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Abstract

We use De Giorgi techniques to prove Hölder continuity of weak solutions to a class of drift-diffusion equations, with L2

initial data and divergence free drift velocity that lies in L∞
t BMO−1

x . We apply this result to prove global regularity for a family
of active scalar equations which includes the advection–diffusion equation that has been proposed by Moffatt in the context of
magnetostrophic turbulence in the Earth’s fluid core.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

Nous utilisons des techniques de De Giorgi pour démontrer la continuité Hölder de solutions faibles pour une classe d’équations
de dérive-diffusion, avec données initiales L2 et champ de vitesse incompressible appartenant à L∞

t BMO−1
x . Nous appliquons ce

résultat pour démontrer la régularité globale pour une famille d’équations du scalaire actif qui comprend l’équation d’advection–
diffusion qui a été proposée par Moffatt dans le contexte de la turbulence magnétostrophique dans le noyau fluide de la Terre.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Active scalar evolution equations have been a topic of considerable study in recent years, in part because they arise
in many physical models. In particular, such equations are prevalent in fluid dynamics. In this paper we first examine
a class of drift-diffusion equations for an unknown scalar field θ(t, x), of the form

∂t θ + (v · ∇)θ = �θ, (1.1)

where v(t, x) is a given divergence free vector field that lies in the function space L2
t L

2
x ∩ L∞

t BMO−1
x , t > 0, and

x ∈ R
d . In Theorem 2.1 we prove that weak solutions to (1.1) are Hölder continuous. Note that this result is new for
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such linear parabolic equations with very singular coefficients [1,18,19,25,27,34,35]. We then use this result to prove
in Theorem 3.1 that Leray–Hopf weak solutions of the active scalar equation

∂t θ + (u · ∇)θ = �θ, (1.2)

divu = 0, (1.3)

uj = ∂iTij θ (1.4)

are classical solutions. In (1.4), the velocity vector u is obtained from θ via {Tij }, a d ×d matrix of Calderón–Zygmund
singular integral operators (that is, they are bounded L2 �→ L2 and L∞ �→ BMO) such that ∂i∂jTij ≡ 0. Note that in
(1.4) we have used the summation convention on repeated indices, and i, j ∈ {1, . . . , d}.

Our motivation for addressing the system (1.2)–(1.4) comes from a model proposed by Moffatt [22] for magne-
tostrophic turbulence in the Earth’s fluid core. This model is derived from the full magnetohydrodynamic equations
(MHD) in the context of a rapidly rotating, density stratified, electrically conducting fluid. After a series of approxima-
tions relevant to the geodynamo model, a linear relationship is established between the velocity and magnetic vector
fields, and the scalar “buoyancy” θ . The sole remaining nonlinearity in the system occurs in the evolution equation
for θ , which has the form

∂t θ + (u · ∇)θ = S + κ�θ, (1.5)

where S is a source term, and κ is the coefficient of thermal diffusivity. Here the three-dimensional velocity u is such
that divu = 0, and it is obtained from the buoyancy via

u = M[θ ], (1.6)

where M is a nonlocal differential operator of order 1. We describe the precise form of the operator M in Section 4.
An important feature of this operator is the spatial inhomogeneity that occurs due to the underlying mean magnetic
field. We call (1.5)–(1.6) the magnetogeostrophic equation (MG). We show that the MG system satisfies the conditions
under which we prove Theorem 3.1, and hence obtain (cf. Theorem 4.1) global well-posedness for (1.5)–(1.6).

An active scalar equation that has received much attention in the mathematical literature following its presentation
by Constantin, Majda, and Tabak [9], as a two-dimensional toy model for the three-dimensional fluid equations, is the
so called surface quasi-geostrophic equation (SQG) (see, for example, [2,6,7,10,11,16,29,33] and references therein).
The dissipative form of this equation for which there is a physical derivation is

∂t θ + (u · ∇)θ = −(−�)1/2θ, (1.7)

where

u = ∇⊥(−�)−1/2θ ≡ (R2θ,−R1θ) (1.8)

and Ri represents the ith Riesz transform. It was recently proved by Caffarelli and Vasseur [2] that solutions of (1.7)–
(1.8) with L2 initial data are smooth (see also the review article [3]). Well-posedness for (1.7)–(1.8) in the case of
smooth periodic initial data was also obtained by Kiselev, Nazarov, and Volberg [16]. See also Constantin and Wu [10,
11] for the super-critically dissipative SQG.

We note that the magnetogeostrophic equation MG and the critically dissipative SQG equation (1.7)–(1.8) are both
derived from the Navier–Stokes equations in the context of a rapidly rotating fluid in a thin shell. For both systems the
Coriolis force is dominant in the momentum equation. In the case of the SQG equation the relation (1.8) is derived
via a projection of the three-dimensional problem onto the two-dimensional horizontal bounding surface. In the case
of the MG equation the coupling with the magnetic induction equation closes the three-dimensional linear system that
produces the operators {Tij }, with uj = ∂iTij θ .

Systems (1.2)–(1.4) and (1.7)–(1.8) have strong similarities. In particular, they have the same relative order of
the spatial derivatives between the advection term and the diffusive term. Moreover, if θ(t, x) is a solution of (1.2)–
(1.4), then θλ(t, x) = θ(λ2t, λx) is also a solution, and hence L∞(Rd) is the critical Lebesgue space with respect to the
natural scaling of the equation. We note that L∞ is also the critical Lebesgue space for the critically dissipative surface
quasi-geostrophic equation (1.7)–(1.8), and for the modified surface quasi-geostrophic equation (cf. Constantin, Iyer,
and Wu [8]). The advantage of system (1.2)–(1.4) over the critical SQG equation is that the diffusive term is given
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via a local operator. The tradeoff is that the drift velocity in (1.2)–(1.4) is more singular, i.e., the derivative of a BMO
function (see Koch and Tataru [17] for the Navier–Stokes equations in BMO−1).

Our proof of Theorem 2.1 and Theorem 3.1 is along the lines of the proof of Caffarelli and Vasseur [2, Theorem 3]
for the critical SQG equation. The primary technique employed in [2,11,32], and in the present paper, is the De Giorgi
iteration [12]. This consists of first showing that a weak solution is bounded by proving that the function max{θ −h,0}
has zero energy if h is chosen large enough. Then a diminishing oscillation result implies smoothness of the solution
in a subcritical space, namely Cα , for some α ∈ (0,1). The proof of Hölder continuity for solutions of (1.1) with
v ∈ L∞

t BMO−1
x does not follow directly either from [2], where v ∈ L∞

t BMOx , or from [8], where v ∈ L∞
t C1−α

x and
α ∈ (0,1). The crucial step in the proof of Theorem 2.1 is the local energy and uniform estimates. The main obstruction
to applying the classical parabolic De Giorgi estimates via an Lp-based Caccioppoli inequality (1 < p < ∞), is that
v(t, ·) ∈ BMO−1. In Section 2 we give details as to how we overcome this difficulty.

Eq. (1.1) is in the class of parabolic equations in divergence form that have been studied extensively, including in
the classical papers of Nash [24], Moser [23], Aronson and Serrin [1]. Osada [25] allowed for singular coefficients and
proved Hölder continuity of solutions to (1.1) when v ∈ L∞

t W
−1,∞
x is divergence free. Hence Theorem 2.1 may be

also viewed as an improvement of the results of Osada, since if f ∈ BMO(Rd) ∩ L2(Rd), then it does not follow that
f ∈ L∞(Rd) (cf. [30]). In the same spirit, Zhang [34,35] and Semenov [27] give strong regularity results for parabolic
equations of the type (1.1), where the singular divergence free velocity satisfies a certain form boundedness condition.
We note that this form boundedness condition does not cover the case v ∈ L∞

t BMO−1
x , and hence Theorem 2.1 does

not follow from the results in [27,34,35], and vice-versa. The overall conclusion of the body of work on parabolic
equations with a singular drift velocity is that the divergence free structure of v produces a dramatic gain in regularity
of the solution, compared to the classical theory (cf. [18]).

Organization of the paper. In Section 2 we prove Hölder regularity for the linear drift-diffusion equation (1.1), with
v being a given divergence free vector field in the function space L2

t,x ∩ L∞
t BMO−1

x . In Section 3 we apply this result
to prove that a Leray–Hopf weak solution θ of the nonlinear active scalar system (1.2)–(1.4) is Hölder smooth for
positive time. Since Hölder regularity is subcritical for the natural scaling of (1.2)–(1.4) we can bootstrap to prove
higher regularity and hence conclude that the solution is a classical solution. In Section 4 we describe an active scalar
equation that arises as a model for magneto-geostrophic dynamics in the Earth’s fluid core. We show that this three-
dimensional MG equation is an example of the general system (1.2)–(1.4). In Appendix A we prove the existence of
weak solutions to (1.2)–(1.4) evolving from L2(Rd) initial data.

2. Regularity for a parabolic equation with singular drift

Consider the evolution of an unknown scalar θ(t, x) given by

∂t θ + (v · ∇)θ = �θ (2.1)

where the velocity vector v(t, x) = (v1(t, x), . . . , vd(t, x)) ∈ L2((0,∞) × R
d) is given, and (t, x) ∈ [0,∞) × R

d .
Additionally let v satisfy

∂j vj (t, x) = 0 (2.2)

in the sense of distributions. We express vj as

vj (t, x) = ∂iVij (t, x) (2.3)

in [0,∞) × R
d , where we have used the summation convention on repeated indices, and we denoted Vij =

−(−�)−1∂ivj . The matrix {Vij }di,j=1 is given, and satisfies

Vij ∈ L∞(
(0,∞);L2(

R
d
)) ∩ L2((0,∞); Ḣ 1(

R
d
))

(2.4)

for all i, j ∈ {1, . . . , d}.

Theorem 2.1 (The linear problem). Given θ0 ∈ L2(Rd) and {Vij } satisfying (2.4), let θ ∈ L∞([0,∞);L2(Rd)) ∩
L2((0,∞); Ḣ 1(Rd)) be a global weak solution of the initial value problem associated to (2.1)–(2.3). If additionally
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we have Vij ∈ L∞([t0,∞);BMO(Rd)) for all i, j ∈ {1, . . . , d} and some t0 > 0, then there exists α > 0 such that
θ ∈ Cα([t0,∞) × R

d).

In analogy with the constructions in [2,11], the proof of Theorem 2.1 consists of two steps. For t0 > 0 fixed, we
first prove that θ ∈ L∞([t0,∞);L∞(Rd)). The main challenge is to prove the Hölder regularity of the solution, which
is achieved by using the method of De Giorgi iteration (cf. [12,14,19]). Note that for divergence-free v ∈ L2

t,x , the
existence of a weak solution θ to (2.1)–(2.3), evolving from θ0 ∈ L2, is known (for instance, see [27] where the more
general v ∈ L1

loc is treated, also [2], and references therein). Moreover, this weak solution satisfies the classical energy
inequality and the level set energy inequalities (2.6) below.

Remark 2.2. The conclusion of Theorem 2.1 holds if the Laplacian on the right side of (2.1) is replaced by a generic
second-order strongly elliptic operator ∂i(aij ∂j ), with bounded measurable coefficients {aij }.

Remark 2.3. We note that the De Giorgi techniques used here to prove Hölder regularity for solutions to (2.1)–(2.3)
can also be used to prove Hölder regularity for the problem with a forcing term S on the right side of (2.1). In this
case we consider S ∈ Lr

t,x to be an externally given force, with r > 1 + d/2 (cf. [19]).

Remark 2.4. In a very recent preprint, Seregin, Silvestre, Šverák, and Zlatoš [28] also use De Giorgi techniques to
prove Hölder regularity of solutions to a parabolic equation with drift velocities in L∞

t BMO−1
x .

Notation. In the following we shall use the classical function spaces: Lp – Lebesgue spaces, BMO – functions with
bounded mean oscillation, BMO−1 – derivatives of BMO functions, Ḣ s – homogeneous Sobolev spaces, and Cα

– Hölder spaces. To emphasize the different integrability in space and time we shall denote Lp([0,∞);Lq(Rd)) by
L

p
t L

q
x for 1 � p,q � ∞, and similarly for L

p
t Ḣ 1

x and L
p
t BMOx . Also L

p
t,x(I ×B) = Lp(I ;Lp(B)) for any I ⊂ R and

B ⊂ R
d . The ball in R

d and the parabolic cylinder in R
d+2 are classically denoted by Bρ(x0) = {x ∈ R

d : |x −x0| < ρ}
and Qρ(t0, x0) = [t0 − ρ2, t0] × Bρ(x0) for ρ > 0. Lastly, we shall write (f − k)+ = max{f − k,0}.

2.1. Boundedness of the solution

The first step is to show that a weak solution is bounded for positive time.

Lemma 2.5 (From L2 to L∞). Let θ ∈ L∞([0,∞);L2(Rd)) ∩ L2((0,∞); Ḣ 1(Rd)) be a global weak solution of
(2.1)–(2.3) evolving from θ0 ∈ L2(Rd), where v ∈ L2((0,∞);L2(Rd)). Then for all t > 0 we have∥∥θ(t, ·)∥∥

L∞(Rd )
�

C‖θ0‖L2(Rd )

td/4
, (2.5)

for some sufficiently large positive dimensional constant C.

Proof. The proof of this lemma is mutatis-mutandis as in [2,11], and requires only the fact that v is divergence free.
The main idea is that since y �→ (y − h)+ is convex, for all h > 0 we have

∂t (θ − h)+ − �(θ − h)+ + (v · ∇)(θ − h)+ � 0,

and hence, multiplying by (θ − h)+ integrating by parts, and using that divv = 0, we obtain the energy inequality∫
Rd

∣∣(θ(t2, ·) − h
)
+
∣∣2

dx + 2

t2∫
t1

∫
Rd

∣∣∇(θ − h)+
∣∣2

dx dt �
∫
Rd

∣∣(θ(t1, ·) − h
)
+
∣∣2

dx, (2.6)

for all h > 0 and 0 < t1 < t2 < ∞. For t0 > 0, and H > 0 to be chosen sufficiently large, we define tn = t0 − t0/2n,
hn = H − H/2n, and

cn = sup
t�tn

∫
d

∣∣(θ(t, ·) − hn

)
+
∣∣2

dx + 2

∞∫
t

∫
d

∣∣∇(θ − hn)
∣∣2

dx dt,
R n R
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where n � 0. The inequality (2.6), the Gagliardo–Nirenberg–Sobolev inequality, and Riesz interpolation then imply
that

cn+1 � C

t0H 4/d
2n(1+4/d)c

1+2/d
n .

Letting H = Cc
1/2
0 /t

d/4
0 � C‖θ0‖L2(Rd )/t

d/4
0 , for some sufficiently large dimensional constant C, implies that cn → 0

exponentially as n → ∞, and therefore θ(t0, ·) � H . Applying the same procedure to −θ concludes the proof of the
lemma. We refer the reader to [2,11] for further details. �
2.2. Local energy and uniform inequalities

In proving the boundedness of the solution we only required that v ∈ L2
t,x , and divv = 0. For the rest of the section

we use the additional assumption v ∈ L∞
t BMO−1

x .

Lemma 2.6 (First energy inequality). Let θ ∈ L∞
t L2

x ∩ L2
t Ḣ

1
x be a global weak solution of the initial value problem

associated to (2.1)–(2.3). Furthermore, assume that Vij ∈ L∞((0,∞);BMO(Rd)) for all i, j ∈ {1, . . . , d}, and (2.4)
holds. Then for any 0 < r < R and h ∈ R, we have∥∥(θ − h)+

∥∥2
L∞

t L2
x(Qr )

+ ∥∥∇(θ − h)+
∥∥2

L2
t,x (Qr )

� CR

(R − r)2

∥∥(θ − h)+
∥∥2− 2

d+2

L2
t,x (QR)

∥∥(θ − h)+
∥∥ 2

d+2
L∞

t,x (QR)
, (2.7)

where C = C(d,‖Vij‖L∞
t BMOx

) is a fixed positive constant, and we have denoted Qρ = [t0 − ρ2, t0] × Bρ(x0) for
ρ > 0 and an arbitrary (t0, x0) ∈ (0,∞) × R

d . Moreover, estimate (2.7) also holds with θ replaced by −θ .

Remark 2.7. Note that from Lemma 2.5 we have that θ ∈ L∞
t,x , and hence the right side of (2.7) is finite.

Remark 2.8. The classical local energy inequality (cf. [14,19,25], see also [2,11]) does not contain the term
‖(θ − h)+‖L∞

t,x (QR) on the right, since the velocity field v is not as singular as in our case. In this section we prove
that since in (2.7) the exponent 2/(d + 2) of ‖(θ − h)+‖L∞

t,x (QR) is “small enough”, the De Giorgi program may still
be carried out to obtain the Hölder regularity of weak solutions.

Proof of Lemma 2.6. Fix h ∈ R and let 0 < r < R be such that t0/2 − R2 > 0. Let η(t, x) ∈ C∞
0 ((0,∞) × R

d) be a
smooth cutoff function such that

0 � η � 1 in (0,∞) × R
d,

η ≡ 1 in Qr(x0, t0), and η ≡ 0 in cl
{
Qc

R(x0, t0) ∩ {
(t, x): t � t0

}}
,

|∇η| � C

R − r
, |∇∇η| � C

(R − r)2
, |∂tη| � C

(R − r)2
in QR(x0, t0) \ Qr(x0, t0),

for some positive dimensional constant C. Define t1 = t0 −R2 > 0 and let t2 ∈ [t0 − r2, t0] be arbitrary. Multiply (2.1)
by (θ − h)+η2 and then integrate on [t1, t2] × R

d to obtain

t2∫
t1

∫
Rd

∂t

(
(θ − h)2+

)
η2 dx dt − 2

t2∫
t1

∫
Rd

∂jj (θ − h)+(θ − h)+η2 dx dt +
t2∫

t1

∫
Rd

∂iVij ∂j

(
(θ − h)2+

)
η2 dx dt

= 0. (2.8)

The main obstruction to applying classical the de Giorgi estimates (via the Lp-based Caccioppoli inequality, cf. [14,
19]) is that ∂iVij ∈ L∞

t BMO−1
x , as opposed to the case L∞

t W
−1,∞
x considered by Osada [25] (see also [27]). We

overcome this difficulty by subtracting from Vij (t, ·) its spatial mean over {t} × BR , namely V ij,BR
(t) (this does not

introduce any lower order terms because ∂xi
V ij,BR

(t) = 0), and by appealing to the John–Nirenberg inequality. More
precisely, we define
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Ṽij,R(t, x) = Vij (t, x) − V ij,BR
(t) = Vij (t, x) − 1

|BR|
∫
BR

Vij (t, y) dy, (2.9)

and note that ∂iVij = ∂iṼij,R . Therefore, the third term on the left of (2.8) may be replaced by

t2∫
t1

∫
Rd

∂i Ṽij,R∂j

(
(θ − h)2+

)
η2 dx dt.

We integrate by parts in t the first term on the left of (2.8), and use η(t1, ·) ≡ 0. The second term we integrate twice by
parts in xj , and the third term on the left of (2.8) we integrate by parts first in xj (and use ∂j (∂i Ṽij,R) = ∂i(∂jVij ) =
∂j vj = 0) and then integrate by parts in xi , to obtain

1

2

∫
Rd

(
θ(t2, ·) − h

)2
+η(t2, ·)2 dx +

t2∫
t1

∫
Rd

∣∣∇(θ − h)+
∣∣2

η2 dx dt

=
t2∫

t1

∫
Rd

(θ − h)2+η∂tη dx dt +
t2∫

t1

∫
Rd

(θ − h)2+∂j (η∂jη) dx dt −
t2∫

t1

∫
Rd

Ṽij,R(θ − h)2+∂i(η∂jη) dx dt

− 2

t2∫
t1

∫
Rd

Ṽij,R∂i(θ − h)+(θ − h)+η∂jη dx dt. (2.10)

Using the bounds on the time and space derivatives of η, the fact that η ≡ 1 on Qr , t2 � t0, the Hölder and ε-Young
inequalities, we obtain from (2.10)

∫
Br

(
θ(t2, ·) − h

)2
+ dx + 2

t2∫
t1

∫
Rd

∣∣∇(θ − h)+
∣∣2

η2 dx dt

� C

(R − r)2

∫ ∫
QR

(θ − h)2+ dx dt + C

(R − r)2

∫ ∫
QR

|Ṽij,R|(θ − h)2+ dx dt

+
t2∫

t1

∫
Rd

∣∣∇(θ − h)+
∣∣2

η2 dx dt + C

(R − r)2

∫ ∫
QR

|Ṽij,R|2(θ − h)2+ dx dt. (2.11)

After absorbing the third term on the right of (2.11) into the left side, we take the supremum over t2 ∈ [t0 − r2, t0], to
obtain∥∥(θ − h)+

∥∥2
L∞

t L2
x(Qr )

+ ∥∥∇(θ − h)+
∥∥2

L2
t,x (Qr )

� C

(R − r)2

∥∥(θ − h)+
∥∥2

L2
t,x (QR)

+ C

(R − r)2

∫ ∫
QR

|Ṽij,R|(θ − h)2+ dx dt

+ C

(R − r)2

∫ ∫
QR

|Ṽij,R|2(θ − h)2+ dx dt. (2.12)

As a corollary of the celebrated John–Nirenberg inequality (cf. [14,30]) we have that for any fixed R > 0, t ∈
[t0 − R2, t0], and 1 < p < ∞,∥∥Ṽij,R(t, ·)∥∥ p = ∥∥Vij (t, ·) − V ij,BR

(t)
∥∥

p � C
∥∥Vij (t, ·)

∥∥
d |BR|1/p,
L (BR) L (BR) BMO(R )
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where C = C(d,p) > 0 is a fixed constant (recall that C(d,p) → ∞ as p → ∞). The fact that Vij ∈ L∞([t0/2,∞);
BMO(Rd)) implies that for all t ∈ [t0 − R2, t0] we have∥∥Ṽij,R(t, ·)∥∥

Lp(BR)
� C0|BR|1/p (2.13)

for a positive constant C0 = C0(‖Vij‖L∞([t0/2,∞);BMO(Rd )), d,p). We fix 0 < ε < 2 to be chosen later, and using (2.13)
and the Hölder inequality we bound∫ ∫

QR

|Ṽij,R|(θ − h)2+ dx dt =
t0∫

t0−R2

(∫
BR

∣∣Ṽij,R(t, x)
∣∣(θ − h)2+(t, x) dx

)
dt

� C0|BR|ε/2

t0∫
t0−R2

∥∥(
θ(t, ·) − h

)
+
∥∥2

L4/(2−ε)(BR)
dt.

Using the interpolation inequality ‖f ‖Lp � C‖f ‖2/p

L2 ‖f ‖1−2/p
L∞ , with p = 4/(2 − ε), we obtain from the above esti-

mate that∫ ∫
QR

|Ṽij,R|(θ − h)2+ dx dt � C0|BR|ε/2

t0∫
t0−R2

∥∥(
θ(t, ·) − h

)
+
∥∥2−ε

L2(BR)

∥∥(
θ(t, ·) − h

)
+
∥∥ε

L∞(BR)
dt

� C0R
ε(d+2)/2

∥∥(θ − h)+
∥∥2−ε

L2
t,x (QR)

∥∥(θ − h)+
∥∥ε

L∞
t,x (QR)

. (2.14)

Similarly, from (2.13), the Hölder inequality and Lp interpolation, we obtain∫ ∫
QR

|Ṽij,R|2(θ − h)2+ dx dt � C0R
ε(d+2)/2

∥∥(θ − h)+
∥∥2−ε

L2
t,x (QR)

∥∥(θ − h)+
∥∥ε

L∞
t,x (QR)

. (2.15)

Combining estimates (2.12) with (2.14), (2.15), and the Hölder inequality, we conclude that∥∥(θ − h)+
∥∥2

L∞
t L2

x(Qr )
+ ∥∥∇(θ − h)+

∥∥2
L2

t,x (Qr )

� C0R
ε(d+2)/2

(R − r)2

∥∥(θ − h)+
∥∥2−ε

L2
t,x (QR)

∥∥(θ − h)+
∥∥ε

L∞
t,x (QR)

. (2.16)

The proof of the lemma is concluded by letting ε = 2/(d + 2) in (2.16). �
By applying the Hölder inequality to the right side of (2.7) we then obtain:

Corollary 2.9. Let θ be as in Lemma 2.6. Then we have∥∥(θ − h)+
∥∥2

L∞
t L2

x(Qr )
+ ∥∥∇(θ − h)+

∥∥2
L2

t,x (Qr )
� CRd+2

(R − r)2

∥∥(θ − h)+
∥∥2

L∞
t,x (QR)

, (2.17)

for some positive constant C = C(d,‖Vij‖L∞
t BMOx

).

We now fix a point (t0, x0) ∈ (0,∞) × R
d and we prove the Hölder continuity of θ at this point. Throughout the

following we denote by Qρ the cylinder Qρ(t0, x0), for any ρ > 0.
The following lemma gives an estimate on the supremum of θ on a half cylinder, in terms of the supremum on the

full cylinder. A similar statement may be proven for −θ .

Lemma 2.10. Let θ be as in Lemma 2.6. Assume that h0 � supQr0
θ , where r0 > 0 is arbitrary. We have

sup
Qr0/2

θ � h0 + C

( |{θ > h0} ∩ Qr0 |1/(d+2)

r0

)1/2(
sup
Qr0

θ − h0

)
(2.18)

for some positive constant C = C(d,‖Vij‖L∞BMOx
).
t
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The above estimate differs from the classical one cf. [19, Theorem 6.50] in that the power of |{θ > h0}∩Qr0 |/|Qr0 |
is 1/(2d + 4) instead of 1/(d + 2). However, the key feature of (2.18) is that the coefficient of (supQr0

θ − h0) does
not scale with r0. It is convenient to introduce the following notation:

• A(h, r) = {θ > h} ∩ Qr ,
• a(h, r) = |A(h, r)|,
• b(h, r) = ‖(θ − h)+‖2

L2
t,x (Qr )

,

• M(r) = supQr
θ ,

• m(r) = infQr θ ,
• osc(Q) = supQ θ − infQ θ .

Proof of Lemma 2.10. Let 0 < r < R and 0 < h < H . We have

b(h, r) = ‖θ − h‖2
L2

t,x (A(h,r))
� ‖θ − h‖2

L2
t,x (A(H,r))

� (H − h)2a(H, r). (2.19)

Let η(t, x) ∈ C∞
0 (R × R

d) be a smooth cutoff such that η ≡ 1 on Qr , η ≡ 0 on Qc
(r+R)/2 ∩ {t � t0}, and |∇η| �

C/(R − r) for some universal constant C > 0. Then, by Hölder’s inequality and the choice of η we obtain

b(h, r) = ∥∥(θ − h)+
∥∥2

L2
t,x (Qr )

� a(h, r)2/(d+2)
∥∥(θ − h)+

∥∥2
L

2(d+2)/d
t,x (Qr )

� a(h, r)2/(d+2)
∥∥η(θ − h)+

∥∥2
L

2(d+2)/d
t,x ((−∞,t0)×Rd )

. (2.20)

Using the Gagliardo–Nirenberg–Sobolev inequality and Riesz interpolation

‖f ‖2
L2(d+2)/d ((−∞,t0)×Rd )

� C‖f ‖2
L∞

t L2
x((−∞,t0)×Rd )

+ C‖∇f ‖2
L2

t,x ((−∞,t0)×Rd )
,

estimate (2.20) implies that

b(h, r) � Ca(h, r)2/(d+2)
(∥∥η(θ − h)+

∥∥2
L∞

t L2
x((−∞,t0)×Rd )

+ ∥∥∇(
η(θ − h)+

)∥∥2
L2

t,x ((−∞,t0)×Rd )

)
� Ca(h, r)2/(d+2)

(∥∥(θ − h)+
∥∥2

L∞
t L2

x(Q(r+R)/2)
+ ∥∥∇(θ − h)+

∥∥2
L2

t,x (Q(r+R)/2)

+ 1

(R − r)2

∥∥(θ − h)+
∥∥2

L2
t,x (Q(r+R)/2)

)
for some positive dimensional constant C. Using the first energy inequality, i.e., Lemma 2.6, and the Hölder inequality,
we bound the far right side of the above and obtain

b(h, r) � Ca(h, r)2/(d+2) R

(R − r)2

∥∥(θ − h)+
∥∥2−2/(d+2)

L2
t,x (QR)

∥∥(θ − h)+
∥∥2/(d+2)

L∞
t,x (QR)

� Ca(h, r)2/(d+2) R

(R − r)2
b(h,R)1−1/(d+2)

∥∥(θ − h)+
∥∥2/(d+2)

L∞
t,x (QR)

(2.21)

for some sufficiently large positive constant C = C(d,‖Vij‖L∞
t BMOx

). By combining estimates (2.19) and (2.21) we
obtain the main consequence of Lemma 2.6, that is

b(H, r) � CR

(H − h)4/(d+2)(R − r)2
b(h,R)1+1/(d+2)

∥∥(θ − H)+
∥∥2/(d+2)

L∞
t,x (QR)

. (2.22)

The above estimates give the proof of the lemma as follows. Let rn = r0/2 + r0/2n+1 ↘ r0/2, hn = h∞ −
(h∞ − h0)/2n ↗ h∞, and bn = b(hn, rn+1), for all n � 0, where r0 and h0 are as in the statement of the lemma,
while h∞ > 0 is to be chosen later. By letting H = hn+1, h = hn, r = rn+2, and R = rn+1 in (2.22), we obtain
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bn+1 � Crn+1

(h∞ − h0)4/(d+2)r2
0

2n(2+4/(d+2))b
1+1/(d+2)
n

∥∥(θ − hn+1)+
∥∥2/(d+2)

L∞
t,x (Qrn+1 )

� C(M(r0) − h0)
2/(d+2)

(h∞ − h0)4/(d+2)r0
2n(2+4/(d+2))b

1+1/(d+2)
n , (2.23)

by using∥∥(θ − hn+1)+
∥∥

L∞
t,x (Qrn+1 )

= sup
A(hn+1,rn+1)

θ − hn+1 � sup
Qrn+1

θ − hn+1 � sup
Qr0

θ − h0 = M(r0) − h0

which holds since M(rn) � M(r0) and hn � h0. Let B = 24+2(d+2). We choose h∞ large enough so that

C(M(r0) − h0)
2/(d+2)

(h∞ − h0)4/(d+2)r0
b

1/(d+2)

0 � 1

B
, (2.24)

then by induction we obtain from (2.23) that bn � b0/B
n, and therefore bn → 0 as n → ∞. This implies that

supQr0/2
θ � h∞. A simple calculation shows that if we let

h∞ = h0 + CB(d+2)/4(M(r0) − h0)
1/2b

1/4
0

r
(d+2)/4
0

(2.25)

then (2.24) holds. Lastly, b0 = b(h0,3r0/4) may be bounded via (2.21) and the Hölder inequality as

b0 � Ca(h0, r0)
1/(d+2)rd+2

0

(
M(r0) − h0

)2
. (2.26)

The proof of the lemma is concluded by combining supQr0/2
θ � h∞ with (2.25) and (2.26). From the above proof it

follows that inequality (2.18) also holds with θ is replaced by −θ . �
As opposed to the elliptic case, in the parabolic theory we need an additional energy inequality to control the

possible growth of level sets of the solution.

Lemma 2.11 (Second energy inequality). Let θ ∈ L∞
t L2

x ∩L2
t Ḣ

1
x be a global weak solution of the initial value problem

associated to (2.1)–(2.3). Furthermore, assume that Vij ∈ L∞
t BMOx for all i, j ∈ {1, . . . , d}, and (2.4) holds. Fix an

arbitrary x0 ∈ R
d , let h ∈ R, 0 < r < R, and 0 < t1 < t2. Then we have∥∥(

θ(t2, ·) − h
)
+
∥∥2

L2(Br )
�

∥∥(
θ(t1, ·) − h

)
+
∥∥2

L2(BR)
+ C Rd(t2 − t1)

(R − r)2

∥∥(θ − h)+
∥∥2

L∞
t,x ((t1,t2)×BR)

(2.27)

for some sufficiently large positive constant C = C(d,‖Vij‖L∞
t BMOx

), where we have denoted Bρ = Bρ(x0) for ρ > 0.

Proof. Note that by Lemma 2.5 we have that θ ∈ L∞
t,x and hence the right side of (2.27) is finite. Let η ∈ C∞

0 (Rd)

be a smooth cutoff such that η ≡ 1 on Br , η ≡ 0 on Bc
R , and |∇η(x)| � C/(R − r), for all x ∈ R

d , for some constant
C > 0. Multiply (2.1) by η2(θ − h)+ and integrate from t1 to t2 to obtain

t2∫
t1

∫
Rd

∂t

(
(θ − h)+

)2
η2 dx dt − 2

t2∫
t1

∫
Rd

∂jj (θ − h)+(θ − h)+η2 dx dt

= −
t2∫

t1

∫
Rd

∂iVij ∂j

(
(θ − h)+

)2
η2 dx dt

= −
t2∫

t1

∫
Rd

∂i Ṽij,R∂j

(
(θ − h)+

)2
η2 dx dt,

where, as in (2.9), we have denoted Ṽij,R(t, x) = Vij (t, x) − 1 ∫
Vij (t, y) dy. After integrating by parts we get
|BR | BR
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∫
Rd

(
θ(t2, ·) − h

)2
+η2 dx +

t2∫
t1

∫
Rd

∣∣∇(θ − h)+
∣∣2

η2 dx dt

�
∫
Rd

(
θ(t1, ·) − h

)2
+η2 dx + C

t2∫
t1

∫
Rd

(θ − h)2+
(∣∣∂j (η∂jη)

∣∣ + |Ṽij,R|∣∣∂i(η∂jη)
∣∣ + |Ṽij,R|2|∂iη∂jη|)dx dt.

We bound the right side of the above estimate as in (2.14) and (2.15) to obtain that∥∥(
θ(t2, ·) − h

)
+
∥∥2

L2(Br )
�

∥∥(
θ(t1, ·) − h

)
+
∥∥2

L2(BR)
+ CRdε/2(t2 − t1)

ε/2

(R − r)2

∥∥(θ − h)+
∥∥2−ε

L2
t,x

∥∥(θ − h)+
∥∥ε

L∞
t,x

.

Letting ε = 2 in the above estimates concludes the proof of the lemma. The corresponding statement for −θ also
holds. �

The use of the second energy inequality is to bound |{θ(t2, ·) � H } ∩ BR|/|BR|, whenever |{θ(t1, ·) � h} ∩
Br |/|Br | � 1/2. More precisely, we have the following lemma.

Lemma 2.12. Fix κ0 = (4/5)1/d , let n0 � 2 be the least integer so that 2n0/(2n0 − 2) �
√

6/5, and let δ0 =
(1 − κ0)

2/(12C0κ
2
0 ), where C0 is the constant from (2.27). For t1,R > 0, if∣∣{θ(t1, ·) � h
} ∩ Br

∣∣ � 1

2
|Br |, (2.28)

then for all t2 ∈ [t1, t1 + δ0r
2] we have∣∣{θ(t2, ·) � H

} ∩ BR

∣∣ � 7

8
|BR|, (2.29)

where r = κ0R, M = sup(t1,t1+δ0R
2)×BR

θ , m = inf(t1,t1+δ0R
2)×BR

θ , h = (M + m)/2, and H = M − (M − m)/2n0 .

Proof. For t2 ∈ [t1, t1 + δ0r
2], we obtain from the second energy inequality (cf. (2.27)) that∥∥(

θ(t2, ·) − h
)
+
∥∥2

L2(Br )
�

∥∥(
θ(t1, ·) − h

)
+
∥∥2

L2(BR)
+ C0R

d(t2 − t1)

(R − r)2

∥∥(θ − h)+
∥∥2

L∞
t,x (Q2)

�
∥∥(

θ(t1, ·) − h
)
+
∥∥2

L2(BR)
+ C0R

dδ0r
2

(R − r)2
(M − h)2, (2.30)

where Q2 = (t1, t1 + δ0R
2) × BR . The left side of the above estimate is bounded from below as∥∥(

θ(t2, ·) − h
)
+
∥∥2

L2(Br )
�

∥∥(
θ(t2, ·) − h

)
+
∥∥2

L2(Br∩{θ(t2,·)�H })
� (H − h)2

∣∣{θ(t2, ·) � H
} ∩ Br

∣∣. (2.31)

From (2.30), (2.31), and the Hölder inequality, we obtain after dividing by |Br | that

|{θ(t2, ·) � H } ∩ Br |
|Br | � (M − h)2Rd

(H − h)2rd

( |{θ(t1, ·) � h} ∩ BR|
|BR| + C0δ0r

2

(1 − r/R)2R2

)
.

Noting that by construction (M − h)/(H − h) = 2n0/(2n0 − 2) �
√

6/5, and recalling that r/R = κ0 = (4/5)1/d , we
obtain from the previous estimate and the assumption of the lemma that

|{θ(t2, ·) � H } ∩ Br |
|Br | � 3

2

( |{θ(t1, ·) � h} ∩ BR|
|BR| + C0δ0κ

2
0

(1 − κ2
0 )

)
� 3

2

(
1

2
+ 1

12

)
= 7

8
, (2.32)

concluding the proof of the lemma. �
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2.3. Hölder regularity of the solution

We now have all necessary ingredients to conclude the De Giorgi argument for proving Hölder regularity of the
weak solution.

Recall that since divv = 0, by Lemma 2.5 we have that θ ∈ L∞([t0,∞);L∞(Rd)) for any t0 > 0. Moreover, if
Vij ∈ L∞([t0,∞);BMO(Rd)) for some t0 > 0, we obtain the energy inequalities of Lemmas 2.6 and 2.11. In turn,
these inequalities give control for the growth of the supremum on doubling cylinders (cf. Lemma 2.10), and for the
growth of level sets of the solution (cf. Lemma 2.12). The rest of the proof follows as in [19], but we give a sketch for
the sake of completeness.

Proof of Theorem 2.1. The proof of the theorem is based on showing that there exists γ ∈ (0,1) such that osc(Q1) �
γ osc(Q2). The key observation is that if γ is independent of R, this estimate implies the Hölder regularity of the
solution, where the Hölder exponent α ∈ (0,1) may be calculated explicitly from γ .

Fix κ0, δ0, n0,M,m,h,H, r , and R as in Lemma 2.12 for the rest of this proof. We also fix two cylinders Q1 =
[t1, t1 + δ0r

2] × Br , and Q2 = [t1, t1 + δ0R
2] × BR , where we recall that t1 > 0 and R > 0 are arbitrary.

Recall that h = (infQ2 θ + supQ2
θ)/2. Without loss of generality we may assume |{θ(t1, ·) � h} ∩ Br | � |Br |/2.

Otherwise, letting h′ = (infQ2(−θ) + supQ2
(−θ))/2 we have |{−θ(t1, ·) � h′} ∩ Br | = |{θ(t1, ·) � h} ∩ Br | � |Br |/2,

and we work with −θ instead of θ .
For n � n0, we define Hn = M − (M − m)/2n, and note that H = Hn0 � Hn ↗ M . We also let w be θ truncated

between levels Hn−1 and Hn, namely

w = min{θ,Hn} − min{θ,Hn−1} =
⎧⎨⎩

0, θ < Hn−1,

θ − Hn−1, Hn−1 � θ < Hn,

Hn − Hn−1, Hn � θ.

Since |{θ(t1, ·) � h} ∩ Br | � |Br |/2, by Lemma 2.12, for every t ∈ [t1, t1 + δ0r
2] we have∣∣{w(t, ·) = 0

} ∩ BR

∣∣ = ∣∣{θ(t, ·) < Hn−1
} ∩ BR

∣∣ �
∣∣{θ(t, ·) < H

} ∩ BR

∣∣ � 7

8
|BR|.

By the above estimate and the Poincaré inequality we obtain∫
Br

∣∣w(t, ·)∣∣dx � Cr

∫
Br

∣∣∇w(t, ·)∣∣dx

for all t ∈ [t1, t1 + δ0r
2], where C = C(d) is a universal positive constant. Integrating the above estimate in time over

[t1, t1 + δ0r
2] and using the Hölder inequality we get∫ ∫

Q1

|w|dx dt � Cr

∫ ∫
Q1

|∇w|dx dt

� Cr
∣∣{Hn−1 � θ < Hn} ∩ Q1

∣∣1/2∥∥∇(θ − Hn−1)+
∥∥

L2
t,x (Q1)

. (2.33)

We bound the far right side of (2.33) by using Corollary 2.9, to obtain∫ ∫
Q1

|w|dx dt � Cr
∣∣{Hn−1 � θ < Hn} ∩ Q1

∣∣1/2∥∥∇(θ − Hn−1)+
∥∥

L∞
t,x (Q2)

|Q2|1/2

R − r

� C
κ0

1 − κ0

∣∣{Hn−1 � θ < Hn} ∩ Q1
∣∣1/2|Q2|1/2(M − Hn−1). (2.34)

The left side of (2.34) is bounded from below as∫ ∫
|w|dx dt �

∫ ∫
|w|dx dt � (Hn − Hn−1)

∣∣{θ � Hn} ∩ Q1
∣∣. (2.35)
Q1 Q1∩{θ�Hn}
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By combining and squaring estimates (2.34) and (2.35) we obtain∣∣{θ � Hn} ∩ Q1
∣∣2 � C|Q2|(M − Hn−1)

2

(Hn − Hn−1)2

∣∣{Hn−1 � θ < Hn} ∩ Q1
∣∣

� C|Q2|
(∣∣{θ � Hn−1} ∩ Q1

∣∣ − ∣∣{θ � Hn} ∩ Q1
∣∣), (2.36)

where we used the fact that, by construction, (M − Hn−1)/(Hn − Hn−1) = 2. Hence,∑
n�n0+1

∣∣{θ � Hn} ∩ Q1
∣∣2 � C|Q2|

∣∣{θ � Hn0} ∩ Q1
∣∣,

and since the sequence |{θ � Hn} ∩ Q1| is decreasing, we obtain∣∣{θ � Hn} ∩ Q1
∣∣ � C|Q2|1/2|{θ � H } ∩ Q1|1/2

(n − n0)1/2

for all n � n0 + 1. By Lemma 2.12 we have that |{θ � H } ∩ Q1| � 7|Q1|/8, and therefore the above estimate implies∣∣{θ � Hn} ∩ Q1
∣∣ � Crd+2

(n − n0)1/2
, (2.37)

where we have used that r = κ0R, and κ0 = κ0(d). By Lemma 2.10, the fact that δ0 < 1, and the estimate (2.37) we
obtain

sup
Q1

θ � Hn + C

( |{θ � Hn} ∩ Q1|1/(d+2)

r

)1/2

(M − Hn)

� Hn + C

(n − n0)1/(4d+8)
(M − Hn),

for some positive constant C = C(d,‖Vij‖L∞
t BMOx

), which is independent of r . Therefore there exists a sufficiently
large n1 = n1(d,‖Vij‖L∞

t BMOx
) � n0 + 1 such that

sup
Q1

θ � Hn1 + 1

2
(M − Hn1).

Recalling the definition of Hn,m, and M , a simple calculation shows that the above estimate implies

osc(Q1) = sup
Q1

θ − inf
Q1

θ � Hn1 − m + 1

2
(M − Hn1) =

(
1 − 1

2n1+2

)
(M − m)

=
(

1 − 1

2n1+2

)(
sup
Q2

θ − inf
Q2

θ
)

= γ osc(Q2), (2.38)

where γ = 1 − 1/2n1+2 ∈ (0,1) is independent of r . Recall that in (2.38) we have Q1 = [t1, t1 + δ0κ
2
0R2] × Bκ0R(x0)

and Q2 = [t1, t1 + δ0R
2] × BR(x0), with κ0, δ0 fixed positive constants, and R > 0 arbitrary. This classically implies

Hölder continuity of θ at the arbitrary point (t1, x0) ∈ (0,∞) × R
d , concluding the proof of the theorem. �

3. Global regularity for a nonlinear parabolic equation

We address the global regularity of solutions to the initial value problem

∂t θ − �θ + (u · ∇)θ = 0, (3.1)

divu = 0, (3.2)

uj = ∂iTij θ, (3.3)

θ(0, ·) = θ0, (3.4)

where {Tij }di,j=1 is a matrix of Calderón–Zygmund singular integral operators such that ∂i∂j Tij f = 0 for any Schwartz
function f . As an elementary example, if d = 2 we may consider T11 = T22 = 0, and T12 = −T21 = T , for some
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Calderón–Zygmund operator T (for instance T = Ri , a Riesz-transform). In this case the velocity would be u =
∇⊥T θ . When d = 3, a physical example of such a matrix {Tij } arises in the MG system (cf. Section 4 below).

Theorem 3.1 (The nonlinear problem). Let θ0 ∈ L2(Rd) be given. A Leray–Hopf weak solution θ ∈ L∞([0,∞);
L2(Rd))∩L2((0,∞);H 1(Rd)) of (3.1)–(3.4), evolving from θ0, is a classical solution, that is θ ∈ C∞((0,∞)×R

d).

Lemma 3.2 (Boundedness). A Leray–Hopf weak solution θ of (3.1)–(3.4) is bounded for t > 0, i.e., θ ∈
L∞([t0,∞);L∞(Rd)) for any t0 > 0.

Proof. The proof of this lemma is the same as the proof of Lemma 2.5 (cf. [2,11]), and only uses the fact that
divu = 0, where u ∈ L2

t,x((0,∞) × R
d). �

Since θ ∈ L∞
t,x , it follows from the Calderón–Zygmund theory of singular integrals that Tij θ =: Vij ∈ L∞([t0,∞);

BMO(Rd)), for any t0 > 0, where i, j ∈ {1, . . . , d}. Therefore, we may treat (3.1) as a linear evolution equation
(see also [2,11]), where the divergence-free velocity field u is given, and u ∈ L2((0,∞);L2(Rd)) ∩ L∞([t0,∞);
BMO−1(Rd)), for any t0 > 0. This is precisely the setting of Theorem 2.1 for the linear evolution equation. Hence
Theorem 2.1 can be applied to the nonlinear problem to give Hölder regularity of the solution. Therefore we obtain:

Lemma 3.3 (Hölder regularity). A Leray–Hopf weak solution θ of (3.1)–(3.4) is Hölder smooth for positive time, i.e.,
for any t0 > 0, there exists α > 0 such that θ ∈ Cα([t0,∞) × R

d).

Lastly, since the Hölder regularity is sub-critical for the natural scaling of (3.1)–(3.4) one may bootstrap to prove
that the solution is in a higher Hölder class:

Lemma 3.4 (Higher regularity). Let θ ∈ L∞([t0,∞);Cα(Rd)) be a Leray–Hopf weak solution of the initial value
problem associated to (2.1)–(2.3), with α ∈ (0,1). Then θ ∈ L∞([t1,∞);C1+δ(Rd)), for any t1 > t0, for some δ ∈
(0,1).

For 1/2 < α < 1, the proof is the same as the proof of higher regularity for the modified surface quasi-geostrophic
equation [8, Theorem 2.2] (see also [10, Theorem 3.1] for the supercritical quasi-geostrophic equation). These elegant
proofs use the natural characterization of Hölder spaces in terms of Besov spaces, and energy inequalities at the level
of frequency shells.

For 0 < α � 1/2, the Cα smoothness of θ is weak relative to the roughness of the velocity u, and it is therefore
necessary to modify the techniques of [10,8] for the proof of higher regularity. In [13] we give the details of this
modification which uses the extra information that u ∈ L2

t,x and employs estimates in the Chemin–Lerner (cf. [5])
space–time Besov spaces.

We give a very brief outline of the proof of Lemma 3.4 in the two ranges for alpha and refer the reader to [10,8,13]
for detailed estimates.

Proof of Lemma 3.4. Let Ḃs
p,q be the classical homogeneous Besov space (cf. [8,10]), and recall that L∞ ∩ Ḃs∞,∞ =

Cs is the Hölder space with index s. The proof of the lemma in the case α ∈ (1/2,1) is based on first noting that if θ

is as in the statement of the lemma, then θ ∈ L∞([t0,∞); Ḃαp
p,∞), where αp = (1 − 2/p)α, and p ∈ [2,∞) is fixed, to

be chosen later. Then, for j ∈ Z fixed, we have

1

p

d

dt
‖�jθ‖p

Lp +
∫

|�jθ |p−2�jθ(−�)�jθ = −
∫

|�jθ |p−2�jθ�j (u · ∇θ). (3.5)

Upon integration by parts (see also [4]), the dissipative term is bounded from below∫
|�jθ |p−2�jθ(−�)�jθ dx � 22j

C(d,p)
‖�jθ‖p

Lp , (3.6)

where C(d,p) > 0 is a constant depending on the dimension and p. The main difficulty lies in estimating the con-
vection term. This is achieved in [8,10] by using the Bony paraproduct formula, the Hölder inequality, the Bernstein
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inequalities, a commutator estimate, and the fact that ‖u‖Cαp−1 � C‖θ‖Cαp . The latter holds since uj = ∂iTij θ and
the fact that Calderón–Zygmund operators are bounded on Hölder spaces. If αp < 2 these operations give∣∣∣∣∫ |�jθ |p−2�jθ�j (u · ∇θ) dx

∣∣∣∣ � C2(2−2αp)j‖θ‖Cαp ‖θ‖
Ḃ

αp
p,∞ . (3.7)

Combining (3.5)–(3.7), using the Grönwall inequality, and then taking the supremum in j gives that θ ∈ L∞([t1,∞);
Ḃ

2αp
p,∞(Rd)) for any t1 > t0. Using the Besov embedding theorem we obtain that θ ∈ L∞([t1,∞); Ḃ2α−εp∞,∞ (Rd)), for

any t1 > t0, where εp = (4α + d)/p < (4 + d)/p. Letting p > (4 + d)/(2α − 1) concludes the proof of the lemma in
the case α ∈ (1/2,1).

In the case α ∈ (0,1/2] the proof is based on proving that the additional information θ ∈ L2([t1, t2]; Ḣ 1), im-
plies θ ∈ L2([t1, t2]; Ḃ1+d/p

p,1 ) for some large enough p > 2, and for any t2 > t1. This is achieved by using the
smoothing effect of the Laplacian on high frequencies of θ , so that we need to work in the space–time Besov
spaces introduced by Chemin and Lerner (cf. [5]). By the endpoint Sobolev embedding theorem we thus obtain that
∇θ ∈ L2([t1, t2];B0

∞,1) ⊂ L2([t1, t2];L∞). From here, standard energy estimates imply that θ ∈ L∞([t ′1, t2]; Ḣm) for

all m � 2, and t ′1 ∈ [t1, t2], concluding the proof of the lemma after applying the Sobolev embedding Hm ⊂ C1,β with
m > 1 + d/2. We refer to [13] for details. �
Proof of Theorem 3.1. The existence of a global in time Leray–Hopf weak solution of (3.1)–(3.4), evolving from
θ0 ∈ L2, is proven in Appendix A. The argument is to construct solutions to an approximate system, and then to pass
to the limit in the weak formulation of the problem, using the Aubin–Lions compactness lemma (cf. [20]).

The proof of Theorem 3.1 now follows from Lemmas 3.2, 3.3, 3.4. For any β ∈ (0,1), after finitely many appli-
cations of Lemma 3.4 the solution is shown to be in L∞([t0,∞);C1+β(Rd)), for any t0 > 0, and is hence a classical
solution. Higher regularity is standard. �
4. Global regularity of the MG system

There is a vast literature studying mathematical models for the Earth’s dynamo (see, for example Glatzmaier,
Ogden, and Clune [15] and references therein). However, at present, no computational dynamo model can encompass
the fine scale resolution required to simulate the turbulent processes believed to exist in the Earth’s core. It is therefore
reasonable to examine models that are simpler than the full system of PDE governing rotating, convective, magneto-
hydrodynamic flows, but that retain some of the essential features relevant to the physics of the Earth’s core. One such
model for magnetostrophic turbulence was recently proposed by Moffatt [22]. He postulates that the magnetic field
B(t, x) in the core consists of a mean part B0, which results from dynamo action and can be considered as locally
uniform and steady, and a perturbation field b(t, x) induced by the flow u(t, x) across B0.

It is assumed that the scale L of convective turbulence lies in the range V/Ω � L � η/V , where V is the average
magnitude of the upward buoyant velocity, Ω is the angular velocity of the Earth, and η is the magnetic diffusivity of
the fluid medium. This assumption implies that the Rossby number V/ΩL and the magnetic Reynolds number V L/η

are both small. The turbulent Reynolds number in the core is expected to be very large. The dominant terms in the
three-dimensional equations of motion and the induction equation give the following linear system

2Ωe3 × u = −∇P + (B0 · ∇)b − θg, (4.1)

0 = (B0 · ∇)u + η�b, (4.2)

divu = 0, (4.3)

divb = 0, (4.4)

where P(t, x) is the sum of the fluid and magnetic pressures, θ(t, x) is the buoyancy field (e.g. perturbation of the
temperature), and g is the gravitational acceleration. We use Cartesian coordinates in the reference frame rotating
about the axis e3 = (0,0,1).
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Eqs. (4.1)–(4.4) establish a linear relation between the variables u(t, x), b(t, x), and θ(t, x). The sole remain-
ing nonlinearity from the full convective MHD system occurs in the advection–diffusion equation for the buoyancy
θ(t, x):

∂t θ + (u · ∇)θ = S + κ�θ, (4.5)

where S is a source term. The diffusivity κ in the core is very small, hence the nonlinear advection term is dominant
and cannot be neglected.

The system (4.1)–(4.5) gives an active scalar model for magneto-geostrophic dynamics, which we call the
MG equations. As Moffatt observes, (4.1)–(4.5) has some similarities with the dissipative Burgers equation, but it
has a clearer physical basis and the velocity u(t, x) is three-dimensional. We remark that the system has closer sim-
ilarities to the surface quasi-geostrophic equation (SQG), which is also derived in the context of a rapidly rotating
system dominated by Coriolis’ force. However, the operator that connects u and θ via (4.1)–(4.4) has features that are
distinct from the analogous operator in the SQG system as we shall now discuss.

For simplicity we will examine (4.1)–(4.4) in the case where B0 is a vector that is constant in magnitude and
direction in the plane perpendicular to e3. We write

B0 = βe2.

We assume that gravity acts parallel to the axis of rotation, i.e. g = e3. With these assumptions we are examining a local
tangent plane model for the Earth’s fluid core that ignores the sphericity, but retains the essence of the mathematical
structure of the active scalar equation (4.5), with u constructed from θ via (4.1)–(4.4). Manipulation of the linear
system (4.1)–(4.4) gives, in component form,

u1 = D−1(−2Ω∂2P − Γ ∂1P), (4.6)

u2 = D−1(2Ω∂1P − Γ ∂2P), (4.7)

∂3u3 = D−1Γ �H P, (4.8)

∂3θ = (
Γ 2�H D−1 + ∂33

)
P, (4.9)

where the operators Γ,D, and �H are defined as

Γ = −β2

η
(−�)−1∂22, (4.10)

D = 4Ω2 + Γ 2, (4.11)

�H = ∂11 + ∂22, (4.12)

where x = (x1, x2, x3) ∈ R
2 × T. We note that a more general choice of the mean, steady, locally uniform magnetic

field B0 or of the gravitational vector g results in the same structure of the leading order terms. It is the anisotropy
that is produced by B0 that is a distinctive and crucial feature of the MG system.

The operator D given by (4.11) is invertible since its Fourier symbol does not vanish on R
2 × Z, justifying the

use of D−1. In order to uniquely determine u3 and θ from (4.8) and (4.9), we restrict the system to the function
spaces where θ and u3 are periodic in the x3-variable, with zero vertical mean, i.e.

∫ 2π

0 θ dx3 = ∫ 2π

0 u3 dx3 = 0. In
fact, without such a restriction the system is not well defined. We integrate (4.9) and use the zero-mean assumption to
obtain

θ = A[P ], (4.13)

where A is formally defined as the Fourier multiplier with symbol

Â(k1, k2, k3) = 4Ω2k2
3 |k|2 + (β2/η)2k4

2

ik3(4Ω2|k|4 + (β2/η)2k4
2)

(4.14)

for all k3 �= 0 (by our vertical mean-free assumption), where k = (k1, k2, k3) ∈ R
2 × Z. Therefore A is invertible on

the space of functions with null x3-average. Note that ∂3A[P ] = (Γ 2�H D−1 + ∂33)P in the physical space. We now
use (4.6)–(4.8) to represent u1, u2, and u3 in terms of θ :
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u1 = D−1(−2Ω∂2 − Γ ∂1)
(
A−1[θ ]) ≡ M1[θ ], (4.15)

u2 = D−1(2Ω∂1 − Γ ∂2)
(
A−1[θ ]) ≡ M2[θ ], (4.16)

u3 = (
D−1Γ �H

)(
D−1Γ �H + ∂33

)−1[θ ] ≡ M3[θ ]. (4.17)

To investigate the properties of the operator M = (M1,M2,M3), we note that it is a vector of Fourier multipliers, with
explicit Fourier symbols given by

M̂1(k) = 2Ωk2k3|k|2 − (β2/η)k1k
2
2k3

4Ω2k2
3 |k|2 + (β2/η)2k4

2

, (4.18)

M̂2(k) = −2Ωk1k3|k|2 − (β2/η)k3
2k3

4Ω2k2
3 |k|2 + (β2/η)2k4

2

, (4.19)

M̂3(k) = (β2/η)k2
2(k2

1 + k2
2)

4Ω2k2
3 |k|2 + (β2/η)2k4

2

, (4.20)

for all k3 �= 0. Since by assumption θ̂ (k1, k2,0) = û(k1, k2,0) = 0, in order to have a uniquely defined symbol M̂(k)

on all of R
2 × Z, without loss of generality we may let M̂1(k1, k2,0) = M̂2(k1, k2,0) = 0, and M̂3(k1, k2,0) =

M̂3(k1, k2,1). Note that uj = Mj [θ ] is defined via the inverse Fourier transform from

ûj (k) = M̂j (k)θ̂(k), for all k ∈ R
2 × Z, (4.21)

for all j ∈ {1,2,3}. Also, since divu = 0, we have that k · M̂(k) = 0.
When the frequency vector k = (k1, k2, k3) has components such that k1 � max{k2, k3}, then the symbols M̂j are

bounded for all j ∈ {1,2,3}. However this is not the case for “curved” regions of frequency space where k3 = O(1),
k2 = O(|k1|σ ), where 0 � σ � 1/2, and |k1| � 1. In such regions the symbols (4.18)–(4.20) are unbounded, since as
|k1| → ∞ we have∣∣M̂1

(
k1, |k1|σ ,1

)∣∣ ≈ |k1|σ ,
∣∣M̂2

(
k1, |k1|σ ,1

)∣∣ ≈ |k1|,
∣∣M̂3

(
k1, |k1|σ ,1

)∣∣ ≈ |k1|2σ ,

where σ ∈ (0,1/2], and we write a ≈ b if there exists a constant C > 0 such that a/C � b � Ca. It follows from
(4.18)–(4.20) that∣∣M̂j (k)

∣∣ � C∗|k| (4.22)

for all k ∈ R
2 × Z, and all j ∈ {1,2,3}, where C∗ = C∗(β, η,Ω) > 0 is a fixed constant. From the previous remark it

is clear that along certain curves in frequency space the bound (4.22) is sharp.
We now prove that the active scalar equation (cf. (4.1)–(4.5) with S = 0)

∂t θ + (u · ∇)θ = κ�θ, (4.23)

divu = 0, (4.24)

u = M[θ ], (4.25)

with M given by (4.15)–(4.17), or equivalently by its Fourier symbol (4.18)–(4.20), satisfies the conditions of the
abstract problem studied in Section 3. First note that we can write

uj = Mj [θ ] = ∂iTij [θ ] = ∂iVij , (4.26)

where we have denoted

Tij = −∂i(−�)−1Mj . (4.27)

By (4.22) we have that |T̂ij (k)| � C∗ for all k ∈ R
2 × Z, and hence it follows directly from Plancherel’s theorem that

Tij : L2(R2 × T) �→ L2(R2 × T) is a bounded map.
It remains to prove that Tij : L∞(R2 × T) �→ BMO(R2 × T) boundedly. This reduces to proving that Nj =

(−�)−1/2Mj : L∞ �→ BMO is a bounded map, since Riesz-transforms are bounded on BMO. The later holds be-
cause Nj is a pseudo-differential operator of order 0 (cf. [21,26,30]). The main idea is that one may extend N̂j from
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R
2 × Z to a symbol N̂ ′

j defined on R
3 such that they agree on R

2 × Z, and such that N̂ ′
j is the symbol of a classi-

cal Hörmander-class pseudo-differential operator of order 0 (cf. Stein [30]). More precisely, let N̂ ′
j (k) = M̂j (k)/|k|

for all k ∈ R
3 with |k3| � 1, while for |k3| < 1, replace the denominator 4Ω2k2

3 |k|2 + (β2/η)2k4
2 by the quantity

4Ω2ϕ(k3)
2(k2

1 +k2
2 +ϕ(k3)

2)+ (β2/η)2k4!
2 , in the definitions (4.18)–(4.20) of M̂j (k). Here ϕ(·) is C∞ smooth mono-

tone increasing function that coincides with the identity on |k3| � 1/2, and is constantly equal to 1/2 on |k3| � 1/4.
This construction ensures the smoothness of the symbol near the origin, while the bound |∂α

k N̂ ′
j (k)| � Cα(1 +|k|)−|α|

follows by inspection. To close the argument, note that the operators Nj and N ′
j differ by a compact operator

in the symbol class S−∞ (cf. [21,26] and references therein). This concludes the proof of the boundedness of
Tij : L∞ �→ BMO.

The abstract Theorem 3.1 may therefore be applied to the MG equations in order to obtain the global smoothness
of weak solutions, and hence we have proven:

Theorem 4.1 (The MG system). Let θ0 ∈ L2(Rd) be given. There exists a C∞ smooth classical solution θ(t, x), of
(4.23)–(4.27), evolving from θ0.
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Appendix A. Existence of weak solutions to (3.1)–(3.4)

Here we sketch the proof of existence of global Leray–Hopf weak solutions of (3.1)–(3.4) evolving from θ0 ∈
L2(Rd). We follow the general strategy used to construct weak solutions of the Navier–Stokes equations (cf. [31]).
The main obstacle is the fact that u is obtained from θ via a nonlocal operator of order 1.

Denote by (−�)1/2 = Λ the square root of the Laplacian. Let φ ∈ C∞
0 (Rd) be positive, with

∫
Rd φ dx = 1. Then

φε = ε−dφ(x/ε), for ε > 0, is a standard family of mollifiers. We first consider the approximating system

∂t θ
ε + (

uε · ∇)
θε − �θε = −εΛ3θε, (A.1)

divuε = 0, uj = ∂iTij θ
ε, (A.2)

θε(0, ·) = θε
0 , (A.3)

where θε
0 = φε ∗ θ0 represents the mollified initial data, and Tij are Calderón–Zygmund operators. Note that ‖θε

0 ‖L2 �
‖θ0‖L2 for any ε > 0.

Let s > d/2 + 1 and fix ε > 0. Since Λsθε
0 ∈ L2(Rd), and since ε Λ3 gives a sub-critical dissipation, from standard

energy arguments it follows that

sup
t∈[0,T ]

∥∥Λsθε(t)
∥∥

L2 � C
(
ε, d,φ,T ,‖θ0‖L2

)
,

where C(ε, d,φ,T ,‖θ0‖L2) > 0 is a positive constant which is finite for any T < ∞. This a-priori estimate and
a standard Galerkin approximation procedure ensures the global existence of a strong Hs solution to (A.1)–(A.3).
Moreover, for any ε > 0 we have the uniform in ε energy inequality

∥∥θε(T )
∥∥2

L2(Rd )
+ 2

T∫
0

∥∥∇θε(s)
∥∥2

L2(Rd )
ds �

∥∥θ0
∥∥2

L2(Rd )
, (A.4)

for any T > 0, and thus

θε is bounded in C
([0, T ];L2(

R
d
)) ∩ L2(0, T ; Ḣ 1(

R
d
))

. (A.5)
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This guarantees that, up to a subsequence, θε converges weakly to some function θ ∈ L∞(0, T ;L2)∩L2(0, T ; Ḣ 1)

(this convergence is weak-∗ in L∞(0, T ;L2)). This does not suffice to pass to the limit in the weak formulation of
(A.1)–(A.3). We next claim that for any compact set K ⊂ R

d we have

∂t θ
ε is bounded in L4/3(0, T ;W−2, 2d

2d−1 (K)
)
. (A.6)

Indeed, from (A.5), the Gagliardo–Nirenberg inequality, and interpolation, it follows that θε is bounded in
L4(0, T ;L2d/(d−1)(Rd)). Since Tij are bounded from L2(Rd) into itself, by (A.5) it follows that uε is bounded in
L2(0, T ;L2(Rd)). Therefore, by Hölder’s inequality, div(uεθε) is bounded in L4/3(0, T ;W−1,2d/(2d−1)(Rd)). Lastly,
εΛ3θε is bounded in L2(0, T ;H−2(Rd)), and �θε is a bounded family in L2(0, T ;H−1(Rd)). Therefore, by (A.1),
restricting to a compact K, we obtain that ∂t θ

ε is bounded in

L4/3(0, T ;W−1, 2d
2d−1 (K)

) + L2(0, T ;H−2(K)
) + L2(0, T ;H−1(K)

)
,

and hence in L4/3(0, T ;W−2, 2d
2d−1 (K)) by the Sobolev inequality, proving (A.6).

Since the injection H 1(K) into L2(K) is compact, the injection of L2(K) into W−2,2d/(2d−1)(K) is continuous, it
follows from the Aubin–Lions compactness lemma [31, Theorem 3.2.1] (cf. [20]) that

θε → θ strongly in L2(0, T ;L2
loc

(
R

d
))

(A.7)

since K was arbitrary. Passing to the limit in the weak formulation of (A.1)–(A.3) is nontrivial only for the nonlinear
term. For any ϕ ∈ C∞

0 ((0,∞) × R
d), upon recalling that uj = ∂iTij [θ ], and an integration by parts in xi , we have∫ ∫ (

θεuε · ∇ϕ − θu · ∇ϕ
)

=
∫ ∫ (

θε − θ
)
u · ∇ϕ −

∫ ∫
∂iθ

ε Tij

[
θε − θ

]
∂jϕ −

∫ ∫
θε Tij

[
θε − θ

]
∂i∂jϕ

= Iε + IIε + IIIε . (A.8)

Since u ∈ L2
t L

2
x , by (A.7) and the Hölder inequality it follows that Iε → 0 as ε → 0. To obtain the convergence of IIε

and IIIε , we claim that

Tij

[
θε − θ

] → 0 strongly in L2(0, T ;L2
loc

(
R

d
))

. (A.9)

The proof of (A.9) is similar to that of (A.7). Since Tij is bounded on L2(Rd) and on Ḣ 1(Rd), it follows from (A.5)
that

Tij

[
θε

]
is bounded in C

([0, T ];L2(
R

d
)) ∩ L2(0, T ; Ḣ 1(

R
d
))

.

Also, Tij is bounded on L2d/(2d−1)(Rd), so that we obtain Tij [uε θε] is bounded in L4/3(0, T ;L2d/(2d−1)(Rd)). Fix
a compact K and a test function φ supported on K. Applying Tij to (A.1), integrating against φ, and integrating by
parts, we obtain∣∣〈∂tTij

[
θε

]
, φ

〉∣∣ = ∣∣〈Tij

[
uε θε

]
,∇φ

〉 + 〈∇Tij

[
θε

]
,∇φ

〉 + ε
〈
ΛTij

[
θε

]
,�φ

〉∣∣
�

∥∥Tij

[
uε θε

]∥∥
L

4/3
t L

2d/(2d−1)
x

‖φ‖
L4

t W
1,2d
0

+ ∥∥Tij

[
θε

]∥∥
L2

t Ḣ
1
x
‖φ‖

L2
t W

2,2
0

� C
∥∥uε θε

∥∥
L

4/3
t L

2d/(2d−1)
x

‖φ‖
L4

t W
2,2d
0

+ C
∥∥θε

∥∥
L2

t Ḣ
1
x
‖φ‖

L4
t W

2,2d
0

.

In the last estimate we have also used the Hölder and Poincaré inequalities. The above proves that

∂tTij

[
θε

]
is bounded in L4/3(0, T ;W−2, 2d

2d−1 (K)
)
.

The claim (A.9) now follows directly from the Aubin–Lions lemma (cf. [20,31]). Moreover, this shows that in (A.9)
we have IIIε → 0 and IIε → 0 as ε → 0.

This proves that θ is a weak solution to the limit system, i.e., (3.1)–(3.4). By construction it satisfies the energy
inequality, concluding the proof of existence of the Leray–Hopf weak solutions to (3.1)–(3.4).
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