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Abstract

Given a compact m-dimensional manifold M and 1 � r � ∞, consider the space Cr(M) of self mappings of M . We prove here
that for every map f in a residual subset of C1(M), the C1 closing lemma holds. In particular, it follows that the set of periodic
points is dense in the nonwandering set of a generic C1 map. The proof is based on a geometric result asserting that for generic Cr

maps the future orbit of every point in M visits the critical set at most m times.
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1. Introduction

Let M and N be real compact C∞ manifolds without boundary. For every 1 � r � ∞, Cr(M,N) will stand for
the set of class Cr maps endowed with the usual Cr topology. When M = N , the space Cr(M,M) will be denoted
by Cr(M).

The problem known as the Closing Lemma states that: given a nonwandering point x of a C1 map f , is it possible to
find a C1 perturbation g of f such that x is g-periodic? This was solved by C. Pugh for diffeomorphisms in 1967 [4].
Since then, many generalizations were obtained in different contexts besides of diffeomorphisms (see [5]). The case
of C1 endomorphisms was not included in the above contexts.

Nevertheless, for C1 endomorphisms of a compact manifold and by a clever extension of Pugh’s technique, L. Wen
obtained a C1 closing lemma valid for those having a finite number of critical points, see [7] and [8]. However, the set
of C1 maps for which this hypothesis holds is not dense. Here we will prove that:

Theorem 1. There exists a residual set R in C1(M) such that given f ∈ R, U a C1 neighborhood of f and x a
nonwandering point of f , there exists a map g ∈ U such that x is g-periodic. Moreover, there exists a residual subset
D of R such that for every f ∈ D the set of periodic points is dense in the nonwandering set.
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This result answers positively the questions posted by M. Shub in the final section of [6]. The first main ingredient
in the proof of Theorem 1 is Wen’s result on closing with finitely many singularities. The second one is a geometric
result regarding the study of the singularities of a map. The study of the singularities of smooth mappings has been
largely considered in the literature. It is well known, for example, that the singular set of a generic C∞ map admits
a stratification in submanifolds. The singular or critical set of a map f ∈ C1(M) is defined as the set of points where
the differential of f is not invertible, and is denoted by Sf . Our interest here is to determine how frequently the future
orbit of a point intersects the critical set of f , at least restricting the study to a residual set of maps.

Theorem 2. Let M be a compact manifold of dimension m. Given any positive integer r � 1 it holds that:

1. There exists a residual subset Rr of Cr(M) such that, for every f ∈ Rr , and every z ∈ M , the set of integers
n � 0 such that f n(z) ∈ Sf contains at most m elements.

2. There exists a residual subset Pr of Cr(M) such that for every map f ∈ Pr it holds that
⋃

n�0 f n(Sf ) does not
intersect the set of periodic points of f .

2. Proof of Theorem 1 and some consequences

In this section we prove our generic C1 closing lemma assuming that Theorem 2 holds. We first state Wen’s
result. To do that we need some definitions. A tree F = (Q,f ) is an infinite sequence of mutually disjoint nonempty
finite sets Q0,Q1, . . . ,Qn, . . . where Q0 consists of a single point q0 together with a map f : Q − {q0} → Q where
Q = ⋃∞

n=0 Qn such that f maps Qn into Qn−1 for each n = 1,2, . . . . An infinite sequence q0, q1, . . . , qn, . . . is an
infinite branch of F if f (qn) = qn−1 for each n = 1,2, . . . . A tree F is called complete if f is onto.

We also denote by O−(x) = ⋃
n�0 f −n(x) the negative orbit of x.

Theorem 3. (See [8].) Let f ∈ C1(M) and let x be a nonwandering point of f . Assume that there exists y ∈
O−(x) ∩ Ω(f ) such that

1. O−(y) ∩ Ω(f ) ∩ Sf = ∅.
2. (O−(y) ∩ Ω(f ),f ) is a complete tree.

Then, given any C1 neighbourhood U of f in C1(M) and U open set containing x, there exist g ∈ U and p ∈ U such
that p is a periodic point of g.

This theorem corresponds to the Case 1 in the proof of Theorem A in [8]. In that case it was assumed that
O−(y) ∩ Sf = ∅; the arguments used there can easily be adapted.

Lemma 1. Let R = R1 ∩ P1 the residual set in C1(M) as in Theorem 2. Let f ∈ R and let x be a nonwandering
point of f . Then, one of following statements holds:

1. There exists y ∈ O−(x) ∩ Ω(f ) such that f −1(y) ∩ Ω(f ) = ∅.
2. There exists y ∈ O−(x) ∩ Ω(f ) such that

(a) O−(y) ∩ Ω(f ) ∩ Sf = ∅.
(b) (O−(y) ∩ Ω(f ),f ) is a complete tree.

Proof. Assume that (1) does not happen. Then, for any y ∈ O−(x) ∩ Ω(f ) we have that f −1(y) ∩ Ω(f ) �= ∅. Thus,
any point y ∈ O−(x) ∩ Ω(f ) is contained in an infinite branch Σx = {x0 = x, x1, x2, . . .} with f (xn) = xn−1 for
n � 1 and where xi ∈ Ω(f ). Since f ∈ R it follows that any branch Σx contains at most m singular points. Among
the branches Σx ⊂ Ω(f ) take one with a maximal cardinality of singular points in it, say Σ = {x0 = x, x1, x2, . . .}.
Then, there exists n0 such that xn /∈ Sf for all n � n0 Let y = xn0 . It follows that O−(y) ∩ Ω(f ) ∩ Sf = ∅, otherwise
we contradict the way we have chosen Σ . In particular, f −n(y) ∩ Ω(f ) is finite for all n � 0. This and the fact that
(1) does not hold imply that (O−(y) ∩ Ω(f ),f ) is a complete tree. Thus, we have proved that (2) holds. �
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By virtue of Theorem 3 and the previous Lemma 1, to prove the first part of Theorem 1 we have to handle the
situation where there exists y ∈ O−(x) ∩ Ω(f ) such that f −1(y) ∩ Ω(f ) = ∅. We will prove this reasoning as in
Case 2 of Theorem A in [8].

Let f ∈ R where R is as in Lemma 1, and let U be a neighborhood of f . We will use without proof that there
exists ε such that for any r small and x ∈ M , if u,w ∈ B(x, εr) then there exists h : M → M such that h(u) = w,
supp(h) ⊂ B(x, r) and that h ◦ f ∈ U . Here supp(h) denotes the set of points y such that h(y) �= y. Let x be a non-
wandering point (and non-periodic, otherwise there is nothing to prove) of f and let U be any open set containing x.
Let y ∈ O−(x) ∩ Ω(f ) such that f −1(y) ∩ Ω(f ) = ∅. Let k be such that f k(y) = x and consider V an open set
containing y such that f i(V ), i = 0, . . . , k are disjoint and f k(V ) ⊂ U . Consider a decreasing sequence rn → 0
such that B(y, rn) ⊂ V for all n. Since y is nonwandering, we can pick zn ∈ B(y, εrn) such that f mn(zn) ∈ B(y, rn)

for some mn (which is larger than k) and f i(zn) /∈ B(y, rn) for 1 � i � mn − 1. Thus, we have that f mn(zn) → y

and, taking a subsequence if necessary, we have that f mn−1(zn) → w with f (w) = y. Since w is wandering, there
exists an open set W containing w such that f i(W) ∩ W = ∅ for all i � 1. Therefore, for n large enough, we can
take h1 supported on W such that h1(f

mn−1(zn)) = w and h1 ◦ f ∈ U . (We would like to push f mn−1(zn) to a
preimage of zn but this is not possible, there is no preimage of zn in W ). Consider also h2 supported on B(y, rn)

such that h2(y) = zn such that h2 ◦ f ∈ U . Let h : M → M be h = h1 in W , h = h2 on B(y, rn) and otherwise
the identity. It follows that g = h ◦ f ∈ U . Notice that zn, f (zn), . . . , f

mn−2(zn) does not intersects W since W is
wandering. On the other hand, f (zn), . . . , f

mn−1(zn) does not go through B(y, rn) by the way we have chosen mn.
Therefore gi(zn) = f i(zn) for i = 0, . . . ,mn − 2. Now, gmn−1(zn) = g(f mn−2(zn)) = h1(f

mn−1(zn)) = w. And fi-
nally, gmn(zn) = g(w) = h(f (w)) = h2(y) = zn. Therefore, zn is g periodic. Moreover gk(zn) = f k(zn) ∈ U, and so
we found a g periodic point in U . This completes the proof of the closing lemma for f ∈ R.

To complete the proof of Theorem 1, we must prove that there exist a residual subset D of R such that for every
f ∈ D the set of periodic points is dense in the nonwandering set. This follows by standard arguments. Let {Un}n∈N

be a countable basis of M . For all n ∈ N consider:

An = {
f ∈ C1(M)

/
Perh(f ) ∩ Un �= ∅}

being Perh(f ) the set of hyperbolic periodic points of f , and consider Bn = C1(M) − An. From the continuation of
hyperbolic periodic points we know that An is an open set and therefore An ∪ Bn is open and dense ∀ n ∈ N. Then
D1 = ⋂

n∈N
(An ∪ Bn) is a residual set on C1(M). Let us see that if f ∈ D := D1 ∩ R then Ω(f ) = Per(f ).

Suppose, by contradiction, that exist some x ∈ Ω(f )−Per(f ), and let n ∈ N such that x ∈ Un and Un ∩ Per(f ) = ∅
(in particular f /∈ An). From the first part of Theorem 1, we know that for every ε > 0 there exists gε ∈ C1(M) such
that the C1 distance between f and gε is less than ε and x ∈ Per(gε). Now we perturb gε to transform x on a hyperbolic
periodic point keeping the C1 distance between f and gε less than ε. This implies that gε ∈ An and therefore f /∈ Bn,
then f /∈ An ∪ Bn which is absurd because f ∈ D.

Now we state some straightforward consequence of our main result.

Corollary 1. Let f ∈ C1(M) a C1 − Ω-stable map. Then Ω(f ) = Per(f ).

Now, lets define the set

E 1(M) = int
{
f ∈ C1(M): every p ∈ Per(f ) is hyperbolic

}
where int means “interior”. In other words, E 1(M) is the set of endomorphisms such that there exists a neighborhood
of it such that any periodic point of any endomorphism in this neighborhood es hyperbolic. For f ∈ E 1(M) we denote
by Pi(f ) the set of periodic points of index i (i.e. dimEs

p = i).

Corollary 2. Let f ∈ E 1(M). Then,

1. There exists a neighborhood V (f ) such that if U is a neighborhood of Per(f ) and g ∈ V (f ) satisfies g = f in U ,
then Per(f ) = Per(g).

2. There exists a neighborhood V (f ) such that if U is a neighborhood of Pi(f ) and g ∈ V (f ) satisfies g = f in U ,
then Pi(f ) = Pi(g).
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The proof of this corollary is simple and it is the same as for diffeomorphisms. Indeed, just take V ⊂ E 1(M)

connected and the result follows from the fact that for each n the maps ν : V → Z, ν(g) = �{p ∈ Per(g): π(p) = n}
and νi : V → Z, νi(g) = �{p ∈ Pi(g): π(p) = n} are continuous and hence constants.

3. Singularities of self mappings

The first assertion in Theorem 2 will be a consequence of the following transversality result:

Theorem 4. Given a compact manifold M , and any n > 0, define Gn as the set of maps f ∈ C∞(M) such that the two
following conditions hold:

1. For every j � n, f −j (Sf ) is a stratified submanifold.
2. The sequence of stratified submanifolds {f −j (Sf ) 0 � j � n} is in general position.

Then Gn is open and dense for every n � 0.

3.1. Preliminaries on critical sets and transversality

In this subsection we collect some definitions and standard results, in preparation to the proof of Theorem 4.
There exist different definitions of stratifications of sets. The more adequate to our purposes is the following.

Definition 1. Given a smooth manifold M , a pair (N,Σ) is a stratified submanifold of M if Σ = {N1, . . . ,Nk} is
a (finite) partition of a subset N of M , where each Ni is a (not necessarily closed) submanifold of M such that the
following conditions hold:

1. The union
⋃

i�j Ni is a closed set for every j � k.
2. For every j � k, x ∈ Nj , and any vector v tangent to Nj at x, there exists a sequence (xn, vn) in T Nj−1 that

converges to (x, v) in T M .

Note that the second condition implies that the dimensions of the submanifolds Ni are decreasing. Each of the
submanifolds Ni ∈ Σ is called a stratum. It is also common to say that Σ is a stratification of N .

The most relevant example is the set Ls(Rm) of singular linear endomorphisms of R
m. If Lj denotes the set of

linear maps having kernel of dimension j , then {L1, . . . ,Lm} is a stratification of Ls(Rm). Note that the codimension
of Lj in the m2-dimensional space of all linear self maps of R

m is j2.

Definition 2. Given f ∈ C1(M) and 1 � j � m, let Sj (f ) be the set of points x ∈ M such that the kernel of Dfx has
dimension j .

Theorem 5. Given any compact manifold M there exists an open dense set G of C∞(M) such that for every f ∈ G
the following condition holds:

either Sf is empty or there exists a maximum k = k(f ) such that Sj (f ) is nonempty for every j � k and is empty
for every j > k.

If Sf is not empty, so that the second alternative holds, then (Sf ,Σf ), where Σf = {S1(f ), . . . , Sk(f )}, is a stratified
submanifold of M .

There exists G0 open and dense in G such that for every f ∈ G0 no critical point of f is fixed.

The proof of the first statement consists in using jets to formalize the idea that for an open and dense set f ∈
C∞(Rm) it holds that Df is transverse to the stratified submanifold Ls(Rm) of the previous example. This proof can
be found in Chapter VI of [1]. The proof of the last assertion is trivial, it will be used in the proof of the second
assertion of Theorem 2.
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There is another local property that will be used in the proof of Theorem 4. Given a map f ∈ G and a point x ∈ Sf ,
there exist neighborhoods U of f and U of x such that if g ∈ U and Sg ∩U ⊂ Sf , then Sg ∩U = Sf ∩U . This follows
from the genericity of critical points.

Definition 3. Let M be a compact manifold.

1. Any set {Ni : i ∈ I } of submanifolds of M is transverse (also called in general position) if for any finite subset J

of I such that NJ := ⋂
{j∈J } Nj is nonempty, it holds that NJ is a submanifold whose codimension is equal to

the sum of the codimensions of the Nj with j ∈ J . This is denoted by � {Ni : i ∈ I }.
2. A set {(Ni,Σi): i ∈ I } of stratified submanifolds of M is transverse if � {Ni : i ∈ I } for each choice of submani-

folds Ni ∈ Σi . The notation is � {Σi : i ∈ I }.
3. Let M0 be a manifold; a smooth map f : M → M0 is transverse to a submanifold N of M0 if Dfx(Tx(M)) +

Tf (x)(N) = Tf (x)(M0) for every x such that f (x) ∈ N .
4. A map f ∈ C∞(M) is transverse to a stratified submanifold (N,Σ) if it is transverse to each Ni ∈ Σ . The notation

is f � Σ .

If V is an open subset of the manifold M we say that f is transverse to Σ in V if f |V � Σ .

Theorem 6. Let M and M0 be manifolds, where only M is assumed to be compact.
If f : M → M0 is a C∞ map transverse to a stratified submanifold (N,Σ) of M0, then

f −1(Σ) := {
f −1(Ni): Ni ∈ Σ

}
is a stratification of f −1(N). The codimensions of Ni and f −1(Ni) are equal.

The set of smooth maps f such that f � Σ is open and dense in C∞(M,M0).

The last assertion of this statement deserves an explanation. Recall that the submanifolds belonging to Σ are not
necessarily closed; so it is not trivial a priori that the set of maps f such that f � N is open when N ∈ Σ . However, if
f � Nk , where k is maximum such that the intersection of Nk with the image of f is not empty, then the last item in
the definition of a stratified submanifold implies that every C∞ perturbation of f is transverse to Nj for every j � k,
and does not intersect Nj for every j > k.

This theorem is a consequence of the Thom Transversality Theorem, which is stated here in a mild version, suffi-
cient for all our purposes.

Theorem 7. Let Λ be an open set in an Euclidean space, M and N compact manifolds and assume that a smooth
map F : Λ × M → N is transverse to a compact submanifold V of N . Then the set of λ ∈ Λ such that Fλ � V has
total (Lebesgue) measure in Λ, where Fλ : M → N is the map defined by Fλ(x) = F(λ,x).

One also has continuous dependence of f −1(N) on f . Indeed, a possible way of defining this continuity is as
follows:

Theorem 8. Let f : M → M0 be a smooth map transverse to a stratified submanifold (N,Σ) of M0. Given a sub-
manifold N0 ⊂ M transverse to f −1(Σ), there exists a C∞ neighborhood U of f such that g−1(Σ) is transverse to
N0 for every g ∈ U .

3.2. Proof of Part 1 of Theorem 2

Until now we treat with C∞ maps, in preparation for the proof of Theorem 4. Now we give the proof of Part 1 of
Theorem 2 and for this it is necessary to treat maps that are not C∞.

For maps in C1(M), the variation of the critical sets is not continuous; however, the following semicontinuity is
easy to establish:

Given f ∈ C1(M) and a neighborhood U of Sf , there exists a neighborhood V0 of f such that Sg ⊂ U for every
g ∈ V0.
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Theorem 4 implies Part 1 of Theorem 2:
Given n > 0, let Un be the set of f ∈ Cr(M) such that

sup
z∈M

card
{
0 � j � n: f j (z) ∈ Sf

}
� m,

where m is the dimension of M .
Proof that Un is open in Cr(M).
Let f ∈ Un; given z ∈ M there exist neighborhoods Dz of z, Uz of Sf and Vz ⊂ Cr(M) of f such that gj (Dz) ∩

Uz = ∅ for every g ∈ Vz and every 0 � j � n such that f j (z) /∈ Sf . Cover M with a finite number of such Dz, and let
U and V ′ be the intersections of the corresponding Uz and Vz. Let V be the intersection of V ′ with the neighborhood
V0 associated to the neighborhood U of Sf given by the semicontinuity of Sf stated above. Then, for every g ∈ V and
z ∈ M , it holds that gj (z) ∈ Sg for at most m iterates between 0 and n. This proves the claim.

Proof that Un is dense in Cr(M).
Given any Cr open set U , use the denseness of C∞(M) in Cr(M) and Theorem 4 to get a map g ∈ Gn ∩ U . To

prove that g ∈ Un, let x ∈ M and {j1, . . . jk} be the set of indexes j � n such that gj (x) ∈ Sg . Let Ni be the stratum of
g−ji (Sg) that contains x. By Theorem 4 the set {N1, . . . ,Nk} is transverse (in general position), and as it has nonempty
intersection, it comes that:

m = dimM � codim

(⋂
i

Ni

)
=

∑
i

codim(Ni) � k.

This proves the density of Un.
To conclude the proof of Part 1 of Theorem 2, let Rr be equal to the intersection of the Un with n � 1.

3.3. Perturbation techniques

The first result needed for the proof of Theorem 4, allows us to make local perturbations without changing the
critical set:

Lemma 2. Let f : R
m → R

m be a C∞ map in the open and dense set G obtained in Theorem 5 and let 0 ∈ Sf be a
critical point. There exist arbitrary small numbers a and b, 0 < a < b, and a C∞ nonnegative function ϕ equal to 1
in Ba , equal to 0 outside Bb and whose gradient is orthogonal to the kernel of Df at each critical point of f in Bb .
(Ba denotes the ball centered at 0 and having radius a.)

Proof. Assume that f (0) = 0 and define N(x) = ‖f (x)‖2. There exists a neighborhood B of 0 such that f −1(0) ∩
B = {0}, so one can choose an arbitrary small positive number b such that m = min{N(x): x ∈ ∂Bb} is positive, where
∂B denotes the boundary of the set B . Choose any m′ ∈ (0,m) and let a ∈ (0, b) be such that N(x) < m′ for every
‖x‖ < a. Now let h : [0,+∞) → R be a C∞ nonnegative function such that h(t) = 0 if t � m, and h(t) = 1 if t � m′.
Finally define the function ϕ as being equal to 0 outside Bb and such that ϕ(x) = h(N(x)) in Bb .

Note that ∇ϕ(x) = h′(N(x))∇N(x) in Bb , and that ∇N(x) is a linear combination of the rows of the matrix
associated to Dfx , hence orthogonal to the kernel of Dfx . �
Definition 4. Given f ∈ C∞(M), x ∈ M and a neighborhood U of f , say that a triple (V ,U,f1) is adequate to x,f, U
if the following conditions hold:

1. Both U and V are open neighborhoods of x such that V ⊂ U .
2. f1 is a map in U that coincides with f outside U .
3. Sf = Sf1 .

For the proof of the theorem, we will still need two preliminary results where some local perturbations are per-
formed. The first one says that we can perturb in order to make transverse the preimage of transverse manifolds,
without changing the preimage of one of them. This will be used in the induction step.
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Proposition 1. Let f ∈ G0 (G0 as in the last assertion of Theorem 5), U a C∞ neighborhood of f and x ∈ Sf such
that f (x) ∈ N1 ∩ N2, and f � N2, where N1 and N2 are transverse submanifolds. There exists an adequate triple
(V ,U,f1) for x,f, U such that f −1

1 (N2) = f −1(N2) and:

1. f1 � N1 in V .
2. f −1

1 (N1) � f −1
1 (N2) in V .

Before beginning with the proof note that the transversality of N1 and N2 does not imply the transversality of its
preimages. It is easy to prove that if, in addition, f is transverse to N1 ∩ N2, then f −1(N1) � f −1(N2).

Proof. Let (U ′, τ1) be a local chart at x such that f (U ′) ⊂ V ′, where (V ′, τ2) is a local chart at f (x). As x is not
fixed for f one can choose U ′ such that f (U ′) ∩ U ′ = ∅. By taking adequate local charts one can also assume that
τ2(Ni) is a subspace Wi for i = 1,2. Of course, W1 � W2. Let f̃ = τ−1

2 f τ1 : R
m → R

m and define, for the function ϕ

of Lemma 2, and for each w ∈ W2, the maps

F : R
m × W2 → R

m by F(X,w) = f̃ (X) + ϕ(X)w

and for each w ∈ W2, f̃w : R
m → R

m by f̃w(X) = F(X,w).
Note that DF(0,0) generates W2, from which it follows that F � W1 in a neighborhood of (0,0), since W1 and W2

are transverse. By the parametrized transversality theorem it comes that f̃w � W1 for an open set of values w ∈ W2.
Therefore, it is no loss of generality to assume from the beginning that f̃ is transverse to W1.

Note also that DF(0,0) is a submersion, because (by hypothesis) ∂xF = Df̃x generates a subspace complementary
to W2 and ∂wF generates W2.

Let f̃w(X) = F(X,w) and choose w small so that f̃w is transverse to W1 ∩ W2 in a ball Ba . Observe that every
critical point of f̃ is a critical point of f̃w because the gradient of ∇ϕ is orthogonal to the kernel of Df̃ . This implies
by genericity that S

f̃
= S

f̃w
. Define f1 as the map that coincides with f outside U = τ−1

1 (Bb) and is equal to τ−1
2 f̃wτ1

in V = τ−1
1 (Ba). Therefore, there exist vectors w of arbitrary small norm such that the triple (V ,U,f1) is adequate to

x,f, U .
By the choice of w ∈ W2 it comes that the preimages of N2 under f1 and f2 are equal. On the other hand, f1 is

transverse to N1 and f −1
1 (N1) � f −1

1 (N2), by the remark preceding the proof of the proposition. �
The second ingredient in the proof of the induction step of Theorem 4 is the following proposition, intended to

show that Sf can be made transverse to a new f −n(Sf ) without changing f −j (Sf ) for j � n − 1.

Proposition 2. Suppose that f is a map in C∞(M), N1 and N2 are transverse submanifolds of M and f � N1 ∩N2. If
N0 is another submanifold of M , U is a neighborhood of f , and x is a point in M such that x ∈ N0 ∩ f −1(N1 ∩ N2),
then there exists a triple (V ,U,f1) adequate to x, f , U , such that:

1. N0 � f −1
1 (N1), and

2. f −1
1 (N2) = f −1(N2).

Proof. As in the proof of the above proposition, one can assume that f acts in R
m and that each Ni is a linear

space. The map f1 will be obtained from a perturbation of the type f1(x) = f (x) + w2ϕ(x), for w2 ∈ W2 and ϕ as in
Lemma 2. Define L = Dfx and let V be a subspace where L is injective and such that L(V )⊕W1 = R

m this last exists
because L is transverse to W1 ∩ W2. Let π : W2 → LV be the projection which assigns to each w2 its component in
LV relative to the decomposition LV ⊕ W1 = R

m. Let π0 = (L|V )−1 ◦ π . Note that π0 : W2 → V is surjective since
W2 + W1 = R

m. Note that L−1(W1 + w2) = L−1(W1) + π0(w2) for w2 ∈ W2. As V ⊕ L−1(W1) = R
m, it follows

that L−1(W1) + v is transverse to W0 for almost every v ∈ V . As π0 is surjective, it comes that L−1(W1 + w2) is
transverse to W0 for almost every w2 ∈ W2.

This is equivalent to say that L−1
w2

(W1) is transverse to W0, where Lw = L + w. But this must hold also for fw2 ,
that is arbitrarily close to Lw2 . �
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3.4. Proof of Theorem 4

It will be proved that if n is a given nonnegative integer, then:

�
{
Sf ,f −1(Sf ), . . . , f −n(Sf )

}
for every f in an open and dense subset of C∞(M). The proof will be done by induction.

The initial step requires that Sf is a stratified submanifold; this is an immediate consequence of Theorem 5.

Induction step: Assume that for every f in some open and dense set Vn it holds that for each 0 � j � n, f −j (Sf ) is
a stratified submanifold and

�
{
Sf ,f −1(Sf ), . . . , f −n(Sf )

}
.

We have to prove that there exists an open and dense set Vn+1 such that for g ∈ Vn+1 we have

1. g−j (Sg) is a stratified submanifold for every j � n + 1.
2. � {Sg, g

−1(Sg), . . . , g
−(n+1)(Sg)}.

Notice that the set of maps g satisfying each one of (1) and (2) is open. So, to complete the induction step it suffices
to show that in any nonempty open set U contained in Vn there exists a map g satisfying (1) and (2).

Let us prove first that f
−(n+1)
1 (Sf1) is a stratified submanifold for some f1 ∈ U . For this, it is sufficient to find

f1 ∈ U such that f1 � f −n
1 (Sf1).

Let f ∈ U . For every x ∈ Sf ∩f n+1(Sf ), let Jx be the set of indexes j ∈ {1, . . . , n} such that x ∈ f −j (Sf ), and for
every j ∈ Jx , let Mj be the stratum of f −j (Sf ) containing x. Take a neighborhood U of x such that f (U)∩U = ∅ and
the following two conditions hold: first, U ∩f −k(Sf ) = ∅ for every 1 � k � n that does not belong to Jx , and second,
that U ∩ M ′ = ∅ for every stratum M ′ of f −j (Sf ) of dimension less than that of Mj . Define N2 = ⋂

j∈Jx
f (Mj )

and let N1 be the stratum of f −n(Sf ) containing f (x). It follows that f (x) ∈ N1 ∩ N2. Note that by the hypothesis
of the induction, N1 � N2 and f � N2. So Proposition 1 can be applied to obtain a triple (V ,U,f1) adequate to
x,f, U such that f1 � N1 in V , while f −1

1 (N2) = f −1(N2). The point here is that the perturbation of f is supported
in U , and as the preimage of N2 is not changed when the perturbation is made, then N1 can be thought as a fixed
manifold that does not depend on the map. It follows that f1 � f −n

1 (Sf ) in V , which provides the perturbation that
makes f1 � f −n

1 (Sf ) locally. The way these local perturbations are accomplished in order to obtain a map f1 that is
transverse to f −n

1 (Sf1) is standard and can be done by means of partitions of unity, as in the proof of the Transversality
Theorem, see references [2, Theorem 3.2], [3, Section 3.2] or [1, Theorem 4.9].

Once it is known that f
−(n+1)
1 (Sf1) is a stratified submanifold, this property persists in a neighborhood of f1

(contained in U ). For each x ∈ M , define J (x) as the set of indexes 0 � j � n + 1 such that f
j

1 (x) ∈ Sf1 . Let also Mj

be the stratum of f
−j

1 (Sf1) that contains x. If 0 /∈ Jx , then there is nothing to prove since f1 is locally a diffeomorphism
around x and the induction hypothesis implies that the images of these submanifolds form a transverse set. On the
other hand, if n + 1 /∈ Jx , the induction hypothesis applies directly. For the other cases take a neighborhood U of x as
above.

Define N1 = f1(Mn+1), and

N2 =
⋂

j∈Jx\{0,n+1}
f1(Mj )

By hypothesis, N1 and N2 are transverse submanifolds and f1 is transverse to their intersection. We will show that
we can perturb f1 to obtain g so that Sg is transverse to g−1(N1 ∩ N2). First show that we can perturb to obtain f2
such that Sf2 is transverse to the preimage of N1 by applying Proposition 2. Indeed, let N0 = M0 be the stratum of
Sf1 that contains x; then N0 can be considered as a fixed submanifold because the perturbations leave Sf1 unchanged
by Lemma 2, as well as N1 and N2, that do not change by the choice of the perturbations. We will now perturb this
map in order to prove that the intersection of the corresponding {Mj : j ∈ Jx} is transverse at x. To do this apply
Proposition 2 again, taking N1 and N2 as above but defining N0 = ⋂

j∈Jx\{n+1} Mj . As before, by means of partition
of unity we obtain g ∈ U satisfying (1) and (2). This finishes the proof of Theorem 4.
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3.5. Proof of Part 2 of Theorem 2

Proof. Given integers n and k, where n � 0 and k � 1, denote by P n
k (f ) the set of points x ∈ M such that f n(x) is

a periodic point of f of period at most k. Given any fixed k > 0, there exists an open and dense set K S k such that,
for every f ∈ K S k , every periodic point of f of period at most k is hyperbolic. In particular, for every f ∈ K S k , the
following properties hold: P 0

k (f ) is a finite set, it varies continuously with f , and it does not intersect the critical set
of f . Now fix some r � 1 and define:

An
k = K S k ∩ {

f : P n
k (f ) ∩ Sf = ∅}

.

Note that An
k is open in Cr(M); indeed, given disjoint neighborhoods U of P n

k (f ) and V of Sf , it is clear that for
every perturbation g of f it holds that P n

k (g) ⊂ U and Sg ⊂ V .
Fix some positive k. We will prove now by induction on n that every An

k is dense in Cr(M). This implies the
theorem.

To prove the claim, let f ∈ Cr(M) and U a neighborhood of f . We can begin taking f ∈ K S k ∩ G as both are
residual sets. The initial step of the induction is then consequence of f ∈ K S k . So assume that f ∈ An−1

k . Note that
as f ∈ G , the preimage of any point is a finite set, so it is sufficient to prove that if x ∈ Sf ∩ P n

k (f ) then there exists
a perturbation g of f such that P n

k (g)∩Sg ∩U = ∅ for some neighborhood U of x. So begin with an x ∈ Sf ∩P n
k (f );

there exists a neighborhood U of x such that U ∩ P n−1
k (f ) = ∅ and such that x is the unique point of Sf ∩ P n

k (f )

in U . As P n−1
k (f ) is a (zero-dimensional) submanifold, one can use again the Thom Transversality Theorem to find

a map g ∈ U such that the restriction of g to U is transverse to P n−1
k (f ) and f = g outside the closure of U . This last

assertion implies that P n−1
k (g) = P n−1

k (f ) by the choice of U . It follows that g|U is transverse to P n−1
k (g) which is

equivalent to say that every point of P n−1
k (g) is a regular value of g, or that P n

k (g) ∩ Sg ∩ U = ∅. This provides the
proof of the induction step. �
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