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Abstract

We identify the leading term describing the behavior at large distances of the steady state solutions of the Navier–Stokes equa-
tions in 3D exterior domains with vanishing velocity at the spatial infinity.
© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the 3D steady-state Navier–Stokes equations in exterior domains and study the behavior of the solu-
tions “near infinity”. The equations are

−�u + u∇u + ∇p = 0,

divu = 0

}
in R

3 \ B̄R0, (1.1)

where BR0 denotes the ball of radius R0 centered at the origin. Our main assumption about the solutions will be
the decay condition∣∣u(x)

∣∣ � C∗
R0 + |x| in R

3 \ B̄R0 (1.2)

for sufficiently small C∗. The specific boundary conditions at ∂BR0 will play no role in our results.
We note that if u solves the equations in (1.1) in R

3 \ BR , then (1.2) is satisfied for some R0 > 0 if

lim sup
x→∞

|x|∣∣u(x)
∣∣ <

C∗
2

. (1.3)

Naively one might think that the behavior near infinity of the above solutions should be given by the lin-
earized equation. An immediate well-known objection2 to that is that we expect decay |∇ku| = O(|x|−k−1) and
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|∇kp| = O(|x|−k−2) as x → ∞, and therefore the non-linear term in the equation should have the same order of
magnitude as the linear terms, making the accuracy of the linearization questionable. This heuristics is made rigorous
in [5], where it is proved that the leading order term describing the behavior of the solutions cannot be given by the
linearized equation.

In this paper we identify explicitly the leading order behavior of the above solutions near infinity. We show that it
is given by the explicit solutions calculated by L.D. Landau in 1943 see [8,9]. In this paper the formulae are presented
in Section 3, (3.1). Landau’s calculations were revisited and certain extensions were obtained in [4,15]. The Landau
solutions were recently characterized in [13] as the only solutions of the steady Navier–Stokes equation in R

3 \ {0}
which are smooth and (−1)-homogeneous in R

3 \{0}. The Landau solutions in R
3 \{0} can be parametrized by vectors

b ∈ R
3 in the following way: For each b ∈ R

3 there exists a unique (−1)-homogeneous solution Ub of the steady
Navier–Stokes equations together with an associated pressure P b which is (−2)-homogeneous, such that Ub,P b are
smooth in R

3 \ {0}, Ub is weakly div-free across the origin and satisfies

−�Ub + div
(
Ub ⊗ Ub

) + ∇P b = bδ(x) (1.4)

in the sense of distributions. Here δ(x) denotes the Dirac function and we use the standard notation u ⊗ v for the
tensor field uivj defined by the tensor product of the vector fields u = (u1, . . . , un) and v = (v1, . . . , vn). We also use
the standard notation divT for the vector field ∂

∂xj
Tij . (The uniqueness of Ub , P b is much easier to prove if we add

the requirement that Ub be axi-symmetric with respect to the axis passing through the origin in the direction of the
vector b, but as was shown in [13], this additional symmetry assumption is not necessary.) As noticed by Landau,
the solutions can be calculated explicitly in terms of elementary functions, see formulae (3.1), (3.4) and (3.5). (It was
observed in [13] that the Landau solutions are in a natural one-to-one correspondence with the group of conformal
transformations of the two-dimensional sphere, and Landau’s formulae can be also derived from this observation by
using some standard geometry.)

If u,p is a solution of (1.1), we will denote by

Tij = Tij (u,p) = pδij + uiuj −
(

∂ui

∂xj

+ ∂uj

∂xi

)
(1.5)

the momentum flux density tensor in the fluid. Our main result is the following:

Theorem 1. For each α ∈ (1,2) there exists ε = ε(α) > 0 such that the following statement holds true: Let u,p be a
solution of (1.1) in R

3 \ B̄R0 satisfying (1.2) or (1.3) with C∗ � ε. Let b = (b1, b2, b3) be defined by

bi =
∫

∂BR1

Tij (u,p)nj (x) (1.6)

for some R1 > R0. (Note that the integral is independent of R1.) Let Ub be the Landau solution corresponding to the
vector b. Then

u(x) = Ub(x) + O
(|x|−α

)
as |x| → ∞ (1.7)

and, for a suitable constant p0,

p(x) − p0 = P b(x) + O
(|x|−α−1) as |x| → ∞. (1.8)

Remark 1. Standard estimates for the linear Stokes system (such as estimate (2.5) in the next section), together with
the scaling symmetry u(x) → λu(λx) of Navier–Stokes can be used to show that any solution of (1.1) satisfying (1.7)
will also satisfy

∇ku(x) = ∇kUb(x) + O
(|x|−k−α

)
as |x| → ∞, for k = 1,2, . . . , (1.9)

and

∇kp = ∇kP b + O
(|x|−k−1−α

)
as |x| → ∞, for k = 1,2, . . . . (1.10)

See for example [14] for an argument of this type.



A. Korolev, V. Šverák / Ann. I. H. Poincaré – AN 28 (2011) 303–313 305
As suggested by a referee, it may be worth pointing out that Theorem 1 together with Remark 1 imply that if
|u(x)| = o( 1

|x| ), then u = O( 1
|x|2−ε ) for each ε > 0.

The existence of expansions similar to (1.7) with Ub replaced by a less specific term, namely a (−1)-homogeneous
function, was studied in [11]. The main result of that paper is, roughly speaking, that under smallness conditions
similar to (1.2), the solutions of (1.1) are “asymptotically (−1)-homogeneous”. As is shown in [13], the leading term
of the asymptotical expansion at ∞ of any solution of (1.1) which is asymptotically (−1)-homogeneous must be
given by a Landau solution. (This result remains true even for large data, since the proof is not based on perturbative
arguments.) Therefore the results in [11] together with the results in [13] imply a version of Theorem 1. Our proof in
this paper is much simpler than the proof one could get by combining [11,13]. Also, if one tried to evaluate explicitly
the values of the constants in the smallness conditions, the constants coming from the proof here would probably be
more favorable.

The proof of Theorem 1 is given in the following sections. The main idea of the proof is as follows. First, it is clear
that (1.3) implies that (1.2) is satisfied for some R0 > 0, so we can work with (1.2) in what follows. Assume now for
simplicity that u satisfies the “no outflow to infinity condition”∫

∂BR1

u(x) · n(x) = 0 (1.11)

for some R1 > R0, where n(x) denotes the unit normal to ∂BR1 . (Since u is div-free, the last integral does not depend
on R1.) We extend the fields u,p to fields defined in all R

3 and satisfying the inhomogeneous equation

−�u + u∇u + ∇p = f,

divu = 0

}
in R

3. (1.12)

The extension needs to be done in a way which enables one to control smooth norms of the extended function by the
corresponding norms of the original function. We have b = ∫

R3 f . We then search for solutions of (1.12) in the form
u = Ũb + v, where Ũ b is a suitable regularization of the Landau solution Ub . The equation for v is solved (for small
data) by a standard perturbation analysis in the space of continuous functions with decay O(|x|−α) as |x| → ∞. For
this argument one needs both an existence result (for v) and a uniqueness result (for u), and therefore it looks unlikely
that our method could be used in a large data situation.

The general situation when the outflow
∫
∂BR1

u · n does not vanish can be handled by a standard method of writing

u = a + v where v has no outflow, and a is a suitable multiple of the canonical outflow field x

|x|3 . See for example
[6, Section 2.2], [7, Chapter IX], or [11, Remark 3.2]. Roughly speaking, the part of the flow which produces a non-
zero outflow has decay O(|x|−2), and therefore it does not influence the main term in (1.7) at large distances. See
Section 4 for details.

One can see easily by looking at the Landau solutions that the best possible decay rate α for which the result
might still be true is α = 2. We conjecture that the result indeed remains true for α = 2. However, as the example
in Remark 2 shows, one would probably need to go beyond the elementary perturbation theory used in this paper to
prove that.

The problem of steady-state solutions of the Navier–Stokes equations in exterior 3D domains has a long history
going back to Leray’s paper [10]. Leray proved the existence of solutions with finite energy. Such solutions are easily
seen to be smooth since the steady state equation is subcritical with respect to the energy estimate. However, the
precise behavior of these solutions as |x| → ∞ is a more subtle problem. This problem shares some features with
the (super-critical) regularity problem for the time-dependent equation, since there seems to be some vague duality
between regularity (or short-distance behavior) of super-critical problems and asymptotics at large times/distances (or
long distance behavior) of sub-critical problems. In particular, in both cases it seems to be important to obtain some
local control of the energy flux which is stronger than what one can immediately get from the known conservation
laws. In this paper we will not address these difficult issues, which arise for large data, and we will only treat the small
data situation, which can be handled by a simple perturbation theory, and is independent of the energy methods. For
the steady state exterior problem this approach was pioneered by Finn, see e.g. [6,7]. We note that the 3D exterior
problem with non-zero velocity at ∞ has been more or less fully solved, even for large data, see [2,7], since the
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non-zero velocity at infinity sufficiently regularizes the flow. In the 2D situation many problems remain open even in
the case of non-zero velocity at infinity, see [1,7].

How reasonable are our assumptions? We note that Finn proved in [6] the existence of solutions satisfying our
assumptions for quite general boundary-value problems in exterior domains under smallness assumptions on the data.
See also [7] for extensions of these results (still under smallness assumptions). It is quite conceivable that Theorem 1
remains true even without assuming that the constant C∗ in (1.2) is small. The proof of such a result would however
require to go beyond the perturbation theory and the standard energy methods.

The following example, taken from [12], shows that the question of relaxing the decay condition (1.2) to a slower
decay might be quite subtle. Consider the equation

−�u + (1 − a)u∇u + a

2
∇|u|2 + 1

2
udivu = 0 in R

3, (1.13)

for vector fields u in R
3. The number a ∈ (0,1) is a parameter. (For a = 1

2 the non-linear term in (1.13) can be written
as divQ(u,u) for a suitable quadratic expression Q.) The equation has the same energy estimate as the Navier–Stokes
equations. It turns our that (1.13) has a nontrivial global smooth solution ū satisfying |ū(x)| ∼ |x|−2/3 as x → ∞.
Since it appears that the various perturbation and energy methods used for the steady Navier–Stokes should also
work for (1.13), at least in the case a = 1

2 , the properties of ū indicate some limitations to these methods. On the
other hand, we should remark that steady Navier–Stokes does have some special properties which are probably not
shared by (1.13). For example, for steady Navier–Stokes the quantity 1

2 |u|2 + p satisfies a maximum principle, see
e.g. [1].

The paper is organized as follows: In Section 2 we explain the material necessary for extending the solutions to R
3

in a controlled manner. In Section 3 we recall the necessary facts about Landau’s solutions. Finally, in Section 4 we
explain the perturbation argument.

2. Preliminaries

We consider the solutions of the steady Navier–Stokes equation

−�u + u∇u + ∇p = 0,

divu = 0 (2.1)

which are defined “in the neighborhood of infinity”, i.e. in the region R
3 \ B̄R0 , where BR0 denotes the ball of radius

R0 centered at the origin. In this section we will be interested in the solutions which satisfy

∣∣u(x)
∣∣ � C∗

R0 + |x| in R
3 \ B̄R0, (2.2)

and the “no outflow to infinity” condition∫
∂BR1

u · n = 0 (2.3)

for some R1 > R0. (We note that the integral in (2.3) is independent of R1, since divu = 0.)
The constant C∗ above will play a special role and we distinguish it from the “generic constants” which will be

denoted by c. If c depends on a parameter X and we want to emphasize this dependence, we will write c(X) instead
of c. The value of c can change from line to line.

By a solution of (2.1) we mean a smooth function vector field u in R
3 \ B̄R0 which satisfies (2.1) for a suitable p.

(The pressure p will be considered only as a “secondary” variable: Instead of saying “the solution (u,p)”, we can just
say “the solution u”, with the understanding that (2.1) is satisfied for a suitable p.) Various other notions of solutions
are used in the literature (e.g. weak solutions), but under the assumption (2.2) they all coincide are equivalent to the
one defined above.

One reason that the above way of thinking of p only as an auxiliary variable works quite well is that the linear
steady-state Stokes system
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−�u + ∇p = divf,

divu = 0 (2.4)

satisfies local elliptic estimates of the form

‖∇u‖X(Bx0,R) + ∥∥p − (p)Bx0,R

∥∥
X(Bx0,R)

� c(R,X)‖f ‖X(Bx0,2R) + c̃(R,X)‖u‖L1(Bx0,2R), (2.5)

where Bx0,R denotes the ball of radius R centered at x0, (p)Bx0,R
is the average of p over the ball Bx0,R and X can be

any space in which classical elliptic estimates work, such as an Lp-space with p ∈ (1,∞) or a Hölder space. The main
point of estimate (2.5) is that there is no p on the right-hand side. See for example [14] for details.

The linear estimate (2.5) combined with the standard bootstrapping and scaling arguments (using the scaling sym-
metry u(x) → λu(λx)) imply that solutions of (2.1) satisfying estimate (2.2) with C∗ � M also satisfy

∣∣∇ku(x)
∣∣ � c(k,M)

C∗
(R0 + |x|)k+1

in R
3 \ B2R0 , for k = 1,2, . . . . (2.6)

We now relate the solutions of (2.1) in R
3 \ B̄R0 to the solutions of the equation in R

3 with non-trivial right-hand side:

−�u + u∇u + ∇p = f,

divu = 0

}
in R

3. (2.7)

Let u be a solution of (2.1) in R
3 \ B̄R0 satisfying (2.2) with C∗ � M and let p be the associated pressure, defined

up to a constant. Using (2.6) we see that we can in fact choose a “normalized” p so that, for C∗ � M , we have

∣∣∇kp
∣∣ � c(k,M)

C∗
(R0 + |x|)k+2

in R
3 \ B2R0 , for k = 0,1,2, . . . . (2.8)

We can now extend u,p from R
3 \ B3R0 to ũ, p̃ defined in R

3 such that div ũ = 0 in R
3 and

∣∣∇kũ(x)
∣∣ � c(k,M)

C∗
(R0 + |x|)k+1

in R
3, for k = 0,1,2, . . . , (2.9)

together with

∣∣∇kp̃(x)
∣∣ � c(k,M)

C∗
(R0 + |x|)k+2

in R
3, for k = 0,1,2, . . . . (2.10)

The construction of the extension p → p̃ is standard. To be able to construct the extension u → ũ, we of course need
condition (2.3). With (2.3) satisfied, the existence of a smooth div-free extension ũ (not necessarily satisfying (2.9))
is also classical. The construction of a div-free extension satisfying (2.9) can be carried out in many ways. One can
proceed for example as follows: Let η : [0,∞) → [0,1] be a smooth function such that η(r) = 0 for r � 2 and
η(r) = 1 for r � 5

2 , and let ηR0(r) = η( r
R0

). Now set ũ = ηR0u + v, where v is a suitable solution of the equation
divv = −u∇ηR0 = g which is compactly supported in B3R0 . The equation divv = g has of course many compactly
supported solutions, but it is possible to construct a solution operator S : g → v = Sg which has the required regularity
properties. (Such an operator is sometimes called a Bogovskii operator.) See for example [3] or [7, Chapter III.3] for
details.3

We have

−�ũ + ũ∇ũ + ∇p̃ = f,

div ũ = 0

}
in R

3, (2.11)

3 There are many ways to construct S. For example, one can follow Bogovskii and define S by Sg(x) = ∫
B3R0

K(x,y)g(y)dy, where the kernel

K(x,y) is given by K(x,y) = x−y
|x−y|n m(x, y), with m(x,y) = ∫ ∞

|x−y| ωR0 (y + t
x−y
|x−y| )tn−1 dt and ωR0 (x) = R0

−nω(x/R0) for a suitable smooth

function ω compactly supported in B3 and satisfying
∫
B3

ω = 1. This operator gains one derivative in the usual elliptic regularity spaces, and also
has the right scaling. This is enough to obtain the required estimates for a solution v of divv = g = −u∇ηR0 . (Note that if we re-scale the problem
to R0 = 1, we do not need that v “gain” one full derivative over g in the sup-norms, and therefore the sup-norm in the required estimate presents
no problem.)
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where the right-hand side f is supported in B̄3R0 and satisfies

∣∣∇kf (x)
∣∣ � c(k,M)

C∗
(R0 + |x|)k+3

in R
3, for k = 0,1,2, . . . . (2.12)

Dropping the tildes and changing R0, if necessary, we see that the study of solutions of Navier–Stokes defined in the
neighborhood of infinity and satisfying the “no outflow” condition (2.3) and the growth condition (2.2) can be reduced
to the study of the solutions u of the inhomogeneous equation (2.7) with f supported in BR0 and satisfying (2.12), and
u satisfying (2.2) globally, with C∗ replaced by cC∗. The “no outflow condition” (2.3) is easily seen to be necessary
for this reduction to be possible. It is also easy to check by integrating the first equation of (2.11) over BR1 that the
vector b in (1.6) can be obtained from f as b = ∫

R3 f .

3. The Landau solutions

The Landau solutions are smooth (−1)-homogeneous solutions of the steady-state Navier–Stokes equations defined
in R

3 \ {0}. Under the additional assumption of axial symmetry, these were first calculated by L.D. Landau in 1943,
see [8,9]. In [13] it was proved that we do not get any new solutions if the assumption of axial symmetry is dropped.
To write down the explicit formulae, we will use the standard polar coordinates r, θ,ϕ defined by

x1 = r sin θ cosϕ,

x2 = r sin θ sinϕ,

x3 = r cos θ.

The explicit formulae in polar coordinates for the Landau solution U and the corresponding pressure P are as
follows

Ur = 2

r

[
A2 − 1

(A − cos θ)2
− 1

]
,

Uθ = − 2 sin θ

r(A − cos θ)
,

Uϕ = 0,

P = − 4(A cos θ − 1)

r2(A − cos θ)2
. (3.1)

In the above formulae, A is a parameter satisfying A > 1. The velocity field U can also be expressed in terms of the
stream function

ψ = 2r sin2 θ

A − cos θ
(3.2)

as

Ur = 1

r sin θ

∂ψ

r∂θ
,

Uθ = − 1

r sin θ

∂ψ

∂r
,

Uϕ = 0. (3.3)

The integral curves of the velocity field U are given the equations ψ = const. and ϕ = const.
Clearly U,U ⊗ U and P are locally integrable, and a direct calculation (see e.g. [9]) gives

−�U + div(U ⊗ U) + ∇P = β(A)e3δ(x), (3.4)

where e3 is the unit vector in the positive x3-direction and

β(A) = 16π

(
A + 1

A2 log
A − 1 + 4A

2

)
. (3.5)
2 A + 1 3(A − 1)
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It is not hard to check that the function β(A) is monotonically decreasing in (1,∞) and maps this interval onto (0,∞).
In particular, β has an inverse function γ : (0,∞) → (1,∞).

It is instructive to compare the formula (3.2) with the corresponding formula for the linear Stokes system. Namely,
the solution of

−�Ulin + ∇Plin = e3δ(x),

divUlin = 0

}
in R

3, (3.6)

satisfying Ulin(x) → 0 as x → ∞ is given by the stream function

ψlin = 1

8π
r sin2 θ. (3.7)

We can get another useful comparison if we express the solution of the problem

−�uε + ε div(uε ⊗ uε) + ∇pε = e3δ(x),

divuε = 0

}
in R

3, (3.8)

with the condition uε(x) → 0 as x → ∞ in terms of the Landau solutions. The formula (for ε > 0) is

uε = 1

ε
U

∣∣∣∣
A=γ (ε)

(3.9)

and uε is given by the stream function

ψε = r sin2 θ

εγ (ε) − ε cos θ
. (3.10)

We will now regularize the Landau solutions near the origin in the following way. Let r0 > 0. Consider a smooth
function ρ : [0,∞) → [0,∞) such that ρ(r) = 0 for r � r0, ρ(r) = r for r � 2r0 and the k-th derivative ρ(k)(r) is
bounded by c(k)r1−k , and define

ψ̃ = ψ̃A,r0 = 2ρ(r) sin2 θ

A − cos θ
. (3.11)

With the help of ψ̃ we now define the regularized velocity field Ũ = ŨA,r0 by the formulae (3.3), with ψ replaced
by ψ̃ . We also define

P̃ = P̃A,r0 = −4ρ(r)(A cos θ − 1)

r3(A − cos θ)2
. (3.12)

It is easy to check that for A � A0 > 1 we have

∣∣∇kŨ
∣∣ � c(k,A0)

A(r0 + |x|)k+1
in R

3, for k = 0,1, . . . (3.13)

and ∣∣∇kP̃
∣∣ � c(k,A0)

A(r0 + |x|)k+2
in R

3, for k = 0,1, . . . . (3.14)

So far we have mostly considered the Landau solutions which are axi-symmetric with respect to the x3 axis.
However, it is clear from the above that for each non-zero vector b ∈ R

3 there exist a unique Landau solution Ub and
the associated pressure P b which are axi-symmetric with respect to the axis R · b and satisfy

−�Ub + div
(
Ub ⊗ Ub

) + ∇P b = bδ(x),

divUb = 0. (3.15)

We also set U0 = 0. For each Ub,P b the above construction of the regularized solutions gives the regularized fields
Ũ b = Ũb

r and P̃ b = P̃ b
r which, for |b| � M will satisfy the estimates
0 0



310 A. Korolev, V. Šverák / Ann. I. H. Poincaré – AN 28 (2011) 303–313
∣∣∇kŨb
∣∣ � c(k,M)

|b|
(r0 + |x|)k+1

in R
3, for k = 0,1, . . . (3.16)

and

∣∣∇kP̃ b
∣∣ � c(k,M)

|b|
(r0 + |x|)k+2

in R
3, for k = 0,1, . . . . (3.17)

4. Perturbation analysis

Let f be a sufficiently regular compactly supported vector field in R
3. Let b = ∫

R3 f . Let r0 = 1 and let Ũ =
Ũ b = Ũ b

r0
and P̃ = P̃ b = P̃ b

r0
be the regularizations of the Landau solutions Ub,P b corresponding to the vector b

constructed in the previous section. We will seek solutions of the steady Navier–Stokes equation

−�u + u∇u + ∇p = f,

divu = 0

}
in R

3 (4.1)

in the form u = Ũ + v. We set

F̃ = −�Ũ + Ũ∇Ũ + ∇P̃ . (4.2)

It is easy to check by integrating (4.2) over BR1 that
∫

R3 F̃ = b = ∫
R3 f . The equation for v becomes

−�v + Ũ∇v + v∇Ũ + v∇v + ∇q = f − F̃ ,

divv = 0

}
in R

3. (4.3)

Let us choose a fixed α ∈ (1,2). We will prove that under some smallness assumptions Eq. (4.3) has a unique solution
v with decay O(|x|−α) as |x| → ∞. An important point is that, by our construction,

∫
R3(f − F̃ ) = 0. Using the

scaling symmetry, we see that we can assume r0 = 1 without loss of generality.
Let G = Gij be the Green tensor of the linear Stokes operator. We note that the vector field Gi3 is given by the

stream function (3.7). Another explicit formula for G is

Gij (x) = 1

8π

(
−δij� + ∂2

∂xi∂xj

)
|x|. (4.4)

For our purposes here we will only need the following obvious estimate

∣∣∇G(x)
∣∣ � c

|x|2 . (4.5)

The required solutions of (4.3) will be found for small data by a standard perturbation argument. Let Xα be the
space of all continuous div-free vector fields u in R

3 satisfying u(x) = O(|x|−α) as x → ∞. A natural norm in Xα is
given for example by

[u]α = sup
x

(
1 + |x|)α∣∣u(x)

∣∣. (4.6)

Our perturbation analysis is based on the following elementary estimates:

Lemma 1. Using the notation above, let b = ∫
R3 f be the vector used in the construction of Ũ . Then for |b| � M we

have

[
G ∗ div(Ũ ⊗ v + v ⊗ Ũ )

]
α

� c(α,M)|b|[v]α, (4.7)

and

[
G ∗ div(v ⊗ w)

]
α

� c(α)[v]α[w]α. (4.8)
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Proof. The proof these estimates is standard. We move the derivatives to G, use the definition of the norm, after
which the only remaining task is to estimate the integral

I (x) =
∫
R3

dy

|x − y|2(1 + |y|)α+β
, (4.9)

where β ∈ {1, α}. It is enough to consider only the case β = 1. Clearly I (x) is bounded for |x| � 1. To estimate I (x)

when |x| is large, let us write x = te with |e| = 1 and make the substitution y = tz in (4.9) (with β = 1). We obtain

I (te) = t−α

∫
R3

dz

|e − z|2(t−1 + |z|)α+1
� t−α

∫
R3

dz

|e − z|2|z|α+1
. (4.10)

Since we assume α ∈ (1,2), the last integral is bounded, and we see that

tαI (te) � c(α). (4.11)

Combining this estimate with the estimate of I (x) for |x| � 1 we see that(
1 + |x|)α

I (x) � c(α) for all x ∈ R
3. (4.12)

This completes the proof of estimates (4.7) and (4.8). �
We have shown that the linear operator

T
Ũ

: v → G ∗ div(Ũ ⊗ v + v ⊗ Ũ )

is continuous from Xα to Xα , and its norm is bounded by c(α,M)|b|. Also, we have shown that the bi-linear operator

B : (v,w) → G ∗ div(v ⊗ w)

is continuous from Xα × Xα → Xα , with the bound
[
B(v,w)

]
α

� c(α)[v]α[w]α.

We let V = G ∗ (f − F̃ ) and re-write Eq. (4.3) as

v + TŨ
(v) + B(v, v) = V. (4.13)

Since
∫

R3(f − F̃ ) = 0, we have V = O(|x|−2) as |x| → ∞. Standard perturbation arguments (such as the Implicit
Function Theorem) now imply that Eq. (4.13) has a solution v when V is sufficiently small in Xα . (A simple sufficient
condition for that is that, in addition to

∫
R3(f − F̃ ) = 0 and the restriction on the support on f − F̃ , the field f − F̃

be small in L
3
2 +δ with some δ > 0.) Moreover, the solution is unique in some small ball in Xα (centered at the origin).

These statements can be made more quantitative if we use the special form of the perturbation (namely that it is
quadratic in v). For example, one can use the following folklore lemma:

Lemma 2. Let X be a Banach space. Let T : X → X be linear with ‖T x‖ � ε‖x‖ for all x ∈ X, and let

B : X × X → X be bilinear with ‖B(x1, x2)‖ � c‖x1‖‖x2‖ for all x1, x2 ∈ X. Let y ∈ X with ‖y‖ <
(1−ε)2

4c
. Let

0 < ξ1 < ξ2 be the two roots of the equation ξ = ‖y‖ + εξ + cξ2, i.e. ξ1,2 = (1−ε)∓
√

(1−ε)2−4c‖y‖
2c

. Then the equation

x + T x + B(x, x) = y (4.14)

has a solution x̄ satisfying ‖x̄‖ � ξ1. Moreover, the solution x̄ is unique in the open ball {x ∈ X, ‖x‖ < ξ2}.

Proof. The proof is standard and we include it for the convenience of the reader. Consider the map F(x) =
y−T x−B(x, x). We have ‖F(x)‖ � ‖y‖+ε‖x‖+c‖x‖2 which shows that for ξ1 < ‖x‖ < ξ2 we have ‖F(x)‖ < ‖x‖
and that, for any δ > 0, the iterates F(x),F 2(x) = F(F(x)), . . . ,F k(x), . . . enter the ball of radius ξ1 + δ after finitely
many steps. At the same time, we have ‖F(x1) − F(x2)‖ � ε‖x1 − x2‖ + c‖x1 − x2‖(‖x1‖ + ‖x2‖) which shows that
F is a contraction of any closed ball of radius ξ ∈ [ξ1,

ξ1+ξ2 ). �
2
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Proof of Theorem 1. Let us first assume that the “no outflow to infinity” condition (1.11) is satisfied. In this case
the statement of Theorem 1 is a direct consequence of the construction of the extensions in Section 2 and Lemmata 1
and 2. Note that we not only need existence and uniqueness for v in (4.3), but we also need uniqueness (with smallness
assumptions) for u in (4.1). The uniqueness of u in our situation is well known (see e.g. [6] or [7]), and can also be
easily proved from Lemma 2 and (an obvious modification of) Lemma 1.

The situation when we have some outflow to infinity can be handled by a standard method of using the canonical
outflow field x

|x|3 , see for example [6, Section 2.2], [7, Chapter IX], or [11, Remark 3.2]. Assume R0 = 1 without

loss of generality. Let a be the multiple of the vector field x

|x|3 which has the same outflow as u. Note that a satisfies

the Navier–Stokes equation (1.1) in R
3 \ {0} with the associated pressure field πa = − 1

2 |a|2. Let us write u = a + w

and p = πa + pw. The field w satisfies the no outflow condition, and we can extend it to a div-free field w̃ with
the control similar to (2.9). We can also regularize a and πa in B1 (while not changing them outside B1) so that
estimates similar to (2.9) and (2.10) are satisfied. Let us denote be ã and π̃a these regularized functions. Finally,
we extend pw to p̃w with control similar to (2.10). Let ũ = ã + w̃ and p̃ = π̃a + p̃w . (Note that ũ is not div-free
in B1.) Let f̃ = div T̃ , where T̃ = T̃ (ũ, p̃) is given by (1.5) with u,p replaced by ũ, p̃. We note that the vector b

given by (1.6) can also be expressed as b = ∫
R3 f̃ . We will now search a div-free vector field z and a function pz

satisfying div T̃ (ã + z, π̃a + pz) = f̃ . We seek z,pz in the form z = Ũ b + v, pz = P̃ b + q , where Ũ b, P̃ b are the
regularizations of the Landau solutions Ub,P b constructed in Section 3. It is now easy to check that the perturbation
theory of Section 4 gives the required solution. �
Remark 2. The borderline space Xα in which a more sophisticated perturbation analysis might possibly work is the
space X2. (This corresponds to the naturally expected decay O(|x|−2) for v.) However, a perturbation analysis in X2
cannot be based only on the decay properties of Ũ (as was the case with our simpler analysis for α < 2). To see this,
let ε ∈ (0,1) and consider the equation

−�u + ε(n − ε)

1 − ε
div

(
x

|x|2 u

)
= f (x) in R

n. (4.15)

We can think of this equation as an analogue of the linearization of (4.3) at v = 0, see also Eq. (4.16) below. A direct
calculation shows that when f = 0 the function x1|x|−n+ε is a solution of (4.15) away from the origin. Let η be
a smooth function in R

n which vanishes in the unit ball and is equal to 1 outside of the ball of radius 2. An easy
calculation shows that the function u = ηx1|x|−n+ε satisfies (4.15) with

∫
R3 f = 0. Moreover, one can change the

coefficients of the equation in the unit ball so that they become smooth. For n = 3 and 0 < ε < 1, the decay of these
solution for x → ∞ is slower than O(|x|−2).

To get results in the space X2, one would probably have to prove optimal decay estimates for the linear equation

−�v + Ũ∇v + v∇Ũ + ∇q = f − F̃ ,

divv = 0

}
in R

3 (4.16)

by a non-perturbative approach, and then treat the quadratic term in (4.3) perturbatively. The above example shows
that to get the optimal decay O(|x|−2), one would need to use more information about Ũ than just its decay properties
at ∞. We conjecture that for large |x| the perturbation v from the Landau solution Ub indeed has the decay v(x) =
O(|x|−2), at least for small data.
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