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Abstract

A quasi-monotonicity formula for the solution to a semilinear parabolic equation ut = �u+V (x)|u|p−1u, p > (N +2)/(N −2)

in Ω × (0, T ) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that for some suitable global weak
solution u and any compact set Q ⊂ Ω × (0, T ) there exists a close subset Q′ ⊂ Q such that u is continuous in Q′ and the

(N − 4
p−1 )-dimensional parabolic Hausdorff measure H(N− 4

p−1 )
(Q \ Q′) of Q \ Q′ is finite.

Keywords: Quasi-monotonicity formula; Partial regularity; Borderline solutions; Semilinear parabolic equations; Potential

1. Introduction

In this paper, we are interested in the following semilinear parabolic problem⎧⎨⎩ut = �u + V (x)|u|p−1u in Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ),

u(x,0) = u0(x) in Ω,

(1.1)

where Ω ⊂ R
N (N � 3) is a bounded, smooth domain, p > N+2

N−2 , u0 ∈ L∞(Ω), and the potential V ∈ C1(Ω̄) satisfies
V (x) � c for some positive constant c and all x ∈ Ω . It is well known that for any u0 ∈ L∞(Ω) problem (1.1) has a
unique local in time solution. Specially, if the L∞-norm of the initial datum is small enough, then (1.1) has a global,
classical solution, while the solution to (1.1) ceases to exist after some time T > 0 and limt↑T ‖u(·, t)‖L∞(Ω) = ∞
provided that the initial datum u0 is large in some suitable sense. In the latter case we call the solution u to (1.1)
blowing up in finite time and T the blow-up time.

When V ≡ 1, problem (1.1) is one of the parabolic problems that have been studied extensively in the past. See for
example, [1,2,4,8,10–17,19]. Consider (1.1) with initial data of the form u0 = λϕ where λ is a positive number and ϕ

is a fixed non-negative function in L∞(Ω) which does not vanish almost everywhere. For large λ, the energy of λϕ is
negative, so the (maximal) solution, uλ, blows up in finite time. When λ is small, the solution is global and decays to
zero at infinity. It is natural to set
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λ∗(ϕ) ≡ sup
{
λ > 0: The solution uλ satisfying uλ(0) = λϕ is global and decays to zero as t → ∞}

,

and define

Uϕ(x, t) ≡ lim
λ↑λ∗ uλ(x, t). (1.2)

Note that by the maximum principle, uλ is monotone increasing and Uϕ coincides with uλ∗ on the maximal interval
of existence of the latter. In the following we shall not distinguish Uϕ and uλ∗ , and we call it (positive) borderline
solution.

In [24], Ni, Sacks and Tavantzis had examined the properties of this borderline solution for some range of p.
Among other things, they have proven the following result under the assumption that Ω is convex:

For p � 2∗ = (N + 2)/(N − 2), N � 3, uλ∗ is a global, L1-solution to (1.1), which must be unbounded.

The definition of an L1-solution will be given in Section 1. There was little progress on the critical and super-
critical case since then. Considering global, L1-solutions for radially symmetric and decreasing initial data in a ball,
Galaktionov and Vazquez [11] have proven the following results:

(1) When p = 2∗, uλ∗ remains bounded for all time and tends to zero uniformly away from the origin as t → ∞ and
(2) when p ∈ (p∗,p′), where p′ = (N − 4)/(N − 10), for N � 11 and p′ = ∞ for 3 � N � 10, uλ∗ blows up in finite

time.

Later, Mizoguchi [21] shows that uλ∗ blows up in finite time for all supercritical p, that is, the upper bound
(N − 4)/(N − 10) in (2) can be removed. When 2∗ < p < p̃, where p̃ is the Joseph–Lundgren exponent given by
p̃ = 1 + 4/(N − 4 − 2

√
N − 1) if N � 11 and p̃ = ∞ if N � 10, it is shown in Fila, Matano and Poláčik [9] that the

blow-up times of uλ∗ form a finite set, which in some cases is a singleton. More information on the corresponding
Cauchy problem can be found in [22] and [23].

Recently, we [6] have proven that when Ω is convex the borderline solution uλ∗ blows up in finite time and it
decays to zero uniformly after some finite time. Moreover, we have established partial regularity theorem for this
borderline solution, i.e., there exists a closed set S in Ω × (0,∞), whose distance to the boundary of Ω × (0,∞) is

greater than a positive number and which satisfies H(N− 4
p−1 )

(S) = 0, so that u is continuous in Ω × (0,∞) \ S . Here
Hs(E) denotes the s-dimensional Hausdorff measure of the set E with respect to the parabolic metric.

The main purpose of this paper is to improve these results in [6] for more general V , i.e., we will establish the
following theorems.

Theorem 1.1. Consider (1.1) where Ω is convex. For any positive, borderline solution u there exists a closed set S
in Ω × (0,∞), whose distance to the boundary of Ω × (0,∞) is greater than a positive number and which satisfies

H(N− 4
p−1 )

(S) = 0, so that u is continuous in Ω × (0,∞) \ S .

Theorem 1.2. Consider (1.1) where Ω is convex. Any positive borderline solution must blow up in finite time. After
some time, it becomes uniformly bounded and decays to zero as t goes to infinity.

These results are definitely not a direct consequence of those of [6]. Due to the appearance of the potential V , some
extra works should be done. The novelty is to establish a quasi-monotonicity formula for the rescaled local energy
and to get the estimates for Lp+1-norm of the solution in terms of local energy. When V = 1, this quasi-monotonicity
formula is almost trivial. When V �= 1, it is not easy. There is a “bad” term∫

Ωs

∣∣∣∣∂V̄

∂s

∣∣∣∣|w|p+1ψ2ρ dy

involved in the derivative of the local energy E [w] (see e.g. Section 3 for the definition). To eliminate this difficulty,
we use a trick similar to what was used in [15] to get the blow-up rate estimate for (1.1). Notice that in [15] the basic
assumption is 1 < p < (N + 2)/(N − 2) while in this paper we always assume p > (N + 2)/(N − 2). Actually, we
can get the main estimates for local energy for all p > 1 in this paper. To explain more, it is easy to see that
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d

ds
E [w](s) � −1

2

∫
Ωs

w2
s ψ

2ρ dy + C

∫
Ωs

∣∣∣∣∂V̄

∂s

∣∣∣∣|w|p+1ψ2ρ dy + Cϕ(s),

where ϕ is an integrable function on [0,∞) such that
∫ ∞
τ

esϕ(s) ds � Ce−τ . Since ∂V̄
∂s

can be written as ∇V (x) ·
ye−s/2, the integral

∫
Ωs

| ∂V̄
∂s

||w|p+1ψ2ρ dy can be controlled by e−s/2
∫
Ωs

|y||w|p+1ψ2ρ dy. The question is how to

estimate the integral
∫
Ωs

|y||w|p+1ψ2ρ dy. To this end, we introduce

E2k[w](s) = 1

2

∫
Ωs

(|∇w|2 + βw2)|y|2kψ2ρ dy − 1

p + 1

∫
Ωs

V̄ |w|p+1|y|2kψ2ρ dy, k ∈ N.

First, we establish some rough estimates for E2k[w] using the fact that ∂V̄
∂s

= ∇V (x) · ye−s/2 = ∇V (x) · (x − x̄) is
bounded, i.e.,

∣∣E2k[w](s)∣∣ � Mke
2λs,

∞∫
0

e−2λs

∫
Ωs

|∇w|2|y|2kψ2ρ dy ds � Nk,

for all k ∈ N and s � 0. Here Mk,Nk are positive constants depending on k.
Second, by the mathematical induction and | ∂V̄

∂s
| = |∇V (x) · ye−s/2| � C|y|e−s/2, we can improve our estimates

by at most finite steps to get

∣∣E2k[w](s)∣∣ � M ′
ke

αs,

∞∫
0

e−αs

∫
Ωs

|∇w|2|y|2kψ2ρ dy ds � N ′
k,

for some α ∈ (0,1/2).
Finally, we get the quasi-monotonicity formula

E [w](s) + 1

4

s∫
τ

∫
Ωs

w2
s ψ

2ρ dy ds � E [w](τ ) + C3e
−δτ , ∀s > τ � s.

Here δ ∈ (0,1/2) is a constant. Consequently, we obtain a lower bound estimate

E [w](s) � −C4e
−δs, ∀s � s

and
s∫

τ

∫
Ωs

|w|p+1ψ2ρ dy ds � C
[
1 + (s − τ)

]
η
(

E [w](τ ) + C5e
−δτ

)
,

where η(s) = s + s1/2. With these estimates in hands, we prove our main theorems as in [6].
The monotonicity formula plays an important role in the partial regularity theories. See for example, Struwe’s work

[25] on harmonic map heat flow and Caffarelli, Nirenberg amd Kohn’s work [3] on Navier–Stokes equations. For more
discussion on local monotonicity formulas, please refer to Ecker [7].

Throughout the paper we will denote by C a constant that does not depend on the solution itself. And it may change
from line to line. And K1,K2, . . . , L1,L2, . . . , M1,M2, . . . , N1,N2, . . . are positive constants depending on p,N,Ω ,
a lower bound of V , ‖V ‖C1(Ω̄) and the initial energy E [w0]. Here and hereafter w0(y) = w(y, s).

2. Preliminaries

Recall that an L1-solution to (1.1) is a function u in C([0, T );L1(Ω)) so that f (x,u) ∈ L1(QT ), QT = Ω ×(0, T ),
and satisfies
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t∫
s

∫
Ω

(
uφt + u�φ + f (x,u)φ

)
dx dt −

∫
Ω

uφ|ts dx = 0,

for all φ ∈ C2(QT ), φ = 0 on ∂Ω × (0, T ) and 0 � s < t � T , here and hereafter f (x,u) = V (x)|u|p−1u. We are
more interested in a stronger notion of weak solution. A function u in C([0, T );L2(Ω)) is called an H 1-solution to
(1.1) if ∇u, ut ∈ L2(QT ), uf (x,u) ∈ L1(QT ) and

t∫
s

∫
Ω

(
utφ + ∇u · ∇φ − f (x,u)φ

)
dx dt = 0, (2.1)

holds for all φ ∈ C([0, T ),H 1
0 (Ω)) and 0 � s < t < T . An L1- or H 1-solution is called a global L1- or H 1-solution

respectively if it is an L1- or H 1-solution in Ω × (0, T ) for every T > 0.
For an H 1-solution its energy

E(t) = E
(
u(t)

) = 1

2

∫
Ω

|∇u|2 dx −
∫
Ω

F(x,u)dx,

is well defined for a.e. t . Here F(x,u) = ∫ u

0 f (x, t) dt . An H 1-solution is called an energy-decreasing solution if it
also satisfies the energy inequality

E(t) +
t∫

s

∫
Ω

u2
t dx dt � E(s), (2.2)

for a.e. t > s, including s = 0 in [0, T ).
The following theorem is established in [6]. See also e.g., [4], [9] and [20].

Theorem 2.1.

(a) Let u be a global, energy-decreasing solution to (1.1). There exists a positive constant C depending on ε0, C0,
|Ω| and the initial energy E0 such that
(1) ess inft E(t) � −C;
(2) ‖ut‖L2(Ω×(0,∞)) � C;
(3) ‖u(t)‖L2 � C, ∀t ;
(4) |‖u(t)‖L2 − ‖u(s)‖L2 | � C|t − s|1/2, ∀t, s; and
(5) the L4(0, T ;H 1(Ω))-norm of u and the L2(0, T ;L1(Ω))-norm of uf (·, u) are bounded by C(1 + T ) for

every T > 0.
(b) (Compactness) Let {uk} be a sequence of global, energy-decreasing solutions to (1.1) where uk(0) converges to

some u0 in H 1
0 (Ω). Suppose that the initial energies of uk are uniformly bounded from above. There exists a

subsequence {ukj
} and a function u such that

ukj
→ u in C

([0, T );L2(Ω)
)
,

∇ukj
⇀ ∇u, ukj t ⇀ ut in L2(QT ),

F (·, ukj
) ⇀ F(·, u), ukj

f (·, ukj
) ⇀ uf (·, u) in L1(QT ),

for every T > 0. Consequently u is a global, H 1-solution to (1.1) with u(0) = u0. Moreover, if it is known that
ukj

f (·, ukj
) → uf (·, u) in L1(Ω) for a.e. t , then

∇ukj
→ ∇u in L2(QT ),

F (·, ukj
) → F(·, u) in L1(QT ),

for every T > 0 and u is also a global, energy-decreasing solution.
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A stationary solution w of (1.1) is called stable if there exists a ball B centered at w in L∞ ∩ H 1
0 (Ω) such that

every solution to (1.1) starting inside this ball stays in the ball for all subsequent time. Let

U (w) ≡ {
u0 ∈ L∞ ∩ H 1

0 (Ω): The solution of (1.1) starting at u0 belongs to the ball B at some finite time
}
.

It is routine to verify that U = U (w) is an open, connected subset of L∞ ∩ H 1
0 (Ω). The boundary of U , ∂U , is non-

empty. For any boundary point w there exists a sequence {uk
0} in U converging to w in L∞ ∩ H 1

0 (Ω). Since every uk
0

generates a global H 1-solution, Theorem 2.1 asserts that the maximal solution starting at u0 can be extended to be a
global, H 1-solution. Uniqueness of this global solution is not known generally. We shall call any global, H 1-solution
starting at a boundary point of U a borderline solution.

It is easy to see that 0 is a non-negative, stable stationary solution to (1.1). For any non-negative ϕ ∈ L∞ ∩ H 1
0 (Ω)

which does not vanish identically, the solution of (1.1) with u(0) = λϕ, uλ, belongs to U for small λ > 0. Since uλ

blows up in finite time for large λ, we can find some λ∗ such that uλ belongs to U for all λ < λ∗, and λ∗ϕ lies on ∂U .
By the comparison principle uλ converges monotonically to uλ∗ as λ ↑ λ∗.

The monotone convergence theorem implies that

lim
λ↑λ∗

∫
Ω

F
(
x,uλ(x)

)
dx =

∫
Ω

F
(
x,uλ∗(x)

)
dx.

Theorem 2.1(b) is applicable to conclude that this positive borderline solution is also energy-decreasing.
In order to get the lower bound estimates for our energy functionals, we need the following

Lemma 2.2. Let y, z, g and h be smooth functions on [0,∞). Suppose y,g and h are non-negative and for some
positive constants α, K and L,

t+τ∫
t

g(s) ds � K(1 + τ), ∀t, τ > 0;
∞∫

0

e−αsh(s) ds � L.

If for some positive constants a, b, q > 1, the differential inequalities

y′(s) � −az(s) + byq(s) − g(s),

z′(s) � αz(s) + h(s)

hold on [0,∞), then

z(s) � −2Leαs

for all s � 0.

Proof. Suppose the conclusion is not true. Then there exists an s1 � 0 such that z(s1)e
−αs1 +2L < 0. From the second

differential inequality, we see that

d

ds

(
e−αsz(s)

)
� e−αsh(s).

So for all s � s1,

e−αsz(s) − e−αs1z(s1) � L, i.e., e−αsz(s) < −L.

Therefore, for s � s1,

y′(s) � aLeαs − g(s) + byq(s).

Then we deduce that
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y(s) �
s∫

s1

[
aLeατ − g(τ)

]
dτ + b

s∫
s1

yq(τ ) dτ

� aL

s∫
s1

eατ dτ − K(s − s1 + 1) + b

s∫
s1

yq(τ ) dτ.

It is easy to check that there exists an s2 > s1, such that aL
∫ s

s1
eατ dτ − K(s − s1 + 1) > 0 for all s > s2. Therefore

for all s > s2,

y(s) � b

s∫
s1

yq(τ ) dτ.

And then the quantity
∫ s

s1
yq(τ ) dτ will blow up in finite time. But this is impossible. So the lemma is proved. �

3. Local energy estimates and quasi-monotonicity formula

Suppose in this section that u is a global classical solution. Let (x̄, t̄ ) ∈ Ω × (0,∞) be a fixed point. We introduce
the self-similar scaling

w(y, s) = (t̄ − t)βu(x̄ + y
√

t̄ − t, t)

with s = − log(t̄ − t), β = 1
p−1 . If u solves (1.1), then w satisfies

ws − �w + 1

2
y · ∇w + βw − V

(
x̄ + ye−s/2)|w|p−1w = 0 in Ωs × (s,∞)

where Ωs = {y: x̄ + ye−s/2 ∈ Ω}, s = − log t̄ . We may assume t̄ = 1 for simplicity as in [15] so that we assume
s = 0. Here and hereafter we will always denote V (x̄ + ye−s/2) by V̄ (y, s).

By introducing a weight function ρ(y) = exp(−|y|2
4 ), we can rewrite the equation as the divergence form:

ρws = ∇ · (ρ∇w) − βρw + V̄ |w|p−1wρ in Ωs × (0,∞). (3.1)

Fix a positive number R and let ψ(y, s) = φ(e−s/2|y|/R) where φ(r) is the function that is equal to 1 for r � 1/2, to
0 for r � 1 and linear between r = 1 and 1/2. The local energy of w is given by

E [w](s) = 1

2

∫
Ωs

|∇w|2ψ2ρ dy + β

2

∫
Ωs

w2ψ2ρ dy − 1

p + 1

∫
Ωs

V̄ |w|p+1ψ2ρ dy.

Note that the local energy depends on (x, t) and R. Notice that this kind of local energies were firstly introduced by
Giga, Matsui and Sasayama in [15,16]. In these papers, ψ = ψ(y) was a cutoff function of a fixed ball. However, in
this paper, ψ = ψ(y, s) is a cutoff function of moving balls at time s. In other words, the function ψ is a function of
two variables in our case, but one variable in their definition.

Calculating the derivative of E [w](s) and noting that ws |∂Ωs = − 1
2y · ∇w we have

d

ds
E [w](s) = −

∫
Ωs

w2
s ψ

2ρ dy − 1

4

∫
∂Ωs

|∇w|2(y · γ )ψ2ρ dσ − 1

p + 1

∫
Ωs

∂V̄

∂s
|w|p+1ψ2ρ dy

− 2
∫
Ωs

∇w · ∇ψψwsρ dy +
∫
Ωs

(
|∇w|2 + βw2 − 2V̄

p + 1
|w|p+1

)
ψψsρ dy

� −1

2

∫
w2

s ψ
2ρ dy − 1

4

∫
|∇w|2(y · γ )ψ2ρ dσ − 1

p + 1

∫
∂V̄

∂s
|w|p+1ψ2ρ dy
Ωs ∂Ωs Ωs
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+ 2
∫
Ωs

|∇w|2|∇ψ |2ρ dy +
∫
Ωs

(
|∇w|2 + βw2 + 2V̄

p + 1
|w|p+1

)
ψ |ψs |ρ dy

or

1

2

∫
Ωs

w2
s ψ

2ρ dy � − d

ds
E [w](s) − 1

4

∫
∂Ωs

|∇w|2(y · γ )ψ2ρ dσ + 2
∫
Ωs

|∇w|2|∇ψ |2ρ dy

+
∫
Ωs

(
|∇w|2 + βw2 + 2V̄

p + 1
|w|p+1

)
ψ |ψs |ρ dy

+ 1

2(p + 1)

∫
Ωs

∇V̄ · y|w|p+1ψ2ρ dy.

Let us take R < dist(x, ∂Ω) so that the boundary integrals above vanish. Using the estimates

|∇w|2 = (t − t)
p+1
p−1 |∇u|2,

|w| = (t − t)
1

p−1 |u|,
|∇ψ | =

∣∣∣∣φ′ e−s/2

R

∣∣∣∣ � 2e−s/2

R
χAR

, and

|ψs | =
∣∣∣∣φ′ e−s/2

2R
|y|

∣∣∣∣ � e−s/2

R
|y|χAR

, AR = BR(x̄) \ BR/2(x̄),

we can find a constant C which depends on N,R and s such that[
exp

(
N + 2

2
− 2

p − 1

)
s + 1

R2
exp

(
N + 2

2
− p + 1

p − 1
− 1

)
s

]
exp

(
−R2

16
es

)
� Ce−2s .

And then by the estimates for u, we get

∞∫
τ

es

∫
Ωs

[|∇w|2|∇ψ |2 + (|∇w|2 + w2 + |w|p+1)ψ |ψs |
]
ρ dy ds

� Ce−τ

t̄∫
0

∫
BR(x̄)

(|∇u|2 + u2 + |u|p+1)dx dt

� Ce−τ .

In the last inequality above the constant C also depends on t̄ . Denote

ϕ(s) =
∫
Ωs

[|∇w|2|∇ψ |2 + (|∇w|2 + w2 + |w|p+1)ψ |ψs |
]
ρ dy.

Then we have

dE [w]
ds

� −1

2

∫
Ωs

w2
s ψ

2ρ dy + 1

2(p + 1)

∫
Ωs

∇V̄ · y|w|p+1ψ2ρ dy + Cϕ(s), (3.2)

where
∞∫

τ

esϕ(s) ds � Ce−τ . (3.3)

Firstly, we have the following rough estimates for the local energy.
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Lemma 3.1. There exists a constant C depending on N , R, p, t̄ , the lower bound of V , ‖V ‖C1(Ω̄) and E [w](s) such
that ∣∣E [w](s)∣∣ � Ceλs, for all s � s,

where λ = 16
7(p−1)

d2
d1

, and d1, d2 are constants such that V (x) � d1 > 0 and supx∈Ω |∇V (x)|diam(Ω) � d2.

Proof. We see from (3.1) that

1

2

d

ds

∫
Ωs

w2ψ2ρ dy =
∫
Ωs

wwsψ
2ρ dy +

∫
Ωs

w2ψψsρ dy

= −
∫
Ωs

|∇w|2ψ2ρ dy −
∫
Ωs

βw2ψ2ρ dy +
∫
Ωs

V̄ |w|p+1ψ2ρ dy

+
∫
Ωs

w2ψψsρ dy − 2
∫
Ωs

∇w∇ψwψρ dy

= −2E [w] + p − 1

p + 1

∫
Ωs

V̄ |w|p+1ψ2ρ dy +
∫
Ωs

w2ψψsρ dy − 2
∫
Ωs

∇w∇ψwψρ dy. (3.4)

Notice that V̄ is bounded below by d1. By (3.4), using Young’s inequality, we have

−2E [w] + p − 1

p + 1
d1

∫
Ωs

|w|p+1ψ2ρ dy � −2E [w] + p − 1

p + 1

∫
Ωs

V̄ |w|p+1ψ2ρ dy

=
∫
Ωs

wwsψ
2ρ dy +

∫
Ωs

∇w∇ψwψρ dy

�
∫
Ωs

wwsψ
2ρ dy + ε

2

∫
Ωs

w2ψ2ρ dy + C(ε)

∫
Ωs

|∇w|2|∇ψ |2ρ dy

�
∫
Ωs

wwsψ
2ρ dy + ε

2

( ∫
Ωs

|w|p+1ψ2ρ dy + C

)
+ C(ε)ϕ(s)

� ε

∫
Ωs

w2
s ψ

2ρ dy + ε

∫
Ωs

|w|p+1ψ2ρ dy + C(ε)
(
1 + ϕ(s)

)
.

Here we have used the inequality

ab � ε
(
a2 + bp+1) + C(ε), p > 1, ∀ε > 0.

So we obtain that∫
Ωs

|w|p+1ψ2ρ dy � 2c(p, d1)E [w] + η

∫
Ωs

|w|p+1ψ2ρ dy + η

∫
Ωs

w2
s ψ

2ρ dy + C(p,d1, η)
(
1 + ϕ(s)

)
.

Here and hereafter we will denote p+1
(p−1)d1

by c(p, d1) and C(p,d1, η) denotes a constant depending on p,d1, η > 0
and may be different at each occurrence. Take η < 1/8 and we hence have∫

Ωs

|w|p+1ψ2ρ dy � 2c(p, d1)

1 − η
E [w] + η

1 − η

∫
Ωs

w2
s ψ

2ρ dy + C(p,d1, η)
(
1 + ϕ(s)

)
� 16c(p, d1)

7
E [w] + 2η

∫
w2

s ψ
2ρ dy + C(p,d1, η)

(
1 + ϕ(s)

)

Ωs
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� α
16c(p, d1)

7
E [w] + 2αη

∫
Ωs

w2
s ψ

2ρ dy + αC(p,d1, η)
(
1 + ϕ(s)

)
, (3.5)

for all α � 1. Choosing η small further such that 2αηd2 < 1/4, we get∫
Ωs

|w|p+1ψ2ρ dy � α
16c(p, d1)

7
E [w] + 1

4d2

∫
Ωs

w2
s ψ

2ρ dy + C(α)
(
1 + ϕ(s)

)
, (3.6)

where supy∈Ωs
|∇V̄ ||y| = supx∈Ω |∇V ||x − x̄| � d2. By (3.2), (3.6), we have for any fixed α � 1,

d

ds
E [w](s) � −1

4

∫
Ωs

w2
s ψ

2ρ dy + αλE [w](s) + C(α)
(
1 + ϕ(s)

)
.

Therefore, we obtain that

d

ds
E [w](s) � −1

4

∫
Ωs

w2
s ψ

2ρ dy + μE [w](s) + C(μ)
(
1 + ϕ(s)

)
, (3.7)

for all μ � λ. In particular, we have

d

ds

(
e−λs E [w](s)) + 1

4
e−λs

∫
Ωs

w2
s ψ

2ρ dy � C1e
−λs

(
1 + ϕ(s)

)
. (3.8)

It follows that E [w](s) � Ceλs due to (3.3).
In order to get the lower bound of E [w](s), we need to estimate the last two terms in (3.4) firstly. For any ε > 0,

we have∣∣∣∣ ∫
Ωs

w2ψψsρ dy − 2
∫
Ωs

∇w∇ψwψρ dy

∣∣∣∣
�

∫
Ωs

w2|ψψs |ρ dy + 2

( ∫
Ωs

|∇w|2|∇ψ |2ρ dy

) 1
2
( ∫

Ωs

w2ψ2ρ dy

) 1
2

�
∫
Ωs

[
w2|ψψs | + |∇w|2|∇ψ |2]ρ dy +

∫
Ωs

w2ψ2ρ dy

� ϕ(s) + ε

∫
Ωs

|w|p+1ψ2ρ dy + C(ε)

∫
Ωs

ψ2ρ dy

� ϕ(s) + ε

∫
Ωs

|w|p+1ψ2ρ dy + C(ε).

Now by (3.4), the above estimate and Jensen’s inequality, if we set y(s) = ∫
Ωs

w2ψ2ρ dy, then we have

y′(s) � −4E [w] + Cy
p+1

2 (s) − C
(
ϕ(s) + 1

)
. (3.9)

Since C2 = C1
∫ ∞

0 e−λs(1 + ϕ(s)) ds < ∞, applying Lemma 2.2 for z(s) = E [w](s), we get E [w](s) � −2C2e
λs . So

the lemma follows. �
To get some refined estimates for E [w], we introduce

E2k[w] = 1

2

∫
Ωs

(|∇w|2 + βw2)|y|2kψ2ρ dy − 1

p + 1

∫
Ωs

V̄ |w|p+1|y|2kψ2ρ dy, k ∈ N.

Here N = {0,1,2,3, . . .}. For these energy functionals, by straightforward calculation, we can obtain the following
identities.
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Proposition 3.2.

1

2

d

ds

∫
Ωs

w2|y|2kψ2ρ dy = −2E2k[w] + p − 1

p + 1

∫
Ωs

V̄ |w|p+1|y|2kψ2ρ dy

+
∫
Ωs

k

(
N + 2k − 2 − 1

2
|y|2

)
w2|y|2k−2ψ2ρ dy

+
∫
Ωs

w2|y|2kψψsρ dy −
∫
Ωs

∇w∇(
ψ2)w|y|2kρ dy

+ k

∫
Ωs

y · ∇(
ψ2)w2|y|2k−2ρ dy. (3.10)

Proposition 3.3.

d

ds
E2k[w] = −

∫
Ωs

w2
s |y|2kψ2ρ dy − 2k

∫
Ωs

ψ2ρ(y · ∇w)ws |y|2k−2 dy

−
∫
Ωs

∇w∇(
ψ2)ws |y|2kρ dy − 1

p + 1

∫
Ωs

∂V̄

∂s
|w|p+1|y|2kψ2ρ dy

+
∫
Ωs

(
|∇w|2 + βw2 − 2

p + 1
V̄ |w|p+1

)
ψψs |y|2kρ dy. (3.11)

Denote

ϕ2k(s) =
∫
Ωs

[(|∇w|2 + w2 + |w|p+1)ψ |ψs | + |∇w|2|∇ψ |2]|y|2kρ dy + 2k

∫
Ωs

w2ψ |∇ψ ||y|2k−1ρ dy.

As before, we can find a constant C depending on N , R, p, k, and t̄ such that

∞∫
τ

esϕ2k(s) ds � Ce−τ .

It is easy to see from (3.10) that∫
Ωs

wws |y|2kψ2ρ dy = −2E2k[w] + p − 1

p + 1

∫
Ωs

V̄ |w|p+1|y|2kψ2ρ dy

+
∫
Ωs

k

(
N + 2k − 2 − 1

2
|y|2

)
w2|y|2k−2ψ2ρ dy

−
∫
Ωs

∇w∇(
ψ2)w|y|2kρ dy + k

∫
Ωs

y · ∇(
ψ2)w2|y|2k−2ρ dy.

So

p − 1

p + 1

∫
Ωs

V̄ |w|p+1|y|2kψ2ρ dy �
∫
Ωs

wws |y|2kψ2ρ dy + 2E2k[w]

−
∫

k

(
N + 2k − 2 − 1

2
|y|2

)
w2|y|2k−2ψ2ρ dy
Ωs
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+
∫
Ωs

∇w∇(
ψ2)w|y|2kρ dy − k

∫
Ωs

y · ∇(
ψ2)w2|y|2k−2ρ dy

�
∫
Ωs

|w||ws ||y|2kψ2ρ dy + 2E2k[w] + ϕ2k(s)

+ k

2

∫
Ωs

w2|y|2kψ2ρ dy +
∫
Ωs

∇w∇(
ψ2)w|y|2kρ dy

�
∫
Ωs

|w||ws ||y|2kψ2ρ dy + 2E2k[w]

+
(

1 + k

2

)∫
Ωs

w2|y|2kψ2ρ dy + 2ϕ2k(s).

We have used Cauchy’s inequality in the last inequality and the fact that N + 2k − 2 > 0 in the second inequality.
Making use of the inequality

ab � ε
(
a2 + bp+1) + C(ε), p > 1, ∀ε > 0,

we have∫
Ωs

|w||ws ||y|2kψ2ρ dy � ε

∫
Ωs

|w|p+1|y|2kψ2ρ dy + ε

∫
Ωs

w2
s |y|2kψ2ρ dy + C(ε, k).

Applying Young’s inequality we obtain that(
1 + k

2

)∫
Ωs

w2|y|2kψ2ρ dy � ε

∫
Ωs

|w|p+1|y|2kψ2ρ dy + C(ε, k).

Therefore,∫
Ωs

|w|p+1|y|2kψ2ρ dy � 2c(p, d1)E2k[w] + η

∫
Ωs

w2
s |y|2kψ2ρ dy

+ η

∫
Ωs

|w|p+1|y|2kψ2ρ dy + C(p,d1, k)
(
1 + ϕ2k(s)

)
,

i.e., ∫
Ωs

|w|p+1|y|2kψ2ρ dy � 2c(p, d1)

1 − η
E2k[w] + η

1 − η

∫
Ωs

w2
s |y|2kψ2ρ dy + C(p,d1, k, η)

(
1 + ϕ2k(s)

)
� α

16c(p, d1)

7
E2k[w] + 2αη

∫
Ωs

w2
s |y|2kψ2ρ dy + C(α)

(
1 + ϕ2k(s)

)
for all α � 1 and η < 1/8.

Choosing η small further such that 2αηd2 < 1/4, we get that for all α � 1,∫
Ωs

wp+1|y|2kψ2ρ dy � α
16c(p, d1)

7
E2k[w] + 1

4d2

∫
Ωs

w2
s |y|2kψ2ρ dy + C(α)

(
1 + ϕ2k(s)

)
. (3.12)

Now it is easy to see from Young’s inequality that

−2k

∫
ψ2ρ(y · ∇w)ws |y|2k−2 dy � ε intΩs w

2
s |y|2kψ2ρ dy + C(ε)

∫
|∇w|2|y|2k−2ψ2ρ dy,
Ωs Ωs
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and

−
∫
Ωs

∇w∇(
ψ2)ws |y|2kρ dy � ε

∫
Ωs

w2
s |y|2kψ2ρ dy + C(ε)

∫
Ωs

|∇w|2|∇ψ |2|y|2kρ dy.

So by (3.11), the above inequalities, Hölder’s inequality and (3.12) we have

d

ds
E2k[w] � −1

2

∫
Ωs

w2
s |y|2kψ2ρ dy + C

∫
Ωs

|∇w|2|y|2k−2ψ2ρ dy

− 1

p + 1

∫
Ωs

∂V̄

∂s
|w|p+1|y|2kψ2ρ dy + Cϕ2k(s)

� −3

8

∫
Ωs

w2
s |y|2kψ2ρ dy + μE2k[w] + C(μ)

(
1 + ϕ2k(s)

)
+ C(μ)

∫
Ωs

|∇w|2|y|2k−2ψ2ρ dy, (3.13)

for all μ � λ. Here k � 1.
On the other hand, by (3.10), Hölder’s inequality, Young’s inequality and Jensen’s inequality we have

1

2

d

ds

∫
Ωs

w2|y|2kψ2ρ dy � −2E2k[w] − C

∫
Ωs

w2|y|2kψ2ρ dy + C

∫
Ωs

|w|p+1|y|2kψ2ρ dy − Cϕ2k(s)

� −2E2k[w] + C

∫
Ωs

|w|p+1|y|2kψ2ρ dy − C
(
1 + ϕ2k(s)

)

� −2E2k[w] − C
(
1 + ϕ2k(s)

) + C

( ∫
Ωs

w2|y|2kψ2ρ dy

) p+1
2

. (3.14)

With these crucial inequalities, (3.13), (3.14), in hands, we can get the following rough estimates.

Lemma 3.4. For any k ∈ N, there exist positive constants Lk , Mk, and Nk , such that the following estimates hold:

−Lke
2λs � E2k[w](s) � Mke

2λs,

∞∫
0

e−2λs

∫
Ωs

|∇w|2|y|2kψ2ρ dy ds � Nk,

for all s � 0. Here λ = 16
7(p−1)

d2
d1

, and d1, d2 are constants such that V (x) � d1 > 0 and supx∈Ω |∇V (x)|diam(Ω) �
d2.

Proof. Let {λk}∞k=0 ⊂ (λ,2λ) be a strictly increasing sequence. It suffices to show the following estimates:

−Lke
λks � E2k[w](s) � Mke

λks, (3.15)
∞∫

0

e−λks

∫
Ωs

|∇w|2|y|2kψ2ρ dy ds � Nk. (3.16)

We prove these estimates by induction.
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Step 1. We show that these estimates hold for k = 0. The inequality (3.15) holds for k = 0 due to Lemma 3.1. From
(3.8) and Lemma 3.1, we deduce that

∞∫
0

e−λs

∫
Ωs

w2
s ψ

2ρ dy ds � C.

By (3.6) and the definition of E [w], we have∫
Ωs

|∇w|2ψ2ρ dy � 2E [w] + 2

p + 1

∫
Ωs

V̄ |w|p+1ψ2ρ dy

� CE [w] + C
(
1 + ϕ(s)

) + C

∫
Ωs

w2
s ψ

2ρ dy.

Therefore, by Lemma 3.1,

∞∫
0

e−λ0s

∫
Ωs

|∇w|2ψ2ρ dy ds � C

∞∫
0

e−λ0s E [w](s) ds + C

∞∫
0

e−λ0s
(
1 + ϕ(s)

)
ds

+ C

∞∫
0

e−λ0s

∫
Ωs

w2
s ψ

2ρ dy ds

� C

since λ0 > λ. So (3.16) holds for k = 0.

Step 2. We show that (3.15)–(3.16) holds for all k ∈ N.
Suppose (3.15)–(3.16) hold for k � n. By (3.13), we have

d

ds

(
e−λns E2n+2[w]) � Ce−λns

∫
Ωs

|∇w|2|y|2nψ2ρ dy + C(1 + ϕ2n+2)e
−λns .

Since (3.16) holds for k = n, we have

e−λns E2n+2[w] � C(n).

Now we need to obtain the lower bound for E2n+2[w]. Denote

y(s) =
∫
Ωs

w2|y|2n+2ψ2ρ dy,

z(s) = E2n+2[w].
Then it follows from (3.13) and (3.14) that

y′(s) � −4z(s) + Cy
p+1

2 (s) − C
(
1 + ϕ2n+2(s)

)
, (3.17)

z′(s) � λnz(s) + C

∫
Ωs

|∇w|2|y|2nψ2ρ dy + C
(
1 + ϕ2n+2(s)

)
. (3.18)

By induction hypothesis, we have

∞∫
e−λns

∫
|∇w|2|y|2nψ2ρ dy � C(n). (3.19)
0 Ωs
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So N = ∫ ∞
0 e−λns(h(s) + C(1 + ϕ2n+2(s))) ds < ∞, where h(s) = C

∫
Ωs

|∇w|2|y|2nψ2ρ dy.
Then

z(s) � −2Neλns, ∀s � 0,

follows by Lemma 2.2. Therefore E2n+2[w] � −Ceλns and then |E2n+2[w]| � Ceλns . In particular, (3.15) holds for
k = n + 1.

Finally, by (3.13), we have

d

ds
E2n+2[w] � −1

4

∫
Ωs

w2
s |y|2n+2ψ2ρ dy + C

∫
Ωs

|∇w|2|y|2nψ2ρ dy + C(1 + ϕ2n+2) + λnE2n+2[w].

Combining this with the fact that |E2n+2[w]| � Ceλns and (3.19) we have

∞∫
0

e−λns

∫
Ωs

w2
s |y|2n+2ψ2ρ dy ds � C.

By (3.12), it can be shown that∫
Ωs

|∇w|2|y|2n+2ψ2ρ dy � 2E2n+2[w] + 2

p + 1

∫
Ωs

V̄ |w|p+1|y|2n+2ψ2ρ dy

� CE2n+2[w] + C(1 + ϕ2n+2) + C

∫
Ωs

w2
s |y|2n+2ψ2ρ dy.

Therefore, by |E2n+2[w]| � Ceλns , we get

∞∫
0

e−λn+1s

∫
Ωs

|∇w|2|y|2n+2ψ2ρ dy

� C

∞∫
0

(
E2n+2[w] + 1 + ϕ2n+2

)
e−λn+1s ds + C

∞∫
0

e−λns

∫
Ωs

w2
s |y|2n+2ψ2ρ dy ds

� C

∞∫
0

e(λn−λn+1)s ds + C

� C.

Hence (3.16) holds for k = n + 1. The lemma is proved. �
Next, we need the following

Lemma 3.5. Suppose λ > 1
4 , where λ = 16

7(p−1)
d2
d1

, and d1, d2 are constants such that V (x) � d1 > 0 and

supx∈Ω |∇V (x)|diam(Ω) � d2. If for some α ∈ ( 1
2 ,2λ], there exist positive constants Mk and Nk , such that∣∣E2k[w](s)∣∣ � Mke

αs,

∞∫
0

e−αs

∫
Ωs

|∇w|2|y|2kψ2ρ dy ds � Nk,

hold for all k ∈ N and s � 0, then there exist positive constants M ′ and N ′ , such that
k k
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∣∣E2k[w](s)∣∣ � M ′
ke

(α− 1
4 )s ,

∞∫
0

e−(α− 1
4 )s

∫
Ωs

|∇w|2|y|2kψ2ρ dy ds � N ′
k,

hold for all k ∈ N and s � 0.

Proof. Let {δk}∞k=0 ⊂ [ 1
4 , 1

3 ] be a strictly decreasing sequence. It suffices to show the following estimates:∣∣E2k[w](s)∣∣ � M ′
ke

(α−δk)s , (3.20)
∞∫

0

e−(α−δk)s

∫
Ωs

|∇w|2|y|2kψ2ρ dy ds � N ′
k. (3.21)

We also prove these estimates by induction.

Step 1. These estimates hold for k = 0.
Recalling (3.2) we have

dE [w]
ds

� −1

2

∫
Ωs

w2
s ψ

2ρ dy +
∫
Ωs

∇V · ye−s/2|w|p+1ψ2ρ dy + Cϕ(s)

� −1

2

∫
Ωs

w2
s ψ

2ρ dy + Ce−s/2
∫
Ωs

|y||w|p+1ψ2ρ dy + Cϕ(s)

� −1

2

∫
Ωs

w2
s ψ

2ρ dy + Ce−s/2
∫
Ωs

(|y|2 + 1
)|w|p+1ψ2ρ dy + Cϕ(s). (3.22)

Also by the definition of E2[w], Hölder inequality and the assumptions we get

e−s/2
∫
Ωs

|y|2|w|p+1ψ2ρ dy � Ce−s/2
( ∫

Ωs

|∇w|2|y|2ψ2ρ dy +
∫
Ωs

|w|p+1ψ2ρ dy + CE2[w] + C

)

� Ce−s/2
( ∫

Ωs

|∇w|2|y|2ψ2ρ dy +
∫
Ωs

|w|p+1ψ2ρ dy + Ceαs + C

)
.

By (3.6) and assumptions we have

d

ds
E [w] � −1

4

∫
Ωs

w2
s ψ

2ρ dy + Ce− s
2

∫
Ωs

|∇w|2|y|2ψ2ρ dy + Ce(α− 1
2 )s

+ Ce− 1
2 s

(
E [w] + 1 + ϕ(s)

)
� −1

4

∫
Ωs

w2
s ψ

2ρ dy + Ce− s
2

∫
Ωs

|∇w|2|y|2ψ2ρ dy + Cϕ(s) + Ce(α− 1
2 )s . (3.23)

So

E [w](s) − E [w](0) � C

s∫
0

e− τ
2

∫
Ωτ

|∇w|2|y|2ψ2ρ dy dτ + Ce(α− 1
2 )s .

We claim that
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s∫
0

e− τ
2

∫
Ωτ

|∇w|2|y|2ψ2ρ dy dτ � Ce(α− 1
2 )s . (3.24)

Indeed, if we denote the left-hand side of (3.24) by f (s), then
∫ ∞

0 e−(α− 1
2 )sf ′(s) ds � C by the assumption. It follows

that

C �
s∫

0

e−(α− 1
2 )sf ′(s) ds � f (s)e−(α− 1

2 )s ,

by integration by parts. So (3.24) holds and

E [w](s) � Ce(α− 1
2 )s .

If we set y(s) = ∫
Ωs

w2ψ2ρ dy and z(s) = E [w](s), then by using (3.7) with μ = 2λ and (3.9) we have

y′(s) � −4z(s) + Cy
p+1

2 − Cϕ(s),

z′(s) � 2λz + C
(
1 + ϕ(s)

) =
(

α − 5

12

)
z + h(s),

where h(s) = (2λ − α + 5
12 )z(s) + C(1 + ϕ(s)). Notice that we have already gotten the upper bound estimates for

z(s). Since α � 2λ, we have h(s) � Ce(α− 1
2 )s + C(1 + ϕ(s)). So

z′(s) �
(

α − 5

12

)
z + Ce(α− 1

2 )s + C
(
1 + ϕ(s)

)
.

It is easy to see that
∫ ∞

0 e−(α− 5
12 )s(Ce(α− 1

2 )s + C(1 + ϕ(s))) ds < ∞. By Lemma 2.2, we have

E [w](s) � −Ce(α− 5
12 )s .

Therefore (3.20) holds for k = 0.
Furthermore, by (3.23) and (3.24), we deduce that

s∫
0

∫
Ωτ

w2
s ψ

2ρ dy dτ � Ce(α− 5
12 )s . (3.25)

As usual, we have∫
Ωs

|∇w|2ψ2ρ dy � 2E [w] + 2

p + 1

∫
Ωs

V̄ |w|p+1ψ2ρ dy

� CE [w] + C

∫
Ωs

w2
s ψ

2ρ dy + C
(
1 + ϕ(s)

)
.

Then

e−(α− 1
3 )s

∫
Ωs

|∇w|2ψ2ρ dy � C
(

E [w] + 1 + ϕ(s)
)
e−(α− 1

3 )s + Ce−(α− 1
3 )s

∫
Ωs

w2
s ψ

2ρ dy

� Ce− 1
12 s + Cϕ(s) + Ce−(α− 1

3 )s

∫
Ωs

w2
s ψ

2ρ dy.

Let f (s) = ∫ s ∫
w2

s ρ dy dτ . Then for any s > 0,
0 Ωτ



G.-F. Zheng / Ann. I. H. Poincaré – AN 27 (2010) 1333–1360 1349
s∫
0

e−(α− 1
3 )τ

∫
Ωτ

w2
s ρ dy dτ =

s∫
0

f ′(τ )e−(α− 1
3 )τ dτ

= f (s)e−(α− 1
3 )s +

(
α − 1

3

) s∫
0

f (τ)e−(α− 1
3 )τ dτ

� C,

due to (3.25). So
∞∫

0

e−(α− 1
3 )τ

∫
Ωτ

|∇w|2ρ dy dτ � C,

i.e., (3.21) holds for k = 0.

Step 2. (3.20) and (3.21) hold for all k ∈ N.
Suppose (3.20) and (3.21) hold for all k = 0,1, . . . , n − 1. By the first inequality of (3.13), we have

dE2n[w]
ds

� −1

2

∫
Ωs

w2
s |y|2nψ2ρ dy + 1

p + 1

∫
Ωs

∣∣∣∣∂V̄

∂s

∣∣∣∣|w|p+1|y|2nψ2ρ dy

+ C

∫
Ωs

|∇w|2|y|2n−2ψ2ρ dy + Cϕ2n(s).

Notice that | ∂V̄
∂s

| � C|y|e− s
2 . By Young’s inequality, we obtain for ε > 0,

1

p + 1

∫
Ωs

∣∣∣∣∂V̄

∂s

∣∣∣∣|w|p+1|y|2nψ2ρ dy

� Ce− s
2

∫
Ωs

|w|p+1|y|2n+1ψ2ρ dy

� e− s
2

∫
Ωs

|w|p+1[ε|y|2n + C(ε)|y|2n+2]ψ2ρ dy

= εe− s
2

∫
Ωs

|w|p+1|y|2nψ2ρ dy + C(ε)e− s
2

∫
Ωs

|w|p+1|y|2n+2ψ2ρ dy. (3.26)

From the definition of E2n+2[w] and Young’s inequality, we get for ε > 0,

d1

p + 1

∫
Ωs

|w|p+1|y|2n+2ψ2ρ dy

� 1

p + 1

∫
Ωs

V̄ |w|p+1|y|2n+2ψ2ρ dy

= 1

2

∫
Ωs

(|∇w|2 + βw2)|y|2n+2ψ2ρ dy − E2n+2[w](s)

�
∫
Ωs

|∇w|2|y|2n+2ψ2ρ dy − E2n+2[w](s) + ε

∫
Ωs

|w|p+1|y|2n+2ψ2ρ dy + C(ε).

By choosing some small ε > 0, we can obtain that
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∫
Ωs

|w|p+1|y|2n+2ψ2ρ dy � C

∫
Ωs

|∇w|2|y|2n+2ψ2ρ dy + C − CE2n+2[w](s). (3.27)

On the other hand, taking k = n in (3.12), we have∫
Ωs

|w|p+1|y|2nψ2ρ dy � CE2n[w](s) + 1

4d2

∫
Ωs

w2
s |y|2nψ2ρ dy + C

(
1 + ϕ2n(s)

)
. (3.28)

Combining (3.26)–(3.28) and using the assumptions |E2k[w](s)| � Mke
αs , we have the following inequality

1

p + 1

∫
Ωs

∣∣∣∣∂V̄

∂s

∣∣∣∣|w|p+1|y|2nψ2ρ dy

� εe− s
2

[
CE2n[w](s) + 1

4d2

∫
Ωs

w2
s |y|2nψ2ρ dy + C

(
1 + ϕ2n(s)

)]

+ C(ε)e− s
2

[
C

∫
Ωs

|∇w|2|y|2n+2ψ2ρ dy + C − CE2n+2[w](s)
]

� 1

4

∫
Ωs

w2
s |y|2nψ2ρ dy + Cϕ2n(s)

+ Ce− s
2

[ ∫
Ωs

|∇w|2|y|2n+2ψ2ρ dy + ∣∣E2n[w](s)∣∣ + 1 + ∣∣E2n+2[w](s)∣∣]

� 1

4

∫
Ωs

w2
s |y|2nψ2ρ dy + Ce− s

2

∫
Ωs

|∇w|2|y|2n+2ψ2ρ dy + Ce(α− 1
2 )s + Cϕ2n(s).

Therefore, we have

dE2n[w]
ds

� −1

2

∫
Ωs

w2
s |y|2nψ2ρ dy + 1

p + 1

∫
Ωs

∣∣∣∣∂V̄

∂s

∣∣∣∣|w|p+1|y|2nψ2ρ dy

+ C

∫
Ωs

|∇w|2|y|2n−2ψ2ρ dy + Cϕ2n(s)

� −1

4

∫
Ωs

w2
s |y|2nψ2ρ dy + C

∫
Ωs

|∇w|2|y|2n−2ψ2ρ dy

+ Ce− s
2

∫
Ωs

|∇w|2|y|2n+2ψ2ρ dy + Ce(α− 1
2 )s + Cϕ2n(s).

Hence we get

E2n[w](s) − E2n[w](0) � C

s∫
0

e− τ
2

∫
Ωτ

|∇w|2|y|2n+2ψ2ρ dy dτ + Ce(α− 1
2 )s

+ C

s∫
0

∫
Ωτ

|∇w|2|y|2n−2ψ2ρ dy dτ.

Since
∫ ∞

e−αs
∫ |∇w|2|y|2n+2ψ2ρ dy ds � Nn+1, we get
0 Ωs
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s∫
0

e− τ
2

∫
Ωτ

|∇w|2|y|2n+2ψ2ρ dy dτ � Ce(α− 1
2 )s

as before. Let f (s) = ∫ s

0

∫
Ωτ

|∇w|2|y|2n−2ψ2ρ dy dτ . Then by induction hypothesis, we have

∞∫
0

f ′(s)e−(α−δn−1)s ds � Nn−1.

So
s∫

0

f ′(τ )e−(α−δn−1)τ dτ = f (s)e−(α−δn−1)s + (α − δn−1)

s∫
0

f (τ)e−(α−δn−1)τ dτ

� f (s)e−(α−δn−1)s ,

i.e., f (s) � Nn−1e
(α−δn−1)s .

Therefore

E2n[w] � Nne
(α−δn−1)s . (3.29)

Now let y(s) = ∫
Ωs

w2|y|2nψ2ρ dy, z(s) = E2n[w]. Then by (3.13) and (3.14), we have

y′(s) � −4z(s) + Cy
p+1

2 (s) − C
(
1 + ϕ2n(s)

)
,

z′(s) � 2λz(s) + C

∫
Ωs

|∇w|2|y|2n−2ψ2ρ dy + C
(
1 + ϕ2n(s)

) = 2λz(s) + h(s).

We then have z′(s) � (α − δ′
n)z(s) + g(s), where g(s) = (2λ − α + δ′

n)z(s) + h(s) and δ′
n ∈ (δn, δn−1). Since α < 2λ,

it follows from (3.29) and induction hypothesis that

∞∫
0

e−(α−δ′
n)sg(s) ds � C

∞∫
0

e(δ′
n−δn−1)s ds + C

∞∫
0

e−(α−δ′
n)s

∫
Ωs

|∇w|2|y|2n−2ψ2ρ dy ds + C

� C.

Lemma 2.2 gives us

z(s) � −Ce(α−δ′
n)s . (3.30)

From (3.29) and (3.30), we know that (3.20) holds for k = n.
From the fact that

dE2n[w]
ds

� −1

4

∫
Ωs

w2
s |y|2nψ2ρ dy + (

α − δ′
n

)
E2n[w] + g(s)

and above estimates, we have
∞∫

0

e−(α−δ′
n)s

∫
Ωs

w2
s |y|2nψ2ρ dy ds � C.

As before, we have∫
Ωs

|∇w|2|y|2nψ2ρ dy � CE2n[w] + C

∫
Ωs

w2
s |y|2nψ2ρ dy + C

(
1 + ϕ2n(s)

)
.

Multiplying e−(α−δn)s on both sides and integrating over (0,∞), we obtain
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∞∫
0

e−(α−δn)s

∫
Ωs

|∇w|2|y|2nψ2ρ dy ds

� C

∞∫
0

e−(α−δn)se(α−δ′
n)s ds + C

∞∫
0

e−(α−δ′
n)s

∫
Ωs

w2
s |y|2nψ2ρ dy ds + C

� C,

i.e., (3.21) holds for k = n. So the proof of this lemma is complete. �
Finally, using the above lemmas, we obtain the following local energy estimates, which include a quasi-

monotonicity formula.

Theorem 3.6. There exist positive constants C3, C4 and δ < 1/2 depending on N , R, p, t̄ , the lower bound of V ,
‖V ‖C1(Ω̄), |Ω| and E [w](s) such that

E [w](s) + 1

4

s∫
τ

∫
Ωs

w2
s ψ

2ρ dy ds � E [w](τ ) + C3e
−δτ , ∀s > τ � s; (3.31)

E [w](s) � −C4e
−δs, ∀s � s. (3.32)

Proof. By Lemmas 3.4 and 3.5, there exist two positive constants M , N and some α ∈ (0, 1
2 ) such that∣∣E [w](s)∣∣, ∣∣E2[w](s)∣∣ � Meαs,

∞∫
0

e−αs

∫
Ωs

|∇w|2|y|2ψ2ρ dy ds � N.

Recall from (3.2) that

dE [w]
ds

� −1

2

∫
Ωs

w2
s ψ

2ρ dy + Ce−s/2
∫
Ωs

|y|2|w|p+1ψ2ρ dy + Ce−s/2
∫
Ωs

|w|p+1ψ2ρ dy.

By the lower bound of E2[w] and Young’s inequality, we get

e−s/2
∫
Ωs

|y|2|w|p+1ψ2ρ dy � Ce−s/2
( ∫

Ωs

|∇w|2|y|2ψ2ρ dy +
∫
Ωs

|w|p+1ψ2ρ dy + Ceαs + C

)

� Ce−s/2
∫
Ωs

|∇w|2|y|2ψ2ρ dy + Ce−s/2
∫
Ωs

|w|p+1ψ2ρ dy

+ Ce−s/2 + Ce(α− 1
2 )s .

Using (3.5) with η small enough, we have

dE [w]
ds

� −1

2

∫
Ωs

w2
s ψ

2ρ dy + Ce−s/2
∫
Ωs

|∇w|2|y|2ψ2ρ dy

+ Ce−s/2
∫
Ωs

|w|p+1ψ2ρ dy + Ce−s/2 + Ce(α− 1
2 )s

� −1

4

∫
w2

s ψ
2ρ dy + Ce−s/2

∫
|∇w|2|y|2ψ2ρ dy
Ωs Ωs
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+ Ce−s/2(E [w] + C
(
1 + ϕ(s)

)) + Ce(α− 1
2 )s

� −1

4

∫
Ωs

w2
s ψ

2ρ dy + Ce−s/2
∫
Ωs

|∇w|2|y|2ψ2ρ dy

+ Ce−s/2ϕ(s) + Ce(α− 1
2 )s .

Therefore, for all s > τ ,

E [w](s) + 1

4

s∫
τ

∫
Ωs

w2
s ψ

2ρ dy ds � E [w](τ ) + C3e
−δτ ,

with δ = 1
2 − α > 0, i.e., (3.31) holds. If we set y(s) = ∫

Ωs
w2ψ2ρ dy, then by (3.9), (3.31) and Jensen’s inequality

we have for all s > τ + 1,

y(s) � y(τ) − 4

s∫
τ

E [w](σ ) dσ + C

s∫
τ

y
p+1

2 (σ ) dσ − C

s∫
τ

ϕ(σ ) dσ

� −4
(

E [w](τ ) + C3e
−δτ

)
(s − τ) − Ce−τ + C

s∫
τ

y
p+1

2 (σ ) dσ

� −4
(

E [w](τ ) + C4e
−δτ

)
(s − τ) + C

s∫
τ

y
p+1

2 (σ ) dσ.

So if there is a τ � s such that E [w](τ ) + C4e
−δτ < 0, then y(s) � C

∫ s

τ
y

p+1
2 (σ ) dσ for all s > τ + 1. Hence∫ s

τ
y

p+1
2 (σ ) dσ will blow up in finite time. This is impossible. The theorem is proved. �

Remark 3.1. We can see from this theorem that the local energy E [w] is bounded from below and above. When the
cutoff function ψ is identically 1, we can simplify the proof and get this property, i.e., the main result in [5], even if
the exponent p is critical or supercritical.

The following corollary is crucial to get the ε-regularity of the borderline solution.

Corollary 3.1. There exists a positive constant C, which depends on N , R, p, t̄ , the lower bound of V , ‖V ‖C1(Ω̄),|Ω| and E [w](s), such that for all s > τ � s,

s∫
τ

∫
Ωs

|w|p+1ψ2ρ dy ds � C
[
1 + (s − τ)

]
η
(

E [w](τ ) + C5e
−δτ

)
,

where η(s) = s + s1/2 and C5 = C4 + 1.

Proof. By (3.31) and (3.32), it is easy to see that

s∫
τ

∫
Ωs

w2
s ψ

2ρ dy ds � 4E [w](τ ) + Ce−δτ . (3.33)

It turns out that
∞∫ ∫

w2
s ψ

2ρ dy ds � C.
0 Ωs
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Next,

1

2

d

ds

∫
Ωs

w2ψ2ρ dy =
∫
Ωs

wwsψ
2ρ dy +

∫
Ωs

w2ψψsρ dy

�
( ∫

Ωs

w2ψ2ρ dy

)1/2( ∫
Ωs

w2
s ψ

2ρ dy +
∫
Ωs

w2ψ2
s ρ dy

)1/2

�
( ∫

Ωs

w2ψ2ρ dy

)1/2( ∫
Ωs

w2
s ψ

2ρ dy + ϕ(s)

)1/2

.

Let y(s) = ∫
Ωs

w2ψ2ρ dy. Then for any ε > 0, τ2 > τ1,

(
y(τ2) + ε

)1/2 − (
y(τ1) + ε

)1/2 �
τ2∫

τ1

( ∫
Ωs

w2
s ψ

2ρ dy + ϕ(s)

)1/2

ds

� (τ2 − τ1)
1/2

τ2∫
τ1

( ∫
Ωs

w2
s ψ

2ρ dy + ϕ(s)

)
ds

� C(τ2 − τ1)
1/2.

Letting ε ↓ 0, we get(
y(τ2)

)1/2 − (
y(τ1)

)1/2 � C(τ2 − τ1)
1/2, for all τ2 > τ1. (3.34)

On the other hand, by (3.5), for any τ > 0,

τ+1∫
τ

∫
Ωs

|w|p+1ψ2ρ dy ds � C

τ+1∫
τ

E [w](s) ds + C

τ+1∫
τ

∫
Ωs

w2
s ψ

2ρ dy ds + C

τ+1∫
τ

(
1 + ϕ(s)

)
ds

� C.

It follows from Hölder’s inequality that

τ+1∫
τ

y(s)
p+1

2 ds � C

τ+1∫
τ

∫
Ωs

|w|p+1ψ2ρ dy ds � C.

So for each positive integer j , there exists an sj ∈ [j, j + 1] such that y(sj ) � C. Combining this with (3.34), we have∫
Ωs

w2ψ2ρ dy � C

for all s � 0.
From (3.4), we have

p − 1

p + 1

∫
Ωs

V̄ |w|p+1ψ2ρ dy =
∫
Ωs

wwsψ
2ρ dy + 2E [w] + 2

∫
Ωs

∇w∇ψwψρ dy

�
( ∫

Ωs

w2ψ2ρ dy

)1/2( ∫
Ωs

w2
s ψ

2ρ dy

)1/2

+ 2E [w] + Cϕ(s)

� C

( ∫
w2

s ψ
2ρ dy

)1/2

+ 2E [w] + Cϕ(s).
Ωs
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Finally, by Hölder’s inequality and (3.33), we obtain

s∫
τ

∫
Ωs

|w|p+1ψ2ρ dy ds � C

s∫
τ

( ∫
Ωs

w2
s ψ

2ρ dy

)1/2

ds + C

s∫
τ

E [w](s) ds + C

s∫
τ

ϕ(s) ds

� C(s − τ)1/2[(E [w](τ ) + C4e
−δτ

) + Ce−δτ
]1/2

+ C
[

E [w](τ ) + C4e
−δτ

]
(s − τ) + Ce−δτ

� C
[
1 + (s − τ)

]
η
(

E [w](τ ) + C5e
−δτ

)
,

where η(s) = s + s1/2 and C5 = C4 + 1. �
4. ε-Regularity and partial regularity

In this section we will establish ε-regularity theorem and partial regularity theorem for a borderline solution to
(1.1). To this end, let us rewrite the crucial estimates we have shown in Section 3 back to unscaled form.

For z = (x, t) ∈ Ω × (0,∞), R < dist(x, ∂Ω), and a global classical solution u to (1.1) we define

Ez(t) = 1

2
(t − t)

p+1
p−1

∫
Ω

|∇u|2Gzφ
2 dx + 1

2
(t − t)

2
p−1

∫
Ω

u2Gzφ
2 dx

− 1

p + 1
(t − t)

p+1
p−1

∫
Ω

V̄ |u|p+1Gzφ
2 dx,

where φ = φx,R(x) = φ((x − x)/R) and

Gz(x, t) = 1

(t − t)n/2
e
− |x−x|2

4(t−t)

is a constant multiple of the backward heat kernel at (x, t). Actually, we have Ez(t) = E [w](τ ), under the rescaling
described in the previous section. So from (3.31) we have the following quasi-monotonicity formula for the local
energy of the solution

Ez(t) � Ez

(
t ′
) + C

(
t − t ′

)δ
, (4.1)

where τ = − log(t − t), τ ′ = − log(t − t ′) and δ > 0 is the constant described in Theorem 3.6. From Corollary 3.1 we
also have for all 0 � t ′ < t � t̄ ,

t∫
t ′

(t − t)
2

p−1

∫
Ω

|u|p+1Gzφ
2 dx dt � C

(
1 + log

t − t ′

t − t

)
η
(
Ez

(
t ′
) + C5

(
t − t ′

)δ)
. (4.2)

With (4.1) and (4.2) in hands, we can obtain all other results as in [6]. The proofs have little difference from those of
[6]. For readers’ convenience, we repeat some proofs here.

In order to get the main result, we need the following crucial lemma.

Lemma 4.1. Let u be a positive borderline solution to (1.1). There exist two positive constants ε0 and ρ0 depending
on N and p > 1 only, such that if

r
4

p−1 −N

∫ ∫
Pr (z0)

|u|p+1 dx dt < ε0

for all cylinders P2r (z0) = B2r (x0) × (t0 − 4r2, t0 + 4r2), z0 = (x0, t0), contained inside the cylinder PR(z), then

ess sup
PR/4(z)

|u| � ρ0R
−2
p−1 .
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Proof. Let u be a classical solution first. Consider

M = sup
0<r<R′

[(
R′ − r

) 2
p−1 sup

Pr (z)

u
]
,

where R′ = R/2 and let r0 � 0 and z∗ = (x∗, t∗) ∈ Pr0(z) satisfy

M = (
R′ − r0

) 2
p−1 u

(
z∗).

Let r1 = (R′ − r0)/2. Then Pr1(z
∗) ⊆ PR′−r1(z), so

r
2

p−1
1 sup

Pr1 (z∗)
|u| � M.

It implies that

sup
Pr1 (z∗)

|u| �
(

R′ − r0

r1

) 2
p−1

u
(
z∗) � 4

1
p−1 u

(
z∗).

We set

v(y, s) = 1

μ
u
(
x∗ + μ

1−p
2 y, t∗ + μ1−ps

)
, μ = u

(
z∗).

Then v satisfies

vs = �v + Ṽ |v|p−1v, (4.3)

|v| � 4
1

p−1 ,
∣∣v(0,0)

∣∣ = 1, (4.4)

in P
μ

p−1
2 r1

(0,0). Here Ṽ (y, s) = V (x∗ + μ
1−p

2 y, t∗ + μ1−ps). We claim that M � 4
2

p−1 . For, if M > 4
2

p−1 , then

μ
p−1

2 r1 � 2 and (4.3), (4.4) hold in P2(0,0). We have∫ ∫
P2(0,0)

|v|p+1 dy ds = μ
p−1

2 N−2
∫ ∫

P
2μ

1−p
2

(z∗)

|u|p+1 dx dt < 2N− 4
p−1 ε0.

Notice that Ṽ is bounded. Regarding (4.3) as a linear parabolic equation vs = �v + b(y, s)v with bounded coeffi-
cient b, we infer from interior parabolic estimates, see Ladyzenskaja, Solonnikov and Uralceva [18], that

sup
P1(0,0)

|v| � C‖v‖Lp+1(P2(0,0)) � C′ε
1

p+1
0 .

By choosing ε0 so small that C′ε
1

p+1
0 < 1, a contradiction with (4.4) occurs. Hence we must have M � 4

2
p−1 . But

then the desired result follows by taking r = R/2 in the expression of M . Now the general case can be deduced from
approximation. �

Using the basic estimates (4.1), (4.2) and the above lemma, we get the following ε-regularity theorem.

Theorem 4.2. Let u be a classical solution or a positive borderline solution to (1.1). For each (x, t) ∈ Ω × (0,∞)

and R < dist(x, ∂Ω), there exist constants ε1, K > 1, ρ0 and δ0 < 1/2 depending on N , p, R, t , and E0 such that if
for some r � δ0R,

r
4

p−1 −N

t−4r2∫
2

∫
B (x)

(|∇u|2 + |u|p+1)dx dt < ε1,
t−9r Kr
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then

ess sup
Pr/4(z)

|u| � ρ0r
2

1−p .

Proof. Assume that u is classical first. For any ε, K > 0 we claim that if

r
4

p−1 −n

t−4r2∫
t−9r2

∫
BKr (x)

(|∇u|2 + |u|p+1)dx dt < ε, (4.5)

for some small r satisfying Kr < R, r < 1 and 9r2 � t , then

r
4

p−1

t−4r2∫
t−9r2

∫
Ω

(|∇u|2 + |u|p+1)G(x,t+20r2)φ
2
x,R dx dt < ε + Ce− K2

3480 . (4.6)

For, we have

G(x,t+20r2)

G(x,t+21r2)

(x, t) �
(

t + 21r2 − t

t + 20r2 − t

)N/2

exp

(
−|x − x|2

4

(
r2

(t + 20r2 − t)(t + 21r2 − t)

))
�

(
5

4

)N/2

exp

(
− K2

4 × 29 × 30

)
for |x − x| � Kr and t ∈ [t − 9r2, t − 4r2]. It follows from (4.2) (taking z to be (x, t + 21r2)) and (4.1) that

r
4

p−1

t−4r2∫
t−9r2

∫
RN\BKr (x)

(|∇u|2 + |u|p+1)G(x,t+20r2)φ
2
x,R dx dt � Ce− K2

3480 .

Together with (4.5) it gives (4.6).
Next, we claim that by further restricting δ0 in r = δ0R, (4.6) implies

(δ0R)
4

p−1

t−4(δ0R)2∫
t−9(δ0R)2

∫
Ω

(|∇u|2 + |u|p+1)G(x0,t0+r2)φ
2
x0,R/2 dx dt � C6

(
ε + e− K2

3480
)

(4.7)

for all (x0, t0) ∈ Bδ0R(x) × [t − δ2
0R2, t + δ2

0R2] and r � δ0R. Indeed, for |x − x| > 10δ0R, |x − x0| � 9δ0R and so
|x − x0|/|x − x| � 9/10. Hence

G(x0,t0+r2)

G(x,t+20(δ0R)2)

(x, t) �
(

29

3

)N/2

exp

(
−|x − x0|2

44δ2
0R2

+ |x − x|2
96δ2

0R2

)
�

(
29

3

)N/2

for |x − x| � 10δ0R and t ∈ [t − 9(δ0R)2, t − 4(δ0R)2]. For |x − x| < 10δ0R, this quotient is bounded by some
constant depending only on N . As φx0,R/2 � φx,R for x0 close to x, (4.7) holds.

Now, applying the mean value theorem to (4.7) we can find some t̃ ∈ (t − 9δ2
0R2, t − 4δ2

0R2) such that

(δ0R)
2(p+1)
p−1

∫
Ω

(|∇u|2 + |u|p+1)G(x0,t0+r2)φ
2
x0,R/2dx � C7

(
ε + e− K2

3480
)
, (4.8)

at t̃ . Using (4.1) we have

E(x ,t +r2)

(
t − 4δ2

0R2) � E(x ,t +r2)(t̃) + C8δ
2δ
0
0 0 0 0
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where the cutoff function in E(x0,t0+r2) is given by φx0,R/2. The second term in E(x0,t0+r2)(t̃),

1

2
(t − t̃ )

2
p−1

∫
Ω

u2G(x0,t0+r2)φ
2
x0,R/2 dx,

is controlled via Hölder inequality by

C(δ0R)
4

p−1

( ∫
Ω

|u|p+1G(x0,t0+r2)φ
2
x0,R/2 dx

) 2
p+1

( ∫
Ω

G(x0,t0+r2) dx

) p−1
p+1

� C

[
(δ0R)

2(p+1)
p−1

∫
Ω

|u|p+1G(x0,t0+r2)φ
2
x0,R/2 dx

] 2
p+1

.

Therefore, using (4.8) we have

E(x0,t0+r2)

(
t − 4δ2

0R2) � C
[(

ε + e− K2
3480

) + (
ε + e− K2

3480
) 2

p+1 + δ2δ
0

]
. (4.9)

Finally, by combining with (4.2), (4.1) and (4.9)

(
r

2

) 4
p−1 −N

t0+ 1
4 r2∫

t0− 1
4 r2

∫
Br/2(x0)

|u|p+1 dx dt � C

t0+ 1
4 r2∫

t0− 1
4 r2

(
t0 + r2 − t

) 2
p−1

∫
Ω

|u|p+1G(x0,t0+r2)φ
2
x0,R/2 dx dt

� Cη

(
E(x0,t0+r2)

(
t0 − 1

4
r2

)
+ C′δ2δ

0

)
� Cη

(
E(x0,t0+r2)

(
t − 4δ2

0R2
0

) + C′δ2δ
0

)
� Cη

(
C′(ε + e

−K2
3480

) + (
ε + e− K2

3480
) 2

p+1 + C′δ2δ
0

)
.

Now, if we first fix K sufficiently large and then δ0 sufficiently small, we can make(
r

2

) 4
p−1 −N ∫ ∫

Pr/2(z0)

|u|p+1 dx dt < ε0,

where ε0 is specified in Lemma 4.1, for all Pr(z0) contained inside Bδ0R(x) × (t − δ2
0R2, t + δ2

0R2). By Lemma 4.1
the conclusion is drawn. When u is a positive borderline solution the same conclusion holds by an approximation
argument. �

We are now in the position to give the partial regularity theorem.

Theorem 4.3. Let u be a positive borderline solution to (1.1). For any subdomain Q′ compactly contained in Ω ×
(0,∞), there exists a compact subset SQ′ in Q′ with HN− 4

p−1 (SQ′) = 0, so that u is continuous in Q′ \ SQ′ .

Proof. Let

SQ′ =
{

(x, t) ∈ Q′: For (x, t), there exists r0 such that

r
4

p−1 −N

t−4r2∫
t−9r2

∫
BKr (x)

(|∇u|2 + |u|p+1)dx dt � ε1 for all r � r0

}
,

where K and ε1 are specified in Theorem 4.2 (taking R = dist(Q′, ∂Ω × (0,∞))/2, say). By the Lebesgue differen-
tiation theorem
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lim
r→0

r−N−2

t+9r2∫
t−9r2

∫
BKr (x)

(|∇u|2 + |u|p+1)dx dt

exists a.e., so SQ′ is of zero Lebesgue measure in Ω × (0,∞). For any ε > 0, we can find an open set U containing
SQ′ such that∫ ∫

U

(|∇u|2 + |u|p+1)dx dt < ε.

For each r1 � r0/K , consider now the collection F of the closed cylinders of the form

BKr(x) × [
t − K2r2, t + K2r2], (x, t) ∈ S, r � r1,

which are contained inside U . Here we assume K � 3. F forms a cover of SQ′ . By a variant of Vitali covering
theorem, see Caffarelli, Kohn and Nirenberg [3], we can find a finite collection of these cylinders, BKrj (xj ) × [tj −
K2r2

j , tj + K2r2
j ], j = 1, . . . ,N , such that they are mutually disjoint, and

SQ′ ⊆
N⋃

j=1

B5Krj (xj ) × [
tj − 25K2r2

j , tj + 25K2r2
j

]
.

We have

ε1

∑
j

(5Krj )
n− 4

p−1 � (5K)
N− 4

p−1
∑
j

tj +9r2
j∫

tj −9r2
j

∫
BKrj

(xj )

(|∇u|2 + |u|p+1)dx dt

�
∫ ∫
U

(|∇u|2 + |u|p+1)dx dt

� ε.

Therefore,

HN−4/(p−1)
r1 (SQ′) � ε

ε1
.

Letting ε ↓ 0 and then r1 ↓ 0 the theorem holds. �
For a general borderline solution a weaker estimate holds. The proof is similar to that of Theorem 4.3, for details,

see e.g. [6].

Theorem 4.4. Let u be a borderline solution to (1.1). For any subdomain Q′ compactly contained in Ω × (0,∞),

there exists a compact subset SQ′ in Q′ with HN− 4
p−1 (SQ′) < ∞, so that u is continuous in Q′ \ SQ′ .

Proof of Theorems 1.1 and 1.2. When Ω is convex, by the method of moving planes and the L2-estimates, we can
show as in [6] that any positive borderline solution is uniformly bounded near the boundary. Therefore, no singularities
can occur in this region. So Theorem 1.1 follows from Theorem 4.3. Furthermore, as an application of ε-regularity
theorem, we can show as in [6] Theorem 1.2 holds. �
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