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Abstract

We prove well-posedness of global solutions for a class of coagulation equations which exhibit the gelation phase transition.
To this end, we solve an associated partial differential equation involving the generating functions before and after the phase tran-
sition. Applications include the classical Smoluchowski and Flory equations with multiplicative coagulation rate and the recently
introduced symmetric model with limited aggregations. For the latter, we compute the limiting concentrations and we relate them
to random graph models.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. Coagulation models

In this paper we deal with the problem of uniqueness of post-gelation solutions of several models of coagula-
tion, namely Smoluchowski’s and Flory’s classical models, and the corresponding models with limited aggregations
recently introduced by Bertoin [3].

Smoluchowski’s coagulation equations describe the evolution of the concentrations of particles in a system where
particles can perform pairwise coalescence, see e.g. [1,18,23]. In the original model of Smoluchowski [29], a pair
of particles of mass, respectively, m and m′, coalesce at rate κ(m,m′) and produce a particle of mass m + m′.
In the discrete setting, the evolution of the concentration ct (m) of particles of mass m ∈ N

∗ at time t � 0 is given
by the following system

d

dt
ct (m) = 1

2

m−1∑
m′=1

κ
(
m,m′)ct

(
m′)ct

(
m − m′) −

∑
m′�1

κ
(
m,m′)ct (m)ct

(
m′). (1.1)
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Norris considered in [24] far more general models of cluster coagulation, where the rate of coalescence does
not depend only on the mass of the particles but also on other parameters. In this general setting, most results on
existence and uniqueness are obtained before a critical time, known as the gelation time, while the global behavior of
the solutions after gelation, and in particular uniqueness, is not known.

An example of a solvable cluster coagulation model is Bertoin’s model with limited aggregations [3], which we
shall simply call the model with arms. In this case, particles have a mass but also carry a certain number of potential
links, called arms. Two particles of mass m and m′ may coagulate only if they have a positive number of arms,
say a and a′. When they coagulate, an arm of each is used to create the bond and both arms are then deactivated,
hence creating a particle with a + a′ − 2 arms and mass m + m′. The coagulation rate of these two particles is aa′.
Therefore, if ct (a,m) is the concentration of particles with a ∈ N = {0,1, . . .} arms and mass m ∈ N

∗ = {1,2, . . .},
then the coagulation equation reads

d

dt
ct (a,m) = 1

2

a+1∑
a′=1

m−1∑
m′=1

a′(a + 2 − a′)ct

(
a′,m′)ct

(
a + 2 − a′,m − m′)

−
∑
a′�1

∑
m′�1

aa′ct (a,m)ct

(
a′,m′). (1.2)

For monodisperse initial concentrations, i.e. c0(a,m) = 1{m=1}μ(a), with μ = (μ(a))a∈N a measure on N with unit
mean, it is proved in [3] that this equation has a unique solution on some interval [0, T ), where T = +∞ if and only
if K � 1, where

K :=
∑
a�1

a(a − 1)μ(a). (1.3)

In other words, if particles at time 0 have, on average, few arms, Eq. (1.2) has a unique solution defined for all t � 0.
When this is the case, as time passes, all available arms are used to create bonds and only particles with no arms
remain in the system. The limit concentrations c∞(0,m) as t → +∞ of such particles turn out to be related to the
distribution of the total population generated by a sub-critical Galton–Watson branching process (see e.g. [2]) started
from two ancestors: see [3,4] and Section 1.4 below.

1.2. The gelation phase transition

A formal computation shows that solutions of (1.1) with multiplicative kernel κ(m,m′) = mm′ should have con-
stant mass

Mt :=
∑
m�1

mct (m), t � 0, (1.4)

i.e. d
dt

Mt = 0. It is however well known that if large particles can coagulate sufficiently fast, then one may observe in
finite time a phenomenon called gelation, namely the formation of particles of infinite mass, the gel. These particles
do not count in the computation of the mass so from the gelation time on, Mt starts to decrease.

The reason why (1.2) can be solved, is that it can be transformed into a solvable PDE involving the generating func-
tion of (ct )t�0. In Eq. (1.1), this transformation is also possible for several particular choices of the kernel κ(m,m′),
namely when κ is constant, additive or multiplicative: see e.g. [5]. In the multiplicative case κ(m,m′) = mm′, which
is our main concern here, the total mass is a parameter of (1.1) and of the associated PDE, which is therefore easy to
solve only when (Mt)t�0 is known. Existence and uniqueness of solutions of (1.1) are thus easy up to gelation, since
in this regime, the total mass Mt is constant.

After gelation, the gel may or may not interact with the other particles. If it does, Eq. (1.1) has to be modified into
Flory’s equation (3.1). Else, the gel is inert, in which case Smoluchowski’s equation continues to hold. Obviously,
they are identical before gelation.

Occurrence of gelation depends heavily on the choice of the coagulation rate κ(m,m′), and in the multiplicative
case, gelation always occurs [10,12,17]. After gelation, the mass is not known, so Mt itself becomes an unknown
of the equation, and well-posedness of the equation is then much less trivial. The multiplicative kernel is therefore
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particularly interesting, since it exhibits a non-trivial behavior but can still be studied in detail by means of explicit
computations.

The same phenomenon of gelation has been observed in [3] for (1.2) for monodisperse initial concentrations c0.
A formal computation shows that the mean number of arms At

At :=
∑

a,m�1

act (a,m), t � 0,

satisfies the equation d
dt

At = −A2
t and should therefore be equal to 1

1+t
for all t � 0. In fact, this explicit expression

holds only until a critical time, which is shown to be equal to 1/(K − 1) if K > 1 and to +∞ if K � 1, where K is
defined in (1.3). Again, the associated PDE is easy to solve before gelation since then, At is known, while afterwards,
the PDE contains the unknown parameter At .

1.3. Main result

In this paper we investigate the global behavior of Smoluchowski’s equation with arms (1.2) before, at and after the
gelation phase transition, proving existence and uniqueness of global solutions for a large class of initial conditions.
The technique used, as in [3], is to transform the equation into a PDE. Since the total number of arms (At )t�0 is not a
priori known, this PDE is non-local, unlike the one obtained in the regime before gelation. This is the main difficulty
we have to deal with. We use a modification of the classical method of characteristics to show uniqueness of solutions
to this PDE, and hence to (1.2). We can consider initial conditions (c0(a,m), a ∈ N, m ∈ N

∗) with an initial infinite
number of arms, that is, such that

A0 :=
∑

a,m�1

ac0(a,m)

is infinite, and show that there is a unique solution “coming down from infinity sufficiently fast”, i.e. such that, for
positive t ,

t∫
0

A2
s ds < +∞.

Note however that this is no technical condition, but a mere assumption to ensure that the equation is well de-
fined.

We also consider a modification of this model which corresponds to Flory’s equation for the model with arms.
In this setting, the infinite mass particles, that is, the gel, interact with the other particles. We also prove existence,
uniqueness and study the behavior of the solutions for this model.

In both cases, our technique provides a representation formula allowing to compute various quantities, as the
mean number of arms in the system and the limiting concentrations. In Flory’s case, we extend to all possible initial
concentrations the computations done in [3] in absence of gelation. In the first model, a slight modification appears
which calls for a probabilistic interpretation; see Section 1.4 below.

This seems to be the first case of a cluster coagulation model for which global well-posedness in presence of
gelation can be proven. Another setting to which these techniques could be applied is the coagulation model with
mating introduced in [22].

1.4. Limiting concentrations

In [3], explicit solutions to (1.2) are given for monodisperse initial conditions c0(a,m) = μ(a)1{m=1} for some
measure μ on N with unit first moment. In particular, when there is no gelation, i.e. K � 1 where K is as in (1.3), and
μ �= 1

2δ2, there are limiting concentrations

c∞(a,m) = 1
ν∗m(m − 2)1{a=0}, m � 2,
m(m − 1)
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where ν(m) = (m + 1)μ(m + 1) is a probability measure on N different from δ1. This formula clearly resembles the
well-known formula of Dwass [7], which provides the law of the total progeny T of a Galton–Watson process with
reproduction law ν, started from two ancestors:

P(T = m) = 2

m
ν∗m(m − 2), m � 2.

The similarity between the two formulas is no coincidence and is explained in [4] by means of the configuration
model. For basics on Galton–Watson processes, see e.g. [2].

Let us briefly explain the result of [4], referring e.g. to [26] for more results on general random graphs. The con-
figuration model aims at producing a random graph whose vertices have a prescribed degree. To this end, consider
a number n of vertices, each being given independently a number of arms (that is, half-edges) distributed according
to μ. Then, two arms in the system are chosen uniformly and independently, and form an edge between the corre-
sponding vertices. This procedure is repeated until there are no more available arms. Hence, one arrives to a final state
which can be described as a collection of random graphs. Then Corollary 2 in [4] and the discussion below show that,
when there is no gelation, the proportion of trees of size m tends to c∞(0,m) when the number n of vertices tends to
infinity. Hence, the final states in the configuration model and in Smoluchowski’s equation with arms coincide. This
shows that the former is a good discrete model for coagulation.

Interestingly, the absence-of-gelation condition K � 1 is equivalent to (sub)-criticality of the Galton–Watson
branching process with reproduction law ν, i.e. to almost sure extinction of the progeny, while K > 1 and gelation at
finite time are equivalent to super-criticality of the GW process.

In this paper, we obtain the limiting concentrations for (1.2) and its modified version when there is gelation. Let us
start with the modified model, which is the counterpart of Flory’s equation for the model with arms. In this case, and
with the same notations as above, we obtain the limit concentrations

c∞(a,m) = 1

m(m − 1)
ν∗m(m − 2)1{a=0}, m � 2,

that is, the same explicit form as the one obtained in absence of gelation. Again, this formula can be interpreted both in
terms of a configuration model and of a super-critical Galton–Watson branching process. The relation between Flory’s
equation with arms and the configuration model is natural, since in both cases all particles interact with each other,
no matter what their size is. It is worth noticing that, even though the limit concentrations have the same form with or
without gelation, still some mass is eventually lost in presence of gelation, see (6.4) below.

We also obtain the limiting concentrations for Smoluchowski’s equation with arms, namely

c∞(a,m) = 1

m(m − 1)
βm−1∞ ν∗m(m − 2)1{a=0},

where β∞ is some constant, which is 1 when there is no gelation, and is greater than 1 otherwise, see Section 6.2.
However, the probabilistic interpretation of β∞ is unclear. One can recover Smoluchowski’s equation with arms
from discrete models by preventing big particles from coagulating, as is done in [13] for the standard Smoluchowski
equation, but the precise meaning of β∞ still seems to require some labor.

1.5. Bibliographical comments

Smoluchowski’s equation (1.1) has been extensively studied; we refer to the reviews [1,18,23]. Conditions on
the kernel κ are known for absence or presence of gelation, though this requires a precise definition of gelation, see
e.g. [11], or [14] in a probabilistic setting. For a general class of kernels Smoluchowski’s solution has a unique solution
before gelation [23,6,12,18], and in the multiplicative case gelation always occurs [10,12,17].

For the monodisperse initial condition c0(m) = 1{m=1}, the first proof of existence and uniqueness to (1.1) before
gelation is given in [20], and a proof of global existence and uniqueness can be found in [15]. The case of general
nonzero initial conditions has been considered by several papers in the Physics literature [8,9,19,25,31], and by at
least one mathematical paper [27], which however treats in full details only the regime before gelation, see Remark 2.7
below. The same authors also provide in [28] an exact formula for the post-gelation mass of (1.1), but with no rigorous
proof.
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Thus, a clear statement about well-posedness of (1.1) for the most general initial conditions still seems to be
missing, and our paper tries to fill this gap. We adapt the classical method of characteristics for generating functions,
see [5,3], which yields easily uniqueness before gelation for a multiplicative kernel [21]. We can in particular consider
initial concentrations with infinite total mass, i.e. such that

M0 :=
∫

(0,+∞)

mc0(dm) = +∞,

as long as
∫
(0,+∞)

(m ∧ 1) c0(dm) < +∞. This covers for instance initial conditions of the type c0(dm) = Cpm−p dm

with p ∈ [1,2).
Our main concern is uniqueness, since existence of solutions has been obtained in a much more general setting by

analytic [16,17,24] or probabilistic [13,14] means. However, the case of an infinite initial mass seems to have been
considered only in [16] in the discrete case, so we refer to Section 2.4 below for a proof.

1.6. Plan of the article

We start off in Section 2 by considering existence, uniqueness and representation formulas for global solutions
of (1.1), introducing and exploiting all main techniques which are needed afterwards to tackle the same issues in
the case of (1.2). We prove that for the most general initial conditions μ0(dm), a positive measure on (0,+∞),
Smoluchowski’s equation with a multiplicative kernel has a unique solution before and after gelation. We also show
existence and uniqueness for the modified version of Smoluchowski’s model, namely Flory’s equation, in Section 3.
The techniques used are generalized in Sections 4 and 5, where we prove analogous results for the models with
arms. We compute the limiting concentrations in Section 6, which are not trivial, in comparison with the standard
Smoluchowski and Flory cases, for which they are always zero.

2. Smoluchowski’s equation

In this section we develop our method in the case of Eq. (1.1), proving existence, uniqueness and representation
formulas for global solutions. Let us first fix some notations.

• M+
f is the set of all non-negative finite measures on (0,+∞).

• M+
c is the set of all non-negative Radon measures on (0,+∞).

• For μ ∈ M+
c and f ∈ L1(μ) or f � 0,

〈μ,f 〉 =
∫

(0,+∞)

f (m)μ(dm).

We will write m for the function m �→ m, m2 for m �→ m2, etc.
• For φ : (0,+∞) → R and m,m′ > 0, �φ(m,m′) = φ(m + m′) − φ(m) − φ(m′).
• Cc(0,+∞) is the space of continuous functions on (0,+∞) with compact support.
• For a function (t, x) �→ φt (x), φ′

t (x) is the partial derivative of φ with respect to x.

• ∂+
∂t

or d+
dt

denotes the right partial derivative with respect to t .

We are interested in Smoluchowski’s equation (1.1) with multiplicative coagulation kernel κ(m,m′) = mm′. Note that
the second requirement in the following definition is only present for the equation to make sense.

Definition 2.1. Let μ0 ∈ M+
c . We say that a family (μt )t�0 ⊂ M+

c solves Smoluchowski’s equation if

• for every t > 0,
∫ t

0 〈μs(dm),m〉2 ds < +∞,
• for all φ ∈ Cc(0,+∞) and t > 0
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〈μt ,φ〉 = 〈μ0, φ〉 + 1

2

t∫
0

〈
μs(dm)μs

(
dm′),mm′�φ

(
m,m′)〉ds, (2.1)

• if 〈μ0,m
2〉 < +∞, then t �→ 〈μt ,m

2〉 is bounded in a right neighborhood of 0.

The global behavior of this equation has been studied first for monodisperse initial conditions (i.e. μ0 = δ1),
in which case it can be proven that there is a unique solution (μt )t�0 on R

+, which is also explicit, see [20,15].
This solution clearly exhibits the gelation phase transition. Up to the gelation time Tgel = 1, the total mass 〈μt ,m〉 is
constant and equal to 1, and then it decreases: 〈μt ,m〉 = 1/t for t � 1. Moreover, the second moment 〈μt ,m

2〉 is finite
before time 1, and then infinite on [1,+∞). It is also known in the literature that for any nonzero initial conditions,
there is a gelation time 0 < Tgel < +∞, such that there is a unique solution to (2.1) on [0, Tgel), and 〈μt ,m

2〉 → +∞
when t → T −

gel: see e.g. [12].

Theorem 2.2. Let μ0 ∈ M+
c be a non-null measure such that

〈μ0,m ∧ 1〉 =
∫

(0,+∞)

(m ∧ 1)μ0(dm) < +∞. (2.2)

We can then define

M0 := 〈μ0,m〉 ∈ (0,+∞], K := 〈
μ0,m

2〉 ∈ (0,+∞],
and the function

g0(x) := 〈
μ0,mxm

〉 = ∫
(0,+∞)

mxm μ0(dm), x ∈ [0,1] (2.3)

with g0(1) = M0 ∈ (0,+∞]. Let

Tgel := 1/K ∈ [0,+∞). (2.4)

Then Smoluchowski’s equation (2.1) has a unique solution on R
+. It has the following properties.

(1) The total mass Mt = 〈μt ,m〉 is continuous on [0,+∞). It is constant on [0, Tgel] and strictly decreasing on
[Tgel,+∞). It is analytic on R

+\{Tgel}.
(2) If the following limit exists

ν := − lim
x→1−

(g′
0(x))3

g′
0(x) + xg′′

0 (x)
∈ [−∞,0],

then the right derivative ṀTgel of M at t = Tgel is equal to ν.
(3) Let m0 = inf suppμ0 ∈ [0,+∞). When t → +∞,

1

tMt

→ m0.

(4) The second moment 〈μt ,m
2〉 is finite for t ∈ [0, Tgel) and infinite for t ∈ [Tgel,+∞).

Remark 2.3.

• This result allows to recover the pre- and post-gelation formulas obtained with no rigorous proof in some earlier
papers [9,8,15,19,27,28,25]. The decrease of the mass in 1/t when m0 > 0 was also observed in these papers.
Also, some upper bounds in 1/t for the mass were proven in [11,17].

• If m = 0, the mass tends to 0 more slowly than 1/t : small particles need to coagulate before any big particle
can appear, and they coagulate really slowly. For instance, a straightforward computation shows that if μ0(dm) =
e−m dm, then Mt ∼ t−2/3. More generally, the explicit formula in Proposition 2.6 allows to compute Mt for any
initial conditions.
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• With this formula, it is easy to check that ṀTgel+ can be anything from −∞ to 0. For instance, ṀTgel+ = 0 for

g0(x) = (1 − x) log(1 − x) + x, Ṁ0 = −∞ for g0(x) = √
1 − x log(1 − x) + x, and for 0 < α < +∞, Ṁ0 = −α

for g0(x) = 1 − √
1 − x2α . In particular, M need not be convex on [Tgel,+∞).

2.1. Preliminaries

Let μ0 be defined as in the previous statement. We shall prove that, starting from μ0, there is a unique solution
to (2.1) on R

+, and give a representation formula for this solution. This allows to study the behavior of the moments.
Let us start with some easy lemmas. So take a solution (μt )t�0 to (2.1) and set

Mt = 〈μt ,m〉. (2.5)

The two following lemmas are easy to prove, using monotone and dominated convergence.

Lemma 2.4. (Mt)t�0 is monotone non-increasing and right-continuous. Moreover, Mt < +∞ for all t > 0.

Proof. Take φK(m) = m for m ∈ [0,K], φK(m) = 2K − m for m ∈ [K,2K], and φK(m) = 0 for m � 2K , so that
φK ∈ Cc . Plugging φK in Smoluchowski’s equation (2.1), letting K → +∞ and using Fatou’s lemma readily shows
that (Mt)t�0 is monotone non-increasing. Note also that t �→ Mt = supK〈μt ,φ

K〉 is the supremum of a sequence of
continuous functions and so is lower semi-continuous, which implies, for a monotone non-increasing function, right-
continuity. Finiteness of Mt is now obvious since s �→ M2

s , and hence s �→ Ms , are integrable by Definition 2.1. �
Lemma 2.5. Assume that t �→ 〈μt ,m

2〉 is bounded on some interval [0, T0]. Then Mt = M0 for t ∈ [0, T0].

By Lemma 2.4, 〈μt ,m〉 < +∞ for t > 0, so that we can define

gt (x) = 〈
μt ,mxm

〉 = ∫
(0,+∞)

mxm μt(dm), x ∈ [0,1], t > 0, (2.6)

which is the generating function of mμt(dm). Then, using a standard approximation procedure, it is easy to see that
g satisfies⎧⎪⎪⎨

⎪⎪⎩
gt (x) = g0(x) +

t∫
0

x
(
gs(x) − Ms

)∂+gs

∂x
(x)ds, t � 0, x ∈ (0,1),

gt (1) = Mt, t � 0.

(2.7)

It is well known, and will be proven again below, that Mt = M0 for all t � Tgel, since then, the PDE (2.7) can be
solved by the method of characteristics: the function φt (x) : [0,1] �→ [0,1]

φt (x) = xet(M0−g0(x)), x ∈ [0,1], t � Tgel

is one-to-one and onto, has an inverse ht : [0,1] �→ [0,1] and we find

gt (x) = g0
(
ht (x)

)
, x ∈ [0,1], t � Tgel.

However Mt is not necessary constant for t > Tgel and the form of φt has to be modified; we thus define

φt (x) = xαte
−tg0(x), x ∈ [0,1], t > 0 (2.8)

where

αt := exp

( t∫
0

Ms ds

)
, t � 0. (2.9)

For t > Tgel, Mt is possibly less than M0 and φt , which depends explicitly on (Ms)s∈[0,t], is possibly neither injective
nor surjective. We shall prove that it is indeed possible to find 
t ∈ (0,1) such that φt (x) : [0,1] �→ [0, 
t ] is one-to-one
and 
t is uniquely determined by g0.
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Fig. 1. φt before and after gelation. The dotted lines represent what φt may look like. The solid one is the actual φt .

2.2. Uniqueness of solutions

Using an adaptation of the method of characteristics, we are going to prove the following result. Note that in [27],
this properties are claimed to be true but a proof seems to lack. We will use the same techniques in the proof of
Theorem 4.2 for the model with arms, but they are easier to understand in the present case.

Proposition 2.6. Let (μt )t�0 be a solution of Smoluchowski’s equation (2.1).

(1) For all t ∈ [0, Tgel], Mt = M0 = g0(
t ), where 
t := 1. For all t > Tgel, Mt = g0(
t ) where 
t ∈ (0,1) is uniquely
defined by


tg
′
0(
t ) = 1

t
. (2.10)

Moreover 
t and φt (·) satisfy

φ′
t (
t ) = 0, φt (
t ) = 1 > φt(x), ∀x ∈ (0,1). (2.11)

(2) For all t > 0, the function φt (·) defined in (2.8) has a right inverse

ht : [0,1] �→ [0, 
t ], φt

(
ht (x)

) = x, x ∈ [0,1], (2.12)

and

gt (x) = g0
(
ht (x)

)
, t > 0, x ∈ [0,1]. (2.13)

(3) The functions (
t )t�0 and (Mt)t�0 are continuous.
(4) (μt )t�0 is uniquely defined by μ0.

Remark 2.7.

• For all t � Tgel, Mt = M0, 
t = 1 and φt : [0,1] �→ [0,1] is one-to-one and onto. The first thing one needs to
prove is that for all t > Tgel, 
t < 1, i.e. there is indeed x ∈ [0,1] such that φt (x) = 1, see Lemma 2.9; the second
one, is that 
t = mt , i.e. φt (·) has an absolute maximum at 
t , see Lemma 2.10. In other words, one has to exclude
the dotted lines as possible profiles of φt (·) in Fig. 1. These properties are not obvious, since φt depends on
(Ms)s∈[0,t] which is, at this point, unknown. All other properties are derived from these two.

• In [27, Section 6] one finds a discussion of post-gelation solutions, in particular of the results of our Proposi-
tion 2.6. However this discussion falls short of a complete proof, since the two above-mentioned properties are
not proven. In particular, no precise statement about what initial conditions can be considered is given.

The following lemma is a list of obvious but useful properties satisfied by g and φ.
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Lemma 2.8. The function g defined in (2.6) satisfies the following properties.

(a1) (t, x) �→ gt (x) is finite and continuous on [0,+∞) × [0,1);
(a2) For all x ∈ [0,1), t �→ gt (x) is right differentiable on (0,+∞);
(a3) For all t � 0, x �→ gt (x) is analytic on (0,1) and monotone non-decreasing;
(a4) For all t > 0, x �→ gt (x) ∈ [0,+∞] is continuous on [0,1].

The function φ defined in (2.8) satisfies the following properties.

(b1) φt is continuous on [0,1] and analytic on (0,1);

(b2) φt (0) = 0, φt (1) = e− ∫ t
0 (M0−Ms)ds ∈ [0,1];

(b3) φ′
t (x) = αte

−tg0(x)(1 − txg′
0(x)) for x ∈ (0,1);

(b4) For t � Tgel, φt is increasing. For t > Tgel, x �→ xg′
0(x) is increasing, φ′

t (0) > 0 and φ′
t (1) < 0. In particular, for

t > Tgel, there is precisely one point mt ∈ (0,1) such that

φ′
t (mt ) = 0; (2.14)

(b5) For t > Tgel, φt is increasing on [0,mt ] and decreasing on [mt,1].

Moreover,

(c1) The map (t, x) �→ φt (x) is continuous on R
+ × [0,1);

(c2) The map (t, x) �→ φ′
t (x) is continuous on R

+ × (0,1);
(c3) For every x ∈ [0,1), t �→ φt (x) is right differentiable and

∂+φt

∂t
= φt (x)

(
Mt − g0(x)

)
x ∈ [0,1), t � 0. (2.15)

Property (b5) implies that there are at most two points in (0,1) where φt equals 1. Take 
t to be the smallest, if
any, i.e.


t = inf
{
x � 0: φt (x) = 1

}
(inf∅ := 1). (2.16)

Lemma 2.9.

(1) For every t � 0 and every x ∈ [0, 
t ]
gt

(
φt (x)

) = g0(x). (2.17)

(2) For all t ∈ [0, Tgel], 
t = 1, and for t > Tgel, 0 < 
t < 1. In particular, for all t > 0, φt (
t ) = 1 and

g0(
t ) = gt (1) = Mt. (2.18)

(3) Finally, t �→ 
t is monotone non-increasing and continuous on R
+.

Proof. (1) Let us first prove that there exists τ > 0 such that (2.17) holds for t ∈ [0, τ [. Fix 0 < a < b < 1. Since
0 < min[a,b] φ0 < max[a,b] φ0 < 1, then by property (c1) there is τ > 0 such that

0 < min[a,b]φt < max[a,b] φt < 1, ∀t ∈ [0, τ ).

So, for a fixed x ∈ [a, b], the function

ut := gt

(
φt (x)

) − g0(x)

is well defined and using (2.7) and (2.15), we see that
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ut =
t∫

0

(
∂+gs

∂s

(
φs(x)

) + ∂gs

∂x

(
φs(x)

)∂+φs

∂s
(x)

)
ds =

t∫
0

γsus ds

where

γt := ∂gt

∂x

(
φt (x)

)
φt (x), t > 0.

Since x ∈ [0,1), supt∈[0,τ ) |γt | < +∞ and therefore ut ≡ 0. Hence (2.17) holds for x ∈ [a, b] and t ∈ [0, τ [. Since
both terms of (2.17) are analytic functions of x on (0, 
t ), by analytic continuation, (2.17) actually holds on (0, 
t ),
and hence on [0, 
t ] by continuity.

(2) Let us now extend this formula to t ∈ R
+. Let

T = sup
{
t > 0: ∀s ∈ [0, t], ∀x ∈ [0, 
s], gs

(
φs(x)

) = g0(x)
}

� τ > 0,

assume T < +∞, and denote by 
 the left limit of (
t )t�0 at T . First, 
 cannot be 0, since otherwise we would get
when s → T −

1 = φs(
s) = 
sαse
−sg0(
s ) → 0.

For every t < T −, 0 < 
 � 
t , so for every x ∈ (0, 
), gt (φt (x)) = g0(x) and φt (x) < 1. Using the continuity prop-
erty (c1) and passing to the limit when t → T − in this equality, we get

gT

(
φT (x)

) = g0(x), ∀x ∈ (0, 
).

By the same reasoning as in point (i), we obtain a T ′ > T such that gt (φt (x)) = g0(x) for all t ∈ [T ,T ′) and x

in a non-empty open subset of (0, 
). By analyticity and continuity, the formula gt (φt (x)) = g0(x) holds for every
t ∈ [T ,T ′) and x ∈ [0, 
t ]. This contradicts the definition of T , and so T = +∞. This concludes the proof of point (1)
of the lemma.

(3) For the statement (2) of the lemma, let us show first that 〈μt ,m
2〉 is bounded on [0, T0), for every T0 ∈ [0, Tgel).

Let T ′ be the smallest time when this fails (provided of course that Tgel > 0). By assumption (see Definition 2.1),
T ′ > 0. Differentiating (2.17) with respect to x and having x tend to 
t = 1 gives, for t < T ′,

g′
t (1) = 〈

μt ,m
2〉 = 1

1 − tK
.

This quantity explodes only when t = Tgel = 1/K , so T ′ = Tgel.
(4) The boundedness of (〈μt ,m

2〉)t∈[0,T0) just proven for all T0 ∈ [0, Tgel) and Lemma 2.5 imply that for t ∈
[0, Tgel), Mt = M0. By the definition (2.8) of φt , it follows that φt (1) = 1 for t ∈ [0, Tgel). But φt is increasing, so

t = 1 for t ∈ [0, Tgel). Assume now that for some t > Tgel, 
t = 1. Then (2.17) holds on [0,1], and this is impossible
since the right term is an increasing function of x, whereas the left one decreases in a left neighborhood of 1 since
φ′

t (1) < 0. The fact that φt (
t ) = 1 follows then directly from the definition of 
t and the continuity of φt (·). Finally,
the inequality 
t > 0 is obvious since φt (0) = 0, and computing (2.17) at x = 
t gives (2.18). This concludes the proof
of (2).

(5) We know that 
t = 1 and Mt = M0 for all t < Tgel. Now, g0 is strictly increasing and continuous. Since (Mt)t�0
is monotone non-increasing and right-continuous by Lemma 2.4, so is (
t )t�0 by (2.18). To get left-continuity of
(
t )t>Tgel , consider t > Tgel, and let 
 be the left limit of 
s at t . We have 
 � 
t+(t−Tgel)/2 < 1, so by the continuity
property (c1) above,

1 = φs(
s)
−−−→
s→t− φt (
).

Hence φt (
) = 1. Assume 
 > 
t (that is, 
 is the second point where φt reaches 1). Take x ∈ (
t , 
). By property (b5),
φt (x) > 1. But on the other hand, x < 
 � 
s for s < t , so φs(x) � 1, and so φt (x) � 1, and this is a contradiction. So

 = 
t and (
t )t�0 is indeed continuous. This concludes the proof of (3) and of the lemma. �

Finally, we will see that for t > Tgel, 
t = mt , so that φt increases from 0 to 1, which is its maximum, and then
decreases. To this end, recall that (
t )t�0 is monotone non-increasing and that (
t )t�0 and (φt )t�0 are continuous, so
the chain rule for Stieltjes integrals and (2.15) give
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1 = φt (
t ) = φ0(
0) +
t∫

0

φ′
s(
s)d
s +

t∫
0

∂+φs

∂s
(
s)ds

= 1 +
t∫

0

φ′
s(
s)d
s +

t∫
0

φs(
s)
(
Ms − g0(
s)

)
ds

that is, with (2.18),

φ′
t (
t )d
t = 0. (2.19)

Hence, d
t -a.e. φ′
t (
t ) = 0, i.e. 
t = mt . This is actually true for all t > Tgel, as we shall now prove. This result also

has its counterpart in the model with arms, namely part (3) of the proof of Theorem 4.2.

Lemma 2.10. For every t > Tgel, φ′
t (
t ) = 0, i.e. 
t = mt , the point where φt attains its maximum. In particular,


tg
′
0(
t ) = 1

t
, ∀t > Tgel. (2.20)

Proof. First, recall that φt is increasing on [0, 
t ], so that φ′
t (
t ) � 0, that is


tg
′
0(
t ) � 1

t
. (2.21)

Assume now that there is a t > Tgel such that φ′
t (
t ) > 0, and consider

s = sup
{
r ∈ (Tgel, t): φ′

r (
r ) = 0
}
.

As noted before, t �→ 
t is strictly decreasing for t > Tgel for any t > Tgel, so d
t ([Tgel, Tgel + ε[) > 0 for all ε > 0.
Hence there are points r < t where φ′

r (
r ) = 0, and thus the definition of s does make sense.
Take now (rn) a sequence of points such that T < rn < t , φ′

r (
r ) = 0 and (rn) converges to s. Since 0 < 
s < 1, by
property (c2) above, we get

0 = φ′
rn

(
rn) → φ′
s(
s)

so that φ′
s(
s) = 0. This shows that s < t , and that for r ∈ (s, t), φ′

r (
r ) > 0. Hence, by continuity of (
r )r�0 and
by (2.19), (
r )r∈[s,t] is constant. This gives

1

s
= 
sg

′
0(
s) = 
tg

′
0(
t ) � 1

t

which is a contradiction since s < t . In particular, φ′
t (
t ) = 0 implies (2.20). �

Proof of Proposition 2.6. By Lemma 2.10, necessarily Mt = M0 on [0, Tgel] and for t > Tgel, Mt := gt (1) = g0(
t ),
where


tg
′
0(
t ) = 1

t
. (2.22)

Since x �→ xg′
0(x) is strictly increasing from [0,1] to [0,K], where K = 〈μ0,m

2〉 = 1/Tgel, this equation has a unique
solution for t > Tgel. Hence Mt is uniquely defined. Therefore αt and φt are uniquely determined by g0, so we can
define φt as in (2.8), and Lemma 2.9 shows that gt (φt (x)) = g0(x) for x ∈ [0, 
t ], and that φt is a bijection from [0, 
t ]
to [0,1]. So it has a right inverse ht , and compounding by ht in the previous formula gives

gt (x) = g0
(
ht (x)

)
(2.23)

for all x ∈ [0,1], t � 0. Thus gt can be expressed by a formula involving only g0 and in particular, (μt )t�0 depends
only on μ0. This shows the uniqueness of a solution to Smoluchowski’s equation (2.1). �
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2.3. Behavior of the moments

In this paragraph, we will study the behavior of the first and second moment of (μt )t�0 as time passes, showing
how to prove rigorously and recover the results of [9]. For more general coagulation rates, one can obtain upper
bounds of the same nature, see [17].

First consider the mass Mt = 〈μt ,m〉. We will always assume that Tgel < +∞. Let us start with the following
lemma.

Lemma 2.11. Let ν ∈ M+
c be a measure which integrates x �→ yx for small enough y > 0. Let m0 be the infimum of

its support. Then

lim
y→0+

〈ν, xyx〉
〈ν, yx〉 = m0.

Proof. First, note that xyx � m0y
x ν-a.e. so

lim inf
y→0

〈ν, xyx〉
〈ν, yx〉 � m0.

Let us prove now that

lim sup
y→0

〈ν, xyx〉
〈ν, yx〉 � m0.

Assume this is not true. Then, up to extraction of a subsequence, we may assume that there exists α > 0 such that for
arbitrary small y ∈ (0,1), 〈ν, xyx〉 � (m0 + α)〈ν, yx〉. Hence 〈ν, (x − m0 − α)yx〉 � 0, so〈

ν, (x − m0 − α)yx1{x>m0+α}
〉
�

〈
ν, (m0 + α − x)yx1{m0�x�m0+α}

〉
. (2.24)

But 〈
ν, (m0 + α − x)yx1{m0�x�m0+α}

〉
�

〈
ν, (m0 + α − x)yx1{m0�x�m0+α/2}

〉
�

〈
ν, (m0 + α − x)1{m0�x�m0+α/2}

〉
ym0+α/2

and 〈
ν, (x − m0 − α)yx1{x>m0+α}

〉
�

〈
ν, (x − m0 − α)1{x>m0+α}

〉
ym0+α.

With (2.24), this shows that〈
ν, (x − m0 − α)1{x>m0+α}

〉
yα/2 �

〈
ν, (m0 + α − x)1{m0�x�m0+α/2}

〉
and having y tend to zero gives

0 �
〈
ν, (m0 + α − x)1{m0�x�m0+α/2}

〉
which is a contradiction since ν([m0,m0 + α/2]) > 0. �
Corollary 2.12. The mass of the system is continuous and positive. It is strictly decreasing on [Tgel,+∞). Moreover,
denote m0 = inf suppμ0. Then

lim
t→+∞

1

tMt

= m0.

Proof. Recall that Mt = g0(
t ) so the first properties follow from Lemma 2.9. Denote now ν(dm) = mμ0(dm). For
t > Tgel, 
tg

′
0(
t ) = 1/t , so

1

tMt

= 〈ν, x
x
t 〉

〈ν, 
x
t 〉

and since 
t → 0 when t → +∞, this tends to m0 by Lemma 2.11. �
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We can also study the behavior of the mass for small times. Recall that before gelation, the mass is constant at 1.
We have seen that it is continuous at the gelation time. We may then wonder if its derivative is continuous, that is if
ṀTgel+ is zero or not.

Lemma 2.13. The right derivative of M at Tgel is given by

ṀTgel+ = − lim
x→1−

g′
0(x)3

g′
0(x) + xg′′

0 (x)
∈ [−∞,0]

provided the limit exists.

Proof. For t > Tgel, f (
t ) = 1/t with f (x) = xg′
0(x), and 0 < 
t < 1. But f ′(
t ) �= 0, so by the inverse mapping

theorem, (
t )t�0 is differentiable and


̇t = − 1

t2f ′(
t )
.

Using the fact that Mt = g0(
t ), it is then easy to see that

Ṁt = −
2
t

g′
0(
t )

3

g′
0(
t ) + 
tg

′′
0 (
t )

.

Since (
t )t�0 is continuous at Tgel and 
Tgel = 1, the result follows. �
Recall that the gelation time is precisely the first time when the second moment 〈μt ,m

2〉 of (μt )t�0 becomes
infinite. It actually remains infinite afterwards.

Corollary 2.14. For all t � Tgel, 〈μt ,m
2〉 = +∞.

Proof. Note that〈
μt ,m

2〉 = g′
t (1),

this formula being understood as a monotone limit. By (2.17), for x < 
t

φ′
t (x)g′

t

(
φt (x)

) = g′
0(x).

When x → 
−
t , φ′

t (x) → 0 by Lemma 2.10, and g′
0(x) → g′

0(
t ) �= 0 since 
t > 0. So

g′
t

(
φt (
t )

) = g′
t (1) = +∞. �

2.4. Existence of solutions

Existence of solutions of (2.1) is a well-known topic, see e.g. [13]. However, the case M0 = +∞ is apparently new,
so that we give a short proof for the general case based on previous papers, mainly [27].

Let now μ0 ∈ M+
f be as in the statement of Theorem 2.2 and let us set g0 as in (2.3), 
t and Mt as in point (1) of

Proposition 2.6, αt and φt as in (2.9) and (2.8). Then it is easy to see that φt admits a right inverse ht satisfying (2.12),
and we can thus define

gt (x) := g0
(
ht (x)

)
, t � 0, x ∈ [0,1].

It is an easy but tedious task to check that gt satisfies (2.7) and all properties (a1)–(a4) above. In particular, if
g0(1) = +∞ then ht (1) < 1 and therefore gt (1) < +∞ for all t > 0. Following [27], we can now prove the fol-
lowing.
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Proposition 2.15. For all t > 0 there exists μt ∈ M+
f such that

gt (x) = 〈
μt ,mxm

〉 = ∫
(0,+∞)

mxm μt (dm), x ∈ [0,1].

Proof. Let t > 0 be fixed. We set for all y � 0

Φ(y) := g0
(
e−y

)
, Γ (y) := tg0

(
e−y

)
, G(y) := Γ (y) + y − logαt = − logφt

(
e−y

)
.

We recall that f : [0,+∞) �→ [0,+∞) is completely monotone if f is continuous on [0,+∞), infinitely many times
differentiable on (0,+∞) and

(−1)k
dkf

dyk
(y) � 0, ∀k � 0, y ∈ (0,+∞).

It is easy to see that Φ and Γ are completely monotone. Moreover, G has a right inverse

G−1 : [0,+∞) �→ [
log(1/
t ),+∞)

, G−1(y) = − loght

(
e−y

)
, y � 0,

and therefore by the definitions

g0
(
ht

(
e−y

)) = Φ
(
G−1(y)

)
, y � 0.

By [27, Theorem 3.2], Φ ◦ G−1 is completely monotone and therefore, by Bernstein’s Theorem, there exists a unique
νt ∈ M+

f such that

gt

(
e−y

) = g0
(
ht

(
e−y

)) = Φ
(
G−1(y)

) =
∫

(0,+∞)

e−ym νt (dm), y � 0.

Since gt (1) < +∞ for all t > 0, we obtain that 〈νt ,m〉 < +∞, so that we can set μt(dm) := mνt (dm), and we have
found that there is a unique μt ∈ M+

f such that

gt (x) = g0
(
ht (x)

) =
∫

(0,+∞)

xmmμt(dm), x ∈ (0,1]. �

In order to show that (μt )t�0 is a solution of Smoluchowski’s equation in the sense of Definition 2.1, we have to
check that

∫ ε

0 M2
t dt < +∞ for all ε > 0. This is the content of the next result.

Lemma 2.16. If (μt )t�0 is the family constructed in Proposition 2.15, then for all ε > 0,
∫ ε

0 〈μs,m〉2 ds < +∞.

Proof. If M0 < +∞ then there is nothing to prove, since (Mt)t�0 is monotone non-increasing, so let us consider the
case M0 = +∞ and thus Tgel = 0. Since Mt = g0(
t ) is bounded and continuous for t ∈ [δ, ε] for all δ ∈ (0, ε), we
have by (2.10) and (2.3)

ε∫
δ

M2
t dt =

ε∫
δ

g2
0(
t )dt = εg2

0(
ε) − δg2
0(
δ) −

ε∫
δ

2tg0(
t )g
′
0(
t )d
t

� εg2
0(
ε) −

ε∫
δ

2g0(
t )
d
t


t

= εg0(
ε) + 2


δ∫

ε

g0(y)
dy

y

� εg0(
ε) + 2


ε

〈
μ0,

m

1 + m

〉
� εg0(
ε) + 2


ε

〈μ0,m ∧ 1〉.

Letting δ ↓ 0, by (2.2) we obtain the desired result. �
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We now finish the proof of existence of a solution by showing that (μt )t�0 indeed solves (2.1). By choosing
x = e−y , y � 0, in (2.7), we find an equality between Laplace transforms. Since the Laplace transform is one-to-one,
then we obtain (2.1).

Remark 2.17. In the proof of uniqueness, we may only require that 〈μ0,mym〉 < +∞ for every y ∈ [0,1). How-
ever, the same kind of computation as in Lemma 2.16 shows that if this the case, but 〈μ0,m ∧ 1〉 = +∞, then∫ t

0 M2
s ds = +∞ for all t > 0, in contradiction with Definition 2.1 of a solution.

3. Flory’s equation

We will now consider the modified version of Smoluchowski’s equation, also known as Flory’s equation, with a
multiplicative kernel.

Definition 3.1. Let μ0 ∈ M+
c . We say that a family (μt )t�0 ⊂ M+

c solves Flory’s equation (2.1) if

• for every t > 0,
∫ t

0 〈μs(dm),m〉2 ds < +∞,
• for all φ ∈ Cc(0,+∞) and t > 0

〈μt ,φ〉 = 〈μ0, φ〉 + 1

2

t∫
0

〈
μs(dm)μs

(
dm′),mm′�φ

(
m,m′)〉ds

−
t∫

0

〈μs,φ〉〈μ0(dm) − μs(dm),m
〉
ds, (3.1)

• if 〈μ0,m
2〉 < +∞, then t �→ 〈μt ,m

2〉 is bounded in a right neighborhood of 0.

In Eq. (3.1), the mass that vanishes in the gel interacts with the other particles. It is a modified Smoluchowski’s
equation, where a term has been added, representing the interaction of the particles of mass m with the gel, whose
mass is

〈μ0 − μs,m〉
i.e. precisely the missing mass of the system. Notice that in this case the equation makes sense only if 〈μ0,m〉 < +∞.

The mass is expected to decrease faster in this case than for (2.1). This is actually true, as we can see in the
following result.

Theorem 3.2. Let μ0 ∈ M+
c be a non-null measure such that 〈μ0,m〉 < +∞, and set

M0 := 〈μ0,m〉 ∈ (0,+∞), K := 〈
μ0,m

2〉 ∈ (0,+∞].
Let Tgel := 1/K ∈ [0,+∞). Then Flory’s equation (3.1) has a unique solution (μt )t�0 on R

+. It has the following
properties.

(1) We have Mt = g0(lt ), where lt = 1 for t � Tgel and, for t > Tgel, lt is uniquely defined by

lt = e−t (M0−g0(lt )), lt ∈ [0,1).

Therefore t �→ Mt is continuous on [0,+∞), constant on [0, Tgel], strictly decreasing on [Tgel,+∞) and analytic
on R

+\{Tgel}.
(2) The function φt (x) = xet(M0−g0(x)) has a right inverse ht : [0,1] → [0, lt ]. The generating function gt of (μt )t�0

is given for t � 0 by

gt (x) = g0
(
ht (x)

)
.
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(3) Let m0 = inf suppμ0 � 0. Then, when t → +∞,

Mte
m0t → m0μ0

({m0}
)

and for every ε > 0

Mte
(m0+ε)t → +∞.

(4) The second moment 〈m2, ct 〉 is finite on R
+\{Tgel} and infinite at Tgel.

Remark 3.3.

• Norris [24, Theorem 2.8] has a proof of global uniqueness of Flory’s equation (3.1) for slightly less general initial
conditions (μ0 such that 〈μ0,1 + m〉 < +∞), but for a much more general model.

• When m0 > 0, it was already observed (Proposition 5.3 in [10]) that the mass decays (at least) exponentially fast
(see also [8,25,31]).

Proof of Theorem 3.2. The proof is very similar to (and actually easier than) that of Theorem 2.2.
(1) Arguing as in the proof of Lemma 2.4, we obtain easily that (Mt)t�0 is monotone non-increasing and right-

continuous. As in Lemma 2.5, if t �→ 〈μt ,m
2〉 is bounded on some interval [0, T0], then Mt = M0 for t ∈ [0, T0] and

therefore (μt )t�0 is a solution of Smoluchowski’s equation (2.1) on [0, T0].
(2) Consider initial concentrations μ0 as in the statement, a solution (μt )t�0 to Flory’s equation and gt (x),

x ∈ [0,1], generating function of mμt(dm). Then gt solves the PDE

∂gt

∂t
= x(gt − M0)

∂gt

∂x
, ∀t > 0, x ∈ [0,1], (3.2)

the same as the one obtained for Smoluchowski’s equation before gelation. It may be solved using the method of
characteristics. Indeed, the mapping

φt (x) = xet(M0−g0(x)) = x +
t∫

0

(
M0 − g0(x)

)
φs(x)ds, (3.3)

has the following properties

(d1) φt (0) = 0, φt (1) = 1.
(d2) For all t � 0, φ′

t (x) = et(M0−g0(x))(1 − txg′
0(x)).

(d3) For t � Tgel, φt (·) is increasing; therefore, φt (x) ∈ [0,1] for all x ∈ [0,1] and φt (x) = 1 if and only if x = 1.
(d4) For t > Tgel, φt (·) is increasing on [0,mt ] and decreasing on [mt,1], where mt is the unique x ∈ (0,1) such that

φ′
t (x) = 0, i.e. such that txg′

0(x) = 1.
(d5) For t > Tgel, φt (mt ) > 1, since φt (1) = 1 and φ′

t (1) < 0. Therefore there is a unique lt ∈ (0,mt ) such that
φt (lt ) = 1.

(d6) For t > Tgel, φ′
t (lt ) �= 0, since lt < mt (see Fig. 2).

Setting lt := 1 for t � Tgel, φt is thus a continuous bijection from [0, lt ] to [0,1], with continuous inverse function
ht : [0,1] �→ [0, lt ]. By using (3.2) and (3.3) and arguing as in parts (i) and (ii) of the proof of Lemma 2.9, we can
see that the function ut (x) := gt (φt (x)) − g0(x) satisfies ut (x) = u0(x) = 0 for all t � 0 and x ∈ [0, lt ]. Therefore the
only solution of the PDE (3.2) is given by

gt (x) = g0
(
ht (x)

)
, t � 0, x ∈ [0,1]. (3.4)

Flory’s equation has thus a unique solution on R
+, and its generating function is gt .

(3) We have seen in (d5) above that, for t > Tgel, there is a unique lt ∈ [0,1) such that φt (lt ) = 1. The relation
φt (lt ) = 1 with lt ∈ [0,1) is equivalent to lt = e−t (M0−g0(lt )) with lt ∈ [0,1). This relation implies that t �→ lt is
analytic for t > Tgel. A differentiation shows that
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Fig. 2. φt before and after gelation.

dlt

dt
= − (M0 − g0(lt ))lt

1 − tg′
0(lt )lt

< 0, t > Tgel,

since g′
0(lt )lt < g′

0(mt )mt = 1/t and g0(lt ) < g0(1) = M0. Let 
 be the limit of lt as t ↓ Tgel: then we obtain 
 =
e−Tgel(M0−g0(
)), i.e. φTgel(
) = 1. By (d3) above, this is equivalent to 
 = 1.

(4) Since Mt = gt (1) = g0(ht (1)) = g0(lt ), the properties of t �→ Mt = g0(lt ) follow from those of t �→ lt . Recall
now that φt (lt ) = 1, that is

log(lt ) = t
(
g0(lt ) − 1

)
. (3.5)

If the limit l of lt as t → +∞ were nonzero, then passing to the limit in this equality would give log(l) = −∞. So
l = 0 and

log lt ∼ −t. (3.6)

• Assume m > 0. Now, obviously g0(x) � xm, so

log
(
tg0(lt )

) = log lt + logg0(lt ) � log t + m log lt → −∞.

Hence tg0(lt ) → 0 and (3.5) yields log lt + t → 0. Hence lmt ∼ e−mt . Finally

lim
t→+∞Mte

mt = lim
t→+∞

g0(lt )

lmt
= mμ0

({m})
since by dominated convergence, g0(x)x−m → mμ0({m}) when x → 0. Now, by monotone convergence, if
m′ > m, then g0(x)x−m′ → +∞ when x tends to 0, whence

lim
t→+∞Mte

m′t = lim
t→+∞

g0(lt )

lm
′

t

= +∞.

• Assume now m = 0 and let ε > 0. By monotone convergence g0(x)x−ε → +∞ as x ↓ 0, so using (3.6) we see
that g(lt )e

−εt → +∞ as t ↑ +∞, which is the desired result.

(5) Finally, (3.4) gives for x < 1 and t > Tgel

g′
t (x) = g′

0

(
ht (x)

)
h′

t (x) = g′
0(ht (x))

φ′
t (ht (x))

.

When x ↑ 1, ht (x) ↑ lt < 1, and φ′
t (ht (x)) → φ′

t (lt ) �= 0 by (d6) above. So 〈μt ,m
2〉 = g′

t (1) < +∞.
(6) Existence of a solution of (3.1) follows arguing as in Section 2.4. �

Corollary 3.4. Let μ0 ∈ M+
c such that 〈μ0,m〉 < +∞ and let (μS

t )t�0 and (μF
t )t�0 be the solutions of (2.1),

respectively, (3.1). Then
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• μS
t ≡ μF

t for all t � Tgel := 1/〈μ0,m
2〉;

• 〈μF
t ,m〉 < 〈μS

t ,m〉 for all t > Tgel.

Proof. For all t � Tgel, 〈μF
t ,m〉 = 〈μF

0 ,m〉 and therefore μF
t solves (2.1), so that by uniqueness of Smoluchowski’s

equation we have that μS
t = μF

t . For t > Tgel we have that 〈μF
t ,m〉 = g0(lt ) while 〈μS

t ,m〉 = g0(
t ), where lt and 
t

are defined respectively by

lt = e−t (M0−g0(lt )), lt ∈ [0,1)

and


tg
′
0(
t ) = 1

t
.

In points (d4) and (d5) of the proof of Theorem 3.2, we have shown that lt < mt where tmtg
′
0(mt ) = 1, so that

mt = 
t < lt . Hence 〈μF
t ,m〉 = g0(
t ) < g0(lt ) = 〈μS

t ,m〉. �
As anticipated, the mass decreases faster in Flory’s case than for Smoluchowski’s equation. In particular, in Flory’s

case 〈μt ,m
2〉 becomes finite immediately after gelation, the mass remaining however continuous (we can think that

the big particles, which have the biggest influence on this second moment, disappear into the gel). Moreover, if
inf suppμ0 > 0 then the mass decays exponentially fast, which is to be compared with the slow decrease in 1/t in
Smoluchowski’s equation.

Remark 3.5. The mass in Flory’s equation may decrease slower if inf suppμ0 = 0. For instance, if μ0(dm) = e−m dm,
then Mt ∼ t−2.

4. The model with limited aggregation

We now turn to our main interest, namely Eq. (1.2). We apply the same techniques as above in a slightly more
complicated setting. After giving all details in Smoluchowski’s case, we will give a shorter proof and focus on the
differences with the proof of Theorem 2.2. As above, we can transform the system (1.2) into a non-local PDE problem,
which we are able to solve, thus obtaining existence and uniqueness to (1.2). More precisely, we consider the following
system.

Definition 4.1. Let c0(a,m) � 0, a ∈ N, m ∈ N
∗. We say that a family (ct (a,m)), t � 0, a ∈ N, m ∈ N

∗, is a solution
of Smoluchowski’s equation (4.1) if

• for every t > 0,
∫ t

0 〈cs, a〉2 ds < +∞,
• for all a ∈ N, m ∈ N

∗ and t > 0,

ct (a,m) = c0(a,m) +
t∫

0

1

2

a+1∑
a′=1

m−1∑
m′=1

a′(a + 2 − a′)cs

(
a′,m′)cs

(
a + 2 − a′,m − m′)ds

−
t∫

0

∑
a′�1

∑
m′�1

aa′cs(a,m)cs

(
a′,m′)ds, (4.1)

• if 〈c0, a
2〉 < +∞, then t �→ 〈ct , a

2〉 is bounded in a right neighborhood of 0.

Because of the interpretation of a as a variable counting the number of arms a particle possesses, it is more natural
to state (4.1) in the discrete setting, as in [3]. In particular, since at each coagulation two arms are removed from
the system, a non-integer initial number of arms would lead to an ill-defined dynamics. One could however with no
difficulty consider an initial distribution of masses on (0,+∞).
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It is easy to see that (ct ) is a solution to this equation if and only if the function

kt (x, y) :=
+∞∑
a=1

+∞∑
m=1

act (a,m)xa−1ym, (4.2)

defined for t � 0, y ∈ [0,1] and x ∈ [0,1), satisfies⎧⎪⎪⎨
⎪⎪⎩

kt (x, y) = k0(x, y) +
t∫

0

[(
ks(x, y) − xAs

)∂ks

∂x
(x, y) − Asks(x, y)

]
ds,

At := kt (1,1) = 〈ct , a〉.
(4.3)

We may solve this PDE with the same techniques as above and obtain the following result.

Theorem 4.2. Consider initial concentrations c0(a,m) � 0, a ∈ N, m ∈ N
∗ such that 〈c0,1〉 < +∞, A0 := 〈c0, a〉 ∈

(0,+∞] and with K := 〈c0, a(a − 1)〉 ∈ [0,+∞]. Then K = +∞ whenever A0 = +∞. Let

Tgel =

⎧⎪⎨
⎪⎩

1
K−A0

if A0 < K < +∞,

0 if K = +∞,

+∞ if K � A0 < +∞.

(4.4)

Then Eq. (4.1) has a unique solution defined on R
+. When Tgel < +∞, this solution enjoys the following properties.

(1) The number of arms At := 〈ct , a〉 is continuous, strictly decreasing, and for all t > 0

At � A0

1 + tA0
if A0 < +∞, At � 1

t
if A0 = +∞. (4.5)

If we set

αt = exp

( t∫
0

As ds

)
,

then αt is given by

αt = 1 + A0t for t < Tgel

and for t � Tgel

αt =
{

Γ −1(1 + A0Tgel + t − Tgel) if A0 < +∞,

Γ −1(1 + t) if A0 = +∞,
(4.6)

where

Γ (x) = 1 + A0Tgel +
x∫

1+A0Tgel

dr

k0(H(1/r))
, x � 1 + A0Tgel,

and H : [G(0),G(1)) �→ [0,1) is the right inverse of the increasing function

G : [0,1) �→ [
G(0),G(1)

)
, G(x) := x − k0(x,1)

k′
0(x,1)

, x ∈ [0,1), (4.7)

with G(0) := G(0+) � 0, and

0 < G(1) := G
(
1−) =

{
1 − A0

K
if A0 < +∞,

1 if A0 = +∞.
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(2) Let k0 be defined as in (4.2), and

At = 〈ct , a〉, αt = exp

( t∫
0

As ds

)
, βt =

t∫
0

1

α2
s

ds. (4.8)

Consider

φt (x, y) := αt

(
x − βtk0(x, y)

)
, t � 0, x, y ∈ [0,1].

Then
• φt (·,1) attains its maximum at a point 
t such that φt (
t ,1) = 1. For t � Tgel, 
t = 1, and for t > Tgel,

0 < 
t < 1 and

∂φt

∂x
(
t ,1) = 0. (4.9)

In particular, for t > Tgel, 
t is given by


t = H

(
1

αt

)
, (4.10)

where H is the right inverse of the function G defined above.
• For every y ∈ [0,1], φt (·, y) has a right inverse ht (·, y) : [0,1] �→ [0,1].

(3) The generating function kt defined by (4.2) is given by

kt (x, y) = 1

αt

k0
(
ht (x, y), y

)
(4.11)

for y ∈ [0,1], x ∈ [0,1]. In particular, for t > 0

αtAt = αtkt (1,1) = k0(
t ,1), At = k0(
t ,1)

1 + ∫ t

0 k0(
s,1)ds
. (4.12)

(4) The second moment 〈ct , a
2〉 is finite on [0, Tgel), infinite on [Tgel,+∞).

4.1. Proof

The only major difference with respect to the proof of Theorem 2.2 is the additional variable y in the generating
function kt (x, y). However, the variable y plays the role of a parameter in the PDE (4.3), and this allows to adapt all
above techniques.

Proof of Theorem 4.2. The case K � A0 < +∞, for which Tgel = +∞ has already been treated in [3, Theorem 2], so
that we can restrict here to the cases where Tgel < +∞. When Tgel > 0, Theorem 2 in [3] also shows that αt = 1+A0t

on [0, Tgel) (this however also requires that 〈a2, ct 〉 be bounded in a neighborhood of 0: see point (3) of the proof of
Lemma 2.9).

(1) First, by setting ut (x, y) := αtkt (φt (x, y), y) − k0(x, y), we can see, arguing as in points (i)–(ii) of the proof of
Lemma 2.9, that for all y ∈ (0,1] and t > 0 there exists 
0

t (y) < 
t (y) ∈ (0,1] such that

αtkt

(
φt (x, y), y

) = k0(x, y), ∀t � 0, y ∈ (0,1], x ∈ [

0
t (y), 
t (y)

]
(4.13)

and φt (·, y) : [
0
t (y), 
t (y)] �→ [0,1] is a continuous bijection and has a continuous right inverse ht (·, y) : [0,1] �→

[
0
t (y), 
t (y)] (see Fig. 3).
(2) We denote for simplicity

kt (x) := kt (x,1), φt (x) := φt (x,1), t � 0, x ∈ [0,1].
For y = 1, we set 
t (1) = 
t , i.e.

1 = φt (
t ) = αt

(

t − βtk0(
t )

)
, t � 0.
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Fig. 3. φt (·,1) before and after gelation. The dotted lines represent what φt may look like. The solid one is the actual φt .

Arguing as in points (iv)–(v) of the proof of Lemma 2.9, we can see that 
t = 1 for all t � Tgel and 
t < 1 for all
t > Tgel. Moreover, t �→ 
t is continuous and monotone non-increasing. Since φt is increasing on [0, 
t ], φ′

t (
t ) � 0,
i.e.

βt � 1

k′
0(
t )

,

so that

1 = αt

(

t − βtk0(
t )

)
� αtG(
t ), (4.14)

where we set G(x) := x − k0(x)

k′
0(x)

, x ∈ [0,1). Notice that

G′(x) = 1 − (k′
0(x))2 − k0(x)k′′

0 (x)

(k′
0(x))2

= k0(x)k′′
0 (x)

(k′
0(x))2

> 0,

since k0 is strictly convex (there is no gelation whenever k′′
0 ≡ 0). Moreover G(0) � 0 and

G(1) = 1 − A0

K
if A0 < +∞, G(1) = 1 if A0 = +∞.

Indeed, k′
0(1) = K = 〈c0, a(a − 1)〉 and, if k0(1) = A0 = +∞, then

lim
x↑1

k0(x)

k′
0(x)

= 0

since, if lim infx↑1
k0(x)

k′
0(x)

> ε > 0, then k0(1) � k0(1 − δ)eδ/ε < +∞, for some δ > 0, contradicting k0(1) = +∞. In

any case, G has an inverse H , and H(1/x) is defined for x ∈ [1 + A0Tgel,+∞).
(3) Computing (4.13) at (x, y) = (
t ,1) we obtain

k0(
t ) = αtkt (1) = αtAt = d+αt

dt
. (4.15)

Let us notice that

φt (x) = x +
t∫

0

(
Asφs(x) − k0(x)

αs

)
ds.

Then by (4.15), analogously to (2.19) above,

0 = dφt (
t ) =
(

Atφt (
t ) − k0(
t )
)

dt + φ′
t (
t )d
t = φ′

t (
t )d
t .

αt
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In particular, for d
t -a.e. t , φ′
t (
t ) = 0, i.e. βt = 1/k′

0(
t ), and therefore

1 = αt

(

t − βtk0(
t )

) = αtG(
t ), d
t -a.e. t.

Then, by (4.14), we can write (note that H is well defined on the considered interval)


t � H

(
1

αt

)
, ∀t > Tgel, 
t = H

(
1

αt

)
, d
t -a.e. t.

Now, by (4.15), setting Λ : ]1 + A0Tgel,+∞[ �→ ]0,1[, Λ(z) := k0(H( 1
z
)),

d+αt

dt
� Λ(αt ), ∀t > Tgel,

d+αt

dt
= Λ(αt ), d
t -a.e. t.

Since αt > 1 + A0Tgel for any t > Tgel, we obtain that k0(
t ) � Λ(αt ) < 1 for all t > Tgel. In particular, d
t is not
identically equal to 0. Suppose that for some t > Tgel we have φ′

t (
t ) > 0. We set

s := sup
{
r < t : φ′

r (
r ) = 0
} = max

{
r < t : φ′

r (
r ) = 0
}
.

Then for all r ∈ ]s, t[ we must have φ′
r (
r ) > 0. Then for all r ∈ ]s, t[ we have 
r = 
s . But, by definition of β ,

βr > βs = 1

k′
0(
s)

= 1

k′
0(
r )

and this is a contradiction. Therefore for all t > Tgel, we have α̇t = Λ(αt ) for all t > Tgel and the only solution of this
equation with αTgel = 1 + A0Tgel is given by (4.6).

(4) In order to prove (4.12), let us note that by the preceding results

dαt

dt
= αtAt = αtkt (1,1) = k0(
t ,1),

At = d

dt
logαt = d

dt
log

(
1 +

t∫
0

k0(
s,1)ds

)
= k0(
t ,1)

1 + ∫ t

0 k0(
s,1)ds
.

The rest of the proof follows the same line as that of Theorem 2.2. �
5. The modified version

Let us finally consider Flory’s version of the model with arms. As in the case of Flory’s equation (3.1), we can
consider only initial concentrations c0 such that A0 = 〈c0, a〉 < +∞. Then, the equation we are interested in is

d

dt
ct (a,m) = 1

2

a+1∑
a′=1

m−1∑
m′=1

a′(a + 2 − a′)ct

(
a′,m′)ct

(
a + 2 − a′,m − m′) −

∑
a′�1

∑
m′�1

aa′ct (a,m)ct

(
a′,m′)

−
(

A0

1 + tA0
−

∑
a′,m′�1

a′ct

(
a′,m′))act (a,m). (5.1)

With the same techniques as above, we can prove the following result.

Theorem 5.1. Consider initial concentrations c0(a,m) � 0, a ∈ N, m ∈ N
∗ such that A0 := 〈c0, a〉 ∈ (0,+∞) and

with K := 〈c0, a(a − 1)〉 ∈ [0,+∞]. Let Tgel be defined as in (4.4). Then Eq. (5.1) has a unique solution defined
on R

+. When Tgel < +∞, this solution enjoys the following properties.

(1) We have

At = 1
k0(lt ) (5.2)
1 + tA0
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Fig. 4. φt (·,1) before and after gelation.

where lt = 1 for t � Tgel and, for t > Tgel, lt is uniquely defined by

lt = t

1 + tA0
k0(lt ), lt ∈ [0,1).

Therefore t �→ At is continuous and strictly decreasing on [0,+∞) and analytic on R
+\{Tgel}.

(2) The function φt (x, y) = (1 + tA0)x − tk0(x, y) has, for every y ∈ [0,1], a right inverse ht (·, y) : [0,1] → [0, lt ].
The generating function kt defined in (4.2) is given for t � 0 by

kt (x, y) = 1

1 + tA0
k0

(
ht (x, y), y

)
. (5.3)

(3) The second moment 〈a2, ct 〉 is finite on R
+\{Tgel} and infinite at Tgel.

Proof. The proof follows the same line of reasoning as the one of Theorem 3.2. First, for every y ∈ [0,1], φt (·, y), as
defined in the statement, has the following properties:

(i) φt (0, y) � 0, φt (1, y) � φt (1,1) = 1;
(ii) For t � Tgel, φt (·, y) is increasing, and in particular, there are unique 0 � l0

t (y) < lt (y) � 1 such that
φt (l

0
t (y), y) = 0 and φt (lt (y), y) = 1;

(iii) For t > Tgel, φt (·, y) is increasing then decreasing for, and in particular, there are unique 0 � l0
t (y) < lt (y) < 1

such that φt (l
0
t (y), y) = 0 and φt (lt (y), y) = 1 (see Fig. 4).

In any case, it is easy to check that for x ∈ [l0
t (y), lt (y)],

exp

( t∫
0

As ds

)
kt

(
φt (x, y), y

) = k0(x, y)

where At is defined by (5.2). Then, the properties above show that φt (·, y) has a right inverse ht defined on [0,1], and
compounding by ht in the previous equation shows that (5.3) holds. The other properties then follow easily. �
6. Limiting concentrations

We compute here some explicit formulas for the concentrations and their limit for the two models above. In the
standard Smoluchowski and Flory cases, particles keep coagulating, and they all eventually disappear into the gel:
ct (m) → 0 for every m � 1. When the aggregations are limited, there may remain some particles in the system, since
whenever a particle with no arms is created, it becomes inert, and so it will remain in the medium forever. In the
following, we consider monodisperse initial conditions, i.e. c0(a,m) = μ(a)1{m=1} for a measure μ on N. We also
denote

ν(m) = (m + 1)μ(m + 1).
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In [3], it is assumed that ν is a probability measure, what we do not require. The results of [3] can hence be recovered
by taking A0 = 1 below. Now, note the two following facts.

• Eqs. (4.5) and (5.2) readily show that

c∞(a,m) := lim
t→+∞ ct (a,m) = 0, a � 1, (6.1)

that is, only particles with no arms remain in the medium (else, a coagulation “should” occur).
• There is an arbitrary concentration of particles with no arms at time 0, and they are the only particles with no arms

and mass 1 which will still be in the medium in the final state. Hence, the limit concentrations c∞(0,1) = c0(0,1)

have no physical meaning. We will thus only consider c∞(0,m) for m � 2.

Note now that if at time 0, each particle has zero or more than two arms, then obviously, this property still holds for
any positive time. Rigorously, this is easy to check with the representation formula (4.11) or (5.3). Then, because
of (6.1),

c∞(m) = 0

for each m � 2. We thus rule out this trivial case by assuming that

ν(0) > 0. (6.2)

This is actually a technical assumption which is needed to apply Lagrange’s inversion formula in the proof of the
following corollaries. We will relate our results to a population model known as the Galton–Watson process. For some
basics on this topic, see e.g. the classic book [2]. The formula providing the total progeny of these processes was first
obtained by Dwass in [7].

6.1. Modified model

Corollary 6.1. Let ct (a,m) be the solution to Flory’s equation with arms (5.1) and with initial conditions c0(a,m) =
μ(a)1{m=1} with μ(1) > 0.

• For all t � 0, m � 2, a � 0,

ct (a,m) = (a + m − 2)!
a!m!

tm−1

(1 + tA0)a+m−1
ν∗m(a + m − 2).

• In particular, there are limiting concentrations c∞(a,m) = c∞(m)1{a=0} with

c∞(m) = 1

m(m − 1)
ν∗m(m − 2). (6.3)

Proof. With the notation of Theorem 5.1, we have

(1 + tA0)ht (x, y) − tyk0
(
ht (x, y)

) = x, kt (x, y) = 1

1 + tA0
yk0

(
ht (x, y)

)
.

Up to some obvious changes (just replace 1 + t by 1 + tA0), these are precisely the equations solved in Section 3.2
of [3] under the assumption (6.2). Theorem 2 and Corollary 2 therein hence give the desired result (with only 1 + t

replaced by 1 + tA0). �
If A0 = 1, which we may always assume up to a time-change, we observe as in [3] that 2(m − 1)c∞(0,m) is the

probability for a Galton–Watson process with reproduction law ν, started from two ancestors, to have total progeny m.
This Galton–Watson process is (sub)critical when K := ∑

a�1 a(a − 1)μ(a) � 1, that is, by Theorem 5.1, when
there is no gelation, and supercritical when K > 1. Denote by pν its extinction probability, i.e. the smallest root of
k0(x) = x, so pν = 1 when K � 1 and pν < 1 when K > 1. Let us compute the mass at infinity, as in [3], by writing
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M∞ :=
∑
m�1

mc∞(m) = c∞(1) +
∑
m�2

1

m − 1
ν∗m(m − 2)

= c∞(1) +
∑
a�0

ν(a)
∑

m�a+2

1

m − 1
ν∗m−1(m − 2 − a)

= c∞(1) +
∑
a�0

ν(a)
∑

n�a+1

1

n
ν∗n(n − 1 − a).

Now, the Lagrange inversion formula [30] shows that

a + 1

n
ν∗n(n − 1 − a)

is precisely the coefficient of xn in the analytic expansion of φ(x) around 0, where φ is the unique solution to
φ(x) = xk(φ(x)). Hence∑

n�a+1

1

n
ν∗n(n − 1 − a) = pν,

where pν is defined above. Note also that c∞(1) = μ(0), so finally

M∞ = c∞(1) +
∑
a�0

ν(a)
1

a + 1
pa+1

ν =
∑
a�0

μ(a)pa
ν . (6.4)

The mass at time 0 is M0 = ∑
μ(a), so when there is no gelation, pν = 1 and no mass is lost in the gel. When there

is gelation, pν < 1 and the mass M0 − M∞ > 0 is lost in the gel. By Dwass’ formula [7], M∞ is also the probability
that a Galton–Watson process, with reproduction law μ for the ancestor and ν for the others, has a finite progeny.

6.2. Non-modified model

Corollary 6.2. Let ct (a,m) be the solution to Smoluchowski’s equation with arms (4.1) and with initial conditions
c0(a,m) = μ(a)1{m=1} with μ(1) > 0.

• For all t � 0, m � 2, a � 0,

ct (a,m) = (a + m − 2)!
a!m!

βm−1
t

αa
t

ν∗m(a + m − 2)

where αt and βt are defined in Theorem 4.2.
• In particular, there are limiting concentrations c∞(a,m) = c∞(m)1{a=0} with

c∞(m) = 1

m(m − 1)
βm−1∞ ν∗m(m − 2) (6.5)

where β∞ is defined by

β∞ = 1

k′
0(c)

= c

k0(c)

and c is the unique solution to k′
0(c) = k0(c)/c. Moreover, β∞ = 1 when there is no gelation, and β∞ > 1

otherwise.

Proof. As for Corollary 6.1, the proof of the formula for ct (a,m) is the same as in [3, Section 3.2], just replacing
1 + tA0 by αt and t by αtβt . So we just have to find the limit of βt . First (4.6) shows that αt → +∞, hence, by (4.10),

t → 
∞ = H(0). Now, (4.9) gives βt = 1/k′

0(
t ), so βt tends to

β∞ = 1

k′ (H(0))
0
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where by definition c := H(0) is the unique solution to k′
0(c) = k0(c)/c. Finally, when there is gelation, αt < 1 + t

after gelation because of (4.6), so by (4.8), β∞ > 1. �
By a similar computation as above, we may also compute the mass at infinity in this case and get

M∞ =
∑
a�0

μ(a)ca

where c is defined in the corollary. Note that c is the slope of the straight line passing by 0 and tangent to the graph
of k, so c > pν . In particular, less mass is lost than in Flory’s case.

A final remark is that despite the striking resemblance between formulas (6.5) and (6.3), the meaning of the factor
β∞ is unclear. A probabilistic interpretation using the configuration model may explain its appearance.
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