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Abstract

In this paper we use quasiminimizing properties of radial power-type functions to deduce counterexamples to certain
Caccioppoli-type inequalities and weak Harnack inequalities for quasisuperharmonic functions, both of which are well known
to hold for p-superharmonic functions. We also obtain new bounds on the local integrability for quasisuperharmonic functions.
Furthermore, we show that the logarithm of a positive quasisuperminimizer has bounded mean oscillation and belongs to a Sobolev
type space.

Résumé

Dans cet article nous utilisons les propriétés des fonctions avec puissance radiale afin d’obtenir des contre-exemples à certaines
inéquations de type Caccioppoli et Harnack faible pour les fonctions quasisuperharmoniques, lesquelles sont bien connues être
valables pour les fonctions p-superharmoniques. Nous obtenons aussi de nouvelles bornes pour l’intégrabilité locale des fonctions
quasisuperharmoniques. De plus nous démontrons que le logarithme d’une fonction positive quasiminimisante est de type BMO,
et appartient à un espace de Sobolev.
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1. Introduction

Let 1 < p < ∞ and let Ω ⊂ Rn be a nonempty open set. A function u ∈ W
1,p

loc (Ω) is a Q-quasiminimizer, Q � 1,
in Ω if∫

ϕ �=0

|∇u|p dx � Q

∫
ϕ �=0

∣∣∇(u + ϕ)
∣∣p dx (1.1)
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for all ϕ ∈ W
1,p

0 (Ω). Quasiminimizers were introduced by Giaquinta and Giusti [19,20] as a tool for a unified treat-
ment of variational integrals, elliptic equations and quasiregular mappings on Rn. They realized that De Giorgi’s
method could be extended to quasiminimizers, obtaining, in particular, local Hölder continuity. DiBenedetto and
Trudinger [15] proved the Harnack inequality for quasiminimizers, as well as weak Harnack inequalities for quasisub-
and quasisuperminimizers. We recall that a function u ∈ W

1,p

loc (Ω) is a quasisub(super)minimizer if (1.1) holds for all

nonpositive (nonnegative) ϕ ∈ W
1,p

0 (Ω).
Compared with the theory of p-harmonic functions we have no differential equation for quasiminimizers, only the

variational inequality can be used. There is also no comparison principle nor uniqueness for the Dirichlet problem.
The following result was recently obtained by Martio [37, Theorem 4.1]. It shows that quasiminimizers are much
more flexible under perturbations than solutions of differential equations, which can be useful in applications and in
particular shows that results obtained for quasiminimizers are very robust.

Theorem 1.1. Let u be a Q-quasiminimizer in Ω and f ∈ W
1,p

loc (Ω) be such that |∇f | � c|∇u| a.e. in Ω , where
0 < c < Q−1/p . Then u + f is a Q′-quasiminimizer in Ω ′, where Q′ = (1 + c)p/(Q−1/p − c)p .

After the papers by Giaquinta and Giusti [19,20] and DiBenedetto and Trudinger [15], Ziemer [45] gave a Wiener-
type criterion sufficient for boundary regularity for quasiminimizers. Tolksdorf [42] obtained a Caccioppoli inequality
and a convexity result for quasiminimizers. The results in [15,19,20,45] were extended to metric spaces by Kinnunen
and Shanmugalingam [30] and J. Björn [11] in the beginning of this century, see also A. Björn and Marola [9].
Soon afterwards, Kinnunen and Martio [28] showed that quasiminimizers have an interesting potential theory, in
particular they introduced quasisuperharmonic functions, which are related to quasisuperminimizers in a similar way
as superharmonic functions are related to supersolutions, see Definition 2.4.

The one-dimensional theory was already considered in [19], and has since been further developed by Martio and
Sbordone [38], Judin [27], Martio [35] and Uppman [44]. Most aspects of the higher-dimensional theory fit just as well
in metric spaces, and this theory, in particular concerning boundary regularity, has recently been developed further in
a series of papers by Martio [34–37], A. Björn and Martio [10], A. Björn [1–4] and J. Björn [12].

So far, most of the theory for quasiminimizers has been extending various results known for p-harmonic functions.
This paper goes in the opposite direction: we show that some results are not extendable and the class of quasimini-
mizers behaves in a way that was not expected.

Superminimizers, i.e. 1-quasisuperminimizers, are nothing but supersolutions to the p-Laplace equation

div
(|∇u|p−2∇u

) = 0.

Until now, there have been very few examples of quasi(super)minimizers for which the best quasi(super)minimizer
constant is known, apart from a few explicit examples of p-harmonic functions, i.e. with Q = 1. In one dimension
there are a couple of examples with optimal quasiminimizer constant in Judin [27], Martio [35] and Uppman [44]. As
far as we know, the only explicit examples of quasiminimizers with optimal quasiminimizer constant Q > 1 in higher
dimensions were recently obtained by Björn and Björn [7]. Let B = B(0,1) denote the unit ball in Rn.

Theorem 1.2. Let 1 < p < n, α � β = (p − n)/(p − 1) and u(x) = |x|α . Then u is a Q-quasiminimizer in B \ {0}
and a Q-quasisuperharmonic function in B, where

Q =
(

α

β

)p
pβ − p + n

pα − p + n

is the best quasiminimizer constant in both cases.

Trudinger [43] obtained a sharp weak Harnack inequality for supersolutions (Q = 1), whose exponent coincides
with the sharp exponent for local integrability of superharmonic functions. As a consequence of Theorem 1.2, we will
show that the best exponent in the weak Harnack inequality for Q-quasisuperminimizers must depend on Q, and tends
to 0, as Q → ∞. The same is true for the best exponent of local integrability for Q-quasisuperharmonic functions.
Theorem 1.2 implies upper bounds for these exponents, which for Q = 1 coincide with the known sharp bounds. It is
therefore natural to expect that these bounds are sharp also for Q > 1.
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Similar conclusions can be drawn for Caccioppoli inequalities for quasisuperminimizers: some of the “classical”
Caccioppoli type inequalities cannot be true with exponents independent of the quasiminimizing constant Q. There is
a gap between the sharp exponents for Q = 1 and the known exponents for Q > 1, and Theorem 1.2 implies bounds
for these exponents, which for Q = 1 coincide with the known sharp bound.

Caccioppoli inequalities and the weak Harnack inequality for quasisuperminimizers are essential for extending the
Moser iteration technique in full to quasiminimizers. A. Björn and Marola [9] have shown that the scheme applies
to a large extent to this setting, but a logarithmic Caccioppoli inequality for quasisuperminimizers still needs to be
proved in order to obtain the full result. It is traditionally used to show that the logarithm of a positive superminimizer
belongs to BMO. We show that the logarithm of a positive quasisuperminimizer belongs to BMO simply by exploiting
a classical tool from harmonic analysis in our setting. Interesting enough, in light of Theorem 1.2, this qualitative result
seems to be the best we can hope for.

The outline of the paper is as follows: In Section 2 we introduce the relevant background on metric spaces and
quasiminimizers. Those readers only interested in Euclidean spaces may simply replace the minimal upper gradient
gu by the modulus |∇u| of the usual gradient and the Newtonian space N1,p by the Sobolev space W 1,p throughout
the paper.

In Section 3 we turn to Caccioppoli inequalities for quasisuperminimizers and deduce bounds on the exponents.
In Section 4 we obtain bounds on the exponents in weak Harnack inequalities for quasisuperminimizers and for the
local integrability of quasisuperharmonic functions. In Section 5 we prove some new Caccioppoli inequalities for
quasiminimizers. We also show that the logarithm of a positive quasisuperminimizer belongs to BMO, qualitatively,
and to W

1,q

loc for every q < p.
Finally, in Section 6 we make a digression and discuss the relation between the quasiconvexity constant L and the

dilation constant λ in the weak Poincaré inequality; both constants play essential roles in Sections 4 and 5.

2. Preliminaries

The theory of quasiminimizers fits naturally into the analysis on metric spaces, as it uses variational integrals rather
than partial differential equations. In this case, the metric space (X,d) is assumed to be complete and equipped with
a doubling measure μ, i.e. there exists a doubling constant Cμ such that

0 < μ(2B) � Cμμ(B) < ∞
for every ball B = B(x, r) = {y ∈ X: d(x, y) < r}, where λB = B(x,λr). Moreover we require the measure to
support a weak (1,p)-Poincaré inequality, see below. Throughout the paper we assume that 1 < p < ∞.

We follow Heinonen and Koskela [25] in introducing upper gradients as follows (they called them very weak
gradients).

Definition 2.1. A nonnegative Borel function g on X is an upper gradient of an extended real-valued function f on
X if for all curves γ : [0, lγ ] → X,

∣∣f (
γ (0)

) − f
(
γ (lγ )

)∣∣ �
∫
γ

g ds (2.1)

whenever both f (γ (0)) and f (γ (lγ )) are finite, and
∫
γ

g ds = ∞ otherwise.
A nonnegative measurable function g on X is a p-weak upper gradient of f if (2.1) holds for p-almost every curve

in the sense of Definition 2.1 in Shanmugalingam [40]. It is implicitly assumed that
∫
γ

g ds is defined (with a value in
[0,∞]) for p-almost every rectifiable curve γ .

The p-weak upper gradients were introduced in Koskela and MacManus [31]. They also showed that if g ∈ Lp(X)

is a p-weak upper gradient of f , then one can find a sequence {gj }∞j=1 of upper gradients of f such that gj → g in
Lp(X). If f has an upper gradient in Lp(X), then it has a minimal p-weak upper gradient gf ∈ Lp(X) in the sense
that for every p-weak upper gradient g ∈ Lp(X) of f , gf � g a.e., see Corollary 3.7 in Shanmugalingam [41]. (The
reader may also consult Björn and Björn [8] where proofs of all the facts mentioned in this section are given, apart
from those about quasiminimizers.)
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Next we define a version of Sobolev spaces on the metric space X due to Shanmugalingam in [40]. Cheeger [14]
gave an alternative definition which leads to the same space (when p > 1) see [40].

Definition 2.2. Whenever u ∈ Lp(X), let

‖u‖N1,p(X) =
(∫

X

|u|p dμ + inf
g

∫
X

gp dμ

)1/p

,

where the infimum is taken over all upper gradients of u. The Newtonian space on X is the quotient space

N1,p(X) = {
u: ‖u‖N1,p(X) < ∞}

/∼,

where u ∼ v if and only if ‖u − v‖N1,p(X) = 0.

The space N1,p(X) is a Banach space and a lattice, see Shanmugalingam [40].
A function u belongs to the local Newtonian space N

1,p

loc (Ω) if u ∈ N1,p(V ) for all bounded open sets V with
V ⊂ Ω , the latter space being defined by considering V as a metric space with the metric d and the measure μ

restricted to it.
If u,v ∈ N

1,p

loc (X), then gu = gv a.e. in {x ∈ X: u(x) = v(x)}, in particular gmin{u,c} = guχu �=c for c ∈ R. For these
and other facts on p-weak upper gradients, see, e.g., Björn and Björn [5, Section 3] (which is not included in Björn
and Björn [6]).

Definition 2.3. We say that X supports a weak (q,p)-Poincaré inequality if there exist constants C > 0 and λ � 1
such that for all balls B ⊂ X, all integrable functions f on X and all upper gradients g of f ,(

−
∫
B

|f − fB |q dμ

)1/q

� C diam(B)

(
−
∫
λB

gp dμ

)1/p

, (2.2)

where fB := −
∫

B
f dμ := ∫

B
f dμ/μ(B).

In the definition of Poincaré inequality we can equivalently assume that g is a p-weak upper gradient—see the
comments above.

For more details see any of the papers on metric spaces in the reference list. Note, in particular, that Rn with the
Lebesgue measure dμ = dx, as well as weighted Rn with p-admissible weights are special cases of metric spaces
satisfying our assumptions.

In metric spaces, gu is the natural substitute for the scalar |∇u|. Note that we have no natural counterpart to the
vector ∇u. (See however Cheeger [14].) The Newtonian space N1,p replaces the Sobolev space W 1,p . The definition
of quasiminimizers on metric spaces is thus as follows. A function u ∈ N

1,p

loc (Ω) is a Q-quasiminimizer, Q � 1, in Ω

if ∫
ϕ �=0

g
p
u dx � Q

∫
ϕ �=0

g
p
u+ϕ dμ (2.3)

for all ϕ ∈ Lipc(Ω). Similarly, a function u ∈ N
1,p

loc (Ω) is a Q-quasisub(super)minimizer if (2.3) holds for all non-
positive (nonnegative) ϕ ∈ Lipc(Ω). Note also that a function is a Q-quasiminimizer in Ω if and only if it is both a
Q-quasisubminimizer and a Q-quasisuperminimizer in Ω .

Our definition of quasiminimizers (and quasisub- and quasisuperminimizers) is one of several equivalent possi-
bilities, see Proposition 3.2 in A. Björn [1]. In fact it is enough to test (1.1) with (all, nonpositive and nonnegative,
respectively) ϕ ∈ Lipc(Ω), the space of Lipschitz functions with compact support in Ω .

Every quasiminimizer can be modified on a set of measure zero so that it becomes locally Hölder continuous in Ω .
This was proved in Rn by Giaquinta and Giusti [20, Theorem 4.2], and in metric spaces by Kinnunen and Shanmu-
galingam [30, Proposition 3.8 and Corollary 5.5]. A Q-quasiharmonic function is a continuous Q-quasiminimizer.
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Kinnunen and Martio [28, Theorem 5.3] showed that if u is a Q-quasisuperminimizer in Ω , then its lower semi-
continuous regularization u∗(x) = ess lim infy→x u(y) is also a Q-quasisuperminimizer in Ω belonging to the same

equivalence class as u in N
1,p

loc (Ω). Furthermore, u∗ is Q-quasisuperharmonic in Ω . For our purposes we make the
following definition.

Definition 2.4. A function u : Ω → (−∞,∞] is Q-quasisuperharmonic in Ω if u is not identically ∞ in any com-
ponent of Ω , u is lower semicontinuously regularized, and min{u, k} is a Q-quasisuperminimizer in Ω for every
k ∈ R.

This definition is equivalent to Definition 7.1 in Kinnunen and Martio [28], see Theorem 7.10 in [28]. (Note that
there is a misprint in Definition 7.1 in [28]—the functions vi are assumed to be Q-quasisuperminimizers.)

A function is p-harmonic if it is 1-quasiharmonic, it is superharmonic if it is 1-quasisuperharmonic, and it is a
sub(super)minimizer if it is a 1-quasisub(super)minimizer.

Unless otherwise stated, the letter C denotes various positive constants whose exact values are unimportant and
may vary with each usage.

3. Caccioppoli inequalities for quasisuperminimizers

In this section we discuss Caccioppoli inequalities for quasi(super)minimizers. These inequalities play an important
role, e.g., when proving regularity results for quasiminimizers, see, e.g., DiBenedetto and Trudinger [15], Kinnunen
and Shanmugalingam [30] and A. Björn and Marola [9]. We will show how some well-known results for sub- and
superminimizers (i.e. with Q = 1) do not extend to the case Q > 1.

Let γ0 = γ0(Q,p) be the largest number (independent of X and Ω) such that for every γ < γ0 there is a constant
Cγ = Cγ (Q,p,X,Ω) such that the Caccioppoli inequality∫

Ω

u−p+γ g
p
u ηp dμ � Cγ

∫
Ω

uγ gp
η dμ (3.1)

holds for all Q-quasisuperminimizers u � 0 in Ω and all 0 � η ∈ Lipc(Ω).
By Proposition 7.3 in A. Björn and Marola [9], (3.1) holds for all γ < 0 and thus γ0(Q,p) � 0, both in Rn and

in metric spaces. We also know that γ0(1,p) � p − 1, see Heinonen, Kilpeläinen and Martio [24, Lemma 3.57] for
the Euclidean case and Kinnunen and Martio [29, Lemma 3.1] for metric spaces. It is probably well known that
γ0(1,p) = p − 1, but it also follows from the following more general proposition, with α = β .

Proposition 3.1. Let n > p and α � (p − n)/(p − 1) = β . Let further

Q =
(

α

β

)p
pβ − p + n

pα − p + n
and δ(Q,p) = p − n

α
. (3.2)

Then γ0(Q,p) � δ(Q,p).

Note that δ is really a function of Q and p only: there is a one-to-one correspondence between Q � 1 and α � β ,
and thus δ(Q,p) is a function of Q, p and n a priori, and is independent of n by Proposition 3.3 below.

In view of this result, and the fact that γ0(1,p) = p − 1, it feels natural to make the following conjecture.

Conjecture 3.2. Let Q > 1. We conjecture that γ0(Q,p) = δ(Q,p).

Recall though that we do not know that γ0(Q,p) is positive nor that (3.1) holds for γ = 0, for any Q > 1. See
however Lemma 5.8 below.

Proposition 3.3. Let n > p. Then δ(Q,p) is the unique solution in (0,p − 1] of the equation

Q = (p − 1)p−1

δp−1(p − δ)
. (3.3)

In particular, the expression for δ(Q,p) in (3.2) is independent of n > p.
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Proof. Let 0 < δ � p−1 be fixed and α = (p−n)/δ � (p−n)/(p−1) = β < 0. Note that pβ −p+n = β . Inserting
this into (3.2) gives

Q =
(

p − 1

δ

)p
(p − n)/(p − 1)

p(p − n)/δ − p + n
= (p − 1)p−1

δp−1(p − δ)
.

Note that Q = 1 for δ = p − 1, and Q → ∞, as δ → 0. Differentiating Q with respect to δ gives

∂Q

∂δ
= (p − 1)p−1

(
1 − p

δp(p − δ)
+ 1

δp−1(p − δ)2

)
= p(p − 1)p−1(δ + 1 − p)

δp(p − δ)2
� 0

with equality only for δ = p − 1. Thus, Q is strictly decreasing as a function of δ in the interval (0,p − 1]. Conse-
quently, for every Q � 1, there exists a unique δ ∈ (0,p − 1] satisfying (3.3). �

It is easy to see that δ(Q,2) = 1 − √
1 − 1/Q and α(Q,2, n) = (2 − n)(Q + √

Q2 − Q). For general p we can
use (3.3) to obtain the following asymptotic estimates for δ(Q,p) and α in terms of Q and p.

Corollary 3.4. Let Q > 1 and n > p. Then

p − 1

(pQ)1/(p−1)
< δ(Q,p) <

p − 1

Q1/(p−1)
. (3.4)

Moreover, if β := (p − n)/(p − 1), then

(pQ)1/(p−1)β < α < Q1/(p−1)β.

Proof. Write δ := δ(Q,p). As α = (p − n)/δ = (p − 1)β/δ, it suffices to prove (3.4). Since δ > 0, we have

Q = (p − 1)p−1

δp−1(p − δ)
>

(p − 1)p−1

δp−1p
,

proving the first inequality in (3.4). Similarly, as δ < p − 1, we see that Q < (p − 1)p−1/δp−1, and the second
inequality in (3.4) follows. �

Before giving the proof of Proposition 3.1 we show that it is equivalent to study Caccioppoli inequalities for
quasisuperharmonic functions, a fact that we will actually use in the proof of Proposition 3.1.

Proposition 3.5. Let γ , Q, C̃, Ω and 0 � η ∈ Lipc(Ω) be fixed. Then the Caccioppoli inequality∫
Ω

u−p+γ g
p
u ηp dμ � C̃

∫
Ω

uγ gp
η dμ (3.5)

holds for all Q-quasisuperminimizers u � 0 in Ω if and only if it holds for all Q-quasisuperharmonic functions u � 0
in Ω .

Quasisuperharmonic (and also superharmonic) functions are in general too large to belong to N
1,p

loc (Ω). However
the gradient is naturally defined by gu = gmin{u,k} on {x: u(x) < k}, for all k = 1,2, . . . , see e.g. p. 150 in Heinonen,
Kilpeläinen and Martio [24] for the Euclidean case or Kinnunen and Martio [29] for the metric space case. Here it
is important to know that a quasisuperharmonic function is infinite only on a set with zero measure. Kinnunen and
Martio [28, Theorem 10.6] showed even more: that it is infinite only on a set of zero capacity.

Proof of Proposition 3.5. Assume first that (3.5) holds for all Q-quasisuperharmonic u � 0 and let u be a nonnegative
Q-quasisuperminimizer. Then u∗ � 0 is Q-quasisuperharmonic and u∗ = u a.e. Thus∫

u−p+γ g
p
u ηp dμ =

∫ (
u∗)−p+γ

g
p
u∗ηp dμ � C̃

∫ (
u∗)γ

gp
η dμ = C̃

∫
uγ gp

η dμ.
Ω Ω Ω Ω
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Conversely, let u be a nonnegative Q-quasisuperharmonic function. Then uk := min{u, k}, k = 1,2, . . . , is a non-
negative Q-quasisuperminimizer. Moreover, guk

= χ{u<k}gu a.e. By monotone convergence we see that∫
Ω

u−p+γ g
p
u ηp dμ = lim

k→∞

∫
Ω

u
−p+γ

k g
p
uk

ηp dμ � lim
k→∞ C̃

∫
Ω

u
γ

k gp
η dμ = C̃

∫
Ω

uγ gp
η dμ,

where we use the boundedness of |uγ

k − uγ |, gη and suppη to establish the last equality if γ < 0. �
Proof of Proposition 3.1. By Theorem 1.2, u(x) = |x|α is Q-quasisuperharmonic in B. Let δ := (p − n)/α and
η(x) = min{(2 − 3|x|)+,1}. Then

∫
B

u−p+δ|∇u|pηp dx � C

1/3∫
0

rα(−p+δ)r(α−1)prn−1 dr = C

1/3∫
0

dr

r
= ∞.

On the other hand,

∫
B

uδ|∇η|p dx = C

2/3∫
1/3

rαδrn−1 dr < ∞.

Thus the Caccioppoli inequality (3.5) does not hold for all Q-quasisuperharmonic functions with γ = δ. In view of
Proposition 3.5, this shows that γ0(Q,p) � δ. �
Remark 3.6. If p = n, then by Theorem 7.4 in Björn and Björn [7], u(x) = (− log |x|)α is quasisuperharmonic in B
for all α � 1 and Q = αn/(nα − n + 1) is the best quasisuperminimizer constant. Arguments similar to those in the
proofs of Propositions 3.1 and 3.3 then show that γ0(Q,n) � (n − 1)/α = δ(Q,n). As in the proof of Corollary 3.4,
one then obtains the estimates Q1/(n−1) < α < (nQ)1/(n−1) for Q > 1.

4. Weak Harnack inequalities and local integrability for quasisuperharmonic functions

(Weak) Harnack inequalities for quasi(super)minimizers in Rn were obtained by DiBenedetto and Trudinger [15,
Corollaries 1–3]. In metric spaces they were given by Kinnunen and Shanmugalingam [30, Theorem 7.1 and Corol-
lary 7.3]. Some necessary modifications of the proofs and results in [30] were provided in Section 10 in A. Björn and
Marola [9].

Example 10.1 in [9] or Example 8.19 in Björn and Björn [8] also shows that (weak) Harnack inequalities (both for
quasi(super)minimizers and for (super)minimizers) in metric spaces can only hold on balls B such that a sufficiently
large blow-up of B (depending on X) lies in Ω . This is usually formulated as cλB ⊂ Ω , where λ is the dilation
constant in the weak Poincaré inequality and c is an absolute constant, such as 5, 20 or 50, depending on the proof. In
(weighted) Rn one can of course take λ = 1.

In this and the next section we will see how one can improve upon the blow-up constant in various Harnack
and Caccioppoli inequalities. The price one has to pay is however that the conditions involve the quasiconvexity
constant L, see below, instead of λ. It is therefore relevant to discuss the relationship between L and λ. We postpone
this discussion to Section 6.

A metric space Y is L-quasiconvex if for all x, y ∈ Y , there is a curve γ : [0, lγ ] → Y with γ (0) = x and γ (lγ ) = y,
parameterized by arc length, such that lγ � Ld(x, y). Under our assumptions, X is quasiconvex, see Section 6 for more
details.

In this section, we formulate the (weak) Harnack inequality for quasi(super)minimizers as follows. The proof below
also shows that the constant 2L can be replaced by (1 + ε)L for any ε > 0. By Kinnunen and Shanmugalingam [30]
and A. Björn and Marola [9], similar inequalities hold with L replaced by λ and the requirement that a larger blow-up
of the balls lies in Ω .

Proposition 4.1. Assume that X is L-quasiconvex, Ω ⊂ X and Q � 1. Then there exist constants C∗ and s > 0,
depending only on Q, p, L, Cμ and the constants in the weak (1,p)-Poincaré inequality, such that for all balls B

with 2LB ⊂ Ω ,
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(a) whenever u > 0 is a Q-quasiminimizer in Ω , the following Harnack inequality holds:

ess sup
B

u � C∗ ess inf
B

u; (4.1)

(b) whenever v > 0 is a Q-quasisuperminimizer in Ω , the following weak Harnack inequality holds:(
−
∫
B

vs dμ

)1/s

� C∗ ess inf
B

v. (4.2)

As in Proposition 3.5, it can be shown that (4.2) holds also for quasisuperharmonic functions, in which case ess inf
may be replaced by inf as quasisuperharmonic functions are lower semicontinuously regularized.

Proof of Proposition 4.1. By changing u and v on a set of capacity zero, if necessary, we can assume that u is
continuous and v is lower semicontinuously regularized in Ω . It is thus possible to replace ess sup and ess inf by sup
and inf. Let B = B(x0, r) and assume that 2LB ⊂ Ω . By Theorem 4.32 in Björn and Björn [8], X supports a weak
(1,p)-Poincaré inequality with dilation constant λ = L. Thus, (4.1) and (4.2) hold on all balls B∗ such that cLB∗ ⊂ Ω

for some fixed c > 1. See e.g. Kinnunen and Shanmugalingam [30] and A. Björn and Marola [9].
(a) Let ε > 0 be arbitrary and find x ∈ B such that u(x) � infB u + ε. By the L-quasiconvexity of X, there exists a

curve γ : [0, lγ ] → X, parameterized by arc length, such that lγ � Ld(x, x0) < Lr , x0 = γ (0) and x = γ (lγ ).
Let xj = γ (jr/c) and cover γ by the balls Bj = B(xj , r/c), j = 0,1, . . . ,N , with N being the largest integer such

that Nr/c � lγ . Then Bj ∩ Bj+1 is nonempty for j = 0,1, . . . ,N − 1. Note that N < cL and cLBj ⊂ 2LB ⊂ Ω .
Hence, the Harnack inequality for quasiminimizers holds on each Bj and we have for every j = 0,1, . . . ,N − 1,

inf
Bj

u � inf
Bj ∩Bj+1

u � sup
Bj+1

u � C0 inf
Bj+1

u.

Iterating this estimate, we obtain

inf
B0

u � CN
0 inf

BN

u � CN
0 u(x) � CN

0

(
inf
B

u + ε
)

and letting ε → 0 yields

u(x0) � C0 inf
B0

u � CN+1
0 inf

B
u. (4.3)

Similarly, choosing y ∈ B such that u(y) � supB u − ε gives

u(x0) � C−N−1
0 sup

B

u,

which together with (4.3) proves (4.1).
(b) First, there exist balls B ′

1, . . . ,B
′
m with centres in B and radii r/3c such that B ⊂ ⋃m

j=1 B ′
j and the balls 1

2B ′
j

are pairwise disjoint. It follows from the doubling property of μ that the number m of these balls does not exceed a
constant depending only on c and Cμ. In particular, the bound for m is independent of x0 and r . Moreover, for all
j = 1,2, . . . ,m, we have 3cLB ′

j ⊂ 2LB ⊂ Ω and μ(B)/C � μ(B ′
j ) � Cμ(B).

Let B ′ = B(x′, r/3c) be one of these balls and connect x′ to x0 by a curve of length at most Ld(x′, x0). As in (a),
choose z ∈ B such that u(z) � infB v + ε and connect x0 to z by a curve of length at most Ld(x0, z). Adding these
two curves gives a connecting curve γ from x′ to z of length less than 2Lr and such that γ ⊂ LB . Cover γ by balls
Bj , j = 0,1, . . . ,N � 6cL, with radii r/3c as in (a) and note that 3cLBj ⊂ 2LB ⊂ Ω and Bj+1 ⊂ 3Bj for each
j = 0,1, . . . ,N . Hence, the weak Harnack inequality for quasisuperminimizers holds on each 3Bj , implying that

inf
Bj

v �
(

−
∫
Bj

vs dμ

)1/s

� C2
μ

(
−
∫
3Bj

vs dμ

)1/s

� C0 inf
3Bj

v � C0 inf
Bj+1

v.

Iterating this estimate, we obtain, as B ′ = B0,
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inf
B ′ v = inf

B0
v � CN

0 inf
BN

v � CN
0 v(z) � CN

0

(
inf
B

v + ε
)

and letting ε → 0 yields∫
B ′

vs dμ �
(
C0 inf

B ′ v
)s

μ
(
B ′) �

(
CN+1

0 inf
B

v
)s

μ
(
B ′).

Summing up over all balls B ′ = B ′
j covering B finishes the proof. �

A sharp version of the weak Harnack inequality, due to Trudinger [43], is as follows. Assume that u � 0 is a
superminimizer in an open set Ω ⊂ Rn. If 0 < s < (p − 1), then for every ball B with 6B ⊂ Ω we have(

−
∫
B

us dx

)1/s

� Cs ess inf
3B

u, (4.4)

where  = n/(n − p) if 1 < p < n, and  = ∞ if p � n in unweighted Rn. In the metric space case, this is due to
Kinnunen and Martio [29] and  > 1 is chosen so that X supports a weak (p,p)-Poincaré inequality. The proof
is strongly based on the fact that the Caccioppoli inequality (3.1) holds for all γ < p − 1 when Q = 1. The initial
requirement on B in metric spaces is that 60λB ⊂ Ω , see A. Björn and Marola [9, Section 10], or Björn and Björn [8]
(the latter gives the condition 150λB ⊂ Ω), but as in Proposition 4.1, it can be shown that if X is L-quasiconvex,
then (4.4) holds for all balls B with 6LB ⊂ Ω (or even (3 + ε)LB ⊂ Ω for every fixed ε > 0). Example 10.1 in [9]
or Example 8.19 in [8] shows that the dilation constant λ or the quasiconvexity constant L are needed in the weak
Harnack inequality.

Arguing as in the proof of Proposition 3.5 it is easy to see that all nonnegative Q-quasisuperminimizers satisfy (4.4)
if and only if all nonnegative Q-quasisuperharmonic functions satisfy the inequality with the same positive constants
s and Cs . (As quasisuperharmonic functions are lower semicontinuously regularized it is also equivalent to replace
ess inf by inf in the quasisuperharmonic case.)

Let ζ0 = ζ0(Q,p) be the largest number (independent of X and Ω) such that for every positive s < ζ0 there is a
constant Cs = Cs(Q,p,X,Ω) such that (4.4) holds for all Q-quasisuperharmonic functions u � 0. We then have the
following consequence of Theorem 1.2.

Proposition 4.2. ζ0(Q,p) � δ(Q,p), where δ(Q,p) is as in (3.2).

By (4.4) we know that ζ0(1,p) = δ(1,p) = p − 1, and that this is valid also in metric spaces.
If we fix a metric space X (e.g. Rn) and Q and p, then, by Proposition 4.1, there is some s > 0 such that the weak

Harnack inequality (4.4) holds. By the Hölder inequality, it holds for all 0 < s′ � s and hence ζ0(Q,p,X) � s > 0.
The proof of the weak Harnack inequality shows that the exponent s only depends on p, Q, Cμ and the constants in
the weak (1,p)-Poincaré inequality. Proposition 4.2 however suggests that the upper bound for s only depends on p

and Q, and that the only dependence on X is through  . It therefore feels natural to make the following conjecture.

Conjecture 4.3. Assume that X supports a weak (p,p)-Poincaré inequality. Let Q > 1 and 0 < s < δ(Q,p). Then
there is a constant Cs such that the weak Harnack inequality (4.4) holds for every Q-quasisuperharmonic function
u � 0 in Ω and every ball B such that 6LB ⊂ Ω or cλB ⊂ Ω .

It is worth observing that X supports a weak (p,p)-Poincaré inequality if and only if it supports a weak (1,p)-
Poincaré inequality and there is a constant C such that for all balls B = B(x, r) ⊂ X and B ′ = B(x′, r ′), with x′ ∈ B

and r ′ � r , the estimate

μ(B ′)
μ(B)

� C

(
r ′

r

)σ

holds with σ = p/( − 1), see Hajłasz and Koskela [22] and Franchi, Gutiérrez and Wheeden [17], or Björn and
Björn [8].
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Proof of Proposition 4.2. Let s � δ(Q,p) and recall that  = n/(n−p) in unweighted Rn, n > p. By Theorem 1.2,
u(x) = |x|α , with α = (p − n)/δ(Q,p), is Q-quasisuperharmonic in B ⊂ Rn. Then, with B = B(0, 1

6 ),

∫
B

us dx = C

1/6∫
0

rαsrn−1 dr = ∞,

as

αs + n − 1 � αδ(Q,p) + n − 1 = −1.

Thus, the left-hand side in (4.4) is infinite while the right-hand side is finite, showing that (4.4) does not hold for s. �
It is well known that the sharp weak Harnack inequality implies sharp local integrability results for superharmonic

functions: if u is superharmonic in Ω , then u ∈ Ls
loc(Ω) for 0 < s < (p − 1), where the range for s is sharp.

We immediately get that if u is Q-quasisuperharmonic in Ω ⊂ X then u ∈ Ls
loc(Ω) for 0 < s < ζ0(Q,p,X).

Moreover, by the proof of Proposition 4.2, we see that if X = Rn and n > p, then there is a Q-quasisuperharmonic
u /∈ L

δ(Q,p)

loc (Ω).

Conjecture 4.4. Assume that X supports a weak (p,p)-Poincaré inequality. Let Q > 1 and 0 < s < δ(Q,p). Then
every Q-quasisuperharmonic function in Ω belongs to Ls

loc(Ω).

This conjecture follows directly from Conjecture 4.3. In fact Conjecture 4.3 follows from Conjecture 3.2; to show
this one essentially needs to repeat the arguments in Kinnunen and Martio [29].

5. Logarithmic Caccioppoli inequality and BMO

The following proposition is the logarithmic Caccioppoli inequality for superminimizers which plays a crucial role
in the proof of the (weak) Harnack inequality using the Moser method. In metric spaces, it was originally proved in
Kinnunen and Martio [29] and follows easily from (3.1) with γ = 0 and a suitable choice of test function.

Proposition 5.1. Assume that u > 0 is a superminimizer in Ω which is locally bounded away from 0. Then for every
ball B with 2B ⊂ Ω we have

−
∫
B

g
p

logu dμ � C

diam(B)p
. (5.1)

Proposition 5.1 implies, together with a Poincaré inequality, that the logarithm of a positive superminimizer has
bounded mean oscillation. This is needed in the Moser iteration to show the weak Harnack inequality for supermini-
mizers.

We have not been able to prove the inequality (5.1) for quasisuperminimizers, and it is therefore not clear whether
the Moser iteration runs for quasiminimizers. See however Lemma 5.8 below. In view of Proposition 3.1, the possible
proof of (5.1) for quasisuperminimizers should be based on some other method than the proof for superminimizers.
In any case, the constant C in the logarithmic Caccioppoli inequality for quasisuperminimizers would have to depend
on Q and grow at least as Qp/(p−1), see Example 5.7 below. We know, however, that the logarithm of a positive
quasisuperminimizer belongs both to BMO and to N

1,q

loc for all q < p, qualitatively, see Theorems 5.5 and 5.9 below.
It is also rather interesting to observe that if u > 0 is a quasiminimizer then (5.1) follows from the Caccioppoli

inequality (3.1) for γ < 0 (recall that by Proposition 7.3 in A. Björn and Marola [9], it is true for all γ < 0) and from
the Harnack inequality.

Proposition 5.2. Assume that u > 0 is a Q-quasiminimizer in Ω . Then inequality (5.1) holds true for every ball
B = B(x, r) with 2B ⊂ Ω .
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The proof below shows that the factor 2 in the condition 2B ⊂ Ω can be replaced by 1 + ε for any ε > 0.

Proof of Proposition 5.2. Let c > 1 be such that the Harnack inequality for quasiminimizers holds on all balls B∗
with cλB∗ ⊂ Ω , where λ is the dilation constant from the weak (1,p)-Poincaré inequality, see the discussion at the
beginning of Section 4.

As in the proof of Proposition 4.1, cover B by balls B1, . . . ,Bm with centres in B and radii r/cλ, so that the number
m of these balls does not exceed a constant depending only on c, λ and Cμ. Moreover, μ(B)/C � μ(Bj ) � Cμ(B)

for j = 1,2, . . . ,m.
By construction, cλBj ⊂ Ω , and hence, by the Harnack inequality for quasiminimizers, there is a constant C∗

depending only on Q, Cμ and the constants in the weak (1,p)-Poincaré inequality, such that for all j = 1,2, . . . ,m,

sup
Bj

u � C∗ inf
Bj

u.

Fix j ∈ {1, . . . ,m} for the moment. It follows that u has to be bounded away from 0 in Bj . Let η ∈ Lipc(2Bj ) so
that 0 � η � 1, η = 1 on Bj , and gη � 4/diam(Bj ). Let also γ < 0 and recall that (3.1) holds for γ . By the Harnack
inequality, and the doubling property of μ, we have∫

Bj

g
p

logu dμ =
∫
Bj

g
p
u uγ−pηpu−γ dμ �

(
sup
Bj

u
)−γ

∫
Bj

g
p
u uγ−pηp dμ

� Cγ

(
C∗ inf

Bj

u
)−γ

∫
2Bj

gp
η uγ dμ � C

∫
2Bj

gp
η dμ = Cμ(Bj )

(r/cλ)p
.

Summing up over all Bj and using the fact that μ(Bj ) is comparable to μ(B) for all j = 1,2, . . . ,m, gives the desired
logarithmic Caccioppoli inequality on B . �

We want to remark that in the same way, it can be shown that if u > 0 is a quasiminimizer, then u satisfies the
Caccioppoli inequality (3.1) with arbitrary exponent γ .

Proposition 5.3. Assume that X is L-quasiconvex and let u > 0 be a Q-quasiminimizer in Ω . Then the Caccioppoli
inequality (3.1) holds for all γ ∈ R and all η ∈ Lipc(Ω) such that suppη ⊂ B for some ball B ⊂ 2LB ⊂ Ω , with a
constant independent of u, η and B .

This follows easily from Proposition 4.1 and the Caccioppoli inequality for γ < 0, as in the proof of Proposition 5.2.
The blow-up constant 2L can be replaced by cλ, where λ is the dilation constant in the weak Poincaré inequality

and c > 1 is such that the Harnack inequality (4.1) for quasiminimizers holds on all balls B∗ with cλB∗ ⊂ Ω , see the
discussion at the beginning of Section 4. In (weighted) Rn one can clearly take L = λ = 1.

For γ � p, Proposition 5.3 also follows from the Caccioppoli inequality for quasisubminimizers established in
A. Björn and Marola [9, Proposition 7.2] in the metric space setting. (For γ = p this was earlier obtained by Tolksdorf
[42, Theorem 1.4] in unweighted Rn and by A. Björn [2, Theorem 4.1] for metric spaces.) For subminimizers, i.e.
when Q = 1, this also follows for γ > p − 1, by the Caccioppoli inequality in Marola [33, Lemma 4.1]. In all these
cases one can allow for suppη ⊂ Ω , not only suppη ⊂ B . We do not know whether this is possible in Proposition 5.3.

Before stating the main result of this section, we recall that a locally integrable function f : Ω → R belongs to
BMO(Ω) or BMOτ -loc(Ω), τ � 1, if there is a constant C′ such that

−
∫
B

|f − fB |dμ � C′ (5.2)

for all balls B ⊂ Ω or B ⊂ τB ⊂ Ω , respectively. The smallest bound C′ for which this inequality is satisfied is said
to be the BMO-norm (resp. BMOτ -loc-norm) of f , and is denoted by ‖f ‖BMO(Ω) (resp. ‖f ‖BMOτ -loc(Ω)).

A locally integrable function w > 0 is an A1-weight in Ω , if there is a constant A such that

−
∫

w dx � A ess inf
B

w

B
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for all balls B ⊂ Ω . The least bound A is called the A1-constant of w. An essential feature of A1-weights is that the
average oscillation of its magnitude on every ball is uniformly controlled. A precise version of this is the following
theorem which can be found in García-Cuerva and Rubio de Francia [18, Theorem 3.3, p. 157] for unweighted Rn. The
proof therein holds true also in the metric setting. We refer also to [18] and Duoandikoetxea [16] for more properties
of A1-weights and BMO.

Theorem 5.4. If w is an A1-weight in Ω , then logw ∈ BMO(Ω) with a norm depending only on the A1-constant
for w.

Theorem 5.5. Assume that X is L-quasiconvex. Let u > 0 be a Q-quasisuperminimizer or a Q-quasisuperharmonic
function in Ω . Then logu ∈ BMOτ -loc(Ω) with τ = 4L. Moreover

‖logu‖BMOτ -loc(Ω) < C′,

where C′ only depends on Q, p, Cμ and the constants in the weak (1,p)-Poincaré inequality.

The blow-up constant τ = 4L can be replaced by τ = 2cλ, where λ is the dilation constant in the weak Poincaré
inequality and c > 1 is such that the weak Harnack inequality (4.2) for quasisuperminimizers holds on all balls B∗
with cλB∗ ⊂ Ω , see the discussion at the beginning of Section 4.

Proof of Theorem 5.5. Let B ⊂ Ω be a ball in Ω such that 4LB ⊂ Ω . By Proposition 4.1 (or its modification for
quasisuperharmonic functions), there is s > 0 such that

−
∫
B ′

us dx � C∗ ess inf
B ′ us (5.3)

for all balls B ′ ⊂ 2LB ′ ⊂ Ω , and in particular for all subballs B ′ of B . (Observe that if B(x′, r ′) ⊂ B(x, r) �= X, then it
can happen that r < r ′ � 2r but it is impossible to have r ′ > 2r .) Hence, us is an A1-weight in B with A1-constant C∗.

Thus, Theorem 5.4 implies that s logu = logus ∈ BMO(B), with BMO-constant only depending on C∗. As this
holds, with the same constant, for all balls B such that 4LB ⊂ Ω , we find that logu ∈ BMOτ -loc(Ω), with the
BMOτ -loc-norm only depending on C∗ and s, which in turn only depend on Q, p, L, Cμ and the constants in the
weak (1,p)-Poincaré inequality. �

Note that in (weighted) Rn, BMO(Ω) = BMOτ -loc(Ω) (with comparable norms), so that we can take τ = 1 in this
case. This follows from the proof of Hilfssatz 2 in Reimann and Rychener [39, pp. 4, 13–17] for unweighted Rn. This
is also true for length metric spaces X (i.e. with L = 1 + ε for every ε > 1), see Maasalo [32, Theorem 2.2]. For
general metric spaces, however, the following example shows that τ is essential in Theorem 5.5, that for L � 18 one
cannot take τ � 1

9L, and that τ(L) = 4L in Theorem 5.5 has the right growth as L → ∞. Moreover, this is so even
for Q = 1.

Example 5.6. Let 0 < θ � 1
6 and

X = R2 \ {
(x, y): 0 < x < 1 and 0 < y < θx

}
.

By J. Björn and Shanmugalingam [13, Theorem 4.4], X supports a weak (1,1)-Poincaré inequality. Also, X is L-
quasiconvex with L = (1 + √

1 + θ2)/θ < 3/θ .
The balls Bj = B((2−j ,0),2−j /3), j = 1,2, . . . , are pairwise disjoint. Let now

G = (0,1) × (−1,0], Ω = G ∪
∞⋃

j=1

Bj , u(x, y) =
{

1, in G,

j, in Bj \ G, j = 1,2, . . . .

As u is constant in every component of Ω it is a quasiminimizer. Assume that τ < 1/3θ and let B ′
j = (1/τ)Bj ,

j = 1,2, . . . , and v = logu. Then
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−
∫
B ′

j

|v − vB ′
j
|dμ → ∞, as j → ∞,

showing that v /∈ BMOτ -loc(Ω) for τ < 1/3θ .

Moreover, we have the following example.

Example 5.7. Let p < n and α � (p − n)/(p − 1) = β . Let k > 0 and u(x) = min{|x|β, k}. By Theorem 1.2, the
function |x|α is Q-quasisuperharmonic in B ⊂ Rn with the best quasisuperminimizer constant Q depending on α. For
every k > 0, the function v = uα/β = min{|x|α, kα/β} belongs to W 1,p(B) and is thus a Q-quasisuperminimizer in B.
We then have

logv =
{

α
β

logk, if |x| � k1/β,

α log |x|, otherwise,
and |∇ logv| =

{
0, if |x| � k1/β,

α/|x|, otherwise.

It follows that for r > 2k1/β ,

−
∫

B(0,r)

|∇ logv|p dx = C

rn

r∫
k1/β

( |α|
ρ

)p

ρn−1 dρ

= C|α|p
rn

(
rn−p − k(n−p)/β

)
� C|α|p

rp
,

where the constant C depends only on n and p. Corollary 3.4 shows that |α| is comparable to Q1/(p−1). Hence, the
constant in the logarithmic Caccioppoli inequality for quasisuperminimizers, if it holds true, must depend on Q and
grow at least as Qp/(p−1).

At the same time, u is a superminimizer in B and thus logu ∈ BMO(B). Note that logv = (α/β) logu and hence
‖logv‖BMO(B) = (α/β)‖logu‖BMO(B). As |α| is comparable to Q1/(p−1), by Corollary 3.4, this shows that the con-
stant C′ in Theorem 5.5 must depend on Q and grow at least as Q1/(p−1).

We finish this section by showing that the logarithm of a positive quasisuperminimizer belongs to N
1,q

loc for every
q < p. For superminimizers, this is known even for q = p, and follows directly from Proposition 5.1. We start by
proving a weak version of Proposition 5.1 for functions satisfying a Caccioppoli inequality.

Lemma 5.8. Let B = B(x, r) and assume that u � 0 satisfies the Caccioppoli inequality∫
B

u−p+γ g
p
u dμ � Cγ

rp

∫
2B

uγ dμ (5.4)

for all γ < 0. Assume moreover that for some σ > 0,

−
∫
2B

uσ dμ −
∫
2B

u−σ dμ � C0. (5.5)

Then for all q < p,

−
∫
B

g
q
u

uq
dμ �

CμC
1−q/p

0 C
q/p
γ

rq
,

where γ = −σ(p − q)/q and Cμ is the doubling constant of μ.

Proof. We can assume that q > p/2. By the Hölder inequality and the doubling property of μ, we have for all ε > 0,

−
∫

g
q
u

uq
dμ = −

∫
u−q−εg

q
u uε dμ �

(
−
∫

u(−q−ε)p/qg
p
u dμ

)q/p(
Cμ −

∫
uεp/(p−q) dμ

)1−q/p

. (5.6)
B B B 2B
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The Caccioppoli inequality (5.4) with γ = −εp/q and the Hölder inequality show that the first integral on the right-
hand side can be estimated by

(
Cγ Cμ

rp
−
∫
2B

u−εp/q dμ

)q/p

� (Cγ Cμ)q/p

rq

(
−
∫
2B

u−εp/(p−q) dμ

)1−q/p

. (5.7)

Here we have used the assumption that q > p/2, i.e. q > p − q . Choosing ε = σ(p − q)/p and applying (5.5) to (5.6)
and (5.7) yields

−
∫
B

g
q
u

uq
dμ � (Cγ Cμ)q/p

rq

(
−
∫
2B

u−εp/(p−q) dμ

)1−q/p(
Cμ −

∫
2B

uεp/(p−q) dμ

)1−q/p

�
CμC

1−q/p

0 C
q/p
γ

rq
,

where γ = −εp/q = −σ(p − q)/q . �
Theorem 5.9. Let u > 0 be a Q-quasisuperminimizer in Ω . Then logu ∈ N

1,q

loc (Ω) for every q < p.

Proof. By Theorem 5.5, v := logu ∈ BMOτ -loc(Ω) with τ = 4L, where L is the quasiconvexity constant of X.
Moreover, the BMOτ -loc(Ω)-norm of v depends only on Q, p, L, Cμ and the constants in the weak (1,p)-Poincaré
inequality. In particular, for every ball B with 8LB ⊂ Ω , ‖v‖BMO(2B) � C′, where C′ is independent of B and v. Let
σ := 1/6CμC′. Theorem 9.1 in Björn and Marola [9] then implies that

−
∫
B

eσ |v−vB | dμ � 16.

It follows that

−
∫
B

u−σ dμ −
∫
B

uσ dμ = −
∫
B

e−σv dμ −
∫
B

eσv dμ = −
∫
B

eσ(vB−v) dμ −
∫
B

eσ(v−vB) dμ

�
(

−
∫
B

eσ |v−vB | dμ

)2

� 256. (5.8)

Choosing 0 � η ∈ Lipc(B) in (3.1) with η = 1 on 1
2B and gη � 4/diam(B) yields

∫
1
2 B

u−p+γ g
p
u dμ � Cγ

diam(B)p

∫
B

uγ dμ

for all γ < 0. Thus, (5.8) and Lemma 5.8 then imply that for all q < p,

∫
1
2 B

g
q

logu dμ =
∫

1
2 B

g
q
u

uq
dμ � Cμ(B)

diam(B)q
.

Finally, as ess inf 1
2 B

u > 0, by the weak Harnack inequality, and u ∈ Lp( 1
2B), we easily obtain that logu ∈ Lq( 1

2B)

for all q < p.
As every p-weak upper gradient is also a q-weak upper gradient for q < p, it follows that logu ∈ N

1,q

loc (Ω). (See
Björn and Björn [8, Section 2.9] for more on the relation between p-weak and q-weak upper gradients.) �
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6. Quasiconvexity and the blow-up in the Poincaré inequality

In Sections 4 and 5 we saw how one can improve upon the blow-up constant in various Harnack and Caccioppoli
inequalities by replacing λ with the quasiconvexity constant L.

Under our assumptions, X is L-quasiconvex. This was proved by Semmes, see Cheeger [14, Theorem 17.1]. It
follows that X supports a weak (1,p)-Poincaré inequality with dilation constant λ = L, see e.g. Björn and Björn [8].
For geodesic spaces (L = 1), the validity of a strong (1,p)-Poincaré inequality with dilation constant λ = 1 was
proved already in Hajłasz and Koskela [21] (see also Heinonen [23, pp. 30–31]). Even before that, in the setting
of vector fields on Rn, Jerison [26] showed that a weak Poincaré inequality (with λ = 2) self-improves to a strong
Poincaré inequality (with λ = 1).

The quasiconvexity constant L has a clear advantage of being very geometrical. At the same time, it is not well
understood when a space supports a Poincaré inequality, and it is not easy to determine the optimal dilation constant λ,
nor even to determine when one can have λ < L.

Let us show that λ can both be much smaller than L in some situations, but can also be quite close to L even for
arbitrarily large L in other situations.

We will need the inner metric d ′(x, y) on X which is defined as the length of the shortest curve in X connecting x

and y. Let also diam′ denote diameters taken with respect to the inner metric d ′.

Example 6.1. Let 0 < α < 1
2π and let X consist of two rays with opening α, i.e.

X = [0,∞) ∪ {
teiα: t � 0

} ⊂ C = R2,

equipped with the induced distance from R2 and the one-dimensional Lebesgue measure μ, which is doubling on X.
We want to show that X supports a weak (1,1)-Poincaré inequality. Let B = B(x, r) be arbitrary, where we may

assume that x ∈ R, without loss of generality. We will use that R supports a strong (1,1)-Poincaré inequality, i.e. with
dilation λ = 1. For X, let λ = 1/sinα. Let further f be integrable and g be an upper gradient of f on X.

If r � x sinα, then B ⊂ R, and we get that

−
∫
B

|f − fB |dμ � C diam(B) −
∫
B

g dμ � C diam(B) −
∫
λB

g dμ,

by the strong Poincaré inequality on R and the doubling property of μ.
If x sinα < r � x, then B is not connected, showing that we cannot have a strong Poincaré inequality on X.

However λB is connected, and using that λB , equipped with the inner metric d ′, is isomorphic to an interval on R we
find that

−
∫
B

|f − fB |dμ � −
∫
B

|f − fλB |dμ � C −
∫
λB

|f − fλB |dμ

� C diam′(λB) −
∫
λB

g dμ � C diam(B) −
∫
λB

g dμ,

by the strong Poincaré inequality on R and the doubling property of μ. The constant λ = 1/sinα is the smallest
possible always making λB connected, showing that we cannot have a Poincaré inequality with any dilation λ′ < λ:
If 1 � λ′ < λ, then we can find B such that B and λ′B are both disconnected. Let then f be a Lipschitz function such
that f |λB = χR|λB , yielding

−
∫
B

|f − fB |dμ > 0 = −
∫
λ′B

g dμ.

Thus we cannot have a Poincaré inequality with dilation λ′.
Finally if r > x, then B is connected and we get, using that B , equipped with the inner metric d ′, is isomorphic to

an interval on R, that

−
∫

|f − fB |dμ � C diam′(B) −
∫

g dμ � C diam(B) −
∫

g dμ.
B B λB
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A straightforward calculation, or a symmetry argument, shows that

L = 1

sin(α/2)
� 2

sinα
� 2λ.

This shows that L can be strictly larger than λ, but also that it is possible to have arbitrarily large λ, while λ < L � 2λ.

Example 6.2. In this example we consider the von Koch snowflake curve, which is a famous example of a curve of
infinite length containing no rectifiable curves, and thus not supporting a Poincaré inequality. For our discussion, it is
not the von Koch snowflake curve itself that is useful, but the sets generating it.

Let K0 ⊂ R2, the 0th generation, be an equilateral triangle with side length 1. For each of the three sides split it
into three intervals of equal lengths and replace the middle one I by two sides I ′ and I ′′ of an equilateral triangle
(with sides I , I ′ and I ′′) outside K0. We have thus produced the 1st generation K1 of the von Koch snowflake curve
consisting of 12 pieces of length 1

3 each.
Continuing in this way we obtain the nth generation Kn consisting of 3 · 4n pieces, each of length 3−n. Let also En

be the set of the end points of the pieces forming Kn.
Now let X = Kn for some fixed integer n, equipped with the induced distance from R2 and the one-dimensional

Lebesgue measure μ, which is doubling on X.
As in the previous example we will use that R supports a strong Poincaré inequality. Let f be integrable and g be

an upper gradient of f on X. Let further B = B(x, r) and find j such that 3−j−1 < r � 3−j .
Assume first that 1 � j − 1 � n. Then we can find y ∈ Ej \ Ej−1 such that d(x, y) � 3−j . Let I be the piece

containing y in the (j − 1)th generation, and let I ′ and I ′′ be its two neighbors in the (j − 1)th generation. Let further
E be the union of all pieces in Kn stemming from any of these three pieces. (Hence E is the union of 3 · 4n−j+1

pieces.) Then it is relatively easy to see that

B = B(x, r) ⊂ B
(
y,2 · 3−j

) ⊂ E ⊂ B
(
y,5 · 3−j

) ⊂ B(y,15r) ⊂ B(x,18r).

Let thus λ = 18.
As E is connected, and isomorphic to an interval on R, we see that

−
∫
B

|f − fB |dμ � −
∫
B

|f − fE |dμ � C −
∫
E

|f − fE |dμ

� C diam′(E) −
∫
E

g dμ � C diam(B) −
∫
λB

g dμ.

In the cases when j − 1 < 1 and when j − 1 > n this is easier to obtain, and thus we have shown that X supports a
weak (1,1)-Poincaré inequality with λ = 18.

Observe that λ is independent of n. However, C → ∞, as n → ∞. It is also easy to see that L → ∞ as n → ∞,
thus showing that λ can be much much smaller than L.
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