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Abstract

In this paper we present an alternative viewpoint on recent studies of regularity of solutions to the Navier–Stokes equations in

critical spaces. In particular, we prove that mild solutions which remain bounded in the space Ḣ
1
2 do not become singular in finite

time, a result which was proved in a more general setting by L. Escauriaza, G. Seregin and V. Šverák using a different approach.
We use the method of “concentration-compactness” + “rigidity theorem” using “critical elements” which was recently developed
by C. Kenig and F. Merle to treat critical dispersive equations. To the authors’ knowledge, this is the first instance in which this
method has been applied to a parabolic equation.
© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet exposé, nous présentons un point de vue différent sur les études récentes concernant la régularité des solutions des
équations de Navier–Stokes dans les espaces critiques. En particulier, nous démontrons que les solutions faibles qui restent bornées

dans l’espace Ḣ
1
2 ne deviennent pas singulières en temps fini. Ce résultat a été démontré dans un cas plus général par L. Escau-

riaza, G. Seregin et V. Šverák en utilisant une approche différente. Nous utilisons la méthode de « concentration-compacité » +
« théorème de rigidité » utilisant des « éléments critiques » qui a été récemment développée par C. Kenig et F. Merle pour traiter les
équations dispersives critiques. À la connaissance des auteurs, c’est la première fois que cette méthode est appliquée à une équation
parabolique.
© 2010 Elsevier Masson SAS. All rights reserved.

0. Introduction

In recent studies, the idea of establishing the existence of so-called “critical elements” (or the earlier “minimal
blow-up solutions”) has led to significant progress in the theory of “critical” dispersive and hyperbolic equations such
as the energy-critical nonlinear Schrödinger equation [2,3,9,26,47,55], mass-critical nonlinear Schrödinger equation

[30–32,52,53], Ḣ
1
2 -critical nonlinear Schrödinger equation [28], energy-critical nonlinear wave equation [27], energy-

critical and mass-critical Hartree equations [40–44] and energy-critical wave maps [10,36,50,51].
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In this paper we exhibit the generality of the method of “critical elements” by applying it to a parabolic system,
namely the standard2 Navier–Stokes equations (NSE):

ut − �u + (u · ∇)u + ∇p = 0,

∇ · u = 0. (0.1)

Typically, u is interpreted as the velocity vector field of a fluid filling a region in space, and p is the associated scalar
pressure function.

The “critical” spaces are those which are invariant under the natural scaling of the equation. For NSE, if u(x, t)

is a solution, then so is uλ(x, t) := λu(λx,λ2t) for any λ > 0. The critical spaces are of the type X, where ‖uλ‖X =
‖u‖X. For the Navier–Stokes equations, one can take, for example, X = L∞((0,+∞);L3(R3)) or the smaller space

X = L∞((0,+∞); Ḣ 1
2 (R3)). In fact, one has the “chain of critical spaces” given by the continuous embeddings

Ḣ
1
2
(
R

3) ↪→ L3(
R

3) ↪→ Ḃ
−1+ 3

p
p,∞

(
R

3)
(p<∞)

↪→ BMO−1(
R

3) ↪→ Ḃ−1∞,∞
(
R

3).
These are the spaces in which the initial data of solutions in the critical settings live, and we will also refer to them as
“critical spaces” – that is, spaces of functions on R

3 whose norms satisfy ‖λf (λ·)‖ = ‖f ‖.
In the recent important paper [14], L. Escauriaza, G. Seregin and V. Šverák showed that any “Leray–Hopf” weak

solution which remains bounded in L3(R3) cannot develop a singularity in finite time. Their proof used a blow-up
procedure and reduction to a backwards uniqueness question for the heat equation, and was then completed using
Carleman-type inequalities and the theory of unique continuation. Here, we approach the same problem using the
method of “critical elements”. Although we do also use the main tools appearing in [14] to complete our proof, we
hope that it is more intuitively clear in our exposition why those particular tools are needed.

The precise statement of the main result we address in this paper is the following:

Theorem 0.1. Let u0 ∈ Ḣ
1
2 satisfy ∇ · u0 = 0 and let u = NS(u0) be the associated “mild solution” to NSE satisfying

u(0) = u0. Suppose that there is some A > 0 such that ‖u(t)‖
Ḣ

1
2 (R3)

� A for all t > 0 such that u is defined. Then u

is defined (and smooth) for all positive times.

(Theorem 0.1 of course follows from the result in [14].) We believe the methods given below will work as well if

we replace Ḣ
1
2 by L3 in Theorem 0.1 and hence can be used to give an alternative proof of the result in [14] in the

case of mild solutions. For technical reasons (described below) we start with the above result and plan to return to the
more general case in a future publication.3

The “mild solutions” to NSE which we consider in our approach have the form

u(t) = L(t)u0 +
t∫

0

L(t − s)f
(
u(s)

)
ds (0.2)

for some divergence-free initial datum u0, with the linear solution operator L and nonlinearity f given by

L(t) = et�, f
(
u(s)

) = −P(u · ∇u)(s). (0.3)

Here et�u0 is the convolution of u0 with the heat kernel, and Eqs. (0.2), (0.3) comes formally from applying the
Helmholtz projection operator P to (0.1) which fixes ut −�u and eliminates the term ∇p, and then solving the result-
ing nonhomogeneous heat equation by Duhamel’s formula. Under sufficient regularity assumptions, mild solutions
are in fact classical solutions, and the existence of such a solution on some time interval is typically established via
the contraction-mapping principle in an appropriate function space.

We follow the method of C. Kenig and F. Merle. In a series of recent works [28,26,27], they use the method of
“critical elements” to approach the question of global existence and “scattering” (approaching a linear solution at

2 For simplicity, we have set the coefficient of kinematic viscosity ν = 1.
3 At the time of publication this has in fact already been accomplished, see [22].
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large times) for nonlinear hyperbolic and dispersive equations in critical settings. For example, for the 3D nonlinear
Schrödinger equation iut + �u = f (u) (NLS), they considered (0.2) with

L(t) = eit�, (0.4)

the free Schrödinger operator, and both

f (u) = −|u|4u (
X = L∞(

(0,+∞); Ḣ 1(
R

3))) (0.5)

(the focusing case), and

f (u) = |u|2u (
X = L∞(

(0,+∞); Ḣ 1
2
(
R

3))) (0.6)

(the defocusing case), the exponents needed for the “Ḣ 1-critical” and “Ḣ
1
2 -critical” settings, respectively. Note that

in the case (0.6) of cubic nonlinearity, the equation is invariant under the same scaling as the Navier–Stokes equations.

In all cases, the general strategy was essentially the same, which we’ll describe now in the Ḣ
1
2 setting:

For any u0 ∈ Ḣ
1
2 (R3), one uses fixed-point arguments to assign a maximal time T ∗(u0) � +∞ such that a solution

u to (0.2) which remains in Ḣ
1
2 for positive time exists and is unique in some scaling-invariant space XT for any fixed

T < T ∗(u0), where XT denotes a space of functions defined on the space–time region R
3 × (0, T ). Define

|||u||| := sup
t∈[0,T ∗(u0))

∥∥u(t)
∥∥

Ḣ
1
2
.

The type of result proved in [28] (variants of which were proved in [26,27] and which we will prove here as well) is

that |||u||| < +∞ implies that T ∗(u0) = +∞ and ‖u(t) − L(t)u+
0 ‖

Ḣ
1
2 (R3)

→ 0 as t → +∞ for some u+
0 ∈ Ḣ

1
2 (R3).

In other words, u exists globally and scatters. Typically this is known to be true for |||u||| < ε0 for sufficiently small
ε0 > 0. In the case of NSE, the scattering condition is replaced by decay to zero in norm – in other words, we set

u+
0 = 0. For globally defined Ḣ

1
2 -valued solutions, such decay was proved in [20] (see also [21]).

It is worth pointing out that the Ḣ
1
2 decay, which is proved quite easily in [20] by decomposing the initial data into

a large part in L2 and a small part in Ḣ
1
2 , solving the corresponding equations and employing the standard energy

arguments, is actually used heavily in our proofs, and significantly reduces the difficulty from the NLS case treated
in [28].

The general method of proof, which can be referred to as “concentration-compactness” + “rigidity”, is comprised
of the following three main steps for a proof by contradiction:

1. Existence of a “critical element”:
Assuming a finite maximal threshold Ac > 0 for which |||u||| < Ac implies global existence and scattering but
such a statement fails for any A > Ac , there exists a solution uc with |||uc||| = Ac, for which global existence or
scattering fails.

2. Compactness of critical elements:
Such a critical element uc produces a “compact family” – that is, up to norm-invariant rescalings and translations
in space (and possibly in time), the set {uc(t)} is pre-compact in a critical space.

3. Rigidity:
The existence of the compact family produces a contradiction to known results.

Steps 1–2 are accomplished by considering a minimizing sequence of solutions {un} with initial data {u0,n} such that
|||un||| � An, An ↘ Ac for which global existence or scattering fails (typically quantified by ‖un‖XT ∗ = +∞).

Then the main tool for realizing this program is a “profile decomposition” associated to that sequence, which

explores the lack of compactness in the embedding Ḣ
1
2 (R3) ↪→ L3(R3). For example, in [28] the following decom-

position (based on [29]) was used for treatment of the NLS case: There exists a sequence {V0,j }∞j=1 ⊆ Ḣ1/2, with

associated linear solutions V l
j (x, t) = eit�V0,j , and sequences of scales λj,n ∈ R

+ and shifts xj,n ∈ R
3 and tj,n ∈ R,

such that (after a subsequence in n)

u0,n(x) =
J∑ 1

λj,n

V l
j

(
x − xj,n

λj,n

,− tj,n

λ2
j,n

)
+ wJ

n (x) (0.7)

j=1
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where the “profiles” in the sum are orthogonal in a certain sense due to the choices of λj,n, xj,n and tj,n, and wJ
n is a

small error for large J and n. (From this, a similar decomposition is then established for the time evolution of u0,n.)
Using this setup, it is shown that in fact the solution to NLS with initial datum V0,j0 is a critical element for some
j0 ∈ N, which establishes Step 1. Compactness (Step 2) is established using the same tools. (We will discuss Step 3
momentarily.)

Our ultimate goal here is to give such a proof in the context of the Navier–Stokes equations, where we would con-
sider (0.2), (0.3) for u0 ∈ L3(R3), with XT = C([0, T ];L3(R3)) ∩ L5(R3 × (0, T )) and T ∗(u0) defined accordingly,
and

|||u||| := sup
t∈[0,T ∗(u0))

∥∥u(t)
∥∥

L3(R3)
.

Since a profile decomposition has already been established by I. Gallagher in [19] for solutions to the Navier–Stokes

equations evolving from a bounded set in Ḣ
1
2 (based on the decomposition for the initial data in [23]), we restrict

ourselves in this paper to the case of data in Ḣ
1
2 . We expect that the result in [19] can be extended to the L3 setting,

which would then allow for an extension of our approach to that case. We plan to return to this in a future publication.4

We take

XT := C
([0, T ]; Ḣ 1

2
(
R

3)) ∩ L2((0, T ); Ḣ 3
2
(
R

3))
and as before let

|||u||| := sup
t∈[0,T ∗(u0))

∥∥u(t)
∥∥

Ḣ
1
2 (R3)

.

The profile decomposition of [19] for solutions corresponding to a bounded sequence {u0,n} ⊂ Ḣ
1
2 (R3) of divergence-

free fields takes the form (after a subsequence in n)

un(x, t) =
J∑

j=1

1

λj,n

Uj

(
x − xj,n

λj,n

,
t

λ2
j,n

)
+ et�wJ

n (x) + rJ
n (x, t),

where un and Uj are the solutions to the Navier–Stokes equations with initial data u0,n and V0,j , respectively, and
wJ

n and rJ
n are again small errors for large J and n. (We remark that the absence in the above decomposition of the

time shifts tj,n which appeared in (0.7) greatly simplifies matters on a technical level; in [28], this was a significant
consideration.) The above program is then completed in Theorems 3.1, 3.2 and 3.3 as follows:

By known local-existence and small-data results, there exists a small ε0 > 0 such that |||u||| < ε0 implies that the

solution exists for all time and tends to zero in the Ḣ
1
2 norm. We thereby assume a finite critical value Ac � ε0 > 0

(as in Step 1) such that any solution u with |||u||| < Ac must exist globally and decay to zero in Ḣ
1
2 , and Ac is the

maximum such value.
The failure of the global existence and decay property, which occurs for some solution u with |||u||| = A for any

A > Ac, is expressed by ‖u‖ET ∗(u(0))
= +∞, where we define for T > 0

‖u‖ET
=

(
sup

t∈(0,T )

∥∥u(t)
∥∥2

Ḣ
1
2 (R3)

+ ∥∥D3/2u
∥∥2

L2(R3×(0,T ))

) 1
2

(so ‖u‖ET ∗(u(0))
< +∞ whenever |||u||| < Ac – and therefore also, by standard embeddings, u ∈ L5(R3 × (0, T )) so

such solutions are smooth by the “Ladyzenskaja–Prodi–Serrin condition”, see e.g. [14]).5

In Theorems 3.1 and 3.2, we establish the existence of a solution (“critical element”) uc with initial datum u0,c and
T ∗(u0,c) < +∞ such that

|||uc||| = sup
t∈[0,T ∗(u0,c))

∥∥uc(t)
∥∥

Ḣ
1
2
= Ac and ‖uc‖ET ∗(u0,c)

= +∞

4 At the time of publication of this article, an L3(R3) profile decomposition has been established by the second author in [33], and the program
in L3(R3) has been completed in the collaboration [22] of the second author with I. Gallagher and F. Planchon.

5 Strictly speaking, this condition applies to “Leray–Hopf” weak solutions, but in fact the local theory gives
√

tu ∈ L∞ which implies smooth-
ness. See also [11] for higher regularity of solutions in L5

x,t .
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and, further, that for any such solution, there exist functions x(t) ∈ R
3, 0 < λ(t) → +∞ as t ↗ T ∗(u0,c) and s(t) ∈

[t, T ∗(u0.c)) such that, for u = uc and u0 = u0,c ,

K :=
{

1

λ(t)
u

(
x − x(t)

λ(t)
, s(t)

)
, t ∈ [

0, T ∗(u0)
)}

(0.8)

is pre-compact in L3(R3).
The pre-compactness in L3 of such a K is shown to be inconsistent with T ∗(u0) < +∞ in Theorem 3.3, by

using the backwards uniqueness results for parabolic equations established in [12,13] as well as the theory of unique
continuation for parabolic equations to show that in fact uc ≡ 0. (In general, Step 3 requires something specific to
the particular case being studied – for example the Morawetz-type estimate for NLS used in [28] – as opposed to the
methods used to establish Steps 1 and 2 which are fairly general in nature.)

One interesting scenario in which such a K would be compact in L3 is if, in (0.8), one could take λ(t) = (T ∗ − t)− 1
2

for some u0 ∈ L3 (with T ∗ = T ∗(u0) < +∞), x(t) ≡ 0 and s(t) = t , and one imposes that K = {U} for some given
nonzero U ∈ L3 (i.e., u(x, t) = 1√

T ∗−t
U( x√

T ∗−t
)). This is the case of a “self-similar” solution which was first ruled

out in the important paper [46] by J. Nečas, M. Růžička and V. Šverák in the L3(R3) setting (see [54] for more general
results), which is in fact the natural setting for self-similar Leray–Hopf weak solutions. Theorem 3.3 can therefore be
thought of as a generalization of the result in [46]. (Such solutions are of course ruled out as well by the more recent
paper [14], but the proof here is much simpler for that purpose.)

1. Preliminaries

We’ll say that u is a “mild” solution of NSE on [t0, t0 + T ] for some t0 ∈ R and T > 0 if, for some divergence-free
initial datum u0, u solves (in some function space) for t ∈ [t0, t0 + T ] the integral equation

u(t) = e(t−t0)�u0 +
t∫

t0

e(t−s)�
P∇ · (−u(s) ⊗ u(s)

)
ds. (1.1)

We have used the following notation: For a tensor F = (Fij ) we define the vector ∇ · F by (∇ · F)i = ∑
j ∂jFij , and

for vectors u and v, we define their tensor product u ⊗ v by (u ⊗ v)ij = uivj .
We’ll consider solutions in spatial dimension three (x ∈ R

3), so u = (u1, u2, u3), ui = ui(x, t), 1 � i � 3.
In that case, the projection operator P onto divergence-free fields is defined on a vector field f by (Pf )j =
fj + ∑3

k=1 Rj Rkfk , 1 � j � 3, and the Riesz transform Rj is defined on a scalar g via Fourier transforms by

(Rj g)∧(ξ) = iξj

|ξ | ĝ(ξ). (One can also formally write this as Pf = f − ∇ 1
�

(∇ · f ).) The heat kernel et� is defined

by et�g(x) = [e−|·|2t ĝ(·)]∨(x) = ((4πt)−3/2 exp{−| · |2/4t} ∗ g)(x), and extended to act component-wise on vector
fields.

Formally, (1.1) comes from applying P to the classical Navier–Stokes equations which one can write as

ut − �u + ∇p = ∇ · (−u ⊗ u),

∇ · u = 0 (1.2)

(since ∇ · (u⊗u) = (u ·∇)u due to the condition ∇ ·u = 0) and solving the resulting heat equation (since P(∇p) = 0)
by Duhamel’s formula.

In what follows, we’ll set Lp = Lp(R3) and ‖g‖p = ‖g‖Lp for any p ∈ [1,+∞], Ḣ s = Ḣ s(R3) = {g ∈ S ′ |
(Dsg)∧(·) = | · | s

2 ĝ(·) ∈ L2} for any s ∈ R where S ′ denotes the space of tempered distributions, and for f = f (x, t)

and any Banach space X, f ∈ Lp((a, b);X) ⇔ ‖f (t)‖X = ‖f (·, t)‖X ∈ Lp(a, b). For any collection of Banach

spaces (Xm)Mm=1 and X := X1 ∩ · · · ∩ XM , we’ll always set ‖g‖X = (
∑M

m=1 ‖g‖2
Xm

)
1
2 . Similarly, for vector-valued

f = (f1, . . . , fM), we define ‖f ‖X = (
∑M

m=1 ‖fm‖2
X)

1
2 . For easy reference, we collect and state here the definitions

of the main spaces to which we refer throughout the paper:

ET = L∞(
(0, T ); Ḣ 1

2
) ∩ L2((0, T ); Ḣ 3

2
);

E (1/2)
T := C

([0, T ); Ḣ 1
2
) ∩ L2((0, T ); Ḣ 3

2
); E (3)

T := C
([0, T );L3) ∩ L5(

R
3 × (0, T )

)
.
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2. Local theory

In this section, we consolidate various known local existence results for the Navier–Stokes equations. We also
unify the various theories through known “persistency” results. Although the results presented in this section are well-
known to experts, it seems to us that simple, self-contained proofs are often difficult to locate, so we present them here
for the convenience of the reader and for easy future reference. Moreover, we in no way claim that the proofs given
below are optimal, but we hope they are more or less self-contained. Our main results are given in Section 3, and the
expert reader may prefer to skip directly to that section now.

The goal in what follows is to establish the existence of “local” solutions to (1.1) in some (space–time) Banach
space X = XT of functions defined on R

3 × [0, T ) for some possibly small T > 0, with divergence-free initial datum

u0 in a Banach space X. In what follows, we will let X equal L3 or Ḣ
1
2 . (See, e.g., [6] and [35] respectively for local

well-posedness in Ḃ
−1+ 3

p
p,∞ and BMO−1, and the recent ill-posedness result [4] for Ḃ−1∞,∞.) We’ll re-write (1.1) as

x = y + B(x, x) (2.1)

and, under the assumption that y ∈ X, try to solve the equation for some x ∈ X (where X will be chosen so that
u0 ∈ X implies et�u0 ∈ X). This will be accomplished by the following abstract lemma, using the contraction mapping
principle:

Lemma 2.1. Let X be a Banach space with norm ‖x‖ = ‖x‖X, and let B :X × X → X be a continuous bilinear form
such that there exists η = ηX > 0 so that∥∥B(x, y)

∥∥ � η‖x‖‖y‖ (2.2)

for all x and y in X. Then for any fixed y ∈ X such that ‖y‖ < 1/(4η), Eq. (2.1) has a unique6 solution x̄ ∈ X satisfying
‖x̄‖ � R, with

R := 1 − √
1 − 4η‖y‖
2η

> 0. (2.3)

Proof. Let F(x) = y + B(x, x). Using (2.2) and the triangle inequality, one can verify directly that F maps BR :=
{x ∈ X | ‖x‖ � R} into itself. Moreover, F is a contraction on BR as follows: Suppose x, x′ ∈ BR . Then∥∥F(x) − F

(
x′)∥∥ = ∥∥B(x, x) − B

(
x′, x′)∥∥ = ∥∥B

(
x − x′, x

) + B
(
x′, x − x′)∥∥

� η
∥∥x − x′∥∥‖x‖ + η

∥∥x′∥∥∥∥x − x′∥∥ � 2ηR
∥∥x − x′∥∥,

and clearly 2ηR < 1 by (2.3). Hence the contraction mapping principle guarantees the existence of a unique fixed-
point x̄ ∈ BR of the mapping F satisfying F(x̄) = x̄, which proves the lemma. �
2.1. Local theory7 in Ḣ

1
2

Suppose u0 ∈ Ḣ
1
2 , and let ET = L∞((0, T ); Ḣ 1

2 ) ∩ L2((0, T ); Ḣ 3
2 ), with norm

‖f ‖ET
= (‖f ‖2

L∞((0,T );Ḣ 1
2 )

+ ‖f ‖2

L2((0,T );Ḣ 3
2 )

) 1
2 . (2.4)

Note that ET ⊂ FT := L4((0, T ); Ḣ 1), since Hölder’s inequality gives

‖f ‖FT
� ‖f ‖

1
2

L∞((0,T );Ḣ 1
2 )

‖f ‖
1
2

L2((0,T );Ḣ 3
2 )

. (2.5)

6 In fact, the uniqueness can be improved to the larger ball of radius 1
2η

, see e.g. [7], formula (122).

7 This version of the local theory for initial data in Ḣ
1
2 can be found in [38]. For other versions, see for example the classical paper [16] and a

more modern exposition in [6].
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By the well-known (see, e.g. [8], p. 120) inequality ‖h1h2‖
Ḣ

1
2

� ‖h1‖Ḣ 1‖h2‖Ḣ 1 , we have

T∫
0

‖f ⊗ g‖2

Ḣ
1
2
ds �

T∫
0

‖f ‖2
Ḣ 1‖g‖2

Ḣ 1 ds �
{ T∫

0

‖f ‖4
Ḣ 1

} 1
2
{ T∫

0

‖g‖4
Ḣ 1 ds

} 1
2

and hence

‖f ⊗ g‖
L2((0,T );Ḣ 1

2 )
� ‖f ‖FT

‖g‖FT
. (2.6)

Denoting

B(f,g)(t) :=
t∫

0

e(t−s)�
P∇ · (−f (s) ⊗ g(s)

)
ds,

we can write

D
3
2 B(f,g)(t) =

t∫
0

e(t−s)��F(s) ds

where F(s) := P∇ · (−�)−1D
3
2 (f (s) ⊗ g(s)). Now by the maximal regularity theorem for et� (see, e.g., [38], The-

orem 7.3), we have∥∥D
3
2 B(f,g)

∥∥
L2(R3×(0,T ))

� ‖F‖L2(R3×(0,T )),

and so since F ∼ D
1
2 (f ⊗ g), (2.6) gives∥∥B(f,g)

∥∥
L2((0,T );Ḣ 3

2 )
� ‖f ‖FT

‖g‖FT
. (2.7)

Let’s recall the following lemma (see [38], Lemma 14.1):

Lemma 2.2. Let T ∈ (0,+∞] and 1 � j � 3. If h ∈ L2(R3 × (0, T )), then
∫ t

0 e(t−s)�∂jhds ∈ Cb([0, T );L2).

(Cb indicates bounded continuous functions.) For f,g ∈ FT , (2.6) shows that D
1
2 (f ⊗ g) ∈ L2(R3 × (0, T )), so

Lemma 2.2 gives D
1
2 B(f,g) ∈ C([0, T );L2) and hence B(f,g) ∈ C([0, T ); Ḣ 1

2 ). Moreover, the proof of Lemma 2.2
also gives the estimate∥∥B(f,g)

∥∥
L∞((0,T );Ḣ 1

2 )
� ‖f ⊗ g‖

L2((0,T );Ḣ 1
2 )

,

which, together with (2.6) gives∥∥B(f,g)
∥∥

L∞((0,T );Ḣ 1
2 )

� ‖f ‖FT
‖g‖FT

. (2.8)

Using (2.5), (2.7) and (2.8), we now conclude that∥∥B(f,g)
∥∥

FT
� η‖f ‖FT

‖g‖FT
(2.9)

for some η > 0. (We remark that η is independent of T .) By the standard L2 energy estimates for the heat equation,

u0 ∈ Ḣ
1
2 implies that U ∈ ET ⊂ FT , where U(t) := et�u0. Therefore we can take T small enough that ‖U‖FT

< 1
4η

(or, if ‖u0‖
Ḣ

1
2

is small enough one may take T = +∞, giving a “small data” global existence result), and hence by

Lemma 2.1 with X = FT , there exists a unique small mild solution u ∈ FT of NSE on [0, T ). Note that (2.7) and

(2.8) show that B(u,u) ∈ ET as well, so that more specifically u = U + B(u,u) ∈ ET . Moreover, u ∈ C([0, T ); Ḣ 1
2 )

by Lemma 2.2 and the standard theory for the heat equation (see, e.g., [37]).
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2.2. Local theory in Ḣ
1
2 ∩ L∞

The above result can be refined to give a solution which not only remains in Ḣ
1
2 , but belongs to L∞ as well for

t > 0. This will be shown by considering the spaces

E ∞
T := ET ∩ {

g
∣∣ √tg(x, t) ∈ L∞(

R
3 × (0, T )

)}
,

F∞
T := FT ∩ {

g
∣∣ √tg(x, t) ∈ L∞(

R
3 × (0, T )

)}
.

We will show that there exists some η∞ > 0 such that∥∥B(f,g)
∥∥

F∞
T

� η∞‖f ‖F∞
T

‖g‖F∞
T

, (2.10)

and hence there exists a unique small solution u ∈ F∞
T by Lemma 2.1 so long as U(t) = et�u0 satisfies

‖U‖F∞
T

<
1

4η∞
. (2.11)

Note that Young’s inequality gives∥∥et�u0
∥∥∞ � t−1/2‖u0‖3, (2.12)

hence u0 ∈ Ḣ
1
2 ⊂ L3 implies that indeed U ∈ F∞

T . Moreover, as before, the resulting solution in the case of (2.11)
will belong more specifically to E ∞

T .
We claim now that

lim
t→0

∥∥√tet�u0
∥∥∞ = 0 ∀u0 ∈ L3, (2.13)

which will show that (2.11) will hold for any u0 ∈ Ḣ
1
2 for T sufficiently small. To prove (2.13), for any ε > 0, take R

and M large enough that ‖u0(1 − χM,R)‖3 < ε/2, where χM,R(x) = 1 for x ∈ {|x| < R} ∩ {x | |u0(x)| � M} and 0
otherwise. Then by Young’s inequality we have

∥∥√tet�u0
∥∥∞ �

∥∥√tet�
(
u0χ

M,R
)∥∥∞ + ∥∥√tet�

(
u0

(
1 − χM,R

))∥∥∞ �
√

t
∥∥et�

∥∥
1 · M + ε

2
< ε

for small enough t > 0. The bilinear estimate (2.10) is a consequence of the continuous embedding Ḣ
1
2 ⊂ L3, esti-

mates (2.8) and (2.9) and the following claim:

Claim 2.3.

sup
t∈(0,T )

√
t
∥∥B(f,g)(t)

∥∥∞ �
∥∥B(f,g)

∥∥
L∞((0,T );L3)

+ sup
t∈(0,T )

√
t
∥∥f (t)

∥∥∞ · sup
t∈(0,T )

√
t
∥∥g(t)

∥∥∞.

Proof. We’ll need the following facts:

(i)
∥∥et�u0

∥∥∞ � t−
1
2 ‖u0‖3,

(ii) et�
P∇ · h = 1

t2
H

( ·√
t

)
∗ h, where

∣∣H(y)
∣∣ �

(
1 + |y|)−4

. (2.14)

(i) is just Young’s inequality, and (ii) can be found for example in [38], Proposition 11.1 on “The Oseen Kernel”. (See
also [48], translated in [1].) Now write

B(f,g) = e(t/2)�B(f,g)(t/2) +
t∫
e(t−s)�

P∇ · (f ⊗ g)(s) ds.
t/2
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By (ii) and a change of variables we have

∣∣e(t−s)�
P∇ · (f ⊗ g)(x, s)

∣∣ = ∣∣∣∣ 1

(t − s)1/2

∫
R3

H(z)(f ⊗ g)(x − z
√

t − s, s) dz

∣∣∣∣
� ‖f (s)‖∞‖g(s)‖∞

(t − s)1/2

∫
R3

1

(1 + |z|)4
dz = C · ‖f (s)‖∞‖g(s)‖∞

(t − s)1/2
,

and hence by (i)

∥∥B(f,g)(t)
∥∥∞ � (t/2)−1/2

∥∥B(f,g)(t/2)
∥∥

3 +
t∫

t/2

(t − s)−1/2
∥∥f (s)

∥∥∞
∥∥g(s)

∥∥∞ ds

� t−1/2
∥∥B(f,g)(t/2)

∥∥
3 + t1/2 sup

s∈( t
2 ,t)

∥∥f (s)
∥∥∞ · sup

s∈( t
2 ,t)

∥∥g(s)
∥∥∞.

Therefore, for t ∈ (0, T ),

t1/2
∥∥B(f,g)(t)

∥∥∞ �
∥∥B(f,g)(t/2)

∥∥
3 + t1/2 sup

s∈( t
2 ,t)

∥∥f (s)
∥∥∞ · t1/2 sup

s∈( t
2 ,t)

∥∥g(s)
∥∥∞

� sup
t∈(0,T )

∥∥B(f,g)(t)
∥∥

3 + 2 sup
t∈(0,T )

t1/2
∥∥f (t)

∥∥∞ · sup
t∈(0,T )

t1/2
∥∥g(t)

∥∥∞

which proves the claim. (We remark that the constant in the claim does not depend on T .) �
2.3. Local theory in L3 (and L3 ∩ L∞)

Take u0 ∈ L3 and let DT = R
3 × (0, T ) for some T ∈ (0,+∞]. We will show local existence8 in the space

L5(DT ). Note first that U ∈ L5(DT ) where U(x, t) = et�u0(x) as follows: Since et�u0 = et�(u0)
+ − et�(u0)

−, we
can assume u0 � 0. Since

(Ut − �U) · Up−1 = 0

for any p > 1, integration by parts yields

∫
R3

∣∣Up/2(x, t)
∣∣2

dx + 4(p − 1)

p

t∫
0

∫
R3

∣∣∇(
Up/2)(x, t)

∣∣2
dx dt =

∫
R3

∣∣Up/2(x,0)
∣∣2

dx.

Taking p = 3 and using the inequality

‖g‖L10/3(DT ) � ‖g‖2/5
L∞((0,T );L2)

‖g‖3/5
L2((0,T );Ḣ 1)

which is due to the Hölder9 and Sobolev inequalities, we have∥∥U3/2
∥∥

L10/3(DT )
�

∥∥U3/2(0)
∥∥

2

which is exactly

‖U‖L5(DT ) � ‖u0‖3. (2.15)

8 This version of the local theory for initial data in L3 was presented in a course on mathematical fluid mechanics given by Prof. Vladimír Šverák
at the University of Minnesota in the spring of 2006, and can be found as well in [11]. For other versions, see e.g. the classical paper [25] or the
more modern treatment in [6].

9 Note that Hölder’s inequality implies the following interpolation inequality: for p < r < q , α =
1
r − 1

q
1
p − 1

q

∈ (0,1) and ‖g‖r = ‖|g|α |g|1−α‖r �

‖g‖α
p‖g‖1−α

q .
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Recall now that

B(f,g)(x, t) =
t∫

0

K(·, t − s) ∗ (
f (·, s) ⊗ g(·, s))(x) ds,

where we can write (see (2.14))

K(x, t) =
{ 1

t2 H( x√
t
), t > 0,

0, t � 0

for some smooth H ∈ L1 ∩ L∞. With a slight abuse of notation for simplicity, we now make the following claim:

Claim 2.4.∥∥∥∥∥
t∫

0

K(t − s) ∗ h(s) ds

∥∥∥∥∥
L5(R3×R)

� ‖h‖L5/2(R3×R),

whenever the right-hand side is finite.

Proof.

∥∥∥∥∥
∥∥∥∥∥

t∫
0

K(t − s) ∗ h(s) ds

∥∥∥∥∥
L5

x

∥∥∥∥∥
L5

t (R)

�
∥∥∥∥∥

t∫
0

∥∥K(t − s) ∗ h(s)
∥∥

L5
x
ds

∥∥∥∥∥
L5

t (R)

�
∥∥∥∥∥

t∫
0

∥∥K(t − s)
∥∥

L
5/4
x

∥∥h(s)
∥∥

L
5/2
x

ds

∥∥∥∥∥
L5

t (R)

=
∥∥∥∥∥

t∫
0

(t − s)−4/5‖H‖
L

5/4
x

∥∥h(s)
∥∥

L
5/2
x

ds

∥∥∥∥∥
L5

t (0,+∞)

�
∥∥∥∥∥

+∞∫
−∞

‖h(s)‖
L

5/2
x

|t − s|1−α
ds

∥∥∥∥∥
L5

t (R)

�
∥∥∥∥h(s)

∥∥
L

5/2
x

∥∥
L

5/2
t (R)

where α = 1/5 and we have used Young’s inequality10 in the x variable with 1
5 = 1

(5/4)
+ 1

(5/2)
− 1 in the second line,

and one-dimensional fractional integration11 in the t variable with 1
5 = 1

(5/2)
− α in the last. Now since for t ∈ (0, T )

we have

t∫
0

K(t − s) ∗ h(s) ds =
t∫

0

K(t − s) ∗ (f ⊗ g)(s) ds

for h := χ[0,T ]f ⊗ g where χ[0,T ] is the indicator function for the interval [0, T ], for any fields f,g ∈ L5(DT )

Claim 2.4 gives∥∥B(f,g)
∥∥

L5(DT )
� η5‖f ⊗ g‖L5/2(DT ) � η5‖f ‖L5(DT )‖g‖L5(DT ) (2.16)

10 ‖f ∗ g‖r � ‖f ‖p‖g‖q for 1 � p,q, r � +∞ whenever 1
p + 1

q − 1 = 1
r > 0.

11 In dimension n, ‖D−αf ‖q = Cα‖| · |−n+α ∗ f (·)‖q � Cp,q‖f ‖q for 1 < p < q < +∞ and 0 < α < n whenever 1
q = 1

p − α
n (see [49]).
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for some η5 > 0 independent of T . Hence there exists a unique solution u ∈ L5(DT ) by Lemma 2.1 so long as
‖U‖L5(DT ) < 1

4η5
which is true for small enough T due to (2.15) (or, for ‖u0‖3 sufficiently small, one may take

T = +∞). Moreover, estimate (7.26) of [14] implies12 that∥∥B(f,g)
∥∥

L∞((0,T );L3)
� ‖f ‖L5(DT )‖g‖L5(DT ), (2.17)

the proof of which shows moreover that t �−→ ‖B(f,g)(t)‖3 is continuous. This, along with the fact that B(f,g)(t)

is weakly continuous in L3 on (0, T ) (see [14], (7.27)) implies that B(f,g) ∈ C((0, T );L3). The standard theory of
the heat equation implies now that u = U + B(u,u) ∈ C([0, T );L3). �
Remark 2.5. We can furthermore assume that

√
tu(x, t) ∈ L∞(DT ) (for a possibly smaller T ) in a manner similar to

the proof of (2.10), using Claim 2.3 and estimate (2.17). For a construction of local solutions with higher regularity in
similar spaces, see [11].

At this point, we also mention the following uniqueness theorem for solutions in the class C([0, T );L3) established
in [17] (see also [45] for a simplified proof):

Theorem 2.6. Let u1, u2 ∈ C([0, T );L3) both satisfy (1.1) for a fixed u0 ∈ L3. Then u1 ≡ u2 on [0, T ).

Note that there is no size restriction on ‖u0‖3.

2.4. Unification of the theories and further properties

For any u0 ∈ L3, the local theory guarantees the existence of a mild solution u(T ) ∈ E (3)
T on [0, T ) for some T > 0

with u(T )(0) = u0, where we define

E (3)
T := C

([0, T );L3) ∩ L5(
R

3 × (0, T )
)
. (2.18)

By Theorem 2.6, there can be at most one mild solution in C([0, T );L3) with initial datum u0 for a fixed T > 0, and
hence there can be at most one13 such u(T ). Define T ∗

3 = T ∗
3 (u0) > 0 by

T ∗
3 (u0) := sup

{
T > 0

∣∣ ∃! mild solution u(T ) ∈ E (3)
T on [0, T ) s.t. u(T )(0) = u0

}
.

Again, by the L3 uniqueness theorem, u(T1)(0) = u(T2)(0) implies that u(T1)(t) = u(T2)(t) for all t ∈ [0,min{T1, T2}),
hence there exists a unique mild solution u(3) on [0, T ∗

3 ) such that u(3)(0) = u0 and u(3) ∈ E (3)
T for any T < T ∗

3 . We’ll
call T ∗

3 the maximal time of existence in L3 of the mild solution associated to u0.

Similarly, for u0 ∈ Ḣ
1
2 , defining

E (1/2)
T := C

([0, T ); Ḣ 1
2
) ∩ L2((0, T ); Ḣ 3

2
)

(2.19)

and T ∗
1/2 = T ∗

1/2(u0) > 0 by

T ∗
1/2(u0) := sup

{
T > 0

∣∣ ∃! mild solution u(T ) ∈ E (1/2)
T on [0, T ) s.t. u(T )(0) = u0

}
,

there exists a unique mild solution u(1/2) on [0, T ∗
1/2) such that u(1/2)(0) = u0 and u(1/2) ∈ E (1/2)

T for any T < T ∗
1/2.

We’ll call T ∗
1/2 the maximal time of existence in Ḣ

1
2 of the solution associated to u0.

The standard embeddings and interpolation inequalities give the estimate

‖g‖L5(R3×(0,T )) � ‖g‖3/5

L∞((0,T );Ḣ 1
2 )

‖g‖2/5

L2((0,T );Ḣ 3
2 )

,

12 Strictly speaking, the estimate was derived under the assumption that u satisfies the differential NSE for a suitable pressure p; however since
the mild solution is smooth, we can reduce to this case, see the proof of Theorem 3.3.
13 In fact, since u ∈ E (3)

T
contains the additional information that u ∈ L5

x,t , one can derive uniqueness from the local theory without using
Theorem 2.6, but we proceed in this way for simplicity.
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and hence E (1/2)
T ⊂ E (3)

T for any T > 0. This implies that T ∗
1/2 � T ∗

3 for any u0 ∈ Ḣ
1
2 ⊂ L3. We will now proceed to

show that in fact T ∗
1/2 = T ∗

3 for u0 ∈ Ḣ
1
2 .

The following lemma will show that a solution which is continuous in Ḣ
1
2 for some time cannot leave Ḣ

1
2 while

remaining continuous in L3 (or, equivalently, while remaining in L5
x,t ), and hence that the strict inequality T ∗

1/2 < T ∗
3

is impossible for u0 ∈ Ḣ
1
2 . Furthermore, Theorem 2.6 implies that u(1/2) = u(3) on [0, T ∗) where T ∗ = T ∗

1/2 = T ∗
3 . In

what follows, for u0 ∈ L3 (in particular, for u0 ∈ Ḣ
1
2 ) we’ll denote u(3) (= u(1/2)) =: NS(u0).

Lemma 2.7. Suppose u ∈ C([0, T ];L3) is a mild solution for NSE on [0, T ]. Then

(a) u ∈ L5(R3 × (0, T ));
(b) If moreover u(0) = u0 ∈ Ḣ

1
2 , then u ∈ C([0, T ]; Ḣ 1

2 ) ∩ L2((0, T ); Ḣ 3
2 ).

In order to prove the lemma, we will need the following claim:

Claim 2.8. Suppose u ∈ C([0, T ];L3), and fix some a > 0. Then

(i) s �→ supt∈(0,a)

√
t‖et�u(s)‖∞ ∈ C[0, T ] and

(ii) s �→ ‖et�u(x, s)‖L5
x,t (R

3×(0,a)) ∈ C[0, T ].

If, moreover, u ∈ C([0, T ]; Ḣ 1
2 ), then

(iii) s �→ ‖et�u(s)‖L4
t ((0,a);Ḣ 1) ∈ C[0, T ].

Proof. The claim is a simple consequence of the linearity of the operator et�, estimates (2.14(i)) and (2.15), and
the estimate ‖et�g‖L4((0,a);Ḣ 1) � ‖g‖

Ḣ
1
2

which follows from the L2 energy inequality for the heat equation and the

standard embeddings. Writing any one of these as ‖et�g‖Xa
� ‖g‖X where u ∈ C([0, T ];X), we have∣∣∥∥et�u(s2)

∥∥
Xa

− ∥∥et�u(s1)
∥∥

Xa

∣∣ �
∥∥et�

(
u(s2) − u(s1)

)∥∥
Xa

�
∥∥u(s2) − u(s1)

∥∥
X

which proves the claim. �
Proof of Lemma 2.7. Note first that we may actually assume u is a solution in C([0, T + ε);L3) on [0, T + ε)

for some ε > 0. This is guaranteed by the local theory in L5
x,t for initial data (e.g., u(T )) in L3. By the same local

existence theory, we are guaranteed a solution u(3) ∈ E (3)
T1

= C([0, T1);L3)∩L5(R3 × (0, T1)) with initial datum u(0)

for some small T1 > 0. By the uniqueness guaranteed by Theorem 2.6, we know that in fact u(3) = u on [0, T1).
Set T := sup{T ′ ∈ (0, T + ε) | u ∈ E (3)

T ′ }. If T > T then we have proved (a), so suppose T � T . Since u(T ) ∈ L3,
(2.15) shows that et�u(T ) ∈ L5(R3 × (0,+∞)), hence one may take some t1 ∈ (0, ε) small enough so that∥∥et�u(T )

∥∥
L5(R3×(0,t1))

<
ε0

2
, (2.20)

where ε0 > 0 is such that ‖et�v‖L5(R3×(0,t1))
< ε0 guarantees an E (3)

t1
-solution on (0, t1) with initial datum v by

Lemma 2.1 and (2.16). Now, by Claim 2.8(ii), there exists δ ∈ (0, t1) such that∥∥et�u(T − δ)
∥∥

L5(R3×(0,t1))
< ε0. (2.21)

Therefore by the local existence theory, we are guaranteed a solution u(3) ∈ C([T − δ,T + δ);L3) ∩ L5(R3 × (T −
δ, T + δ)), where δ := t1 − δ > 0. Again by Theorem 2.6, u(3) = u on (T − δ, T + δ). But now clearly u ∈ L5(R3 ×
(0, T + δ)), which is a contradiction to the definition of T , and (a) is proved.

Let’s now turn to (b). First suppose that we can show that u0 ∈ Ḣ
1
2 implies u ∈ C([0, T ]; Ḣ 1

2 ). Then by replacing

E (3) above by F (1/2) := C([0, T ); Ḣ 1
2 ) ∩ L4((0, T ); Ḣ 1) and replacing Claim 2.8(ii) by Claim 2.8(iii), the method
T T
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used to prove (a) can be adjusted to show that u ∈ L4((0, T ); Ḣ 1). This fact, along with standard estimates (see the

proof of the local theory in Ḣ
1
2 ), yields the conclusion in (b). It therefore remains only to show that

u ∈ C
([0, T ];L3), u0 ∈ Ḣ

1
2 �⇒ u ∈ C

([0, T ]; Ḣ 1
2
)
. (2.22)

In order to do this, we turn to the local solutions u(KT ) of Koch and Tataru [35] for (possibly large, but somewhat
regular) initial data in the space bmo−1, and a “persistency” theorem given in [18] which states that whenever the

initial datum belongs to various spaces of regular data, including Ḣ
1
2 , the solution with that datum remains there for

positive times.14 To complete the proof, we rely as before on the uniqueness provided by Theorem 2.6.
We recall briefly the space E (KT )

T in which the Koch–Tataru solutions were constructed:

E (KT )
T :=

{
f

∣∣∣ sup
t∈(0,T )

√
t
∥∥f (t)

∥∥∞ < +∞
}

∩
{

f

∣∣∣ sup
x0∈R3,t∈(0,T )

1

t3/2

t∫
0

∫
B√

t (x0)

∣∣f (x, s)
∣∣2

dx ds < +∞
}

,

where for r > 0 we denote Br(x0) = {x | |x − x0| < r}. Recall also the definition (see, e.g., [38]) that v ∈ bmo−1 if
and only if15

‖v‖bmo−1 := sup
x0∈R3,t∈(0,T )

1

t3/2

t∫
0

∫
B√

t (x0)

∣∣es�v(x)
∣∣2

dx ds < +∞.

By (2.12), et�u0 ∈ E (KT )
T for any u0 ∈ L3 ⊂ bmo−1. We know from (2.13) that limt→0

√
t‖et�u0‖∞ = 0, and it can

moreover be shown that limλ↘0 ‖uλ
0‖bmo−1 = 0, where vλ(x) = λv(λx), for any u0 ∈ L3. Note also that et�vλ(x) =

λ(eλ2t�v)(λx), and hence by a change of variables we have

sup
t∈(0,T )

√
t
∥∥et�uλ

0

∥∥∞ = sup
t∈(0,λ2T )

√
t
∥∥et�u0

∥∥∞

which therefore tends to zero as well as λ ↘ 0 by the preceding statement.
The local result in [35] is that for any T > 0 there exists some small εT > 0 such that ‖et�v0‖E (KT )

T

< εT implies

the existence of a unique small solution v(KT ) ∈ E (KT )
T on [0, T ) satisfying v(0) = v0. By the statements above, for

any u0 ∈ L3 one can take λ1 > 0 small enough so that supt∈(0,1)

√
t‖et�u

λ1
0 ‖∞, ‖uλ1

0 ‖bmo−1 < ε1. Letting v0 = u
λ1
0

we obtain a solution v on [0,1) with initial datum u
λ1
0 . Due to the natural scaling of the equation, u(KT )(x, t) :=

1
λ1

v( x
λ1

, t

λ2
1
) is a solution on [0, (λ1)

2) satisfying u(KT )(0) = u0.

We return now to the proof of (2.22). Suppose u0 ∈ Ḣ
1
2 . By the local existence theory, there exists a solution

u(1/2) ∈ E (1/2)
T1

on [0, T1) with u(1/2)(0) = u0 for some small T1 > 0. By uniqueness (Theorem 2.6), u(1/2) = u on

[0, T1) hence, in particular, u ∈ C([0, T1); Ḣ 1
2 ).

Define T 1 := max{T1 ∈ (0, T + ε) | u ∈ C([0, T1); Ḣ 1
2 )}, and suppose T 1 � T .

Since u(T 1) ∈ L3 ⊂ bmo−1, there exists some λ1 > 0 small enough that

sup
t∈(0,1)

√
t
∥∥et�

[
u(T 1)

]λ1
∥∥∞,

∥∥[
u(T 1)

]λ1
∥∥

bmo−1 < ε1/2,

guaranteeing a solution u(KT ) on [T 1, T 1 + t1) satisfying u(KT )(T 1) = u(T 1), where t1 = (λ1)
2. Due to the em-

bedding ‖u‖bmo−1 � ‖u‖3, we have u ∈ C([0, T );bmo−1), and in particular there exists some T̃1 < T 1 such that for
δ := T 1 − T̃1 small enough we have

14 We remark that it is possible to complete the proof within the framework of the L3-theory (see, e.g., the appendix in [21]), without resort-
ing to the stronger tools in [35] and [18] which we originally used here in the interest of expediency. However the following proof may be of
bibliographical interest.
15 Strictly speaking, one should denote this space by bmo−1

T
, but we consider some fixed T > 0.
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∥∥[
u(T̃1)

]λ − [
u(T 1)

]λ∥∥
bmo−1 �

∥∥[
u(T̃1)

]λ − [
u(T 1)

]λ∥∥
3 = ∥∥u(T̃1) − u(T 1)

∥∥
3 < ε1/2,

so that ‖[u(T̃1)]λ‖bmo−1 < ε1. Also, for δ small enough, we have by (i) of Claim 2.8

sup
t∈(0,1)

√
t
∥∥et�

[
u(T̃1)

]λ1
∥∥∞ = sup

t∈(0,t1)

√
t
∥∥et�u(T̃1)

∥∥∞

(i)
� sup

t∈(0,t1)

√
t
∥∥et�u(T 1)

∥∥∞ + ε1/2 = sup
t∈(0,1)

√
t
∥∥et�

[
u(T 1)

]λ1
∥∥∞ + ε1/2 < ε1.

Hence we are also guaranteed a solution u(KT ) on [T̃1, T̃1 + t1) satisfying u(KT )(T̃1) = u(T̃1), where t1 = (λ1)
2.

Taking δ < t1, we now have a Koch–Tataru solution u(KT ) on [T̃1, T 1 + δ) satisfying u(KT )(T̃1) = u(T̃1), where
δ = t1 − δ > 0.

Since T̃1 < T 1, we have u(T̃1) ∈ Ḣ
1
2 by our definition of T 1. Now, the persistency principle of [18] states that a

Koch–Tataru solution obtained by the fixed-point argument on an interval with initial datum in Ḃ
s,q
p for 1 � p,q �

+∞, s > −1 will remain in Ḃ
s,q
p on that interval and is moreover continuous in that norm.16 Since17 Ḃ

1
2 ,2

2 = Ḟ
1
2 ,2

2 =
Ḣ

1
2 , we see that u(KT ) ∈ C([T̃1, T 1 + δ); Ḣ 1

2 ). Theorem 2.6 then implies that u(KT ) = u on [T̃1, T 1 + δ), and hence

u ∈ C([0, T 1 + δ); Ḣ 1
2 ). This, however, contradicts our assumption on T 1, hence necessarily T 1 > T , and (2.22) is

proved, completing the proof of Lemma 2.7. �
Finally, we state here for convenience some known a priori results regarding globally-defined mild solutions to

NSE evolving from possibly large data:

Theorem 2.9 (Decay). Let u ∈ C([0,∞);X) be a global-in-time solution to (1.1) for some divergence-free u0 ∈ X,

where X is either Ḣ
1
2 (R3) or L3(R3). Then limt→+∞ ‖u(t)‖X = 0.

This is proved for X = Ḣ
1
2 (R3) in [20], and for X = L3(R3) in [21]. The following result is classical (see, e.g.,

[19] for a proof):

Theorem 2.10 (Energy inequality). Let u0 ∈ Ḣ
1
2 (R3) be any divergence-free field, and let u = NS(u0). There exists a

small universal constant δ0 > 0 such that ‖u0‖L3(R3) � δ0 implies that T ∗(u0) = +∞ and for any t � 0 the following
energy inequality holds:

∥∥u(t)
∥∥2

Ḣ
1
2 (R3)

+
t∫

0

∥∥∇u(s)
∥∥2

Ḣ
1
2 (R3)

ds � ‖u0‖2

Ḣ
1
2 (R3)

.

Together with Theorem 2.9, we now have the following:

Corollary 2.11. Let u0 ∈ Ḣ
1
2 (R3), ∇ · u0 = 0 and u = NS(u0), and suppose T ∗(u0) = +∞. Then for some large

T0 > 0 we have, for all t � T0,

∥∥u(t)
∥∥2

Ḣ
1
2 (R3)

+
t∫

T0

∥∥∇u(s)
∥∥2

Ḣ
1
2 (R3)

ds �
∥∥u(T0)

∥∥2

Ḣ
1
2 (R3)

.

Finally, we remark that the following fact follows easily from the local theory and Corollary 2.11 (recall ET =
L∞((0, T ); Ḣ 1

2 ) ∩ L2((0, T ); Ḣ 3
2 )):

16 The theorem in [18] includes persistence in inhomogeneous spaces and Lebesgue spaces as well, including L∞.
17 These are the standard Besov and Triebel–Lizorkin spaces; see, e.g., [24].
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Theorem 2.12. For T ∈ (0,+∞], take (X0,XT ) to be either (Ḣ
1
2 (R3),ET ) or (L3(R3),L5(R3 × (0, T ))). Then for

any u0 ∈ X0,

T ∗(u0) < +∞ ⇐⇒ ∥∥NS(u0)
∥∥

XT ∗(u0)
= +∞.

3. Main results

The following “blow-up” criterion for the Navier–Stokes equations was proved in [14]: If u is a weak “Leray–
Hopf” solution of the Navier–Stokes equations (essentially, a distributional solution to (0.1) satisfying a natural energy
estimate) and if (0, T ∗) is the maximal interval on which u is smooth, then if T ∗ < +∞, we must have

lim sup
t↗T ∗

∥∥u(t)
∥∥

3 = +∞.

Alternatively, one can say that ‖u‖L∞((0,T ∗);L3) < +∞ implies that T ∗ = +∞.
We would like to suggest a different approach to this statement, using the method of “critical elements” introduced

in [28,26,27], in the setting of mild solutions. We consider here a simpler special case of the above, namely the

statement that for any u0 ∈ Ḣ
1
2 ,∥∥NS(u0)

∥∥
L∞((0,T ∗(u0));Ḣ

1
2 )

< +∞ �⇒ T ∗(u0) = +∞ (3.1)

where NS(u0) ∈ ⋂
T <T ∗(u0)

E (1/2)
T (see (2.19)) is the associated mild solution. Theorem 2.9 then implies moreover that

limt→+∞ ‖u(t)‖
Ḣ

1
2

= 0, so that (3.1) may be thought of as a statement of “global existence and scattering” (time-

asymptotic convergence to a solution of the linear equation), such as was considered in [28] for nonlinear Schrödinger
equations. We start with a setup following [28] as follows:

Suppose (3.1) is false; then there exists some maximal finite Ac > 0 (see (3.2) below) such that

‖u‖
L∞((0,T ∗(u0));Ḣ

1
2 )

< Ac �⇒ T ∗ = +∞
while, for any A > Ac, there exists some initial datum u0,A and solution uA with T ∗(u0,A) < +∞ and
‖uA‖

L∞((0,T ∗(u0,A));Ḣ 1
2 )

� A. Note that the local theory implies Ac > 0 is well-defined since T ∗(u0) = +∞ (and

moreover u ∈ E (1/2)
T for T = +∞ as well by Corollary 2.11) for ‖u0‖

Ḣ
1
2

small enough.

Specifically, we define the critical value Ac by

Ac := sup
{
A > 0; ∥∥NS(u0)

∥∥
L∞((0,T ∗(u0));Ḣ

1
2 )

� A �⇒ T ∗(u0) = +∞}
. (3.2)

Under the assumption that Ac < +∞, we’ll prove the following two theorems, whose analogs were used to prove
statements similar to (3.1) in [28,26,27]:

Theorem 3.1. Suppose Ac < +∞. Then there exists some u0,c ∈ Ḣ
1
2 with associated mild solution uc such that

T ∗(u0,c) < +∞ and ‖uc‖
L∞((0,T ∗(u0,c));Ḣ

1
2 )

= Ac.

We call uc a “critical element”.

Theorem 3.2. Suppose Ac < +∞, and let u0 ∈ Ḣ
1
2 with associated mild solution u = NS(u0) satisfy T ∗(u0) < +∞

and ‖u‖
L∞((0,T ∗(u0));Ḣ

1
2 )

= Ac . For any {tn} ⊂ [0, T ∗(u0)) such that tn ↗ T ∗(u0), there exist sequences {sn} with

tn � sn < T ∗(u0), {xn} ⊂ R
3 and {λn} ⊂ (0,∞) with λn → +∞ such that a subsequence of 1

λn
u( ·−xn

λn
, sn) converges

in L3.

This is a slightly weaker version of the compactness in L3 of the closure of a family K , where

K :=
{

1
u

(
x − x(t)

, t

)
, 0 � t < T ∗(u0)

}
(3.3)
λ(t) λ(t)
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for some λ(t) > 0, x(t) ∈ R
3, as was proved in [28,26,27]. Note, however, that for any sequence tn � T ∗(u0), setting

x(tn) ≡ 0 and λ(tn) ≡ 1, a convergent subsequence exists by the L3-continuity of u. The only remaining scenario is
therefore treated by the weaker statement in Theorem 3.2.

The idea is that Ac < +∞ implies the existence of a critical element which produces a type of compactness (see
(0.8)) in the family K . If one can rule out such compactness, then one has proved (3.1). (The nonexistence of a
particular example of a fully compact family K was established in [46] and [54] regarding the so-called “self-similar”
solutions.) The program is therefore completed with the following “ridigity” theorem:

Theorem 3.3. Any u0 ∈ L3(R3) satisfying the conditions of Theorem 3.2 must be identically zero.

Theorem 3.3 has the immediate corollary that no such element u0 can exist, since T ∗(0) = +∞ (i.e., the zero
solution is global) whereas by assumption T ∗(u0) < +∞. This implies, due to Theorems 3.1 and 3.2, that Ac = +∞,
which proves the regularity criterion (3.1) (Theorem 0.1) as desired.

3.1. Preliminary lemmas

In order to prove Theorem 3.1 (and also Theorem 3.2), we will need the following “profile decomposition” which
was proved in [19]. Recall the notation NS(u0) for the mild solution in

⋂
T <T ∗(u0)

E (1/2)
T associated to an initial datum

u0 ∈ Ḣ
1
2 .

Theorem 3.4 (Profile decomposition). Let {u0,n} be a bounded sequence of divergence-free vector fields in Ḣ
1
2 . Then

there exist {xj,n} ⊂ R
3 and {λj,n} ⊂ (0,+∞) which are “orthogonal” in the sense that, for j, j ′ ∈ N, j �= j ′,

either lim
n→+∞

λj,n

λj ′,n
+ λj ′,n

λj,n

= +∞ or
λj,n

λj ′,n
≡ 1 and lim

n→+∞
|xj,n − xj ′,n|

λj,n

= +∞,

and a sequence of divergence-free18 vector fields {V0,j } ⊂ Ḣ
1
2 with T ∗(V0,j ) < +∞ for an at most finite number of

j ∈ N such that the following is true: after possibly taking a subsequence in n,

u0,n(x) =
J∑

j=1

1

λj,n

V0,j

(
x − xj,n

λj,n

)
+ wJ

n (x) (3.4)

and

un(x, t) =
J∑

j=1

1

λj,n

Uj

(
x − xj,n

λj,n

,
t

λ2
j,n

)
+ wl,J

n (x, t) + rJ
n (x, t) (3.5)

for any J ∈ N, for x ∈ R
3 and t ∈ (0, Tn) where Tn := min{λ2

j,nT
j | T ∗(V0,j ) < +∞} (or Tn ≡ +∞ if T ∗(V0,j ) =

+∞ for all j ) for any fixed numbers T j < T ∗(V0,j ), un = NS(u0,n), Uj = NS(V0,j ) and w
l,J
n (t) = et�wJ

n for some

wJ
n ∈ Ḣ

1
2 and rJ

n ∈ ETn which are small remainders in the sense that

lim
J→+∞

(
lim sup
n→+∞

∥∥wJ
n

∥∥
3

)
= 0, (3.6)

and

lim
J→+∞

(
lim sup
n→+∞

∥∥rJ
n

∥∥
ETn

)
= 0, (3.7)

and the decomposition satisfies the following orthogonality and stability property:

‖u0,n‖2

Ḣ
1
2
=

J∑
j=1

‖V0,j‖2

Ḣ
1
2
+ ∥∥wJ

n

∥∥2

Ḣ
1
2
+ εJ

n , lim
n→+∞ εJ

n = 0 ∀J ∈ N. (3.8)

18 Note that this property of each V0,j is a consequence of (3.4) and the orthogonality of the scales-cores. Indeed, ũ0,n ⇀ V0,j where ũ0,n(x) =
λj,nu0,n(λj,nx + xj,n) is divergence-free.
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Recall that ET is defined for T > 0 by (2.4), and note that Tn is simply some time such that for t ∈ (0, Tn),
(3.5) avoids the finite blow-up times of any of the V0,j ’s due to the natural scaling of the equation: if v is a solution
on (0, T ) then vλ(x, t) := λv(λx,λ2t) is a solution on (0, T

λ2 ) for any λ > 0.
We’ll also need the following fact regarding the “profiles” Uj which appear in Theorem 3.4:

Claim 3.5. If T ∗(V0,j ) = +∞ for all j � 1, then there exists some n0 � 1 such that T ∗(u0,n0) = +∞.

This is in fact implicit in the statement of Theorem 3.4. The proof can be found in [19], for example if one follows
the proof of Theorem 2, part (iii) in Section 3.2.2 of that paper. One sees that, under the assumptions of Claim 3.5
above, the remainder rJ

n belongs to ET ∗(u0,n) for large J and n and hence un belongs to the same space due to (3.5)
and standard heat estimates. Theorem 2.12 then implies that T ∗(u0,n) = +∞ for such n.

Finally, we will need19 the following “backwards uniqueness” type of lemma (a stronger version of which is proved
in the last section):

Lemma 3.6. Let u(t) be a mild solution of NSE with initial datum u(0) = u0 ∈ L3. Suppose u(t1) = 0 for some
t1 ∈ (0, T ∗(u0)). Then u ≡ 0. In particular, u0 = 0 and T ∗(u0) = +∞.

Lemma 3.6 will follow from the following backwards uniqueness theorem for systems of parabolic equations,
which was proved in [12,13] (for the more general situation of a half-space see also [14], but we do not require such
generality):

Theorem 3.7 (Backwards uniqueness). Fix any R,δ,M and c0 > 0. Let QR,δ := (R3\BR(0))× (−δ,0), and suppose
a vector-valued function v and its distributional derivatives satisfy v, vt ,∇v,∇2v ∈ L2(Ω) for any bounded subset
Ω ⊂ QR,δ , |v(x, t)| � eM|x|2 for all (x, t) ∈ QR,δ , |vt − �v| � c0(|∇v| + |v|) on QR,δ and v(x,0) = 0 for all
x ∈ R

3\BR(0). Then v ≡ 0 in QR,δ .

Proof of Lemma 3.6. We will apply Theorem 3.7 with v = ω = curlxu, the associated vorticity to the velocity field u.
Suppose for the moment that ω satisfies the assumptions of Theorem 3.7 (in the whole space, in fact). Then u(t1) = 0
implies ω(t1) = 0, and hence ω ≡ 0 in R

3 × (t1 − δ, t1), for any δ∈(0, t1). Since mild solutions to NSE satisfy
divxu = 0 in the distributional sense, we see that �xu(t) = 0, u(t) ∈ L3 for each t ∈ (t1 − δ, t1) which implies that
u ≡ 0 in R

3 × (t1 − δ, t1). Taking δ≈t1 and using continuity at t = 0, the theorem follows. (In the forward direction,
one uses the uniqueness of Theorem 2.6.)

The vorticity satisfies the equation

ωt − �ω + (u · ∇)ω − (ω · ∇)u = 0

in the sense of distributions. The assumptions of Theorem 3.7 follow therefore from the fact that u ∈ L∞(R3 ×
(ε, T ∗(u0) − ε)) for any ε > 0, which follows from Remark 2.5 and arguments similar to those in the proof of
Lemma 2.7. The bounds on the derivatives of u (and hence of ω) are then standard, see for example [34]. �
3.2. Existence of a critical element

In this section we’ll prove Theorem 3.1, which establishes the existence of a critical element.

Proof of Theorem 3.1. Define Ac by (3.2) and assume that Ac < +∞. (Note that Ac is well-defined by global

existence for small data.) By definition of Ac , we can pick An ↘ Ac as n → +∞ and u0,n ∈ Ḣ
1
2 , ∇ · u0,n = 0 such

that

T ∗(u0,n) < +∞ and
∥∥NS(u0,n)

∥∥
L∞((0,T ∗(u0,n));Ḣ 1

2 )
� An (3.9)

19 In fact, it has now been pointed out in [22] that one does not actually need to use a result such as Lemma 3.6 to prove Theorems 3.1 and 3.2.



176 C.E. Kenig, G.S. Koch / Ann. I. H. Poincaré – AN 28 (2011) 159–187
holds for all n. One cannot prove, as one would naturally hope, that a subsequence of these u0,n converges to some
u0,c satisfying the assertion of the theorem, but we will see that something similar is true. We may assume that

‖u0,n‖
Ḣ

1
2

� An � 2Ac, (3.10)

and hence we may apply the profile decomposition (Theorem 3.4) to the sequence {u0,n}. For the remainder of this
section, V0,j , Uj , un etc. will refer to this particular sequence. We will complete the proof of the theorem by showing
that V0,j0 satisfies the assertion of the theorem for some j0, and the profile Uj0 = NS(V0,j0) will be our critical element.

Define T ∗
j := T ∗(V0,j ), and note that (3.10) and (3.8) imply that

∞∑
j=1

‖V0,j‖2

Ḣ
1
2

< +∞, (3.11)

so that limj→∞ ‖V0,j‖
Ḣ

1
2

= 0 and therefore by the small data result, T ∗
j = +∞ for large enough j . Corollary 2.11

then implies that ‖Uj‖E(+∞)
< +∞ for large j as well.

Note that Theorem 2.12 and Claim 3.5 together imply that there exists some j � 1 such that ‖Uj‖ET ∗
j

= +∞, and

hence we may re-order the profiles in the decomposition such that for some J1 � 1,

‖Uj‖ET ∗
j

= +∞ for 1 � j � J1 (3.12)

and

‖Uj‖ET ∗
j

< +∞ for j > J1.

Note also that Theorem 2.12 and Corollary 2.11 imply that

T ∗
j < +∞ for 1 � j � J1 and T ∗

j = +∞ for j > J1. (3.13)

To prove Theorem 3.1, it suffices therefore to show that

‖Uj0‖
L∞((0,T ∗

j0
);Ḣ 1

2 )
= Ac (3.14)

for some j0 ∈ {1, . . . , J1}. This will be accomplished using the following claim, which extends the orthogonality
property (3.8):

Claim 3.8. Set T ∗
j,k := T ∗

j − 1
k

and tnk := min1�j�J1 λ2
j,nT

∗
j,k for j, k ∈ N. Fix some k � 1, and let {tn} ⊂ R be any

sequence such that tn ∈ [0, tnk ] for all n. Then there exist subsequences n(m,k) and J (m,k) depending on k and
indexed by m such that for n = n(m,k) and J = J (m,k),

∥∥un(tn)
∥∥2

Ḣ
1
2
=

J∑
j=1

∥∥Ũj,n(tn)
∥∥2

Ḣ
1
2
+ ∥∥wl,J

n (tn)
∥∥2

Ḣ
1
2
+ ε(k,m),

where limm→+∞ ε(k,m) = 0 for each k and we have set Ũj,n(x, t) := 1
λj,n

Uj

( x−xj,n

λj,n
, t

λ2
j,n

)
.

Assuming Claim 3.8 momentarily, we prove (3.14) (and hence Theorem 3.1) as follows:
Let tnj,k := λ2

j,nT
∗
j,k , so that tnk = min1�j�J1 tnj,k . For any fixed k, there exists some jk

0 ∈ {1, . . . , J1} such that

tnk = tn
jk

0 ,k

for infinitely many n. Also, there exists some j0 ∈ {1, . . . , J1} such that jk
0 = j0 for infinitely many k, say for a

subsequence kα → ∞ as α → +∞. For each fixed α, take mα,β to be a subsequence of m’s indexed by β → +∞
such that

t
n(mα,β ,kα)

kα
= t

n(mα,β ,kα)

j0,kα
(3.15)

(where n(m,k), J (m,k) are as in Claim 3.8), and mα,β → +∞ as β → +∞.
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Since 1 � j0 � J1, we have ‖Uj0‖ET ∗
j0

= +∞ by (3.12). Let

A(j0) := sup
0�t�T ∗

j0

∥∥Uj0(t)
∥∥

Ḣ
1
2

and A
(j0)
k := sup

0�t�T ∗
j0,k

∥∥Uj0(t)
∥∥

Ḣ
1
2

so that A
(j0)
k ↗ A(j0) as k → +∞. Note that A(j0) � Ac , else we would have T ∗

j0
= +∞ by the definition of Ac

which would contradict (3.13). Theorem 3.1 will be proved if we show A(j0) = Ac (whereby we can set u0,c = V0,j0 ,
uc = Uj0 ), so it remains only to show that A(j0) � Ac, which we will now do.

By continuity in Ḣ
1
2 , we may take tk ∈ [0, T ∗

j0,k
] such that ‖Uj0(tk)‖

Ḣ
1
2

= A
(j0)
k . Set tk,n = λ2

j0,n
tk , and note that

for k = kα and n = n(mα,β, kα) we have

0 � tk,n � λ2
j0,n

T ∗
j0,k

= tnk

by (3.15). We may therefore apply Claim 3.8 with tn = tk,n = tkα,n(mα,β ,kα) to conclude that for fixed α, there exists a
subsequence of β’s such that for n = n(mα,β, kα), J = J (mα,β, kα) and k = kα we have

∥∥un(tk,n)
∥∥2

Ḣ
1
2
=

J∑
j=1

∥∥Ũj,n(tk,n)
∥∥2

Ḣ
1
2
+ ∥∥wl,J

n (tk,n)
∥∥2

Ḣ
1
2
+ ε(α,β), (3.16)

where ε(α,β) → 0 as β → +∞. Recall from (3.9) that we defined An so that sup0�t�T ∗(u0,n) ‖un(t)‖
Ḣ

1
2

� An.

Therefore, by (3.16), we have

A2
n(mα,β ,kα) �

(
A

(j0)
kα

)2 + ε(α,β).

Keeping α fixed and letting β → +∞, this gives A2
c � (A

(j0)
kα

)2. Finally, letting α → +∞, we see A2
c � (A(j0))2 as

desired proving Theorem 3.1. �
Remark 3.9. These arguments can moreover be used to show that in fact j0 = J1 = 1. That is, there is one and only
one profile U1 which blows up in finite time. This is due to the fact that we have now shown that A

(j0)
kα

→ Ac as

α → +∞, hence (3.16) can be used to show that ‖Ũj,n(tk,n)‖
Ḣ

1
2

can be made arbitrarily small for any j �= j0, which

implies that T ∗
j = +∞ by the global existence for small data result and the natural scaling of the equations.

Proof of Claim 3.8. For J ∈ N, define

ŨJ,n :=
J∑

j=1

Ũj,n and ŨJ
J2,n

:= ŨJ,n − ŨJ2,n for 1 � J2 � J.

Fix some k ∈ N. We now claim that the following three statements hold, for some subsequences n = n(m) and J =
J (m) indexed by m:

1. For any j, j ′ ∈ N, j �= j ′,〈
D

1
2 Ũj,n(tn),D

1
2 Ũj ′,n(tn)

〉 → 0 as m → ∞. (3.17)

2. For any J � J2 � 1,

∥∥ŨJ
J2,n

(tn)
∥∥2

Ḣ
1
2

� 2
J∑

j=J2+1

∥∥Ũj,n(tn)
∥∥2

Ḣ
1
2

for all m. (3.18)

3. There exists some M > 0 such that∥∥ŨJ,n(tn)
∥∥

Ḣ
1
2

� M for all m. (3.19)
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The easiest to show is (3.19): Since Ũj,n(tn) is defined for all j � 1 by assumption, the properties of the profile
decomposition imply20 (see [19]) that tn < T ∗(u0,n) for all n, and so ‖un(tn)‖

Ḣ
1
2

� 2Ac by (3.9). Using (3.8) and

heat estimates, we see∥∥wl,J
n (tn)

∥∥
Ḣ

1
2

�
∥∥wJ

n

∥∥
Ḣ

1
2

� 3Ac

for large enough n. For each m, use (3.7) to take J large enough, and a corresponding sufficiently large n (both in an
increasing fashion) such that

sup
t∈[0,tnk ]

∥∥rJ
n (t)

∥∥
Ḣ

1
2

� 1,

whereupon (3.5) gives ‖ŨJ,n(tn)‖
Ḣ

1
2

� 2Ac + 3Ac + 1 =: M .

To prove (3.17), we take the following diagonal-type subsequence: If t1,n := tn/λ1,n is bounded, pass to a sub-
sequence such that t1,n → t1 ∈ [0,+∞). Take n(1, k) to be the first element of this subsequence (or of the original
subsequence if t1,n is unbounded). (This is m = 1.) Assume now that the first m − 1 values of n are chosen. If
tm,n := tn/λm,n is bounded, pass to a subsequence of the (m− 1)st subsequence such that tm,n → tm ∈ [0,+∞). Take
n(m,k) to be the first element of this sequence which comes after n(m − 1, k) (or of the original (m − 1)st subse-
quence if tm,n is unbounded). In this way, tj,n → tj ∈ [0,+∞) as m → ∞ (n = n(m,k)) for any j such that tj,n is
bounded.

Note that for 1 � j � J1, tj,n = tn/λj,n � T ∗
j,k < +∞. Therefore if tj,n → +∞, necessarily j > J1 and Uj ∈ E∞.

Hence by Theorem 2.9, ‖Uj(t)‖
Ḣ

1
2
→ 0 as t → +∞, and hence∥∥Ũj,n(tj,n)

∥∥
Ḣ

1
2
= ∥∥Uj (tn)

∥∥
Ḣ

1
2
→ 0 as n → ∞. (3.20)

In the expression in (3.17), whenever tj,n is bounded, using the Ḣ
1
2 -continuity of Uj in a neighborhood of tj , we can

replace

D
1
2

{
1

λj,n

Uj

(
x − xj,n

λj,n

, tj,n

)}
by D

1
2

{
1

λj,n

Uj

(
x − xj,n

λj,n

, tj

)}
.

We can also assume that D
1
2 Uj (tj ) ∈ C∞

0 by approximating in L2
x . If both tj,n and tj ′,n are unbounded, then∣∣〈D 1

2 Ũj,n(tn),D
1
2 Ũj ′,n(tn)

〉∣∣ �
∥∥Ũj,n(tn)

∥∥
Ḣ

1
2

∥∥Ũj ′,n(tn)
∥∥

Ḣ
1
2
= ∥∥Uj (tj,n)

∥∥
Ḣ

1
2

∥∥Uj (tj ′,n)
∥∥

Ḣ
1
2
→ 0 as n → ∞

by (3.20). If tj,n is bounded and tj ′,n is unbounded, we estimate the above expression by∥∥Uj (tj )
∥∥

Ḣ
1
2

∥∥Uj ′(tj ′,n)
∥∥

Ḣ
1
2
→ 0

as n → ∞ since we have replaced tj,n by the constant tj in the first term, and the second term tends to zero. If both
tj,n and tj ′,n are bounded, replace tj,n by tj and tj ′,n by tj ′ , and note by a change of variables that〈

D
1
2

{
1

λj,n

Uj

(
x − xj,n

λj,n

, tj

)}
,D

1
2

{
1

λj ′,n
Uj ′

(
x − xj ′,n

λj ′,n
, tj ′

)}〉

=
(

λj,n

λj ′,n

) 3
2
∫

D
1
2 Uj(y, tj )D

1
2 Uj ′

(
λj,n

λj ′,n
y + xj,n − xj ′,n

λj ′,n
, tj ′

)
dy

which, since we’ve assumed the functions in the integrand are compactly supported, is easily seen to tend to zero as
n → ∞ if λj,n/λj ′,n → 0 or if λj,n = λj ′,n and |(xj,n − xj ′,n)/λj ′,n| → +∞. The case λj ′,n/λj,n → 0 is handled
using a similar change of variables and (3.17) is proved.

(3.18) is proved using (3.17) as follows: Note that

∥∥ŨJ
J2,n

(tn)
∥∥2

Ḣ
1
2
=

J∑
j=J2+1

∥∥Ũj,n(tn)
∥∥2

Ḣ
1
2
+

∑
J2�j �=j ′�J

〈
D

1
2 Ũj,n(tn),D

1
2 Ũj ′,n(tn)

〉
.

20 This fact is used again below in Claim 3.10, see (3.22).
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Suppose the sum on the right has C(J2, J ) terms in it. For a fixed J , (3.17) allows us to take n large enough
(that is, we take a further subsequence of n(m,k)) so that all the terms are smaller than ε/C(J2, J ), where
ε = ∑J

j=J2+1 ‖Ũj,n(tn)‖2

Ḣ
1
2

. As J increases with m, we let n increase sufficiently rapidly with m as well so that

this is true for all m, and (3.18) is proved.
Returning now to the proof of Claim 3.8, we want to show that for any ε > 0, there exists some M1 > 0 such that,

for all m � M1, |A| < ε where

A := ∥∥un(tn)
∥∥2

Ḣ
1
2
−

J∑
j=1

∥∥Ũj,n(tn)
∥∥2

Ḣ
1
2
− ∥∥wl,J

n (tn)
∥∥2

Ḣ
1
2
.

We write un = ŨJ2,n + ŨJ
J2,n

+w
l,J
n + rJ

n for a sufficiently large J2 to be chosen, expand the first term in A and cancel

the equal terms. We’ll then split A into I + II, where II contains all terms with Ũj,n for j > J2 (see below). Note
that for j > J2 > J1, Uj ∈ E∞ and hence, for J2 sufficiently large, Theorem 2.10 and (3.11) give the energy estimate
‖Uj‖E∞ � ‖V0,j‖

Ḣ
1
2

. Then, using (3.8), (3.11) and (3.18), for any ε̃ > 0 we have

∥∥ŨJ
J2,n

(tn)
∥∥2

Ḣ
1
2

� 2
J∑

j=J2+1

∥∥Ũj,n(tn)
∥∥2

Ḣ
1
2

�
J∑

j=J2+1

‖V0,j‖2

Ḣ
1
2

< ε̃ (3.21)

for J2 = J2(ε̃) sufficiently large. Now let

II := 2
〈
D

1
2 ŨJ

J2,n
(tn),D

1
2
{
ŨJ,n(tn) + wl,J

n (tn) + rJ
n (tn)

}〉 + ∥∥ŨJ
J2,n

(tn)
∥∥2

Ḣ
1
2
−

J∑
j=J2+1

∥∥Ũj,n(t)
∥∥2

Ḣ
1
2
.

We estimate

|II| � 2
∥∥ŨJ

J2,n
(tn)

∥∥
Ḣ

1
2
· (∥∥ŨJ,n(tn)

∥∥
Ḣ

1
2
+ ∥∥wl,J

n (tn)
∥∥

Ḣ
1
2
+ ∥∥rJ

n (tn)
∥∥

Ḣ
1
2

) + ∥∥ŨJ
J2,n

(tn)
∥∥2

Ḣ
1
2

+
J∑

j=J2+1

∥∥Ũj,n(t)
∥∥2

Ḣ
1
2
.

Note that we have∥∥ŨJ,n(tn)
∥∥

Ḣ
1
2

� M,
∥∥wl,J

n (tn)
∥∥

Ḣ
1
2

�
∥∥wJ

n

∥∥
Ḣ

1
2

� 3Ac and
∥∥rJ

n (tn)
∥∥

Ḣ
1
2

� 1

by (3.19), heat estimates and (3.8), and by our choice of subsequences, respectively. Using these and (3.21), for any
ε > 0 we can make |II| < ε/2 for large enough J2, which we now fix. We are now left to estimate

I := ∥∥ŨJ2,n(tn) + wl,J
n (tn) + rJ

n (tn)
∥∥2

Ḣ
1
2
−

J2∑
j=1

∥∥Ũj,n(tn)
∥∥2

Ḣ
1
2
− ∥∥wl,J

n (tn)
∥∥2

Ḣ
1
2

=
∑

1�j �=j ′�J2

〈
D

1
2 Ũj,n(tn),D

1
2 Ũj ′,n(tn)

〉 + 2
〈
D

1
2 ŨJ2,n(tnn),D

1
2
{
wl,J

n (tn) + rJ
n (tn)

}〉

+ 2
〈
wl,J

n (tn), r
J
n (tn)

〉 + ∥∥rJ
n (tn)

∥∥2

Ḣ
1
2
.

The first term is handled by (3.17). Since we may pass to a subsequence such that ‖rJ
n (tn)‖

Ḣ
1
2

� ‖rJ
n ‖Etn

k

→ 0 as

m → ∞ by (3.7), using (3.19) and the fact that ‖wl,J
n (tn)‖ � 3Ac we see that the terms with rJ

n are small for large m.
The only remaining issue is〈

D
1
2 ŨJ2,n(tn),D

1
2 wl,J

n (tn)
〉
.

Consider 〈D 1
2 Ũj,n(tn),D

1
2 w

l,J
n (tn)〉 for 1 � j � J2. If tj,n → +∞, then, since ‖wl,J

n (tn)‖
Ḣ

1
2

� 3Ac, we can use

again the fact that ‖Uj(tj,n)‖
Ḣ

1
2

→ 0 as n → ∞ to see that the term is small for large m (recall that n = n(m)).

Otherwise, it suffices to consider (by replacing tj,n by tj as before)
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〈
D

1
2

{
1

λj,n

Uj

(
x − xj,n

λj,n

, tj

)}
,D

1
2 wl,J

n (tn)

〉
=

∫
D

1
2 Uj (y, tj )D

1
2 etj,n�

[
λj,nw

J
n (λj,n · +xj,n)

]
(y) dy.

Define hn(y) := etj,n�[λj,nw
J
n (λj,n · +xj,n)](y). We claim that hn ⇀ 0 in Ḣ

1
2 and hence this term is small for large

m as well (for each j ∈ [1, . . . , J2]), and Claim 3.8 is proved. Indeed, note that ‖hn‖
Ḣ

1
2

� 3Ac hence hn has a weak

accumulation point in Ḣ
1
2 . Note also that ‖hn‖3 � ‖wJ

n ‖3 → 0 as m → ∞ (after passing to a subsequence) by (3.6),

so in particular hn ⇀ 0 in L3. Any weak limit in Ḣ
1
2 for any subsequence is therefore also zero due to the embedding

(L3)′ ↪→ (Ḣ
1
2 )′, hence zero is the only weak accumulation point of hn in Ḣ

1
2 and thus hn ⇀ 0 in Ḣ

1
2 . This concludes

the proof of Claim 3.8 (and Theorem 3.1). �
3.3. Compactness of critical elements

In this section, we’ll prove Theorem 3.2 which establishes the compactness of any critical element arising from
Theorem 3.1 under the assumption that Ac < +∞.

Proof of Theorem 3.2. We will need the following claim:

Claim 3.10. Define Ac by (3.2), and suppose that Ac < +∞. Suppose u0 ∈ Ḣ
1
2 and u = NS(u0) are such that

T ∗(u0) < +∞ and ‖u‖
L∞((0,T ∗(u0));Ḣ

1
2 )

= Ac. For any sequence {tn} such that tn ↗ T ∗(u0), let V0,j , Uj be the

profiles associated with the sequence u0,n := u(tn). Then, after re-ordering, T ∗(V0,j ) < +∞ ⇔ j = 1, and

T ∗(u0) − tn � λ2
1,nT

∗(V0,1) (3.22)

for all n. Moreover, after passing to a subsequence in n, for j � 2 either Uj ≡ 0 or

λ1,n

λj,n

→ +∞ as n → +∞. (3.23)

Proof. First note that the following considerations hold for any sequence {tn} ⊂ [0, T ∗(u0)):
Letting u0,n = u(tn), un(t) = NS(u0,n)(t) = u(tn + t) and noting T ∗(u0) < +∞ implies that ‖un‖ET ∗(u0,n)

= +∞
for all n ∈ N by Theorem 2.12, we can think of u0,n as a minimizing sequence for Ac , since ‖u(tn)‖

Ḣ
1
2

� Ac ≡: An

for all n. Proceeding as before and applying the profile decomposition, we see that, for a subsequence,

u(tn) =
J∑

j=1

1

λj,n

V0,j

( · − xj,n

λj,n

)
+ wJ

n (·)

and, by uniqueness,

u(tn + t) = un(t) =
J∑

j=1

1

λj,n

Uj

( · − xj,n

λj,n

,
t

λ2
j,n

)
+ wl,J

n (·, t) + rJ
n (·, t)

for t ∈ [0, tnk ], where tnk := λ2
1,n(T

∗(U1) − 1
k
) for k ∈ N with the orthogonality properties (3.6)–(3.8). This is justified

since we saw before (see (3.13), (3.14), Remark 3.9, etc.) that we may re-order the elements so that T ∗(V0,1) < +∞,
T ∗(V0,j ) = +∞ for all j � 2 and

‖U1‖ET ∗(V0,1)
= +∞, ‖Uj‖E∞ < +∞ for all j � 2,

sup
t∈[0,T ∗(V0,1))

∥∥U1(t)
∥∥

Ḣ
1
2
= Ac

and it is noted moreover in [19] that Eq. (3.22) holds for all n. (In fact, (3.22) is a simple consequence of the properties
of the profile decomposition.)

Suppose now that tn ↗ T ∗(u0). Then (3.22) gives

λ2
1,n � T ∗(u0) − tn

∗ → 0 as n → ∞. (3.24)

T (V0,1)
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We will now show that moreover, for j � 2, either Uj ≡ 0 or, after possibly passing to a subsequence, the limit (3.23)
holds as follows: Take tk ∈ [0, T ∗(V0,1) − 1

k
] such that∥∥U1(tk)

∥∥
Ḣ

1
2
= sup

0�t�T ∗(V0,1)− 1
k

∥∥U1(t)
∥∥

Ḣ
1
2
=: Ak ↗ Ac.

Then, letting tk,n := λ2
1,ntk , we can apply Claim 3.8 (where actually J1 = 1) to see that there exist subsequences

n = n(m,k), J = J (m,k) indexed by m for fixed k such that

∥∥u(tn + tk,n)
∥∥2

Ḣ
1
2
=

J∑
j=1

∥∥Ũj,n(tk,n)
∥∥2

Ḣ
1
2
+ ∥∥wl,J

n (tk,n)
∥∥2

Ḣ
1
2
+ ε(k,m)

where ε(k,m) → 0 as m → ∞ for fixed k. Therefore, as in Remark 3.9, one can take a subsequence m = m(k) such
that, for j � 2,∥∥∥∥Uj

(
λ2

1,n(m(k),k)

λ2
j,n(m(k),k)

tk

)∥∥∥∥
Ḣ

1
2

= ∥∥Ũj,n(m(k),k)(tk,n(m(k),k))
∥∥

Ḣ
1
2
→ 0 as k → ∞.

If along this subsequence n = n(m(k), k) we had that λ2
1,ntk/λ

2
j,n were bounded, one could therefore extract a con-

vergent subsequence with limit t̄ < ∞, and therefore conclude that Uj (t̄) = 0 by the Ḣ
1
2 -continuity and hence that

Uj ≡ 0 by Lemma 3.6. Since 0 � tk < T ∗(V0,1) < ∞, if Uj �= 0 then the limit (3.23) must therefore hold for some
subsequence, and Claim 3.10 is proved. �

Returning now to the proof of Theorem 3.2, fix a sequence {tn} such that tn ↗ T ∗. We define a corresponding
sequence {sn} by21

sn − tn

λ2
1,n

= 1

2
T ∗(V0,1) (3.25)

for each n. Note that, for j � 2 such that Uj �= 0, (3.23) gives (after passing to a subsequence in n)

sn − tn

λ2
j,n

= T ∗(V0,1)

2

λ2
1,n

λ2
j,n

→ +∞ as n → +∞. (3.26)

Note also that (3.22) implies that sn ∈ (tn, T
∗(u0)). Indeed, we have

0 < tn < sn = tn + 1

2
λ2

1,nT
∗(V0,1) < T ∗(u0) − 1

2
λ2

1,nT
∗(V0,1) < T ∗(u0).

Notice that, since un = NS(u0,n) = NS(u(tn)), we may write u(sn) = u(tn + (sn − tn)) = un(sn − tn) and hence, by
(3.5) we have (for a further subsequence in n)

u(sn) =
J∑

j=1

1

λj,n

Uj

( · − xj,n

λj,n

,
sn − tn

λ2
j,n

)
+ wl,J

n (sn − tn) + rJ
n (sn − tn). (3.27)

Fix any ε > 0. Since sn − tn = 1
2T ∗(V0,1)λ

2
1,n < T ∗(V0,1)λ

2
1,n for all n, the orthogonality properties (3.6) and (3.7)

and Young’s inequality allow us to fix some J so large that∥∥rJ
n (sn − tn)

∥∥
3 �

∥∥rJ
n (sn − tn)

∥∥
Ḣ

1
2

� ε

4
(3.28)

and ∥∥wl,J
n (sn − tn)

∥∥
3 �

∥∥wJ
n

∥∥
3 � ε

4
(3.29)

21 The specific factor 1/2 in the definition of sn is chosen only for simplicity; one may in fact replace 1/2 by η for any fixed η ∈ (0,1).
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for large enough n. For such a J , we may take n large enough that

max
2�j�J

∥∥∥∥Uj

(
sn − tn

λ2
j,n

)∥∥∥∥
3
� ε

2J
, (3.30)

due to (3.26) and the fact that T ∗(V0,j ) = +∞ for j � 2 which implies that limt→+∞ ‖Uj(t)‖3 = 0 by Theorem 2.9.
We have therefore shown (due to (3.27)) that for any ε > 0, there exists N ∈ N such that∥∥∥∥u(sn) − 1

λ1,n

U1

( · − x1,n

λ1,n

,
sn − tn

λ2
1,n

)∥∥∥∥
3
=

∥∥∥∥u(sn) − 1

λ1,n

U1

( · − x1,n

λ1,n

,
1

2
T ∗(V0,1)

)∥∥∥∥
3
< ε

for all n � N . A simple change of variables y = x−x1,n

λ1,n
shows that∥∥∥∥λ1,nu

(
λ1,n

[
· + x1,n

λ1,n

]
, sn

)
− U1

(
1

2
T ∗(V0,1)

)∥∥∥∥
3
< ε

for n � N , and hence setting λn = (λ1,n)
−1 (note that λn → +∞ by (3.24)) and xn = −x1,n/λ1,n, we see that22

1

λn

u

( · − xn

λn

, sn

)
→ U1

(
1

2
T ∗(V0,1)

)

in L3 as n → ∞ and Theorem 3.2 is proved. �
3.4. Rigidity

In this section, we’ll prove Theorem 3.3 which establishes that the compactness of a critical element as established
in Theorem 3.2 is not possible. This, due to Theorems 3.1 and 3.2, gives an alternative proof of the regularity criterion
(3.1) in the case of mild solutions (which follows from the more general result in [14]), and concludes the critical
element proof of Theorem 0.1.

We will use three key known results. The first two concern systems of parabolic equations: the backwards unique-
ness theorem, Theorem 3.7, proved in [12,13] (see also [14]), and the following “unique continuation” theorem, a
proof of which can be found in [14] but which was already a well-known fact from the unique continuation theory of
differential inequalities (see also [15]):

Theorem 3.11 (Unique continuation). Let Qr,δ := Br(0) × (−δ,0) for some r, δ > 0, and suppose a vector-valued
function v and its distributional derivatives satisfy v, vt ,∇v,∇2v ∈ L2(Qr,δ) and there exist c0,Ck > 0 (k ∈ N) such
that |vt − �v| � c0(|∇v| + |v|) a.e. on Qr,δ and |v(x, t)| � Ck(|x| + √−t)k for all (x, t) ∈ Qr,δ . Then v(x,0) ≡ 0
for all x ∈ Br(0).

The third result we will need is a local regularity criterion (with estimates) originating in [5] and generalized in
[46] for the so-called “suitable weak solutions” of the Navier–Stokes equations, which are defined as follows:

Definition 3.12 (Suitable weak solutions). Let O be an open subset of R
n, −∞ < T1 < T2 < +∞. We call the

pair (u,p) a suitable weak solution of the Navier–Stokes equations in O × (T1, T2) if u ∈ L∞((T1, T2);L2(O)) ∩
L2((T1, T2);H 1(O)), p ∈ L∞((T1, T2);L3/2(O)), u and p satisfy NSE in distributions and the following local energy
inequality holds:

∫
O

ϕ|u|2 dx + 2

t∫
T1

∫
O

ϕ|∇u|2 dx ds �
t∫

T1

∫
O

{|u|2(�ϕ + ϕt ) + u · ∇ϕ
(|u|2 + 2p

)}
dx ds

for almost all t ∈ (T1, T2) and for all nonnegative cut-off functions ϕ ∈ C∞
0 which vanish in a neighborhood of the

parabolic boundary (O × {T1}) ∪ (∂O × [T1, T2]).

22 As noted previously, for any η ∈ (0,1) one can, of course, find a similar sequence which converges to U1(η · T ∗(V0,1)).
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We take the statement of the local regularity criterion from [14] (where a self-contained proof, based on the alter-
native method in [39], is presented). It is the following:

Lemma 3.13 (Local smallness regularity criterion). There exist positive absolute constants ε0 and ck for k ∈ N with
the following property: If a suitable weak solution (u,p) of NSE on Q1, where Qr := Br(0) × (−r2,0) for r > 0,
satisfies the condition∫

Q1

(|u|3 + |p| 3
2
)
dx dt < ε0,

then ∇k−1u is Hölder continuous on Q 1
2

for any k ∈ N, and for each k we have the estimate

max
Q 1

2

∣∣∇k−1u
∣∣ � ck.

We will now prove Theorem 3.3 by using the backwards uniqueness, unique continuation and smallness criterion
results (Theorem 3.7, Theorem 3.11 and Lemma 3.13) to establish the following stronger version of Lemma 3.6:

Lemma 3.14. Suppose u0 ∈ L3 and set u := NS(u0). Suppose there exist some T ∈ R such that 0 < T < +∞ and
T � T ∗(u0) and a sequence of numbers {sn} such that 0 < sn ↗ T such that the following two properties hold:

(1) sup
t∈(0,T )

∥∥u(t)
∥∥

3 < +∞ and

(2) lim
n→∞

∫
|x|<R

∣∣u(x, sn)
∣∣2

dx = 0 for any R > 0.

Then u0 = u = 0.

(The case T < T ∗(u0) implies Lemma 3.6 due to the continuity properties of mild solutions.) Note the immediate
corollary that there exists no u0 ∈ L3 such that T ∗(u0) < +∞ and (1) and (2) hold with T = T ∗(u0), since the
conclusion of Lemma 3.14 implies that T ∗(u0) = T ∗(0) = +∞ by Theorem 2.6. This will exactly rule out the critical
element produced in Theorem 3.1 and prove the regularity criterion (3.1). Let us postpone the proof of Lemma 3.14
for the moment.

Proof of Theorem 3.3. As in Theorem 3.2, define Ac by (3.2) and suppose Ac < +∞, and let u0 ∈ Ḣ
1
2 with associ-

ated mild solution u := NS(u0) satisfy T ∗ := T ∗(u0) < +∞ and ‖u‖
L∞((0,T ∗(u0));Ḣ

1
2 )

= Ac .

Fix any {tn} ⊂ [0, T ∗) such that tn ↗ T ∗, and let sn ↗ T ∗, λn → +∞ and {xn} ⊂ R
3 be the associated sequences

guaranteed by Theorem 3.2. Using the conclusion of the same theorem, define

vn(x) = 1

λn

u

(
x − xn

λn

, sn

)

for any x ∈ R
3 and pass to a subsequence in n so that vn → v̄ in L3 for some v̄ ∈ L3. We now make the following

important claim:

Claim 3.15. For sn ↗ T ∗ as above and for any R > 0,

lim
n→∞

∫
BR(0)

∣∣u(x, sn)
∣∣2

dx = 0.

Proof. Fix R > 0. We calculate:∫ ∣∣u(x, sn)
∣∣2

dx =
∫ ∣∣λnvn(λnx + xn)

∣∣2
dx = (λn)

−1
∫ ∣∣vn(y)

∣∣2
dy =: (λn)

−1‖vn‖2
L2(Bn)

.

|x|�R |x|�R |y−xn|�λnR
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For any small ε > 0, define BελnR := BελnR(0). We then estimate

(λn)
−1‖vn‖2

L2(Bn)
= (λn)

−1‖vn‖2
L2(Bn∩BελnR)

+ (λn)
−1‖vn‖2

L2(Bn∩Bc
ελnR)

� (λn)
−1‖vn‖2

L3(R3)
|BελnR| 1

3 + (λn)
−1‖vn‖2

L3(Bn∩Bc
ελnR)

|Bn| 1
3

� C(Ac)
2εR + 4CR‖v̄‖2

L3(Bc
ελnR)

for sufficiently large n. The first term of the last line is arbitrarily small for small ε, and for fixed ε the second term is
arbitrarily small for sufficiently large n due to the fact that λn → +∞. This proves the claim. �

Assuming Lemma 3.14 holds and taking T = T ∗, Claim 3.15 clearly completes the proof of Theorem 3.3. There-
fore it remains only to establish the following:

Proof of Lemma 3.14. Since T = T ∗ = T ∗(u0) is the application we seek, we will consider only that case (the case
T < T ∗(u0) is even easier). Assume therefore that u0 ∈ L3 is such that T ∗(u0) < +∞,

sup
t∈(0,T ∗(u0))

∥∥u(t)
∥∥

3 < +∞

where u = NS(u0), and there exists {sn} with sn ↗ T ∗ as n → ∞ such that

lim
n→∞

∫
|x|<R

∣∣u(x, sn)
∣∣2

dx = 0

for any fixed R > 0.
Recall that PF = F − ∇ 1

�
∇ · F for a vector field F , and for a tensor G we can write − 1

�
(∇ · (∇ · G)) =

( ∇√−�
· ( ∇√−�

· G)) = Ri RjGij , where (Rj g)∧(ξ) = iξj

|ξ | ĝ(ξ) and we sum over repeated indices. Therefore, letting

G = u ⊗ u, F = ∇ · G and defining p := Ri Rj uiuj , we have

P∇ · (u ⊗ u) = ∇ · (u ⊗ u) + ∇p.

Note that p is well-defined as a distribution since Rk :L
3
2 → L

3
2 boundedly for each k by the Calderon–Zygmund

theory, so that∥∥p(t)
∥∥ 3

2
� C

∥∥u(t)
∥∥2

3, (3.31)

hence23 p ∈ L 3
2 ,∞. Moreover, p satisfies the equation −�p(t) = ∂i∂jui(t)uj (t) in distributions and therefore p(t) is

smooth in x for any t ∈ (0, T ∗) since u(t) is smooth for such t . Moreover, setting Br = Br(x0) for any fixed x0 ∈ R
3

and any r > 0, we have the following estimates from the classical elliptic theory (see, e.g., [46])

∥∥p(·, t)∥∥
Ck,α(Br )

� ck

(∑
i,j

∥∥ui(·, t)uj (·, t)
∥∥

Ck,α(B2r )
+ ∥∥p(·, t)∥∥

L
3
2 (R3)

)
. (3.32)

For any t ∈ (0, T ∗), we now have

u(t) = et�u0 −
t∫

0

e(t−s)�
[∇ · (u ⊗ u) + ∇p

]
(s) ds.

It is clear that u ∈ ⋂
0<T <T ∗ L2

loc unif,xL
2
t (R

3 × (0, T )), due to the fact that u ∈ L3,∞. Therefore u satisfies (see [38],
Theorem 11.2)

ut − �u + ∇ · (u ⊗ u) + ∇p = 0, ∇ · u = 0 (3.33)

23 We adopt the notation of [14], setting Lp,∞ = L∞
t L

p
x for p � 1, and denote the corresponding norm by ‖ · ‖p,∞.



C.E. Kenig, G.S. Koch / Ann. I. H. Poincaré – AN 28 (2011) 159–187 185
in distributions. We now claim that the pair (u,p) locally forms a suitable weak solution, in the sense of Defini-
tion 3.12.

Recall that, by construction, u ∈ L5(R3 × (0, T )) for any T < T ∗, so that the “Ladyzenskaja–Prodi–Serrin” reg-
ularity condition (see, e.g., [14]) implies that u is smooth on R

3 × (0, T ∗) (or, alternatively, the construction gives
u ∈ L∞(R3 × (ε, T ∗ − ε)) for any ε > 0 and hence is smooth, see, e.g., [38], Proposition 15.1). Therefore (3.31) and
(3.32) together imply that p(t) is smooth in x for 0 < t < T ∗ and ∇k

xp ∈ L∞
loc(R

3 × (0, T ∗)) for any k.
We clearly have u ∈ L∞((0, T ∗);L2(O)) for any bounded O � R

3. Since u and p are sufficiently smooth on R
3 ×

(0, T ∗) we may multiply Eq. (3.33) by uϕ for ϕ as in Definition 3.12 and integrate by parts to derive the local energy
inequality in Õ × (0, T ∗) for a suitably larger region such that O � Õ, which implies that u ∈ L2((0, T ∗);H 1(O)).
(Indeed, the integrations by parts happen only at the level of integration in x, and then (u,p) ∈ L3,∞ × L 3

2 ,∞ allows
integration in t .) Noting also that we have

T ∗∫
0

∫
R3

(|u|3 + |p| 3
2
)
dx dt � T ∗(‖u‖3

3,∞ + ‖p‖
3
2
3
2 ,∞

)
< ∞, (3.34)

we see that p ∈ L
3
2 (O × (0, T ∗)). The pair (u,p) now clearly satisfies all the requirements to form a suitable weak

solution to NSE in O × (0, T ∗) for any O � R
3.

Eq. (3.34) implies moreover that for any ε > 0 one can find R > 0 large enough that

T ∗∫
0

∫
B√

T ∗ (x0)

(|u|3 + |p| 3
2
)
dx dt � ε

for all x0 such that |x0| � R. Therefore, due to Lemma 3.13 (and an appropriate scaling argument), we see that u

is smooth on Ω := (R3\BR0(0)) × [(3/4)T ∗, T ∗] for some sufficiently large R0, and by shifting spatial regions, we
have the global bounds

max
Ω

∣∣∇k−1u
∣∣ � ck, k = 1,2,3, . . . . (3.35)

Since u is continuous up to T ∗ outside BR0 , Claim 3.15 now implies that u(x,T ∗) ≡ 0 for all x such that |x| � R0.
We therefore also have ω := ∇x × u ≡ 0 on (R3\BR0) × {T ∗}. Taking the curl of Eq. (3.33), we see that the vorticity
ω satisfies the inequality

|ωt − �ω| = ∣∣(u · ∇)ω − (ω · ∇)u
∣∣ � c

(|ω| + |∇ω|)
in Ω for some c > 0 due to (3.35). Since ω is bounded and smooth in Ω , we can apply the backwards uniqueness
theorem, Theorem 3.7, to conclude that ω ≡ 0 in Ω .

Now, in Ω̃ := R
3 × ((3/4)T ∗, (7/8)T ∗] we have u, and hence ω, is smooth, hence Dm

t Dk
xω ∈ L2

loc(Ω̃) for all
m,k � 0. We can therefore apply the theorem of unique continuation, Theorem 3.11, to ω, since ω ≡ 0 in Ω̃ ∩ Ω , to
conclude (by appropriate shifting of local regions) that ω ≡ 0 in Ω̃ . Therefore, due to the divergence-free condition,
u is harmonic in Ω̃ which, along with the fact that u ∈ L3,∞, implies u ≡ 0 in Ω̃ . Lemma 3.6 (which is essentially
just another application of Theorem 3.7) then gives u0 = u = 0 which proves Lemma 3.14 and concludes the proof of
Theorem 3.3 and Theorem 0.1. �
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