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Abstract

Consider a family of smooth immersions F(·, t) :Mn → R
n+1 of closed hypersurfaces in R

n+1 moving by the mean curvature

flow ∂F (p,t)
∂t

= −H(p, t) · ν(p, t), for t ∈ [0, T ). We prove that the mean curvature blows up at the first singular time T if all
singularities are of type I. In the case n = 2, regardless of the type of a possibly forming singularity, we show that at the first
singular time the mean curvature necessarily blows up provided that either the Multiplicity One Conjecture holds or the Gaussian
density is less than two. We also establish and give several applications of a local regularity theorem which is a parabolic analogue
of Choi–Schoen estimate for minimal submanifolds.

1. Introduction

Let Mn be a compact n-dimensional hypersurface without boundary, and let F0 : Mn → R
n+1 be a smooth immer-

sion of Mn into R
n+1. Consider a smooth one-parameter family of immersions

F(·, t) : Mn → R
n+1

satisfying F(·,0) = F0(·) and

∂F (p, t)

∂t
= −H(p, t)ν(p, t), ∀(p, t) ∈ M × [0, T ). (1.1)

Here H(p, t) and ν(p, t) denote the mean curvature and a choice of unit normal for the hypersurface Mt = F(Mn, t)

at F(p, t), respectively. We will sometimes also write x(p, t) = F(p, t) and refer to (1.1) as to the mean curvature
flow equation. Furthermore, for any compact n-dimensional hypersurface Mn which is smoothly embedded in R

n+1

by F : Mn → R
n+1, let us denote by g = (gij ) the induced metric, A = (hij ) the second fundamental form, dμ =√

det(gij ) dx the volume form, ∇ the induced Levi-Civita connection. Then the mean curvature of Mn is given by
H = gijhij .
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Without any special assumptions on M0, the mean curvature flow (1.1) will in general develop singularities in finite
time, characterized by a blow up of the second fundamental form A(·, t).

Theorem 1.1 (Huisken [11]). Suppose T < ∞ is the first singularity time for a compact mean curvature flow. Then
supMt

|A|(·, t) → ∞ as t → T .

By the work of Huisken and Sinestrari [14] the blow up of H near a singularity is known for mean convex hy-
persurfaces. They show that when H � 0 one has a pinching curvature estimate stating that |A|2 � C1H

2 + C2, for
uniform constants C1, C2. In [22] a similar pinching estimate has been proven for star shaped hypersurfaces. The
present article establishes the blow up of the mean curvature in the case of type-I singularities.

Definition 1.1. We say that the mean curvature flow (1.1) develops a singularity of type I at T < ∞ if the blow-up
rate of the curvature satisfies an upper bound of the form

max
Mt

|A|2(·, t) � C0

T − t
, 0 � t < T . (1.2)

In this paper, we prove the following

Theorem 1.2. Assume (1.2) for the mean curvature flow (1.1). If

max
Mt

|H |2(·, t) � C0 (1.3)

then the flow can be extended past time T .

In fact, the above theorem is a consequence of the following result.

Theorem 1.3. Assume (1.2) for the mean curvature flow (1.1). If for some α � n + 2

‖H‖Lα(M×[0,T )) � C0 (1.4)

then the flow can be extended past time T .

The proofs of Theorems 1.2 and 1.3 are based on blow-up arguments using Huisken’s monotonicity formula, the
classification of self-shrinkers and White’s local regularity theorem for mean curvature flow.

Remark 1.1. To some extent, the condition α � n + 2 appearing in Theorem 1.3 is optimal as illustrated by the mean
curvature flow of the standard sphere Sn.

Our Theorems 1.2 and 1.3 left open the question on the possible blow up of the mean curvature at the first singular
time T for mean curvature flows with singularities other than type I. This seems to be a difficult question. However,
assuming the validity of Multiplicity One Conjecture (see p. 7 of [15] and the precise statement in Conjecture 3.1 of
the present article), we prove the following

Theorem 1.4. Let M2 be a compact, smooth and embedded 2-dimensional manifold in R
3. If the Multiplicity One

Conjecture holds and if

max
Mt

|H |2(·, t) � C0 (1.5)

then the flow can be extended past time T .

The next result is independent of the Multiplicity One Conjecture. It is in some sense a refinement of White’s local
regularity theorem [26]. White gives uniform curvature bounds in regions of spacetime where the Gaussian density is
close to one. We prove the following
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Theorem 1.5. Let M2 be a compact, smooth and embedded 2-dimensional manifold in R
3. Suppose that (1.5) holds.

Let y0 ∈ R
3 be a point reached by the mean curvature flow (1.1) at time T . If

lim
t↗T

∫
ρy0,T dμt := lim

t↗T

∫
1

[4π(T − t)]n/2
exp

(
−|y − y0|2

4(T − t)

)
dμt < 2 (1.6)

then (y0, T ) is a regular point of the mean curvature flow (1.1).

Remark 1.2. Our theorem says that for mean curvature flow of surfaces with Gaussian density limt↗T

∫
ρy0,T dμt

below 2, for every y0 reached by the flow at time T , the mean curvature must blow up at the first singular time. In [23],
Stone calculated the Gaussian density on spheres and cylinders. On spheres, the density is 4/e ≈ 1.47 and on cylinders
it is

√
2π/e ≈ 1.52.

Remark 1.3. In a recent paper, Cooper [7] gave a new characterization of the singular time of the mean curvature
flow, without assuming type-I singularities. Roughly speaking, his result says that at the first singular time of the
mean curvature flow, the product of the mean curvature and the norm of the second fundamental form blows up. His
method also gave a new proof of our Theorem 1.2.

We also give the following characterization of a finite time singularity of (1.1) that works in all dimensions n � 2.

Theorem 1.6. Assume that for the mean curvature flow (1.1), we have the following integral bound on the second
fundamental form

‖A‖Lp,q (M×[0,T )) :=
( T∫

0

(∫
Mt

|A|q dμ

)p/q

dt

)1/p

< ∞ (1.7)

where p,q ∈ (0,∞) satisfy

n

q
+ 2

p
= 1.

Then the flow can be extended past time T .

The previously mentioned results were all global characterizations ensuring that the flow cannot develop any sin-
gularities as long as some global quantities are bounded uniformly in time. We also give a result regarding the local
regularity theory.

Theorem 1.7. Suppose M = (Mt) is a smooth, properly embedded solution of the mean curvature flow in B(x0, ρ) ×
(t0 − ρ2, t0) which reaches x0 at time t0. There exists ε0 = ε0(M0) > 0 such that if 0 < σ � ρ and

t0∫
t0−σ 2

∫
Mt∩B(x0,σ )

|A|n+2 dμdt < ε0 (1.8)

then

max
0�δ�σ/2

sup
t∈[t0−(σ−δ)2,t0)

sup
x∈B(x0,σ−δ)∩Mt

δ2|A|2(x, t) < ε
−2
n+2
0

( t0∫
t0−σ 2

∫
Mt∩B(x0,σ )

|A|n+2 dμdt

) 2
n+2

. (1.9)

Our theorem is a parabolic version of Choi–Schoen estimate [3] for minimal surfaces. Related results can be found
in Ecker [8] and Ilmanen [15]. The precise estimate of the form (1.9) for the case of minimal submanifolds can be
found in Shen–Zhu [20], Proposition 2.2 (see also [4]). Moreover, in [18,27,28], the authors showed that if the Ln+2

norm in space–time of the second fundamental form (or the mean curvature but under various convexity assumptions)
is finite then it is possible to extend the mean curvature flow beyond the time interval under consideration. Our theorem
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can be viewed as a local version of these results without imposing any convexity assumptions. It turns out that the
conclusion of Theorem 1.7 also holds in the case when the ambient space is a complete Riemannian manifold with
bounded geometry. We show that in Corollary 5.1. We would like to mention that, as far as regularity is concerned,
our ε-regularity result in Theorem 1.7 is a direct corollary of Theorem 14 in [15], which works in any codimension.
However, the essence of our theorem is the precise estimate (1.9). Note that the constant in Theorem 1.7 does not
depend on the initial hypersurface, but only on a dimension. Finally, up to a constant depending on the dimension n

and the initial hypersurface M0, our estimate (1.9) is implied as well by the estimate (27) in Theorem 14 of [15]. This
can be seen using Hölder’s inequality and volume bound during the mean curvature flow as in Lemma 1.4 in Ecker [8].

The organization of the paper is as follows. In Section 2 we give the proofs of Theorems 1.2 and 1.3. In Section 3
we prove Theorems 1.4 and 1.5. The proof of Theorem 1.6 will be given in Section 4. We conclude the paper with
Section 5 in which we prove Theorem 1.7 and give some applications to it.

2. Characterization of type-I singularities

This section is concerned with the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Without loss of generality, assume that Mn ⊂ B1(0) ⊂ R
n+1. Let y0 ∈ R

n+1 be a point
reached by the mean curvature flow (1.1) at time T , that is, there exists a sequence (yj , tj ) with tj ↗ T so that
yj ∈ Mtj and yj → y0. We show that (y0, T ) is a regular point of (1.1).

Note that the distance estimate [9, Corollary 3.6] gives

dist(Mt , y0) �
√

2n(T − t), for t < T . (2.1)

Consider the parabolic dilation Dλ : R
n+1 × [0, T ) → R

n+1 × [−λ2T ,0) of scale λ > 0 at (y0, T ) defined by

Dλ(y, t) = (
λ(y − y0), λ

2(t − T )
)
. (2.2)

Denote the new time parameter by s. Then t = T + s

λ2 . Let

Mλ
s ≡ M

(y0,T ),λ
s = Dλ(Mt) = λ(MT + s

λ2
− y0).

Then (Mλ
s ) is a solution of the mean curvature flow in Bλ(0) for s ∈ [−λ2T ,0). Denote by dμλ

s the induced volume
form on Mλ

s . Let ρy0,T
: R

n+1 × (−∞, T ) → R be the backward heat kernel at (y0, T ), i.e.,

ρy0,T (y, t) = 1

[4π(T − t)]n/2
exp

(
−|y − y0|2

4(T − t)

)
. (2.3)

The monotonicity formula of Huisken [12] says that

d

dt

∫
Mt

ρy0,T dμt = −
∫
Mt

ρy0,T

∣∣∣∣H + F⊥

2(T − t)

∣∣∣∣
2

dμt , (2.4)

from which it follows that the limit limt→T

∫
Mt

ρy0,T dμt exists. Here F⊥(·, t) is the normal component of the position

vector F(·, t) ∈ R
n+1 in the normal space of Mt in R

n+1. Via the parabolic dilation, (2.4) becomes

d

ds

∫
Mλ

s

ρ0,0 dμλ
s = −

∫
Mλ

s

ρ0,0

∣∣∣∣Hλ
s − (F λ

s )⊥

2s

∣∣∣∣
2

dμλ
s . (2.5)

Fix s0 < 0. Integrating both sides of (2.5) from s0 − τ to s0 for τ > 0, we get

s0∫
s0−τ

∫
Mλ

s

ρ0,0

∣∣∣∣Hλ
s − (F λ

s )⊥

2s

∣∣∣∣
2

dμλ
s ds =

∫
Mλ

s0−τ

ρ0,0 dμλ
s0−τ −

∫
Mλ

s0

ρ0,0 dμλ
s0

. (2.6)

Let t1 = T + s0
2 . Then, by the invariance of

∫
ρy0,T dμt under the parabolic scaling,
λ Mt
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∫
Mt1

ρy0,T dμt1 =
∫

Mλ
s0

ρ0,0 dμλ
s0

.

Letting λ → ∞, one has t1 → T and

lim
λ→∞

∫
Mλ

s0

ρ0,0 dμλ
s0

= lim
t→T

∫
Mt

ρy0,T dμt .

Similarly,

lim
λ→∞

∫
Mλ

s0−τ

ρ0,0 dμλ
s0−τ = lim

t→T

∫
Mt

ρy0,T dμt .

Therefore, by (2.6),

lim
λ→∞

s0∫
s0−τ

∫
Mλ

s

ρ0,0

∣∣∣∣Hλ
s − (F λ

s )⊥

2s

∣∣∣∣
2

dμλ
s ds = 0. (2.7)

On the other hand, the second fundamental form of Mλ
s satisfies

max |A|2(·, s)(Mλ
s

) = 1

λ2
max |A|2(·, t)(Mt ) = −1

s
(T − t)max |A|2(·, t)(Mt )

and thus, by (1.2),

max |A|2(·, s)(Mλ
s

)
� −C0

s
, ∀s ∈ [ − λ2T ,0

)
.

In particular, for fixed δ ∈ (0,1/2), the inequality

∣∣A(y)
∣∣2 � C0

δ2
(2.8)

holds for y ∈ Mλ
s ∩ Bλ and s ∈ [−λ2T ,−δ2] and therefore for y ∈ Mλ

s ∩ B1/δ and s ∈ [−1/δ2,−δ2] for λ sufficiently
large depending on δ and T , say λ � λδ,T . By the interior estimate [10], one has for all m � 0

∣∣∇mA(y)
∣∣2 � C(C0,m,n)

δ2(m+1)
(2.9)

for y ∈ Mλ
s ∩ B1/2δ and s ∈ [−1/4δ2,−δ2]. Moreover, by (2.1),

dist
(
0,Mλ

s

) = λdist(y0,MT + s

λ2
) � λ

√
2n

(−s

λ2

)
= √−2ns

for the above times s and λ � λδ,T . By Arzela–Ascoli theorem combined with a diagonal sequence argument when
letting δ ↘ 0 for local graph representations of (Mλ

s ), we can find a subsequence λi → ∞ such that (M
λi
s ) converges

smoothly on compact subsets of R
n+1 × (−∞,0) to a smooth solution (M∞

s )s<0 of mean curvature flow. From (2.7),
one sees that H = 1

2s
F⊥ on M∞

s for s ∈ (s0 − τ, s0).
Take s0 → 0 and τ → ∞ to see that H = 1

2s
F⊥ on M∞

s for −∞ < s < 0. In other words, (M∞)s is a self-shrinking

mean curvature flow. Moreover, one deduces from (1.3) and |Hλ
s | = |Ht

λ
| that H = 0 on M∞

s . Thus M∞
s is a minimal

cone for each s < 0; see Corollary 2.8 in [6]. Because M∞
s is smooth, it is a hyperplane. Now, fix s0 < 0. One has, as

i → ∞, M
λi
s0 → M∞

s0
∼= R

n and dμ
λi
s0 → dxn. Thus

lim
i→∞

∫
M

λi
s

ρ0,0 dμλi
s0

=
∫

M∞
s0

ρ0,0 dxn = 1.
0
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This implies that, for ti = T + s0
λ2

i

lim
ti→T

∫
Mti

ρy0,T dμti = 1, (2.10)

and therefore

lim
t→T

∫
Mt

ρy0,T dμt = 1.

By White’s regularity theorem [26], the second fundamental form |A|(·, t) of Mt is bounded as t → T and (y0, T ) is
a regular point. Thus, the flow can be extended past time T . �
Proof of Theorem 1.3. We will split the proof of Theorem 1.3 in the following two lemmas. �
Lemma 2.1. Theorem 1.3 holds for α > n + 2.

Proof. We use the same notations as in the proof of Theorem 1.2. Note that under the parabolic dilations Dλi
, the

inequality (1.4) becomes

Cα
0 �

T∫
0

∫
Mt

|H |α dμt dt = λ
α−(n+2)
i

0∫
−λ2

i T

∫
M

λi
s

∣∣Hλi
s

∣∣α dμλi
s ds.

Thus

0∫
−λ2

i T

∫
M

λi
s

∣∣Hλi
s

∣∣α dμλi
s ds �

Cα
0

λ
α−(n+2)
i

. (2.11)

Now, letting i → ∞ as in the proof of Theorem 1.2, we get a self-shrinking mean curvature flow (M∞)s with the
property that

0∫
−∞

∫
M∞

s

|H |α du∞
s ds = 0 (2.12)

because α > n + 2. Therefore H = 0 on M∞
s . Now we can argue similarly as in the proof of Theorem 1.2. �

Lemma 2.2. Theorem 1.3 holds for α = n + 2.

Proof. We use the same notation as in the proof of Theorem 1.2. Under the parabolic dilations Dλi
, the inequality

(1.4) becomes

C0 �
T∫

0

∫
Mt

|H |n+2 dμt dt =
0∫

−λ2
i T

∫
M

λi
s

∣∣Hλi
s

∣∣n+2
dμλi

s ds.

Letting i → ∞ as before we get a complete and smooth self-shrinker M∞
s in the limit with the property that

0∫
−∞

∫
M∞

s

|H |n+2 dμ∞
s ds � C0 < ∞. (2.13)

Our self-shrinker satisfies
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H = 〈x, ν〉
(−2s)

,

which is equivalent to saying that M∞
s = √−sM∞−1, where M∞

s satisfies the mean curvature flow. Notice that∫
M∞

s

|H |n+2(·, s) dμs =
∫

M∞−1

( |H |(·,−1)√−s

)n+2

· (−s)
n
2 dμ−1 = 1

(−s)
·

∫
M∞−1

|H |n+2(·,−1) dμ−1 = a

(−s)
,

where a := ∫
M∞−1

|H |n+2(·,−1) dμ−1. If a > 0 then

0∫
−∞

∫
M∞

s

|H |n+2 dμ∞
s ds = a ·

0∫
−∞

ds

(−s)
= ∞,

which contradicts (2.13). Therefore a = 0, which implies H(·,−1) = 0 on M∞−1. Similar argument shows that
H(·, s) = 0 on M∞

s for every s < 0. To prove that (y0, T ) is a regular point of the flow we argue as in the proof
of Theorem 1.2. �
3. Extension results for surfaces

In this section, we prove Theorems 1.4 and 1.5. First, we recall the Multiplicity One Conjecture. In [15] Ilmanen
proposed the following conjecture.

Conjecture 3.1 (Multiplicity One Conjecture). If M2
0 is embedded in R

3, then for any family of rescalings
λj (Mλ−2

j s+T
−y0) with λj → ∞, there is a subsequence smoothly converging and with multiplicity one to the blowup

Nt , that is, there are no concentration points or multiple layers in the limit.

Theorem 1.4 assumes that the conjecture above holds and its proof is given below.

Proof of Theorem 1.4. In this proof, n = 2. Without loss of generality, assume that Mn ⊂ B1(0) ⊂ R
n+1. Let y0 ∈

R
n+1 be a point reached by the mean curvature flow (1.1) at time T , that is, there exists a sequence (yj , tj ) with

tj ↗ T so that yj ∈ Mtj and yj → y0. We show that (y0, T ) is a regular point of (1.1).
As in the proof of Theorem 1.2, let t = T + s

λ2 and

Mλ
s ≡ M

(y0,T ),λ
s = λ(MT + s

λ2
− y0).

Then (Mλ
s ) is a solution of the mean curvature flow in Bλ(0) for s ∈ [−λ2T ,0). For any set A ⊂ R

n+1, let us define
the parabolically rescaled measures at (y0, T ):

μλ
s (A) = λ−nHn�Mλ

s (λ · A).

Let ρy0,T
: R

n+1 × (−∞, T ) → R be the backward heat kernel at (y0, T ) as defined in (2.3). Then, a result on weak
existence of blow ups of Ilmanen and White (see Lemma 8, p. 14 of [15] and also [24]) says that: there exists a

subsequence λj and a limiting Brakke flow [1] {νs}s<0 (also known as a tangent flow) such that μ
λj
s ⇀ νs in the sense

of Radon measures for all s < 0 and the following statements hold:

(a) (self-similarity) νs(A) = νλ
s (A) ≡ λ−nνλ2s(λ · A), for all s < 0 and for all λ > 0;

(b) (tangent flow is a self-shrinker) ν−1 satisfies

−→
H(x) + S(x)⊥ · x

2
= 0, ν−1 a.e. x; (3.1)

(c) furthermore, Huisken’s integral converges∫
ρ0,0(x,−1) dνs(x) = lim

t↗T

∫
ρy0,T dμt , s < 0. (3.2)
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Equivalently, a subsequence of rescaled solutions Mλ
s converges weakly to a limiting flow Xs that is called a tangent

flow at (y0, T ). We know Xs is a self shrinker. Ilmanen showed in [16] that it has to be smooth. Our proof will rely on
this fact and the validity of the Multiplicity One Conjecture. Let us briefly explain the notations used in (b).

For a locally n-rectifiable Radon measure μ, we define its n-dimensional approximate tangent plane Txμ (which
exists μ-a.e. x) by

Txμ(A) = lim
λ→0

λ−nμ(x + λ · A).

The tangent plane Txμ is a positive multiple of Hn�P for some n-dimensional plane P . Let S : R
n+1 −→ G(n+1, n)

denotes the μ-measurable function that maps x to the geometric tangent plane, denoted by P above. An impor-
tant quantity is the first variation of μ, defined by δVμ(X) := ∫

divS(x)X(x)dμ(x) for X ∈ C∞
c (Rn+1,R

n+1). Here
divSX = ∑n

i=1 Dei
X.ei where e1, . . . , en is any orthonormal basis of S. We also denote by S the orthogonal projection

onto S and thus divS X can be written as S : DX. Now, if the total first variation ‖δVμ‖ is a Radon measure and is
absolutely continuous with respect to μ, then we can define the generalized mean curvature vector

−→
H = −→

Hμ ∈ L1
loc(μ)

of μ as follows∫
divS X dμ =

∫
−−→

H · X dμ (3.3)

for all X ∈ C∞
c (Rn+1,R

n+1). For further information on geometric measure theory, we refer the reader to Simon’s
lecture notes [21]. Note that when μ is the surface measure of a smooth n-dimensional manifold M , the generalized
mean curvature vector

−→
Hμ of μ exists and is also the classical mean curvature vector of M ; see Corollary 4. 3 in [19].

Therefore, we can apply (3.3) to μλ
s , which is the rescaled surface measure of the smooth manifold Mλ

s . From (3.3)
and the definition of μλ

s , one sees that the mean curvature vector
−→
Hλ

s of μλ
s is

−→
Ht

λ
where

−→
Ht is the mean curvature

vector of Mt where t = T + s

λ2 . The lower semicontinuity of
∫ |H |dμ asserts that∫

|−→Hs |dνs � lim inf
λ→∞

∫ ∣∣−→Hλ
s

∣∣dμλ
s � lim sup

λ→∞

∫
C0

λ
dμλ

s = 0.

Thus
−→
Hs = 0 for all s < 0. Now, because Xs is smooth for all s < 0, the weak mean curvature vector

−→
Hs coincides

with the mean curvature vector in classical sense. Thus we have a smooth solution Xs that is a self-shrinker with
H = 0 and therefore by the result in [6] it has to be a hyperplane. Furthermore νs represents the surface measure
of the plane Xs with multiplicity one by the validity of the Multiplicity One Conjecture. Using the convergence of
Huisken’s integral (3.2), we see that

lim
t↗T

∫
ρy0,T dμt = 1.

By White’s regularity theorem [26], the second fundamental form |A|(·, t) of Mt is bounded as t → T and (y0, T ) is
a regular point. Thus, the flow can be extended past time T . �

We conclude this section by the proof of Theorem 1.5, which can be viewed as a local regularity result without a
smallness condition. Note that the Multiplicity One Conjecture is not assumed in this theorem.

Proof of Theorem 1.5. We will use the same notation as in the proof of Theorem 1.4. Note that, when n = 2,
by the fact that

∫
H 2

s is bounded (follows from the Gauss–Bonnet theorem for surfaces) and Allard’s Compactness
Theorem [21], each Radon measure νs is integer 2-rectifiable, that is

dνs = θs(x) dH2�Xs

where Xs is an H2-measurable, 2-rectifiable set and θs is an H2�Xs -integrable, integer valued “multiplicity function”.
Furthermore the mean curvature vector

−→
Hs of νs satisfies

−→
Hs ∈ L∞(νs). Here is the only place we wish to use (1.5).

The same argument as in the proof of Theorem 1.4 implies that
−→
Hs = −→

0 and Xs is a plane.
The key point of our proof is the following Constancy Theorem.
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Theorem 3.1 (Constancy Theorem). Let μ = θ Hn�M be an integral n-varifold in the open set Ω ⊂ Rn+m, M ⊂ Ω a
connected C1-n-manifold, θ : M → N0 be Hn-measurable with weak mean curvature

−→
Hμ ∈ L1

loc(μ), that is∫
divμ η dμ =

∫
M

divM ηθ dHn = −
∫

〈−→Hμ,η〉dμ, ∀η ∈ C1
0

(
Ω,R

n+m
)
. (3.4)

Then θ is a constant: θ ≡ θ0 ∈ N0. Here N0 is the set of all nonnegative integers and 〈·〉 is the standard Euclidean
inner product on R

n+m.

Now θs is a constant and Xs is a plane. Thus by the convergence of Huisken’s integral (3.2), we see that

lim
t↗T

∫
ρy0,T dμt =

∫
ρ0,0(x,−1) dνs(x) =

∫
ρ0,0(x,−1)θs dH2�Xs = θs.

By (1.6) and Proposition 2.10 in [26], 1 � θs < 2. It follows from the integrality of θs that θs ≡ 1. Now, our result
follows from White’s local regularity theorem [26]. �
Proof of Theorem 3.1. For the case of stationary varifold μ, i.e.,

−→
Hμ = −→

0 , the proof of Theorem 3.1 can be found
in [21], Theorem 41.1. For the general case stated above, due to Schätzle, the proof can be found in [17], Theorem 4.3.
However, in our application, when M is a plane and

−→
Hμ = −→

0 , Theorem 3.1 has a very simple proof which we include
it here. Choose η ∈ C1

0(Ω,R
n+m) such that η ∈ T M-the tangent bundle of M . Then (3.4) gives∫

M

(divM η)θ dHn = 0.

Calculating in local coordinates, this yields ∇Mθ = 0 weakly. Hence θ ≡ θ0 is constant, as M is connected. �
We conclude this section with the following result, which has been suggested to us by one of the referees. It serves

to somewhat remove the Multiplicity One Conjecture in Theorem 1.4.

Corollary 3.1. Let M2 be a compact, smooth and embedded 2-dimensional manifold in R
3. If

max
Mt

|H |2(·, t) � C0

and if no quasi-static higher multiplicity planes occur as tangent flows at any point (y0, T ) where y0 ∈ R
3 is a point

reached by the mean curvature flow (1.1) at time T , then the flow can be extended past time T .

Remark 3.1. For a precise definition of quasi-static limit flow, we refer the reader to White [25]. In the course of the
proof of Theorem 1.4, we showed (without the Multiplicity One Conjecture) that, under the boundedness of the mean
curvature, any tangent flow at (y0, T ) is a quasi-static plane, maybe with higher multiplicity. The Multiplicity One
Conjecture corresponds to the case that all tangent flows (even non-flat ones) are of multiplicity one. In Corollary 3.1,
the only requirement is that, if a tangent flow happens to be a quasi-static plane, it must have a point of multiplicity
one. Thus, we do not require any information on the multiplicity of non-flat tangent flows.

Proof of Corollary 3.1. As in the proof of Theorem 1.5, the bound on the mean curvature implies that at any (y0, T ),
the tangent flows are planes. By Theorem 3.1, each of these planes has constant multiplicity. But at one point, the
plane has multiplicity one. Thus the whole plane must have multiplicity one. Now, our result follows from White’s
local regularity theorem [26]. �
4. Some global results on the extension of the mean curvature flow

In this section we give global conditions for extending a smooth solution to (1.1), which has been a subject of study
in [18].
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Proof of Theorem 1.6. We argue by contradiction. Suppose that T is the extinction time of the flow. Then, by
Theorem 1.1, |A| is unbounded. Therefore, there exists a sequence of points (xi, ti) with xi ∈ Mti such that

Qi := |A|(xi, ti) = max
0�t�ti

max
x∈Mt

|A|(x, t) → +∞. (4.1)

Consider the sequence M̃i
t of rescaled solutions for t ∈ [0,1] defined by

F̃i(·, t) = Qi

(
F

(
·, ti + t − 1

Q2
i

)
− xi

)
.

The sequence of rescaled solutions M̃i
t converges (see [2]) to a complete smooth solution to the mean curvature flow,

call it M̃t for t ∈ [0,1] with the property that

|Ã|(0,1) = 1. (4.2)

If g and A := {hjk} are the induced metric, and the second fundamental form of Mt , respectively, then the correspond-
ing rescaled quantities are given by

g̃i = Q2
i g; |Ãi |2 = |A|2

Q2
i

.

We calculate

lim
i→∞

{ 1∫
0

( ∫
(M̃i )t∩B(0,1)

|Ãi |q dμ

) p
q

dt

} 1
p

= lim
i→∞

{ ti∫
ti− 1

Q2
i

( ∫
Mt∩B(0, 1

Qi
)

|A|q dμ

) p
q

dt

} 1
p

� lim
i→∞

{ ti∫
ti− 1

Q2
i

(∫
Mt

|A|q dμ

) p
q

dt

} 1
p

= 0. (4.3)

The last step follows from the facts that( T∫
0

(∫
Mt

|A|q dμ

)p/q

dt

)1/p

< ∞; lim
i→∞

1

Q2
i

= 0.

By Fatou’s lemma and (4.3) it follows that

1∫
0

( ∫
M̃t∩B(0,1)

|Ã|q
) p

q = 0.

By the smoothness of M̃t , this implies |Ã|(x, t) ≡ 0 for all x ∈ M̃t ∩ B(0,1) and all t ∈ [0,1]. This contra-
dicts (4.2). �
5. Some local regularity results and applications

5.1. ε-regularity theorem for the mean curvature flow

In this section we prove Theorem 1.7, which is parabolic version of the epsilon regularity theorem for minimal
surfaces proven by Choi and Schoen [3].

Proof of Theorem 1.7. We may assume without loss of generality that the flow M = (Mt)t<t0 is smooth up to and
including time t0, because we can first prove the theorem with t0 replaced by t0 −α for fixed α > 0 and then let α ↘ 0
afterwards.
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Let

F(δ) = sup
t∈[t0−(σ−δ)2,t0]

sup
x∈B(x0,σ−δ)∩Mt

δ2|A|2(x, t).

Since our flow is smooth up to time t0, F(0) = 0. Thus, there exists δ∗ ∈ (0, σ/2] such that F(δ∗) = max0�δ�σ/2 F(δ).
It suffices to show that

F(δ∗) < ε
−2
n+2
0

( t0∫
t0−σ 2

∫
Mt∩B(x0,σ )

|A|n+2 dμdt

) 2
n+2

≡ (
ε−1

0 η
) 2

n+2 . (5.1)

Suppose not, then

F(δ∗) �
(
ε−1

0 η
) 2

n+2 . (5.2)

Because the flow is defined up to and including time t0, we can find t∗ ∈ [t0 − (σ − δ∗)2, t0] and x∗ ∈ B(x0, σ − δ∗) ∩
Mt0 such that

δ2∗|A|2(x∗, t∗) = F(δ∗). (5.3)

It follows from δ∗ ∈ (0, σ/2] that

B

(
x∗,

δ∗
2

)
⊂ B

(
x0, σ − δ∗

2

)
;

[
t∗ − δ2∗

4
, t∗

]
⊂

[
t0 −

(
σ − δ∗

2

)2

, t0

]
. (5.4)

By the choice of δ∗, t∗ and x∗,(
δ∗
2

)2

sup
t∈[t0−(σ− δ∗

2 )2,t0]
sup

x∈B(x0,σ− δ∗
2 )∩Mt

|A|2(x, t) � F(δ∗) = δ2∗|A|2(x∗).

Hence

sup
t∈[t0−(σ− δ∗

2 )2,t0]
sup

x∈B(x0,σ− δ∗
2 )∩Mt

|A|2(x, t) � 4|A|2(x∗, t∗)

and thus, it follows from (5.4) that

sup

t∈[t∗− δ2∗
4 ,t∗]

sup
x∈B(x∗, δ∗

2 )∩Mt

|A|2(x, t) � 4|A|2(x∗, t∗). (5.5)

We now rescale our mean curvature flow by setting

F̃ (·, t) = QF

(
·, t∗ + t − 1

Q2

)
, M̃t = F̃

(
Mn, t

)
where

Q = 2
(
ε0η

−1) 1
n+2 |A|(x∗, t∗).

Then we have a mean curvature flow M̃t on B(x∗,Qδ∗/2) for t ∈ [0,1]. Let g̃ = Q2g be the induced metric on M̃t

and let B̃(x∗, r) be the geodesic ball w.r.t. the metric g̃ and centered at x∗ with radius r . By (5.2) and (5.3), we have

Qδ∗
2

� 1. (5.6)

This combined with (5.5) gives

sup
t∈[0,1]

sup
x∈B̃(x∗,1)∩M̃t

|Ã|2(x, t) � 4|Ã|2(x∗,1) � 1. (5.7)

Note that the last inequality follows from the facts that
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4|Ã|2(x∗,1) = 4|A|2(x∗, t∗)
Q2

= (
ε−1

0 η
) 2

n+2 � 1.

To obtain a contradiction, we will use the inequality

(∂t − �)|Ã|2 � 2|Ã|4. (5.8)

This is a differential inequality of the form (∂t − �)v � f v where v = |Ã|2 and f = 2|Ã|2. Furthermore f satisfies a
smallness condition:

1∫
0

∫
M̃t∩B̃(x∗,1)

f
n+2

2 dμ̃dt � 2n+2η � 2n+2ε0.

Thus, we can localize our estimates in Lemmas 5.1 and 6.1 in [18] to obtain the following inequality

|Ã|2(x∗,1) � sup
t∈[1/12,1]

sup
x∈B̃(x∗,1/2)

|Ã|2(x, t) � C(n)

( 1∫
0

∫
M̃t∩B̃(x∗,1)

|Ã|n+2 dμ̃dt

) 2
n+2

� C(n)η
2

n+2 . (5.9)

There is a simple proof of this inequality. It goes as follows. Note that for t ∈ [0,1] and x ∈ B̃(x∗,1), (5.7) and (5.8)
give

(∂t − �)|Ã|2 � 2|Ã|2
or equivalently (∂t − �)(e−2t |Ã|2) � 0. Now, we can apply Moser’s mean value inequality [8, Proposition 1.6], for
e−2t |Ã|2 to obtain a constant C1(n) depending only on n such that

|Ã|2(x∗,1) � C1(n)

1∫
0

∫
M̃t∩B̃(x∗,1)

|Ã|2 dμ̃dt. (5.10)

By Hölder inequality

|Ã|2(x∗,1) � C1(n)

( 1∫
0

∫
M̃t∩B̃(x∗,1)

dμ̃ dt

) n
n+2

( 1∫
0

∫
M̃t∩B̃(x∗,1)

|Ã|n+2 dμ̃dt

) 2
n+2

. (5.11)

By (5.7) and the Gauss equation

R̃ik = H̃ h̃ik − h̃il g̃
lj h̃jk

one easily sees that the Ricci tensor satisfies R̃ik � −(n − 1). By the Bishop–Gromov volume comparison theorem,
for each time t ∈ [0,1], one has

∫
M̃t∩B̃(x∗,1)

dμ̃ � V (n) where V (n) denotes the volume of a unit geodesic ball in an
n-dimensional space form of constant curvature −1. Thus

|Ã|2(x∗,1) � C1(n)V (n)
n

n+2

( 1∫
0

∫
M̃t∩B̃(x∗,1)

|Ã|n+2 dμ̃dt

) 2
n+2

= C1(n)V (n)
n

n+2

( t∗∫
t∗− 1

Q2

∫
Mt∩B(x∗, 1

Q
)

|A|n+2 dμdt

) 2
n+2

� C1(n)V (n)
n

n+2

( t∗∫
t −δ2/2

∫
Mt∩B(x∗,δ∗/2)

|A|n+2 dμdt

) 2
n+2
∗ ∗
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� C1(n)V (n)
n

n+2

( t0∫
t0−σ 2

∫
Mt∩B(x0,σ )

|A|n+2 dμdt

) 2
n+2

= C1(n)V (n)
n

n+2 η
2

n+2 . (5.12)

Consequently,

C1(n)V (n)
n

n+2 η
2

n+2 � |Ã|2(x∗,1) = 1

4

(
ε−1

0 η
) 2

n+2 .

This is a contradiction if ε0 is small. �
Remark 5.1. In general, we can modify the proof of Theorem 1.7 to obtain the following result. Suppose M = (Mt)

is a smooth, properly embedded solution of the mean curvature flow in B(x0, ρ) × (t0 − ρ2, t0) which reaches x0 at
time t0. Let p and q be positive numbers satisfying

n

q
+ 2

p
= 1.

Then, there exists ε0 = ε0(M0,p, q) > 0 such that if 0 < σ � ρ and

t0∫
t0−σ 2

( ∫
Mt∩B(x0,σ )

|A|q dμ

)p/q

dt < ε0 (5.13)

then

max
0�δ�σ/2

sup
t∈[t0−(σ−δ)2,t0)

sup
x∈B(x0,σ−δ)∩Mt

δ2|A|2(x, t) < ε
−2
p

0

( t0∫
t0−σ 2

( ∫
Mt∩B(x0,σ )

|A|q dμ

)p/q

dt

) 2
p

. (5.14)

Theorem 1.7 can be extended to the case when an ambient manifold is an arbitrary Riemannian manifold.

Corollary 5.1. Let n � 2 and Nn+1 be a smooth complete, locally symmetric Riemannian manifold with bounded ge-
ometry. Let M0 be a compact connected hypersurface without boundary which is smoothly immersed in B(x0, ρ) ⊂ N .
Suppose that M = (Mt) is a smooth, properly embedded solution of the mean curvature flow in B(x0, ρ)×(t0 −ρ2, t0)

which reaches x0 at time t0. There exists ε0 = ε0(M0,N) such that if 0 < σ � ρ and

t0∫
t0−σ 2

∫
Mt∩B(x0,σ )

|A|n+2 dμdt < ε0 (5.15)

then

max
0�δ�σ/2

sup
t∈[t0−(σ−δ)2,t0)

sup
x∈B(x0,σ−δ)∩Mt

δ2|A|2(x, t) < ε
−2
n+2
0

( t0∫
t0−σ 2

∫
Mt∩B(x0,σ )

|A|n+2 dμdt

) 2
n+2

. (5.16)

Proof. In the formulas that follow, if we mean the metric or the connection on N , this will be indicated by a bar, for
example ḡαβ , etc. The Riemann curvature tensors on M and N will be denoted by Rm = {Rijkl} and Rm = {R̄αβγ δ}.
Let ν be the outer unit normal to Mt . For a fixed time t , we choose a local field of frame e0, e1, . . . , en in N such
that when restricted to Mt , we have e0 = ν, ei = ∂F

∂xi
. The relations between A = (hij ),Rm and R̄m are given by the

equations of Gauss and Codazzi:

Rijkl = R̄ijkl + hikhjl − hilhjk, (5.17)

∇khij − ∇j hik = R̄0ijk. (5.18)
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Observe that we have the following evolution equation:

∂

∂t
|A|2 = �|A|2 − 2|∇A|2 + 2|A|2(|A|2 + Ric(ν, ν)

)
− 4

(
hijhm

j R̄l
mli − hijh

lmR̄milj

) − 2hij
(∇̄j R̄

l
0li + ∇̄l R̄

l
0ij

)
,

whose derivation can be found in [13]. Since N is, by our assumption, locally symmetric, we have ∇̄Rm = 0 and
therefore the previous equation just reads as

∂

∂t
|A|2 = �|A|2 − 2|∇A|2 + 2|A|2(|A|2 + Ric(ν, ν)

) − 4
(
hijhm

j R̄l
mli − hijh

lmR̄milj

)
. (5.19)

Using the evolution equation (5.19) and the bounds on the geometry of N we obtain

∂

∂t
|A|2 � �|A|2 + 2|A|4 + C|A|2.

After rescaling our solution and using (5.7), we obtain(
∂

∂t
− �

)
|Ã|2 � C|Ã|2.

If f := e−C·t |Ã|2 then we have(
∂

∂t
− �

)
f � 0.

If we take a trace of (5.17) in j l we obtain

Rik = gjlR̄ijkl + hikH − hilhjkg
jl � −C.

Applying the Moser mean value inequality to f will lead to a contradiction in the same way as in the proof of
Theorem 1.7. �
5.2. Some applications of Theorem 1.7

In this section, we give three applications of the local regularity results obtained in Section 5.1.
The first application is a simple consequence of the Remark 5.1. It gives a sufficient integral condition for (1.1)

to have a type-I singularity. This will be achieved by showing that any type-I control on the Ls -norm (s > n) of the
second fundamental form for all time slice t gives a type-I control on the second fundamental form. Precisely, we
prove the following

Corollary 5.2. Let s ∈ (n,∞). Suppose there is a constant Cs > 0 such that for any T/2 � t < T , we have

‖A‖Ls(Mt ) � Cs

(T − t)
s−n
2s

. (5.20)

Then (1.2) holds.

Remark 5.2. We say that the Ls -control on the second fundamental form given by (5.20) is of type I. Notice that for
the shrinking spheres Sn we have the equality in (5.20).

Proof of Corollary 5.2. For q = s > n there exists a positive number p such that

n

s
+ 2

p
= 1.

Let (x0, t0) be arbitrary, where 0 < t0 < T . Let σ ∈ (0,
√

t0). Then, for any t ∈ (t0 − σ 2, t0) we have
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t0∫
t0−σ 2

( ∫
B(x0,σ )∩Mt

|A|s
) 2

s−n

�
t0∫

t0−σ 2

dt

T − t
� Cσ 2

T − t0
=: Cα, (5.21)

where α(T − t0) = σ 2. Fix α sufficiently small so that Cα � ε0(M0,p, q) where ε0(M0,p, q) is the small constant
in Remark 5.1. For this choice of α, the estimate (5.14), taking δ = σ

2 gives

|A|2(x0, t0) � 4

σ 2
= C

T − t0
,

and this completes the proof of our corollary. �
The second application is a lower bound on the Ls -norm (s > n) of the second fundamental form at each time

slice. This lower bound can be viewed as a slight generalization of Huisken’s estimate [12] where the case s = ∞ was
considered. Let s ∈ (n,∞). Suppose that T is the first singular time of the mean curvature flow. We are interested in
the following question:

Does there exist a constant C′
s > 0 such that for any t < T , we have

‖A‖Ls(Mt ) � C′
s

(T − t)
s−n
2s

? (5.22)

We prove a weaker version of the above inequality as follows

Corollary 5.3. For t < T , let f (t) = supt1�t ‖A‖Ls(Mt1 ). Then there exists a constant C′
s > 0 such that

f (t) � C′
s

(T − t)
s−n
2s

. (5.23)

Proof of Corollary 5.3. For q = s > n there exists a positive number p such that

n

s
+ 2

p
= 1.

Let (x0, t0) be arbitrary, where 0 < t0 < T . Let σ ∈ (0,
√

t0). Then, for any t ∈ (t0 − σ 2, t0) we have

t0∫
t0−σ 2

( ∫
B(x0,σ )∩Mt

|A|s
) 2

s−n

�
t0∫

t0−σ 2

(
f (t0)

) 2s
s−n = σ 2(f (t0)

) 2s
s−n . (5.24)

Fix σ so that σ 2(f (t0))
2s

s−n = ε0(M0,p, q) where ε0(M0,p, q) is the small constant in Remark 5.1. For this choice of
α, the estimate (5.14), taking δ = σ

2 gives

|A|2(x0, t0) � 4

σ 2
= 4(f (t0))

2s
s−n

σ 2(f (t0))
2s

s−n

= 4(f (t0))
2s

s−n

ε0(p, q)
.

Taking the supremum of the left hand side with respect to x0 and in view of Huisken’s estimate [12] on the lower
bound of supMt0

|A|2, we get

2

T − t0
� sup

Mt0

|A|2 � 4(f (t0))
2s

s−n

ε0(p, q)
.

This gives the desired inequality. �
The third application is a regularity result without a smallness condition. We will use the curvature estimate in

Theorem 1.7 to obtain other curvature estimates without any smallness condition for mean curvature flow of surfaces.
Our result in this direction states
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Corollary 5.4. Suppose M = (Mt) is a smooth, properly embedded solution of the mean curvature flow in B(x0,4σ)×
(t0 − (4σ)2, t0) ⊂ R

3 × (t0 − (4σ)2, t0) which reaches x0 and time t0. Given a constant CI > 0, there is a constant
CP > 0 so that if

t0∫
t0−(4σ)2

∫
B(x0,4σ)∩Mt

|A|4 dμdt � CI (5.25)

then

sup
t∈[t0−σ 2,t0)

sup
x∈B(x0,σ )∩Mt

|A|2(x, t) � CP σ−2. (5.26)

Proof of Corollary 5.4. Our strategy is to use annuli as in the proof of Lemma 1.10 in Colding–Minicozzi [5]. The
idea is that the L∞-bounds on the annulus and the L2-bounds of the second fundamental form on each time slice
will give the L∞-bounds for the fundamental form in the interior of the annulus. See (5.32) and (5.33) for the precise
statements. Moreover, by (5.25) and Theorem 1.6 for n = 2 and p = q = 4, we have the regularity of the mean
curvature flow up to and including time t0. Thus the second fundamental form is uniformly bounded. The essence of
Corollary 5.4 is the explicit bound (5.26). Because the second fundamental form is uniformly bounded, (Mt) is locally
a graph over some hyperplane. This will replace the use of Rado’s theorem for minimal surfaces as in [5].

We start with the following claim.

Claim 5.1. Given (5.25) there is a constant C so that

sup
t∈[t0−(2σ)2,t0)

∫
B(x0,2σ)∩Mt

|A|2 dx � C.

Proof. Let η(x, t) be a cut off function compactly supported in B(x0,4σ) ∩ Mt × [t0 − (4σ)2, t0), identically equal
to one on B(x0,2σ) × [t0 − (3σ)2, t0) (the same one that Ecker used in [8]). Multiply the evolution equation of |A|2

∂

∂t
|A|2 = �|A|2 − 2|∇A|2 + 2|A|4,

by η2 and integrate it over Mt . Using the evolution equation of the volume form d
dt

μ = −H 2 dμ, we see that

d

dt

∫
Mt

|A|2η2 �
∫
Mt

d

dt
|A|2η2 + |A|2 d

dt
η2 =

∫
Mt

(
�|A|2 − 2|∇A|2 + 2|A|4)η2 + |A|2 d

dt
η2

=
∫
Mt

|A|22η

(
d

dt
− �

)
η + 2|A|4η2 + 2|A|2η�η + �|A|2η2 − 2|∇A|2η2. (5.27)

Integrating by parts gives∫
Mt

2|A|2η�η + �|A|2η2 − 2|∇A|2η2 =
∫
Mt

−2∇(|A|2η)∇η − ∇|A|2∇η2 − 2|∇A|2η2

=
∫
Mt

−8|A|∇|A|η∇η − 2|A|2|∇η|2 − 2|∇A|2η2. (5.28)

Using Kato’s inequality |∇|A|| � |∇A| and Cauchy–Schwarz’s inequality, one deduces from (5.28) that∫
Mt

2|A|2η�η + �|A|2η2 − 2|∇A|2η2 �
∫
Mt

8|A|2|∇η|2. (5.29)

Combining (5.27) and (5.29), we get
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d

dt

∫
Mt

|A|2η2 �
∫
Mt

|A|22η

(
d

dt
− �

)
η + 8|A|2|∇η|2 + 2|A|4η2.

Using the estimate in Lemma 1.1 in [9] that

sup
M×[t0−1,t0]

(
|∇η|2 + 2η

∣∣∣∣
(

d

dt
− �

)
η

∣∣∣∣
)

� c

σ 2
,

and that vol(B(x0,4σ)∩Mt) � Cσ 2 (this can be proved using Huisken’s monotonicity formula [12]; see for example
Lemma 1.4 in [8]) we have

d

dt

∫
B(x0,4σ)

|A|2η2 dμ � C

σ 2

∫
B(x0,4σ)∩Mt

|A|2 dμ + C

∫
B(x0,4σ)∩Mt

|A|4 dμ.

Choose a cut off function ψ(t) in time so that ψ = 0 for t ∈ [0, t0 − (4σ)2], ψ(t) = 1 for t � t0 − (2σ)2 and in between
grows linearly. Multiply the previous inequality by ψ(t) and integrate it over [t0 − (4σ)2, t], where t � t0 − (2σ)2.
Then,

∫
B(x0,2σ)∩Mt

|A|2 dμ � C

σ 2

t0∫
t0−(4σ)2

∫
B(x0,4σ)∩Mt

|A|2 dμ + C̃.

By Hölder inequality and the Euclidean volume growth we have

∫
B(x0,2σ)∩Mt

|A|2 dμ � C

σ 2

( t0∫
t0−(4σ)2

∫
B(x0,4σ)∩Mt

|A|4 dμ

) 1
2

·
( t0∫

t0−(4σ)2

∫
B(x0,4σ)∩Mt

dμ

) 1
2

+ C̃

� CCI

σ 2
· (16σ 2 · cσ 2) 1

2 + C̃ = C̃,

where C̃ is a uniform constant, independent of σ . �
Having (5.25) and Claim 5.1 we can continue as follows. Let ε ∈ (0, ε0) be a small number to be determined. Here

ε0 is as in Theorem 1.7. Let N be an integer greater than CI/ε. Given x ∈ B(x0, σ )∩Mt where t ∈ [t0 −σ 2, t0), there
exists 1 � j � N with

t0∫
t0−(2σ)2

∫
B(x,91−j σ )\B(x,9−j σ )∩Mt

|A|4 dμdt � CI/N � ε � ε0.

Note that, if s = 9−j σ then B(x,9s) ⊂ B(x0,2σ). Therefore

t0∫
t0−(2σ)2

∫
B(x,9s)∩Mt

|A|4 dμdt �
t0∫

t0−(2σ)2

∫
B(x0,2σ)∩Mt

|A|4 dμdt � CI . (5.30)

From the estimate

t0∫
t0−(2σ)2

∫
B(x,9s)\B(x,s)∩Mt

|A|4 dμdt � ε � ε0

we have, by the Choi–Schoen type estimate in Theorem 1.7
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sup
t∈[t0−(2σ−s)2,t0)

sup
y∈B(s,8s)\B(x,2s)∩Mt

|A|2(y, t)

� ε
−1/2
0 s−2

( t0∫
t0−(2σ)2

∫
B(x,9s)\B(x,s)∩Mt

|A|4 dμdt

)1/2

� ε
−1/2
0 ε1/2s−2. (5.31)

The proof of the above inequality is similar to the proof of (1.9) in Theorem 1.7. To obtain (5.31), we need to verify
that (5.9) goes through for the annuli used here. Indeed, instead of using (5.10) to deduce (5.9), we use the more
general estimate given in the proof of Proposition 1.6 in Ecker [8], namely

sup
t∈[0,1]

sup
x∈B̃(x∗,1)

|Ã|2(x, t)η2(n+1)(x, t) � C(n)

∫ ∫
sptη

|Ã|2 dμ̃dt.

Now, for the case of annuli considered here, (5.9) follows by choosing a suitable cut off function η, compactly sup-
ported in the annulus.

Moreover, inspecting the proof, we can replace extrinsic balls by intrinsic balls B(x, s). Thus, for each time slice
t ∈ [t0 − (2σ − s)2, t0), we have the following two estimates

sup
y∈B(x,8s)\B(x,2s)∩Mt

|A|2(y, t) � ε
−1/2
0 ε1/2s−2 (5.32)

and ∫
B(x,9s)

|A|2(t) dμ �
∫

B(x0,2σ)∩Mt

|A|2 dμ � CI . (5.33)

Now, arguing as in the proof of Colding–Minicozzi [5], Lemma 1.10, one can find a small number ε depending only
on CI and ε0 such that (5.32) and (5.33) imply the following curvature estimate

sup
B(x,s)⊂Mt

|A|2 � s−2 = (
9−j σ

)2 � 92Nσ−2.

Hence, for x ∈ B(x0, σ ) ∩ Mt where t ∈ [t0 − σ 2, t0), the following estimate holds

|A|2(x, t) � 92Nσ−2.
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