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Abstract

In this paper, we show that, for scalar reaction–diffusion equations ut = uxx + f (x,u,ux) on the circle S1, the Morse–Smale
property is generic with respect to the non-linearity f . In Czaja and Rocha (2008) [13], Czaja and Rocha have proved that any
connecting orbit, which connects two hyperbolic periodic orbits, is transverse and that there does not exist any homoclinic orbit,
connecting a hyperbolic periodic orbit to itself. In Joly and Raugel (2010) [31], we have shown that, generically with respect to the
non-linearity f , all the equilibria and periodic orbits are hyperbolic. Here we complete these results by showing that any connecting
orbit between two hyperbolic equilibria with distinct Morse indices or between a hyperbolic equilibrium and a hyperbolic periodic
orbit is automatically transverse. We also show that, generically with respect to f , there does not exist any connection between
equilibria with the same Morse index. The above properties, together with the existence of a compact global attractor and the
Poincaré–Bendixson property, allow us to deduce that, generically with respect to f , the non-wandering set consists in a finite
number of hyperbolic equilibria and periodic orbits. The main tools in the proofs include the lap number property, exponential
dichotomies and the Sard–Smale theorem. The proofs also require a careful analysis of the asymptotic behavior of solutions of the
linearized equations along the connecting orbits.

Résumé

Dans cet article, nous démontrons qu’il existe un ensemble générique de non-linéarités f pour lesquelles les équations de
réaction-diffusion ut = uxx + f (x,u,ux), sur le cercle S1, ont la propriété de Morse–Smale. Dans Czaja et Rocha (2008) [13],
Czaja et Rocha avaient montré que toute connexion entre deux orbites périodiques hyperboliques est transverse et qu’il n’existe
pas d’orbite homocline à une orbite périodique hyperbolique. Dans Joly et Raugel (2010) [31], nous avons démontré qu’il existe
un ensemble générique de non-linéarités f pour lesquelles tous les points d’équilibre et toutes les orbites périodiques sont hy-
perboliques. Dans ce travail, nous prouvons que toute connexion entre deux points d’équilibre hyperboliques d’indices de Morse
distincts ou entre un point d’équilibre et une orbite périodique hyperboliques est transverse. Nous montrons également qu’il existe
un ensemble générique de non-linéarités f pour lesquelles il n’existe pas de connexions entre points d’équilibre ayant même indice
de Morse. Grâce à la propriété de Poincaré–Bendixson, nous déduisons des propriétés ci-dessus et de l’existence d’un attracteur
global compact que, génériquement en la non-linéarité f , l’ensemble non-errant se réduit à un nombre fini de points d’équilibre et
d’orbites périodiques hyperboliques. Dans nos démonstrations, les propriétés du nombre de zéros, les dichotomies exponentielles,
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le comportement asymptotique des solutions des équations linéarisées et évidemment le théorème de Sard–Smale jouent un rôle
crucial.

MSC: primary 35B10, 35B30, 35K57, 37D05, 37D15, 37L45; secondary 35B40
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1. Introduction

In the study of the dynamics of flows or semi-flows generated by systems of ordinary differential or partial dif-
ferential equations arising in physics or biology, global stability (also called structural stability) is a very important
property. Indeed, often, one only knows approximate values of the various coefficients in the equations; or else, in
order to numerically determine the solutions of the equations, one introduces a space and (or) time discretized system.
Therefore, one often studies a system, which is an approximation of the original dynamical system. If the dynamics of
the original system are globally stable, then the qualitative global behaviour of the solutions remains unchanged under
small perturbations of the system and the knowledge of the dynamics of this approximate system is sufficient in prac-
tice. Unfortunately, in general dynamical systems bifurcation phenomena can take place and thus drastic changes in
the dynamics can arise. However, one may hope that such phenomena almost never happen in the considered class of
dynamical systems or that the systems, which are robust, are dense or generic in the considered class (see Section 1.2
below for the definition of genericity).

Such structural stability problems first appeared in [2]. In the 1960s and 1970s, they have been extensively studied
in the frame of vector fields (and also iterates of diffeomorphisms) on compact smooth manifolds Mn of finite dimen-
sion n � 1. In this context (see [58]), Smale introduced the notion of Morse–Smale dynamical systems, that is, systems
for which the non-wandering set consists only in a finite number of hyperbolic equilibria and hyperbolic periodic or-
bits and the intersections of the stable and unstable manifolds of equilibria and periodic orbits are all transversal. Palis
and Smale have shown that Morse–Smale vector fields on compact manifolds Mn are structurally stable [42,44].
Moreover, the class of Morse–Smale vector fields on a compact manifold M2 of dimension 2 is generic in the class of
all C1-vector fields [48]. In the case of the sphere S2, the proof is a consequence of the genericity of the Kupka–Smale
property and of the Poincaré–Bendixson theorem. In the same way, one also shows that the Morse–Smale vector fields
are generic in the class of “dissipative” vector fields on R

2. In the case of a general two-dimensional manifold (espe-
cially in the non-orientable case), the proof is more delicate. The Morse–Smale property is also generic in the class
of all gradient vector fields on a Riemannian manifold Mn, n � 1. In the simple case of gradient systems (where
the non-wandering set is reduced to equilibrium points), this genericity property is an immediate consequence of the
genericity of the Kupka–Smale vector fields [33,59,49]. On compact manifolds Mn of finite dimension n � 3, the
Morse–Smale vector fields are still plentiful. There had been some hope that Morse–Smale systems (and hence stable
dynamics) could be generic in the class of general vector fields. But unfortunately, in dimension higher than two, the
Morse–Smale vector fields are no longer dense in the set of all vector fields. In particular, transverse homoclinic orbits
connecting a hyperbolic periodic orbit to itself may exist, giving rise to chaotic behaviour [60]. And this cannot be
removed by small perturbations.

The above mentioned results give us a hint on what can be expected in the case of dynamical systems generated
by partial differential equations (PDEs in short). The results available in infinite dimensions are still rather partial.
Like in the case of vector fields on compact manifolds or on R

n, one can define Morse–Smale dynamical systems.
W. Oliva [40] (see also [20]) has proved that the Morse–Smale dynamical systems S(t), generated by “dissipative”
parabolic equations or more generally by “dissipative in finite time smoothing equations”, are structurally stable, in
the sense that the restrictions of the flows to the compact global attractors are topologically equivalent under small
perturbations. Already, in 1982, he had proved the structural stability of Morse–Smale maps, which in turn implies
the stability of Morse–Smale gradient semi-flows generated by PDEs. We recall that a dynamical system S(t) on a
Banach space, generated by an evolutionary PDE, is gradient if it admits a strict Lyapunov functional, which implies
that the non-wandering set reduces to the set of equilibria.
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As in the finite-dimensional case, one expected the density or genericity of the Morse–Smale gradient semi-flows
within the set of gradient semi-flows generated by a given class of PDEs. Already, in 1985, D. Henry [23] proved
the noteworthy property that the stable and unstable manifolds of two equilibria of the reaction–diffusion equation
with separated boundary conditions on the interval (0,1) intersect transversally (see also [3] for another proof in the
case of hyperbolic equilibria). One of the main tools in his proof was the decay property of the zero number (also
called Sturm number or lap number; see Section 2.1), which will also be often used in this paper. Since, as shown by
Zelenyak in [62], the reaction–diffusion equation on the interval (0,1) with separated boundary conditions is gradient,
the transversality property of Henry implies the first known result of genericity of Morse–Smale systems in a class of
PDEs. The scalar reaction–diffusion equation, defined on a bounded domain Ω of R

n, n � 2, is no longer gradient
in general. However, it is gradient if one considers non-linearities f (x,u), depending only on x and the values of
the function u (and not of the values of its derivatives). In this class of gradient parabolic equations, Brunovský and
Poláčik [8] have shown in 1997 that the Morse–Smale property is generic with respect to the non-linearity f (x,u).
Later, the genericity of the gradient Morse–Smale flows in the class of gradient flows generated by the damped wave
equations (with fixed damping) defined on any bounded domain has been proved by Brunovský and Raugel in [9] (for
the case of variable damping, we refer to [29]).

It must be emphasized that, whereas the proof of the structural stability follows the lines (with some adjustments)
of the proof given on compact finite-dimensional manifolds, the proof of the genericity of Morse–Smale property
requires other approaches. Indeed, perturbing a semi-flow generated by a PDE in order to make it Morse–Smale has
an interest only if one is able to perform it within the same class of equations. In the case of general vector fields
on finite-dimensional manifolds, one can perturb the vector field in a local manner with all the freedom one needs.
In the case of PDEs, the perturbed equations must remain in the considered class. Therefore, the perturbations are
constrained. An analogous problem involving constrained perturbations has been studied in the finite-dimensional
case by Robbin [53]. An additional problem arises in the case of PDEs, namely the perturbations could a priori be
really non-local. Typically, perturbing the non-linearity changes the semi-flow in a large part of the phase space in a
way which is hard to understand.

At first glance, the non-density of the Morse–Smale vector fields on compact manifolds of dimension n � 3 gave
only little hope that infinite-dimensional Morse–Smale semi-flows are dense in some classes of non-gradient PDEs.
However, Fiedler and Mallet-Paret [14] showed in 1989 that the scalar reaction–diffusion equation (1.1) on S1 satisfies
the Poincaré–Bendixson property (which, as we recalled earlier, played an important role in the proof of density of
Morse–Smale vector fields in the set of all dissipative vector fields in R

2). More recently, in 2008, Czaja and Rocha
[13] proved that, for the scalar reaction–diffusion equation on S1, the stable and unstable manifolds of hyperbolic
periodic orbits always intersect transversally. These results gave us some hope that Morse–Smale dynamics could be
generic for scalar reaction–diffusion equations on S1 since they are generic for two-dimensional vector fields. In 2008,
we proved that the equilibria and periodic orbits are hyperbolic, generically with respect to the non-linearity [31]. The
results of Fiedler, Rocha and Wolfrum [15] together with the generic hyperbolicity property of [31] imply that the
Morse–Smale property is generic in the special class of reaction–diffusion equations with spatially homogeneous
non-linearities f (u,ux).

Here, we complete the global qualitative picture of the scalar reaction–diffusion equations (1.1) on S1 in the case of
a general non-linearity f (x,u,ux) and conclude the proof of the genericity of the Morse–Smale systems in this class.
These results indicate a similarity between scalar reaction–diffusion equations on S1 and two-dimensional vector fields
and take place in a more general correspondence between parabolic equations and finite-dimensional vector fields in
any space dimension, as noticed in [32]. For scalar parabolic equations on bounded domains Ω in R

d , d � 2, the
properties of zero number do no longer hold, the Poincaré–Bendixson property fails and the Morse–Smale property
is no longer generic. But, the genericity of the Kupka–Smale property still holds like in the case of vector fields in
dimension n � 3, see [7].

1.1. The parabolic equation on the circle: Earlier results

In this paper, we consider the following scalar reaction–diffusion equation on S1,{
ut (x, t) = uxx(x, t) + f

(
x,u(x, t), ux(x, t)

)
, (x, t) ∈ S1 × (0,+∞),

1 (1.1)

u(x,0) = u0(x), x ∈ S ,
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where f belongs to the space C2(S1 × R × R,R) and u0 is given in the Sobolev space Hs(S1), with s ∈ (3/2,2) (so
that Hs(S1) is continuously embedded into C1+α(S1) for α = s − 3/2).

Eq. (1.1) defines a local dynamical system Sf (t) on Hs(S1) (see [22] and [50]) by setting Sf (t)u0 = u(t), where
u(t) is the solution of (1.1) (if the dependence in f of the dynamical system is not important, we simply denote S(t)

instead of Sf (t)).
In order to obtain a global dynamical system, we impose some additional conditions on f , namely we assume that

there exist a function k(.) ∈ C 0(R+,R
+) and constants ε > 0 and κ > 0 such that

∀R > 0, ∀ξ ∈ R, sup
(x,u)∈S1×[−R,R]

∣∣f (x,u, ξ)
∣∣� k(R)

(
1 + |ξ |2−ε

)
,

∀|u| � κ, ∀x ∈ S1, uf (x,u,0) � 0. (1.2)

Then, Eq. (1.1) defines a global dynamical system Sf (t) in Hs(S1) (see [50]). Moreover, Sf (t) admits a compact
global attractor Af , that is, there exists a compact set Af in Hs(S1) which is invariant (i.e. Sf (t)Af = Af , for any
t � 0) and attracts every bounded set of Hs(S1).

The most interesting part of the dynamics of (1.1) is contained in the attractor Af . Our purpose is to describe these
dynamics, at least for a dense set of non-linearities f . We introduce the set G = C 2(S1 × R × R,R) endowed with the
Whitney topology, that is, the topology generated by the neighbourhoods{

g ∈ G
/∣∣Dif (x,u, v) − Dig(x,u, v)

∣∣� δ(u, v), ∀i ∈ {0,1,2}, ∀(x,u, v) ∈ S1 × R
2}, (1.3)

where f is any function in G and δ is any positive continuous function (see [17]). It is well known that G is a Baire
space, which means that any countable intersection of open and dense sets is dense in G (see [17] for instance). We
say that a set is generic if it contains a countable intersection of open and dense sets and we say that the parabolic
equations on the circle (1.1) satisfy a property generically (with respect to the non-linearity) if this property holds for
any f in a generic subset of G. The notion of genericity is a common notion for defining “large” subsets of Baire
spaces, replacing the notion of “almost everywhere” of R

d .
Before describing the properties of (1.1), we recall a few basic notions in dynamical systems, for the reader conve-

nience. For any u0 ∈ H 1(S1), the ω and α-limit sets of u0 are defined respectively by

ω(u0) = {
v ∈ H 1(S1) ∣∣ there exists a sequence tn ∈ R

+, such that tn −→
n→+∞+∞ and S(tn)u0 −→

n→+∞v
}
,

α(u0) = {
v ∈ H 1(S1) ∣∣ there exist a negative orbit u(t), t � 0, with u(0) = u0,

and a sequence tn ∈ R
+, such that tn −→

n→+∞+∞ and u(−tn) −→
n→+∞v

}
.

The non-wandering set is the set of points u0 ∈ Hs(S1) such that, for any neighbourhood N of u0 in Hs(S1), S(t)N ∩
N �= ∅ for arbitrary large times t . In particular, equilibria and periodic orbits belong to the non-wandering set.

A critical element means either an equilibrium point or a periodic solution of (1.1).
Let e ∈ Hs(S1) be an equilibrium point of (1.1). As usual, one introduces the linearized operator Le around the

equilibrium e (see Section 2, for the precise definition and the spectral properties of Le).
We say that e is a hyperbolic equilibrium point if the intersection of the spectrum σ(Le) of Le with the imaginary

axis is empty. The Morse index i(e) is the (finite) number of eigenvalues of Le with positive real part (counted with
their multiplicities).

If e is a hyperbolic equilibrium point of (1.1), there exists a neighbourhood Ue of e such that the local stable and
unstable sets

Ws
loc(e) ≡ Ws(e,Ue) = {

u0 ∈ Hs
(
S1) ∣∣ Sf (t)u0 ∈ Ue, ∀t � 0

}
,

Wu
loc(e) ≡ Wu(e,Ue) = {

u0 ∈ Hs
(
S1) ∣∣ Sf (t)u0 is well-defined for t � 0 and Sf (t)u0 ∈ Ue, ∀t � 0

}
are (embedded) C1-submanifolds of Hs(S1) of codimension i(e) and dimension i(e) respectively.

We also define the global stable and unstable sets

Ws(e) = {
u0 ∈ Hs

(
S1) ∣∣ Sf (t)u0 −→

t→+∞e
}
,

Wu(e) = {
u0 ∈ Hs

(
S1) ∣∣ Sf (t)u0 is well-defined for t � 0 and Sf (t)u0 −→ e

}
.

t→−∞
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Since the parabolic equation (1.1), as well as the corresponding adjoint equation, satisfy the backward uniqueness
property (see [6]), Theorem 6.1.9 of [22] implies that Ws(e) and Wu(e) are injectively immersed C1-manifolds in
Hs(S1) of codimension i(e) and dimension i(e) respectively (see also [10] and [18]). We remark that Wu(e) =⋃

t�0 Sf (t)Wu(e,Ue) is the union of C1 embedded submanifolds of Hs(S1) of dimension i(e) (see [13]).
Let next Γ = {γ (x, t) | t ∈ [0,p]} be a periodic orbit of (1.1) of minimal period p. The linearized equation around

Γ defines an evolution operator Π(t,0) :ϕ0 ∈ Hs(S1) → Π(t,0)ϕ0 = ϕ(t) ∈ Hs(S1), where ϕ(t) is the solution of
the linearized equation. The operator Π(p,0) is called the period map (see Section 2 for the precise definition of
Π(p,0) and its spectral properties).

The periodic orbit Γ or the periodic solution γ (t) is hyperbolic if the intersection of the spectrum σ(Π(p,0)) with
the unit circle in C is reduced to 1 and 1 is a simple (isolated) eigenvalue. The Morse index i(Γ ) is the (finite) number
of eigenvalues of Π(p,0) of modulus strictly larger than 1 (counted with their multiplicities).

By [51, Theorem 14.2 and Remark 14.3] or [21] (see also [18]), if γ (t) is a hyperbolic periodic orbit, there exists
a small neighbourhood UΓ of Γ in Hs(S1) such that

Ws
loc(Γ ) ≡ Ws(Γ,UΓ ) = {

u0 ∈ Hs
(
S1) ∣∣ Sf (t)u0 ∈ UΓ , ∀t � 0

}
,

Wu
loc(Γ ) ≡ Wu(Γ,UΓ ) = {

u0 ∈ Hs
(
S1) ∣∣ Sf (t)u0 ∈ UΓ , ∀t � 0

}
(1.4)

are (embedded) C1-submanifolds of Hs(S1) of codimension i(Γ ) and dimension i(Γ ) + 1 respectively. We also
define the global stable and unstable sets

Ws(Γ ) = {
u0 ∈ Hs

(
S1) ∣∣ Sf (t)u0 −→

t→+∞Γ
}
,

Wu(Γ ) = {
u0 ∈ Hs

(
S1) ∣∣ Sf (t)u0 is well-defined for t � 0 and Sf (t)u0 −→

t→−∞Γ
}
.

Again, Theorem 6.1.9 of [22] implies that Ws(Γ ) and Wu(Γ ) are injectively immersed C1-manifolds in Hs(S1) of
codimension i(Γ ) and dimension i(Γ ) + 1 respectively (see also [10] and [18]). We also notice (see Lemma 6.1
of [13] and also [21] or [18]) that Wu(Γ ) =⋃

t�0 Sf (t)Wu
loc(Γ ) is a union of embedded submanifolds of Hs(S1) of

dimension i(Γ ) + 1.
Let q± be two hyperbolic critical elements. We say that Wu(q−) and Ws

loc(q
+) intersect transversally (or are

transverse) and we denote it by

Wu
(
q−) � Ws

loc

(
q+),

if, at each intersection point u0 ∈ Wu(q−) ∩ Ws
loc(q

+), Tu0W
u(q−) contains a closed complement of Tu0W

s
loc(q

+) in
Hs(S1). By convention, two manifolds which do not intersect are always transverse.

We now describe all the known properties of the dynamics of (1.1). First, we mention that in the particular case
where f (x,u,ux) = f (x,u) does not depend on the values of the derivative ux , the dynamical system Sf (t) generated
by (1.1) is gradient, that is, admits a strict Lyapunov functional. In particular, it has no periodic orbits and the non-
wandering set is reduced to equilibria. As a direct consequence of [8], the Morse–Smale property is generic with
respect to the non-linearity f (x,u).

In the general case where f (x,u,ux) depends on the three variables, all the two-dimensional dynamics can be
realized on locally (non-stable) invariant manifolds of the flow Sf (t) of (1.1) (see [57]) and thus periodic orbits
can exist [5]. Hence, the dynamics can be more complicated. However, like for vector-fields in R

2, the remarkable
Poincaré–Bendixson property holds [14].

Theorem 1.1 (Poincaré–Bendixson property). (See Fiedler and Mallet-Paret (1989)) For any u0 ∈ Hs(S1), the ω-limit
set ω(u0) of u0, satisfies exactly one of the following possibilities.

(i) Either ω(u0) consists of a single periodic orbit,
(ii) or the α- and ω-limit sets of any v ∈ ω(u0) consist only of equilibrium points.

Theorem 1.1 is the first step towards showing that the non-wandering set generically reduces to a finite number of
equilibria and periodic orbits. One of the main ingredients of the proof of Theorem 1.1 is the Sturm property (also
called zero number or lap number property). More precisely, for any ϕ ∈ C1(S1), we define the zero number z(ϕ) as
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the (even) number of strict sign changes of ϕ. If v(x, t) is the solution of a scalar linear parabolic equation on a time
interval I = (0, τ ), then, z(v(·, t)) is finite, for any t ∈ I , and non-increasing in t . Moreover, z(v(·, t)) drops at t = t0,
if and only if v(·, t0) has a multiple zero (the detailed statement of these properties is recalled in Section 2.1). Sturm
property is very specific to the parabolic equation in space dimension one.

The second major step on the way to the proof of the genericity of the Morse–Smale property has been the paper
of Czaja and Rocha [13]. Inspired by the transversality results of Fusco and Oliva [16] for special classes of vector
fields on R

n, Czaja and Rocha have proved the following fundamental and nice transversality properties.

Theorem 1.2. (See Czaja and Rocha (2008))

(1) There does not exist any solution u(t) of (1.1) converging to a same hyperbolic periodic orbit Γ , as t goes to
±∞.

(2) Let Γ ± be two hyperbolic periodic orbits. Then,

Wu
(
Γ −) � Ws

loc

(
Γ +).

Moreover, if the intersection Wu(Γ −) ∩ Ws
loc(Γ

+) is not empty, then i(Γ −) > i(Γ +).

Among other arguments, the proof of Theorem 1.2 [13] uses the decay properties of the zero number as well as
the filtrations of the phase space with respect to the asymptotic behaviour of the solutions of the linearized equation
around an orbit connecting two hyperbolic periodic orbits like in [10].

The above results hold under the assumption of hyperbolicity of the periodic orbits. To complete Theorem 1.2, we
have proved in [31] that, generically with respect to the non-linearity f , the periodic orbits are all hyperbolic, which
means that the above hyperbolicity assumption is not so restrictive.

Theorem 1.3. (See Joly and Raugel (2008)) There exists a generic subset Oh of G such that, for any f ∈ Oh, all the
equilibria and the periodic solutions of (1.1) are hyperbolic.

Besides the Sard–Smale theorem (recalled in Appendix A), one of the main ingredients of Theorem 1.3 is again the
zero number property of the difference of two solutions of (1.1) or of the solutions of the linearized equations around
equilibria or periodic solutions.

1.2. Main new results

In this paper, we prove that, generically with respect to f , the semi-flow Sf (t) generated by Eq. (1.1) on S1 is
Morse–Smale. To this end, we first complete the automatic transversality results of Czaja and Rocha as follows.

Theorem 1.4 (Automatic transversality results).

(1) If e− and e+ are two hyperbolic equilibrium points of (1.1) with different Morse indices, then the unstable
manifold Wu(e−) transversally intersects the local stable manifold Ws

loc(e+).
(2) If Γ (respectively e) is a hyperbolic periodic orbit (respectively a hyperbolic equilibrium point) of (1.1), then

Wu(e) � Ws
loc(Γ ),

and

Wu(Γ ) � Ws
loc(e).

The proof of Theorem 1.4 is similar to the one of Theorem 1.2. However, the proof of the automatic transversality
of the connecting orbits between two hyperbolic equilibria of different Morse indices requires a tricky argument, in
addition to those of [13]. We also emphasize that, even if most of the ideas in our proof are basically similar to the
ones of [13], they are used in a different way. In fact, as in [13], the basic tools are the same as the ones of [23,4,16],
namely a careful analysis of the asymptotic behavior of solutions converging to an equilibrium or a periodic orbit
(Appendix C) combined with a systematic application of the Sturm properties (recalled in Theorem 2.1).
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Theorems 1.2 and 1.4 show that a non-transverse connecting orbit arises only as an orbit connecting two equilib-
rium points with same Morse index. We call such an orbit a homoindexed orbit. Since every two-dimensional flow
can be realized in a (locally) invariant manifold of the semi-flow of a parabolic equation on S1 [57], we know that
homoindexed orbits, in particular homoclinic orbits, may occur in the flow of (1.1). However, as we prove here, such
connecting orbits can be broken generically in f .

Theorem 1.5 (Generic non-existence of homoindexed connecting orbits). There exists a generic subset OM ⊂ Oh of
G such that, for any f ∈ OM , there does not exist any solution u(t) of (1.1) such that u(t) converges, when t goes to
±∞, to two equilibrium points with the same Morse index. In particular, homoclinic orbits are precluded.

To prove Theorem 1.5, we actually prove the genericity of the transversality of the homoindexed orbits, which at
once implies the genericity of non-existence of such orbits. In order to prove the genericity of transversality and to get
a meaningful result, we need to perturb (1.1) by arbitrary small perturbations, in such a way that the perturbed semi-
flow is still generated by a scalar parabolic equation on S1. As already mentioned, perturbing the non-linearity acts
on the phase-space in a non-local way. In the context of proving generic transversality in the class of gradient scalar-
reaction diffusion equations, these problems were first circumvented by Brunovský and Poláčik in [8]. They employed
an equivalent formulation of transversality which appeared earlier in [53,19,56], but remained almost unnoticed for
some time (such formulation has however been used, already in the 1980s, by Chow, Hale and Mallet-Paret [11]
in global bifurcation problems of heteroclinic and homoclinic orbits). This equivalent formulation says that 0 is a
regular value of a certain mapping Φ (depending on the perturbation parameter), defined on a space of functions of
time with values into the state space of the equation. It is noteworthy that, in this formalism, the elements, the image
of which are 0, are precisely the trivial and non-trivial connecting orbits. Using this equivalent formulation of the
transversality together with the Sard–Smale theorem, given in Appendix A, Brunovský and Poláčik achieved their
proof of genericity of the transversality of stable and unstable manifolds of equilibria with respect to the non-linearity.

In the proof of Theorem 1.5, we follow the lines of the one of [8] (see also [9] and [29]), by introducing this
equivalent formulation of transversality. But, as in [9], the equivalent regular value formulation of transversality takes
place in a space of sequences (obtained by a time discretization of the semi-flow associated with (1.1)). As there,
in the application of the Sard–Smale theorem, one returns to the continuous time only in the last step, when one
verifies the non-degeneracy condition of the Sard–Smale theorem, which gives rise to a functional condition (see
Theorem 5.5). To find a perturbation satisfying this functional condition, we use as a central argument the one-to-
one property of homoindexed connecting orbits stated in Proposition 3.6 (which is again a consequence of the Sturm
property). Notice that parabolic strong unique continuation properties lead to a weaker version of Proposition 3.6,
which is actually sufficient to show the genericity of transversality and holds in any space dimension (see [7]).

Using Theorems 1.1, 1.2, 1.3, 1.4 and 1.5, we finally prove the following genericity of Morse–Smale systems of
type (1.1).

Theorem 1.6 (Genericity of Morse–Smale property). For any f in the generic set OM , Sf (t) is a Morse–Smale
dynamical system, that is,

(1) the non-wandering set consists only in a finite number of equilibria and periodic orbits, which are all hyperbolic;
(2) the unstable manifolds of all equilibria and periodic orbits transversally intersect the local stable manifolds of

all equilibria and periodic orbits.

Since the second part of Theorem 1.6 is a direct consequence of Theorems 1.2, 1.3, 1.4 and 1.5, it only remains
to show that the non-wandering set is trivial. This is done by using the Poincaré–Bendixson Property (Theorem 1.1)
together with arguments similar to the ones used for vector fields in R

2.

Remarks.
• We prove here that the sets OM and Oh are generic in G. The interpretation of these results is that OM and Oh

contain “almost all” the functions of G. The genericity is indeed the most common notion of “almost everywhere” in
infinite-dimensional Baire spaces. However, it is not the only one: recently, the notion of prevalence is more and more
used, see the review [41] and the references therein. We state our main results using the genericity because this is the
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most common notion. However, we underline that the sets OM and Oh are not only generic but also prevalent in G as
shown in [30] (this remark is meaningful since a generic set may be neglectible for the notion of prevalence).

• All the above theorems are stated under the “dissipative” condition (1.2) on the non-linearity f . Actually, The-
orems 1.1, 1.2, 1.3 and 1.4 still hold without assuming (1.2) and the proofs are not more involved. Theorem 1.5 is
also still true, even if the proof is a little more technical (but not more difficult). However, Theorem 1.6 is not true in
general without a dissipative condition on f or more generally without knowing that Sf (t) admits a compact global
attractor. Indeed, if Sf (t) has no compact global attractor, already the number of equilibria (and periodic orbits) can
be infinite. For the reader convenience and for avoiding unnecessary technicalities, we have chosen to impose the
dissipative condition (1.2) in the whole paper.

The paper is organized as follows. In Section 2, we recall the fundamental properties of the zero number on S1 as
well as the useful spectral properties of the linearized equations around equilibrium points or periodic orbits. Section 3
is devoted to relations between the lap number and the Morse indices and to the one-to-one property of homoindexed
orbits. In all these results, the zero number plays an important role. While some of these results are primordial in the
proof of our main theorems, others are stated for sake of completeness in the description of the properties of Eq. (1.1)
on the circle. Section 4 contains the proof of the automatic transversality results stated in Theorem 1.4. In Section 5, we
prove Theorem 1.5, that is, the generic non-existence of orbits connecting two hyperbolic equilibria with same Morse
index. Section 6 is focused on the study of the non-wandering set and on the proof of Theorem 1.6. The appendices
contain the necessary background for reading this paper. In Appendix A, we recall the Sard–Smale theorem in the
form used in Section 5. Appendix B contains the basic definitions and properties of exponential dichotomies and
their applications to the functional characterization of the transversality of the trajectories of the parabolic equation.
This appendix plays an important role in the core of the proof of Theorem 1.5. Finally, in Appendix C, we describe
the asymptotics of the solutions of the linearized equations around connecting orbits, which are one of the main
ingredients of the proof of Theorem 1.4.

2. Preliminaries and auxiliary results

In the introduction, we have already seen that (even without Assumption (1.2)) for any u0 ∈ Hs(S1), s ∈ (3/2,2),
Eq. (1.1) admits a local mild solution u(t) ∈ C0([0, τu0),H

s(S1)) (see [22]). Moreover, this solution u(t) is classical
and belongs to C0((0, τu0),H

2(S1)) ∩ C1((0, τu0),L
2(S1)) ∩ Cθ((0, τu0),H

s(S1)), where θ = 1 − s/2. In addition,
the function ut (t) : t ∈ (0, τu0) �→ ut (t) ∈ H�(S1), 0 � � < 2, is locally Hölder-continuous (see [22, Theorem 3.5.2]).
Since u(t) is in C0((0, τu0),H

2(S1)), the term f (x,u,ux) belongs to C0((0, τu0),H
1(S1)) and thus uxx = ut −

f (x,u,ux) is in C0((0, τu0),H
1(S1)). In particular, u(t) belongs to C0((0, τu0),H

3(S1)), which is continuously
embedded into C0((0, τu0),C

2(S1)). If moreover the condition (1.2) holds, then τu0 = ∞ for every u0.
In the course of this paper, we often need to consider the linearized equation along a bounded trajectory u(t) ≡

Sf (t)u0, t ∈ R, of Eq. (1.1), that is, the equation

vt = vxx + Duf (x,u,ux)v + Dux f (x,u,ux)vx, t � σ, v(σ, x) = v0, (2.1)

where v0 belongs to L2(S1). Since u(t) is in Cθ(R,H s(S1)), the coefficients Duf (x,u(t), ux(t)) and Dux f (x,u(t),

ux(t)) are locally Hölder-continuous from R into C0(S1). Thus, we deduce from [22, Theorem 7.1.3] that, for any v0 ∈
L2(S1), for any σ ∈ R, there exists a unique (classical) solution v(t) ∈ C0([σ,+∞),L2(S1))∩C0((σ,+∞),H�(S1))

of (2.1) such that v(σ ) = v0, where � is any real number with 0 � � < 2. Setting Tu(t, σ )v0 = v(t), we define a family
of continuous linear evolution operators on L2(S1). We remark that the evolution operator Tu(t, σ ), t � σ , associated
with the trajectory u, is injective and that its range is dense in Hs(S1).

We complete these generalities by remarking that, in what follows, we sometimes consider the difference w =
u1 − u2 between two solutions u1 ∈ C0([0,+∞),H s(S1)) and u2 ∈ C0([0,+∞),H s(S1)) of Eq. (1.1). The differ-
ence w is a solution of the following linear equation,

wt = wxx + a(x, t)wx + b(x, t)w, t � σ, w(σ, x) = w0, (2.2)
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where⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(x, t) =
1∫

0

f ′
∂xu

(
x, θu2 + (1 − θ)u1, ∂x

(
θu2 + (1 − θ)u1

))
dθ,

b(x, t) =
1∫

0

f ′
u

(
x, θu2 + (1 − θ)u1, ∂x

(
θu2 + (1 − θ)u1

))
dθ.

(2.3)

We emphasize that, since ut is locally Hölder-continuous from (0,+∞) into H�(S1), 3/2 < � < 2 and ux is continu-
ous from (0,+∞) into H 2(S1), the coefficients a(x, t) and b(x, t) belong to C1(S1 × (0,+∞),R).

2.1. The lap number property

The lap number property, or zero number property, is the fundamental property of one-dimensional scalar parabolic
equations. We recall that, for any ϕ ∈ C1(S1), the zero number z(ϕ) is defined as the (even) number of strict sign
changes of ϕ.

Theorem 2.1.

(1) Let T > 0, a ∈ C 1(S1 × [0, T ],R) and b ∈ C 0(S1 × [0, T ],R). Let v :S1 × (0, T ) → R be a classical bounded
non-trivial solution of

vt = vxx + a(x, t)vx + b(x, t)v.

Then, the number z(v(t)) of zeros of v(t) is finite and non-increasing in time t ∈ [0, T ] and strictly decreases at
t = t0 if and only if x �→ v(x, t0) has a multiple zero.

(2) If u and v are two solutions in C0([0, T ],H s(S1)) of (1.1), then ut and u − v satisfy the lap number property
stated in Statement (1) on the time interval (0, T ].

Such kind of results goes back to Sturm [61] in the case where a and b are time-independent. The non-increase of
the number of zeros in the time-dependent problems has been obtained in [39] and [37]. The property of strict decay
first appeared in [5] in the case of analytic coefficients. It has been generalized in [38] and [4].

We notice that the statement (2) is a direct consequence of the first statement and of the remarks made at the
beginning of this section.

2.2. The spectrum of the linearized operators

We recall here the Sturm–Liouville properties of the linearized operators associated to Eq. (1.1). These results
mainly come from [4] and [5], together with a property obtained in [31].

Let e ∈ Hs(S1) be an equilibrium point of (1.1). We introduce the linearized operator Le on L2(S1), with domain
H 2(S1), defined by

Lev = vxx + Duf (x, e, ex)v + Dux f (x, e, ex)vx, (2.4)

and consider the linearized equation around e, given by

vt (x, t) = Lev(x, t), (x, t) ∈ S1 × (0,+∞),

v(x,0) = v0(x), x ∈ S1. (2.5)

The operator Le is a sectorial operator and a Fredholm operator with compact resolvent. Therefore, its spectrum
consists of a sequence of isolated eigenvalues of finite multiplicity. Let (λi)i∈N be the spectrum of Le, the eigenvalues
being repeated according to their multiplicity and being ordered so that Re(λi+1) � Re(λi).



1406 R. Joly, G. Raugel / Ann. I. H. Poincaré – AN 27 (2010) 1397–1440
Proposition 2.2. The first eigenvalue λ0 is real and simple and the corresponding eigenfunction ϕ0 ∈ H 2(S1) does
not vanish on S1. The other eigenvalues go by pairs (λ2j−1, λ2j ) and Re(λ2j+1) < Re(λ2j ) for all j � 0. The pair
(λ2j−1, λ2j ) consists of either two simple complex conjugated eigenvalues, or two simple real eigenvalues with λ2j <

λ2j−1, or a real eigenvalue with multiplicity equal to two. Finally, if ϕ is a real function belonging to the two-
dimensional generalized eigenspace corresponding to (λ2j−1, λ2j ), then ϕ has exactly 2j zeros which are all simple.

Let Γ = {γ (x, t) | t ∈ [0,p]} be a periodic orbit of (1.1) of minimal period p. We consider the linearized equation

ϕt = ϕxx + Duf (x, γ, γx)ϕ + Dux f (x, γ, γx)ϕx, t � σ, ϕ(x,σ ) = ϕ0(x). (2.6)

Let s ∈ (3/2,2), we introduce the operator Π(t, σ ) :Hs(S1) → Hs(S1), defined by Π(t, σ )ϕ0 = ϕ(t) where ϕ(t) is
the solution of the linearized equation (2.6). The operator Π(p,0) is called the period map. Due to the regularization
properties of the parabolic equation, Π(p,0) is compact. Its spectrum consists of zero and a sequence of eigenvalues
(μi)i∈N converging to zero, where we repeat the eigenvalues according to their multiplicity and order them such that
|μi+1| � |μi |. Notice that 0 is not an eigenvalue of Π(p,0) due to the backward uniqueness property of the parabolic
equation. Moreover, we also remark that, since (1.1) is an autonomous equation, 1 is always an eigenvalue of Π(p,0)

with eigenfunction γt (0).

Proposition 2.3. The first eigenvalue μ0 is real and simple and the corresponding eigenfunction ϕ0 ∈ Hs(S1) does not
vanish on S1. The other eigenvalues go by pairs (μ2j−1,μ2j ) and |μ2j+1| < |μ2j | for all j � 0. The pair (μ2j−1,μ2j )

consists of either two simple complex conjugated eigenvalues, or two simple real eigenvalues of the same sign, or a
real eigenvalue with multiplicity equal to two. In particular, −1 is never an eigenvalue. Finally, if ϕ is a real function
belonging to the two-dimensional generalized eigenspace corresponding to (μ2j−1,μ2j ), then ϕ has exactly 2j zeros
which are all simple.

3. Main consequences of the lap number properties on connecting orbits

In this section, we describe several important consequences of the lap number theorem on the properties of orbits
connecting hyperbolic critical elements. Most of them will be used in the core of the proofs of Theorems 1.4 and 1.5.

3.1. Relations between Morse indices and lap numbers

In this paragraph, we consider orbits connecting hyperbolic equilibrium points and hyperbolic periodic orbits and
give several inequalities involving Morse indices and numbers of zeros. The ideas of these properties were already
contained in [13], where they have been proved in the case of connections between two periodic orbits. We complete
the results of [13] by considering the cases where equilibrium points are also involved. Actually, some of the proofs
are slightly simpler in these cases since, if e is an equilibrium point and γ (t) a periodic orbit, e − γ (t) is periodic,
whereas the difference between two periodic orbits may be only quasiperiodic.

The properties stated in this section have their own interest. In the other parts of this paper, we will use them in
the case of a connection between an equilibrium point and a periodic orbit. Therefore, we mainly restrict the proofs to
this case. The omitted proofs are similar.

The following theorem corresponds to [13, Theorems 5.2 and 6.2]. We recall that z(v) denotes the number of strict
sign changes of the function x �→ v(x).

Theorem 3.1. Let γ (t) be a hyperbolic periodic orbit of (1.1) of minimal period p and let Γ = {γ (t), t ∈ [0,p)}.

(1) For any u0 ∈ Ws
loc(Γ ) \ Γ , there exist a ∈ [0,p) and κ > 0 such that limt→∞ eκt‖Sf (t)u0 − Sf (t)γ (a)‖Hs = 0.

Moreover,

z
(
u0 − γ (a)

)
�
{

i(Γ ) + 1 = 2q if i(Γ ) = 2q − 1,

i(Γ ) + 2 = 2q + 2 if i(Γ ) = 2q.
(3.1)
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(2) For any u0 ∈ Wu(Γ )\Γ , there exist ã ∈ [0,p) and κ̃ > 0 such that limt→∞ eκ̃t‖Sf (−t)u0 −Sf (−t)γ (ã)‖Hs = 0.
Moreover,

z
(
u0 − γ (a)

)
�
{

i(Γ ) − 1 = 2q − 2 if i(Γ ) = 2q − 1,

i(Γ ) = 2q if i(Γ ) = 2q.
(3.2)

Proof. For sake of completeness, we give a short proof of statement (1) which is slightly different from the one
of [13]. The proof of statement (2) is similar.

The first part of the statement (1) is just a reminder of the fact that the local stable manifold of Γ is the union of
the local strongly stable manifolds of all the points γ (b), b ∈ [0,p] as explained in Appendix C.3. The second part of
(1) directly follows from Corollary C.10. Indeed, let v(t) = Sf (t)u0 − γ (t + a) ≡ u(t) − γ (t + a). Then, there exists
a complex eigenvalue μi of the period map Π(p + a, a) with |μi | < 1 such that v(np) satisfies one of the asymptotic
behaviors (i)–(iv) described in Corollary C.10. If the index i(Γ ) is equal to 2q − 1, then μ2q−1 = 1 and thus i � 2q ,
which implies that the number of zeros z(v(np)) is at least equal to 2q for n large enough. If the index i(Γ ) is equal
to 2q , then μ2q = 1 and thus i � 2q + 1, which implies that the number of zeros z(v(n)) is at least equal to 2q + 2 for
n large enough. Since v(t) is the difference of two solutions of (1.1), Theorem 2.1 shows that these lower bounds on
z(v(np)) for large n ∈ N hold in fact for all t ∈ R. �

Of course, the corresponding properties are true for hyperbolic equilibrium points. Since their proof is similar to
the one of Theorem 3.1 (and even simpler), it is omitted.

Theorem 3.2. Let e(x) be a hyperbolic equilibrium point of (1.1).

(1) For any u0 ∈ Ws
loc(e) \ {e},

z(u0 − e) �
{

i(e) + 1 = 2q if i(e) = 2q − 1,

i(e) = 2q if i(e) = 2q.

(2) For any u0 ∈ Wu(e) \ {e},

z(u0 − e) �
{

i(e) − 1 = 2q − 2 if i(e) = 2q − 1,

i(e) = 2q if i(e) = 2q.

The following two lemmas, which are rather simple, are useful in the following sections.

Lemma 3.3. If e is an equilibrium point of (1.1) and γ (t) is a periodic solution of (1.1) of minimal period p > 0,
then the zero number z(e − γ (t)) is constant and thus, for any time t , the function x �→ e(x)− γ (x, t) has no multiple
zero. The same properties hold if one considers the difference between two distinct equilibrium points or two distinct
periodic solutions.

Proof. By Theorem 2.1, the number of zeros of v(t) = e − γ (t) is non-increasing and strictly decreases only at the
times t where v(t) has a multiple zero. If v(t) has a multiple zero at t = t0, then Theorem 2.1 and the periodicity of v

imply that, for any ε ∈ (0,p),

z
(
v(t0 − ε)

)
> z

(
v(t0 + ε)

)
� z

(
v(t0 + p − ε)

)= z
(
v(t0 − ε)

)
,

which leads to a contradiction. Thus v(t) has no multiple zero. �
Remark. Since, for each t , v(t) has no multiple zero and Hs(S1) is embedded in C 1(S1), there exists a neighbourhood
BHs (v(t),2εv(t)) on which the zero number is constant. Since the curve {e − γ (t) | t ∈ [0,p]} is compact, there exists
a finite covering

⋃n
i=1 BHs(S1)(e − γ (ti), εi) of the set {e − γ (t) | t ∈ R} in Hs(S1), on which the zero number in

constant.
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Lemma 3.4. Let e− be a hyperbolic equilibrium of (1.1) and let Γ + be a hyperbolic periodic orbit of minimal period
p > 0. Let u0 ∈ Wu(e−) ∩ Ws

loc(Γ
+) and let u(t), t ∈ R, be the solution of (1.1) with u(0) = u0. Let a ∈ [0,p) be

such that limt→+∞ ‖u(t) − γ +(a + t)‖Hs = 0. Then, for any time t ∈ R,

z
(
u(t) − γ +(a + t)

)
� z

(
γ +(a) − e−)� z

(
u(t) − e−).

The same property holds for any orbit connecting hyperbolic equilibrium points or hyperbolic periodic orbits.

Proof. We set v+(t) = u(t) − γ +(a + t) and v−(t) = u(t) − e−. We notice that the lap number property stated in
Theorem 2.1 holds for v±. Lemma 3.3 shows that z(γ +(a) − e−) = z(γ +(a + t) − e−). Moreover, γ +(a) − e− has
no multiple zeros due to Lemma 3.3 and thus its number of zeros is stable with respect to small enough perturbations
in Hs(S1). For any large t0, v+(t0) is small enough so that

z
(
γ +(a) − e−)= z

(
γ +(a + t0) − e−)= z

(
v+(t0) + γ +(a + t0) − e−)= z

(
v−(t0)

)
.

Applying Theorem 2.1, we get that for all t � t0, z(γ +(a) − e−) � z(v−(t)).
The inequality z(v+(t)) � z(γ +(a) − e−), for all t ∈ R, is proved in a similar way.
The proof is the same in the case of orbits connecting hyperbolic equilibria or hyperbolic periodic orbits. These

inequalities have been previously proved in the case of orbits connecting two hyperbolic periodic orbits in [13, Theo-
rem 7.3] �

As a direct consequence of Lemma 3.4, Theorem 3.1 and Theorem 3.2, we obtain the following result.

Corollary 3.5. Let e± and Γ ± be hyperbolic equilibria and periodic orbits of Eq. (1.1).

(1) If Wu(e−) ∩ Ws
loc(Γ

+) �= ∅, then

i
(
Γ +)+ 1 � i

(
e−).

Moreover, if i(Γ +) = 2q+, q+ > 0, then i(Γ +) + 2 � i(e−).
(2) If Wu(Γ −) ∩ Ws

loc(e
+) �= ∅, then

i
(
e+)� i

(
Γ −).

Moreover, if i(Γ −) = 2q − 1, q � 1, then i(e+) + 1 � i(Γ −).
(3) If Wu(e−) ∩ Ws

loc(e
+) �= ∅, then

i
(
e+)� i

(
e−)

and the equality is possible if and only if i(e+) = i(e−) is even.

3.2. One-to-one property of homoindexed orbits

The proposition proved in this section plays a central role in the construction of a suitable perturbation to break
homoindexed orbits (see Section 5). Previously, the same one-to-one property has been shown to hold for periodic
orbits by Fiedler and Mallet-Paret in [14] (see also [31]). Notice that this one-to-one property can dramatically fail
for general trajectories. As already indicated, the proof of this property relies on the decay of the lap-number stated
in Theorem 2.1. In space dimension higher than one, there is no equivalent of the lap-number property. However, one
can use unique continuation properties to obtain a weaker but useful equivalent of Proposition 3.6, see [7].

Proposition 3.6. Let e± be two hyperbolic equilibria such that i(e−) = i(e+) = m = 2m′ is even, and let u(t) be a
connecting orbit between e− and e+. In the case where e− = e+ = e, we assume that u(t) �= e. Then the following
properties hold:

(1) For any t ∈ R, for any x ∈ S1, (u(x, t), ∂xu(x, t)) �= (e±(x), ∂xe±(x)).
(2) The map (x, t) ∈ S1 × R �→ (x,u(x, t), ∂xu(x, t)) is one to one.
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Proof. As in Section 2.2, we denote by Le± the linearized operator around the equilibrium e± and by λ±
i , i � 0, its

eigenvalues, counted with their multiplicities.
Since u(t) converges to e± when t goes to ±∞, according to Corollary C.7, there exists an eigenvalue λ±

i± of Le±
such that the asymptotic behaviors of u are given by

u(t) = e± + e
Re(λ±

i± )t
ψ±

i±(t) + o
(
e

Re(λ±
i± )t) when t → ±∞ (3.3)

where ψ±
i± corresponds to one of the possible asymptotic behaviors (i)–(iv) described at the beginning of Section 4.1.

We emphasize that the term o(e
Re(λ±

i± )t
) has to be understood in the sense of the Hs(S1) topology (and thus this term

is also small in the C1-sense). We recall that if i± = 2q − 1 or 2q then ψ±
i± has exactly 2q zeros which are simple.

Finally, notice that since i(e−) = i(e+) = m is even, λ±
m < 0 < λ±

m−1 are simple real eigenvalues and that i− � m − 1
and i+ � m.

We are now ready to prove the first assertion. We introduce the functions v±(t) = u(t) − e±. By the second part
of Theorem 2.1, the number of zeros z(v±) is finite and non-increasing and it strictly decreases at some time τ± if
and only if the function x �→ v±(x, τ±) has a multiple zero. But Theorem 3.2 and Lemma 3.4 at once imply that
z(e+ − e−) = m = z(v+(t)) = z(v−(t)) for any t and thus that the map x �→ u(x, t)− e±(x) has no multiple zero. We
deduce that

λ−
i− = λ−

m−1, ψ−
i− = ϕ−

m−1, λ+
i+ = λ+

m and ψ+
i+ = ϕ+

m, (3.4)

where ϕ−
m−1 and ϕ+

m are eigenfunctions corresponding to the simple real eigenvalues λ−
m−1 and λ+

m respectively.
We next prove by contradiction that the second statement holds. Assume that the map (x, t) ∈ S1 × R �→

(x,u(x, t), ∂xu(x, t)) is not injective. Then there exist x0, t0 ∈ R and τ0 ∈ R, such that

u(x0, t0) = u(x0, t0 + τ0), ∂xu(x0, t0) = ∂xu(x0, t0 + τ0).

The function v(x, t) = u(x, t + τ0) − u(x, t) satisfies v(x0, t0) = 0 and ∂xv(x0, t0) = 0. It is not identically zero
since it is a non-trivial connecting orbit. Thus, due to the second part of Theorem 2.1, the zero number z(v(t)) is
non-increasing and drops strictly at t = t0. The properties (3.3) and (3.4) imply that

v(t) = eλ−
m−1t

(
eλ−

m−1τ0 − 1
)
ϕ−

m−1 + o
(
eλ−

m−1t
)
, as t → −∞,

v(t) = eλ+
mt
(
eλ+

mτ0 − 1
)
ϕ+

m + o
(
eλ+

mt
)
, as t → ∞.

Thus, z(v(t)) = m, for any t ∈ R, which contradicts the fact that z(v(t)) drops at t = t0 and the second statement
holds. �
4. Automatic transversality results

This section is devoted to the proof of Theorem 1.4. In Section 4.1, we prove the first statement of Theorem 1.4,
whereas in Section 4.2, we prove the second statement.

4.1. Automatic transversality of heteroindexed orbits connecting two equilibria

Let e− and e+ be two hyperbolic equilibrium points of (1.1) with different Morse indices i(e−) and i(e+). Follow-
ing the notations of Section 2.2, we denote Le± the corresponding linearized operators and by (λ±

i , ϕ±
i ) their set of

eigenvalues and generalized eigenfunctions.
Assume that Wu(e−) ∩ Ws

loc(e+) �= ∅ (otherwise the intersection is transversal by definition). Notice that Corol-
lary 3.5 and the fact that i(e−) �= i(e+) imply that i(e+) < i(e−). Let u(t) be a global solution of (1.1) with
u(0) ∈ Wu(e−) ∩ Ws

loc(e+). Since Wu(e−) is a finite-dimensional manifold, there exists a finite basis (v0
1, . . . , v0

p)

of Tu(0)W
u(e−) ∩ Tu(0)W

s
loc(e+). Let vk(t) be the (global) solutions of

∂tvk = ∂2
xxvk + Duf (x,u,ux)vk + Dux f (x,u,ux)∂xvk, vk(0) = v0

k . (4.1)

Notice that the solution vk(t) exists for any t ∈ R. Corollary C.8 gives all the possible precise asymptotic behaviors
of vk(t) when t goes to ±∞. For each k, there exist an eigenvalue λ−

i−k
of Le− with positive real part such that, when

t → −∞, the asymptotic behavior of vk(t) in Hs(S1) is described by the following possibilities:
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(i) if λ−
i−k

is a simple real eigenvalue with eigenfunction ϕ−
i−k

, then there exists ak ∈ R − {0} such that vk(t) =

ake
λ−

i
−
k

t

ϕ−
i−k

+ o(e
λ−

i
−
k

t

) ≡ ψ−
i−k

(t) + o(e
λ−

i
−
k

t

).

(ii) If λ−
i−k

= λ−
i−k +1

is a double real eigenvalue with two independent eigenfunctions ϕ−
i−k

and ϕ−
i−k +1

, then there exist

(ak, bk) ∈ R
2 − {(0,0)} such that vk(t) = ake

λ−
i
−
k

t

ϕ−
i−k

+ bke
λ−

i
−
k

t

ϕ−
i−k +1

+ o(e
λ−

i
−
k

t

) ≡ ψ−
i−k

(t) + o(e
λ−

i
−
k

t

).

(iii) If λ−
i−k

= λ−
i−k +1

is an algebraically double real eigenvalue with eigenfunction ϕ−
i−k

and with generalized eigen-

function ϕ−
i−k +1

, then there exist (ak, bk) ∈ R
2 − {(0,0)} such that vk(t) = (ak + bkt)e

λ−
i
−
k

t

ϕ−
i−k

+ bke
λ−

i
−
k

t

ϕ−
i−k +1

+

o(e
λ−

i
−
k

t

) ≡ ψ−
i−k

(t) + o(e
λ−

i
−
k

t

).

(iv) If λ−
i−k

= λ−
i−k +1

is a (simple) non-real eigenvalue with eigenfunction ϕ−
i−k

= ϕ−
i−k +1

, then there exist (ak, bk) ∈
R

2 − {(0,0)} such that

vk(t) = e
Re(λ−

i
−
k

)t((
ak cos

(
Im

(
λ−

i−k

)
t
)− bk sin

(
Im

(
λ−

i−k

)
t
))

Re
(
ϕ−

i−k

)
− (

ak sin
(
Im

(
λ−

i−k

)
t
)+ bk cos

(
Im

(
λ−

i−k

)
t
))

Im
(
ϕ−

i−k

))+ o
(
e

Re(λ−
i
−
k

)t)
≡ ψ−

i−k
(t) + o

(
e

Re(λ−
i
−
k

)t)
.

The vectors vk(t) have the same type of behaviors when t → +∞, provided λ−
i−k

is replaced by an eigenvalue λ+
i+k

of Le+ with negative real part.

Lemma 4.1. Without loss of generality, we may assume that the behaviors of the functions vk(t) when t goes to
−∞ are different in the sense that the corresponding family (ψ−

i−k
), 1 � k � p, is free and hence generates a finite-

dimensional vector space of dimension p.

Proof. This lemma is a simple consequence of a Gram–Schmidt process. Without loss of generality, we can assume
that λ−

i−1
has the smallest real part among the family (λ−

i−1
, . . . , λ−

i−p
). If there exists k > 1 such that Re(λ−

i−k
) = Re(λ−

i−1
)

with asymptotic behavior of type (i) or with asymptotic behavior of types (ii)–(iv) such that the pairs (a, b) for v1(t)

and vk(t) are linearly dependent, then we can replace vk by vk − αv1 such that the real part of λ−
i−k

increases. Notice

that (v0
1, . . . , v0

p) is still a basis of Tu(0)W
u(e−)∩Tu(0)W

s(e+). Assume now that λ−
i−2

has the smallest real part among

the real parts of the family (λ−
i−2

, . . . , λ−
i−p

) (which can be the same as the real part of λ−
i−1

, but not smaller). If there

exists k > 2 such that Re(λ−
i−k

) = Re(λ−
i−2

) and vk(t) has an asymptotic behavior linearly dependent of the one of v2(t),

then we can replace vk by vk −αv2 so that the real part of λ−
i−k

increases. We pursue the process until the end to obtain

Lemma 4.1. �
Proof of the first statement of Theorem 1.4. In what follows, we assume that the basis (v0

1, . . . , v0
p) of

Tu(0)W
u(e−) ∩ Tu(0)W

s(e+) has been chosen as in Lemma 4.1. By definition Wu(e−) intersects Ws(e+) transver-
sally if and only if Tu(0)W

u(e−) + Tu(0)W
s(e+) = Hs(S1). We know that dim(Tu(0)W

u(e−)) = i(e−) and
codim(Tu(0)W

s(e+)) = i(e+). Thus, Tu(0)W
u(e−) + Tu(0)W

s(e+) = Hs(S1) if and only if

dim
(
Tu(0)W

u(e−) ∩ Tu(0)W
s(e+)

)
� i(e−) − i(e+). (4.2)

The proof of the first statement of Theorem 1.4 consists in the careful study of three different cases.
If i(e+) = 0, then Tu(0)W

s(e+) = Hs(S1) and the transversality trivially holds.
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Assume that i(e+) = 2q − 1 is odd, which implies that the eigenvalues of Le+ with negative real part are
(λ+

i )i�2q−1. By Proposition 2.2, the corresponding generalized eigenfunctions (ϕ+
i )i�2q−1 have all at least 2q ze-

ros. Due to Corollary C.8 in Appendix C, each function vk(t) has at least 2q zeros for large t . Since by Theorem 2.1
the number of zeros of vk(t) is non-increasing, vk(t) has at least 2q zeros for every time t ∈ R. Applying Corollary C.8
again, we obtain that necessarily i−k � 2q − 1 and that i(e−) � 2q . Since Lemma 4.1 states that the asymptotic be-
haviors of all vk(t) are different, there are at most i(e−) − (2q − 1) = i(e−) − i(e+) possible asymptotic behaviors.

Assume now that i(e+) = 2q �= 0 is even. By Proposition 2.2, this means that the pair of eigenvalues (λ+
2q−1, λ

+
2q)

is a pair of simple real eigenvalues satisfying λ+
2q < 0 < λ+

2q−1. All eigenfunctions corresponding to the eigenvalues

of Le+ with negative real part have at least 2q + 2 zeros, except ϕ+
2q which has 2q zeros. Arguing as above, we obtain

that i−k � 2q − 1 and that i(e−) � 2q , that is, that there are at most i(e−) − (2q − 1) = i(e−) − i(e+) + 1 possible
asymptotic behaviors for the functions vk(t) when t → −∞. Here is the point where the fact that i(e−) > i(e+) is
crucial. Indeed, this assumption implies that λ−

2q and λ−
2q−1 have both positive real parts. Assume that p = i(e−) −

i(e+) + 1. Then, according to Lemma 4.1, all the possible asymptotic behaviors corresponding to the eigenvalues
λ−

2q−1, . . . , λ
−
i(e−)−1 are taken by the functions vk(t). Without loss of generality, we may assume that v1(t) and v2(t)

have an asymptotic behavior corresponding to ψ−
2q(t) and ψ−

2q−1(t). Since, due to Theorem 2.1, the number of zeros
of vk(t) is non-increasing in time, the asymptotic behaviors of v1(t) and v2(t), when t → +∞, correspond necessarily

to λ+
2q . Since λ+

2q is a simple eigenvalue, we can find α ∈ R \ {0} such that v1(t) + αv2(t) = o(e
λ+

2q t
) when t → +∞.

Therefore, by Corollary C.8, v1(t)+αv2(t) has at least 2q +2 zeros when t tends to infinity. However, when t → −∞,
the asymptotic behavior of v1(t) + αv2(t) is determined by ψ−

2q + αψ−
2q−1, which does not identically vanish by

Lemma 4.1. By Proposition 2.2, ψ−
2q + αψ−

2q−1 has exactly 2q zeros. Thus, v1(t) + αv2(t) has exactly 2q zeros for
t close to −∞ and we get a contradiction with the lap number property stated in Theorem 2.1. As a consequence,
one of the asymptotic behaviors corresponding to ψ−

2q or ψ−
2q−1 is not realized by the family (vk(t))1�k�p . Thus,

p � i(e−) − i(e+) and (4.2) holds.
This concludes the proof of Assertion (1) of Theorem 1.4. �

4.2. Connections involving periodic orbits

This section is devoted to the proof of the second statement of Theorem 1.4. The proof follows the same lines as the
ones of the proof of the first part of Theorem 1.4. As we shall see, the proof is even simpler because of the presence
of the eigenvalue μ = 1, which implies for example that the dimension of the unstable manifold of a hyperbolic
periodic orbit is larger than its Morse index. In particular, the difficulties encountered in the second part of the proof
in Section 4.1 (see the case i(e+) = 2q) do not occur.

Theorem 4.2.

(1) Let e− (resp. Γ +) be a hyperbolic equilibrium point (resp. hyperbolic periodic orbit of period p+ > 0). Then the
unstable manifold Wu(e−) intersects transversally the local stable manifold Ws

loc(Γ
+).

(2) Let Γ − (resp. e+) be a hyperbolic periodic orbit of period p− > 0 (resp. hyperbolic equilibrium point). Then the
unstable manifold Wu(Γ −) intersects transversally the local stable manifold Ws

loc(e
+).

Proof. We proceed as in Section 4.1. The main ideas behind this proof are the same as those of the proof of the
transversality of orbits connecting two hyperbolic periodic orbits of [13].

Assume that Wu(e−) ∩ Ws
loc(Γ

+) �= ∅ (otherwise the intersection is transversal by definition). Let u(t) be a global
solution of (1.1) with u(0) ∈ Wu(e−)∩Ws

loc(Γ
+). By definition Wu(e−) intersects Ws

loc(Γ
+) transversally if and only

if Tu(0)W
u(e−)+Tu(0)W

s
loc(Γ

+) = Hs(S1). We know that dim(Tu(0)W
u(e−)) = i(e−) and codim(Tu(0)W

s
loc(Γ

+)) =
i(Γ +). Thus, Tu(0)W

u(e−) + Tu(0)W
s
loc(Γ

+) = Hs(S1) if and only if

dim
(
Tu(0)W

u
(
e−)∩ Tu(0)W

s
loc

(
Γ +))� i

(
e−)− i

(
Γ +). (4.3)
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Since Wu(e−) is a finite-dimensional manifold, there exists a finite basis (v0
1, . . . , v0

p) of Tu(0)W
u(e−)∩Tu(0)W

s
loc(e+).

Let vk(t) be the global solutions of Eq. (4.1), that is,

∂tvk = ∂2
xxvk + Duf (x,u,ux)vk + Dux f (x,u,ux)∂xvk, vk(0) = v0

k .

The basis (v0
1, . . . , v0

p) of Tu(0)W
u(e−) ∩ Tu(0)W

s
loc(Γ

+) has the asymptotic behavior described by (i)–(iv) at the
beginning of Section 4.1, when t goes to −∞. Without loss of generality, we may assume that this basis has been
chosen as in Lemma 4.1. By Corollary C.8, we know that the number of zeros of vk(t) is at most equal to the Morse
index i(e−). Let Γ + = {γ +(t) | t ∈ [0,p+)}. Since u(0) belongs to Ws

loc(Γ
+), there exists a+ ∈ [0,p+) such that

u(0) belongs to the local strongly stable manifold of the point γ +(a+). Thus, when t goes to +∞, the asymptotic
behavior of the function vk(t) is given by Corollary C.11 and corresponds to eigenvalues μ+

i+k
of the period map

Π+(p+ + a+, a+) (which coincide with the eigenvalues of the period map Π+(p+,0)), with |μ+
i+k

| < 1. Hence,

i+k > i(Γ +) + 1. Furthermore, if i+k = 2j or 2j − 1, then, when t is large enough, vk(t) has exactly 2j zeros which
are all simple.

If i(Γ +) = 0, then Tu(0)W
s
loc(Γ

+) = Hs(S1) and the transversality trivially holds. We notice that however this
situation does not arise, since, as proved by [26], periodic orbits are never stable in the case of Eq. (1.1).

Assume that i(Γ +) = 2q+ − 1 is odd, then for t large enough, each function vk(t) has at least 2q+ zeros. Since
by Theorem 2.1 the number of zeros of vk(t) is non-increasing, vk(t) has at least 2q+ zeros for every time t ∈ R.
Applying Corollary C.8, we obtain that necessarily i−k � 2q+−1 and that i(e−) � 2q+ (we already know this property
by Corollary 3.5). Since Lemma 4.1 states that the asymptotic behaviors of all vk(t) are different, there are at most
i(e−) − (2q+ − 1) = i(e−) − i(Γ +) possible asymptotic behaviors when t goes to −∞.

Assume that i(Γ +) = 2q+ is even, then, for t large enough, each function vk(t) has at least 2q+ + 2 zeros and,
arguing as above, we obtain that there are at most i(e−) − (2q+ + 1) � i(e−) − i(Γ +) possible asymptotic behaviors
when t goes to −∞.

In each case, (4.3) is satisfied and the heteroclinic orbit u(t) is transverse.
The proof of the second statement is similar to the one of statement (1) and also to the proof of the first part of Theo-

rem 1.4 given in Section 4.1. Notice that, in the case where i(e+) = 2q and i(Γ −) = i(e+) = 2q , we do not encounter
the difficulty, which arises in Section 4.1, since we have an additional dimension at our disposal. Indeed, if Γ − is a
hyperbolic periodic orbit, then dim(Wu(Γ −)) = i(Γ −) + 1. Therefore, Wu(Γ −) intersects Ws

loc(e
+) transversally at

u(0) if and only if

dim
(
Tu(0)W

u
(
Γ −)∩ Tu(0)W

s
loc

(
e+))� i

(
Γ −)+ 1 − i

(
e+). (4.4)

Thus, arguing as in Section 4.1, we prove that the intersection Wu(Γ −) ∩ Ws(e+) is transversal, even if i(Γ −) =
i(e+). �
5. Generic non-existence of homoindexed orbits

In the previous sections, we have seen that the unstable manifolds of hyperbolic periodic orbits always intersect
transversally the local stable manifolds of hyperbolic periodic orbits or equilibrium points. Likewise, the unstable
manifolds of hyperbolic equilibrium points always intersect transversally the local stable manifolds of hyperbolic
periodic orbits. In Section 4.1, we have proved that any orbit connecting two hyperbolic equilibrium points e− and
e+ of different Morse indices i(e−) and i(e+) is transverse. In Section 3.1, we have seen that there does not exist any
connecting orbit between two hyperbolic equilibrium points with same odd index i(e−) = i(e+) = 2m − 1, m � 1.
Thus, in this section, it remains to show that generically with respect to the non-linearity f , there does not exist
any orbit connecting two equilibrium points with same even index i(e−) = i(e+) = 2m, m � 1. In the proof of
the generic non-existence of homoindexed orbits, we will actually show that generically with respect to f , all the
connecting orbits, connecting equilibria with equal even Morse index, are transverse, which precludes the existence
of homoindexed orbits. To show this genericity result, we shall use a functional characterization of the transversality
of all connecting orbits C(e−(f ), e+(f )) of (1.1) and apply the Sard–Smale theorem.
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5.1. Preliminaries

In the introduction, we have assumed that the conditions (1.2) hold, which imply that Eq. (1.1) defines a global
dynamical system Sf (t) in Hs(S1) given by Sf (t)u0 = u(t), where u(t) ∈ C1(R+,H s(S1)) is the (classical) solution
of (1.1). If the conditions (1.2) do not hold, then Sf (t) is only a local dynamical system. At the end of the introduction,
we have remarked that the automatic transversality as well as the generic transversality properties are still true, even
if Hypothesis (1.2) does no longer hold. For this reason, in this section, we do not take into account this hypothesis.

We recall that G denotes the space C2(S1 × R × R,R) endowed with Whitney topology (see (1.3)). We fix a
non-linearity f0 in G (satisfying or not Hypothesis (1.2)). We assume that f0 is chosen so that all the equilibria and
periodic orbits of the corresponding equation (1.1) are hyperbolic. We also consider the set C0(e

−
0 , e+

0 ) ≡ Cf0(e
−
0 , e+

0 )

of all the orbits u(t) = Sf0(t)u0 of (1.1), connecting two (hyperbolic) equilibria e±
0 . Remark that e+

0 could be equal
to e−

0 .
We shall give a functional characterization of the transversality of the connecting orbits C(e−(f ), e+(f )) of (1.1)

for t ∈ R, which connect equilibria e−(f ) and e+(f ), close to e−
0 and e+

0 , when f belongs to a small enough neigh-
bourhood of f0 in G. We will show that, even if C0(e

−
0 , e+

0 ) is not a transverse connecting orbit, we can find f as
close to f0 as is wanted so that all the connecting orbits C(e−(f ), e+(f )) (with norm less than a given constant) are
transverse.

Since G is not metrizable and the classical perturbation theorems are usually proved in Banach spaces, we will
“replace” G by a Banach space in the following way.

Since Hs(S1) is continuously embedded in C1(S1), there exists a positive integer k0 > 1 such that ‖v‖C1 �
k0‖v‖Hs , for any v ∈ Hs(S1). Now, for any M0, we introduce the restriction operator R(M0) :g ∈ G �→ Rg ∈
C2(S1 × [−k0(M0 + 2), k0(M0 + 2)] × [−k0(M0 + 2), k0(M0 + 2)],R) defined by

R(M0)g = g|S1×[−k0(M0+2),k0(M0+2)]×[−k0(M0+2),k0(M0+2)].
The map R(M0) is continuous, open and surjective from G into R(M0)G.

In what follows, we need the following two auxiliary lemmas. The first lemma allows to construct appropriate
neighbourhoods of the equilibria e±

0 in Hs(S1), when f is close to f0 in a small enough neighbourhood of f0 in C2.
This lemma is classical and is proved as [8, Lemma 4.c.2] (see also [9, Lemma 4.10]). Its proof mainly uses the
continuous dependence of the equilibria and local unstable or stable manifolds with respect to the non-linearity f .

Lemma 5.1. Let M0 be a given positive constant and f0 ∈ G be given such that all its equilibrium points are hyper-
bolic. Then, f0 has a finite number of equilibria ej , 1 � j � N0 such that ‖ej‖Hs � M0. There exist r0 > 0, R0 > 0,
R1 > 0, with r0 < R0 < R1, and a small neighbourhood V (f0) ≡ V (f0,M0) of f0 in R(M0)G, depending only on f0
and M0, such that the following properties hold:

(1) For any f ∈ V (f0,M0) and any j , 1 � j � N0, there exists an equilibrium point ej (f ) of Sf (t) in
BHs (ej (f0), r0). The equilibrium ej (f ) is unique in the closed ball BHs (ei(f0),R1)) and has the same Morse
index as ej (f0).

(2) R1 can be chosen so that BHs (ei(f0),R1) ∩ BHs (ej (f0),R1) = ∅, if i �= j .
(3) There exist small neighbourhoods Nj (f ) of ej (f ) (with BHs (ej (f0),R0) ⊂ Nj (f ) ⊂ BHs (ej (f0),R1)), which

converge to Nj (f0) in Hs(S1) as f converges to f0 in R(M0)G and satisfy the following property:
the local stable set Ws

loc,f (ej (f ), Nj (f )) and the local unstable set Wu
loc,f (ej (f ), Nj (f )) are C1-manifolds

of codimension i(e(f0)) and dimension i(e(f0)) respectively. Moreover, Wu
loc,f (ej (f ), Nj (f )) ∩ Ws

loc,f (ej (f ),

Nj (f )) = {ej (f )}.
(4) If u(t) = Sf (t)u∗ is a solution of (1.1) such that u(t) belongs to BHs (ej (f0),R0) for all t � t0 (respectively,

to BHs (ej (f0),R0) for all t � t1), then u(t), t � t0 belongs to the local stable manifold Ws
loc,f (ej (f ), Nj (f ))

(respectively u(t), t � t1 belongs to the local unstable manifold Wu
loc,f (ej (f ), Nj (f ))).

(5) Moreover, there exists a positive constant c0 such that, if u1, u2 are two solutions of (1.1) with f = f1 and
f = f2, where fi , i = 1,2 belong to V (f0,M0), and if u1(t), u2(t) belong to BHs (ej (f0),R0) for all t ∈ J ,
where J = (−∞, t0] or J = [t0,+∞) for some t0 ∈ R, then,

sup
∥∥u1(t) − u2(t)

∥∥
Hs � c0

(‖f1 − f2‖C1 + ∥∥u1(t0) − u2(t0)
∥∥

Hs

)
. (5.1)
t∈J
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We also need the following auxiliary lemma about convergence of connecting orbits. Its proof is the same as the
proofs of [8, Lemma 4.c.3] and [9, Lemma 4.11 ]. See the proof of Lemma 6.2 for similar arguments.

Lemma 5.2. Let f0, M0 and r0 < R0 be as in Lemma 5.1. Let e−(f0) and e+(f0) be two (hyperbolic) equilibria of f0
satisfying the conditions of Lemma 5.1. Let ρ0 > 0 be any positive number such that r0 < ρ0 < R0.

Let fν ∈ V (f0) be a sequence converging in R(M0)G to some function f∞ ∈ V (f0). Assume that, for ν = 1,2, . . . ,

uν is a solution of (1.1) for f = fν such that,

uν(t) ∈ BHs (0,M0), ∀t ∈ R,

uν(t) ∈ BHs

(
e−(f0), ρ0

)
, ∀t ∈ (−∞,−t0],

uν(t) ∈ BHs

(
e+(f0), ρ0

)
, ∀t ∈ [t0,∞), (5.2)

where t0 is a positive time. If e−(f0) = e+(f0) = e(f0), we assume in addition that there exists a sequence of times
tν ∈ (−t0, t0) such that uν(tν) /∈ BHs (e(f0),R0).

Then, uν admits a subsequence uνj
that converges in C0

b(R,H s(S1)) to a non-trivial connecting orbit u∞ of (1.1)
for f = f∞, connecting the equilibria e−(f∞) and e+(f∞).

Remark. If, in the case where e−(f0) = e+(f0) = e(f0), we do not require that there exists a sequence of times
tν ∈ (−t0, t0) such that uν(tν) /∈ BHs (e(f0),R0), then the subsequence uνj

could converge in C0
b(R,H s(S1)) to an

equilibrium point e(f∞) of Sf∞(t).

In [8], in order to give a functional characterization of the transversality of the connecting orbits C(e−, e+),
Brunovský and Poláčik have introduced a functional defined on a subspace E of the continuous bounded mappings
from R into L2. In our situation, following the path of [8], we could introduce the spaces,

E = C1,δ
(
R,L2(S1))∩ C0,δ

(
R,H 2(S1)), δ > 0, Z = C0,δ

(
R,L2(S1)).

Then, we would fix a non-linearity f0, the equilibrium points of which are all hyperbolic, and fix two such equilibria
e−

0 and e+
0 . By Lemma 5.1, if a solution u(t) = Sf0(t)u0 belongs to the ball BHs (e+

0 (f0),R0) for every time t � t0

and to the ball BHs (e−
0 (f0),R0) for every time t � −t0, where t0 > 0, then u(t) is a connecting orbit from e−

0 to e+
0 .

This leads us to introduce the open subset U0 ⊂ E ,

U0 ≡ U0
(
e−

0 , e+
0

)= {
w(t) ∈ E

∣∣w(t) ∈ BHs

(
e+

0 (f0),R0
)

for every t � t0,

w(t) ∈ BHs

(
e−

0 (f0),R0
)

for every t � −t0
}
. (5.3)

We could finally define the functional Φ(w,f ) : (w,f ) ∈ U0 × V (f0) �→ Φ(w,f ) ∈ Z by

Φ(w,f ) = wt(x, t) − wxx(x, t) − f
(
x,w(x, t),wx(x, t)

)
. (5.4)

As in [8, Lemma 4.b.5 and Corollary 4.b.6], we could show that, if (u,f ) belongs to Φ−1(0) ∩ (U0 × V (f0)), then
the linearized operator DuΦ(u,f ) is a Fredholm operator of index i(e−

0 ) − i(e+
0 ). Moreover, we could show that,

if 0 is a regular value of the map u ∈ U0 �→ Φ(u,f ), then all the connecting orbits ũ(t) such that (ũ, f ) ∈ U0 ×
V (f0) are transverse. This is a consequence of a functional characterization of the transversality similar to the one
of Appendix B. Then, we would apply the Sard–Smale theorem (Theorem A.1) to the function Φ to deduce that,
generically with respect to f , 0 is a regular value of the map u ∈ U0 �→ Φ(u,f ).

However, we have seen, in [9], that it is more convenient to use a discretized version of the functional Φ , that is, to
work with bounded sequences (w(nτ))n∈N rather than with bounded continuous mappings w(t). In the next section,
as in [9], we shall discretize the time variable and replace the functional Φ(·) defined on bounded functions on R by
a discrete analog, defined on bounded sequences.

5.2. Proof of Theorem 1.5

As already explained, the proof of Theorem 1.5 essentially consists in using the (discrete) functional characteriza-
tion of the transversality given in Appendix B and in applying the Sard–Smale theorem to an appropriate discretization
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of the functional (5.4). The application of the Sard–Smale theorem involves some technical difficulties. The way to
overcome them is now well understood (see [8] and [9]). The verification of the surjectivity of the functional Φ is the
crucial point in the application of the Sard–Smale theorem.

The proof of Theorem 1.5 can be decomposed into several steps.

Step 1. Choice of particular neighbourhoods and reduction to a simpler problem. We introduce the sequence of
bounded open sets, m ∈ N, given by

Bm = BHs (0,m) = {
v ∈ Hs

(
S1) ∣∣ ‖v‖Hs < m

}
.

Since Hs(S1) = ⋃
m Bm, Theorem 1.5 will be proved if we show that, for each m, there exists a generic set in G,

such that, for any f in this generic set, any orbit ũ(t) of (1.1), connecting two (hyperbolic) equilibria and satisfying
ũ(t) ∈ Bm, t ∈ R, is transverse. We recall that, since Hs(S1) is continuously embedded in C1(S1), there exists a
positive integer k0 such that ‖v‖C1 � k0‖v‖Hs , for any v ∈ Hs(S1). In [31, Proposition 3.2], we have shown that the
set

Oh
m = {

f ∈ G
∣∣ any equilibrium e of (1.1) with ‖e‖C1(S1) � k0(m + 1) is hyperbolic

}
is open and dense in G.

As in Section 5.1, we want to work in subspaces of C2(S1 ×[−k0(m+2), k0(m+2)]×[−k0(m+2), k0(m+2)],R)

and hence, we use the restriction operator R(m) that we simply denote R. We set ROm = R(Oh
m) endowed with the

topology of C2(S1 × [−k0(m + 2), k0(m + 2)] × [−k0(m + 2), k0(m + 2)],R), which is a separable Banach space.
The set ROm is an open subset of C2(S1 × [−k0(m + 2), k0(m + 2)] × [−k0(m + 2), k0(m + 2)],R) and the map R

is continuous, open and surjective.
As already remarked in [8, Proof of Theorem 4.c.1, p. 165] (and also in [9, Proposition 4.12]), Theorem 1.5 will

be proved by using the following proposition.

Proposition 5.3. Assume that, for any m ∈ N and any f0 ∈ ROm, there exist a small neighbourhood Vf0 of f0 in
ROm (or simply in C2(S1 × [−k0(m + 2), k0(m + 2)] × [−k0(m + 2), k0(m + 2)],R)) and a generic set Gf0,m in
Vf0 such that, for any f ∈ Gf0,m, any solution ũ(t) of (1.1), connecting two (hyperbolic) equilibria and satisfying
‖ũ(t)‖Hs � m, for any t ∈ R, is transverse. Then Theorem 1.5 holds.

Proof. Let m be given. Since ROm is separable, there exists a countable set of functions fi , i ∈ N, such that the
family of corresponding neighbourhoods (Vfi

), i ∈ N, covers ROm. Let (Gfi ,m), i ∈ N, be the corresponding generic
sets and let G̃fi ,m = Gfi ,m ∪ (ROm \ Vfi

), which is a generic subset of ROm. The set Gm = ⋂
i∈N

G̃fi ,m is generic
in ROm. Moreover, for any f ∈ Gm, any solution ũ(t) of (1.1), connecting two (hyperbolic) equilibria and satisfying
‖ũ(t)‖Hs � m, t ∈ R, is transverse. Since the map R is continuous, open and surjective, R−1(Gm) and R−1(Gm)∩ Oh

(where Oh is the generic set introduced in Theorem 1.3) are generic subsets of G. Finally, we notice that OM =⋂
m∈N

R−1(Gm) ∩ Oh is the generic set given in Theorem 1.5. �
The interest of Proposition 5.3 is that we can now work in a small neighbourhood Vf0 of f0 in ROm instead of

working in ROm. This neighbourhood can be chosen as small as is needed.
From now on, we fix m ∈ N and f0 ∈ ROm. We apply Lemma 5.1 with M0 = m. Hence, there exists a small

neighbourhood V (f0) of f0 in ROm such that all the properties described in Lemma 5.1 are satisfied. In particular,
let ej (f0), 1 � j � N0 be the (hyperbolic) equilibrium points of Sf0(t) such that ‖ej (f0)‖Hs � m. Since Sf0(t)

has also a finite number of (hyperbolic) equilibrium points in the closed ball BHs (0,m + 1), there exist two real
numbers k and k1 such that 1 < k1 < k < k0(m + 2)/(m + 1) and that Sf0(t) has only N0 equilibrium points in the
closed ball BHs (0, km). Moreover, we may choose the neighbourhood V (f0) of f0 small enough so that, for any
f ∈ V (f0), Sf (t) has only N0 equilibrium points in the closed balls BHs (0, km) and has no equilibrium points in
{v ∈ Hs(S1) | k1m � ‖v‖Hs � km}. Let r0 and R0 be chosen as in Lemma 5.1. We notice that r0 and R0 can be
chosen small enough so that, for any 1 � j � N0, BHs (ej (f0),R0) ⊂ BHs (0, km). For later use, we also fix ρ0 and
ρ1 such that r0 < ρ0 < ρ1 < R0.
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For any (even) integer d , we introduce the set Ed of equilibria of Eq. (1.1) for f = f0 in BHs (0,m), the Morse
indices of which are equal to d and we set

Dd =
⋃

ej (f0)∈Ed

BHs

(
ej (f0), r0

)
.

For any integer � and (even) integer d , we denote by G�,d
m the set of all f ∈ V (f0) that have the following property:

every solution u of (1.1) satisfying

u(t) ∈ Bm, ∀t ∈ R,

u(t) ∈ Dd , ∀t ∈ (−∞,−�] ∪ [�,+∞), (5.5)

is transverse. We notice that, due to Lemma 5.1, any non-trivial orbit satisfying the conditions (5.5) is a connecting
orbit, connecting two equilibria contained in Dd . Due to the choice of V (f0), the set

Gm =
⋂
�,d

G�,d
m

satisfies the transversality conditions stated in Proposition 5.3. It is therefore sufficient to prove that each G�,d
m is open

and dense in V (f0).

Step 2. Proof of the openness of G�,d
m . Assume that (fν) is a sequence in V (f0)\ G�,d

m which converges to f∞ ∈ V (f0).
We want to show that f∞ does not belong to G�,d

m . Since fν ∈ V (f0) \ G�,d
m , there exists a solution of (1.1) for

f = fν , distinct from any equilibrium and connecting two equilibria in Dd . Since there is only a finite number of sets
BHs (ej (f0), r0) in Dd , passing to a subsequence, we may suppose that there exist indices i1, i2, with 1 � i1 � N0,
1 � i2 � N0 such that

uν(t) ∈ BHs

(
ei1(f0), r0

)
, ∀t ∈ (−∞,−�],

uν(t) ∈ BHs

(
ei2(f0), r0

)
, ∀t ∈ [�,+∞).

Moreover, if i1 = i2 ≡ i, since the solution uν(t) is not an equilibrium point, there exists a time τν such that uν(τν) /∈
BHs (ei(f0),R0). By Lemma 5.2, there exists a subsequence uνj

that converges in C0
b(R,H s(S1)) to a non-trivial

connecting orbit u∞ of (1.1) for f = f∞, connecting the equilibria ei1(f∞) and ei2(f∞). Since this non-trivial orbit
connects two equilibrium points with same Morse index, it cannot be a transverse orbit, which proves the openness
of G�,d

m .

It remains to show that G�,d
m is dense in V (f0). This will be done in the next (and remaining) steps of the proof, by

introducing a discrete version of the functional Φ described in Section 5.1 and applying the Sard–Smale theorem to
it. To this end, we first need to discretize the semi-flow Sf (t).

Step 3. Discretization of the semi-flow Sf (t). For any u0 ∈ Hs(S1) and f close to f0, we consider the image by the
time τ -map Sf (τ )u0 ∈ Hs(S1) of u0,

G(u0) := Gf (u0) = eAτu0 +
τ∫

0

eA(τ−σ)f
(
x,Sf (σ )u0, ∂x

(
Sf (σ )u0

))
dσ, (5.6)

where A = ∂xx . As we do not assume global existence of solutions in this section, G(u0) may not be defined if Sf (t)u0
blows up in a time shorter than τ . To overcome this difficulty, for any given m > 0, we choose a time τm > 0 such that
G is well defined for any u0 ∈ BHs (0,m) and any f in a neighbourhood of f0. Then, since u �→ f (·, u,ux) belongs
to Cr (H s(S1),L2(S1)), r � 1, the mapping G belongs to Cr (BHs (0,m),Hs(S1)) and, for any v0 ∈ Hs(S1),

DG(u0)v0 = eAτmv0 +
τm∫

0

eA(τm−σ)
(
Duf

(
x,Sf (s̃)u0, ∂x

(
Sf (σ )u0

))((
DSf (σ )u0

)
v0
)

+ Dux f
(
x,Sf (σ )u0, ∂x

(
Sf (σ )u0

))((
DSf (σ )u0

)
v0
) )

dσ, (5.7)

x
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that is, DG(u0)v0 is the image at the time t = τm of the (classical) solution of the linearized equation,

∂tv = Av + Duf
(
x,Sf (t)u0, ∂x

(
Sf (t)u0

))
v + Dux f

(
x,Sf (t)u0, ∂x

(
Sf (t)u0

))
vx, t > 0,

v(0) = v0.

In other words, if ũ(t) is a bounded orbit of (1.1) with supt∈R ‖ũ(t)‖X � m, then, for any n ∈ Z,

G
(
ũ(nτm)

)= ũ
(
(n + 1)τm

)
, DG

(
ũ(nτm)

)
v0 = Tũ

(
(n + 1)τm,nτm

)
v0, (5.8)

where Tũ(t, s) is the evolution operator (on L2(S1)) defined by the linearized equation along the bounded orbit ũ(t)

(see Eq. (B.11) in Appendix B.3).
In the next step, we shall introduce the discretized version of the functional Φ defined in (5.4) and the “discretized”

open set corresponding to U0. We require several smallness conditions on the time step τm. We assume that τ ≡ τm ≡
τm,k,k1 and V (f0) are small enough such that:

(i) if ‖u0‖Hs � m, then Sf0(t)u0 ∈ BHs (0, k1m), for 0 � t � τm,
(ii) if ‖u0‖Hs � k1m, then Sf0(t)u0 ∈ BHs (0, km), for 0 � t � τm,

(iii) if u0 ∈ BHs (ej (f0), ρ0), 1 � j � N0 and f ∈ V (f0), then Sf (t)u0 ∈ BHs (ej (f0), ρ1) for 0 � t � τ0.

With these conditions, we control the behavior to the continuous solution Sf (t)u0 between two time steps nτ and
(n+1)τ . For example, (iii) ensures that if u(nτ) belongs to BHs (ej (f0), ρ0) for any large enough n, then u(t) belongs
to BHs (ej (f0),R0) for t large enough and thus u(t) belongs to the local stable manifold of ej (f0).

Step 4. A functional characterization of the transversality. We are now ready to define the discretized version of
the functional Φ introduced in Section 5.1. This follows the lines of [9].

We recall that the integer m, the function f0 and the neighbourhood V (f0) are fixed. Since the Sard–Smale theorem
requires that Φ is defined on open sets and the set Bm used in the definition of G�,d

m is closed, we need to introduce
the following set

B∗
m = {

v ∈ Hs
(
S1) ∣∣ ‖v‖Hs < k1m

}
.

Let Ed be the set of equilibrium points of Sf0(t) in Bm of Morse index d . We set

D∗
d =

⋃
ej (f0)∈Ed

BHs

(
ej (f0), ρ0

)
.

For any integer � and any (even) integer d , we finally introduce the following subspace of �∞(Z,H s(S1)),

X ≡ Xm,�,d = {
w(·τ) ∈ �∞(

Z,H s
(
S1)) ∣∣ ∀|n| � �, w(nτ) ∈ D∗

d and ∀n ∈ Z, w(nτ) ∈ B∗
m

}
. (5.9)

We notice that X is open in �∞(Z,H s(S1)) and contains the discretizations of all connecting orbits of Sf (t) satisfy-
ing (5.5). We next define the discretized map Φ ≡ Φm,�,d : Xm,�,d × V (f0) → l∞(Z,H s(S1)) by

Φ(w,f )(n) ≡ Φm,�,d(w,f )(n) = w
(
(n + 1)τ

)− Gf

(
w(nτ)

)
, ∀n ∈ Z, (5.10)

where Gf has been defined in (5.6).
Arguing as in [9, Section 4.2], we obtain the following characterization of the transversality. Its proof is based on

the abstract formulation of transversality given in Appendix B. Without loss of generality, we may replace V (f0) by a
smaller neighbourhood and thus assume that V (f0) is actually a convex neighbourhood.

Theorem 5.4. The above map Φ : Xm,�,d × V (f0) → l∞(Z,H s(S1)) is of class C 1. A pair (u,f ) belongs to Φ−1(0) if
and only if u is the discretization of a connecting orbit ũ(t) (or an equilibrium point) of Sf (t) contained in BHs (0, km)

whose discretization belongs to B∗
m. Moreover, for any (u,f ) ∈ Φ−1(0) the mapping DuΦ(u,f ) is a Fredholm oper-

ator of index 0.
If 0 is a regular value of the map u ∈ Xm,�,d �→ Φ(u,f ), then all the connecting orbits the discretizations of which

are contained in Xm,�,d are transverse, i.e. f ∈ G�,d
m .
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Proof. The description of the zeros (u,f ) of Φ is obvious. Indeed, Gf (u(nτ)) = Sf (τ)u(nτ) and thus u is the
discretization of a trajectory ũ(t) of Sf (t). Moreover, due to the definition of X ≡ Xm,�,d and to Lemma 5.1, it is a
connection between two equilibrium points e−(f ) and e+(f ) of same index d and is a constant sequence if and only
if it coincides with an equilibrium e−(f ) = e+(f ).

It is straightforward to prove that the mapping Φ : X × V �→ l∞(Z,H s(S1)) is of class C1 (see [8, Lemma 4.c.4]
or [9, Lemma 4.13]). Moreover, the first derivative DΦ(u,f ), for (u,f ) ∈ X × V (f0), is given by

DΦ(u,f )(Y,h)(n) = Y
(
(n + 1)τ

)− DuGf

(
u(nτ)

)
Y(nτ) − Df Gf

(
u(nτ)

) · h
= Y

(
(n + 1)τ

)− Tu,f

(
(n + 1)τ, nτ

)
Y(nτ) − Df Gf

(
u(nτ)

) · h
≡ (Lu,f Y )(nτ) − Df Gf

(
u(nτ)

) · h, (5.11)

where (Y,h) is any element of l∞(Z,H s(S1)) × G and where Tu,f , t � s, is the evolution operator defined by the
linearized equation (B.11) and ũ is the solution of (1.1), the discretization of which is given by u.

The expression (5.11) of the derivative DΦ shows that u is a regular zero of the mapping u ∈ Xm,�,d �→ Φ(u,f )

if and only if the mapping Lu,f is surjective. Corollary B.14 implies that the map Lu,f is surjective if and only if ũ is
transverse. Corollary B.14 also tells that Lu,f is a Fredholm operator of index equal to i(e−(f )) − i(e+(f )) = 0.

As noticed above, if ũ = {. . . , e, e, . . .} is a constant sequence, then, by the construction of the various neighbour-
hoods made in Lemma 5.1, e is a hyperbolic equilibrium point of (1.1), which implies that e = e−(f ) = e+(f ). Again,
by Theorem B.7, the surjectivity of the map Lu,f is then equivalent to the hyperbolicity of e−(f ). �
Step 5. Surjectivity of DΦ . As already explained, we will apply the Sard–Smale theorem to the functional Φ intro-
duced in Step 4 and consider the set Φ−1(0) in particular. One of the main hypotheses of the Sard–Smale theorem
is the fact that 0 is a regular value of the map (w,f ) ∈ X × V (f0) �→ Φ(w,f ). This property will be shown in
the next theorem as consequence of Corollary B.14 and the one-to-one property of homoindexed orbits proved in
Proposition 3.6.

Theorem 5.5. Assume that X and Φ are given as in Step 4.

(1) The pair (ũ, f ) is a regular zero of the map (w,f ) ∈ X × V (f0) �→ Φ(w,f ), if and only if, for any non-trivial
bounded solution ψ(t) ∈ C0

b(R,L2(S1)) of the adjoint equation (B.12), there exists g̃ ∈ RG such that

+∞∫
−∞

〈
ψ(t), g̃

(
ũ(t)

)〉
L2(S1)

dt �= 0,

where ũ(t) = Sf (t)ũ(0) is the (continuous) trajectory corresponding to the sequence (ũ(nτ)).
(2) As a consequence of the first statement and of Proposition 3.6, 0 is a regular value of the map Φ .

Proof. We first prove the second statement of the theorem, which is a direct consequence of Proposition 3.6. If
Φ(ũ, f ) = 0 and ũ is the discretization of an (hyperbolic) equilibrium point, then as explained in the proof of
Theorem 5.4, the map Lũ,f is surjective and thus DΦ(ũ, f ) is also surjective. Thus, it remains to consider the
case where (ũ, f ) ∈ Φ−1(0) and ũ is not the discretization of an equilibrium point. By the first statement, the
operator DΦ(ũ, f ) ∈ L(X × V , l∞(Z,H s(S1))) is surjective if and only if, for any non-trivial bounded solution
ψ(t) ∈ C0

b(R,L2(S1)) of the adjoint equation (B.12), there exists g̃ ∈ RG such that∫
S1

+∞∫
−∞

ψ(x, t)g̃
(
x, ũ(x, t), ũx(x, t)

)
dx dt �= 0. (5.12)

Since ψ(t) is a non-trivial solution of the adjoint equation, there exist x0 ∈ S1 and t0 such that ψ(x0, t0) �= 0. Due
to the injectivity property of Proposition 3.6, for x0 fixed, there exists no other time t1 such that ũ(x0, t1) = ũ(x0, t0)

and ũx(x0, t1) = ũx(x0, t0). Moreover, Proposition 3.6 also implies that (ũ(x0, t), ũx(x0, t)) stays outside a small
neighbourhood of (ũ(x0, t0), ũx(x0, t0)) for t close to ±∞. Therefore, one easily constructs a regular bump function
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g̃ which vanishes outside a small neighbourhood of (x0, ũ(x0, t0), ũx(x0, t0)) and is positive in this neighbourhood;
so that the function (x, s) �→ g̃(x, ũ(x, s), ũx(x, s)) is a regular bump function concentrated around (x0, t0). For such
a choice of g̃, the condition (5.12) is thus satisfied.

We now prove the first statement of the theorem. This proof is nothing else as the proof of [9, Theorem 4.7]. For
the reader’s convenience, we reproduce it here.

As already explained, if (ũ, f ) belongs to Φ−1(0), then ũ is a discretization of a trajectory ũ(t), t ∈ R, of (1.1),
connecting two equilibria e−(f ) and e+(f ). Without loss of generality, we may assume that ũ is a non-constant
sequence. Indeed, if ũ = {. . . , e, e, . . .}, then e = e−(f ) = e+(f ) is a hyperbolic equilibrium point and so ũ is a
regular zero of Φ . On the other hand, the adjoint equation (B.12) has no non-trivial bounded solution.

Thus, we assume that ũ is not a constant sequence. We recall that, by (5.11), for any (Y, g̃) ∈ l∞(Z,H s(S1))×RG(
DΦ(ũ, f ) · (Y, g̃)

)
(nτ) = (Lũ,f Y )(nτ) − Df Gf

(
ũ(nτ)

) · g̃.

We notice that Lũ,f corresponds to the operator L defined in (B.2). A sequence H ∈ �∞(Z,H s(S1)) is in the range
of DΦ if and only if one can choose g̃ ∈ RG such that H + Df Gf (ũ) · g̃ is in the range of Lũ. According to
Corollary B.14, this is equivalent to finding g̃ such that

+∞∑
n=−∞

〈
ψ
(
(n + 1)τ

)
,Df Gf

(
ũ(nτ)

) · g̃〉
L2(S1)

= −
+∞∑

n=−∞

〈
ψ
(
(n + 1)τ

)
,H(nτ)

〉
L2(S1)

, (5.13)

for every non-trivial sequence ψ(nτ) = T ∗(nτ,0)ψ0, ψ0 ∈ L2(S1), which is bounded in L2(S1). We can choose such
a g̃ ∈ RG if, given a basis ψ1,ψ2, . . . ,ψq of the (necessarily) finite-dimensional vector space of bounded sequences
ψ(n) = T ∗(nτ,0)ψ0, the mapping

g̃ ∈ G �→
(+∞∑

−∞

〈
ψj

(
(n + 1)τ

)
,Df Gf

(
ũ(nτ)

) · g̃〉
L2(S1)

)
1�j�q

∈ R
q (5.14)

is surjective. If the range of the mapping (5.14) is not the whole vector space R
q , there exists a vector (α1, . . . , αq)

orthogonal to the range, that is, there exists a bounded sequence ψ =∑
αjψj �= 0 such that, for any g̃ ∈ RG,

+∞∑
n=−∞

〈
ψ
(
(n + 1)τ

)
,Df Gf

(
ũ(nτ)

) · g̃〉
L2(S1)

= 0.

Thus, DΦ is surjective if and only if, for any bounded sequence ψ(nτ) = T ∗(nτ,0)ψ0, there exists g̃ ∈ RG such that,

+∞∑
n=−∞

〈
ψ
(
(n + 1)τ

)
,Df Gf

(
ũ(nτ)

) · g̃〉
L2(S1)

�= 0. (5.15)

Since the solution of (1.1) is differentiable with respect to f , we can differentiate (1.1) formally with respect to f to
deduce that, for any g̃,

Df Gf

(
ũ(nτ)

) · g̃ =
(n+1)τ∫
nτ

Tũ

(
(n + 1)τ, σ

)
g̃
(
ũ(σ )

)
dσ. (5.16)

Using the expression (5.16) in the condition (5.15) yields

+∞∑
n=−∞

〈
ψ(n + 1),Df Gf

(
ũ(nτ)

) · g̃〉
L2(S1)

=
+∞∑

n=−∞

(n+1)τ∫
nτ

〈
ψ
(
(n + 1)τ

)
, Tũ

(
(n + 1)τ, σ

)
g̃
(
ũ(σ )

)
dσ

〉
L2(S1)

=
+∞∑

n=−∞

(n+1)τ∫ 〈
T ∗

ũ

(
σ, (n + 1)τ

)
ψ
(
(n + 1)τ

)
, g̃
(
ũ(σ )

)
dσ

〉
L2(S1)
nτ
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=
+∞∫

−∞

〈
ψ(σ), g̃

(
ũ(σ )

)
dσ

〉
L2(S1)

, (5.17)

where, for any σ ∈ R, ψ(σ) = T ∗
ũ
(σ, (n + 1)τ )ψ((n + 1)τ ) = T ∗

ũ
(σ,0)ψ0. We remark that ψ(·) belongs to

C 0
b(R,L2(S1)) and is a bounded solution of (B.11). Theorem 5.5 is thus proved. �

Step 6. Application of the Sard–Smale theorem and density of G�,d
m . After all the preliminaries given in the previous

steps, we are now ready to apply the Sard–Smale theorem (in the form recalled in Appendix A). This follows the lines
of [8] and [9].

We recall that the subspace X of �∞(Z,H s(S1)) has been defined in (5.9). We introduce the open subset Y = V (f0)

of ROm and the Banach space Z = �∞(Z,H s(S1)).
We recall that the mapping Φ ≡ Φm,�,d : X × Y → Z has been given in (5.10) as follows:

Φ(w,f )(n) = w
(
(n + 1)τ

)− Gf

(
w(nτ)

)
, ∀n ∈ Z,

where Gf has been defined in (5.6).
We now check that all the hypotheses of Theorem A.1 are satisfied with ξ = 0.
By Theorem 5.4, Φ is a C1-mapping from X × Y into Z and it is also a Fredholm operator of index 0 for any

(w,f ) ∈ Φ−1(0). Thus Hypothesis 1 of Theorem A.1 holds.
By Theorem 5.5, DΦ(w,f ) :Tw X × Tf Y → T0 Z is surjective, for (w,f ) ∈ Φ−1(0). Thus Hypothesis 2 of The-

orem A.1 also holds.
Taking into account Lemma 5.2 and the remark following this lemma, we can prove Hypothesis 3(b) by following

the lines of the proof of the corresponding property in [9] (see [9, Step 3 of the proof of Proposition 4.12]).
Thus, the functional Φ satisfies all the assumptions of the Sard–Smale theorem. Due to the relation between Φ and

the transversality of connecting orbits (Theorem 5.4), this shows the genericity of G�,d
m in V (f0) and concludes the

proof of Theorem 1.5.

6. The non-wandering set

To prove Theorem 1.6, it remains to show that generically there does not exist non-wandering elements which are
not critical elements and that generically the number of critical elements is finite. We emphasize that the dynamics
of (1.1) may have non-trivial non-wandering elements. Indeed, as shown in [57], every two-dimensional flow can be
realized in the dynamics of (1.1). Thus, one can for example create a sequence of periodic orbits, which piles up on a
homoclinic orbit. This orbit is then a non-wandering orbit which is not critical. However, non-trivial non-wandering
orbits are generically precluded.

Proposition 6.1. Assume that f is a non-linearity such that the dynamics of (1.1) satisfy the following properties:

– There exists a compact global attractor for (1.1).
– All the equilibria and periodic orbits of (1.1) are hyperbolic.
– There is no homoclinic orbit and all the heteroclinic orbits are transversal.

Then, the set of non-wandering elements consists in a finite number of equilibrium points and periodic orbits.

As usual in this article, the property stated in Proposition 6.1 has its equivalent for two-dimensional dynamical
systems. It mainly relies on Poincaré–Bendixson property, proved in [14] for (1.1). Proposition 6.1 is the key point
to deduce the genericity of Morse–Smale property from the genericity of Kupka–Smale property. The genericity of
Morse–Smale property for dynamical systems of orientable surfaces shown in [48] also relies on a similar property,
see [43].

We enhance that, if f is such that (1.1) admits a compact global attractor and that any equilibrium point and any
periodic orbit are hyperbolic, then there is at most a finite number of equilibrium points. However, as we explained
above, there could exist an infinite number of hyperbolic periodic orbits: think of a sequence of hyperbolic periodic
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orbits piling up to a homoclinic orbit. One can only ensure that there is a finite number of hyperbolic periodic orbits
with a period less than a given number.

We begin the proof of Proposition 6.1 by several lemmas. We assume in the whole section that f has been chosen
so that the hypotheses of Proposition 6.1 are satisfied.

Let C be a hyperbolic equilibrium point or periodic orbit of (1.1). We recall that there exists an open neighbourhood
B of C in Hs(S1) such that each global solution u(t) of (1.1), satisfying u(t) ∈ B for all t � 0, belongs to the local
unstable manifold Wu

loc(C). We refer for example to [18,51].

Lemma 6.2. Let C be a hyperbolic equilibrium point or periodic orbit of (1.1) and let B be the neighbourhood of C as
described above. Let (un(t))n∈N be a sequence of solutions of (1.1) such that, for each n ∈ N, there exist three times
σn < tn < τn such that the following properties hold. For all t ∈ (σn, τn), un(t) ∈ B , un(σn) ∈ ∂B , un(τn) ∈ ∂B and,

d
(
un(tn), C

) := inf
c∈C

∥∥un(tn) − c
∥∥

Hs(S1)
−→

n→+∞0.

Then, there exist an extraction ϕ and a globally defined and bounded solution u∞(t) of (1.1) such that u∞(t) ∈
Wu

loc(C), t � 0, and

∀T > 0, sup
t∈[−T ,T ]

∥∥uϕ(n)(τϕ(n) + t) − u∞(t)
∥∥

Hs(S1)
−→

n→+∞0. (6.1)

Proof. First, we claim that τn − tn → +∞ when n → +∞. Indeed, if this is not true, since C is compact, we can
extract a subsequence uψ(n)(tψ(n)) converging to some c ∈ C and such that τψ(n) − tψ(n) converges to some t � 0.
Then, by continuity of the Cauchy problem related to (1.1), uψ(n)(τψ(n)) converges to a point of C , which contradicts
the fact that uψ(n)(τψ(n)) ∈ ∂B .

We set T = 1. Since (1.1) admits a compact global attractor and that (τn) converges to +∞, the sequence un(τn −
T ) is precompact in Hs(S1) and there is an extraction ϕ1 such that uϕ1(n)(τϕ1(n) − T ) converges to some u∞(−T ) ∈
Hs(S1). Let u∞(t) = S(t + T )u∞(−T ), t � −T , be the solution of (1.1) associated to u∞(−T ). By continuity of
the Cauchy problem related to (1.1), uϕ1(n)(τϕ1(n) + t) converges to u∞(t) uniformly with respect to t ∈ [−T ,T ]. To
achieve the proof of uniform convergence of un(t) to u∞(t) on any compact set of time, it is sufficient to repeat the
argument for all T ∈ N and to use the diagonal extraction ϕ(n) = ϕn ◦ · · · ◦ ϕ1(n).

Finally, let us notice that u∞(t) belongs to Wu
loc(C). Indeed, since un(t) ∈ B for all t ∈ [tn, τn) and that τn − tn →

+∞, u∞(t) ∈ B for all t � 0. Due to the choice of B , this implies that u∞(t) ∈ Wu
loc(C). �

Let M ∈ R ∪ {+∞}. We use the notation �1,M + 1� = {k ∈ N,1 � k � M + 1}. We say that a sequence of critical
elements (Ck)k∈�1,M+1� is connected if for any k ∈ �1,M�, there exists a heteroclinic orbit uk(t) such that the α-limit
set of uk(t) is Ck and its ω-limit set is Ck+1. We recall that a chain of heteroclinic orbits denotes the sequence of
heteroclinic orbits corresponding to a connected sequence of critical elements (Ck)k∈�1,p+1� with Cp+1 = C1.

Lemma 6.3. Assume that f is as in Proposition 6.1. Then, there is no connected sequence of critical elements with
infinite length. As a consequence, there is no chain of heteroclinic orbits and, every ω-limit set and every non-empty
α-limit set of trajectories of (1.1) consist exactly of one critical element

Proof. Let M ∈ N ∪ {+∞} and let (Ck)k∈�1,M+1� be a connected sequence of closed orbits with heteroclinic connec-
tions (uk(t))k∈�1,M�. We consider the Morse indices i(Ck) of the closed orbits. We have several cases:

– If Ck and Ck+1 are both periodic orbits, then Theorem 1.2 shows that i(Ck) > i(Ck+1).
– If Ck is an equilibrium point and if Ck+1 is an equilibrium point or a periodic orbit, then dim(Wu(Ck)) = i(Ck)

and codim(Ws(Ck+1)) = i(Ck+1). Thus, since the intersection of Wu(Ck) and Ws(Ck+1) is non-empty and transversal,
one must have i(Ck) > i(Ck+1).

– If Ck is a periodic orbit and Ck+1 is an equilibrium, then dim(Wu(Ck)) = i(Ck) + 1 and codim(Ws(Ck+1)) =
i(Ck+1). Therefore, i(Ck) � i(Ck+1).

Hence, the Morse index of Ck is non-increasing and decreases except if uk goes from a periodic orbit to an equi-
librium point. However, a sequence cannot consist only of connections from a periodic orbit to an equilibrium and
the Morse index must decrease at least every two steps. Therefore, since the Morse indices are non-negative, M is
bounded by 2i(C0).
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The non-existence of connected sequence of critical elements of infinite length precludes the existence of chains of
heteroclinic orbits since every chain (Ck)k∈�1,p+1� with Cp+1 = C1 can be extended to a periodic connected sequence
of critical elements and thus to a connected sequence of infinite length.

Let u0 ∈ Hs(S1) be chosen such that its ω-limit set ω(u0) is not a unique periodic orbit. Then, the Poincaré–
Bendixson property stated in Theorem 1.1 shows that ω(u0) consists of equilibrium points and homoclinic or
heteroclinic orbits connecting them. We know that homoclinic orbits are precluded. Moreover, since there is no con-
nected sequence of equilibria of infinite length, there exists an equilibrium point e where no connected sequence can
be extended, that is, such that Wu(e) ∩ ω(u0) = {e}. Let Be be a small neighbourhood of e in Hs(S1) such that any
solution u(t) of (1.1) satisfying u(t) ∈ Be for any t � 0, belongs to the unstable manifold Wu(e). If ω(u0) �= {e},
then one easily constructs three sequences of times (σn), (tn) and (τn) going to +∞ and satisfying the hypotheses of
Lemma 6.2 with C = {e} and un(t) = S(t)u0. But then Lemma 6.2 implies that there exists a solution u∞(t) of (1.1)
belonging to the unstable manifold Wu(e) and with u(τϕ(n)) converging u∞(0). Therefore u∞(0) ∈ ω(u0) ∩ ∂Be and
Wu(e) ∩ ω(u0) �= {e}, which leads to a contradiction. Therefore, ω(u0) = {e}. �
Proof of Proposition 6.1. Let ũ0 ∈ Hs(S1) be a non-wandering element and let ũ(t) = S(t)ũ0. Using the definition of
a non-wandering element, we easily construct a sequence of trajectories un(t) such that un(0) converges to ũ0 and, for
any sequence (tn), there exists a sequence (t ′n) such that t ′n > tn and un(t

′
n) converges to ũ0. By Lemma 6.3, there exists

a hyperbolic critical element C1 such that ω(ũ0) = {C1}. Let B1 be a neighbourhood of C1 as in Lemma 6.2. Assume
that ũ0 /∈ C1. Replacing B1 by a smaller neighbourhood if needed, we may assume that ũ0 /∈ B1. There is a sequence
of times (tn) and a point c ∈ C1 such that ũ(tn) → c. By continuity of the Cauchy problem, we may assume without
loss of generality that un(tn) → c. As we can find a sequence of times t ′n such that t ′n > tn and un(t

′
n) → ũ0 /∈ B1, there

exists a sequence of times τ 1
n such that un(t) ∈ B1 for t ∈ [tn, τ 1

n ) and un(τ
1
n ) ∈ ∂B1. By Lemma 6.2, we may assume

without loss of generality that un(τ
1
n + t) converges to some ũ1(t) ∈ Wu(C1). Now, we can repeat the arguments:

there exist a critical element C2 such that ω(ũ1(t)) = {C2} and a sequence of times τ 2
n such that, up to an extraction,

un(τ
2
n + t) converges to some solution ũ2(t) ∈ Wu(C2) and so on. Thus, we are constructing a connected sequence of

critical elements of infinite length, which is precluded by Lemma 6.3. This means that ũ0 belongs to C1, that is, that
our non-wandering element either is an equilibrium point or belongs to a periodic orbit.

To finish the proof of Proposition 6.1, it suffices to show that the number of critical elements is finite. First, as
noticed earlier, due to the compactness of the global attractor and the hyperbolicity of the equilibrium points and the
periodic orbits, the number of equilibrium points and periodic orbits of smallest period bounded by a given number is
finite. Thus we only need to show that there does not exist an infinite sequence of periodic orbits γn(x, t) of smallest
period pn, where pn tends to infinity when n goes to infinity. If we had such a sequence, we would be able to repeat
the arguments of the first part of the proof and, by using Lemmas 6.2 and 6.3, construct a connected sequence of
critical elements of infinite length, which leads to a contradiction. �
Acknowledgements

The authors wish to thank P. Brunovský, R. Czaja and C. Rocha for fruitful discussions.

Appendix A. Fredholm operator and Sard–Smale theorem

As we have explained in the introduction, an ingredient of the proof of the generic non-existence of homoindexed
orbits is the Sard–Smale theorem. We recall the precise statement of the version of the Sard–Smale theorem, that we
are applying in Section 5.

Let X , Z be two differentiable Banach manifolds and Φ : X → Z be a C1 map. A point z is a regular value of Φ

if, for any x ∈ Φ−1(z) the derivative DΦ(x) is surjective and its kernel splits, i.e. has a closed complement in Tx X
(sometimes this property is denoted by Φ � z). A point z ∈ Z which is not regular is called a critical value of Φ . A
subset in a topological space is generic or residual if it is a countable intersection of open dense sets.

We recall that a continuous linear map L : X → Z between two Banach spaces X and Z, is a Fredholm map if
its range R(L) is closed and if both dim ker(L) and codimR(L) are finite. The index ind(L) is the integer ind(L) =
dim ker(L) − codimR(L).
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The version of the Sard–Smale theorem given here has been proved in [25] (for weaker versions, we also refer
to [52] and [54]). The next theorem has been widely used in the genericity proofs in [8] and [9].

Theorem A.1 (Sard–Smale theorem). Let X , Y , Z be three smooth Banach manifolds, Φ : X × Y → Z be a mapping
of class Cr , r � 1 and ξ an element of Z . Assume that the following hypotheses hold:

(1) for each (x, y) ∈ Φ−1(ξ), DxΦ(x, y) is a Fredholm operator of index strictly less than r ;
(2) for each (x, y) ∈ Φ−1(ξ), DΦ(x,y) :Tx X × Ty Y → Tξ Z is surjective;
(3) one of the following properties is satisfied:

(a) X and Y are separable metric spaces;
(b) the map (x, y) ∈ Φ−1(ξ) �→ y ∈ Y is σ -proper, that is, there is a countable system of subsets Vn ⊂ Φ−1(ξ)

such that
⋃

n Vn = Φ−1(ξ) and for each n the map (x, y) ∈ Vn �→ y ∈ Y is proper (i.e. any sequence
(xk, yk) ∈ Vn such that yk is convergent in Y has a convergent subsequence in Vn).

Then, the set {y ∈ Y | ξ is a regular value of Φ(·, y)} contains a countable intersection of open dense sets (and hence
is dense) in Y .

Appendix B. Exponential dichotomies, shifted exponential dichotomies and applications to transversality

In the proof of the generic non-existence of homoindexed connections between equilibria, we will use a functional
characterization of the transversality property. A main tool in this proof is the notion of dichotomy. Also, when
studying the asymptotics of the solutions of linearized equations along connecting orbits connecting a hyperbolic
periodic orbit to another critical element, we will need to consider iterates of maps and thus, in particular, discrete
shifted dichotomies. We begin this appendix by recalling the definition and the basic properties of the exponential
dichotomies and shifted exponential dichotomies. Then, we give some applications to the scalar parabolic equation
on S1.

The results, that we recall here, are all contained in [22,36,19,24,10,8,9,45] and [46].

B.1. Generalities

Let X be a Banach space and J be an interval in Z. Let {Tn ∈ L(X,X) | n ∈ J } be a family of continuous maps
from X into X. We define the family of evolution operators

T (m,m) = I, T (n,m) = Tn−1 ◦ · · · ◦ Tm, ∀n > m in J,

where I is the identity in X.

Definition B.1. We say that the family of linear operators Tn, n ∈ J , or the family of evolution operators {T (n,m) |
n � m in J }, admits an exponential dichotomy (or discrete dichotomy) on the interval J with exponent β > 0 (or
constant e−β ), bound M > 0 and projections P(n) if there is a family of continuous projections P(n), n ∈ J , such
that the following properties hold for any n in J :

(i) T (n,m)P (m) = P(n)T (n,m) for n � m in J ,
(ii) the restriction T (n,m)|R(P (m)) is an isomorphism of R(P (m)) onto R(P (n)), for n � m in J , and T (m,n) is

defined as the inverse from R(P (n)) onto R(P (m)),
(iii) ‖T (n,m)(I − P(m))‖L(X) � Me−β(n−m) for n � m in J ,
(iv) ‖T (n,m)P (m)‖L(X) � Me−β(m−n) for n � m.

If dimR(P (n)) = k is finite for some n ∈ J , the equality holds for all n ∈ J by (ii) and we say that the dichotomy
has finite rank k.
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Remarks.
(1) We could also have defined (continuous) exponential dichotomies on an interval J ⊂ R (see [22] for instance).

However, here we restrict our discussion to discrete dichotomies on time intervals J ⊂ Z for two reasons. First, as it
was already pointed out by Henry in [24], the theory of dichotomies is much simpler with discrete time and there is
little loss in restricting to this case. Moreover, in our applications to the asymptotics near periodic orbits, we really
need to work with maps and not with continuous evolution operators. Finally, we remark that constructing discrete
dichotomies from continuous ones or conversely is an easy task (see Theorem 1.3 of [24] for example).

(2) Let A be a sectorial operator on a Banach space Y . For any J ⊂ Z and n � m in J , we define Tn = eA

(independent of n) and T (n,m) = eA(n−m) on the Banach space X = Yα , α ∈ [0,1]. Then {T (n,m) | n � m in J } is
a family of evolution operators on X. If the spectrum σ(A) satisfies σ(A) ∩ {μ | Reμ = 0} = ∅, then, for any t0 > 0,
we can define the projection P by

P = I − 1

2iπ

∫
|z|=1

(
zI − eAt0

)−1
dz. (B.1)

And T (n,m) has an exponential dichotomy with projection P . If the spectrum σ(A) satisfies σ(A) ∩ {μ | −β �
Reμ � β} = ∅ for some β > 0, then there exists a positive constant M such that T (n,m) has an exponential dichotomy
with projection P , exponent β and constant M . If the essential spectrum of eAt is strictly inside the unit circle, the
dichotomy has finite rank. This is the case for the linear parabolic equation.

Let again {Tn ∈ L(X,X) | n ∈ J } be a family of continuous maps from X into X. We define the family of operators
on X∗, given by

T ∗(m,n) = (
T (n,m)

)∗
.

Definition B.2. We say that the family of maps T ∗
n , n ∈ J , or the family of evolution operators {T ∗(m,n) | n �

m in J }, admits a reverse exponential dichotomy on the interval J with exponent β > 0, bound M > 0 and projections
P ∗(t) if there is a family of continuous projections P ∗(n), n ∈ J , such that the following properties hold, for any n

in J :

(i) T ∗(m,n)P ∗(n) = P ∗(m)T ∗(m,n) for n � m in J ,
(ii) the restriction T ∗(m,n)|R(P ∗(n)) is an isomorphism of R(P ∗(n)) onto R(P ∗(m)), for n � m in J , and T ∗(n,m)

is defined as the inverse from R(P ∗(m)) onto R(P ∗(n)),
(iii) ‖T ∗(m,n)(I − P ∗(n))‖X � Me−β(n−m) for n � m in J ,
(iv) ‖T ∗(m,n)P ∗(n)‖X � Me−β(m−n) for n � m.

The following natural property is proved in [8] for example.

Lemma B.3. If the family of evolution operators T (n,m), n,m ∈ J on the Banach space X admits an exponential
dichotomy on the interval J , with projections P(n), exponent β and bound M , then T ∗(m,n) = (T (n,m))∗ admits
reverse exponential dichotomy on J with the same exponent and bound and with the projections P ∗(n) = (P (n))∗.

In our applications to the asymptotics near a periodic orbit, we cannot directly use the concept of exponential
dichotomy since 1 always belongs to the spectrum of the period map Π(p,0) associated to a periodic orbit γ (t) of
(1.1) of minimal period p. For this reason, we also recall the notion of shifted exponential dichotomy, which is a
generalization of the notion of exponential dichotomy. Calling these dichotomies shifted, we follow the terminology
of [19]; alternatively it is sometimes called pseudodichotomy. If λ1 < 1 < λ2, it reduces to the usual exponential
dichotomy.

Definition B.4. We say that the family of linear operators Tn, n ∈ J , or the family of linear evolution operators
{T (n,m) | n � m in J }, admits a shifted exponential dichotomy on the interval J with gap [λ1, λ2], bound K > 0 and
projections P(n), Q(n) = I −P(n) if there is a family of continuous projections P(n), n ∈ J , such that the following
properties hold for any n in J :
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(i) T (n,m)P (m) = P(n)T (n,m) for n � m in J ,
(ii) the restriction T (n,m)|R(P (m)) is an isomorphism of R(P (m)) onto R(P (n)), for n � m in J , and on R(P (n)),

T (m,n) is defined as the inverse from R(P (n)) onto R(P (m)),
(iii) ‖T (n,m)(I − P(m))‖X � Kλn−m

1 for n � m in J ,
(iv) ‖T (n,m)P (m)‖X � Kλn−m

2 for n � m.

We also say that the family of operators Tn, n ∈ J , or the family of evolution operators {Φ(n,m) | n � m in J },
admits a reverse shifted exponential dichotomy on the interval J with gap [λ1, λ2], bound K > 0 and projections
P(n), Q(n) = I −P(n) if the above properties hold with n � m in J (resp. n � m in J ) replaced by n � m in J (resp.
n � m in J ).

Before describing the applications of these abstract notions to our problem, we recall two properties, which are
very useful in proving that linearized equations along connecting orbits of (1.1) admit exponential dichotomies. The
next roughness property is given in [24, Corollary 1.9] and is a consequence of [24, Theorem 1.5 and Lemma 1.6]
(see also [22, Theorem 7.6.7] as well as Proposition C.1 below). The extension of the result below to trichotomies is
stated in [19].

Theorem B.5 (Perturbation of exponential dichotomies). Let n0 > 0 (resp. n0 < 0) be a given integer and let T (n +
1, n), n ∈ Z

+, n � n0 (respectively n ∈ Z
−, n � n0), be a discrete family of evolution operators on a Banach space X

admitting a discrete dichotomy on [n0,+∞) (respectively on (−∞, n0]), with exponent β , constant M and projections

P T (n). Let M1 > M , 0 < β1 < β and 0 < ε � ( 1
M

− 1
M1

) e−β1 −e−β

1+e−(β+β1) . If S(n + 1, n), n ∈ Z+, n � n0 (respectively

n ∈ Z
−, n � n0), is a discrete family of evolution operators on X with ‖S(n + 1, n) − T (n + 1, n)‖L(X,X) � ε, for

all n � n0 in Z
+ (respectively for all n � n0 in Z

−), then S(n + 1, n) admits a discrete dichotomy on [n0,+∞)

(respectively on (−∞, n0]) with exponent β1, constant M1 and projections P S(n). Moreover, the projections P S(n)

satisfy supn ‖P T (n) − P S(n)‖L(X,X) = O(supn ‖T (n + 1, n) − S(n + 1, n)‖L(X,X)) as supn ‖T (n + 1, n) − S(n +
1, n)‖L(X,X) tends to 0. Furthermore, there exists ε0 > 0 such that, for 0 < ε � ε0, if T (n + 1, n) has a dichotomy of
finite rank m, then the dichotomy of S(n + 1, n) is also of finite rank m.

The next result, which is proved in [24, Theorem 1.14], allows to extend dichotomies from smaller to larger “time
intervals”. The continuous version of it is proved in [36] and the extension to trichotomies is stated in [19].

Theorem B.6 (Extension of exponential dichotomies). Let T (n + 1, n), n ∈ Z
−, n < n1, be a discrete family of

evolution operators on a Banach space X, and suppose that, for n < n0, with n0 < n1, T (n + 1, n) admits a dis-
crete dichotomy with finite rank m, exponent β , constant M and projections P(n), n � n0. Assume moreover that
T (n1, n0)|R(P (n0)) is injective. Then, T (n + 1, n), for n < n1, admits a discrete dichotomy with the same rank m,
same exponent and projections P̃ (n), n � n1, such that ‖P(n)− P̃ (n)‖L(X) → 0 exponentially as n goes to −∞. The
constant M has to be replaced by a larger one.

Let T (n + 1, n), n ∈ Z
+, n � n0, be a discrete family of evolution operators on a Banach space X. Suppose

that, for n � n1, with n0 < n1, T (n + 1, n) admits a discrete dichotomy with finite rank m, exponent β , constant
M and projections P(n), n � n1. Assume moreover that the adjoint operator T ∗(n0, n1)|R(P ∗(n1)) is injective, then
T (n + 1, n), for n � n0, admits a discrete dichotomy with the same rank m, same exponent β and projections P̃ (n),
n � n0, such that ‖P(n) − P̃ (n)‖L(X) → 0 exponentially as n goes to +∞. The constant M has to be replaced by a
larger one.

In both cases, the convergence of ‖P(n) − P̃ (n)‖L(X) is of order O(e−2β|n|).

B.2. Dichotomies and Fredholm property

In Section 5, in proving the generic non-existence of homoindexed connecting orbits, we use a functional charac-
terization of the transversality, which is based on dichotomies and a Fredholm property. In this appendix, we quickly
recall the tools and basic facts, which lead to this functional characterization.
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Let X be a Banach space. We introduce the following spaces

Z = �∞(Z,X)
(
respectively Z ± = �∞(

Z
±,X

))
.

Given a family T (n,m) of evolution operators on X for n,m ∈ Z, we define the mapping L from XZ into XZ

(respectively the mapping L± from XZ±
into XZ±

) by

(LY)(n) = Y(n + 1) − T (n + 1, n)Y (n), ∀n ∈ Z (B.2)

(respectively (L±Y)(n) = Y(n + 1) − T (n + 1, n)Y (n), ∀n ∈ Z±).
We say that Y = {Y(n)}n∈Z belongs to the domain D(L) if supn∈Z ‖Y(n+1)−T (n+1, n)Y (n)‖X < ∞ (likewise,

we define D(L±)). This allows to define the operator L :D(L) ⊂ Z → Z by (B.2) (likewise, we may define the
operator L± :D(L±) ⊂ Z ± → Z ±).

In [22, Theorem 7.6.5], Henry has given the following characterization of the existence of a discrete dichotomy for
T (n+1, n) (see also [24]; for a finite-dimensional version, see [45,46]). The family of evolution operators T (n+1, n)

has a discrete dichotomy if and only if, for every bounded sequence F ∈ Z , there is a unique bounded sequence Y ∈ Z
with (LY)(n) := Y(n+ 1)− T (n+ 1, n)Y (n) = F(n), for any n ∈ Z. Moreover, the unique bounded solution is given
by

Y(n) =
+∞∑

k=−∞
G(n, k + 1)F (k), (B.3)

where G(n,m) = T (n,m)(I − P(m)) for n � m, G(n,m) = −T (n,m)P (m) for n < m, is called the Green function.
Henry has also proved in Theorem 1.13 of [24] that any discrete family of evolution operators T (n + 1, n) admits

a discrete dichotomy on Z if and only if the restrictions to both Z+ and Z− have dichotomies and also X = S0 ⊕ U0
where

U0 = {
x0

∣∣ ∃{xn}n�0 ∈ Z − with xn+1 = T (n + 1, n)xn, n < 0
}
,

S0 = {
x0

∣∣ ∃{xn}n�0 ∈ Z + with xn+1 = T (n + 1, n)xn, n � 0
}
. (B.4)

When the dichotomies in Z+ and Z− have finite rank, the equality X = S0 ⊕ U0 means that they have the same rank.
The previous existence result of a dichotomy on Z is actually a particular case of the following more general result,

which is also proved in Theorem 1.15 of [24] (see also [55,45,19] and [8, Theorem 4.a.4] in the case of ordinary
differential, functional differential and parabolic equations).

We recall that 〈·,·〉X,X∗ denotes the duality pairing between X and X∗.

Theorem B.7 (Fredholm alternative). Let T (n+1, n) be a discrete family of evolution operators on a Banach space X,
admitting discrete dichotomies of finite rank on both Z

+ and Z
−, with projections P +(n) and P −(n). Then the

operator L, defined by (B.2), belongs to L(D(L), Z) and is a Fredholm operator with index ind(L) given by

ind(L) = dim
(
R
(
P −(0)

))− dim
(
R
(
P +(0)

))
. (B.5)

The codimension codimR(L) of R(L) is given by codimR(L) = dim[R(I − P −∗(0)) ∩ R(P +∗(0))].
A sequence F ∈ Z belongs to R(L) if and only if

+∞∑
n=−∞

〈
F(n),Ψ (n + 1)

〉
X,X∗ = 0, (B.6)

for every sequence Ψ (n) = T ∗(n,0)Ψ0, Ψ0 ∈ X∗, which is bounded.

The proof of Theorem B.7 uses the following two auxiliary lemmas. First, recall that, for any operator Q ∈ L(X),
one has

ker
(
Q∗)= (

R(Q)
)⊥

, (B.7)

where, for any subspace X0 ∈ X, X⊥
0 = {ψ ∈ X∗ | 〈x,ψ〉 = 0,∀x ∈ X0}.

If Q ∈ L(X) is a projection, we have, in addition,

R
(
I − Q∗)= ker

(
Q∗)= (

R(Q)
)⊥

. (B.8)
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Lemma B.8. Let T (n,m) be an evolution operator admitting discrete dichotomies of finite rank on both Z
+ and Z

−.
Then, any element Ψ0 ∈ X∗ belongs to (R(P −(0)))⊥ ∩ (R(I − P +(0)))⊥ if and only if the sequence

Ψ (m) = T ∗(m,0)Ψ0, m ∈ Z

(which is defined for all m due to the property (ii) of the reverse dichotomy) is bounded (that is belongs to �∞(Z,X∗)).
In this case, Ψ (m) belongs to R(I − P −∗(m)) for m � 0 and to R(P +∗(m)) for m � 0.

The next lemma emphasizes the formulas given in (B.3).

Lemma B.9. We assume that the hypotheses of Theorem B.7 hold. Then,

(i) if F ∈ Z −, there exists Y ∈ Z − such that F = L−Y if and only if, for any n ∈ Z
−,

Y(n) = T (n,0)P −(0)Y (0) −
−1∑
k=n

T (n, k + 1)P −(k + 1)F (k)

+
n−1∑

k=−∞
T (n, k + 1)

(
I − P −(k + 1)

)
F(k); (B.9)

(ii) similarly, if F ∈ Z +, there exists Y ∈ Z + such that F = L+Y if and only if, for any n ∈ Z+,

Y(n) = T (n,0)
(
I − P +(0)

)
Y(0) +

n−1∑
k=0

T (n, k + 1)
(
I − P +(k + 1)

)
F(k)

−
+∞∑
k=n

T (n, k + 1)P +(k + 1)F (k). (B.10)

We remark that these “variation of constants formulas” generalize the formula (B.3). They have already been given
in [46] under this discrete form in the finite-dimensional context (see [46, Formula (13) of Lemma 2.7]) and they are
contained in Theorem 1.15 of [24]. In the continuous case for parabolic equations, they are well known and can be
found in [22] and in [8].

B.3. Application to the parabolic equation on S1

In this section, we apply the previous abstract results to the homoclinic and heteroclinic orbits between equilibrium
points of the scalar parabolic equation (1.1) and we give some equivalent formulations of transversality.

We assume in this section that ũ(t) ∈ C 0
b(R,H s(S1)) is a bounded trajectory of S(t) = Sf (t) satisfying

limt→± ũ(t) = e±, where e± are hyperbolic equilibria of finite Morse index i(e±). We recall that ũ belongs to
C0

b(R,H 2(S1)) ∩ Cθ(R,H s(S1)), where 0 < θ � 1. We consider the linearized equation along ũ, that is, the lin-
ear equation for t � s,

vt (t) = vxx(t) + Duf (x, ũ, ũx)v(t) + Dux f (x, ũ, ũx)vx(t) ≡ Cũ(t)v(t), t > σ, v(σ ) = v0. (B.11)

We recall that, for any v0 ∈ L2(S1), for any σ ∈ R, there exists a unique classical solution v(t) ∈ C 0([σ,+∞),

L2(S1)) ∩ C 0((σ,+∞),H s(S1)) of (B.11) such that v(σ ) = v0. We set T (t, σ )v0 = Tũ(t, σ )v0 = v(t).
We next introduce the adjoint linearized equation to (B.11), that is, the linear equation for σ � t ,

∂tψ(σ ) = −C∗
ũ(σ )ψ(σ ), σ � t, ψ(t) = ψ0. (B.12)

Since ũ belongs to Cθ(R,H s(S1)) for any θ � 1 and thus that (Cũ(t) − ∂xx)
∗ is locally Hölder continuous with

exponent γ > s/2 as a mapping from R into L(Hs(S1),L2(S1)), (B.12) has a unique classical solution ψ(σ) =
ψ(σ, t;ψ0) on (−∞, t), for any ψ0 ∈ L2(S1) (see [22, Theorem 7.3.1] for example). We denote this solution ψ(s) :=
ψ(s, t;ψ0).
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With Tũ(t, s), we associate the adjoint evolution operator on L2(S1), given by

T ∗
ũ (σ, t) = (

Tũ(t, σ )
)∗

, t � σ. (B.13)

It is well known (see [22, Theorem 7.3.1]) that, for any ψ0 ∈ L2(S1),

T ∗
ũ (σ, t0)ψ0 = ψ(σ, t0;ψ0), ∀σ � t0. (B.14)

We also remark that the adjoint operator (Tũ(t, σ ))∗ is injective and that its range is dense in Hs(S1).
From now on, we discretize the evolution operators. We fix a time step τ > 0 and consider the discretizations

S(nτ) and Tũ(nτ,mτ), with n,m ∈ Z. The hyperbolic equilibria e± of S(t), their stable and unstable sets coincide
with those of the discretization S(nτ); the discretization of the trajectory ũ(t) connecting e− to e+ is a heteroclinic or
homoclinic orbit connecting these equilibria for the discretized semi-flow. Let β± > 0 be chosen such that

σ
(
eLe±

)∩ {
z
∣∣ e−β± � |z| � eβ±}= ∅,

where the linearized operator Le± has been defined in (2.4). As explained in the remarks of Section B.1, eLe± τ admits
an exponential dichotomy with projection P ± (see (B.1)), exponent β± and constant M in H 2α(S1) for any α ∈ [0,1).
Thus, we will be able to deduce from Theorems B.5 and B.6 that Tũ(nτ, (n− 1)τ ) admits exponential dichotomies on
Z

− and on Z
+ of respective index i(e−) and i(e+) in H 2α(S1), for any α ∈ [0,1). We will only give a sketch of the

proof. For a more detailed proof in the case of ordinary differential equations (resp. functional differential equations,
resp. parabolic equations, resp. in the case damped wave equations), we refer the reader to [45,46] (resp. to [36,8]
and [9]).

Theorem B.10. For any β±
1 ∈ (0, β±), the discrete family of evolution operators T (n,m) = Tũ(nτ,mτ) admits expo-

nential dichotomies on Z
± in L2(S1) (resp. Hs(S1)) of finite rank equal to the index i(e±) of e±, with exponent β±

1 ,
constant M± and projections P̃ ±

ũ
(n) (resp. P ±

ũ
(n)), satisfying

lim
n→±∞

∥∥P̃ ±
ũ

(n) − P ±∥∥
L(L2,L2)

= 0
(

resp. lim
n→±∞

∥∥P ±
ũ

(n) − P ±∥∥
L(Hs,Hs)

= 0
)
. (B.15)

Moreover, P ±
ũ

is the restriction of P̃ ±
ũ

to Hs(S1), that is,

P̃ ±
ũ

(n)|
Hs (S1)

= P ±
ũ

(n). (B.16)

Proof. In the proof of Corollary C.7 below (see (C.25)), we show that, for n ∈ Z
±, with |n| large enough, we have

the exponential asymptotic convergence∥∥Tũ

(
(n + 1)τ, nτ

)− eLe±
∥∥

L(Hs,Hs)
� Ce−C|n|, (B.17)

where C is a positive constant. Thus we may apply Theorem B.5, which implies that there exists n0 ∈ Z
+ such

that Tũ((n + 1)τ, nτ) admits an exponential dichotomy on Z
+ (resp. Z

−) in Hs(S1), for n � n0 (resp. n � −n0) of
finite rank i(e+) (resp. i(e−)) and projections P +

T (resp. P −
T ) satisfying the properties of Theorem B.5. Applying

Theorem B.6 with X = Hs(S1), we next extend these dichotomies in Hs(S1) to Z
± and thus prove that Tũ((n +

1)τ, nτ) admits exponential dichotomies on Z
± in Hs(S1) of finite rank equal to i(e±), with exponent β±

1 , constant
M± and projections P ±

ũ
(n), satisfying the property (B.15). Using next [22, Lemma 7.6.2 and Exercise 5 of Chapter 7],

we may extend these projections P ±
ũ

(n) in Hs(S1) to projections P ±
ũ

in L2(S1) satisfying the properties (B.15)
and (B.16).

An alternative proof consists in showing first that, for any n ∈ Z
±, with |n| large enough, we have the exponential

asymptotic convergence∥∥Tũ

(
(n + 1)τ, nτ

)− eLe±
∥∥

L(L2,H s)
� Ce−C|n|, (B.18)

where C is a positive constant. Then we may apply Theorem B.5 in the space L2(S1), which implies that there
exists n0 ∈ Z

+ such that Tũ((n + 1)τ, nτ) admits an exponential dichotomy on Z
+ (resp. Z

−) in L2(S1), for n �
n0 (resp. n � −n0) of finite rank i(e+) (resp. i(e−)) and projections P̃ +

T (resp. P̃ −
T ) satisfying the properties of

Theorem B.5. Applying Theorem B.6 with X = L2(S1), we next extend these dichotomies in L2(S1) to Z
± and
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thus prove that Tũ((n + 1)τ, nτ) admits exponential dichotomies on Z
± in L2(S1) of finite rank equal to i(e±), with

exponent β±
1 , constant M± and projections P̃ ±

ũ
(n), satisfying the property (B.15). We remark that, by the property (ii)

of the Definition B.1 and by the property (B.18), the image of P̃ ±
ũ

(n) belongs to Hs(S1), which implies, together with

[22, Lemma 7.6.2 of Chapter 7], that the restrictions P ±
ũ

of the projections P̃ ±
ũ

(n) to Hs(S1) define an exponential
dichotomy of Tũ((n + 1)τ, nτ) on Z

± in Hs(S1) of finite rank equal to i(e±), with exponent β±
1 , constant M±. �

We notice that Theorem B.10 and Lemma B.3 imply that T ∗(n,n + 1) = Tũ((n + 1)τ, nτ)∗ admits a reverse
exponential dichotomy on Z

± in L2(S1) (resp. H−s(S1)) with rank i(e±), exponent β±
1 and projections (P̃ ±

ũ
(n))∗

(resp. (P ±
ũ

(n))∗).
Lemma 4.2 (on p. 376) and Appendix C of [10] yield the important characterization of the range of P ±

ũ
(n) given

in the next proposition.

Proposition B.11. We have the following equalities in Hs(S1),

R
(
P −

ũ
(n)

)= Tũ(n)W
u
(
e−), ∀n ∈ Z

−,

R
(
I − P +

ũ
(n)

)= Tũ(n)W
s
(
e+), ∀n ∈ Z

+. (B.19)

Let ũ(t) belongs to Wu(e−) ∩ Ws(e+). We say that the bounded orbit ũ is transverse at ũ(0) if

Wu
(
e−) �ũ(0) Ws

loc

(
e+),

which means that Tũ(0)W
u(e−) contains a closed complement of Tũ(0)W

s(e+) in Hs(S1) (notice that, as Wu(e−) ∩
Ws(e+) are immersed manifolds in Hs(S1), this notion is well-defined, see [34, p. 23]). It is easily seen that, since
the linearized operator T (t, σ ) is injective and has dense range in Hs(S1), the above condition implies that, for any
t ∈ R,

Wu
(
e−) �ũ(t) Ws

loc

(
e+),

which allows to simply say that the orbit ũ is a transverse connecting orbit.
From the previous proposition and the equalities (B.7) and (B.8) as well as the property that the range of P̃ ±

ũ
is

contained in Hs(S1), we at once deduce the following equivalences.

Proposition B.12.

(i) The trajectory ũ(t) is transverse in Hs(S1) if and only if

R
(
P −

ũ
(0)

)+ R
(
I − P +

ũ
(0)

)= Hs
(
S1), (B.20)

or equivalently, since R(P −
ũ

(0)) is finite-dimensional and, thus, this sum is closed,[
R
(
P −

ũ
(0)

)]⊥ ∩ [
R
(
I − P +

ũ
(0)

)]⊥ = {0}, (B.21)

or also

R
(
I − P −

ũ
(0)∗

)∩ R
(
P +

ũ
(0)∗

)= {0}. (B.22)

(ii) Moreover, the trajectory ũ(t) is transverse in Hs(S1) if and only if

R
(
P̃ −

ũ
(0)

)+ R
(
I − P̃ +

ũ
(0)

)= L2(S1), (B.23)

or equivalently,[
R
(
P̃ −

ũ
(0)

)]⊥ ∩ [
R
(
I − P̃ +

ũ
(0)

)]⊥ = {0}, (B.24)

or also

R
(
I − P̃ −

ũ
(0)∗

)∩ R
(
P̃ +

ũ
(0)∗

)= {0}. (B.25)

Applying Lemma B.8 and Proposition B.12, we obtain the next characterization of transversality.
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Corollary B.13. The trajectory ũ(t) is transverse if and only if there does not exist any element ψ0 ∈ (Hs(S1))∗,
ψ0 �= 0, such that the sequence (T ∗

ũ
(n,0)ψ0)n∈Z is bounded in (Hs(S1))∗ or equivalently, if and only if there does

not exist any element ψ1 ∈ L2(S1), ψ1 �= 0, such that the sequence (T ∗
ũ
(n,0)ψ1)n∈Z is bounded in L2(S1).

Finally we show how to apply Theorem B.7 to obtain a corollary, which plays a crucial role in the proof of the
genericity of the non-existence of homoindexed orbits between equilibrium points. We introduce the operator Lũ ≡ L
defined in (B.2) with T (n,m) = Tũ(nτ,mτ), X = Hs(S1) and Z = �∞(Z,X). Likewise, we introduce the extension
L̃ũ of Lũ to Z̃ = �∞(Z,L2(S1)). We notice that, due to the smoothing properties of Tũ(nτ,mτ), a sequence F ∈ Z
belongs to R(Lũ) if and only if F ∈ Z belongs to R(L̃ũ). This remark, Theorem B.7 and Corollary B.13 imply the
following results.

Corollary B.14 (Functional characterization of transversality). The operators Lũ :D(Lũ) → Z and L̃ũ :D(L̃ũ) → Z̃
defined above are Fredholm operators of index i(e−)− i(e+). In particular, the codimension of R(Lũ) in Hs(S1) and
of R(L̃ũ) in L2(S1) is equal to codim [R(P̃ −

ũ
(0)) + R(I − P̃ +

ũ
(0))].

Moreover, a sequence F ∈ Z belongs to R(Lũ) if and only if
+∞∑

n=−∞

〈
F(n),Ψ (n + 1)

〉
L2(S1)

= 0,

for every bounded sequence Ψ (n) = T ∗
ũ
(nτ,0)Ψ0, Ψ0 ∈ L2(S1). Finally, the connecting orbit ũ(t) is transverse if and

only if Lũ is surjective or also if and only if L̃ũ is surjective.

Appendix C. Asymptotics of solutions of perturbations of linear autonomous equations

In this section, X denotes a Banach space and J an interval of Z.
In several proofs of the previous sections, we need to know the asymptotics of the bounded solutions (as t → ±∞)

of the linearized equations along orbits, connecting hyperbolic equilibrium points or periodic orbits of (1.1). These
asymptotics will be described in the second and third sections of this appendix.

C.1. Abstract results

Here, we are going to describe these asymptotics for a general linearized equation or for iterates of a general
linearized mapping. Thus, in the first place, we are interested in the asymptotic behaviour of the bounded sequences
u(n), n ∈ Z+ (resp. n ∈ Z−), defined by

u(n + 1) = T u(n) + Σ(n)u(n) ≡ L(n)u(n), (C.1)

where T ∈ L(X) and Σ(n) ∈ L(X), for any n ∈ Z
+ (resp. n ∈ Z

−).
All the statements given in this appendix are already known and are mainly results or generalizations of results of

[23,24,10] and [9]. The main Theorems C.5 and C.6 are a refinement of Theorem B.5 of [10] and have been proved in
Appendix B of [9]. Here, we closely follow Appendix B of [9]. We want to point out that all the statements contained
in this appendix are more or less common knowledge, at least in finite dimensions. For additional references, see
[12,45–47,19] and [55] for example.

For n � m in J , we define the evolution operator Φ(n,m) = L(n − 1) ◦ · · · ◦ L(m).
For any linear operator T :X → X, we denote by R(T ) the set of all non-negative numbers ρ for which

σ(T ) ∩ {
z ∈ C

∣∣ |z| = ρ
} �= ∅.

For ρ /∈ R(T ), we denote by Pρ , Qρ the spectral projections associated with the partition of the spectrum σ(T ) into
its subsets σ(T ) ∩ {|z| > ρ} and σ(T ) ∩ {|z| < ρ} respectively.

The following proposition gives a sufficient condition for L(t) defined by (C.1) to admit a shifted dichotomy.

Proposition C.1. Let L(n) = T + Σ(n) where T , Σ(n), n ∈ Z
+, belong to L(X) and Σ(n) satisfies the asymptotic

condition∥∥Σ(n)
∥∥ = O

(
rn
)
, for some r < 1, when n → +∞. (C.2)
L(X)
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Assume that 0 < ρ∗
1 < ρ1 � ρ2 < ρ∗

2 are such that σ(T ) ∩ {ρ∗
1 � |z| � ρ∗

2 } = ∅, which implies that Qρ∗
2

− Qρ∗
1

= 0.
Suppose also that T admits shifted exponential dichotomy with gap [ρ∗

1 , ρ∗
2 ] and with projections Pρ∗

1
, Qρ∗

1
. Then

the family L(·) admits shifted dichotomy on J = Z
+ with gap [ρ1, ρ2] and projections P(n), Q(n). Moreover, when

n ∈ Z
+ is sufficiently large,∥∥Q(n) − Qρ1

∥∥
L(X)

= O
(
rn
) (

resp.
∥∥P(n) − Pρ2

∥∥
L(X)

= O
(
rn
))

, (C.3)

and Q̃(n) := Q(n)|R(Qρ1 ) :R(Qρ1) → R(Q(n)) (resp. Q̃1(n) = Qρ1|R(Q(n)) :R(Q(n)) → R(Qρ1)) is an isomorphism
satisfying

max
(∥∥Q̃(n) − I

∥∥
L(X)

,
∥∥Q̃1(n) − I

∥∥
L(X)

)
�
∥∥Q(n) − Qρ1

∥∥
L(X)

= O
(
rn
)
,

max
(∥∥Q̃−1(n) − I

∥∥
L(X)

,
∥∥Q̃−1

1 (n) − I
∥∥

L(X)

)
� ‖Q(n) − Qρ1‖L(X)

1 − ‖Q(n) − Qρ1‖L(X)

= O
(
rn
)
. (C.4)

The same statement holds on J = Z
− if the condition “n ∈ Z

+” is replaced by “n ∈ Z
−” and r < 1 by r > 1.

We next recall three results about the asymptotic behaviour of u(n) for n large enough, where u(n) is given by (C.1).
The first theorem has been proved by D. Henry (see Theorem 2 in [23]); here we state it under the form given by Chen,
Chen and Hale in [10, Theorem B.2].

Theorem C.2. Let T ∈ L(X,X) and let 0 < ρ1 � ρ2 be such that [ρ1, ρ2] ∩ R(T ) = ∅. Let u(n) �= 0, n � n0 in Z+,
be a sequence in X such that

lim
n→+∞

‖u(n + 1) − T u(n)‖X

‖u(n)‖X

= 0. (C.5)

Then, either

(i) lim
n→+∞

‖Pu(n)‖X

‖Qu(n)‖X

= +∞, and lim inf
n→+∞

∥∥u(n)
∥∥1/n

X
� ρ2;

or

(ii) lim
n→+∞

‖Pu(n)‖X

‖Qu(n)‖X

= 0, and lim sup
n→+∞

∥∥u(n)
∥∥1/n

X
� ρ1;

where P = Pρ1 = Pρ2 and Q = Qρ1 = Qρ2 . The same property holds if, in the above statements, n � n0 in Z
+ and

n → +∞ are replaced by n � −n0 in Z
− and n → −∞ respectively.

Theorem C.2 gives a close relation between the spectrum of T and the growth rate of u(n). As direct corollary,
Chen, Chen and Hale (see [10, Corollary B.3]) have proved the following property.

Theorem C.3. Let T be a continuous linear operator from X into X such that R(T ) is nowhere dense in [0,+∞)

and let u(n) �= 0, n � n0 in Z
+, be a sequence in X satisfying the property (C.5). Then, there exists ρ ∈ R(T ) such

that

lim
n∈Z+→+∞

∥∥u(n)
∥∥1/n

X
= ρ. (C.6)

The same property holds when Z
+ is replaced by Z

−.

Remark. For sequences u(n), n ∈ Z
+, given by the recursion formula (C.1) with Σ(n) satisfying the hypothe-

sis (C.2), the condition (C.5) obviously holds. We thus deduce from Theorem C.3 that there exists ρ ∈ R(T ) such
that limn∈Z+→+∞ ‖u(n)‖1/n

X = ρ.

In this paper, we cannot directly apply this corollary since R(T ) has an accumulation point at 0. However, we
know that the sequences u(n) that we will consider do not converge faster to zero than an exponential.
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For any ψ ∈ X, for any integers m, n, with n � m, following the notations of [10], we set,

u(n,m;ψ) = Φ(n,m)ψ,

where Φ(n,m) = L(n − 1) ◦ · · · ◦ L(m) and L(n) is defined by (C.1). We also introduce the quantity

r∞(m,ψ) = lim sup
n→+∞

∥∥u(n,m;ψ)
∥∥1/n

X
.

Let T be a continuous linear operator from X into X such that R(T ) is a bounded sequence converging to 0 and that
ρj+1 � ρj , for any integer j . We then introduce the spaces

E+
j (m) = {

ψ ∈ X
∣∣ r∞(m,ψ) � ρj

}
.

Then,

· · ·E+
2 (m) ⊂ E+

1 (m) ⊂ E+
0 (m).

If we assume that, for any ψ ∈ X, ψ �= 0 and any integer m, r∞(m,ψ) > 0 (that is Φ(n,m)ψ does not decay faster to
0 than an exponential), then

j=∞⋂
j=0

E+
j (m) = {0}.

Taking into account the above considerations and following the proof of Corollary B.3 of [10], we obtain the following
theorem.

Theorem C.4. Let T be a continuous linear operator from X into X such that R(T ) is a bounded sequence converging
to 0 and that ρj+1 � ρj , for any integer j . We also assume that the property (C.2) holds. Let u(n) ≡ u(n,m;ψ), be a
sequence in X such that r∞(m,ψ) > 0. Then, there exists ρ ∈ R(T ) such that

lim
n∈Z+→+∞

∥∥u(n)
∥∥1/n

X
= ρ. (C.7)

The same property holds when Z
+ is replaced by Z

−.
In particular, if for any ψ ∈ X, ψ �= 0 and any integer m, r∞(m,ψ) > 0, then

X = E+
0 (m) = {

ψ ∈ X
∣∣ r∞(m,ψ) � ρ1

}
,

and

E+
j (m) − E+

j+1(m) = {
ψ ∈ X

∣∣ r∞(m,ψ) = ρj+1
}
.

The next theorem is nothing else as Theorem B.6 of [9] and is actually a refinement of Theorem B.5 of [10] about
the asymptotics of sequences u(n) given by the recurrence formula (C.1) when n goes to ±∞.

Theorem C.5 (Convergence to a solution of the asymptotic equation). Let T ∈ L(X,X) and suppose that there exist
positive numbers δ1, δ̃1, δ, δ̃, with 0 < δ1 < δ and 0 < δ̃1 < δ̃, and ρ ∈ R(T ) such that

∅ �= σ(T ) ∩ {
z ∈ C

∣∣ ρ − δ � |z| � ρ + δ̃
}⊂ {

z ∈ C
∣∣ ρ − δ1 < |z| < ρ + δ̃1

}
. (C.8)

Suppose also that T admits shifted dichotomy with gap [ρ + δ̃1, ρ + δ∗], for some δ∗ > δ̃ (resp. with gap [ρ − δ∗, ρ −
δ1], for some δ∗ > δ). Let u(n), n ∈ Z

+ (resp. n ∈ Z
−) be a sequence given by the recurrence formula (C.1), with

Σ(n) satisfying the hypothesis (C.2), where (ρ + δ̃)r < ρ − δ (resp. where (ρ − δ)r < ρ + δ̃), such that

ρ − δ1 � lim
n→+∞

∥∥u(n)
∥∥1/n

X
� ρ + δ̃1

(
resp. ρ − δ1 � lim

n→−∞
∥∥u(n)

∥∥1/n

X
� ρ + δ̃1

)
. (C.9)

Denote by Tρ the operator

Tρ = [Q ˜ − Qρ−δ]T [Q ˜ − Qρ−δ].
ρ+δ ρ+δ
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Then, there exists a non-vanishing sequence u+∞(n), n ∈ Z
+, (resp. u−∞(n), n ∈ Z

−), in R(Qρ+δ̃ − Qρ−δ) and
satisfying

u+∞(n + 1) = Tρu+∞(n)
(
resp. u−∞(n + 1) = Tρu−∞(n)

)
, (C.10)

and ∥∥u(n) − u+∞(n)
∥∥

X
= O

(
(ρ − δ)n

)
, as n → +∞ (C.11)(

resp.
∥∥u(n) − u−∞(n)

∥∥
X

= O
(
(ρ + δ̃)n

)
, as n → −∞)

. (C.12)

The previous theorem allows to specify the asymptotics of the bounded sequences u(n) given by (C.1). As conse-
quences of Theorem C.5, one obtains corresponding results for solutions of evolutionary partial differential equations.
More precisely, let Y be a Banach space and A be the infinitesimal generator of an analytic semigroup on Y . Let
α ∈ [0,1) be a real number. We introduce the fractional space X = Yα and consider the equation

∂tU(t) = (
A + G(t)

)
U(t), t > 0, U(0) = U0, (C.13)

where U(t), t � 0, and U0 belong to X, and G : t ∈ R �→ G(t) ∈ L(Yα,Y ) is such that∥∥G(t)
∥∥

L(Yα,Y )
= O

(
e−rt

)
, as t ∈ R → +∞, where r > 0. (C.14)

If α = 0, it suffices to assume that A is the generator of a C0-semigroup.
The proof of the next theorem, which is a consequence of Theorem C.5, follows the lines of the proof of Theo-

rem B.8 of [9].

Theorem C.6. Suppose that there exist positive constants d1, d̃1, d , d̃ with 0 < d1 < d , 0 < d̃1 < d̃ , and μ ∈ R such
that

∅ �= σ(A) ∩ {
z ∈ C

∣∣ μ − d � Re z � μ + d̃
}⊂ {

z ∈ C
∣∣ μ − d1 < Re z < μ + d̃1

}
. (C.15)

Suppose also that eA admits shifted dichotomy with gap [eμ+d̃1 , eμ+d∗ ], for some d∗ > d̃ (resp. with gap
[eμ−d∗

, eμ−d1], for some d∗ > d). Let U(t), t ∈ R
+ (resp. t ∈ R

−), be a solution of (C.13) with G(t) satisfying

the hypothesis (C.14) and with e(μ+d̃−r) < eμ−d (resp. with e(μ−d−r) > eμ+d̃ ), such that

μ − d1 � lim
t→+∞ ln

(∥∥U(t)
∥∥1/t

X

)
� μ + d̃1. (C.16)

Denote

Aμ = [Q
μ+d̃

− Qμ−d ]A[Q
μ+d̃

− Qμ−d ],
where now Q

μ+d̃
and Qμ−d denote the spectral projections associated with the parts of the spectrum σ(A)∩ {Re z >

μ + d̃} and σ(A) ∩ {Re z > μ − d}.
Then, there exists a non-vanishing solution U+∞(t), t ∈ R

+ (resp. U−∞(t), t ∈ R
−), in R(Q

μ+d̃
− Qμ−d) and

satisfying

∂tU+∞(t) = AμU+∞(t)
(
resp. ∂tU−∞(t) = AμU−∞(t)

)
, (C.17)

and ∥∥U(t) − U+∞(t)
∥∥

X
= O

(
e(μ−d)t

)
, as t → +∞, (C.18)(

resp.
∥∥U(t) − U−∞(t)

∥∥
X

= O
(
e(μ+d̃)t

)
, as t → −∞)

. (C.19)

C.2. Applications to the parabolic equation near an equilibrium point

The results of Appendix B and those of the first part of this appendix, together with those of Section 2.2, will be
applied here in order to determine the asymptotics of the solutions u(t) of (1.1), which belong to the local unstable
or local stable manifolds of hyperbolic equilibria or periodic orbits, as well as the asymptotics of the solutions of the
corresponding linearized equations.
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Let e be a hyperbolic equilibrium point of (1.1). In accordance with Section 2.2, we denote by Le the corresponding
linearized operator and by λi , i � 1 its eigenvalues, counted with their multiplicity.

Corollary C.7. Let u(t) be a trajectory of (1.1) belonging to the unstable manifold Wu(e) of e (resp. the local stable
manifold Ws

loc(e)) and let v(t) = u(t) − e.
Then, there exists an eigenvalue λi of Le such that Re(λi) > 0 (resp. Re(λi) < 0) and

lim
t→−∞ ln

∥∥v(t)
∥∥

Hs = Re(λi)
(

resp. lim
t→+∞ ln

∥∥v(t)
∥∥

Hs = Re(λi)
)
.

More precisely, the asymptotic behavior of v in Hs(S1) is as follows:

(i) If λi is a simple real eigenvalue with eigenfunction ϕi , then there exists a ∈ R − {0} such that v(t) = aeλi tϕi +
o(eλi t ).

(ii) If λi = λi+1 is a double real eigenvalue with two independent eigenfunctions ϕi and ϕi+1, then there exist
(a, b) ∈ R

2 − {(0,0)} such that v(t) = aeλi tϕi + beλi tϕi+1 + o(eλi t ).
(iii) If λi = λi+1 is an algebraically double real eigenvalue with eigenfunction ϕi and with generalized eigenfunction

ϕi+1, then there exist (a, b) ∈ R
2 − {(0,0)} such that v(t) = (a + bt)eλi tϕi + beλi tϕi+1 + o(eλi t ).

(iv) If λi+1 = λi is a (simple) non-real eigenvalue with eigenfunction ϕi+1 = ϕi , then there exist (a, b) ∈ R
2 −{(0,0)}

such that v(t) = eRe(λi )t [(a cos(Im(λi)t)− b sin(Im(λi)t))Re(ϕi)− (a sin(Im(λi)t)+ b cos(Im(λi)t)) Im(ϕi)]+
o(eRe(λi )t ).

Let j ∈ N \ {0} be such that λi belongs to the pair of eigenvalues (λ2j−1, λ2j ), or let j = 0 if λi = λ0. As a
consequence of the asymptotic behaviour, there exists t0 ∈ R such that, for all t � t0 (resp. t � t0), v(t) has exactly 2j

zeros which are simple.

Proof. Since the proofs are very similar when t tends to ±∞, we shall only prove the corollary when u(t) belongs to
the local stable manifold Ws

loc(e). To prove the corollary, we shall apply Theorem C.6, so we have to check that the
hypotheses of Theorem C.6 are satisfied.

Since u(t) belongs to Ws
loc(e), there exist two positive constants c1 and κ such that∥∥u(t) − e

∥∥
Hs � c1e

−κt , as t → +∞. (C.20)

The function v(t) ≡ u(t) − e is a classical solution of the equation

vt = vxx + Dux f (x, e, ex)vx + Duf (x, e, ex)v + a(x, t)vx + b(x, t)v, (C.21)

where

a(x, t) =
1∫

0

(
f ′

ux

(
x, e + θ(u − e), ex + θ(ux − ex)

)− f ′
ux

(x, e, ex)
)
dθ,

b(x, t) =
1∫

0

(
f ′

u

(
x, e + θ(u − e), ex + θ(ux − ex)

)− f ′
u(x, e, ex) dθ

)
.

One at once checks that ‖a(x, t)‖C0 + ‖b(x, t)‖C0 � c2‖u(t) − e‖Hs , which implies that∥∥a(x, t)vx + b(x, t)v
∥∥

L2 � c3e
−κt‖v‖Hs . (C.22)

Thus, v is the solution of an equation of the form (C.13), with G(t)v = a(x, t)vx + b(x, t)v satisfying the condi-
tion (C.14).

We next remark that

v(n + 1) = T v(n) + Σ(n)v(n),
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where T = T (1), Σ(t)v(t) = ∫ 1
0 T (1 − σ)G(t + σ)v(t + σ)dσ and T (t) is the linear semigroup associated with

the linear equation vt = vxx + f ′
ux

(x, e, ex)vx + f ′
u(x, e, ex)v ≡ Lev. We next verify that Σ(n) satisfies the condi-

tion (C.2), for some r < 1, when n goes to infinity. First, Σ(n) is a continuous linear operator from Hs(S1) into
Hs(S1). Moreover, since T (t) is an analytic linear semigroup, we obtain the following inequality, for 0 < τ � 1,

∥∥v(t + τ)
∥∥

Hs � Ceατ
∥∥v(t)

∥∥
Hs + C

τ∫
0

eα(τ−σ)(τ − σ)−s/2
∥∥v(t + σ)

∥∥
H 1, (C.23)

where α > 0. Using a generalized Gronwall inequality (see [22, Lemma 7.1.1]), we deduce from (C.23) that, for
0 < τ � 1,∥∥v(t + τ)

∥∥
Hs � Ce(α+K)τ

∥∥v(t)
∥∥

Hs , (C.24)

where K is a positive constant. The definition of Σ(n) and the properties (C.22) and (C.24) imply that, for n > 0 large
enough,

∥∥Σ(n)v(n)
∥∥

Hs � C

1∫
0

eα(1−σ)(1 − σ)−s/2c3e
−κn

∥∥v(n + σ)
∥∥

H 1 � C∗e(α+K)e−κn
∥∥v(n)

∥∥
Hs , (C.25)

and hence Σ(n) satisfies the property (C.2).
Since Σ(n) satisfies the property (C.25) and that T admits a shifted exponential dichotomy on Z

+, the family
L(·) = T + Σ(·) admits a shifted dichotomy on Z

+ by Proposition C.1. As, by a result of Agmon (see [1], see
also [35]), every non-zero solution of a linear parabolic equation does not go to zero faster than an exponential when
t tends to infinity, the hypotheses of Theorem C.4 are satisfied, that is, for any integer m and any ψ ∈ Hs(S1),
r∞(m,ψ) > 0. Hence, by Theorem C.4, there exists ρi ∈ R(T ), ρi < 1 (and thus μi belonging to the spectrum of T ),
such that

lim
n→∞

∥∥v(n)
∥∥1/n

Hs = ρi = |μi |,
or, in other terms, there exists an eigenvalue λi of the linearized operator Le such that

lim
t→∞ ln

(∥∥v(t)
∥∥1/t

Hs

)= ∣∣Re(λi)
∣∣.

We can now apply Theorem C.6. Let Ei be the generalized (real) eigenspace associated with the eigenvalue λi and
Le,i be the restriction of the operator Le to this eigenspace Ei . By Theorem C.6, there exists a nonvanishing solution
ψ∞,i (t) ∈ Ei of the equation

∂tψ∞,i (t) = Le,iψ∞,i (t), (C.26)

such that∥∥v(t) − ψ∞,i (t)
∥∥

Hs = o
(
eRe(λi )t

)
. (C.27)

Now the corollary is an elementary consequence of the properties (C.26) and (C.27) and of Proposition 2.2. According
to this proposition, λi is either a simple real eigenvalue (and the dimension of Ei is one), or a double real eigenvalue
or a simple non-real eigenvalue (in which cases, the dimension of Ei is equal to two). �

In the same way, we prove the following corollary.

Corollary C.8. Let u(t) be a trajectory of (1.1) belonging to the unstable manifold Wu(e) of e (resp. the local stable
manifold Ws

loc(e)). Let v0 ∈ Tu(0)W
u(e) (resp. v0 ∈ Tu(0)W

s
loc(e)) and let v(t) be the solution for t � 0 (resp. t � 0) of

the linearized equation

vt = vxx + Duf (x,u,ux)v + Dux f (x,u,ux)vx, v(0) = v0. (C.28)

Then, there exists an eigenvalue λi of Le such that Re(λi) > 0 (resp. Re(λi) < 0) and

lim
t→−∞ ln

∥∥v(t)
∥∥

Hs = Re(λi)
(

resp. lim
t→+∞ ln

∥∥v(t)
∥∥

Hs = Re(λi)
)
.

Moreover, all the possible asymptotic behaviors are the same as those described in Corollary C.7.
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In addition, let j ∈ N \ {0} be such that λi belongs to the pair of eigenvalues (λ2j−1, λ2j ), or let j = 0 if λi = λ0.
Then, there exists t0 ∈ R such that, for all t � t0 (resp. t � t0), v(t) has exactly 2j zeros which are simple.

Proof. If u(t) belongs to the local stable manifold Ws
loc(e), u(t) satisfies the property (C.20) and Eq. (C.28) can be

written in the form (C.21), where the functions a(x, t) and b(x, t) satisfy the properties (C.22). We remark that, by
[10, Theorem C2], we already know that lim supn→∞ ‖v(n)‖1/n

Hs < 1. We thus obtain the asymptotic behavior of v(t)

by following the lines of the proof of Corollary C.7. �
C.3. Application to the parabolic equation near a periodic orbit

Before proving analogous corollaries in the case of periodic orbits, we briefly recall the known properties of the
local stable and unstable manifolds of hyperbolic periodic orbits.

Let γ (t) be a hyperbolic periodic solution of (1.1) of minimal period p and let Γ = {γ (t), t ∈ R}. As in the
introduction and in Section 2, we introduce the linearized equation (2.6) along the periodic solution γ (t) and introduce
the associated evolution operator Π(t,0) :Hs(S1) → Hs(S1), defined by Π(t,0)ϕ0 = ϕ(t) where ϕ(t) is the solution
of the linearized equation (2.6). We recall that the operator Π(p,0) = Du(Sf (p,0)γ (0)) is called the period map and
we denote (μi) its eigenvalues (the spectral properties of Π(p,0) have been given in Proposition 2.3). Since γ (t)

is a hyperbolic periodic solution, the intersection of the spectrum of Π(p,0) with the unit circle of C reduces to the
eigenvalue 1, which a simple (isolated) eigenvalue. We remark that, if γ (a), a ∈ [0,p), is another point of the periodic
orbit, the spectrum of Du(Sf (p,0)γ (a)) coincides with the one of Π(p,0) whereas the corresponding eigenfunctions
depend on the point γ (a).

We denote Pu(a) (resp. Pc(a), resp. Ps(a)) the projection in Hs(S1) onto the space generated by the (generalized)
eigenfunctions of Du(Sf (p,0)γ (a)) corresponding to the eigenvalues with modulus strictly larger than 1 (resp. equal
to 1, resp. with modulus strictly smaller than 1).

Since a hyperbolic periodic orbit is a particular case of a normally hyperbolic C1 manifold, we may apply, for
example, the existence results of [27,28] or [51, Theorem 14.2 and Remark 14.3] (see also [21]) and thus, we may
state the following theorem.

Theorem C.9. Let Γ = {γ (t), t ∈ R} be a hyperbolic periodic orbit of Eq. (1.1).

(1) There exists a small neighbourhood UΓ of Γ in Hs(S1) such that the local stable and unstable sets

Ws
loc(Γ ) ≡ Ws(Γ,UΓ ) = {

u0 ∈ Hs
(
S1) ∣∣ Sf (t)u0 ∈ UΓ , ∀t � 0

}
,

Wu
loc(Γ ) ≡ Wu(Γ,UΓ ) = {

u0 ∈ Hs
(
S1) ∣∣ Sf (t)u0 ∈ UΓ , ∀t � 0

}
are (embedded) C1-submanifolds of Hs(S1) of codimension i(Γ ) and dimension i(Γ ) + 1 respectively.

(2) Moreover, Ws
loc(Γ ) and Wu

loc(Γ ) are fibrated by the local strong stable (resp. unstable) manifolds at each point
γ (a) ∈ Γ , that is,

Ws
loc(Γ ) =

⋃
a∈[0,p)

Wss
loc

(
γ (a)

)
, Wu

loc(Γ ) =
⋃

a∈[0,p)

Wsu
loc

(
γ (a)

)
,

where there exist positive constants r̃ , κ and κ∗ such that

Wss
loc

(
γ (a)

)=
{
u0 ∈ Hs

(
S1) ∣∣ ∥∥Sf (t)u0 − γ (a + t)

∥∥
Hs < r̃, ∀t � 0,

lim
t→∞ eκt

∥∥Sf (t)u0 − γ (a + t)
∥∥

Hs = 0
}
,

Wsu
loc

(
γ (a)

)=
{
u0 ∈ Hs

(
S1) ∣∣ ∥∥Sf (t)u0 − γ (a + t)

∥∥
Hs < r̃, ∀t � 0,

lim
t→−∞ e−κ∗t∥∥Sf (t)u0 − γ (a + t)

∥∥
Hs = 0

}
. (C.29)

For any a ∈ [0,p), Wss
loc(γ (a)) (resp. Wsu

loc(γ (a))) is a C1-submanifold of Hs(S1) tangent at γ (a) to Ps(a)Hs(S1)

(resp. Pu(a)Hs(S1)).



R. Joly, G. Raugel / Ann. I. H. Poincaré – AN 27 (2010) 1397–1440 1437
In the introduction, we have also defined the global stable and unstable sets as follows

Ws(Γ ) = {
u0 ∈ Hs

(
S1) ∣∣ Sf (t)u0 −→

t→+∞Γ
}
,

Wu(Γ ) = {
u0 ∈ Hs

(
S1) ∣∣ Sf (t)u0 is well-defined for t � 0 and Sf (t)u0 −→

t→−∞Γ
}
.

We recall that Ws(Γ ) and Wu(Γ ) are injectively immersed C1-manifolds of codimension i(Γ ) and dimension i(Γ )+
1 respectively. Moreover,

Wu(Γ ) =
⋃
t�0

Sf (t)Wu
loc(Γ ),

is a union of embedded C1-submanifolds of Hs(S1) of dimension i(Γ ) + 1 (see [13] or [18] for example).
We are now ready to prove the following corollary.

Corollary C.10. Let Γ = {γ (t), t ∈ R} be a hyperbolic periodic orbit of Eq. (1.1).
Let u(t) be a trajectory of (1.1) belonging to the strong unstable manifold Wsu(γ (a))\γ (a) (resp. the local strong

stable manifold Wss
loc(γ (a)) \ γ (a)) and let v(t) = u(t) − γ (t + a).

Then, there exists an eigenvalue μi of Π(p,0) such that |μi | > 1 (resp. |μi | < 1) and

lim
n→−∞

∥∥v(np)
∥∥1/n

Hs = |μi |
(

resp. lim
n→∞

∥∥v(np)
∥∥1/n

Hs = |μi |
)
.

More precisely, the asymptotic behavior of v(np) in Hs(S1) is given by one of the following possibilities:

(i) If μi is a simple real eigenvalue with corresponding real eigenfunction ϕi(a) ∈ Hs(S1), then there exists b ∈
R − {0} such that v(np) = bμn

i ϕi(a) + o(|μi |n).
(ii) If μi = μi+1 is a double real eigenvalue with two independent eigenfunctions ϕi(a) and ϕi+1(a), then there exist

(b, c) ∈ R
2 − {(0,0)} such that v(np) = bμn

i ϕi(a) + cμn
i ϕi+1(a) + o(|μi |n).

(iii) If μi = μi+1 is an algebraically double real eigenvalue with eigenfunction ϕi(a) and generalized eigenfunction
ϕi+1(a), then there exist (b, c) ∈ R

2 − {(0,0)} such that v(np) = (b + cn)μn
i ϕi(a) + cμn

i ϕi+1(a) + o(|μi |n).
(iv) If μi = |μi |eiθ is a (simple) complex eigenvalue with eigenfunction ϕi(a) = ϕi+1(a), then there exist (b, c) ∈

R
2 − {(0,0)} such that v(np) = |μi |n[(b cos(nθ) − c sin(nθ))Re(ϕi(a)) − (b sin(nθ) + c cos(nθ)) Im(ϕi(a))] +

o(|μi |n).

Let j ∈ N \ {0} be such that μi belongs to the pair of eigenvalues (μ2j−1,μ2j ), or let j = 0 if μi = μ0. As a
consequence of the asymptotic behaviour, there exists t0 ∈ R such that, for all t � t0 (resp. t � t0), v(t) has exactly 2j

zeros which all are simple.

Proof. Since u(t) belongs to the local strong stable manifold (or strong unstable) manifold of a point γ (a) of the
non trivial periodic solution γ (t) of (1.1), the proof of this corollary is very similar to the one of Corollary C.7.
Thus, we will not repeat the whole proof, but only give the details of the beginning of the proof, in order to point out
the differences with the proof of Corollary C.7 and also to emphasize the properties of the strong stable or unstable
manifolds of γ (a), that we are using here.

Since the proofs are very similar when n tends to ±∞, we only consider the case where u(t) belongs to the local
strong stable manifold Wss

loc(γ (a)) \ γ (a). To prove the corollary, we shall apply Theorem C.5, so we have to check
that the hypotheses of Theorem C.5 are satisfied. Also, without loss of generality, we may assume that a = 0.

Since u(t) belongs to Wss
loc(γ (0)) \ γ (0), there exist two positive constants c1 and κ such that∥∥u(t) − γ (t)

∥∥
Hs � c1e

−κt , as t → +∞. (C.30)

The function v(t) ≡ u(t) − γ (t) is a classical solution of the equation

vt = vxx + Dux f
(
x, γ (x, t), γx(x, t)

)
vx + Duf

(
x, γ (x, t), γx(x, t)

)
v + a(x, t)vx + b(x, t)v, (C.31)

where
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a(x, t) =
1∫

0

(
f ′

ux

(
x, γ + θ(u − γ ), γx + θ(ux − γx)

)− f ′
ux

(x, γ, γx)
)
dθ,

b(x, t) =
1∫

0

(
f ′

u

(
x, γ + θ(u − γ ), eγx + θ(ux − γx)

)− f ′
u(x, γ, γx) dθ

)
.

One at once checks that ‖a(x, t)‖C0 +‖b(x, t)‖C0 � c2‖u(t)−γ (t)‖Hs , which implies that ‖a(x, t)‖L2 +‖b(x, t)‖L2

satisfies the inequality (C.22). We next remark that

v
(
(n + 1)p

)= T v(pn) + Σ(n)v(pn),

where T = Π(p,0), and

Σ(n)v(pn) =
p∫

0

Π(p,σ)
(
a(x,np + σ)vx(x,np + σ) + b(x,np + σ)v(x,np + σ)

)
dσ.

Arguing as in the proof of Corollary C.7, one checks that Σ(n) satisfies the condition (C.2). As the periodic orbit Γ

is hyperbolic, T = Π(p,0) admits a shifted exponential dichotomy on Z
+ (see [19] for example). Thus, by Propo-

sition C.1, the family L(·) = T + Σ(·) admits a shifted dichotomy on Z
+. As, by [1], every non-zero solution of a

linear parabolic equation does not go to zero faster than an exponential when t tends to infinity, the hypotheses of
Theorem C.4 hold. Since the exponential decay property (C.30) holds, it follows from Theorem C.4, that there exists
ρi ∈ R(T ), ρi < 1 (and thus μi belonging to the spectrum of Π(p,0)), such that

lim
n→∞

∥∥v(n)
∥∥1/n

Hs = |ρi | = |μi |.
Corollary C.10 is now an easy consequence of Theorem C.5 and of Proposition 2.3 (for the details, see the proof of
Corollary C.7). �
Corollary C.11. Let Γ = {γ (t), t ∈ R} be a hyperbolic periodic orbit of Eq. (1.1) and u(t) be a trajectory of (1.1)
belonging to the strong unstable manifold Wsu(γ (a))\γ (a) (resp. the local strong stable manifold Wss

loc(γ (a))\γ (a)).
Let v0 ∈ Tu(0)W

su(γ (a)) (resp. v0 ∈ Tu(0)W
ss
loc(γ (a))) and v(t) be the solution for t � 0 (resp. t � 0) of the linearized

equation (C.28). Then, there exists an eigenvalue μi of Π(p,0) such that |μi | > 1 (resp. |μi | < 1) and

lim
n→−∞

∥∥v(np)
∥∥1/n

Hs = |μi |
(

resp. lim
n→∞

∥∥v(np)
∥∥1/n

Hs = |μi |
)
.

Moreover, all the possible asymptotic behaviors are the same as those described in Corollary C.10.
In addition, let j ∈ N \ {0} be such that μi belongs to the pair of eigenvalues (μ2j−1,μ2j ), or let j = 0 if μi = μ0.

Then, there exists t0 ∈ R such that, for all t � t0 (resp. t � t0), v(t) has exactly 2j zeros which all are simple.

Proof. If u(t) belongs to the local strong stable manifold Wss
loc(γ (a))\γ (a), u(t) satisfies the property (C.30) and

Eq. (C.28) can be written in the form (C.31), where the functions a(x, t) and b(x, t) satisfy the properties (C.22).
We emphasize that, by [10, Theorem C6], we already know that lim supn→∞ ‖v(np)‖1/n

Hs < 1. We thus obtain the
asymptotic behavior of v(t) by following the lines of the proof of Corollary C.10. �
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