 1) + 1

log(K)

1∫
−1

ρ| log(ρ)|(t, ·) dx � K(h(t) + 1) + c(data)

log(K)

for any K > 1; whence h(t) admits the lower bound h > −1. The existence of the upper bound can be shown in a 
similar manner.

We are ready to show a crucial estimate for the density ρ.

Proposition 4.4. Under the hypotheses of Theorem 2.3, let ρ, θ, u, h be a strong solution in [0, ∞) of problem 
(1.2)–(1.9), (2.1).

Then

0 < ρ(τ, x)� ρ(data) (τ � 0, x ∈ [−1,1]). (4.12)

Proof. Following Straškraba [22] we note that

∂t log(ρ) + u∂x log(ρ) = −∂xu (t � 0, −1 < x < h(t)). (4.13)

By the momentum equation we get

∂xu = 1

μ

⎛⎝p + ρu2 + ∂t

x∫
−1

ρudz

⎞⎠+ c

for some constant c depending on t which can be determined by a condition

d

dt
h(t) = u(t, h(t)) − u(t,−1) =

h(t)∫
∂xu.
−1
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Consequently, the derivative ∂xu can be expressed as

∂xu = 1

μ

⎡⎣p − 1

1 + h(t)

h(t)∫
−1

p dx + ρu2 − 1

1 + h(t)

h(t)∫
−1

ρu2 dx

⎤⎦
+ 1

μ
∂t

x∫
−1

ρu dz − 1

μ

1

1 + h(t)

h(t)∫
−1

⎛⎝∂t

x∫
−1

ρu dz

⎞⎠ dx + d

dt
log(1 + h(t)).

Furthermore, in accordance with (1.6),

d

dt

⎡⎣ 1

1 + h(t)

h(t)∫
−1

⎛⎝ x∫
−1

ρu dz

⎞⎠ dx

⎤⎦= − u(t, h(t))

(1 + h(t))2

h(t)∫
−1

⎛⎝ x∫
−1

ρu dz

⎞⎠ dx

+ u(t, h(t))

1 + h(t)

h(t)∫
−1

ρu dx + 1

1 + h(t)

h(t)∫
−1

⎛⎝∂t

x∫
−1

ρu dz

⎞⎠ dx.

Going back to (4.13) we obtain

∂t (log(ρ) + χ) + u∂x (log(ρ) + χ)

= 1

μ

⎡⎣ 1

1 + h(t)

h(t)∫
−1

p dx − p + 1

1 + h(t)

h(t)∫
−1

ρu2 dx

⎤⎦
+ u(t, h(t))

μ(1 + h(t))2

h(t)∫
−1

⎛⎝ x∫
−1

ρu dz

⎞⎠ dx − u(t, h(t))

μ(1 + h(t))

h(t)∫
−1

ρu dx,

(4.14)

where we have set

χ = log(1 + h(t)) + 1

μ

⎡⎣ x∫
−1

ρu dz − 1

1 + h(t)

h(t)∫
−1

⎛⎝ x∫
−1

ρu dz

⎞⎠ dx

⎤⎦ .

It is worth pointing out that χ is bounded due to Proposition 4.1 and Remark 4.3.
We observe that the scalar functions

t 
→ 1

1 + h(t)

h(t)∫
−1

ρu2 dx

t 
→ u(t, h(t))

1 + h(t)

h(t)∫
−1

⎛⎝ x∫
−1

ρu dz

⎞⎠ dx

t 
→ u(t, h(t))

1 + h(t)

h(t)∫
−1

ρu dx

(4.15)

are integrable over the half-line (0, ∞) with the L1(0, ∞)-norm bounded in terms of the initial data. To see this 
first observe that thanks to (4.5), (4.6), there exist positive constants θ(data), θ(data) and a set S ⊂ [0, ∞) of finite 
Lebesgue measure such that

0 < θ � θ(t, ·) � θ (t ∈ (0,∞) \ S). (4.16)
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Consequently, in view of the energy bounds (4.2), (4.7), and Poincaré’s inequality,

τ∫
0

1∫
−1

ρu2 dx �
∫
S

1∫
−1

ρu2 dx dt + (r1 + r2)

∫
(0,τ )\S

‖u(t, ·)‖2
L∞(−1,1) dt

�E0|S| + c(r1 + r2)

∫
(0,τ )\S

‖∂xu(t, ·)‖2
L2(−1,1)

dt

�E0|S| + (r1 + r2) θ c(data),

uniformly for τ → ∞.
Seeing that the remaining two functions in (4.15) can be handled in a similar fashion we may rewrite (4.14) as

∂t (log(ρ) + χ) + u∂x (log(ρ) + χ) = 1

μ

⎡⎣ 1

1 + h(t)

h(t)∫
−1

p dx − p

⎤⎦+ k(t), (4.17)

with

‖k‖L1∩L∞(0,∞) � c(data).

For the new quantity

η(t, x) = exp

⎛⎝χ(t, x) +
∞∫
t

k(s) ds

⎞⎠ ,

relation (4.17) reads

∂t

(
1

ρη

)
+ u∂x

(
1

ρη

)
= θ

μη
−
(

1

ρη

)
1

μ(1 + h(t))

h(t)∫
−1

p dx. (4.18)

By virtue of the energy estimates (4.2) and (4.11) we conclude that

∂t

(
1

ρη

)
+ u∂x

(
1

ρη

)
� K1θ − K2

(
1

ρη

)
(4.19)

for certain K1 > 0, K2 > 0 depending solely on the initial data. Thus a simple comparison argument yields

1

ρη
(τ, x) � Y(τ) for − 1 < x < h(τ), (4.20)

where Y solves

d

dt
Y (t) = K1θ̃ (t) − K2Y(t), Y (0) = min

0<x<h0

1

ρ0(x)η(0, x)
> 0, (4.21)

with

θ̃ (t) = inf
x∈(−1,1)

θ(t, x).

Consequently, in accordance with (4.16),
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Y(τ) = exp(−K2τ)Y (0) + K1 exp(−K2τ)

τ∫
0

exp(K2t)θ̃ (t) dt

� exp(−K2τ)Y (0) + K1 exp(−K2τ)

∫
(0,τ )\S

exp(K2t)θ̃ (t) dt

� exp(−K2τ)Y (0) + θK1

τ∫
0

exp(K2(t − τ)) dt

− θK1 exp(−K2τ)

∫
S∩(0,τ )

exp(K2t) dt,

where

θK1 exp(−K2τ)

∫
S∩(0,τ )

exp(K2t) dt → 0 for τ → ∞.

As η is uniformly bounded below and above in (0, ∞) we conclude that

0 < ρ(τ, x)� ρ(data) for all τ � 0, −1 < x < h(τ),

and, repeating step by step the previous arguments on the set h(τ) < x < 1 we obtain (4.12). �
4.3. Convergence to equilibria

Having established all necessary uniform bounds we are ready to complete the proof of Theorem 2.3. To this 
end, we make use of the relative energy method developed in [7]. Specifically, we introduce the ballistic free energy 
function

H�(ρ, θ) = ρe(ρ, θ) − ρ�s(ρ, θ) = cvρθ − ρ� log

(
θcv

ρ

)
,

and the associated relative energy functional

E
(
ρ, θ,u,h

∣∣∣r,�,U
)

=
1∫

−1

[
1

2
ρ|u − U |2 + H�(ρ, θ) − ∂H�(r,�)

∂ρ
(ρ − r) − H�(r,�)

]
dx + M

2
|u(h)|2,

(4.22)

with r, �, U suitable “test” functions. As shown in [6, Chapter 5, Lemma 5.1], the functional E represents a “distance” 
between the quantities [ρ, θ, u] and [r, �, U ]. More precisely, for any compact set K ⊂ (0, ∞)2, there exists a positive 
constant c(K), depending solely on the structural properties of the thermodynamic functions e and s such that

H�(ρ, θ) − ∂H�(r,�)

∂ρ
(ρ − r) − H�(r,�)

≥ c(K)

{ |ρ − r|2 + |θ − �|2 if [ρ, θ ] ∈ K, [r,�] ∈ K

1 + ρe(ρ, θ) + ρ|s(ρ, θ)| if [ρ, θ ] ∈ (0,∞)2 \ K, [r,�] ∈ K.

(4.23)

Our strategy is based on the following steps:

• We take

U = 0, r(t, x) =
{

ρL for x ∈ (−1, h(t)),

ρR for x ∈ (h(t),1),
�(t, x) =

{
θL for x ∈ (−1, h(t)),

θR for x ∈ (h(t),1),
(4.24)

where ρL, ρR , θL, θR are the constants determined through (2.14) as test functions in (4.22).
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• We observe that

E(t) → E∞

as t → ∞.
• We show that E∞ = 0, which, in view of (4.23), yields the convergence claimed in Theorem 2.3.

To carry out the above delineated programme, we first observe that, with the ansatz (4.24),

E
(
ρ, θ,u,h

∣∣∣r,�,U
)

(t) =
1∫

−1

[
1

2
ρu2 + cvρθ

]
(t, ·)dx + M

2
|u(t, h(t))|2

− θL

h(t)∫
−1

ρs(ρ, θ) dx − θR

1∫
h(t)

ρs(ρ, θ) dx

− cvθL

h(t)∫
−1

ρ dx − cvθR

1∫
h(t)

ρ dx

+ θL

[
log(θ

cv

L ) − log(ρL) − 1
] h(t)∫
−1

ρ dx + θR

[
log(θ

cv

R ) − log(ρR) − 1
] 1∫
h(t)

ρ dx

+ 1

cv

E0,

where we have used the identity

∂H�(r,�)

∂ρ
r − H�(r, θ) = p(r,�),

together with (2.14), specifically,

ρLθL = ρRθR = ρ∞θ∞ = 1

2cv

E0.

Consequently, in accordance with (2.9) and Proposition 4.1, the function

t 
→ E
(
ρ, θ,u,h

∣∣∣r,�,U
)

(t), with the test functions (4.24),

is non-increasing in t , more specifically,

E
(
ρ, θ,u,h

∣∣∣r,�,U
)

(t) ↘ E0 − θLSL − θRSR − cvθLmL − cvθRmR

+ θLs(ρL, θL)mL − θLmL + θRs(ρR, θR)mR − θRmR + 1

cv

E0

(4.25)

as t → ∞. Thus our task reduces to showing that the right-hand side of (4.25) is actually equal to zero. Moreover, as E
is a non-increasing function of time, it is enough to show that any sequence of times Tn → ∞ contains a subsequence 
(not relabeled) such that

Tn+1∫
Tn

E
(
ρ, θ,u,h

∣∣∣r,�,U
)

dt → 0 as Tn → ∞. (4.26)
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4.3.1. Vanishing velocity time averages
We first show that the velocity field tends to 0 when t → ∞ and provide some information on the large time 

behavior of the piston position h.

Proposition 4.5. The velocity field u satisfies

lim
T →∞

T +1∫
T

(‖u(t, ·)‖L∞(−1,1) + ‖∂xu(t, ·)‖L1(−1,1)

)
dt = 0. (4.27)

Moreover, every sequence Tn → ∞ contains a subsequence (not relabeled) such that

sup
t∈[Tn,Tn+1]

|h(t) − ĥ∞| → 0 for n → ∞, (4.28)

for some ĥ∞ ∈ (−1, 1).

Proof. Using Poincaré’s inequality, we have

max
x∈[−1,1] |u(t, x)| � c

⎡⎢⎣ h(t)∫
−1

|∂xu|(t, x) dx +
1∫

h(t)

|∂xu|(t, x) dx

⎤⎥⎦=

= c

⎡⎢⎣ h(t)∫
−1

√
θ√
θ
|∂xu|(t, x) dx +

1∫
h(t)

√
θ√
θ
|∂xu|(t, x) dx

⎤⎥⎦
� ε

⎡⎢⎣ h(t)∫
−1

θ dx +
1∫

h(t)

θ dx

⎤⎥⎦
+ c(ε)

⎡⎢⎣ h(t)∫
−1

1

θ
|∂xu|2(t, x) dx +

1∫
h(t)

1

θ
|∂xu|2(t, x) dx

⎤⎥⎦ (t � 0)

(4.29)

for any ε > 0. Furthermore, by virtue of (4.10) (applied to w = √
θ ),

h(t)∫
−1

θdx ≤ 2‖√θ‖2
L∞(−1,h(t)) ≤ c

⎛⎝ h(t)∫
−1

|∂x

√
θ |dx

⎞⎠2

+ 2

⎛⎝ 1

mL

h(t)∫
−1

ρ
√

θdx

⎞⎠2

,

where, by Hölder inequality,

1

mL

h(t)∫
−1

√
ρ
√

ρθdx ≤ 1

r1

⎛⎝ h(t)∫
−1

ρdx

⎞⎠
1
2 ⎛⎝ h(t)∫

−1

ρθdx

⎞⎠
1
2

= 1√
mL

⎛⎝ h(t)∫
−1

ρθdx

⎞⎠
1
2

.

The same considerations could be done for 
∫ 1
h(t)

θdx therefore

h(t)∫
−1

θ dx � c

h(t)∫
−1

|∂x

√
θ |2 dx + 2

mL

h(t)∫
−1

ρθ dx (t � 0),

1∫
θ dx � c

1∫
|∂x

√
θ |2 dx + 2

mR

1∫
ρθ dx (t � 0).
h(t) h(t) h(t)
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Next, we integrate (4.29) over a time interval (T , T + 1) and use (4.2) to get

T +1∫
T

max
x∈[−1,1] |u(t, x)|dt +

T +1∫
T

1∫
−1

|∂xu|(t, x)dx ≤ ε

T +1∫
T

1∫
−1

ρθdx dt

+ c(ε)

⎡⎣ T +1∫
T

1∫
−1

|∂x

√
θ |2 + 1

θ
|∂xu|2dx dt

⎤⎦≤ εE0 + c(ε)�(T ), (4.30)

where �(T ) → 0 for T → ∞ as a consequence of (4.4). Thus we obtain (4.27) because (4.30) holds for every ε > 0.
Finally, by virtue of (4.2), both h(t) and d

dt
h(t) are bounded and Arzelà–Ascoli theorem yields h(Tn + t) → ĥ∞(t)

strongly in C[0, 1] up to a subsequence. As the velocity of the piston is determined by (1.6), we deduce from (4.27)
that

Tn+1∫
Tn

∣∣∣∣ d

dt
h(t)dt

∣∣∣∣≤
Tn+1∫
Tn

max
x∈[−1,1] |u(t, x)| → 0 dt,

and thus (4.28) also holds, where, in accordance with (4.11), we have that ĥ∞ ∈ (−1, 1). �
4.3.2. Time shifts of ρ and θ

Our next result provides weak convergence of time-shifts of the state variables. To this end, we consider a sequence 
of time Tn → ∞ and introduce the following notation for the time shifts of a function v:

vn(t, x) = v(Tn + t, x).

Proposition 4.6. Let Tn → ∞ be a sequence of times such that

hn → ĥ∞ in C[0,1]
(cf. (4.28)).

Then there exists a subsequence (not relabeled) such that

ρn → ρ̂∞ weakly-(*) in L∞((0,1) × (−1,1))

and in Cweak([0,1];Lq(−1,1)) for any 1 ≤ q < ∞,
(4.31)

θn → θ̂∞ weakly in L2((0,1) × (−1,1)) as n → ∞, (4.32)

where

ρ̂∞ =
{

ρ̂L for − 1 < x < ĥ∞,

ρ̂R for ĥ∞ < x < 1,

θ̂∞ =
{

θ̂L for − 1 < x < ĥ∞,

θ̂R for ĥ∞ < x < 1,

and ρ̂L, ρ̂R, θ̂L, θ̂R are the strictly positive constants satisfying

ρ̂L = mL

1 + ĥ∞
, ρ̂R = mR

1 − ĥ∞
, ρ̂Lθ̂L = ρ̂Rθ̂R = 1

2cv

E0. (4.33)

Proof. As the velocity field un is continuous on the free surface, the equation of continuity (1.2) is satisfied on the 
whole set (0, 1) × (−1, 1) in the sense of distributions. Consequently, in accordance with (4.12), we may assume

ρn → ρ̂∞ weakly-(*) in L∞((0,1) × (−1,1))

and (strongly) in C ([0,1];Lq(−1,1)) for any 1 ≤ q < ∞.
weak
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Moreover, Propositions 4.2 and 4.4 yield ‖p(ρn, θn)‖L2((0,1)×(−1,1)) ≤ c. We multiply (1.3) by un and integrate over 
(Tn, Tn + 1) in order to deduce that ‖∂xu

n‖L2(0,1;L2(−1,1)) ≤ c. This together with (4.27) imply

un → 0 in L2(0,1;W 1,q

0 (−1,1)) for any 1 ≤ q < 2,

whence, passing to the limit in the weak formulation of (1.2), we may infer that ∂t ρ̂∞ = 0 in the sense of distributions. 
Consequently, ρ̂∞ = ρ̂∞(x) depends only on the spatial variable, and we may set

ρ̂∞ =
{

ρ̂L = ρ̂L(x) for − 1 < x < ĥ∞,

ρ̂ = ρ̂R(x) for ĥ∞ < x < 1.

Next, by virtue of (4.2), (4.4), and (4.10) we obtain (4.32) with

θ̂∞ =
{

θ̂L = θ̂L(t) for − 1 < x̂ < h∞,

θ̂R = θ̂R(t) for ĥ∞ < x < 1.

In addition, (4.16) implies that

0 < θ � θ̂L, θ̂R � θ. (4.34)

Now, we rewrite the momentum balance in its weak formulation,

∞∫
0

1∫
−1

[
ρu(∂tϕ) + ρu2(∂xϕ) + p(∂xϕ)

]
dx dt

=
∞∫

0

1∫
−1

μ∂xu∂xϕ dx dt −
∞∫

0

M
d2h

dt2 (t)ϕ(t, h(t)) dt for any ϕ ∈ C1
c ((0,∞) × (−1,1)),

(4.35)

where
∞∫

0

M
d2h

dt2 (t)ϕ(t, h(t)) dt = −
∞∫

0

M
dh

dt
(t)

[
∂tϕ(t, h(t)) + ∂xϕ(t, h(t))

dh

dt
(t)

]
dt

= −
∞∫

0

Mu(t,h(t)) [∂tϕ(t, h(t)) + ∂xϕ(t, h(t))u(t, h(t))] dt.

Consequently, using (4.12), (4.27), we may perform the limit in the pressure time shifts pn in (4.35) to conclude that

pn = ρnθn → p∞ weakly in L2((0,1) × (−1,1)), (4.36)

where ∇xp∞ = 0 (in the weak sense); whence p∞ = p∞(t) is a function of t only.
The final observation is that

p∞ = ρ̂∞θ̂∞. (4.37)

To see this, consider an arbitrary space–time cylinder (0, 1) × (−1, r), r < ĥ∞. In view of the uniform bound on ∂xθ
n

established in (4.8), we get

θn → θ̂L weakly in L2(0,1;W 1,2(−1, r)).

On the other hand, as we have already shown (4.31),

ρn → ρ̂L (strongly) in C([0, T ];W−1,2(−1, r)),

and we may conclude that

p̂∞ = ρ̂Lθ̂L in (0,1) × (−1, r)



1406 E. Feireisl et al. / Ann. I. H. Poincaré – AN 35 (2018) 1377–1408
for any r < h∞. Similarly, we show that

p̂∞ = ρ̂Rθ̂R in (0,1) × (r,1)

for any r > h∞; whence (4.37) follows.
Thus, necessarily,

p∞ =
{

ρ̂Lθ̂L for − 1 < x < ĥ∞,

ρ̂Rθ̂R for ĥ∞ < x < 1

is a function of t only. Thus, necessarily, ρ̂L, ρ̂R are positive constants, and

ρ̂L = mL

1 + ĥ∞
, ρ̂R = mR

1 − ĥ∞
, ρ̂Lθ̂L = ρ̂Rθ̂R = p∞.

Finally, we use the total energy balance (4.2) to deduce that

cvp∞ = 1

2
E0 − a positive constant;

whence θ̂L, θ̂R are also positive constants. �
4.3.3. Strong convergence of ρn, θn

Our ultimate goal will be to show that

ĥ∞ = h∞, ρ̂∞ = ρ∞, θ̂∞ = θ∞, (4.38)

where h∞, ρ∞, θ∞ are the quantities appearing in Theorem 2.3. To this end, it is enough to show strong (a.e. point-
wise) convergence of the time shifts ρn, θn, specifically,

ρn → ρ̂∞, θn → θ̂∞ (strongly) in L1((0,1) × (−1,1)). (4.39)

Indeed, the strong convergence in (4.39) implies pointwise convergence of the entropy and since ρns(ρn, θn) is 
bounded in L2((0, 1) × (−1, 1)) due to (4.5) and (4.12), Vitali’s convergence theorem yields

ρns(ρn, θn) → ρ̂∞s(ρ̂∞, θ̂∞) (strongly) in L1((0,1) × (−1,1) and weakly in L2((0,1) × (−1,1)).

In particular, we get

SL = (1 + ĥ∞)ρ̂Ls(ρ̂L, θ̂L), SR = (1 − ĥ∞)ρ̂Rs(ρ̂R, θ̂R), (4.40)

which, together with (4.33) and uniqueness of the equilibrium solutions with the same limit energy and entropy implies 
(4.38). Finally, we realize that (4.38), (4.40) yields the desired conclusion (4.26).

In the remaining part of this section, we therefore focus on the proof of (4.39). We start by proving strong conver-
gence of the density. To this end, we adapt certain ideas of the general existence theory proposed by P.-L. Lions [16]. 
In particular, we claim the effective viscous flux identity

p(ρ, θ)ρ − p(ρ, θ)ρ = μ
(
ρ∂xu − ρ∂xu

)
in (0,1) × (−1,1), (4.41)

where the bars denote weak limits of compositions. Identity (4.41) was proved (in the general 3D setting and for 
a general pressure function) in [5, Chapter 6, Proposition 6.1]. The proof is based on local arguments and so it is 
applicable to the sequences ρn, θn, un as well. In the present context, (4.41) gives rise to

(ρn)2θn → (ρ̂∞)2θ̂∞ weakly in L2((0,1) × (−1,1)). (4.42)

At this stage, we recall that the equation of continuity is in fact satisfied (in the weak sense) for x ∈ (−1, 1). In 
particular, the densities ρn satisfy also the renormalized equation

∂t (ρ
n)2 + ∂x((ρ

n)2un) + (ρn)2∂xu
n = 0 in D′((0,1) × (−1,1)).

Consequently, similarly to the proof of Proposition 4.6, we have

(ρn)2 → ρ2 in C([0,1];W−1,2(−1,1)), (θn − θ̂∞) → 0 weakly in L2(0,1;W 1,2(I ))



E. Feireisl et al. / Ann. I. H. Poincaré – AN 35 (2018) 1377–1408 1407
for any compact subinterval I ⊂ (−1, ĥ∞) ∪ (ĥ∞, 1). Thus (4.42) yields

(ρn)2θ̂∞ → (ρ̂∞)2θ̂∞ weakly in L2((0,1) × (−1,1)), (4.43)

which immediately implies the desired strong convergence of {ρn}∞n=1.
In order to see the strong convergence of the temperature shifts, we modify the previous arguments to observe that

θn → θ̂∞ weakly in L2(0, T ;W 1,2(I ))

ρnθn → ρ̂∞θ̂∞ in C([0, T ];W−1,2(I ))

for any compact interval I ⊂ (−1, ĥ∞) ∪ (ĥ∞, 1), from which we deduce the desired conclusion

1∫
0

1∫
−1

ρn(θn)
2 dx dt →

1∫
0

1∫
−1

ρ̂∞(θ̂∞)2 dx dt. (4.44)

As we already know that ρn converges strongly, (4.44) yields strong convergence of {θn}∞n=1. We have shown (4.39).

4.3.4. Proof of Theorem 2.3: conclusion
As the sequence of time Tn → ∞ introduced in Section 4.3.2 was arbitrary, we have

h(t) → h∞ as t → ∞.

Moreover, the convergence stated in (4.26), together with the coercivity properties of the relative energy functional 
stated in (4.23) imply the asymptotic behavior claimed in (2.10)–(2.12) of Theorem 2.3, together with

ρ(t, ·)θ(t, ·) → ρ∞θ∞ in L1(−1,1). (4.45)

Obviously, (4.45) implies (2.13) and therefore completes the proof of Theorem 2.3 as soon as we are able to establish 
a lower bound for the density,

ρ(t, ·) � ρ > 0 for all t � 0.

In order to prove that we deduce from (4.18) that

∂t

(
1

ρη

)
+ u∂x

(
1

ρη

)
� K1θ − K2

(
1

ρη

)
and the proof can be completed similarly as the proof of Proposition 4.4. For more details we refer also to [8, Propo-
sition 6.1].
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