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Abstract

We consider some second order quasilinear partial differential inequalities for real-valued functions on the unit ball and find
conditions under which there is a lower bound for the supremum of nonnegative solutions that do not vanish at the origin. As a
consequence, for complex-valued functions f (z) satisfying ∂f/∂z̄ = |f |α , 0 < α < 1, and f (0) �= 0, there is also a lower bound
for sup |f | on the unit disk. For each α, we construct a manifold with an α-Hölder continuous almost complex structure where the
Kobayashi–Royden pseudonorm is not upper semicontinuous.
© 2011 Elsevier Masson SAS. All rights reserved.

MSC: primary 35R45; secondary 32F45, 32Q60, 32Q65, 35B05

Keywords: Differential inequality; Almost complex manifold

1. Introduction

We begin with an analysis of a second order quasilinear partial differential inequality for real-valued functions of
n real variables,

�u − B|u|ε � 0, (1)

where B > 0 and ε ∈ [0,1) are constants. In Section 2, we use a Comparison Principle argument to show that (1) has
“no small solutions,” in the sense that there is a uniform lower bound M > 0 for the supremum of solutions u which
are nonnegative on the unit ball and nonzero at the origin.

We also consider a generalization of (1):

u�u − B|u|1+ε − C| �∇u|2 � 0, (2)

and find conditions under which there is a similar property of no small solutions, in Theorem 2.4.
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As an application of the results on the inequality (1), we show failure of upper semicontinuity of the Kobayashi–
Royden pseudonorm for a family of 4-dimensional manifolds with almost complex structures of regularity C 0,α ,
0 < α < 1. This generalizes the α = 1

2 example of [5]; it is known [6] that the Kobayashi–Royden pseudonorm is
upper semicontinuous for almost complex structures with regularity C 1,α .

Our construction of the almost complex manifolds in Section 4 is very similar to that of [5]; we give the details
for the convenience of the reader, and to show how the argument breaks down as α → 1−, due to a shrinking radius
of the domain. We also take the opportunity in Section 3 to state some lemmas which allow for a more quantitative
description than that of [5].

One of the steps in [5] is a Maximum Principle argument applied to a complex-valued function h(z) satisfying the
equation ∂h/∂z̄ = |h|1/2, to get the property of no small solutions. The main difference between our paper and [5] is
the use of a Comparison Principle in Section 2 instead of the Maximum Principle, and we arrive at this result:

Theorem 1.1. For any α ∈ (0,1), suppose h(z) is a continuous complex-valued function on the closed unit disk, and
on the set {z: |z| < 1, h(z) �= 0}, h has continuous partial derivatives and satisfies

∂h

∂z̄
= |h|α. (3)

If h(0) �= 0 then sup |h| > Sα , where the constant Sα > 0 is defined by:

Sα =
(

2(1 − α)

2 − α

)1/(1−α)

. (4)

2. Some differential inequalities

Let DR denote the open ball in R
n centered at �0 with radius R > 0, and let DR denote the closed ball.

Lemma 2.1. Given constants B > 0 and 0 � ε < 1, let

M =
(

B(1 − ε)2

2(2ε + n(1 − ε))

) 1
1−ε

> 0.

Suppose the function u : D1 → R satisfies:

• u is continuous on D1,
• u(�x) � 0 for �x ∈ D1,
• on the open set ω = {�x ∈ D1: u(�x) �= 0}, u ∈ C 2(ω),
• for �x ∈ ω:

�u(�x) − B
(
u(�x)

)ε � 0. (5)

If u(�0) �= 0, then sup�x∈D1
u(�x) > M .

Proof. Define a comparison function

v(�x) = M|�x| 2
1−ε ,

so v ∈ C 2(Rn) since 0 � ε < 1. By construction of M , it can be checked that v is a solution of this nonlinear Poisson
equation on the domain R

n:

�v(�x) − B
∣∣v(�x)

∣∣ε ≡ 0.

Suppose, toward a contradiction, that u(�x) � M for all �x ∈ D1. For a point �x0 on the boundary of ω ⊆ R
n, either

|�x0| = 1, in which case by continuity, u(�x0) � M = v(�x0), or 0 < |�x0| < 1 and u(�x0) = 0, so u(�x0) � v(�x0). Since
u � v on the boundary of ω, the Comparison Principle [4, Theorem 10.1] applies to the subsolution u and the solution
v on the domain ω. The relevant hypothesis for the Comparison Principle in this case is that the second term expression



A. Coffman, Y. Pan / Ann. I. H. Poincaré – AN 28 (2011) 149–157 151
of (5), −BXε , is weakly decreasing, which uses B > 0 and ε � 0. (To satisfy this technical condition for all X ∈ R,
we define a function c : R → R by c(X) = −BXε for X � 0, and c(X) = 0 for X � 0. Then c is weakly decreasing
in X, v satisfies �v(�x) + c(v(�x)) ≡ 0 and u satisfies �u(�x) + c(u(�x)) � 0.)

The conclusion of the Comparison Principle is that u � v on ω, however �0 ∈ ω and u(�0) > v(�0), a contradic-
tion. �

Of course, the constant function u ≡ 0 satisfies the inequality (5), and so does the radial comparison function v, so
the initial condition u(�0) �= 0 is necessary.

Example 2.2. In the n = 1 case, M = (
B(1−ε)2

2(1+ε)
)

1
1−ε . For points c1, c2 ∈ R, c1 < c2, define a function

u(x) =

⎧⎪⎨
⎪⎩

M(x − c2)
2

1−ε if x � c2,

0 if c1 � x � c2,

M(c1 − x)
2

1−ε if x � c1.

Then u ∈ C 2(R), and it is nonnegative and satisfies u′′ = B|u|ε (the case of equality in the n = 1 version of (5)).
For c1 < 0 < c2, this gives an infinite collection of solutions of the ODE u′′ = B|u|ε which are identically zero in a
neighborhood of 0, so the ODE does not have a unique continuation property. For c1 > 0 or c2 < 0, the function u

satisfies u(0) �= 0 and the other hypotheses of Lemma 2.1, and its supremum on (−1,1) exceeds M even though it
can be identically zero on an interval not containing 0.

Example 2.3. In the case n = 2, B = 1, ε = 0, (5) becomes the linear inequality �u � 1 and the number M = 1
4

agrees with Lemma 2 of [5], which was proved there using a Maximum Principle argument.

By applying Lemma 2.1 to the Laplacian of a power of u, we get the following generalization.

Theorem 2.4. Given constants B > 0, C ∈ R, and ε < 1, let

M =
⎧⎨
⎩

(
B(1−ε)2

2(2(ε−C)+n(1−ε))
)

1
1−ε if C � ε,

(
B(1−ε)

2n
)

1
1−ε if C � ε.

Suppose the function u : D1 → R satisfies:

• u is continuous on D1,
• u(�x) � 0 for �x ∈ D1,
• on the open set ω = {�x ∈ D1: u(�x) �= 0}, u ∈ C 2(ω),
• for �x ∈ ω:

u(�x)�u(�x) � B
∣∣u(�x)

∣∣1+ε + C
∣∣ �∇u(�x)

∣∣2
.

If u(�0) �= 0, then sup�x∈D1
u(�x) > M .

Proof. Let μ = min{ε,C}, so μ � ε < 1, and on the set ω,

u(�x)�u(�x) � B
∣∣u(�x)

∣∣1+ε + μ
∣∣ �∇u(�x)

∣∣2
.

Consider the function u1−μ on D1, so u1−μ ∈ C 0(D1) ∩ C 2(ω), and on the set ω,

�
(
u1−μ

) = (1 − μ)u−μ−1(u�u − μ| �∇u|2)
� (1 − μ)u−μ−1Bu1+ε

= (1 − μ)B
(
u1−μ

)(ε−μ)/(1−μ)
.
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Since (1 − μ)B > 0, and μ � ε < 1 ⇒ 0 � ε−μ
1−μ

< 1, Lemma 2.1 applies to u1−μ. If (u(�0))1−μ �= 0, then

supu1−μ >

(
(1 − μ)B(1 − ε−μ

1−μ
)2

2(2 ε−μ
1−μ

+ n(1 − ε−μ
1−μ

))

) 1
1− ε−μ

1−μ ⇒ supu >

(
B(1 − ε)2

2(2(ε − μ) + n(1 − ε))

) 1
1−ε

. �

Functions satisfying a differential inequality of the form (1) or (2) also satisfy a Strong Maximum Principle; the
only condition is B > 0.

Theorem 2.5. Given any open set Ω ⊆ R
n, and any constants B > 0, C,ε ∈ R, suppose the function u : Ω → R

satisfies:

• u is continuous on Ω ,
• on the set ω = {�x ∈ Ω: u(�x) > 0}, u ∈ C 2(ω),
• on the set ω, u satisfies

u�u − B|u|1+ε − C| �∇u|2 � 0.

If u(�x0) > 0 for some �x0 ∈ Ω , then u does not attain a maximum value on Ω .

Proof. Note that the constant function u ≡ 0 is the only locally constant solution of the inequality for B > 0. If B = 0
then obviously any constant function would be a solution.

Given a function u satisfying the hypotheses, ω is a nonempty open subset of Ω . Suppose, toward a contradiction,
that there is some �x1 ∈ Ω with u(�x) � u(�x1) for all x ∈ Ω . In particular, u(�x1) � u(�x0) > 0, so �x1 ∈ ω. Let ω1 be the
connected component of ω containing �x1.

For �x ∈ ω1, u satisfies the linear, uniformly elliptic inequality

�u(�x) + (−B
(
u(�x)

)ε−1)
u(�x) +

(
−C

�∇u(�x)

u(�x)

)
· �∇u(�x) � 0,

where the coefficients (defined in terms of the given u) are locally bounded functions of �x, and (−B(u(�x))ε−1)

is negative for all �x ∈ ω. It follows from the Strong Maximum Principle [4, Theorem 3.5] that since u attains a
maximum value at �x1, then u is constant on ω1. Since the only constant solution is 0, it follows that u(�x1) = 0,
a contradiction. �

The next lemma shows how an inequality like (5) with n = 2 can arise from a first order PDE for a complex-valued
function.

Lemma 2.6. Consider constants α, γ ∈ R with 0 < α < 1. Let ω ⊆ C be an open set, and suppose h : ω → C satisfies:

• h ∈ C 1(ω),
• h(z) �= 0 for all z ∈ ω,
• ∂h

∂z̄
= |h|α on ω.

Then, the following inequality is satisfied on ω:

�
(|h|(1−α)γ

)
�

(
4(1 − α)γ − (2 − α)2)|h|(1−α)(γ−2). (6)

Remark. The special case α = 1
2 , γ = 3

2 is Lemma 1 of [5]; its proof there is a long calculation in polar coordinates,
which can be generalized to some other values of α by an analogous argument. However, using z, z̄ coordinates allows
for a shorter calculation.

Proof of Lemma 2.6. We first want to show that h is smooth on ω, applying the regularity and bootstrapping
technique of PDE to the equation ∂h/∂z̄ = |h|α . We recall the following fact (for a more general statement, see
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Theorem 15.6.2 of [1]): for a nonnegative integer 	, and 0 < β < 1, if ϕ ∈ C	,β

loc (ω) and g : ω → C has first deriva-

tives in L2
loc(ω) and is a solution of ∂g/∂z̄ = ϕ, then g ∈ C	+1,β

loc (ω). In our case, ϕ = |h|α ∈ C 1(ω) ⊆ C 0,β

loc (ω) (since

h ∈ C 1(ω) and is nonvanishing), and g = h has continuous first derivatives, so we can conclude that g = h ∈ C 1,β

loc (ω).

Repeating gives that h ∈ C 2,β

loc (ω), etc.
Since the conclusion is a local statement, it is enough to express ω as a union of open subsets ωk and establish the

conclusion on each subset. For each zk ∈ ω, there is a sufficiently small disk ωk containing zk , where real exponenti-
ation of h(z) is well defined on ωk , by choosing a single-valued branch of log to define hr = exp(r log(h)).

The condition ∂h
∂z̄

= |h|α can be re-written

hz̄ = (h̄)z = |h|α = hα/2h̄α/2.

This leads to

hzz̄ = (hz̄)z = (
hα/2h̄α/2)

z

= α

2

(
h(α/2)−1h̄α/2hz + hαh̄α−1)

= (
(h̄)zz̄

)
,

which is used in a line of the next step. For an arbitrary exponent m ∈ R,
(|h|m)

zz̄
= (

hm/2h̄m/2)
zz̄

= ∂

∂z

(
m

2
h

m
2 −1hz̄h̄

m
2 + h

m
2

m

2
h̄

m
2 −1(h̄)z̄

)

= m

2

∂

∂z

(
h

m
2 −1+ α

2 h̄
m
2 + α

2 + h
m
2 h̄

m
2 −1(h̄)z̄

)

= m

2

[(
m

2
+ α

2
− 1

)
h

m
2 + α

2 −2hzh̄
m
2 + α

2 + h
m
2 + α

2 −1
(

m

2
+ α

2

)
h̄

m
2 + α

2 −1(h̄)z

+ m

2
h

m
2 −1hzh̄

m
2 −1(h̄)z̄ + h

m
2

(
m

2
− 1

)
h̄

m
2 −2(h̄)z(h̄)z̄ + h

m
2 h̄

m
2 −1(h̄)zz̄

]
.

= m

2

[
Re

(
(m + α − 2)|h|m+α−4h̄2hz

) +
(

m

2
+ α

)
|h|m+2α−2 + m

2
|h|m−2|hz|2

]
.

With the aim of applying Lemma 2.1 to the function |h|m, we consider the expression (8), with real constants B , ε,
and m �= 0. In line (9), we assign

ε = 1

m
(m + 2α − 2) (7)

to be able to combine like terms, and in line (10), we choose B = 4m − (2 − α)2 to complete the square.

�
(|h|m) − B

(|h|m)ε (8)

= 4
(|h|m)

zz̄
− B|h|mε

= 2m

[
Re

(
(m + α − 2)|h|m+α−4h̄2hz

) +
(

m

2
+ α

)
|h|m+2α−2 + m

2
|h|m−2|hz|2

]
− B|h|mε

= (
m(m + 2α) − B

)|h|m+2α−2 (9)

+ Re
(
2m(m + α − 2)|h|m+α−4h̄2hz

) + m2|h|m−2|hz|2
� |h|m−2((m2 + 2αm − B

)|h|2α − 2|m||m + α − 2||h|α|hz| + m2|hz|2
)

= |h|m−2(|m + α − 2||h|α − |m||hz|
)2 � 0. (10)

Considering the form of (7), it is convenient to choose m = (1−α)γ for some constant γ �= 0. The claim of the lemma
follows; the γ = 0 case can be checked separately. �
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The parameter γ can be chosen arbitrarily large; to apply Lemma 2.1 to get the “no small solutions” result of

Theorem 1.1, we need the RHS coefficient in (6) to be positive, so γ >
(2−α)2

4(1−α)
, and also the RHS exponent (1 −

α)(γ − 2) to be nonnegative, so γ � 2. In contrast, the α = 1
2 , γ = 3

2 case appearing in Lemma 1 of [5] has RHS
exponent − 1

4 . The approach of Theorem 2 of [5] is to use the negative exponent together with the result of Example 2.3
to show that assuming h has a small solution leads to a contradiction. As claimed, their method can be generalized to

apply to other nonpositive exponents, but (2−α)2

4(1−α)
< γ � 2 holds only for α < 2(

√
2 − 1) ≈ 0.8284.

Proof of Theorem 1.1. Given a continuous h : D1 → C satisfying the hypotheses of Theorem 1.1, on the set ω =
{z ∈ D1: h(z) �= 0}, h ∈ C 1(ω), and the conclusion of Lemma 2.6 can be re-written:

�
(|h|(1−α)γ

)
�

(
4(1 − α)γ − (2 − α)2)(|h|(1−α)γ

)1− 2
γ . (11)

The hypotheses of Lemma 2.1 are satisfied with n = 2, u(x, y) = |h(x + iy)|(1−α)γ , and u(�0) �= 0, when the RHS of

(11) has a positive coefficient (so γ >
(2−α)2

4(1−α)
) and the quantity ε = 1 − 2

γ
is in [0,1) (for γ � 2). The conclusion of

Lemma 2.1 is:

sup
z∈D1

∣∣h(z)
∣∣(1−α)γ

> M =
(

1

4
· (4(1 − α)γ − (2 − α)2) ·

(
2

γ

)2)γ /2

⇒ sup
z∈D1

∣∣h(z)
∣∣ >

(
4(1 − α)γ − (2 − α)2

γ 2

) 1
2(1−α)

.

We can optimize this lower bound, using elementary calculus to show that the maximum value of 4(1−α)γ−(2−α)2

γ 2

is achieved at the critical point γ = (2−α)2

2(1−α)
> max{2,

(2−α)2

4(1−α)
}, and the lower bound for the sup is Sα as appearing

in (4). �
Note that Sα is decreasing for 0 < α < 1, with S1/2 = 4

9 , S2/3 = 1
8 , and Sα → 0 as α → 1−. This theorem is used

in the proof of Theorem 4.3.

Example 2.7. As noted by [5], a 1-dimensional analogue of Eq. (3) in Theorem 1.1 is the well-known (for example,
[2, §I.9]) ODE u′(x) = B|u(x)|α for 0 < α < 1 and B > 0, which can be solved explicitly. By an elementary separa-

tion of variables calculation, the solution on an interval where u �= 0 is |u(x)| = (±(1 −α)(Bx +C))
1

1−α . The general
solution on the domain R is, for c1 < c2,

u(x) =

⎧⎪⎨
⎪⎩

(1 − α)
1

1−α (B(x − c2))
1

1−α if x � c2,

0 if c1 � x � c2,

−(1 − α)
1

1−α (B(c1 − x))
1

1−α if x � c1.

So u ∈ C 1(R), and if u(0) �= 0, then sup−1<x<1 |u(x)| > ((1 − α)B)
1

1−α .

3. Lemmas for holomorphic maps

We continue with the DR notation for the open disk in the complex plane centered at the origin. The following
quantitative lemmas on inverses of holomorphic functions DR → C are used in a step of the proof of Theorem 4.3
where we put a map Dr → C

2 into a normal form, (14).

Lemma 3.1. (See [3, Exercise I.1].) Suppose f : D1 → D1 is holomorphic, with f (0) = 0, |f ′(0)| = δ > 0. For any
η ∈ (0, δ), let s = (

δ−η
1−ηδ

)η; then the restricted function f : Dη → D1 takes on each value w ∈ Ds exactly once. �
The hypotheses imply δ � 1 by the Schwarz Lemma.
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Lemma 3.2. For a holomorphic map Z1 : Dr → D2 with Z1(0) = 0, Z′
1(0) = 1, if r > 4

√
2

3 then there exists a
continuous function φ : D1 → Dr which is holomorphic on D1 and which satisfies (Z1 ◦ φ)(z) = z for all z ∈ D1.

Remark. It follows from the Schwarz Lemma that r � 2, and it follows from the fact that φ is an inverse of Z1 that
φ(0) = 0 and φ′(0) = 1.

Proof of Lemma 3.2. Define a new holomorphic function f : D1 → D1 by

f (z) = 1

2
· Z1(r · z),

so f (0) = 0, f ′(0) = r
2 , and Lemma 3.1 applies with δ = r

2 . If we choose η = 3r
8 , then s = 3r2

64−12r2 , and the assumption

r > 4
√

2
3 implies s > 1

2 . It follows from Lemma 3.1 that there exists a function ψ : Ds → Dη such that (f ◦ ψ)(z) = z

for all z ∈ D1/2 ⊆ Ds ; this inverse function ψ is holomorphic on D1/2. The claimed function φ : D1 → Drη ⊆ Dr is
defined by φ(z) = r · ψ( 1

2 · z), so for z ∈ D1,

Z1
(
φ(z)

) = Z1

(
r · ψ

(
1

2
· z

))
= 2 · f

(
ψ

(
1

2
· z

))
= 2 · 1

2
· z = z. �

4. J -holomorphic disks

For S > 0, consider the bidisk ΩS = D2 × DS ⊆ C
2, as an open subset of R

4, with coordinates �x =
(x1, y1, x2, y2) = (z1, z2) and the trivial tangent bundle T ΩS ⊆ T R

4. Consider an almost complex structure J on
ΩS given by a complex structure operator on T�xΩS of the following form:

J (�x) =
⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 λ 0 −1
λ 0 1 0

⎞
⎟⎠ , (12)

where λ : ΩS → R is any function.
A differentiable map Z : Dr → ΩS is a J -holomorphic disk if dZ ◦ Jstd = J ◦ dZ, where Jstd is the standard

complex structure on Dr ⊆ C. Let z = x + iy be the coordinate on Dr . For J of the form (12), if Z(z) is defined by
complex-valued component functions,

Z : Dr → ΩS : Z(z) = (
Z1(z),Z2(z)

)
, (13)

then the J -holomorphic property implies that Z1 : Dr → D2 is holomorphic in the standard way.

Example 4.1. If the function λ(z1, z2) satisfies λ(z1,0) = 0 for all z1 ∈ D2, then the map Z : D2 → ΩS : Z(z) = (z,0)

is a J -holomorphic disk.

Definition 4.2. The Kobayashi–Royden pseudonorm on ΩS is a function T ΩS → R : (�x, �v) �→ ‖(�x, �v)‖K , defined on
tangent vectors �v ∈ T�xΩS to be the number

glb

{
1

r
: ∃ a J -holomorphic Z : Dr → ΩS, Z(0) = �x, dZ(0)

(
∂

∂x

)
= �v

}
.

Under the assumption that λ ∈ C 0,α(ΩS), 0 < α < 1, it is shown by [6] and [7] that there is a nonempty set of J -
holomorphic disks through �x with tangent vector �v as in the definition, so the pseudonorm is a well-defined function.
Further, each such disk satisfies Z ∈ C 1(Dr).

At this point we pick α ∈ (0,1) and set λ(z1, z2) = −2|z2|α . Let S = Sα > 0 be the constant defined by formula
(4) from Theorem 1.1. Then, (ΩS,J ) is an almost complex manifold with the following property:



156 A. Coffman, Y. Pan / Ann. I. H. Poincaré – AN 28 (2011) 149–157
Theorem 4.3. If 0 �= b ∈ DS then ‖(0, b), (1,0)‖K � 3
4
√

2
.

Remark. Since 3
4
√

2
≈ 0.53, and ‖(0,0), (1,0)‖K � 1

2 by Example 4.1, the theorem shows that the Kobayashi–
Royden pseudonorm is not upper semicontinuous on T ΩS .

Proof. Consider a J -holomorphic map Z : Dr → ΩS of the form (13), and suppose Z(0) = (0, b) ∈ ΩS and
dZ(0)( ∂

∂x
) = (1,0). Then the holomorphic function Z1 : Dr → D2 satisfies Z1(0) = 0, Z′

1(0) = 1, and Z2 ∈ C 1(Dr)

satisfies Z2(0) = b.
Suppose, toward a contradiction, that there exists such a map Z with b �= 0 and r > 4

√
2

3 . Then Lemma 3.2 applies
to Z1: there is a re-parametrization φ which puts Z into the following normal form:

(Z ◦ φ) : D1 → ΩS,

z �→ (
Z1

(
φ(z)

)
,Z2

(
φ(z)

)) = (
z,f (z)

)
, (14)

where f = Z2 ◦ φ : D1 → DS satisfies f ∈ C 0(D1) ∩ C 1(D1). From the fact that Z ◦ φ is J -holomorphic on D1, it
follows from the form (12) of J that if f (z) = u(x, y) + iv(x, y), then f satisfies this system of nonlinear Cauchy–
Riemann equations on D1:

du

dy
= −dv

dx
and

du

dx
+ λ

(
z,f (z)

) = dv

dy
(15)

with the initial conditions f (0) = b, ux(0) = uy(0) = vx(0) = 0 and vy(0) = λ(0, b) = −2|b|α . The system of equa-
tions implies

∂f

∂z̄
= 1

2

(
∂

∂x
(u + iv) + i

∂

∂y
(u + iv)

)

= 1

2

(
ux − vy + i(vx + uy)

)

= −1

2
λ
(
z,f (z)

) = |f |α. (16)

So, Theorem 1.1 applies, with f = h. The conclusion is that

sup
z∈D1

∣∣f (z)
∣∣ > Sα,

but this contradicts |f (z)| < S = Sα . �
The previously mentioned existence theory for J -holomorphic disks shows there are interesting solutions of

Eq. (16), and therefore also the inequality (11).

Example 4.4. For 0 < α < 1, (ΩS,J ), λ(z1, z2) = −2|z2|α as above, a map Z : Dr → ΩS of the form Z(z) =
(z, f (z)) is J -holomorphic if f (x, y) = u(x, y) + iv(x, y) is a solution of (15). Again generalizing the α = 1

2 case
of [5], examples of such solutions can be constructed (for small r) by assuming v ≡ 0 and u depends only on x, so (15)
becomes the ODE u′(x)− 2|u(x)|α = 0. This is the equation from Example 2.7; we can conclude that J -holomorphic
disks in ΩS do not have a unique continuation property.
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