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Abstract

A quasi-monotonicity formula for the solution to a semilinear parabolic equation u; = Au+ V (x) )P u, p>(N+2)/(N-2)
in £2 x (0, T') with O-Dirichlet boundary condition is obtained. As an application, it is shown that for some suitable global weak
solution u and any compact set Q C §2 x (0, T) there exists a close subset Q' C Q such that u is continuous in Q' and the

__4
(N — %)-dimensional parabolic Hausdorff measure HN =51 (Q\ Q") of Q\ Q' is finite.
© 2010 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we are interested in the following semilinear parabolic problem

uy=Au+V@)uP'u in2x©,7),

ulx,1)=0 ondf2 x (0,7), (1.1)
u(x,0) =ugp(x) in £2,
where £2 ¢ RN (N > 3) is a bounded, smooth domain, p> % ug € L°°(£2), and the potential V € C(£2) satisfies

V(x) > c for some positive constant ¢ and all x € £2. It is well known that for any ug € L°°(§2) problem (1.1) has a
unique local in time solution. Specially, if the L°°-norm of the initial datum is small enough, then (1.1) has a global,
classical solution, while the solution to (1.1) ceases to exist after some time 7 > 0 and lim/47 |[u(-, )| L (@) = 00
provided that the initial datum u( is large in some suitable sense. In the latter case we call the solution u to (1.1)
blowing up in finite time and 7' the blow-up time.

When V =1, problem (1.1) is one of the parabolic problems that have been studied extensively in the past. See for
example, [1,2,4,8,10-17,19]. Consider (1.1) with initial data of the form g = A¢ where X is a positive number and ¢
is a fixed non-negative function in L°°(£2) which does not vanish almost everywhere. For large A, the energy of Lg is
negative, so the (maximal) solution, u; , blows up in finite time. When A is small, the solution is global and decays to
zero at infinity. It is natural to set
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A(p) = sup{k > 0: The solution u; satisfying u, (0) = A¢ is global and decays to zero as t — oo},
and define

Uy (x, 1) E}iTI};u;L(x,t). (1.2)

Note that by the maximum principle, u; is monotone increasing and U, coincides with u+ on the maximal interval
of existence of the latter. In the following we shall not distinguish U, and u;+, and we call it (positive) borderline
solution.

In [24], Ni, Sacks and Tavantzis had examined the properties of this borderline solution for some range of p.
Among other things, they have proven the following result under the assumption that §2 is convex:

For p>2*=(N+2)/(N —=2), N >3, u- is a global, L -solution to (1.1), which must be unbounded.

The definition of an L!-solution will be given in Section 1. There was little progress on the critical and super-
critical case since then. Considering global, L!-solutions for radially symmetric and decreasing initial data in a ball,
Galaktionov and Vazquez [11] have proven the following results:

(1) When p = 2*, uy+ remains bounded for all time and tends to zero uniformly away from the origin as t — oo and
(2) when p € (p*, p’), where p' = (N —4)/(N —10), for N > 11 and p' = oo for 3 < N < 10, u;» blows up in finite
time.

Later, Mizoguchi [21] shows that u;» blows up in finite time for all supercritical p, that is, the upper bound
(N —4)/(N — 10) in (2) can be removed. When 2* < p < p, where p is the Joseph—Lundgren exponent given by
p=14+4/(N—-4—-2/N—1)if N>11and p =o0if N < 10, it is shown in Fila, Matano and Polacik [9] that the
blow-up times of u)» form a finite set, which in some cases is a singleton. More information on the corresponding
Cauchy problem can be found in [22] and [23].

Recently, we [6] have proven that when 2 is convex the borderline solution u,+ blows up in finite time and it
decays to zero uniformly after some finite time. Moreover, we have established partial regularity theorem for this
borderline solution, i.e., there exists a closed set S in £2 x (0, c0), whose distance to the boundary of £2 x (0, c0) is

greater than a positive number and which satisfies H(N_%) (8) =0, so that u is continuous in £2 x (0, c0) \ S. Here
‘H*(E) denotes the s-dimensional Hausdorff measure of the set £ with respect to the parabolic metric.

The main purpose of this paper is to improve these results in [6] for more general V, i.e., we will establish the
following theorems.

Theorem 1.1. Consider (1.1) where $2 is convex. For any positive, borderline solution u there exists a closed set S
in £2 x (0, 00), whose distance to the boundary of §2 x (0, 00) is greater than a positive number and which satisfies

4
H(Nfﬁ)(&«') =0, so that u is continuous in §2 x (0, 00) \ S.

Theorem 1.2. Consider (1.1) where §2 is convex. Any positive borderline solution must blow up in finite time. After
some time, it becomes uniformly bounded and decays to zero as t goes to infinity.

These results are definitely not a direct consequence of those of [6]. Due to the appearance of the potential V', some
extra works should be done. The novelty is to establish a quasi-monotonicity formula for the rescaled local energy
and to get the estimates for L”*!-norm of the solution in terms of local energy. When V = 1, this quasi-monotonicity
formula is almost trivial. When V' # 1, it is not easy. There is a “bad” term

EAY%
/‘g'wﬂw%dy
$2

involved in the derivative of the local energy £[w] (see e.g. Section 3 for the definition). To eliminate this difficulty,
we use a trick similar to what was used in [15] to get the blow-up rate estimate for (1.1). Notice that in [15] the basic
assumption is 1 < p < (N + 2)/(N — 2) while in this paper we always assume p > (N 4 2)/(N — 2). Actually, we
can get the main estimates for local energy for all p > 1 in this paper. To explain more, it is easy to see that
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1

d oV
—-Elwle) < ‘zf 2y2pdy + Cf‘g‘w“x/ﬂpdy + Co(s),

where ¢ is an integrable function on [0, co) such that froo efp(s)ds < Ce™T. Since % can be written as VV (x) -
ye™/2, the integral fﬂs |%||w|”+11p2,0 dy can be controlled by e /2 f(zJ lyl|lw|PT142p dy. The question is how to

estimate the integral [, |y|[w|?*!y2pdy. To this end, we introduce

1 _
<~?2k[zu1<s>=5/(|Vw|2+ﬁw2)|y|2k¢2,wy—m ViwP )y *y2ody, keN.

Qs 25

First, we establish some rough estimates for £y, [w] using the fact that % =VV(&x)- ye_s/2 =VV&x)-(x —Xx)is
bounded, i.e.,

o0
|Exlwl(s)] < Mie?™, / — / VwlPly Py dyds < Ni.
0 £
for all k € N and s > 0. Here My, Ny are positive constants depending on k.

Second, by the mathematical induction and |%| = |VV(x) - ye /2| < Clyle™*/?, we can improve our estimates
by at most finite steps to get

o0
|Eaklw](s)| < Mye™, /e—‘“/ \Vw|?|y|*¢2pdyds < N,
0 2

for some o € (0, 1/2).
Finally, we get the quasi-monotonicity formula

s
5[w](s)—|—%//wszwzpdyds<S[w](r)+C3e76T, Vs >12>5s.
T £

Here 6 € (0, 1/2) is a constant. Consequently, we obtain a lower bound estimate
Ewl(s) = —Cae™, Vs>

and

N

f/|w|"+11/f2pdyds<c[1+(s—r)]n(e[w]<r>+cse—“f),
T 2

where n(s) =5 + 512 With these estimates in hands, we prove our main theorems as in [6].

The monotonicity formula plays an important role in the partial regularity theories. See for example, Struwe’s work
[25] on harmonic map heat flow and Caffarelli, Nirenberg amd Kohn’s work [3] on Navier—Stokes equations. For more
discussion on local monotonicity formulas, please refer to Ecker [7].

Throughout the paper we will denote by C a constant that does not depend on the solution itself. And it may change
from line to line. And Ky, K>, ..., L1, L3, ..., M|, M3, ..., N1, N, ... are positive constants depending on p, N, £2,
alower bound of V, |V leroy and the initial energy E[wg]. Here and hereafter wo(y) = w(y, s).

2. Preliminaries

Recall that an L' -solution to (1.1) is a function u in C([0, T); L' (£2)) so that f(x,u) € L'(Qr), Q1 = 2 x (0, T),
and satisfies
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'
//(uqbt+uA¢+f(x,u)¢)dxdt—/u¢|§dx:0,
s 2

2

forall ¢ € C>(Q7), » =00n 32 x (0,T) and 0 < s < ¢ < T, here and hereafter f(x,u) =V (x)|u|”~'u. We are
more interested in a stronger notion of weak solution. A function u in C ([0, T); LZ(Q)) is called an H!-solution to
(1.1) if Vu, u; € L*(Q71), uf (x,u) € L'(Qr) and

1
//(u,¢+Vu~V¢—f(x,u)¢)dxdt:0, 2.1
s 2

holds for all ¢ € C([0, T), H(} (£2)) and 0 <s <t <T.An L'- or H!-solution is called a global L'- or H!-solution
respectively if it is an L!- or H'-solution in £2 x (0, T) for every T > 0.
For an H'-solution its energy

1 2
E(t):E(u(t))=§f|Vu| dx—/F(x,u)dx,
Q

2

is well defined for a.e. t. Here F(x,u) = fou f(x,t)dt. An H'-solution is called an energy-decreasing solution if it
also satisfies the energy inequality

t
E(t)+//utzdxdt<E(s), (2.2)
s 22

for a.e. t > s, including s =01in [0, T).
The following theorem is established in [6]. See also e.g., [4], [9] and [20].

Theorem 2.1.

(a) Let u be a global, energy-decreasing solution to (1.1). There exists a positive constant C depending on &g, Co,
|$2| and the initial energy Eq such that
(1) essinf; E(t) > —C,
@) MutllL2(@2x (0,000 < Cs
3) a2 <C, Vi3
@ Mu@llz2 = lu)l 2| < Cle —s|'/2, V1,53 and
(5) the L*(0, T; H'(£2))-norm of u and the L0, T; L' (£2))-norm of uf (-,u) are bounded by C(1 + T) for

every T > 0.

(b) (Compactness) Let {uy} be a sequence of global, energy-decreasing solutions to (1.1) where uy(0) converges to
some uq in HO1 (82). Suppose that the initial energies of uy are uniformly bounded from above. There exists a
subsequence {uk;} and a function u such that

i, — u in C([0,T); L*(£2)),
Vi, = Vi, g =y in L*(Qr).
FCour) = FCou), g, fCoug) = ufCu) in L'(Qr),

for every T > 0. Consequently u is a global, H'-solution to (1.1) with u(0) = ug. Moreover, if it is known that
up; f (o uk;) = uf (- u)in L'(82) for a.e. t, then

Vur; — Vu in L*(Qr),
F(oug)— FCou) in L'(Q7),

forevery T > 0 and u is also a global, energy-decreasing solution.
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A stationary solution w of (1.1) is called stable if there exists a ball B centered at w in L> N HO1 (£2) such that
every solution to (1.1) starting inside this ball stays in the ball for all subsequent time. Let

U(w) = {uo eL*®n HO1 (£2): The solution of (1.1) starting at ug belongs to the ball B at some finite time}.

It is routine to verify that 2/ = U/ (w) is an open, connected subset of L N H& (£2). The boundary of U, oU4, is non-
empty. For any boundary point w there exists a sequence {u’é} in U converging to w in L N H(} (£2). Since every u’é
generates a global H !-solution, Theorem 2.1 asserts that the maximal solution starting at 1o can be extended to be a
global, H!-solution. Uniqueness of this global solution is not known generally. We shall call any global, H'-solution
starting at a boundary point of U a borderline solution.

It is easy to see that 0 is a non-negative, stable stationary solution to (1.1). For any non-negative ¢ € L> N HO1 (£2)
which does not vanish identically, the solution of (1.1) with u(0) = A¢, u;, belongs to U for small A > 0. Since u;
blows up in finite time for large A, we can find some A* such that u, belongs to I/ for all A < 1*, and A*¢ lies on dU.
By the comparison principle u; converges monotonically to u,* as A 1 A*.

The monotone convergence theorem implies that

JlTr{L F(x,uk(x))dx=/.F(x,uk*(x))dx.
2 2
Theorem 2.1(b) is applicable to conclude that this positive borderline solution is also energy-decreasing.

In order to get the lower bound estimates for our energy functionals, we need the following

Lemma 2.2. Let y, z, g and h be smooth functions on [0, 00). Suppose y, g and h are non-negative and for some
positive constants o, K and L,

t+t 00
/ gs)ds<K(+r1t), Vi,t>0; /e_‘“h(s)dsgL.
t 0

If for some positive constants a, b, q > 1, the differential inequalities
Y (8) = —az(s) + by’ (s) — g(s),
Z(s) <az(s) +h(s)

hold on [0, 00), then
z(s) > —2Le**

foralls > 0.

Proof. Suppose the conclusion is not true. Then there exists an s; > 0 such that z(s1)e™*1 +2L < 0. From the second
differential inequality, we see that

d —os < —aSh
%(E z(s)) <e (s).

So for all s > s1,

e z(s) —e ™ *z(s1) <L, ie.,e *z(s) <—L.
Therefore, for s > s1,

Y'(s) = aLe™ — g(s) + by’ (s).

Then we deduce that
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y(s) > /[aLe‘"r —g(r)] dt +b/yq(t)d1:

S1 51

s s
>aL/e‘“dt —K(s—s1+ 1)+b/yq(t)dt.
51 S
It is easy to check that there exists an s, > s1, such that aL f;l e“Tdt — K(s —s1 + 1) > 0 for all s > s;. Therefore
forall s > s7,
s
y(s) >b/yq(f)df-

51

And then the quantity f :; y4(t) dt will blow up in finite time. But this is impossible. So the lemma is proved. O
3. Local energy estimates and quasi-monotonicity formula

Suppose in this section that u is a global classical solution. Let (x, 1) € £ x (0, c0) be a fixed point. We introduce
the self-similar scaling

w(y,s) =G —DPuE+yWi—11)

with s = —log(f — 1), B = ﬁ If u solves (1.1), then w satisfies

1
wy — Aw + §y~Vw+,3w — V()E—l—ye_s/2)|w|p_1w =0 in £, x (s, 00)

where 2, = {y: X + ye™*/? € 2}, s = —logf. We may assume t__: 1 for simplicity as in [15] so that we assume
s = 0. Here and hereafter we will always denote V (X + ye™*/?) by V(y, 5).

2
By introducing a weight function p(y) = exp(— %), we can rewrite the equation as the divergence form:

pws =V - (pVw) — Bpw + V|w|Pwp in £2; x (0, 00). (3.1)

Fix a positive number R and let ¥/ (v, s) = ¢ (e */?|y|/R) where ¢ (r) is the function that is equal to 1 for r < 1/2, to
0 for r > 1 and linear between r = 1 and 1/2. The local energy of w is given by

2 p+1

1 1 _
Elwl(s) =3 / Vwlypdy + 2 / wilody — —— | Viw|PTy?pdy.
.QS Qs ‘QJ‘

Note that the local energy depends on (X, ) and R. Notice that this kind of local energies were firstly introduced by
Giga, Matsui and Sasayama in [15,16]. In these papers, 1 = ¥ (y) was a cutoff function of a fixed ball. However, in
this paper, ¥ = ¥ (y, s) is a cutoff function of moving balls at time s. In other words, the function i is a function of
two variables in our case, but one variable in their definition.
Calculating the derivative of £[w](s) and noting that wg|y0, = —% y - Vw we have
Sewie == [wivipdy =3 [ vuPo pwods - [LEwirviody
2 EYoR 24

2V
—Z/Vw~V1/f1/fws,0dy+/<|Vw|2+,3w2— ﬁ|w|p+l)l//l//spdy

s s

1 1
<3 / wiytpdy — 4 / IVwl(y - y)¥?pdo —

v
p+1,,2 d
5 a5 lw|" Y pdy

p+1
Qs 982y Qs
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2V
+2/ IVw? |V pdy +f<|Vw|2 + puw’ + mlwl”“)wll/fslpdy
fon

s s

or
1 2.2 d 1 2 2 2 2
3 [wivtody<—Sewie)r ;[ 1VuPGoywods +2 [1VuPIvePody
Qs BQS -Qx
2V
+/<|Vw|2+ﬂw2+—le”“)I/fIl/fslpdy
p+1
2

1 _
— | vv. P25 dy.
+2(p+1)9/ yiwl"T Y pdy

Let us take R < dist(x, §2) so that the boundary integrals above vanish. Using the estimates
- ptl
IVwl? =@ —0)rT|Vul,

- 1
lw| = —1)7~"|ul,

/675/2 2€7S/2
VY| =|¢ R |S TR XA and

/e—s/2 e—s/2 _ _
Vsl = |@ 7R Iyl‘g R [¥lxag> Ar=Bgr(X)\ Bry2(%),

we can find a constant C which depends on N, R and s such that
N +2 2 1 N+2 p+1 R? | oy
[exp(T - Py 1)5 + ﬁexp<T - ﬁ — 1>s:| eXp(—Ee <Ce .
And then by the estimates for u, we get

o0
/eSf[|Vw|2|w|2+(|Vw|2+w2+|w|P+1)w|m|]pdyds
T Qs

r

gce—ff / (IVul® +u® + [u|P*) dx dt
0 Br(x)

<Ce™ .

In the last inequality above the constant C also depends on 7. Denote
go(s)=/[|Vw|2|w|2+(|Vw|2+w2+|w|1’+1)w|¢s|]pdy.

Qs

Then we have

d€[w] 1 1 _
S <3 / wiyody + m/vv ylwlPT Y2 pdy + Co(s), (32)
£25 Qs
where
o0
/es(p(s) ds <Ce™". (3.3)

T

Firstly, we have the following rough estimates for the local energy.
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Lemma 3.1. There exists a constant C depending on N, R, p, t, the lower bound of V, || Vilgi (g and E[w](s) such
that
|E[w](s)| < Ce, foralls > s,

where A = 7(;81) % and dy, dy are constants such that V (x) > dy > 0 and sup, .o |VV (x)|diam(§2) <

Proof. We see from (3.1) that

1d
s | v 2y’pdy = /ww‘vw2pdy+/w2wwspdy
O ol O
—/|Vw|2w2pdy—/ﬁwzwzpdwfmww“wzpdy
25 2 2
4 [ W Ppspdy -2 / Vuvywipdy
$2s Qs

= 28w ]+—/V|w|p+lw ,ody+/w Y pdy — 2/vawwtﬁpdy. (3.4)

24 2
Notice that V is bounded below by d;. By (3.4), using Young’s inequality, we have

—1 —1 _
28w+ L= a / WPy pdy < 26wl + 2 | ViwPHy2pdy
p+1 p+1

s

_ / wwgpdy + f VoV wyedy

2 € 2,2 2 2
< | wwsy pdy+§ w Yy pdy+C(e) | [Vwl* VY[ pdy
2 2y 25

< / wwsyody + %( / lwPy?pdy + C) +C(e)p(s)
£2

gsfwfwzpdy+sf|w|ﬂ+1¢2pdy+C(s)(1+go(s)).
2 Qs
Here we have used the inequality
ab<e(a* +b") +C(e), p>1, Ye>0.
So we obtain that
/ wlPH 1y pdy < 2e(p. d)EMw] + 1 / wlPH iy pdy + / w2 pdy + C(p.din)(1 + o(s)).
-Qs QX -Qs

Here and hereafter we will denote (p’i% by c¢(p,dy) and C(p, dj, n) denotes a constant depending on p,d;,n >0
and may be different at each occurrence. Take n < 1/8 and we hence have

,d
/|w|"“w dy (” e [w]+%/wprdwap,d],n)(l+¢(s))

s

16 ,d
< #s[w] 42 / Wiy lody + Clp.din)(1 + ()
£2
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16¢c(p,d
< ai(s D glw] + 2an / wiypdy +aC(p,di, (1 +¢()), 3.5)
Qs
for all @ > 1. Choosing n small further such that 2and, < 1/4, we get

—16C(;”d1)5[w]+ifwfl/f2pdy+C(a)(1+¢(s)), (3.6)

p+1 2 d g
flwl Vipdy <a 1,
24 12
where sup, .o IVVIly|l= sup, o |VV||x — x| <d>. By (3.2), (3.6), we have for any fixed o > 1,
d 1
ag[w](s) <-3 / w2yl pdy + ar€[wl(s) + C(a) (1 + ¢(s)).
25

Therefore, we obtain that

d 1
el <=5 [whvody 4 nlwle) + CGo (1 +9). 37)
82
for all u > A. In particular, we have
d

%(e—“g[w](s)) + ie—*s / w2y?pdy < Cre ™ (1 + ¢(s)). (3.8)
2

It follows that E[w](s) < Ce* due to (3.3).
In order to get the lower bound of £[w](s), we need to estimate the last two terms in (3.4) firstly. For any ¢ > 0,
we have

/wzwspdy—szwwwpdy‘

s Q.v

<fw2|ws|pdy+2</|Vw|2|wf|2pdy)2(/wzwzpdy)z
QS

s

s

</[wZW”/’”JF|Vw|2|V1/f|2]pdyJr/wzwzpdy

25 2
<go(s)+e/|w|“%/f2pdy+6(s> Vody
25 £2
<¢<s)+e/|w|"“w2pdy+0(e).

£2

Now by (3.4), the above estimate and Jensen’s inequality, if we set y(s) = f 2, w2y 2pdy, then we have

+1

Y (s) > —4E[w]+ Cy ™ (5) — Cp(s) + 1). (3.9)
Since Co = Cy [y~ e (1 + ¢(s)) ds < oo, applying Lemma 2.2 for z(s) = E[w](s), we get E[w](s) > —2C2e™. So

the lemma follows. O

To get some refined estimates for E[w], we introduce

1 1 _
Exlw] =5 /(|Vw|2 + pw?)ly*y?pdy - o’ / Viw[PHy*y2pdy, ke
2 £

Here N = {0, 1,2, 3,...}. For these energy functionals, by straightforward calculation, we can obtain the following
identities.
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Proposition 3.2.

1d -1 _
~— w2|y|2kw2pdy=—282k[w1+p—/Vlw|P+‘|y|2kw2pdy
2ds p+1

25 2

1
+/k(N +2k—2— §|y|2)w2|y|2k_2w2pdy

s

+/w2|y|2’<wspdy—/VwV(wz)wW‘pdy

s 25

+k/y~V(1//2)w2|y|2k_2pdy. (3.10)
£

Proposition 3.3.

d _
T Eulwl = - / w2y y?pdy — 2k / Urp(y - Vw)ws|y[* 2 dy

Q.Y ‘QS
—/VwV(wz)wsW‘pdy— LY ety Py
p+1 as
25 2
2 _
+f<|Vw|2+ﬁw2 - mwm”“)wswﬁ"pdy. (3.11)
ol

N

Denote

m(s)=/[(|Vw|2+w2+|w|f’+‘)wwfs|+|Vw|2|w|2]|y|2"pdy+2k/w2w|w||y|2"—1pdy.
2 £2
As before, we can find a constant C depending on N, R, p, k, and  such that
o
/es(pgk(s) ds <Ce™".
T

It is easy to see from (3.10) that

_ 1 _
/wws|y|2"w2pdy = —2&u[w] + % / Viw[P y*y?p dy
2 25

1
+/k<N +2k—2— 5|y|2)w2|y|2’<—2¢2pdy

s

- / VwV (¥ wly*pdy +k / y- V() wlly* 2 pdy.
25 25
So

p—1 _
T V|w|f’“|y|2’<w2pdy</wws|y|2"w2pdy+252k[w]

s QS

1 _
—fk<N+2k—2— §|y|2>w2|y|2k 2pdy

2
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+wav(x/f2)w|y|2"pdy—k/y-v(wz)w%yﬁk—zpdy
25 £2
</|w||ws||y|2kw2pdy+252k[w]+<p2k(s)
fon

k
+5 f w?y*y2pdy + / VwV(y?)wly*ody
2, 24

</|w||ws||y|2’<w2pdy+252k[w1

25

k
- (1 + 5) / w? |y *y 2o dy + 20 (s).

s

1343

We have used Cauchy’s inequality in the last inequality and the fact that N 4+ 2k — 2 > 0 in the second inequality.

Making use of the inequality
ab < 8(a2 + bp+1) +C(e), p>1,Ve=>0,

we have
f|w||ws||y|2kw2pdy<e/|w|f’+1|y|2"w2pdy+efw§|y|2kw2pdy+c<e,k).
2 2 2

Applying Young’s inequality we obtain that

k
<1+5)/w2|yl2"w2pdy <eflw|f’+1|y|2kw2pdy+c<e,k>.
£2

s

Therefore,
/ wIP )y PEyp dy < 2e(p, d)Exlw] +1 / w2y Py pdy
2 2
+n/|w|P+1|y|2kw2pdy+C(p,d1,k>(1+¢2k<s>),
ol

ie.,

2¢(p, dy) n
f Py Yo dy < o, Sl f wily*y2pdy + C(p,di, k, n)(1 + 92 (s))

2 $25
16¢(p, dy)
ga#&k[w]+2an/wf|y|2kw2pdy+C(a)(l+<P2k(S))
824

forall« > 1and n < 1/8.
Choosing n small further such that 2and, < 1/4, we get that forall ¢ > 1,

16¢(p,d 1
ym[u}] tor / wiy*y?pdy + Cle)(1 +¢2(s)).

PH 2k 2 o gy <
/w P20 dy <a o
25 2

Now it is easy to see from Young’s inequality that

—2k f 2o (y - Vw)ws |y 2 dy < & intgw?|y|* ¥ pdy + C(e) / IVw |y * 2y 2 p dy,
25 £2

(3.12)
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and

— / VwV () wslyl*pdy < e/w3|y|2"w2p dy + C(e>/ IVw?|Vy 2y % pdy.

25 Qs 25

So by (3.11), the above inequalities, Holder’s inequality and (3.12) we have

d 1 _
gszk[w]<—5/w3|y|2"t/f2pdy+0f|Vw|2|y|2k 2y?pdy
2

1
1) O Py Ay p dy + Comls)

s

25

<-3 / W2y Py 20 dy + nExlwl + Cw) (1 + o))
2
+C<u>/|w|2|y|2k*2¢2pdy,

(3.13)
2
for all & > A. Here k >

On the other hand, by (3.10), Holder’s inequality, Young’s inequality and Jensen’s inequality we have

575 /w Iy1*y?pdy > 262k[w]—C/w2|y|2’<w2pdy+0/|w|l’“|y|2"w2pdy—0<pzk<s>
25 2

2
2wl + c/ w P [y [y 20 dy — C(1+ ga(s))
2

Pl
—252k[w]—C(1+<p2k(S))+C</w2|y|2kw2pdy> ’

s

With these crucial inequalities, (3.13), (3.14), in hands, we can get the following rough estimates

(3.14)

Lemma 3.4. For any k € N, there exist positive constants Ly, My, and Ny, such that the following estimates hold

—Lie™ < Exlwl(s) < Mye?™,

/ —2“/|Vw| PR pdyds < Ny
82

]Z)r all s > 0. Here A = 7(p ) d| and dy, dy are constants such that V(x) =2 dy > 0 and sup, .o |VV (x)| diam(§2) <
2.

Proof. Let {A4};2, C (A, 2A) be a strictly increasing sequence. It suffices to show the following estimates

— L™ < Eplwl(s) < Mye™s, (3.15)
o0

/ s f Vwly*ypdyds < N (3.16)

0 2

We prove these estimates by induction.
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Step 1. We show that these estimates hold for k = 0. The inequality (3.15) holds for kK = 0 due to Lemma 3.1. From

(3.8) and Lemma 3.1, we deduce that

oo
/e”‘s / wly?pdyds < C.
0 24
By (3.6) and the definition of £[w], we have

2 _
/|Vw|21//2pdy<28[w]+m/V|w|p+ll/f2pdy
Qs 2

< CEwl+C(1 +<p(s))+c/w§w2pdy.

£
Therefore, by Lemma 3.1,
o0 o0 o0
/ef)‘(’s/|Vw|2¢2pdyds<C/ef)‘osc‘,’[w](s)ds—i—C/e*)‘Ox(l+(/?(S))ds
0 2 0 0

o0
+Cv/e_“”/w3w2pdyds
0 2

<C

since Ag > A. So (3.16) holds for k£ = 0.

Step 2. We show that (3.15)—(3.16) holds for all k € N.
Suppose (3.15)—(3.16) hold for k < n. By (3.13), we have

d _ _
%(e S & palw]) < Ce™n / IVw Py 1?2 pdy + C(1 + gapg2)e 5.
25

Since (3.16) holds for k = n, we have

e M5 &y ialw] < C(n).

Now we need to obtain the lower bound for £, +2[w]. Denote

yo) = [Py,
£2
z(s) = Emalw].
Then it follows from (3.13) and (3.14) that

+1

Y (s) = —4z(s) + Cy'7 (5) — C(1+ g212(5)),
Z(5) <hnz(s) +C [ [VwlPyP" 2 pdy + C(1 + ¢anta(s)).
£
By induction hypothesis, we have

e¢]

f e~ns / IVwl?y[*"y2ody < C(n).

0 2

(3.17)

(3.18)

(3.19)
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So N = [5¥ e (h(s) + C(1 + p2,12(s))) ds < 00, where h(s) = C [ |Vw|*|y[*"¥*pdy.
Then ‘

2(s) = —2NeMs,  V¥s >0,

follows by Lemma 2.2. Therefore &,42[w] > —Ce** and then |Eona[w]] < < Ceé*s. In particular, (3.15) holds for
k=n+1.
Finally, by (3.13), we have

1
= / w2y 2y?pdy + C / IVwPly*"y2pdy + C(1 + @an42) + MnEansalw].

d
on2[w] 1

ds
25 25

Combining this with the fact that | £, 42[w]| < C e** and (3.19) we have

o
/e_)‘”s/w3|y|2”+21//2pdyds <C.

By (3.12), it can be shown that

2 _
/ VuPlP Ry dy < 2patul + — [ VIl Py dy
25 2

< CEmyalw] + C(1+ gr2) + € / W2y 292 p dy.
£2

Therefore, by |Exy2[w]| < Ce*ns, we get

e¢]

/ ettt / IVw Iy 2y p dy

0 25

o
C/ 52n+2[w]+1+(p2n+2) ”“Sds+C/ _)‘”S/w Iy 292 pdyds
0 24

<C/e(1n—ln+1)~Yds+C
0

<C.

Hence (3.16) holds for k =n + 1. The lemma is proved. O

Next, we need the following
Lemma 3.5. Suppose A > 3‘, where A = 7(1}61) 32, and dy,dy are constants such that V(x) > dy > 0 and

SUp,co IVV(x)|diam(£2) < do. If for some o € (2 , 2)], there exist positive constants My and Ny, such that

|Earlw](9)] < Mye™,

o0
/e—“Sf|Vw|2|y|2kw2pdyds<Nk,
0 24

hold for all k € N and s > 0, then there exist positive constants M,i and N,i, such that
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_1
|Eak[w](s)| < Mye @3,

o0

[ [ivurnPte?payas < vy,
0 £25

hold for all k e N and s > 0.

Proof. Let {§;}72, C [%, %] be a strictly decreasing sequence. It suffices to show the following estimates:

|Eak[w(s)] < Mye@ 05, (3.20)
o0

/e_(a—5k)5/|Vw|2|y|2k¢_2pdyds gng (321)
0 24

We also prove these estimates by induction.

Step 1. These estimates hold for k = 0.
Recalling (3.2) we have

d€[w] 1 _
o <—§/wflﬂ2pdy+/vv-ye Sw|Py?pdy + Co(s)

1 _

<—§/w3w2pdy+0e 2 [ ylwlPH g2 pdy + Cols)
2 Qs
1 _

< —E/wlelfz,ody—i—Ce S/Z/(ly|2+1)|w|”+11/f2,0dy+C<p(s). (3.22)
2 £2

Also by the definition of & [w], Holder inequality and the assumptions we get

e~/ |y|2|w|”+‘w2pdy<Ce—s/Z(f|Vw|2|y|2w2pdy+/|w|”+1w2pdy+csz[w]+c)

o) ol O,
<Ce—~v/2( / IV lly2y2pdy + / |w|P+1w2pdy+Ce“‘Y+C).
o, O,

By (3.6) and assumptions we have

d 1 s )
d—S[w]<—Z/wfw%dywe—f/|Vw|2|y|2¢2pdy+6e<“—%>*
N

2 Qs

+Cem 3 (E[w]+ 1+ ¢(s))

1 s
<3 f wly?pdy + Ce™2 / IVwlPly Py 2o dy + Co(s) + Ce@ 2", (3.23)
25 2

So

S
Ew](s) — E[w](0) <c/e‘5/|Vw|2|y|2w2pdydr+ce<a—%)s.
0 2

We claim that
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s
/e*%/|Vw|2|y|2¢2pdydr < Ce@ 25, (3.24)
0 2

Indeed, if we denote the left-hand side of (3.24) by f (s), then fooo e_(“_%)s f'(s)ds < C by the assumption. It follows
that

s
C 2/67(“*%)sf’(s)ds > f(s)e’(“*%)x,
0
by integration by parts. So (3.24) holds and
Elw](s) < Ce @25,
If we set y(s) = ‘/:Q? w21ﬁ2,0 dy and z(s) = E[w](s), then by using (3.7) with u = 2X and (3.9) we have

p+1
Y (s) = —4z(s) + Cy' T — Copl(s),

() <22+ C(1+¢(s)) = (a - 15—2>Z + h(s),

where h(s) = QA — a + 15—2)z(s) + C(1 + ¢(s)). Notice that we have already gotten the upper bound estimates for
2(s). Since & < 2, we have h(s) < Ce®= 15 £ C(1 + ¢(s)). So

5 .
7(s) < <a - E>Z+ Ce@= 2 4 C(1+ p(s)).

It is easy to see that [;° e~ (@—y)s (Ce(o‘_%)s +C( + ¢(s)))ds < 0o. By Lemma 2.2, we have

Elw](s) > —Ce s,

Therefore (3.20) holds for £k = 0.
Furthermore, by (3.23) and (3.24), we deduce that

N
//wfwzpdy dt < Ce@ 1) (3.25)
0 2

As usual, we have

2 _
/|Vw|2w2pdy<25[w]+m/ww|f’“w2pdy
25 2

< CEw] + C/wfwzpdy + C(1+ ¢(s)).
2

Then

e [ [9uPyody <ClEtwl+ 1+ pw)e V4 e [ulypay
2 2

1

<Ce 128 4+ Co(s) + Ce—@3)s / wy?pdy.
£

Let f(s)= [ fﬂr w2pdydt. Then for any s > 0,
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s

S
/ef("‘fé)r/wsz,odydv::/f’(t)ef("“%)r dt
0

0 2

= fls)e @I 4 (a a %> / f(@e @ DT gg
0

<C,
due to (3.25). So
o0
/e—<“—%>f/|w|2pdydr <c,
0 2.

i.e., (3.21) holds for k = 0.
Step 2. (3.20) and (3.21) hold for all kK € N.
Suppose (3.20) and (3.21) hold for all k =0, 1, ..., n — 1. By the first inequality of (3.13), we have

déyw] 1
ds 2

//\

/w |y |2y pdy+—f‘—‘|w|"+‘|y|2”w pdy

K

C / Vw2 [y 292 dy + Cean(s).
25

Notice that |3—V Clyle™ 2 . By Young’s inequality, we obtain for ¢ > 0,

/‘ ‘|w|”“|y|2"1/f pdy
Qs

Ce—%f|w|p+l|y|211+lw2pdy

£2
<e*%/|w|f’+‘[s|y|2"+C(e>|y|2"+2]vf2pdy
2
— e} / wlPH [y 2"y p dy + Cle)e / wlPH [y 292 dy. (3.26)
25 2

From the definition of &, +2[w] and Young’s inequality, we get for ¢ > 0,

[7+1 |y|2n+2w2p dy

2
< —— [ ViwPHy>2y2pdy
p+1
fon
1
=3 / (IVwP? + Bw?) [y 2y pdy — Exnsalwl(s)
£2
< f VwPly P2y 0 dy — Expmpalwl(s) + / wlP 22y p dy + C(e).
2 Qs

By choosing some small ¢ > 0, we can obtain that
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f [wP Ty 2y pdy < C | Vol ly" P2 y?ody + C — CEppalwl(s). (3.27)
25 £2

On the other hand, taking k = n in (3.12), we have

1
/ lwlPH Py pdy < CEywl(s) + ywe / wily*" Y pdy + C(1+ ¢ (s)). (3.28)
£2 2

Combining (3.26)—(3.28) and using the assumptions |Ex[w](s)| < Me*®, we have the following inequality

1

v
m /‘K‘WWHMZ"WZPCZ)’
o}

<ee? |:C52n[w](s) + / wlly*"y2ody +C(1 + mn(s))}

s

1
4d,

S

+C(e)e2 [C / IVw?ly" 2y pdy + C — C52n+2[w](s)}
2

s

1
<3 / w3y Y20 dy + Coa(s)

Qs

+Ce2 [ / (Vw2 |y 2y pdy + |Ean[w](s)| + 1+ |52n+2[w](s)q

s

4
25 of

1 _s _1
<_/ 2y pdy + Ce 2/|Vw|2|y|2"+2w2pdy+0e<a 25 4 Can(s).

Therefore, we have

d&y[w] 1/ o n 1 /ax‘/ L on o

e Ll n d — | = p+ n d
s 7 wiy|7 Yo y+p+1 35 [w|? y | Y pdy
2

s s

e / VwPly 292 p dy + Coa(s)

2
1 _
<—Z/w3|y|2"w2pdy+6/|Vw|2|y|2” 202p dy
25 2

s 1
+Ce 2 / IVw|?|y|*" 2y 2 pdy + Ce ™2 + Cey(s).
£
Hence we get

s

Enlw(s) — E2a[w](0) < C / e 3 / IVwPly P2y 2pdy dt + Ce® 2

0 2
S
+c/f|Vw|2|y|2"—2w2pdydr.
0 £2;

Since [ e~ fﬂx Vw2 |y T2y 2 pdyds < Npy1, we get
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S
/ e 3 / IVwPly2 2y pdydr < Ce@ 2"
0 2

as before. Let f(s) = [, f_qr IVw|?|y[*"~2y2p dy dt. Then by induction hypothesis, we have

e¢]

/f/(s)e—@‘—“"—l)s ds < Ny_j.
0
So

p s
/f/(r)e—(a—é,l—l)f dt = f(s)e—(a—&,—l)s + (o — (Sn_l)/f(_[)e—(a—én_l)r dr
0 0

> f(s)e_(a_‘sn—l)s’

ie., f(s) < Nn_le(a_anl)S.
Therefore

Enlw] < Nye@on=15, (3.29)
Now let y(s) = [ w?|y[*"¥*pdy, z(s) = Exx[w]. Then by (3.13) and (3.14), we have

V() 2 —42(5) + €y (5) = C(1 + 920 (5)),
7 (s) <24z(s) + C / IVw 2y 29 2 pdy + C(1+ g2,(s)) = 242(s) + h(s).
25

We then have z/(s) < (o — 8),)z(s) + g(s), where g(s) = 21 —a +8,)z(s) + h(s) and 8], € (8,, 8n—1). Since o < 22,
it follows from (3.29) and induction hypothesis that

00 00 00
/e*“—@é)sg(s)ds < c/e“é—ﬁn—ﬂs ds+C/e—(“—3»’z>S/|Vw|2|y|2"—21/f2pdyds+c
0 0 0 24
<C.
Lemma 2.2 gives us
2(s) = —Ce @0, (3.30)

From (3.29) and (3.30), we know that (3.20) holds for k = n.
From the fact that

déy 1 /
mlwl 1 / w2y pdy + (o — 8,)Eanlw] + 8(5)

ds — 4
£2

and above estimates, we have

o0
/e—(a—Sﬁ,)s / wglylznwzpdyds < C
0 25

As before, we have

/ VwPlyPy2pdy < CEmlw] + cf W2y P2 pdy + C(1 + gan(s)).
24 12

Multiplying e ~@~%)S on both sides and integrating over (0, o0), we obtain
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oo
/ em (i / IVw Iy y2p dy ds
0

2

00 00

< C/e—(ot—Bn)se(oz—S;l)s ds +Cfe—(a—8;)s/w3|y|2nw2p dyds +C
0 0 Qs

< Ca

i.e., (3.21) holds for k = n. So the proof of this lemma is complete. O

Finally, using the above lemmas, we obtain the following local energy estimates, which include a quasi-
monotonicity formula.

Theorem 3.6. There exist positive constants C3, C4 and 8 < 1/2 depending on N, R, p, t, the lower bound of V,
IVt o) 1521 and E[w](s) such that

S
Elwl(s) + % / / wy?pdyds < E[wl(t) + C3¢7%7, Vs>1>5; (3.31)
T Q2
Elwl(s) = —Cse™®, Vs >s. (3.32)

Proof. By Lemmas 3.4 and 3.5, there exist two positive constants M, N and some « € (0, %) such that

|E[w](5)], |Ealw](s)| < Me*,
o0
/ e / IVw[*|y|*¥*pdyds <N.
0 Q24
Recall from (3.2) that
2 25 2

By the lower bound of &[w] and Young’s inequality, we get

e [t tutpdy <ce ([ 1vutPutpdy+ [ ortitpay e o)
25 £2 25
<ce [ IvuPlyPytpdy+ e [l yZpdy
2 £2
+ e 4 Cel@ s,
Using (3.5) with n small enough, we have
d&[w] 1

2 <—5/ szpdwcwﬂ/|Vw|2|y|2w2pdy

ofs £

+ Ce_s/Z/ lwP* 2 pdy + Ce™5/? 4 Ce@ D3
24

1 _
< [utvipay+ e [Ivurivipas
2 £2
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+Ce P (E[w] + C(1 + p(5))) + Ce@ D

1 _
<3 [uiviody+ e [IvuliyPeody
25 £25

+Ce™(s) + Ce(“_%)s.

Therefore, for all s > 7,

EwI) + [ [wtvtoaras <etwio + e
T §2

with § = % —a >0, 1i.e., (3.31) holds. If we set y(s) = f_Qv wztﬁzp dy, then by (3.9), (3.31) and Jensen’s inequality
we have forall s > 7 + 1, ‘

N N

¥(s) = y(T) — 4/ Ewl(0) do + cfy%awo - C/<p<o)da

T T
N

> —4(Ewl(r) + Cgefat)(s —17)—Ce " + C/y%(a) do

T
S

_st ptl
> —4(5[w](t) + Cyae )(s —17)4+C | y 2 (0)do.
T
So if there is a T > s such that E[w](t) + C4¢~°F < 0, then y(s) > Cf;y%(a)do for all s > 7 + 1. Hence
fts y = (0) do will blow up in finite time. This is impossible. The theorem is proved. O
Remark 3.1. We can see from this theorem that the local energy £[w] is bounded from below and above. When the

cutoff function ¥ is identically 1, we can simplify the proof and get this property, i.e., the main result in [5], even if
the exponent p is critical or supercritical.

The following corollary is crucial to get the e-regularity of the borderline solution.

Corollary 3.1. There exists a positive constant C, which depends on N, R, p, t, the lower bound of V, |V ||C1(_(-2),
|82| and ETw](s), such that forall s >t > s,

s

f/|w|ﬂ+11//2pdydsgc[1+(s—r)]n(g[w](r)+c5e—‘”),
T Q2

where n(s) =s +sY2and C5s=Cs + 1.
Proof. By (3.31) and (3.32), it is easy to see that
N
f / w2 pdyds <4E[w](t) + Ce ™07, (3.33)

T 2

It turns out that

o
//wfxpzpdyds <C.
0 £
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Next,
1d
E£/wzl/,zpdy:/wu)sglfzpdy—i—/wzl/ﬂ/fs/ody
25 £2, £25
12 1/2
< (/w21p2pdy> (/w§w2pdy+/w2w3pdy>
Qs .Qs -Qs

1/2 1/2
< (/wzwzpdy> (/wfwzpdw(p(s)) :
2

s s

Let y(s) = [ w2y 2pdy. Then for any & > 0, 70 > 71,

2 1/2

(v(z2) + )"/ - (y<r1>+e)”2</(/w3w2pdy+<p(s>) ds
T 82
o
<(m—-m)'? / ( / wfl/fzpderw(S)) ds
o,

<Cm—m)'/
Letting € |, 0, we get
172 1/2
(y(rz)) /2 _ (y(tl)) / <C(np—m)?, forallm > 1.
On the other hand, by (3.5), for any 7 > 0,

T+1 T+1 T+1 T+1

T T £ T

<C.

It follows from Holder’s inequality that

T+1 T+1
/y(s)"T“ds@ff|w|”“w2pdyds<c.
T T 2

//|w|p+11/f2pdyds<C/E[u)](s)ds—l-C//wszwzpdyds—i-C/(l—i-(/)(s))ds

(3.34)

So for each positive integer j, there exists an s; € [, j + 1] such that y(s;) < C. Combining this with (3.34), we have

/ w?ylpdy < C
2s

forall s > 0.
From (3.4), we have

—1 _
% ViwP M y?pdy = / wwsy?pdy +2E[w] +2/ VwVywypdy
2 25 2

12 12
< </wzwzpdy> (/wftlfzpdy) +2&[w] + Co(s)

s s

1/2
< c( / w§¢2pdy) +28[w] + Co(s).
25
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Finally, by Holder’s inequality and (3.33), we obtain

s

s 1/2 s s
f/|w|P+11/f2pdydsgcf(/wprdy) ds—{—CfE[w](s)ds—l—Cf(p(s)ds
T 2 2 T T

< C(s =)' P[(E[wl(x) + Cae ™) + Ce ]2
+ C[Elw](T) + Cae*T](s — 7) + Ce™°"
<C[1+ s = D]n(EMwl(@) + Cse~°7),

where n(s) =s +s/2and Cs=Cs+1. O
4. e-Regularity and partial regularity
In this section we will establish e-regularity theorem and partial regularity theorem for a borderline solution to

(1.1). To this end, let us rewrite the crucial estimates we have shown in Section 3 back to unscaled form.
For z = (x,1) € 2 x (0, 00), R < dist(X, §2), and a global classical solution u to (1.1) we define

1 . pt+l 2 2 1. -z 2 2
Eg(t)ZE(t—t)l’_l /qul Gz dx+§(t—t)1'—1 /u Gz¢“dx
ko) 2

+1 -
(i—t)rT / ViulP ' Gz dx,

- p+1
2
where ¢ = ¢z (x) = ¢((x — ¥)/R) and
i
GZ(x, l) = me AG—1)

is a constant multiple of the backward heat kernel at (X, 7). Actually, we have Ez(¢t) = E[w](z), under the rescaling
described in the previous section. So from (3.31) we have the following quasi-monotonicity formula for the local
energy of the solution

E:(t) <E: () +C(i—1)’, 4.1)
where t = —log(f —t), t/ = —log(f — t’) and § > 0 is the constant described in Theorem 3.6. From Corollary 3.1 we
also have forall 0 <t <t <1,

t
- NPT 142
f(t—t)l’—l /|u|p+ G dxdt<C<1+1og
2

l/

/

r—t

)n(Eg (') +Cs(i —1')°). (4.2)

With (4.1) and (4.2) in hands, we can obtain all other results as in [6]. The proofs have little difference from those of
[6]. For readers’ convenience, we repeat some proofs here.
In order to get the main result, we need the following crucial lemma.

Lemma 4.1. Let u be a positive borderline solution to (1.1). There exist two positive constants g and po depending
on N and p > 1 only, such that if

4
pp-l N/ lulPT dx dr < g
Pr(z0)

for all cylinders P> (z9) = By (xg) X (tg — 4r2, to + 4r2), z0 = (x0, t0), contained inside the cylinder Pg(Z), then

=2
ess sup |u| < poRPT.
Prja(2)
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Proof. Let u be a classical solution first. Consider
2
M= sup [(R’ —r)?T sup u],
O<r<R’ P (2)

where R = R/2 and let ro > 0 and z* = (x*, t*) € P, (Z) satisfy

2
M= (R —ro) " Tu(z¥).
Letr; = (R’ — rg)/2. Then Py, (z*) € Pr—y, (), SO

2
o1
r/” sup |ul <M.

Prl (z*)
It implies that

2

!/ _ =1
sup i< (£7) ) <4
Pry(z%) n

We set
v(y,s):iu(x*—i-u#y,t*—i-u]_”s), w=u(z").

Then v satisfies
vy = Av + V|u|P 1, (4.3)
v <47, [v(0,0)| =1, (4.4)

~ 1- 2 2
in P -1 (0,0). Here V(y,s) = V(x* + quy, t* 4+ u'=Ps). We claim that M < 47-1. For, if M > 471, then
no2or

M%rl > 2 and (4.3), (4.4) hold in P»(0, 0). We have

-1 _L
P dyds = T N2 / P dxdt <2V "7 Tg.

P2(0,0) P i)

Notice that V is bounded. Regarding (4.3) as a linear parabolic equation vy = Av 4+ b(y, s)v with bounded coeffi-
cient b, we infer from interior parabolic estimates, see Ladyzenskaja, Solonnikov and Uralceva [18], that

1

sup [v] < CllllLp+iepy 0,0y < C'eg" -
P1(0,0)
1 2
By choosing g¢ so small that C’ 86’“ < 1, a contradiction with (4.4) occurs. Hence we must have M < 47-T. But
then the desired result follows by taking r = R/2 in the expression of M. Now the general case can be deduced from

approximation. 0O

Using the basic estimates (4.1), (4.2) and the above lemma, we get the following e-regularity theorem.

Theorem 4.2. Let u be a classical solution or a positive borderline solution to (1.1). For each (x,1) € 2 x (0, 00)
and R < dist(x, 082), there exist constants €1, K > 1, pg and 8o < 1/2 depending on N, p, R, t, and Ey such that if
for some r < SoR,

i—4r2
4
rF*N/ /(qu|2+|u|”+l)dxdt<81,

i—0r2 By, (%)
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then

2
ess sup |u| < porT-r.
Pr4(2)
Proof. Assume that u is classical first. For any ¢, K > 0 we claim that if
F—4r?
4
pr1 " [ / (|Vu|2+|u|p+1)dxdt<8, 4.5)
i—9r2 Bk, (%)
for some small r satisfying Kr < R, r < 1 and 9r2 < i, then
i—4r2
4 2 +1 2 _k
Fp1 (IVul? + [ulP )Gz 1120295 g dx dt < & + Ce™ 3450, (4.6)
i—9r2 2

For, we have

G ,i+20r2) F21r2 =\ M2 x — X2 2
7(x9t)< # exp| — _ . i i
Cmivarry £ 20" —1 1 \Gxr202—na+212-p

5\ /2 K2
<[ - exp| ———
4 4 x 29 x 30

for |x —X| > Kr and t € [f — 9r?, 7 — 4r?]. It follows from (4.2) (taking 7 to be (X, 7 + 21r%)) and (4.1) that

i—4r?
ro-1 f / (IVul? + [Pt G (g 7420,y 07 g dx dt < CeFm

7—9r2 RN\ Bk, (%)
Together with (4.5) it gives (4.6).

Next, we claim that by further restricting 8o in r = §g R, (4.6) implies
i—4(8oR)?
GoR) 7T f f(|w|2 +1ulPYG (g 10102 Bay r /2 dx di < Coe + e—%) 4.7)
i—9(8gR)? £2

for all (xo, t9) € Bs,r(X) x [f — 83R?, i + 85R?] and r < 8oR. Indeed, for [x — X| > 108yR, |x — x| = 98)R and so
|x —xo|/|x — x| > 9/10. Hence

G 29\ V/2 ) _ 2
()‘0’7’0”2)@,;)<<_> eXp<_|x 2)60I2 Lk 2X|2)
G (%,i4+2060R)?) 3 4485 R 9655 R

29\ N/?
< _
(5)

for |x — X| > 108oR and ¢ € [f — 9(8oR)?, i — 4(89R)?]. For |x — X| < 108y R, this quotient is bounded by some
constant depending only on N. As ¢y, r/2 < @5, g for xg close to X, (4.7) holds.
Now, applying the mean value theorem to (4.7) we can find some 7 € (7 — 988R2, r— 485R2) such that

k2

2(p+1) K2
(8oR) P /(|W|2 F1ul?TNG (o 1012 Bry r2dX < Cr (€ + €735, (4.8)
2

at 7. Using (4.1) we have

H 2 p2 = 28
E(yy 19402 (T =485 R”) < E (3 19422 (D) + C38
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where the cutoff function in E(, , \,2) is given by ¢y, r/2. The second term in E, +,z)(f),

2

z N1 2 2
( t) -1 /M G(X0’10+r2)¢xO’R/2dx,
2

N =

is controlled via Holder inequality by

=4 +1 2 P =

C(8oR) 7T /|M|p G (xp.104+r2) P, R/2 A% /G(xo,z0+r2)dx
Q 2
s
[(501?) Pl /|u|” G (x,. z0+r2)¢x0 R/2dx] .
Therefore, using (4.8) we have
2 _1<_ _ k2 2

Euy igtr ([ = 405 R?) S C[(e +e7380) 4 (e + ¢ 580) 73T 4 53°]. 4.9)

Finally, by combining with (4.2), (4.1) and (4.9)

to+l 2 to+3¢ 2

L
( ) / / lulPH dx dr < / (to+r* —1) 1/|u| G(X0 ,0+r2)¢x0 g dxdt

to— 112 Brp2(x0)
1 268
(E(xo to+r2) <t0 4 > + C/SO )

(E(x() t0+r2)( 480R0) + C 8 )
Cn(C' (e + eT80) + (6 + e~ F0) T 4 C'82%).

Now, if we first fix K sufficiently large and then &y sufficiently small, we can make

4N
r\r-
(5) // lu|PT dxdr < &,

Py 2(z0)

where g is specified in Lemma 4.1, for all P, (zo) contained inside Bs,z(¥) x (i — §3R?,7 4+ 82 R*). By Lemma 4.1
the conclusion is drawn. When u is a positive borderline solution the same conclusion holds by an approximation
argument. O

We are now in the position to give the partial regularity theorem.

Theorem 4.3. Let u be a positive borderline solution to (1.1). For any subdomain Q' compactly contained in 2 x

_ 4 _
(0, 00), there exists a compact subset Sgr in Q" with HN T (Sg) =0, so that u is continuous in Q" \ Spr.
Proof. Let

Sp = {(i, f) € Q': For (%, 1), there exists ro such that

i—4r?

4

= N/ /(|W|2+|u|1’+1)dxdt>glfora11r<r0
i—9r2 B (%)

where K and ¢ are specified in Theorem 4.2 (taking R = dist(Q’, 382 x (0, 00))/2, say). By the Lebesgue differen-
tiation theorem
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i+9r2

1imr*N*2/ /(|Vu|2+|u|l’+1)dxdr

r—0
i—9r2 Bg,(X)

exists a.e., so Spr is of zero Lebesgue measure in £2 x (0, 00). For any & > 0, we can find an open set U containing
S’ such that

//(|Vu|2+ Pt dxdt <e.
U

For each r; < rop/K, consider now the collection F of the closed cylinders of the form
Bi,(X) x [{ — K*r% i+ K*?], (x,D €S, r<r,
which are contained inside U. Here we assume K > 3. F forms a cover of Spr. By a variant of Vitali covering
theorem, see Caffarelli, Kohn and Nirenberg [3], we can find a finite collection of these cylinders, B Kr (xj) x[t; —
Kzrjz, fj + Kzrf], j=1,..., N, such that they are mutually disjoint, and
N
Sor € | Bskr, &)) x [ij — 25K%r7. 1 + 25K %r7].
Jj=1
We have

z 2
t_,'+9rj

812(51(”)"*%«51()”%2/ / (Ve + P+ dx dt
j

J i_/—9r]2. BKrj (f_j)

< //(qu|2+ u|PY) dx dt
U
<e

Therefore,
N—4/(p—1 &
Hr] /(p )(SQ/)g—
€1
Letting € | 0 and then r; | O the theorem holds. O

For a general borderline solution a weaker estimate holds. The proof is similar to that of Theorem 4.3, for details,
see e.g. [6].

Theorem 4.4. Let u be a borderline solution to (1.1). For any subdomain Q' compactly contained in 2 x (0, 00),

__4
there exists a compact subset Sor in Q" with HN T (Sg’) < 00, so that u is continuous in Q' \ Spr.

Proof of Theorems 1.1 and 1.2. When £2 is convex, by the method of moving planes and the L>-estimates, we can
show as in [6] that any positive borderline solution is uniformly bounded near the boundary. Therefore, no singularities
can occur in this region. So Theorem 1.1 follows from Theorem 4.3. Furthermore, as an application of e-regularity
theorem, we can show as in [6] Theorem 1.2 holds. O
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