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Abstract

We deal with a nonconvex and nonlocal variational problem coming from thin-film micromagnetics. It consists in a free-energy
functional depending on two small parameters ε and η and defined over vector fields m :Ω ⊂ R

2 → S2 that are tangent at the
boundary ∂Ω . We are interested in the behavior of minimizers as ε, η → 0. They tend to be in-plane away from a region of length
scale ε (generically, an interior vortex ball or two boundary vortex balls) and of vanishing divergence, so that S1-transition layers
of length scale η (Néel walls) are enforced by the boundary condition. We first prove an upper bound for the minimal energy that
corresponds to the cost of a vortex and the configuration of Néel walls associated to the viscosity solution, so-called Landau state.
Our main result concerns the compactness of vector fields {mε,η}ε,η↓0 of energies close to the Landau state in the regime where
a vortex is energetically more expensive than a Néel wall. Our method uses techniques developed for the Ginzburg–Landau type
problems for the concentration of energy on vortex balls, together with an approximation argument of S2-vector fields by S1-vector
fields away from the vortex balls.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper, we investigate a common pattern of the magnetization in thin ferromagnetic films, called Landau
state, that corresponds to the global minimizer of the micromagnetic energy in a certain regime. For that, we focus on
a toy problem rather than on the full physical model:

Let Ω ⊂ R
2 be a bounded simply-connected domain with a C1,1 boundary corresponding to the horizontal section

of a ferromagnetic cylinder of small thickness. Due to the thin film geometry, the variations of the magnetization
in the thickness direction are strongly penalized. It motivates us to consider magnetizations that are invariant in the
out-of-plane variable, i.e.,

m = (m1,m2,m3) :Ω → S2
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and they are tangent to the boundary ∂Ω , i.e.,

m′ · ν = 0 on ∂Ω, (1)

where m′ = (m1,m2) is the in-plane component of the magnetization and ν is the normal outer unit vector to ∂Ω . We
consider the following micromagnetic energy functional:

Eε,η(m) =
∫
Ω

|∇m|2 dx + 1

ε2

∫
Ω

m2
3 dx + 1

η

∫
R2

∣∣|∇|−1/2(∇ · m′)∣∣2
dx,

where ε and η are two small positive parameters (standing for the size of the vortex core and the Néel wall core,
respectively). Here, x = (x1, x2) are the in-plane variables with the differential operator

∇ = (∂x1 , ∂x2).

The first term of Eε,η(m) stands for the exchange energy. The second term corresponds to the stray-field energy
penalizing the top and bottom surface charges m3 of the magnetic cylinder, while the last term counts the stray-field
energy penalizing the volume charges ∇ · m′ where we will always think of

m′ ≡ m′1Ω

as being extended by 0 outside Ω . For more physical details, we refer to Section 3.
Note that the nonlocal term in the energy is given by the homogeneous Ḣ−1/2-seminorm of the in-plane divergence

∇ · m′ that writes in the Fourier space as:

∥∥∇ · m′∥∥2
Ḣ−1/2(R2)

=
∫
R2

∣∣|∇|−1/2(∇ · m′)∣∣2
dx :=

∫
R2

1

|ξ |
∣∣F

(∇ · m′)∣∣2
dξ. (2)

Also observe that the boundary condition (1) is necessary so that (2) is finite since

∇ · m′ = (∇ · m′)1Ω + (
m′ · ν)

1∂Ω in R
2

(see Proposition 2 in Appendix A).
We are interested in the asymptotic behavior of minimizers of the energy Eε,η in the regime

ε 	 1 and η 	 1.

The main features of this variational model resides in the nonconvex constraint on the magnetization |m| = 1 and
the nonlocality of the stray-field interaction. The competition of these effects with the quantum mechanical exchange
effect leads to a rich pattern formation for the stable states of the magnetization. Generically, a pattern of a stable
state consists in large uniformly magnetized regions (magnetic domains) separated by narrow smooth transition layers
(wall domains) where the magnetization varies rapidly. The characteristic wall domains observed in thin ferromag-
netic films are the Néel walls (corresponding to a one-dimensional in-plane rotation connecting two directions of the
magnetization) together with topological defects standing for interior vortices (called Bloch lines) and micromagnetic
boundary vortices.

The existence of line singularities at the mesoscopic level of the magnetization in thin films can be explained by
the principle of pole avoidance. For this discussion, we first neglect the exchange term in Eε,η. The stray-field energy
will try to enforce in-plane configurations, i.e., m3 = 0 in Ω , together with the divergence-free condition for m′, i.e.,
∇ · m′ = 0 in Ω . Together with (1), we arrive at∣∣m′∣∣ = 1, ∇ · m′ = 0 in Ω and m′ · ν = 0 on ∂Ω. (3)

We notice that the conditions in (3) are too rigid for smooth magnetization m′. This can be seen by writing m′ = ∇⊥ψ

with the help of a “stream function” ψ . Then up to an additive constant, (3) implies that ψ is a solution of the Dirichlet
problem for the eikonal equation:

|∇ψ | = 1 in Ω and ψ = 0 on ∂Ω. (4)
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The method of characteristics yields the nonexistence of smooth solutions of (4). But there are many continuous
solutions that satisfy (4) away from a set of vanishing Lebesgue measure. One of them is the “viscosity solution”
given by the distance function

ψ(x) = dist
(
x, ∂Ω ′)

that corresponds to the so-called Landau state for the magnetization m′. Hence, the boundary conditions (1) are
expected to induce line-singularities for solutions m′ that are an idealization of wall domains at the mesoscopic level.
At the microscopic level, they are replaced by smooth transition layers, the Néel walls, where the magnetization
varies very quickly on a small length scale η. Note that the normal component of m′ does not jump across these
discontinuity lines (because of (3)); therefore, the normal vector of the mesoscopic wall is determined by the angle
between the mesoscopic levels of the magnetization in the adjacent domains (called angle wall). Now, taking into
account the contribution of the exchange effect, the energy scaling per unit length of a Néel wall of angle 2θ (with
θ ∈ (0, π

2 ]) is given in DeSimone, Kohn, Müller and Otto [7], Ignat and Otto [11] (see also Ignat [8]):

π(1 − cos θ)2 + o(1)

η|logη| as η → 0. (5)

The formation of interior or boundary vortices is explained by the competition between the exchange energy and
the penalization of the m3-component for configurations tangent at the boundary. Indeed, there is no S1-configuration
that is of finite exchange energy and satisfies (1). There are only two possible situations: If m′ does not vanish on ∂Ω ,
than (1) implies that m′ carries a nonzero topological degree, deg(m′, ∂Ω) = ±1. In this case, we expect the nucleation
of an interior vortex of core-scale ε. The scaling of the vortex energy is related to the minimal Ginzburg–Landau (GL)
energy (see Béthuel, Brezis and Hélein [1]):

min
m′∈H 1(Ω,R2)

m′=ν⊥ on ∂Ω

∫
Ω

gε

(
m′)dx = (

2π + o(1)
)|log ε| as ε → 0, (6)

where the GL density energy is given in the following:

gε

(
m′) = ∣∣∇m′∣∣2 + 1

ε2

(
1 − ∣∣m′∣∣2)2

. (7)

(Here, we denote ν⊥ = (−ν2, ν1).) The second situation consists in having zeros of m′ on the boundary. Therefore,
we expect that boundary vortices do appear. Roughly speaking, they correspond to “half” of an interior vortex where
the vector field m′ is tangent at the boundary; therefore they are different from the micromagnetic boundary vortices
analyzed by Kurzke [14] and Moser [16] (see details in Section 3). Remark the importance of the regularity of ∂Ω

in estimate (6). In fact, if ∂Ω has a corner and the boundary condition m′ = ν⊥ on ∂Ω in (6) is relaxed to (1), then
estimate (6) does not hold anymore, it depends on the angle of the corner (see Proposition 1 and Remark 2). Therefore,
at the microscopic level, topological point defects do appear in the Landau state pattern and are induced by (1).

The aim of the paper is to show compactness of magnetizations of energy Eε,η close to the Landau state in order
to rigorously justify the limit behavior (3): the delicate issue consists in having the constraint |m| = 1 conserved in
the limit. For that, we have to evaluate the energetic cost of the Landau state. We expect that the leading order energy
of a Landau state is given by the topological point defects and Néel walls. The Landau state configuration consists in
several Néel walls and either one interior Bloch line or two “half” Bloch lines placed at the boundary of the sample Ω .
Therefore, by (5) and (6), we expect that the energy of the Landau state has the following order:

2π |log ε| + A

η|logη| , (8)

for some positive A > 0 depending on the length and angle of Néel walls.

2. Main results

First of all, we want to rigorously prove the upper bound (8) for the Landau state. Our result gives the exact leading
order energy of the Landau state in the case of a domain Ω of a “stadium” shape (see Fig. 1). Note that the Landau
state of a stadium consists in a single Néel wall of 180◦ (in our example, the length of the wall is equal to 2, so that
A = 2π in (8)).
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Fig. 1. Stadium.

Theorem 1. Let Ω = Ω1 ∪ Ω2 ∪ Ω3 be the following “stadium” shape domain:

Ω1 = {
x = (x1, x2) ∈ R

2:
∣∣x − (1,0)

∣∣ < 1, x1 � 1
}
,

Ω2 = (−1,1) × (−1,1),

Ω3 = {
x = (x1, x2) ∈ R

2:
∣∣x − (−1,0)

∣∣ < 1, x1 � −1
}
.

In the regime ε 	 η 	 1, there exists a C1 vector field mε,η :Ω → S2 that satisfies (1) and

Eε,η(mε,η) � 2π |log ε| + 2π + o(1)

η|logη| as η ↓ 0. (9)

Observe that the vortex energy in the above estimate is relevant only if a vortex costs at least as much as a Néel
wall, i.e., 1

η|logη| � |log ε| (otherwise, the vortex energy would be absorbed by the term o( 1
η|logη| )). This regimes leads

to a size ε of the vortex core exponentially smaller than the size of the Néel wall core η (see Remark 1).

Notation. We always denote a 	 b if a
b

→ 0; also, a � b if a � Cb for some universal constant C > 0.

Now we state our main result on the compactness of the S2-valued magnetizations that have energies near the Lan-
dau state. The issue consists in rigorously justifying that the constraint |m| = 1 is conserved by the limit configurations
as ε, η → 0. The regime where we prove our result corresponds to the case where a topological defect is energetically
more expensive than the Néel wall, that is coherent with the regime where (9) holds.

Theorem 2. Let α ∈ (0, 1
2 ) be an arbitrary constant. We consider the following regime between the small parameters

ε, η 	 1:

ε1/2 � η, (10)

log|log ε| � 1

η|logη| . (11)

For each ε and η, we consider C1 vector fields mε,η :Ω → S2 that satisfy (1) and

Eε,η(mε,η) − 2π |log ε|
{

� 2πα|log ε|, (12)

� 1
η|logη| . (13)

Then the family {mε,η}ε,η↓0 is relatively compact in L1(Ω,S2) and any accumulation point m :Ω → S2 satisfies

m3 = 0,
∣∣m′∣∣ = 1 a.e. in Ω and ∇ · m′ = 0 distributionally in R

2. (14)

The proof of compactness is based on an argument of approximating S2-valued vector fields by S1-valued vector
fields away from a small defect region. This small region consists in either one interior vortex or two boundary
vortices. The detection of this region is done in Theorem 3 and uses some topological methods due to Jerrard [12]
and Sandier [18] for the concentration of the Ginzburg–Landau energy around vortices (see also Lin [15], Sandier
and Serfaty [19]). Away from this small region, the energy level only allows for line singularities. Therefore, the
compactness result for S1-valued vector fields in [11] applies.

Let us discuss the assumptions (10), (11), (12) and (13). Inequality (13) assures that cutting out the topological
defect (one vortex or two boundary vortices), the remaining energy rescaled at the energetic level of Néel walls is
uniformly bounded. Inequality (12) together with the choice of α < 1 mean that the energy cannot support three
2
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“half” interior vortices and is precisely explained in Theorem 3 below. Inequality (11) is imposed due to our method
to detect a boundary vortex: it leads to a loss of energy of order O(log|log ε|) with respect to the expected half energy
of an interior vortex, i.e., π |log ε| (see Theorem 3 and Proposition 1). This amount of energy could leave room for
configurations of Néel walls that may destroy the compactness of |m′| = 1. Therefore, to avoid this scenario, (11) is
imposed. The regime (10) is rather technical: it is needed in the approximation argument of S2-valued vector fields
by S1-valued vector fields away from the vortex balls. In fact, starting from the values of m′ on a square grid of size
εβ , the approximation argument requires zero degree of m′ on each cell, leading to the condition β < 1 − α (see
Lemma 2); furthermore, the condition εβ � η is needed in order that the approximating S1-valued vector fields induce
a stray field energy of the same order of m′ (see (77)). Therefore, (10) can be improved to a larger regime

εβ � η for any β < 1 − α

as presented in the proof (Theorem 2 is stated for the value β = 1/2 which is the universal choice for every α < 1/2).
However, this slightly improved condition is weaker than the complete regime implied by (12) as explained in the
following remark.

Remark 1. Any limit configuration m′ satisfies (14). If Ω is a bounded simply-connected domain different than discs,
m′ has at least one ridge (line-singularity) that corresponds to a Néel wall. Therefore, the minimal energy verifies
min(1) Eε,η − 2π |log ε| � 1

η|logη| . Combining with (12), it follows that

1

η|logη| � |log ε|;

in particular, ε � e
− 1

η|logη| , i.e., the core of the vortex is exponentially smaller than the core of the Néel wall. However,
in the proof of Theorem 2, this much stronger constraint with respect to (10) is not needed.

We prove the following result of the concentration of Ginzburg–Landau energy around one interior vortex or two
boundary vortices for vector fields tangent at the boundary:

Theorem 3. Let α ∈ (0, 1
2 ) and Ω ⊂ R

2 be a bounded simply-connected domain with a C1,1 boundary. There exists

ε0 = ε0(α, ∂Ω) > 0 such that for every 0 < ε < ε0, if m′ :Ω → B2 is a C1 vector field that satisfies (1) and∫
Ω

gε

(
m′)dx � 2π(1 + α)|log ε|, (15)

then there exists either a ball B(x∗
1 , r∗) ⊂ Ω (called vortex ball) with r∗ = 1

|log ε|3 and∫
B(x∗

1 ,r∗)

gε

(
m′)dx � 2π

∣∣∣∣log
r∗

ε

∣∣∣∣ − C, (16)

or two balls B(x∗
2 , r∗) and B(x∗

3 , r∗) (called boundary vortex balls) with x∗
2 , x∗

3 ∈ ∂Ω and∫
(B(x∗

2 ,r∗)∪B(x∗
3 ,r∗))∩Ω

gε

(
m′)dx � 2π

∣∣∣∣log
r∗

ε

∣∣∣∣ − C, (17)

where C = C(α, ∂Ω) > 0 is a constant depending only on α and on the geometry of ∂Ω .

The condition α < 1/2 is needed in our proof. In fact, if no topological defect exists in the interior (in which case,
condition (1) induces boundary vortices), we perform a mirror-reflection extension of m′ outside the domain. Roughly
speaking, the GL energy in the extended domain doubles, i.e., it is of order 2π(2 + 2α)|log ε| and the degree at the
new boundary is equal to two; in order to avoid the formation of three interior vortices in the extended region, we
should impose 2 + 2α < 3, i.e., α < 1/2.

Notice that the Ginzburg–Landau energy concentration for a boundary vortex in (17) has a cost of order π |log ε| −
C log|log ε| provided that the boundary has regularity C1,1. We conjecture that the same energetic cost for a boundary
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vortex holds true if the boundary has regularity C1,β , β ∈ (0,1). However, if the boundary regularity is only C1, then
the energetic cost of a boundary vortex may decrease to (π − C

log|log ε| )|log ε| where C > 0 is a universal constant.

This indicates that the loss of energy of order log|log ε| in (17) could occur for boundary vortices for C1,β boundary
regularity and the order of this loss increases to |log ε|

log|log ε| for C1 boundaries as β → 0. This claim is supported by the

following example for a C1 boundary domain:

Proposition 1. We consider in polar coordinates the following C1 domain Ω = {(r, θ): r ∈ (0, 1
20 ), |θ | < γ (r) =

π
2 − 1

log log 1
r

}. For every 0 < ε < 1, there exists a C1-function m′
ε :Ω ∩ B1/200 → R

2 that satisfies (1) on ∂Ω ∩ B1/200

and ∫
Ω∩B1/200

gε

(
m′

ε

)
dx �

(
π − C

log|log ε|
)

|log ε|,

where C > 0 is some universal positive constant (independent of ε).

The outline of the paper is as follows. In Section 3, we present the physical context of our toy problem. In the
next section, we recall two results that we need for the proof of our results: a compactness result for S1-valued mag-
netizations and the concentration of the Ginzburg–Landau energy on vortex balls. In Section 5, we prove Theorem 3
and Proposition 1. In Section 6, we give the proof of our main result in Theorem 2. In Section 7, we show the upper
bound for the stadium domain stated in Theorem 1. In Appendix A, we prove that (1) is a necessary condition for our
configurations to have a finite stray field energy.

3. Physical context

In this section we explain the physical context of our model in thin-film micromagnetics. We consider a ferromag-
netic sample of cylinder shape, i.e.

ω = ω′ × (0, t)

where ω′ ⊂ R
2 is the section of the magnetic sample of length � and t is the thickness of the cylinder. The microscopic

behavior of the magnetic body is described by a three-dimensional unit-length vector field m = (m′,m3) :ω → S2,
called magnetization. The observed ground state of the magnetization is a minimizer of the micromagnetic energy that
we write here in the absence of anisotropy and external magnetic field:

E3d(m) = d2
∫
ω

∣∣∣∣
(

∇,
∂

∂z

)
m

∣∣∣∣
2

dx dz +
∫
R3

∣∣∣∣
(

∇,
∂

∂z

)
U(m)

∣∣∣∣
2

dx dz. (18)

The parameter d of the material is called exchange length and is of order of nanometers. The stray-field potential
U(m) : R3 → R is defined by static Maxwell’s equation in the weak sense:∫

R3

(
∇,

∂

∂z

)
U(m) ·

(
∇,

∂

∂z

)
ζ dx dz =

∫
R3

(
∇,

∂

∂z

)
· (m1ω)ζ dx dz, for every ζ ∈ C∞

c

(
R

3). (19)

Instead of the three length scales �, t and d of the physical model, we introduce two dimensionless parameters:

ε := d

�
and η := d2

�t

(standing for the size of the core of the Bloch line and the Néel wall, respectively).

3.1. Thin-film reduction

We consider the thin-film approximation of the full energy (18) in the following regime:

ε 	 η 	 1 (20)
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(equivalently, t 	 d 	 �). The assumption t 	 d implies that in-plane transitions (Néel walls) are preferred to out-of-
plane transitions (asymmetric Bloch walls) between two mesoscopic directions of the magnetization (see Otto [17]).
The hypothesis d 	 � assures that constant configurations in general are not global minimizers (see DeSimone [4]).

The main issue is the asymptotic behavior of the energy in the regime of thin films. We first nondimensionalize
in length with respect to �, i.e. (x̄, z̄) = ( x

�
, z

�
), Ω = ω′

�
, m̄(x̄, z̄) = m(x, z), Ū (m̄)(x̄, z̄) = 1

�
U(m)(x, z) and then we

renormalize the energy Ē3d(m̄) = 1
d2t

E3d(m). Omitting the ¯ , we get

E3d(m) = η

ε2

∫
Ω×(0, ε2

η
)

∣∣∣∣
(

∇,
∂

∂z

)
m

∣∣∣∣
2

dx dz + η

ε4

∫
R3

∣∣∣∣
(

∇,
∂

∂z

)
U(m)

∣∣∣∣
2

dx dz. (21)

In the regime (20), the penalization of exchange energy enforces the following constraints for the minimizers:

(a) m varies on length scales � ε2

η
.

(b) m = m(x), i.e. m is z-invariant.

With these assumptions, (21) can be approximated by the following reduced energy Ered (see DeSimone, Kohn,
Müller and Otto [6], Kohn and Slastikov [13]):

Ered(m) =
∫
Ω

|∇m|2 dx

+ 1

ε2

∫
Ω

m2
3 dx + |log ε2

η
|

2πη

∫
∂Ω

(
m′ · ν)2

dH1 + 1

2η

∥∥(∇ · m′)
ac

∥∥2
Ḣ−1/2(R2)

. (22)

The above formula follows by solving the stray field equation (19) in the regime (20): indeed, for z-invariant con-
figurations m, the Fourier transform in the in-plane variables x = (x1, x2) turns (19) into a second order ODE in the
z-variable that can be solved explicitly (see [13,9]). Then, due to the above assumption (a) and to the regime (20), the
stray-field energy asymptotically decomposes into three terms as written in (22): the first term in (22) is penalizing
the surface charges m3 on the top and bottom of the cylinder, a second term counts the lateral charges m′ · ν in the
L2-norm, as well as the third term that penalizes the volume charges (∇ · m′)ac := (∇ · m′)1Ω as a homogeneous
Ḣ−1/2-seminorm. In fact, the last term corresponds to the stray-field energy created by a three-dimensional vector
field hac(m) defined as

hac(m) =
(

∇,
∂

∂z

)
Uac(m) : R3 → R

3,

that satisfies:∫
R3

(
∇,

∂

∂z

)
Uac(m) ·

(
∇,

∂

∂z

)
ζ dx dz =

∫
R2

(∇ · m′)
acζ dx, for all ζ ∈ C∞

c

(
R

3).
Then one has∫

R3

∣∣hac(m)
∣∣2

dx dz = 1

2

∥∥(∇ · m)ac
∥∥2

Ḣ−1/2(R2)
. (23)

Note that if (1) holds (i.e., no lateral surface charges), then (∇ · m)ac = ∇ · (m1Ω) and therefore, hac(m) induces the
stray field energy given by (2). In fact, (2) corresponds to the minimal stray field energy in thin films. More precisely,
a stray field h = (h′, h3) = (h1, h2, h3) : R3 → R

3 is related to the magnetization m :Ω → S2 via the following
variational formulation:∫

2

(
h′ · ∇ζ + h3

∂ζ

∂z

)
dx dz =

∫
2

ζ∇ · m′ dx, ∀ζ ∈ C∞
c

(
R

3), (24)
R ×R R
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Fig. 2. Néel wall of angle 2θ confined in [−1,1].

where z denotes the out-of-plane variable in the space R
3. (As before, m′ ≡ m′1Ω and m satisfies (1).) Classically,

this is,⎧⎨
⎩∇ · h′ + ∂h3

∂z
= 0 in R

3 \ (
R

2 × {0}),
[h3] = −∇ · m′ on R

2 × {0},
where [h3] denotes the jump of the out-of-plane component of h across the horizontal plane R

2 × {0}. Then (2) can
be expressed as:∫

R2

∣∣|∇|−1/2(∇ · m′)∣∣2
dx = 2 min

h with (24)

∫
R2×R

|h|2 dx dz.

Therefore, hac(m) is a minimizing stray-field (of vanishing curl) associated with the stray field potential Uac(m).
In our regime (20), there are three different structures that typically appear: Néel walls, Bloch lines and micromag-

netic boundary vortices. We explain these structures in the following and compare their respective energies. As we
already mentioned, a fourth structure, the asymmetric Bloch wall, can appear in thicker films but we do not discuss it
here since the asymmetric Bloch wall is more expensive than a Néel wall if t 	 d .

3.2. Néel walls

The Néel wall is a dominant transition layer in thin ferromagnetic films. It is characterized by a one-dimensional
in-plane rotation connecting two (opposite) directions of the magnetization. It has two length scales: a small core with
fast varying rotation and two logarithmically decaying tails. In order for the Néel wall to exist, the tails are to be
contained and we consider here the confining mechanism of the steric interaction with the sample edges. Typically,
one may consider wall transitions of the form:

m = (m1,m2) : R → S1 and m(±t) =
(

cos θ

± sin θ

)
for ±t � 1,

with θ ∈ (0, π
2 ] (see Fig. 2), whereas the reduced energy functional is:

Ered(m) =
∫
R

∣∣∣∣ dm

dx1

∣∣∣∣
2

dx1 + 1

2η

∫
R

∣∣∣∣
∣∣∣∣ d

dx1

∣∣∣∣
1/2

m1

∣∣∣∣
2

dx1.

As η → 0, the scale of the Néel core is given by |x1| � wcore = O(η) while the two logarithmic decaying tails scale
as wcore � |x1| � wtail = O(1). The energetic cost (by unit length) of a Néel wall is given by

Ered(Néel wall) = O

(
1

η|logη|
)

with the exact prefactor π(1 − cos θ)2/2 where 2θ is the wall angle (see e.g. [8]).

3.3. Bloch line

A Bloch line is a regularization of a vortex on the microscopic level of the magnetization that becomes out-of-plane
at the center. The prototype of a Bloch line is given by a vector field

m :B2 → S2
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Fig. 3. Bloch line.

Fig. 4. A micromagnetic boundary vortex.

defined in a circular cross-section Ω = B2 of a thin film and satisfying:

∇ · m′ = 0 in B2 and m′(x) = x⊥ on ∂B2. (25)

(For the Bloch line in a thin cylinder, the magnetization is assumed to be invariant in the thickness direction of the
film and the word “line” refers to the vertical direction.) Since the magnetization turns in-plane at the boundary of
the disk B2 (so, deg(m′, ∂Ω) = 1), a localized region is created, that is the core of the Bloch line of size ε, where the
magnetization becomes perpendicular to the horizontal plane (see Fig. 3). The reduced energy (22) for a configuration
(25) writes as:

Ered(m) =
∫
B2

|∇m|2 dx + 1

ε2

∫
B2

m2
3 dx.

The Bloch line corresponds to the minimizer of this energy under the constraint (25). Remark that the reduced energy
Ered controls the Ginzburg–Landau energy, i.e.,∫

B2

gε

(
m′)dx � Ered(m)

since |∇m′|2 � |∇(m′,m3)|2 and (1 − |m′|2)2 = m4
3 � m2

3. Due to the similarity with the Ginzburg–Landau type
functional, the Bloch line corresponds to the Ginzburg–Landau vortex and the energetic cost of a Bloch line (per
unit-length) is given by (6):

Ered(Bloch line) = O
(|log ε|)

with the exact prefactor 2π (see e.g. [9]).

3.4. Micromagnetic boundary vortex

Next we address micromagnetic boundary vortices. A micromagnetic boundary vortex corresponds to an in-plane
transition of the magnetization along the boundary from ν⊥ to −ν⊥ (see Fig. 4). The corresponding minimization
problem is given by

Ered(m) =
∫
Ω

|∇m|2 dx + |log ε2

η
|

2πη

∫
∂Ω

(
m′ · ν)2

dH1

within the set of in-plane magnetizations m :Ω → S1. The minimizer of this energy is a harmonic vector field with
values in S1 driven by a pair of boundary vortices. These have been analyzed in [14,16]. The transition is regularized
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on the length scale of the exchange part of the energy, i.e. the core of the boundary vortex has length of size η

|log ε2
η

|
.

The cost of such a transition is given by

Ered(Micromagnetic boundary vortex) = O

(∣∣∣∣log
η

|log ε2

η
|

∣∣∣∣
)

with exact prefactor π . (Note that the boundary vortices in Theorem 3 correspond in fact to “half” Bloch lines where
the vector field is tangent at the boundary, i.e., m′ · ν = 0 on ∂Ω ; therefore, their structure is different from the one of
micromagnetic boundary vortices, but with the same energetic cost.)

Claim. In the regime (20), then

either Ered(Micromagnetic boundary vortex) � Ered(Néel wall)

or Ered(Micromagnetic boundary vortex) � Ered(Bloch line).

Indeed, assume by contradiction that the above statement fails. Then one has

1

η|logη| �
∣∣∣∣log

η

|log ε2

η
|

∣∣∣∣ (26)

and

log
1

ε
�

∣∣∣∣log
η

|log ε2

η
|

∣∣∣∣. (27)

In the regime (20), one has ε2 	 ε 	 η, therefore (26) turns into

1

η|logη| � log log
1

ε
,

while (27) implies that

log
1

ε
� log

1

η
.

Now it is easy to see the incompatibility between the last two inequalities as ε, η → 0.

3.5. Our toy problem

The model we presented in the introduction consists in considering configurations without lateral surface charges,
i.e., (1) holds true. In this case, our energy functional Eε,2η(m) coincides with the reduced thin-film energy Ered since
hac(m) induces the stray field energy (23) as in (2). However, (1) would be physical relevant for a global minimizer
only if boundary vortices were more expensive than both the Néel walls and Bloch line contribution. As explained in
the above claim, this assumption is violated in the regime (20). Therefore, our energy functional is not adapted for
studying global minimizers in the regime (20), but rather for metastable states that satisfy (1).

Recently, the regime Ered(Micromagnetic boundary vortex) 	 Ered(Néel wall) 	 Ered(Bloch line) was investi-
gated in Ignat and Knüpfer [10] for thin films of circular cross-section. It is stated that the global minimal configuration
for that geometry is given by a 360◦-Néel wall that concentrates around a radius so that it becomes a vortex (the Lan-
dau state of a disk) at the mesoscopic level.

4. Some preliminaries

The result stated in Theorem 2 is an extension to the S2-valued magnetizations of the following compactness result
for S1-valued magnetizations obtained by the authors in [11]:
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Theorem 4. (See Ignat and Otto [11].) Let Bn be the unit ball in R
n, n = 2,3. For every small η > 0, let m′

η :B2 → S1

and hη = (h′
η, h3,η) :B3 → R

3 be related by∫
B3

(
h′

η · ∇ζ + h3,η

∂ζ

∂z

)
dx dz =

∫
B2

ζ∇ · m′
η dx, ∀ζ ∈ C∞

c

(
B3).

Suppose that∫
B2

∣∣∇ · m′
η

∣∣2
dx + 1

η

∫
B3

|hη|2 dx dz � C

η|logη| , (28)

for some fixed constant C > 0. Then {m′
η}η↓0 is relatively compact in L1(B2) and any accumulation point

m′ :B2 → R
2 satisfies∣∣m′∣∣ = 1 a.e. in B2 and ∇ · m′ = 0 distributionally in B2.

In the proof of Theorem 3, we will use the following result due to Jerrard [12] for the concentration of the GL
energy (7) around vortices (see also Sandier [18], Lin [15]):

Theorem 5. (See Jerrard [12].) Let α ∈ [0,1) and d > 0 be a positive integer. There exists ε0 = ε0(d,α) > 0 such
that for every 0 < ε < ε0, if m′ :Ω → R

2 satisfies the following conditions:

∣∣m′∣∣ � 1

2
on

{
x ∈ Ω: dist(x, ∂Ω) � r∗(ε)

}
for some r∗(ε) ∈

(
1

|log ε|4 ,1

)
, (29)∣∣deg

(
m′, ∂Ω

)∣∣ = d

and ∫
Ω

gε

(
m′)dx � 2π(d + α)|log ε|,

then there exist n points x1, . . . , xn ∈ Ω with dist(xj , ∂Ω) > r∗(ε), j = 1, . . . , n and positive integers d1, . . . , dn > 0
such that the n balls {B(xj , r

∗(ε))}1�j�n are disjoint,

n∑
j=1

dj = d

and ∫
B(xj ,r∗(ε))

gε

(
m′)dx � 2πdj

∣∣∣∣log
r∗(ε)

ε

∣∣∣∣ − C(d,α), j = 1, . . . , n,

where C(d,α) is a constant only depending on d and α.

In the above theorem, Ω ⊂ R
2 is any open bounded set (without any regularity condition imposed for the bound-

ary ∂Ω). This is due to hypothesis (29) of having a security region around ∂Ω . By degree of a C1-function v : C → S1

defined on a closed curve C ⊂ R
2 with the unit tangential vector τ , we mean the winding number

deg(v, C) = 1

2π

∫
C

det(v, ∂τ v) dH1.

If m′ : C → R
2 is a C1-function with |m′| > 0 on C , we set deg(m′, C) := deg( m′

|m′| , C). The notion of degree can

be extended to continuous vector fields and more generally, VMO vector fields, in particular H 1/2(C, S1) maps (see
Brezis and Nirenberg [2]).
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Fig. 5. Mirror-reflection extension.

5. Proof of Theorem 3 and Proposition 1

First of all, let us define the security region around ∂Ω together with some notations that we use in the sequel:

Definition 1. Let Ω is a simply-connected bounded domain of C1,1 boundary. The security region around ∂Ω is
the maximal set of points around ∂Ω (in the interior and outside Ω) covered by the normal lines at ∂Ω before any
crossing occurs. We call depth of the security region to be the smallest distance to the boundary ∂Ω where a crossing
of two normal lines occurs and it will be denoted by R(∂Ω).

Let R = R(∂Ω) be the depth of the security region around ∂Ω . For r ∈ (0,R), we denote the interior subdomain
Ωr ⊂ Ω at a distance r from the boundary, i.e.,

Ωr = {
x ∈ Ω: dist(x, ∂Ω) > r

}
and ∂Ωr = {

x ∈ Ω: dist(x, ∂Ω) = r
}

(30)

be the boundary of this subdomain. For r ∈ (−R,0), we write ∂Ωr to be the symmetry of ∂Ω−r across the boundary
∂Ω = ∂Ω0 and Ωr ⊃ Ω be the extended domain surrounded by ∂Ωr .

Let l = H1(∂Ω) be the length of ∂Ω . Set w : [0, l] → ∂Ω be a C1,1 arclength parametrization of ∂Ω such that
|ẇ(s)| = 1 with ẇ(s) = dw

ds
(s) and let ν(s) = ẇ(s)⊥ be the outer unit normal vector on ∂Ω at w(s). Since ẅ(s) =

d2w

ds2 (s) is parallel to ν(s) for a.e. s ∈ [0, l], we will always write

ẅ(s) = ẅ(s)ν(s)

where ẅ(s) is the signed length of the vector ẅ(s) with respect to ν(s). Notice that |ẅ(s)| � 1
R(∂Ω)

. In the security
region around ∂Ω , a point x writes in the new coordinates as:

x = F(s, t) = w(s) + tν(s), s ∈ [0, l], t ∈ (−R(∂Ω),R(∂Ω)
)
. (31)

Note that for interior points x ∈ Ω , the corresponding normal coordinate t is negative. We define the symmetry
transform Φ in the security region around ∂Ω :

Φ
(
F(s, t)

) = F(s,−t), s ∈ [0, l], t ∈ (−R(∂Ω),R(∂Ω)
)
. (32)

A first ingredient that we need in the proof of Theorem 3 is a mirror-reflection extension across the boundary ∂Ω .

Lemma 1. Let R∞ > 0. There exists ε0 = ε0(R∞) > 0 such that for every 0 < ε < ε0, the following holds:
Let Ω be a simply-connected bounded domain of C1,1 boundary with the depth of the security region R(∂Ω) � R∞.

Let Φ be the symmetry transform across the boundary ∂Ω defined in (32). In the security region, we consider the
interior curve

γ = ∂Ω 1
|log ε|

(see notation (30)) and m′ :Ω → B2 is a C1 vector field that satisfies (1),∣∣m′∣∣ � 1/2 on γ and deg
(
m′, γ

) = 0.

Then there exists an extension vector field m̃′ :Ω− 1
|log ε|

→ R
2 of m′ (see Fig. 5) into the extended domain Ω− 1

|log ε|
⊃ Ω

of boundary

γ̃ = Φ(γ ) = ∂Ω− 1

|log ε|
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such that

m̃′ ≡ m′ in Ω,
∣∣m̃′∣∣ � 1/2 on γ̃ and deg

(
m̃′, γ̃

) = 2,∣∣∣∣
∫
γ̃

gε

(
m̃′(y)

)
dH1(y) −

∫
γ

gε

(
m′(x)

)
dH1(x)

∣∣∣∣ � C

(
|log ε|H1(∂Ω) + 1

|log ε|
∫
γ

gε

(
m′(x)

)
dH1(x)

)
(33)

and ∣∣∣∣
∫

Φ(W)

gε

(
m̃′(y)

)
dy −

∫
W

gε

(
m′(x)

)
dx

∣∣∣∣ � C

(
H1(∂Ω) + 1

|log ε|
∫
W

gε

(
m′(x)

)
dx

)
(34)

where W ⊂ Ω \ Ω 1
|log ε|

is any open subset of Ω and C = C(R∞) is a positive constant depending only on R∞.

Proof. We use the notations introduced at the beginning of this section. We have that |ẅ(s)| � 1
R(∂Ω)

� 1
R∞ . More-

over, differentiating (31), we have that for a.e. s ∈ [0, l] and t ∈ (−R(∂Ω),R(∂Ω)),

DF(s, t) = (
αs(t)ẇ(s) ν(s)

)
and DF−1(s, t) =

(
1

αs(t)
ẇ(s) ν(s)

)T

, (35)

where

αs(t) := 1 − tẅ(s).

By (32) and (35), we compute that:

Ss(t) := DΦ(x) = 2

αs(t)
ẇ(s) ⊗ ẇ(s) − Id for a.e. s ∈ [0, l] and t ∈ (−R(∂Ω),R(∂Ω)

)
. (36)

The matrix Ss(t) is symmetric and its inverse is given by Ss(t)
−1 = Ss(−t). The mirror-reflection extension m̃′ of m′

is defined as (see Fig. 5):

m̃′(Φ(x)
) := Ss(0)m′(x) = 2m′(x) · ẇ(s)ẇ(s) − m′(x) for x ∈ Ω \ ΩR(∂Ω). (37)

(We use that a ⊗ bc = (b · c)a, for any a, b, c ∈ R
2.) Remark that the condition (1) implies that the mirror-reflection

extension does not induce jumps at the boundary. Moreover, |m̃′(Φ(x))| = |m′(x)| since Ss(0) = 2ẇ(s) ⊗ ẇ(s) − Id
is a reflection matrix (i.e., it is symmetric and orthogonal). Therefore, |m̃′| � 1/2 on γ̃ .

The goal is to estimate the energies
∫
Φ(W)

gε(m̃
′) dy and

∫
γ̃

gε(m̃
′) dH1. We start by computing the Dirichlet

energy of the extension m̃′. For that, we differentiate (37) in the coordinates (s, t):

D
(
m̃′(Φ(x)

)) = Ss(0)Dm′(x)DF(s, t) + 2
(
V (s)m′(x) 0

)
,

where

V (s) := ẇ(s) ⊗ ẅ(s) + ẅ(s) ⊗ ẇ(s). (38)

Since D(m̃′(Φ(x))) = Dm̃′(Φ(x))DΦ(x)DF(s, t), multiplying by DF(s, t)−1Ss(−t), it implies that

Dm̃′(Φ(x)
) (35), (36)= Ss(0)Dm′(x)Ss(−t) + 2

αs(−t)
V (s)m′(x) ⊗ ẇ(s).

Since (
Dm̃′(Φ(x)

))T = Ss(−t)Dm′(x)T Ss(0) + 2

αs(−t)
ẇ(s) ⊗ V (s)m′(x),

it follows that∣∣Dm̃′(Φ(x)
)∣∣2 = tr

(
Dm̃′(Φ(x)

)
Dm̃′(Φ(x)

)T )
= tr

(
Ss(0)Dm′(x)Ss(−t)2Dm′(x)T Ss(0)

) + 4

αs(−t)2

∣∣V (s)m′(x)
∣∣2

+ 4

αs(−t)
tr

(
Ss(0)Dm′(x)Ss(−t)ẇ(s) ⊗ V (s)m′(x)

)
= I + II + III. (39)
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For the first term in (39), we compute that

Ss(−t)2 (36)= − 4tẅ(s)

αs(−t)2
ẇ(s) ⊗ ẇ(s) + Id.

Since tr(SAS−1) = tr(A) and tr(Av⊗Av) = |Av|2 � |A|2|v|2 for any two matrices A and S in R
2×2 with S invertible

and any vector v ∈ R
2, we deduce that

I �
(

1 + 4|t ||ẅ(s)|
αs(−t)2

)∣∣Dm′(x)
∣∣2

. (40)

For the second term in (39), we have that |V (s)|2 (38)= 2|ẇ(s) ⊗ ẅ(s)|2 = 2|ẅ(s)|2 and therefore,

II � 4

αs(−t)2

∣∣V (s)
∣∣2∣∣m′(x)

∣∣2 � 8|ẅ(s)|2
αs(−t)2

∣∣m′(x)
∣∣2

. (41)

For the third term in (39), we compute that

Ss(−t)ẇ(s)
(36)= αs(t)

αs(−t)
ẇ(s) and Ss(0)V (s)

(36)= ẅ(s)

(
0 1

−1 0

)
.

Using that tr(Ab ⊗ c) = c · Ab and tr(A) = tr(Ss(0)ASs(0)) for any matrix A in R
2×2 and any vectors b, c ∈ R

2, we
deduce that

III = 4αs(t)

αs(−t)2
tr

(
Dm′(x)ẇ(s) ⊗ (

Ss(0)V (s)m′(x)
))

= −4αs(t)ẅ(s)

αs(−t)2
tr

(
Dm′(x)ẇ(s) ⊗ m′(x)⊥

)
= −4αs(t)ẅ(s)

αs(−t)2
m′(x)⊥ · (Dm′(x)ẇ(s)

)
� 4αs(t)|ẅ(s)|

αs(−t)2

∣∣m′(x)
∣∣∣∣Dm′(x)

∣∣. (42)

Since |detDΦ(x)| (36)= αs(−t)
αs (t)

, we deduce by (39), (40), (41) and (42),

∣∣Dm̃′(Φ(x)
)∣∣2∣∣det

(
DΦ(x)

)∣∣ � αs(−t)

αs(t)

(
1 + 4|t ||ẅ(s)|

αs(−t)2

)∣∣Dm′(x)
∣∣2 + 8|ẅ(s)|2

αs(−t)αs(t)

∣∣m′(x)
∣∣2

+ 4|ẅ(s)|
αs(−t)

∣∣m′(x)
∣∣∣∣Dm′(x)

∣∣. (43)

Therefore, for every open set W ⊂ Ω \ Ω 1
|log ε|

, we obtain by Young’s inequality,

∫
Φ(W)

∣∣Dm̃′(y)
∣∣2

dy =
∫
W

∣∣detDΦ(x)
∣∣∣∣Dm̃′(Φ(x)

)∣∣2
dx

(43)

�
∫
W

{(
1 + C

|log ε|
)∣∣Dm′(x)

∣∣2 + C|log ε|∣∣m′(x)
∣∣2

}
dx

�
(

1 + C

|log ε|
)∫

W

∣∣Dm′(x)
∣∣2

dx + CH1(∂Ω),

with C = C(R∞) > 0 and ε � ε(R∞). (We use that H2(W) � C H1(∂Ω).) Also,
|log ε|
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∫
Φ(W)

(
1 − ∣∣m̃′(y)

∣∣2)2
dy =

∫
W

∣∣detDΦ(x)
∣∣(1 − ∣∣m′(x)

∣∣2)2
dx

�
(

1 + C

|log ε|
)∫

W

(
1 − ∣∣m′(x)

∣∣2)2
dx.

Therefore, we obtain:∫
Φ(W)

gε

(
m̃′(y)

)
dy �

(
1 + C

|log ε|
)∫

W

gε

(
m′(x)

)
dx + CH1(∂Ω).

By changing t to −t in the above argument, the inverse inequality also holds:∫
W

gε

(
m′(x)

)
dx �

(
1 + C

|log ε|
) ∫

Φ(W)

gε

(
m̃′(y)

)
dy + CH1(∂Ω). (44)

Thus, inequality (34) immediately follows. For proving inequality (33), we proceed in the same way: Since
F(·,− 1

|log ε| ) = w − 1
|log ε|ν is a Lipschitz parametrization of γ , we compute∣∣∣∣ d

ds

(
Φ

(
F

(
s,− 1

|log ε|
)))∣∣∣∣ (36)=

∣∣∣∣detDΦ

(
F

(
s,− 1

|log ε|
))∣∣∣∣

∣∣∣∣ d

ds

(
F

(
s,− 1

|log ε|
))∣∣∣∣

and we have by (43),∫
Φ(γ )

gε

(
m̃′(y)

)
dH1(y) =

∫
γ

∣∣detDΦ(x)
∣∣gε

(
m̃′(Φ(x)

))
dH1(x)

�
(

1 + C

|log ε|
)∫

γ

gε

(
m′(x)

)
dH1(x) + C|log ε|H1(∂Ω).

By symmetry, (33) follows immediately.
It remains to prove that if deg(m′, γ ) = 0, then deg(m̃′, γ̃ ) = 2. For that let ϕ0 : [0, l] → R be the lifting of ẇ, i.e.,

ẇ(s) = eiϕ0(s). Obviously,

deg(ẇ) = 1

2π

(
ϕ0(l) − ϕ0(0)

) = 1. (45)

On the curve γ , we know that m′ ∈ C1(γ,R
2) and we write m′ = ρv with ρ = |m′| � 1/2 and v :γ → S1. Then

ρ,v ∈ C1(γ ). Then deg(v, γ ) = deg(m′, γ ) = 0. In this case, the theory of lifting yields the existence of a lifting
ϕ ∈ C1(γ,R) such that v = eiϕ . If t := 1

|log ε| , then F(·,−t) is a parametrization of γ and we have

0 = deg(v, γ ) = 1

2π

(
ϕ
(
F(l,−t)

) − ϕ
(
F(0,−t)

))
. (46)

Notice that the reflection matrix Ss(0) has the following form:

Ss(0)
(36)=

(
cos 2ϕ0(s) sin 2ϕ0(s)

sin 2ϕ0(s) − cos 2ϕ0(s)

)
.

That implies the following writing of m̃′ on the curve γ̃ = Φ(γ ) parametrized by F(·, t):
m̃′(F(s, t)

) = ρ
(
F(s,−t)

)
Ss(0)v

(
F(s,−t)

) = ρ
(
F(s,−t)

)
ei(2ϕ0(s)−ϕ(F (s,−t))).

Therefore, by (45) and (46), we conclude that

deg
(
m̃′, γ̃

) = 2. �
We now prove the concentration of the Ginzburg–Landau energy on a small region (either one interior vortex, or

two boundary vortices) under the condition (1) in the regime (15):
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Proof of Theorem 3. Let R = R(∂Ω) be the depth of the security region around ∂Ω . We proceed in several steps:

Step 1. Find a good set of boundaries. We define the set I of distances r ∈ (0,R − ε) such that we control the energy
of m′ on the boundary ∂Ωr (and consequently, the modulus |m′| via (49)), i.e.,

I =
{
r ∈ (0,R − ε):

∫
∂Ωr

gε

(
m′)dH1 � |log ε|3

}
. (47)

How large is the set I? We show that for each interval J ⊂ (0,R − ε) of length � � 1
|log ε|2 , there exist infinitely many

distances r belonging to I ∩ J . More precisely, we have for small ε > 0 that

H1(I ∩ J ) � �

2
. (48)

Indeed, one has

4π |log ε| (15)

�
∫

J\I

∫
∂Ωr

gε

(
m′)dH1 dr � |log ε|3 H1(J \ I )

which yields H1(J \ I ) � 4π

|log ε|2 � �
2 for small ε > 0 and therefore, (48) holds. Moreover, remark that |m′| � 1

2 for

every r ∈ I , if ε > 0 is small enough. Indeed, since r < R − ε it means that H1(∂Ωr) � H1(∂B(0, ε)) � ε. Denoting
by ρ := |m′| and min := min{ρ(x): x ∈ ∂Ωr }, it is easy to check that (see Lemma 2.3. in [12]):

|log ε|3 �
∫

∂Ωr

gε

(
m′)dH1 �

∫
∂Ωr

(
|∂τ ρ|2 + 1

ε2

(
1 − ρ2)2

)
dH1 � C

ε
(1 − min)2, (49)

where τ is the tangent unit vector at ∂Ωr . Thus, one concludes that (1 − min)2 � ε|log ε|3 	 1, i.e., min � 1/2 for
small ε > 0. (Relation (49) is obvious if ρ is constant (equal with min). Otherwise, the GL energy of the modulus ρ

controls the following quantity 1
ε

∫
Im(ρ)

(1 −y2) dy on the image set Im(ρ) of ρ and forces ρ to take values close to 1.)

By (48), we can choose r1 ∈ I ∩ ( 1
2|log ε| ,

2
|log ε| ). W.l.o.g., we may suppose that

r1 = 1

|log ε| .
We distinguish two cases in function of deg(m′, ∂Ωr1).

Step 2. We assume that |deg(m′, ∂Ωr1)| > 0. W.l.o.g. we may suppose that d := deg(m′, ∂Ωr1) � 1.

Extension. We will extend the vector field m′|Ωr1
by a vector field m̃′ defined on the larger domain Ωr1−r∗ ⊃ Ωr1 with

r∗ = 1

|log ε|3 ∈
(

0,
r1

2

)
such that m̃′ = m′ in Ωr1 and

deg
(
m̃′, ∂Ωr1−r∗

) = d � 1,∣∣m̃′∣∣ � 1

2
in Ωr1−r∗ \ Ωr1,∫

Ωr1−r∗

gε

(
m̃′)dx � 2π(1 + α)|log ε| + C. (50)

For that, using the notation (31), for each point x = F(s, t) ∈ Ωr1−r∗ \Ωr1 (here, t < 0), we consider yx = F(s,−r1) ∈
∂Ωr1 to be the normal projection of x on ∂Ωr1 with dist(x, ∂Ωr1) = |x −yx | = |t + r1|. Then we define m̃′ :Ωr1−r∗ →
R

2 as m̃′ = m′ in Ωr1 and

m̃′(x) := m′(yx), for every x ∈ Ωr1−r∗ \ Ωr1 . (51)
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Since r1 ∈ I , (49) implies |m̃′| � 1/2 on Ωr1−r∗ \ Ωr1 , deg(m̃′, ∂Ωr1−r∗) = d � 1 and

∫
Ωr1−r∗\Ωr1

gε

(
m̃′)dx =

r1∫
r1−r∗

∫
∂Ωr

gε

(
m̃′)dH1 dr

(51)

� Cr∗
∫

∂Ωr1

gε

(
m′)dH1

(47)

� Cr∗|log ε|3 = C. (52)

Thus, by (15), we obtain (50). By Theorem 5 and (50), we deduce that d = 1 and there exists a point x1 ∈ Ωr1 such
that ∫

B(x1,r
∗)

gε

(
m̃′)dx � 2π

∣∣∣∣log
r∗

ε

∣∣∣∣ − C(α),

where C(α) is a generic constant depending only on α. Therefore, we obtain via (52) that∫
B(x1,r

∗)

gε

(
m′)dx � 2π

∣∣∣∣log
r∗

ε

∣∣∣∣ − C(α).

Since B(x1, r
∗) ⊂ Ω , the conclusion (16) follows.

Step 3. We now deal with the other case deg(m′, ∂Ωr1) = 0.

Mirror-reflection extension. We consider the symmetry transform Φ defined by (32) across the boundary ∂Ω together
with the mirror-reflection extension m̃′ :Ωr2 → B2 defined in Lemma 1 where r2 = −r1. Then Lemma 1 yields∫

Ωr2

gε

(
m̃′)dx � 2π(2 + 2α)|log ε| + C(∂Ω), (53)

|m̃′| � 1
2 on ∂Ωr2 , the degree of m̃′ on the boundary ∂Ωr2 is equal to 2 and∫

∂Ωr2

gε

(
m̃′)dH1 � 2|log ε|3

for ε small enough. The extension argument in Step 2 leads via Theorem 5 to the concentration of the Ginzburg–
Landau energy of m̃′ into two vortex balls B(x2, r

∗) and B(x3, r
∗) with x2, x3 ∈ Ωr2 and there exist two non-negative

numbers d2 � d3 � 0, d2 + d3 = 2 such that∫
B(xj ,r∗)∩Ωr2

gε

(
m̃′)dx � 2πdj

∣∣∣∣log
r∗

ε

∣∣∣∣ − C, j = 2,3. (54)

(The assumption α < 1/2 is needed so that 2 + 2α < 3.)
Case 1: d2 = 2 (i.e., there is one vortex ball of degree 2 in Ωr2 ). The level of energy (15) rules out that B(x2, r

∗) ⊂
Ω . By Lemma 1, it also means that B(x2, r

∗)∩Ωr2 is not included in Ωr2 \Ω (otherwise, the symmetry of the energy
distribution around the boundary would imply again that the reflected domain Φ(B(x2, r

∗) ∩ Ωr2) charges the energy
more than the level (15) in the interior of Ω). Therefore, B(x2, r

∗) ∩ ∂Ω �= ∅. Choose x∗
2 = x∗

3 ∈ B(x2, r
∗) ∩ ∂Ω .

Then B(x2, r
∗),Φ(B(x2, r

∗)) ⊂ B(x∗
2 ,10r∗) and by Lemma 1 and (54), we conclude that∫

B(x∗,10r∗)∩Ω

gε

(
m′)dx � 1

2

( ∫
B(x2,r

∗)∩Ω

gε

(
m̃′)dx +

∫
Φ(B(x2,r

∗)\Ω)

gε

(
m̃′)dx

)

2
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Lemma 1
� 1

2

( ∫
B(x2,r

∗)∩Ω

gε

(
m̃′)dx +

∫
B(x2,r

∗)\Ω
gε

(
m̃′)dx

)
− C

� 1

2

∫
B(x2,r

∗)

gε

(
m̃′)dx − C

(54)

� 2π

∣∣∣∣log
r∗

ε

∣∣∣∣ − C.

Here, (17) holds and B(x∗
2 ,10r∗) = B(x∗

3 ,10r∗) are the boundary vortex balls.
Case 2: d2 = d3 = 1 (i.e., there are two disjoint vortex balls of degree 1 in Ωr2 ). If (16) holds, then we are done.

Suppose that (16) is not satisfied. Then we want to prove (17). As in Case 1, the symmetry of the energy distribution
around the boundary implies via Lemma 1 that none of the balls B(x2, r

∗) and B(x3, r
∗) is included in Ω or Ωr2 \ Ω

(otherwise, (16) would hold). Therefore, B(xj , r
∗) ∩ ∂Ω �= ∅ for j = 2,3. Choose x∗

j ∈ B(xj , r
∗) ∩ ∂Ω for j = 2,3.

Then B(xj , r
∗),Φ(B(xj , r

∗)) ⊂ B(x∗
j ,10r∗) for j = 2,3. As before, by Lemma 1 and (54), we conclude that

∫
(B(x∗

2 ,10r∗)∪B(x∗
3 ,10r∗))∩Ω

gε

(
m′)dx � 1

2

( ∫
(B(x2,r

∗)∪B(x3,r
∗))∩Ω

gε

(
m̃′) +

∫
Φ(B(x2,r

∗)\Ω)∪Φ(B(x3,r
∗)\Ω)

gε

(
m̃′))

� 1

2

∫
B(x2,r

∗)∪B(x3,r
∗)

gε

(
m̃′)dx − C

� 2π

∣∣∣∣log
r∗

ε

∣∣∣∣ − C.

(Here, we used that Φ(B(x2, r
∗) \Ω)∩Φ(B(x3, r

∗) \Ω) = ∅ since the two balls B(x2, r
∗) and B(x3, r

∗) are disjoint
and lie in the security region of ∂Ω .) �

The natural question is whether the lower bound for the energy of a boundary vortex given in Theorem 3 is optimal.
A positive answer is supported by the following result: we prove that the loss of energy of order |log ε|

log|log ε| (with respect

to π |log ε| which is the exact half energy of an interior vortex) may be achieved for C1 domains.

Proof of Proposition 1. The aim is to construct a boundary vortex on ∂Ω centered at the origin.

Step 1. Construction of m′
ε . We define the two-dimensional vector field m′

ε that is tangent at ∂Ω ∩ B1/200 and its
phase ϕε is linear on every arc of circle {|x| = r} ∩ Ω with r ∈ (0,1/200). More precisely, let

m′
ε(x) =

{
eiϕε(x) if x ∈ Ω and ε < |x| < 1/200,
|x|
ε

eiϕε(x) if x ∈ Ω and 0 < |x| < ε,

where the phase ϕε is given in the polar coordinates as follows: ϕε(r, ·) : (−γ (r), γ (r)) → (−π/2,π/2) is an odd
function (i.e., ϕε(r, θ) = −ϕε(r,−θ)) and it is linear in θ ,

ϕε(r, θ) =
(

1 + δθ(r)

γ (r)

)
θ for every θ ∈ (−γ (r), γ (r)

)
, r ∈ (0,1/200).

The phase correction δθ : (0,1/200) → (−π
2 ,0) due to the condition (1) is defined as

eiδθ(r) = 1 + irγ ′(r)√
1 + (rγ ′(r))2

for every r ∈ (0,1/200).

(Indeed, one can easily check that m′
ε is tangent at ∂Ω ∩ B1/200.)

Step 2. Estimate of the GL energy outside the core region. We first estimate the energy of m′
ε away from the core, i.e.,

D1 = {x ∈ Ω: ε < |x| < 1/200}. For that, we need the following computations: for r ∈ (0,1/200),
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γ ′(r) = −1

r log 1
r
(log log 1

r
)2

, (55)

δθ(r) = −arccos
1√

1 + (rγ ′(r))2
⇒ ∣∣δθ(r)

∣∣ � 2
∣∣rγ ′(r)

∣∣ (55)

� 2

log 1
r
(log log 1

r
)2

, (56)

where we used that arccos : [−1,1] → [0,π] satisfies
√

1 − t2 � arccos t � 2
√

1 − t2 for t ∈ [ 1
2 ,1]. By a change of

variable r = es and differentiating (56) in the new logarithmic variable s, we deduce that

r

∣∣∣∣ d

dr
δθ(r)

∣∣∣∣ =
∣∣∣∣ d

ds
δθ

(
es

)∣∣∣∣ = 1

1 + ( d
ds

γ (es))2

∣∣∣∣ d2

ds2
γ
(
es

)∣∣∣∣ (57)

and we have for a universal constant C > 0,∫
D1

gε

(
m′

ε

)
dx =

∫
D1

|∇ϕε|2 dx

=
1/200∫
ε

γ (r)∫
−γ (r)

( |∂θϕε|2
r

+ r|∂rϕε|2
)

dθ dr

(55), (56)

�
1/200∫
ε

{
2γ (r)

r

(
1 + C

log 1
r
(log log 1

r
)2

)
+ Crγ (r)

(
1

(log r)2r2
+

(
d

dr
δθ(r)

)2)}
dr

�
1/200∫
ε

{
2γ (r) + Cγ (r)r2

(
d

dr
δθ(r)

)2}
dr

r
+ C

s=log r, (57)

�
log 1

200∫
log ε

{
2γ

(
es

) + γ
(
es

) C

(1 + ( d
ds

γ (es))2)2

(
d2

ds2
γ
(
es

))2}
ds + C

�
log 1

200∫
log ε

(
π − 2

log |s|
)(

1 + C

(
d2

ds2
γ
(
es

))2)
ds + C

� π |log ε| − 2

log 1
200∫

log ε

1

log |s|
(

1 − C

s4

)
ds + C

�
(

π − C

log|log ε|
)

|log ε|.

(Here we used that
∫ x

10
1

log s
ds ∼ x

logx
as x → ∞.)

Step 3. Estimate of the GL energy inside the core region. Now we estimate the energy of m′
ε on the core, i.e., D2 =

{x ∈ Ω: 0 < |x| < ε}. Using the same argument as above and the change of coordinates r = es , we compute

∫
D2

∣∣∇m′
ε

∣∣2
dx =

ε∫
0

γ (r)∫
−γ (r)

(
r2|∇ϕε|2

ε2
+ 1

ε2

)
r dθ dr

(55), (56)

�
ε∫ (

Cr

ε2
+ r3γ (r)

ε2

(
d

dr
δθ(r)

)2)
dr

(57)

�
ε∫

Cr

ε2
dr = O(1)
0 0
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and ∫
D2

1

ε2

(
1 − ∣∣m′

ε

∣∣2)2
dx = O(1).

Step 4. Conclusion. The H 1 vector field m′
ε satisfies the required properties in Proposition 1. However, m′

ε is not
C1. In order to construct a smooth m′

ε , we define f : R → [0,1] a smooth function such that f (t) = 0 if t � 0 and
f (t) = 1 if t � 1. Now, it is enough to change the vector field m′

ε defined at Step 1 only in the core region as follows:
m′

ε(x) = f (
|x|
ε

)eiϕε(x) if 0 � |x| � ε. �
Remark 2. The GL energy of a boundary vortex placed in a corner is proportional with the corner angle. Therefore,
the loss of energy of order |log ε|

log|log ε| for C1 boundaries (see Proposition 1) increases to an order of |log ε| for Lipschitz

boundaries. More precisely, let Ω = {(x1, x2): x1 ∈ (−1,1), x2 > |x1| tan π−α
2 } where α ∈ (0,π) is the corner angle

of Ω at the origin. For every 0 < ε < 1, we consider the following approximation of a vortex:

m′
ε(x) =

{
x
|x| if ε < |x| < 1,

x
ε

if 0 < |x| < ε.

Then m′
ε satisfies (1) on ∂Ω ∩ B2 and∫

Ω∩B2

gε

(
m′

ε

)
dx � α|log ε| + O(1).

6. Proof of Theorem 2

We will work at the level of sequences of parameters εk and ηk and a sequence of magnetizations mk satisfying
the assumptions in Theorem 2. We will prove the theorem in a slightly larger regime than (10); more precisely, it is
enough to assume that

ε
β
k � η, (58)

for some constant β ∈ (0,1) such that

β < 1 − α.

By (13), let A > 0 be such that

Eεk,ηk
(mk) − 2π |log εk| � A

ηk|logηk| for every k ∈ N. (59)

By (11), there exists a > 0 such that

a log|log εk| � A

ηk|logηk| , (60)

for every k ∈ N. Let Uk : R3 → R be the stray field potential associated to mk defined by (24) for (∇, ∂
∂z

)Uk that
satisfies∫

R2×R

(
|∇Uk|2 +

∣∣∣∣∂Uk

∂z

∣∣∣∣
2)

dx dz = 1

2

∫
R2

∣∣|∇|−1/2(∇ · m′
k

)∣∣2
dx. (61)

By the Lax–Milgram theorem, the potential Uk exists and is unique in the Beppo–Levi space (see Dautray and Li-
ons [3]):

BL =
{
U : R3 → R:

(
∇,

∂
)

U ∈ L2(
R

3), U ∈ L2(
R

3)}.

∂z 1 + |x|
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Fig. 6. The net of horizontal lines.

We proceed in several steps:

Step 1. Location of the vortex balls of m′
k . Let r∗ = r∗(k) = 1/|log εk|3. By Theorem 3, there exist at most two points

xk, x̃k ∈ Ω̄ such that∫
(B(xk,r

∗)∪B(x̃k,r
∗))∩Ω

gεk

(
m′

k

)
dx � 2π

∣∣∣∣log
r∗

εk

∣∣∣∣ − C � 2π |log εk| − 100 log|log εk|, (62)

for k sufficiently large. Obviously, up to a subsequence, {xk}, {x̃k} ⊂ Ω̄ converge to two points x0, x̃0 ∈ Ω̄ and we
have that for every small σ > 0,

B
(
xk, r

∗) ⊂ B(x0, σ ), B
(
x̃k, r

∗) ⊂ B(x̃0, σ )

for k sufficiently large.
The set D = B(x0, σ ) ∪ B(x̃0, σ ) is the location of the essential topological defects of each m′

k . Now the goal is to
prove that {mk} is relatively compact in L1(Ω \ D). The idea is to approximate m′

k away from D by S1-valued vector
fields, denoted by M ′

k that satisfy the hypothesis of Theorem 4. For that, let B ⊂ Ω \ D be an arbitrary ball. To simplify
the notation, let B = B(0,2) ⊂ R

2 be the ball of radius 2 centered in the origin. Since m2
3,k � m4

3,k = (1 − |m′
k|2)2,

the energy level on B is bounded as follows:∫
B

|∇mk|2 dx + 1

ε2
k

∫
B

(
1 − ∣∣m′

k

∣∣2)2
dx + 1

η k

∫
R2

∣∣|∇|−1/2(∇ · m′
k

)∣∣2
dx

� Eεk,ηk
(mk) −

∫
D∩Ω

gεk

(
m′

k

)
dx

(12), (59), (62)

� min

{
A

ηk|logηk| ,2πα|log εk|
}

+ 100 log|log εk|
(60)

� min

{
Ã

ηk|logηk| ,2πα|log εk| + 100 log|log εk|
}

(63)

for k sufficiently large and Ã = A(a + 100)/a (by (60)).

Step 2. Construction of a square grid. For each shift t ∈ [0, ε
β
k ), write

Vt := {
(x1, x2) ∈ B: x2 ≡ t

(
mod ε

β
k

)}
for the net of horizontal lines (see Fig. 6) at a distance ε

β
k in B . By the mean value theorem, there exists tk ∈ (0, ε

β
k )

such that∫
Vtk

gεk

(
m′

k

)
dH1 � 1

ε
β
k

∫
B

gεk

(
m′

k

)
dx.

If one repeats the above argument for the net of vertical lines at a distance ε
β
k in B , we get a square grid Rk of size ε

β
k

such that the convex hull of Rk covers the unit ball B2 ⊂ B and∫
gεk

(
m′

k

)
dH1

(63)

� min

{
2Ã

ε
β
k ηk|logηk|

,
C|log εk|

ε
β
k

}
. (64)
Rk
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By the same argument as in (49), the estimate (64) together with β < 1 implies that Rk ⊂ {|m′
k| > 1/2} for k large

enough.

Step 3. Vanishing degree on the cells of the grid. In order to approximate m′
k in B2 by S1-valued vector fields with

uniformly bounded H 1-norm, it is necessary for m′
k to have zero degree on each cell of the square grid Rk . This

property of vanishing degree is shown in the following lemma:

Lemma 2. Let 0 < α < 1, 0 < β < 1 − α and C > 0. There exists ε0 = ε0(α,β,C) > 0 such that for every ε ∈ (0, ε0)

the following holds: if Z = (− εβ

2 , εβ

2 )2 is the cell of length εβ and m′ : Z̄ → B2 is a C1 vector field such that∫
∂Z

gε

(
m′)dH1 � C|log ε|

εβ
and

∫
Z

gε

(
m′)dx � 2πα|log ε| + C log|log ε|,

then deg(m′, ∂Z) = 0.

Proof. Note that the same argument as in (49) implies that |m′| � 1/2 on ∂Z , so that it makes sense to speak about
the degree of m′ on ∂Z . Note also that the quantity C log|log ε| in the upper bound of the GL energy on Z can be
absorbed by the leading order term 2πα̃|log ε| for a slightly bigger α̃ > α so that the inequality β < 1 − α̃ still holds.
Therefore, we omit that second leading order term in the following. The idea of the proof consists in a rescaling and
extension argument so that the imposed upper bounds on the GL energy rule out the existence of a vortex in the
interior. Indeed, assume by contradiction that |deg(m′, ∂Z)| > 0 (i.e., a vortex exists in the interior). By a change of
scale, we define m̃′ on the rescaled cell Z1/2 = (−1/2,1/2)2 as:

m̃′(x) = m′(εβx
)

if x ∈ Z1/2 = (−1/2,1/2)2

and then, we extend m̃′ to the larger cell Zλ = (−λ,λ)2 with λ > 1/2 (to be chosen later) as follows:

m̃′(x) = m̃′(y) if x ∈ Zλ \ Z1/2,

where y ∈ ∂Z1/2 with y = tx for some t ∈ (0,1) (i.e., y is the closest point to x on the boundary ∂Z1/2 that has the
same direction as x). Therefore, |m̃′| � 1/2 in Zλ \ Z1/2 and |deg(m̃′, ∂Zλ)| > 0. Letting δ = ε1−β , we have that∫

Z1/2

gδ

(
m̃′)dx =

∫
Z

gε

(
m′)dx � 2πα

1 − β
|log δ|

and ∫
Zλ\Z1/2

gδ

(
m̃′)dx � C̃

(
λ − 1

2

) ∫
∂Z1/2

gδ

(
m̃′)dH1

= C̃εβ

(
λ − 1

2

) ∫
∂Z

gε

(
m′)dH1

� C̃C

(
λ − 1

2

)
|log ε| = C̃C(λ − 1

2 )

1 − β
|log δ|,

for some universal constant C̃ > 0 and a small ε > 0. We choose λ > 1/2 such that

K := α

1 − β
+ C̃C(λ − 1

2 )

2π(1 − β)
< 1

(this is possible since by hypothesis, β < 1 − α). By summing over the above energy estimates, we obtain that∫
gδ

(
m̃′)dx � 2πK|log δ|. (65)
Zλ
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Since K < 1, Theorem 5 implies the existence of a ball B̃ ⊂ Zλ of radius λ − 1/2 with∫
B̃

gδ

(
m̃′)dx � 2π |log δ| − C̄

for δ sufficiently small, which is a contradiction with (65). �
As a consequence of Lemma 2, we deduce by (63) and (64) that our choice β < 1 − α implies that m′

k has vanishing
degree on every cell of the grid Rk .

Step 4. Construction of an approximating sequence. We denote

ρk = ∣∣m′
k

∣∣ and m′
k = ρkvk.

By Step 3, we can smoothly lift m′
k on the grid, i.e.,

vk = m′
k

ρk

= eiϕk on Rk and ϕk ∈ C1(Rk,R).

On each cell Z k of length ε
β
k of the grid, we define

M ′
k = eiΦk in Z k

where Φk is the harmonic extension of ϕk inside Z k , i.e.,{
�Φk = 0 in Z k,

Φk = ϕk on ∂Z k.

Since ϕk can be smoothly extended around ∂Z k (because m′
k/ρk has a C1 lifting around ∂Z k), we deduce that

Φk ∈ C1(Z̄ k). Note that the following inequality holds:∫
Z k

|∇Φk|2 dx � Cε
β
k

∫
∂Z k

|∇ϕk|2 dH1. (66)

Indeed, after rescaling by ε
β
k , we show the inequality in the unit cell Z1 = (−1,1)2 for the harmonic function Φ in

Z1 with the trace ϕ on ∂Z1. We can assume that
∫
∂Z1

ϕ dH1 = 0 (otherwise, consider ϕ − −
∫

∂Z1
ϕ dH1). For that, we

consider a smooth cut-off function Ψ : [0,1] → R such that Ψ (t) = 0 for t � 1/2 and Ψ (1) = 1 and the following
extension Φext of ϕ in Z1: Φext(t · x) = Ψ (t)ϕ(x) for every t ∈ (0,1) and x ∈ ∂Z1. By Poincaré’s inequality, one
concludes∫

Z1

|∇Φ|2 dx �
∫

Z1

∣∣∇Φext
∣∣2

dx � C

∫
∂Z1

(|∇ϕ|2 + ϕ2)dH1 � C

∫
∂Z1

|∇ϕ|2 dH1.

The goal is to prove that the sequence {M ′
k} approximates {m′

k} in L2(B2,R
2) and M ′

k satisfies (28) for some
associated stray field hk defined in B3.

Step 5. Estimate ‖∇(M ′
k − m′

k)‖L2 . Denoting by C a generic universal constant, we have∫
Z k

∣∣∇M ′
k

∣∣2
dx =

∫
Z k

|∇Φk|2 dx

(66)

� Cε
β
k

∫
∂Z k

|∇ϕk|2 dH1

= Cε
β
k

∫
∂Z k

|∇vk|2 dH1

� Cε
β
k

∫
k

ρ2
k |∇vk|2 dH1 � Cε

β
k

∫
k

∣∣∇m′
k

∣∣2
dH1 (67)
∂Z ∂Z
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since ρk � 1/2 on Rk . Summing up after all cells Z k of Rk , since the convex hull of Rk covers B2, we obtain by (64),∫
B2

∣∣∇M ′
k

∣∣2
dx � Cε

β
k

∫
Rk

gεk

(
m′

k

)
dH1 � C

ηk|logηk| . (68)

Combining with (63), it yields∫
B2

∣∣∇(
M ′

k − m′
k

)∣∣2
dx � C

ηk|logηk| . (69)

Step 6. Estimate ‖M ′
k − m′

k‖L2 . By Poincaré’s inequality, we have for each cell Z k of Rk :

∫
Z k

∣∣∣∣M ′
k − −

∫
∂Z k

M ′
k

∣∣∣∣
2

dx � Cε
2β
k

∫
Z k

∣∣∇M ′
k

∣∣2
dx

(67)

� Cε
3β
k

∫
∂Z k

∣∣∇m′
k

∣∣2
dH1 (70)

and ∫
Z k

∣∣∣∣m′
k − −

∫
∂Z k

m′
k

∣∣∣∣
2

dx � Cε
2β
k

∫
Z k

∣∣∇m′
k

∣∣2
dx. (71)

Since vk = M ′
k on ∂Z k , by Jensen’s inequality, we also compute

∫
Z k

∣∣∣∣ −
∫
∂Z k

(
M ′

k − m′
k

)∣∣∣∣
2

dx =
∫

Z k

∣∣∣∣ −
∫
∂Z k

(
vk − m′

k

)∣∣∣∣
2

dx

� Cε
2β
k −

∫
∂Z k

(1 − ρk)
2 dH1

� Cε
β
k

∫
∂Z k

(
1 − ρ2

k

)2
dH1

� Cε
β+2
k

∫
∂Z k

gεk

(
m′

k

)
dH1. (72)

Summing up (70), (71) and (72) over all the cells Z k of the grid Rk , by (63) and (64), we obtain that

∫
B2

∣∣M ′
k − m′

k

∣∣2
dx �

Cε
2β
k

ηk|logηk| . (73)

Step 7. Construction of an appropriate stray field hk associated to M ′
k in B3 such that (28) holds for the couple

(M ′
k, hk). The choice of the stray field hk has the form

hk :=
(

∇,
∂

∂z

)
(Uk + Ũk)

where Uk is the stray field potential associated to m′
k by (61) and we consider Ũk ∈ H 1

0 (B3) to be the unique solution
of the variational problem∫

3

(
∇Ũk · ∇ζ + ∂Ũk

∂z

∂ζ

∂z

)
dx dz =

∫
2

ζ∇ · (M ′
k − m′

k

)
dx ∀ζ ∈ H 1

0

(
B3). (74)
B B
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(It is a direct consequence of Lax–Milgram’s theorem in H 1
0 (B3).) Note that hk is indeed a stray field associated to

M ′
k :B2 → S1 on the unit ball. In order to estimate

∫
B3 |hk|2 dx dz, we observe that∫

B3

∣∣∣∣
(

∇,
∂

∂z

)
Uk

∣∣∣∣
2

dx dz �
∫
R3

∣∣∣∣
(

∇,
∂

∂z

)
Uk

∣∣∣∣
2

dx dz � C

|logηk| (75)

by (61) and (63). It remains to estimate
∫
B3 |(∇, ∂

∂z
)Ũk|2 dx dz. For that, one should use an interpolation argument via

(69) and (73). For that, we extend Ũk by 0 outside B3, so that the extended function (still denoted by Ũk) belongs to
H 1(R3) and the trace Ũk|R2 ∈ H 1/2(R2). Moreover, we have∫

R2

∣∣|∇|1/2Ũk

∣∣2
dx � 1

2

∫
R3

(
|∇Ũk|2 +

∣∣∣∣∂Ũk

∂z

∣∣∣∣
2)

dx dz = 1

2

∫
B3

(
|∇Ũk|2 +

∣∣∣∣∂Ũk

∂z

∣∣∣∣
2)

dx dz. (76)

Let us denote by T a linear continuous extension operator:

T :Hs
(
B2) → Hs

(
R

2), s = 0,1.

Then by interpolation, it follows that∫
R2

∣∣|∇|1/2T
(
M ′

k − m′
k

)∣∣2
dx �

(∫
R2

∣∣T (
M ′

k − m′
k

)∣∣2
dx

)1/2(∫
R2

∣∣∇T
(
M ′

k − m′
k

)∣∣2
dx

)1/2

� C

(∫
B2

∣∣M ′
k − m′

k

∣∣2
dx

)1/2(∫
B2

∣∣∇(
M ′

k − m′
k

)∣∣2
dx

)1/2

.

Combining with (76), the choice ζ := Ũk in (74) yields∫
B3

(
|∇Ũk|2 +

∣∣∣∣∂Ũk

∂z

∣∣∣∣
2)

dx dz =
∫
B2

Ũk∇ · (M ′
k − m′

k

)
dx

=
∫
R2

Ũk∇ · T (
M ′

k − m′
k

)
dx

�
(∫

R2

∣∣|∇|1/2Ũk

∣∣2
dx

)1/2(∫
R2

∣∣|∇|1/2T
(
M ′

k − m′
k

)∣∣2
dx

)1/2

� C

(∫
B3

|∇Ũk|2 +
∣∣∣∣∂Ũk

∂z

∣∣∣∣
2

dx dz

)1/2

×
(∫

B2

∣∣M ′
k − m′

k

∣∣2
dx

)1/4(∫
B2

∣∣∇(
M ′

k − m′
k

)∣∣2
dx

)1/4

.

Hence,∫
B3

∣∣∣∣
(

∇,
∂

∂z

)
Ũk

∣∣∣∣
2

dx dz
(69), (73)

�
Cε

β
k

ηk|logηk|
(58)

� C

|logηk| (77)

for k sufficiently large. Therefore, by (75) and (77), we conclude∫
3

|hk|2 dx dz � C

|logηk| . (78)
B
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Fig. 7. A 180◦ Néel wall approximation.

By (68) and (78), condition (28) is satisfied for M ′
k and the stray fields hk . Then Theorem 4 applies and implies that

{M ′
k} is relatively compact in L1(B2). Therefore, from (73), it follows that {m′

k} also is relatively compact in L1(B2).
Since the ball B was arbitrary chosen in the complementary of D and we proved the relatively compactness result in
the reduced ball B2 = 1

2B , by a diagonal argument, we deduce that {m′
k} converges in L1(Ω \ D) up to a subsequence.

Letting now σ → 0, the conclusion of Theorem 2 follows.

7. Upper bound for the Landau state

In this section we prove the upper bound stated in Theorem 1 for a stadium domain:

Proof of Theorem 1. The construction is carried out in several steps:

Step 1. A Néel wall approximation. Let

λ := η|logη|.
The parameter λ corresponds to the core size of a 180◦ wall transition. More precisely, we consider the following 1d

transition layer (uλ, vλ) : R → S1 that approximates a 180◦ Néel wall centered at the origin (see Fig. 7):

uλ(t) =
{

|log
√

t2+λ2|
|logλ| if |t | � √

1 − λ2,

0 elsewhere,

vλ(t) =
⎧⎨
⎩

−
√

1 − u2
λ(t) if t � 0,√

1 − u2
λ(t) if t � 0.

The exchange energy corresponding to this transition layer estimates as follows (see DeSimone, Knüpfer and Otto
[5] or Ignat [8]):∫

R

∣∣∣∣duλ

dt

∣∣∣∣
2

+
∣∣∣∣dvλ

dt

∣∣∣∣
2

dt �
∫
R

1

1 − uλ

∣∣∣∣duλ

dt

∣∣∣∣
2

dt = O

(
1

λ|logλ|
)

. (79)

In order to estimate the stray-field energy of the transition layer, let Uλ be the radial extension of uλ in R
2:

Uλ(x1, x2) = uλ

(√
x2

1 + x2
2

)
.

By Ḣ 1/2(R)-trace estimate of an Ḣ 1(R2)-function, it follows (see details in [5,8] or (96) below):

‖uλ‖2
Ḣ 1/2(R)

� 1

2

∫
R2

|∇Uλ|2 dx � π

1∫
0

r

∣∣∣∣duλ

dr

∣∣∣∣
2

dr = π + o(1)

|logη| . (80)

We will construct a continuous vector field m :Ω → S2 such that the upper bound in Theorem 1 holds and

m′(x) = ν⊥(x), m3(x) = 0 if x ∈ ∂Ω, (81)
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Fig. 8. The region Ω1.

where ν is the outer unit normal vector on ∂Ω . Moreover, the function m will satisfy the following symmetry proper-
ties:

m′(x) = −m′(−x), m1(x) = −m1(x1,−x2), m2(x) = −m2(−x1, x2), x ∈ Ω.

Step 2. Construction in Ω1 (the sub-domain defined in Theorem 1). We distinguish two regions in Ω1 (see Fig. 8):

Ω1,1 = {x ∈ Ω1: x1 � 1 + δ} and Ω1,2 = {x ∈ Ω1: 1 � x1 < 1 + δ} with δ = 1

|logη|3/2
.

In Ω1,1, we define m with values in S1 that behaves like a vortex centered in A = (1,0):

m′(x) =
(

x − A

|x − A|
)⊥

, m3(x) = 0 in Ω1,1.

By setting m′ to be a 180◦ transition wall on ∂Ω2 ∩ ∂Ω1,2 (as in Step 1), i.e.,

m′(1, x2) = (
uλ(x2), vλ(x2)

)⊥ = eiθλ(x2), m3 = 0 if x2 ∈ (−1,1),

the vector field m is completely defined on ∂Ω1,2 (together with (81)). Here, θλ is the angle transition between [0,π]
of the 180◦ wall on ∂Ω1,2 ∩ ∂Ω2, i.e., θλ(x2) = 0 and θλ(−x2) = π if x2 ∈ [−1,−√

1 − λ2], and

θλ(x2) = arcsin

(
1

|logλ| log
1√

x2
2 + λ2

)
, θλ(−x2) = π − θλ(x2) if x2 ∈ [−√

1 − λ2,0
]
.

Therefore, we define m′ = eiϕ,m3 = 0 inside Ω1,2 by a phase ϕ that is uniquely determined by the boundary condi-
tions on ∂Ω1,2 as an affine continuous function in x1:

ϕ
(
1 + t

√
1 − x2

2 , x2
) = t arcsin

√
1 − x2

2 + (1 − t)θλ(x2), t ∈ (0,1), x2 ∈ (−1,−
√

1 − δ2
)
,

ϕ(1 + δt, x2) = t arcsin
δ√

x2
2 + δ2

+ (1 − t)θλ(x2), t ∈ (0,1), x2 ∈ (−√
1 − δ2,0

)
,

ϕ(x1, x2) = π − ϕ(x1,−x2), x ∈ Ω1,2, x2 > 0.

We will denote by

αδ(x2) = arcsin
δ√

x2
2 + δ2

the phase of the vortex at ∂Ω1,1 ∩ ∂Ω1,2.

Step 3. Estimate of the exchange energy in Ω1. First, we have:∫
Ω1,1

|∇m|2 dx = O
(|log δ|) = O

(
log|logη|), (82)

∫ ∫
x∈Ω1,2

|x |∈(
√

1−δ2,1)

|∇m|2 dx = 2
∫ ∫

x∈Ω1,2

x ∈(−1,−
√

1−δ2)

|∇ϕ|2 dx = o(δ)
2 2
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and ∫ ∫
x∈Ω1,2

|x2|<
√

1−δ2

|∇m|2 dx = 2
∫ ∫

x∈Ω1,2

x2∈(−
√

1−δ2,0)

|∇ϕ|2 dx

= 2

1∫
0

0∫
−
√

1−δ2

(
1

δ

(
αδ(x2) − θλ(x2)

)2 + δ

(
t
dαδ

dx2
+ (1 − t)

dθλ

dx2

)2)
dt dx2

� 4

√
1−δ2∫

0

(
1

δ
α2

δ (x2) + 1

δ
θ2
λ(x2) + δ

∣∣∣∣dαδ

dx2

∣∣∣∣
2

+ δ

∣∣∣∣dθλ

dx2

∣∣∣∣
2)

dx2.

Introducing the notation α(x2
δ
) = αδ(x2), we compute:

√
1−δ2∫

0

1

δ
α2

δ (x2) dx2 �
1/δ∫
0

α2(s) ds � 4

1/δ∫
0

1

s2 + 1
ds = O(1) (83)

(where we use that arcsinx � 2x if x ∈ (0,1)),
√

1−δ2∫
0

1

δ
θ2
λ(x2) dx2 = O

(
1

δ|logλ|2
)

= o(1),

√
1−δ2∫

0

δ

∣∣∣∣dαδ

dx2

∣∣∣∣
2

dx2 �
1/δ∫
0

∣∣∣∣dα

ds

∣∣∣∣
2

(s) ds =
1/δ∫
0

1

(s2 + 1)2
ds = O(1) (84)

and √
1−δ2∫

0

δ

∣∣∣∣dθλ

dx2

∣∣∣∣
2

dx2 = O

(
δ

λ|logλ|
)

= o

(
1

η|logη|
)

.

Therefore,∫
Ω1,2

|∇m|2 dx = o

(
1

η|logη|
)

. (85)

Step 4. Construction in Ω3. We define m by imposing the symmetry m(x) = −m(−x) for x ∈ Ω3. Therefore, by (82)
and (85), we have∫

Ω3

|∇m|2 dx =
∫
Ω1

|∇m|2 dx = o

(
1

η|logη|
)

. (86)

Step 5. Construction in Ω2. We distinguish two regions in Ω2 (see Fig. 9):

Ω2,1 = {
x ∈ Ω2: |x1| ∈ (2δ,1)

}
and Ω2,2 = {

x ∈ Ω1: |x1| < 2δ
}
.

In Ω2,1, we define m with values in S1 that behaves like a 180◦ Néel wall (as in Step 1):

m′(x) = (
uλ(x2), vλ(x2)

)⊥ = eiθλ(x2), m3(x) = 0 for x1 ∈ (2δ,1), x2 ∈ (−1,1),

m(x) = −m(−x) for x1 ∈ (−1,−2δ), x2 ∈ (−1,1).
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Fig. 9. The region Ω2,2.

Denoting by Br the disc centered at the origin of radius r , we decompose the domain

Ω2,2 = Bε ∪ ω1 ∪ ω2 ∪ ω3

with

ω1 = {
x ∈ B1: |x1| � δ

} \ Bε,

ω2 = {
x ∈ Ω2 \ B1: |x1| � δ

}
,

ω3 = {
δ < |x1| < 2δ

} × (−1,1).

In Bε (the core of the vortex), we define

m′(x) = sin

(
π

2ε
|x|

)(
x

|x|
)⊥

, m3(x) =
√

1 − ∣∣m′∣∣2
(x) for x ∈ Bε.

In ω1, we define m with values in S1 that corresponds to the vortex away from the core:

m′(x) =
(

x

|x|
)⊥

, m3(x) = 0 for x ∈ B1 \ Bε and |x1| � δ.

In ω2, we define m with values in S1: m′ = eiϕ,m3 = 0 inside ω2. The phase ϕ is given as an affine continuous
function in x2 determined by the values on the boundary ∂ω2:

ϕ
(
x1,−(1 − t) − t

√
1 − x2

1

) = t arcsinx1, t ∈ (0,1), x1 ∈ (0, δ),

ϕ(x1, x2) = π − ϕ(x1,−x2), x ∈ ω2, x1 ∈ (0, δ), x2 > 0,

ϕ(x) = π + ϕ(−x), x ∈ ω2, x1 ∈ (−δ,0).

In ω3, we also define m with values in S1 where the phase ϕ is an affine continuous function in x1 determined by the
boundary conditions on ∂ω2:

ϕ(δ + δt, x2) = (1 − t)(x2 + 1)

1 − √
1 − δ2

arcsin δ + tθλ(x2), t ∈ (0,1), x2 ∈ (−1,−
√

1 − δ2
)
,

ϕ(δ + δt, x2) = (1 − t)αδ(x2) + tθλ(x2), t ∈ (0,1), x2 ∈ (−√
1 − δ2,0

)
,

ϕ(x1, x2) = π − ϕ(x1,−x2), x1 ∈ (δ,2δ), x2 ∈ (0,1),

ϕ(x) = π + ϕ(−x), x1 ∈ (−2δ,−δ), x2 ∈ (−1,1).

Step 6. Estimate of the exchange energy in Ω2. We start by estimating the exchange energy in Ω2,1 and then, in Ω2,2.
By (79), we have that∫

Ω2,1

|∇m|2 dx = 2(1 − 2δ)

∫
R

(∣∣∣∣duλ

dt

∣∣∣∣
2

+
∣∣∣∣dvλ

dt

∣∣∣∣
2 )

dt = o

(
1

η|logη|
)

. (87)

In Ω2,2, we first have∫
|∇m|2 dx = O(1). (88)
Bε
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Then ∫
ω1

|∇m|2 dx = 2π |log ε| − O
(|log δ|), (89)

∫
ω2

|∇m|2 dx =
∫
ω2

|∇ϕ|2 dx = o(δ) (90)

and ∫
ω3

|∇m|2 dx =
∫
ω3

|∇ϕ|2 dx
(85)= o

(
1

η|logη|
)

. (91)

By (86), (87), (88), (89), (90) and (91), we deduce the following estimate of the exchange energy of m:∫
Ω

|∇m|2 dx = 2π |log ε| + o

(
1

η|logη|
)

. (92)

Step 7. Symmetries of the stray field. Now we estimate the stray field energy of m. For that, let U ∈ BL be the stray
field potential in the Beppo–Levi space associated to m defined by (24) for (∇, ∂

∂z
)U that satisfies∫

R2×R

(
|∇U |2 +

∣∣∣∣∂U

∂z

∣∣∣∣
2)

dx dz =
∫
Ω

U(x,0)∇ · m′(x) dx = 1

2

∫
R2

∣∣|∇|−1/2(∇ · m′)∣∣2
dx. (93)

Moreover, the stray field potential verifies:⎧⎨
⎩

�U = 0 if z �= 0,[
∂U

∂z

]
= −∇ · m′, [U ] = 0 if z = 0.

Since m′ is a Lipschitz vector field in Ω (so, ∇ · m′ ∈ L∞(R2)), by standard regularity theory for elliptic PDEs, we
know that U is continuous in R

3. We also may deduce some symmetry properties of U : First of all, the uniqueness of
the stray field potential U ∈ BL in (93) yields U(x, z) = U(x,−z) for every (x, z) ∈ R

3. Also, remark that our vector
field m′ is anti-symmetric with respect to the origin, i.e., m′(x) = −m′(−x) which yields ∇ · m′(x) = ∇ · m′(−x)

in R
2. Again, by the uniqueness of the stray field potential U ∈ BL, we deduce that U is symmetric in the in-plane

variables with respect to the origin, i.e.,

U(x, z) = U(−x,±z) for every (x, z) ∈ R
3.

Also, the vector field m satisfies the symmetry relation m′(x) = (m1,−m2)(−x1, x2) in R
2, so that ∇ · m′(x) =

−∇ · m′(−x1, x2) in R
2. It implies that

U(x1, x2, z) = −U(−x1, x2,±z) for every (x, z) ∈ R
3.

Similarly, U(x1, x2, z) = −U(x1,−x2,±z) for every (x, z) ∈ R
3. In particular, it yields U(0, x2, z) = U(x1,0, z) = 0

for every (x, z) ∈ R
3.

In what follows, we compute upper bounds for
∫
Ω

U(x,0)∇ · m′(x) dx in several steps corresponding to each
subdomain of Ω . In Ω1,1 ∪ (−Ω1,1) ∪ ω1, m′ is of vanishing divergence, therefore∫

Ω1,1∪(−Ω1,1)∪ω1

U(x,0)∇ · m′(x) dx = 0. (94)

In the next step, we estimate∫
U(x,0)∇ · m′(x) dx (95)
ω̃
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where

ω̃ = Ω1,2 ∪ (−Ω1,2) ∪ Ω2,1 ∪ ω2 ∪ ω3.

In the last step, we compute
∫
Bε

U(x,0)∇ · m′(x) dx.

Step 8. Upper bound for (95). The computation will be done according to the decomposition: ∇ · m′ = ∂m1
∂x1

+ ∂m2
∂x2

. In

order to estimate
∫
Ω1,2∪(−Ω1,2)

U(x,0) ∂m2
∂x2

(x) dx, we use the following argument (see also Proposition 3 in [8]):

Lemma 3. Let L > 0, U : R2 → R and v : R → R be such that v(x1) = v(−L) = v(L) for every |x1| � L. Then( L∫
−L

U(x1,0)
∂v

∂x1
(x1) dx1

)2

� 1

2
‖v‖2

Ḣ 1/2(R)

(∫
R2

|∇U |2 dx

)
,

where

‖v‖2
Ḣ 1/2(R)

= 1

2
min

{∫
R2

|∇V |2 dx: V (x1,0) = v(x1) for every x1 ∈ R

}
. (96)

Here, we denote the homogeneous Ḣ 1/2-seminorm of v by

‖v‖Ḣ 1/2(R) :=
∫
R

|ξ ||F v|2(ξ) dξ,

where F v ∈ S ′(R) stands for the Fourier transform of v (as a tempered distribution), i.e.,

F v(ξ) = 1√
2π

∫
R

e−iξxv(x1) dx1, ∀ξ ∈ R.

One can also write

‖v‖2
Ḣ 1/2(R)

= 1

2π

∫
R

∫
R

|v(s) − v(t)|2
|s − t |2 ds dt (97)

(see e.g., [8]). Another remark is that for even functions v (i.e., v(x1) = v(−x1)), the following estimate of ‖v‖Ḣ 1/2(R)

can be obtained via (96) by considering the radial extension V of v in R
2 (i.e., V (x) = v(|x|)):

‖v‖2
Ḣ 1/2(R)

� 1

2

∫
R2

|∇V |2 dx = π

L∫
0

r

∣∣∣∣∂v

∂r

∣∣∣∣
2

dr. (98)

Observe that (96) is a general characterization of the H 1/2-trace of H 1-functions and it is valid in any dimension.

Proof of Lemma 3. W.l.o.g., we can assume that v(x1) = v(−L) = v(L) = 0 for every |x1| > L. Then Parseval’s
identity and the Cauchy–Schwarz inequality yield:( L∫

−L

U(x1,0)
∂v

∂x1
(x1) dx1

)2

=
(∫

R

U(x1,0)
∂v

∂x1
(x1) dx1

)2

=
(∫

R

F
(
U(·,0)

)
(ξ1)F

(
∂v

∂x1

)
(ξ1) dξ1

)2

=
(∫

iξ1 F
(
U(·,0)

)
(ξ1)F (v)(ξ1) dξ1

)2
R
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�
(∫

R

|ξ1|
∣∣F

(
U(·,0)

)
(ξ1)

∣∣2
dξ1

)(∫
R

|ξ1|
∣∣F (v)(ξ1)

∣∣2
dξ1

)

� ‖v‖2
Ḣ 1/2(R)

∥∥U(·,0)
∥∥2

Ḣ 1/2(R)

(96)

� 1

2
‖v‖2

Ḣ 1/2(R)

(∫
R2

|∇U |2 dx

)
. �

Writing each x1 ∈ (1,1 + δ) as x1 = 1 + δt with t ∈ (0,1), the x2-section in Ω1,2 passing through x1 is given by

Ix1 = (−√
1 − δ2t2,

√
1 − δ2t2

)
,

so that Ω1,2 = ⋃
t∈(0,1){x1} × Ix1 . Since m2(x1, ·) takes the same value at the boundary ∂Ix1 for every t ∈ (0,1), we

have by (98) that:

∥∥m2(x1, ·)
∥∥2

Ḣ 1/2(R)
� π

2

∫
Ix1

|x2|
∣∣∣∣∂m2

∂x2
(x1, x2)

∣∣∣∣
2

dx2 � π

2

∫
Ix1

|x2|
∣∣∣∣ ∂ϕ

∂x2
(x1, x2)

∣∣∣∣
2

dx2 = O(1),

where the upper bound O(1) does not depend on x1. Therefore, Lemma 3 yields:

∫
Ω1,2∪(−Ω1,2)

U(x,0)
∂m2

∂x2
(x) dx

x1=1+tδ= 2

1∫
0

δ

(∫
Ix1

U(x,0)
∂m2

∂x2
(x) dx2

)
dt

�
√

2

1∫
0

δ

(∫
R2

∣∣∣∣
(

∂

∂x2
,

∂

∂z

)
U(1 + tδ, x2, z)

∣∣∣∣
2

dx2 dz

)1/2∥∥m2(x1, ·)
∥∥

Ḣ 1/2(R)
dt

� C
√

δ

(∫
R3

∣∣∣∣
(

∇,
∂

∂z

)
U(x, z)

∣∣∣∣
2

dx dz

)1/2

. (99)

We apply the same argument to estimate
∫
Ω2,1

U(x,0) ∂m2
∂x2

(x) dx. By (80), we already know that

∥∥m2(x1, ·)
∥∥2

Ḣ 1/2(R)
= π + o(1)

|logη| , for all |x1| ∈ (2δ,1).

We deduce via Lemma 3 that:

∫
Ω2,1

U(x,0)
∂m2

∂x2
(x) dx =

∫
2δ<|x1|<1

( 1∫
−1

U(x,0)
∂m2

∂x2
(x) dx2

)
dx1

� 1√
2

∫
2δ<|x1|<1

(∫
R2

∣∣∣∣
(

∂

∂x2
,

∂

∂z

)
U(x, z)

∣∣∣∣
2

dx2 dz

)1/2∥∥m2(x1, ·)
∥∥

Ḣ 1/2(R)
dx1

�
(

π + o(1)

|logη|
)1/2(∫

3

∣∣∣∣
(

∇,
∂

∂z

)
U(x, z)

∣∣∣∣
2

dx dz

)1/2

. (100)
R
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When estimating the same quantity in ω3, a similar computation to (99) leads to∫
ω3

U(x,0)
∂m2

∂x2
(x) dx � C

√
δ

(∫
R3

∣∣∇(x,z)U(x, z)
∣∣2

dx dz

)1/2

. (101)

In ω2, a slightly different argument is used to estimate the quantity:∫
ω2

U(x,0)
∂m2

∂x2
(x) dx �

(∫
ω2

∣∣U(x,0)
∣∣4

dx

)1/4(∫
ω2

∣∣∣∣∂m2

∂x2

∣∣∣∣
4/3

dx

)3/4

�
(∫

R2

∣∣U(x,0)
∣∣4

dx

)1/4(∫
ω2

∣∣∣∣ ∂ϕ

∂x2

∣∣∣∣
4/3

dx

)3/4

� Cδ5/4
∥∥U(·,0)

∥∥
Ḣ 1/2(R2)

(96)

� Cδ5/4
(∫

R3

∣∣∣∣
(

∇,
∂

∂z

)
U(x, z)

∣∣∣∣
2

dx dz

)1/2

. (102)

It remains to estimate
∫
ω̃

U(x,0) ∂m1
∂x1

(x) dx. In the region near the boundary, i.e., ω̃ ∩ {√1 − δ2 � |x2| � 1}, the
same argument as in (102) yields:∫

ω̃∩{
√

1−δ2�|x2|�1}

U(x,0)
∂m1

∂x1
(x) dx �

(∫
R2

∣∣U(x,0)
∣∣4

dx

)1/4( ∫
ω̃∩{

√
1−δ2�|x2|�1}

∣∣∣∣ ∂ϕ

∂x1

∣∣∣∣
4/3

dx

)3/4

� Cδ9/4
(∫

R3

∣∣∣∣
(

∇,
∂

∂z

)
U(x, z)

∣∣∣∣
2

dx dz

)1/2

. (103)

For the interior region, i.e., ω̃∩{|x2| �
√

1 − δ2}, we notice that ∂m1
∂x1

≡ 0 on Ω2,1 and up to a translation, ∂m1
∂x1

coincides
on Ω1,2 and ω3. Therefore, it is enough to estimate (by the above argument) the quantity∫

ω3∩{|x2|�
√

1−δ2}

U(x,0)
∂m1

∂x1
(x) dx �

(∫
R2

∣∣U(x,0)
∣∣4

dx

)1/4( ∫
ω3∩{|x2|�

√
1−δ2}

∣∣∣∣ ∂ϕ

∂x1

∣∣∣∣
4/3

dx

)3/4

�
(∫

R2

∣∣U(x,0)
∣∣4

dx

)1/4
( √

1−δ2∫
0

1

δ1/3

(
αδ(x2) − θλ(x2)

)4/3
dx2

)3/4

.

The same computation as in (83) and (84) yields

1

δ1/3

√
1−δ2∫

0

α
4/3
δ (x2) dx2 � δ2/3

1/δ∫
0

1

(t2 + 1)2/3
dt = O

(
δ2/3)

and

1

δ1/3

√
1−δ2∫

0

θ
4/3
λ (x2) dx2 = O

(
1

δ1/3|logλ|4/3

)
.

Therefore, we deduce that∫
ω̃∩{|x |�

√
1−δ2}

U(x,0)
∂m1

∂x1
(x) dx � o

(
1

|logη|1/2

)(∫
R3

∣∣∣∣
(

∇,
∂

∂z

)
U

∣∣∣∣
2)1/2

. (104)
2
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Summing (99), (100), (101), (102), (103) and (104), we obtain the following estimate for the stray field energy in Ω̃ :∫
ω̃

U(x,0)∇ · m′ dx �
(

π + o(1)

|logη|
)1/2(∫

R3

∣∣∣∣
(

∇,
∂

∂z

)
U

∣∣∣∣
2)1/2

. (105)

Step 9. Conclusion. It remains to estimate the stray field energy in Bε as in (102):∫
Bε

U(x,0)∇ · m′ dx � C

(∫
R3

∣∣∣∣
(

∇,
∂

∂z

)
U

∣∣∣∣
2)1/2(∫

Bε

∣∣∇m′∣∣4/3
)3/4

� C
√

ε

(∫
R3

∣∣∣∣
(

∇,
∂

∂z

)
U

∣∣∣∣
2)1/2

. (106)

By (94), (105) and (106), we conclude that the total stray field energy is bounded by:∫
R3

∣∣∣∣
(

∇,
∂

∂z

)
U

∣∣∣∣
2

� π + o(1)

|logη| ,

i.e., by (93),

1

η

∫
R2

∣∣|∇|−1/2(∇ · m′)∣∣2
dx � 2π + o(1)

η|logη| . (107)

Finally, we estimate the last term of our energy given by the m3-component. For our configuration m, the only region
in Ω where m is not in-plane corresponds to the vortex core Bε . There we have

1

ε2

∫
Ω

m2
3 dx = 1

ε2

∫
Bε

cos2
(

π

2ε
r

)
dx = O(1).

Combining with (92) and (107), the conclusion follows. Remark that the constructed configuration m ∈ H 1(Ω,S2)

is only continuous. By the density of C1(Ω,S2) vector fields satisfying (1) in the space of H 1(Ω,S2) vector fields
with (1) (for C1,1 domains), one can smooth the configuration m so that the previous upper bound remains true. �
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Appendix A

As mentioned in introduction, condition (1) is necessary for a configuration to have finite stray-field energy in our
model. To simplify the notation, we prove the statement for the case where ∂Ω is a straight line:

Proposition 2. Let Ω = (−∞,0) × R and m′ ∈ H 1(Ω,R
2). With the convention m′ := m′1Ω , then∫

R2

∣∣|∇|−1/2(∇ · m′)∣∣2
dx < ∞ implies that m1(0, ·) = 0 in H 1/2(R).

Proof. We will show that∫
m1(0, x2)ϕ(x2) dx2 = 0 for every ϕ ∈ C∞

c (R). (108)
R
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(Here, m1(0, ·) represents the H 1/2(R)-trace on the vertical line {x1 = 0} of m1 ∈ H 1(Ω,R).) For a small ε > 0, let
ζε mimic the normal component of a Néel wall transition on a scale ε with the size of the core of order ε2:

ζε(x1) =

⎧⎪⎨
⎪⎩

log ε2

(x2
1+ε4)

log 1
ε2

if |x1| �
√

ε2 − ε4,

0 elsewhere.

We claim that (108) is equivalent to

lim
ε→0

∫
R2

m1(x1, x2)ϕ(x2)
dζε

dx1
(x1) dx1 dx2 = 0 for every ϕ ∈ C∞

c (R). (109)

Indeed, we have:∣∣∣∣
∫
R2

m1(x1, x2)ϕ(x2)
dζε

dx1
(x1) dx1 dx2 −

∫
R

m1(0, x2)ϕ(x2) dx2

∣∣∣∣

�
∣∣∣∣∣
∫
R2

m1(x1, x2)ϕ(x2)
dζε

dx1
(x1) dx1 dx2 −

0∫
−∞

dζε

dx1
(x1)

∫
R

m1(0, x2)ϕ(x2) dx2 dx1

∣∣∣∣∣
=

∣∣∣∣∣
0∫

−ε

dζε

dx1
(x1)

∫
R

ϕ(x2)

( 0∫
x1

∂m1

∂x1
(s, x2) ds

)
dx2 dx1

∣∣∣∣∣
�

∫
R

∣∣ϕ(x2)
∣∣ 0∫
−ε

∣∣∣∣∂m1

∂x1
(s, x2)

∣∣∣∣ds dx2

�
√

ε

∫
R

∣∣ϕ(x2)
∣∣∥∥∥∥∂m1

∂x1
(·, x2)

∥∥∥∥
L2(R−)

dx2 �
√

ε‖ϕ‖L2(R)

∥∥∥∥∂m1

∂x1

∥∥∥∥
L2(Ω)

(where we used that ζε is increasing on R− and
∫

R−
dζε

dx1
(x1) dx1 = 1). In order to prove (109), we set ψ(x1, x2) =

ζε(x1)ϕ(x2) and we write∫
R2

m1(x1, x2)ϕ(x2)
dζε

dx1
(x1) dx1 dx2 =

∫
R2

m′ · ∇ψ dx1 dx2 −
∫
R2

m2(x1, x2)ζε(x1)
dϕ

dx2
(x2) dx1 dx2.

Integrating by parts, we estimate the second term in the above RHS:

∣∣∣∣
∫
R2

m2(x1, x2)ζε(x1)
dϕ

dx2
(x2) dx1 dx2

∣∣∣∣ =
∣∣∣∣∣

0∫
−ε

ζε(x1)

∫
R

ϕ(x2)
∂m2

∂x2
(x1, x2) dx2 dx1

∣∣∣∣∣
� ‖ϕ‖L2(R)

0∫
−ε

ζε(x1)

∥∥∥∥∂m2

∂x2
(x1, ·)

∥∥∥∥
L2(R)

dx1

�
√

ε‖ϕ‖L2(R)

∥∥∥∥∂m2

∂x2

∥∥∥∥
L2(Ω)

(since
∫ 0
−ε

ζ 2
ε (x1) dx1

x1=εs

� Cε

|log ε|2
∫ √

1−ε2

0 log2(s2 +ε2) ds = O( ε

|log ε|2 )). The first term in the above RHS is estimated
by interpolation:∣∣∣∣

∫
2

m′ · ∇ψ

∣∣∣∣ =
∣∣∣∣
∫

2

∇ · m′ψ
∣∣∣∣ �

∫
2

∣∣|∇|−1/2(∇ · m′)∣∣2
∫

2

∣∣|∇|1/2ψ
∣∣2

.

R R R R
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In order to conclude, we need to prove that ‖ψ‖Ḣ 1/2(R2) → 0 as ε → 0. For that, we use (96) (valid in any dimension)

for the following extension V : R3 → R of ψ given by V (x1, x2, z) = ψ(r, x2) = ζε(r)ϕ(x2) for every (x1, x2, z) ∈ R
3

and r =
√

x2
1 + z2:

|∇V |2 +
∣∣∣∣∂V

∂z

∣∣∣∣
2

= ζ 2
ε (r)

∣∣∣∣ dϕ

dx2
(x2)

∣∣∣∣
2

+ ϕ2(x2)

∣∣∣∣dζε

dr
(r)

∣∣∣∣
2

and

1

π

∫
R2

∣∣|∇|1/2ψ
∣∣2

dx � 1

2π

∫
R3

(
|∇V |2 +

∣∣∣∣∂V

∂z

∣∣∣∣
2)

dx dz

=
∥∥∥∥ dϕ

dx2

∥∥∥∥
2

L2(R)

ε∫
0

rζ 2
ε (r) dr + ‖ϕ‖2

L2(R)

ε∫
0

r

∣∣∣∣dζε

dr
(r)

∣∣∣∣
2

dr

(80)

� C

(
ε2

∥∥∥∥ dϕ

dx2

∥∥∥∥
2

L2(R)

+ 1

|log ε| ‖ϕ‖2
L2(R)

)
→ 0 as ε → 0. �
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