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Abstract
In this paper we are interested in propagation phenomena for nonlocal reaction—diffusion equations of the type:
du
E:J*u—u—kf(x,u) teR, xeRY,

where J is a probability density and f is a KPP nonlinearity periodic in the x variables. Under suitable assumptions we estab-
lish the existence of pulsating fronts describing the invasion of the O state by a heterogeneous state. We also give a variational
characterization of the minimal speed of such pulsating fronts and exponential bounds on the asymptotic behavior of the solution.
© 2012 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we are interested in propagation phenomena for nonlocal reaction—diffusion equations of the type:

0
8_‘t‘=1*u_u+f(x,u) reR, xRV, (1.1)

where J is a probability density and f is a nonlinearity which is KPP in u# and periodic in the x variables, that is,
fx,u)=f(x+ku) VxeRY, keZV, ueR.

More precisely, we are interested in the existence/nonexistence and the characterization of front type solutions called
pulsating fronts. A pulsating front connecting 2 stationary periodic solutions pg, p; of (1.1) is an entire solution that
has the form u(x, t) := ¥ (x - e + ct, x) where e is a unit vector in RV, ceR,and ¥ (s, x) is periodic in the x variable,
and such that
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lim v (s,x) = po(x) uniformly in x,
§—>—00

lim ¥(s,x)= pi(x) uniformly in x.
§—>+400

The real number c is called the effective speed of the pulsating front.

Using an equivalent definition, pulsating fronts were first defined and used by Shigesada, Kawasaki and Ter-
amoto [58,59] in their study of biological invasions in a heterogeneous environment modeled by the following
reaction—diffusion equation

ou
ot

where A(x) and f(x,u) are respectively a periodic smooth elliptic matrix and a smooth periodic function. Using
heuristics and numerical simulations, in a one-dimensional situation and for the particular nonlinearity f(x,u) :=
u(n(x) — pu), Shigesada, Kawasaki and Teramoto were able to recover earlier results on the minimal speed of spread-
ing obtained by probabilistic methods by Girtner and Freidlin [34,35].

The above definition of pulsating front has been introduced by Xin [62,63] in his study of flame propagation. This
definition is a natural extension of the definition of the sheared traveling fronts studied for example in [10,11]. Within
this framework, Xin [62,63] has proved existence and uniqueness up to translation of pulsating fronts for Eq. (1.2)
with a homogeneous bistable or ignition nonlinearity. Since then, much attention has been drawn to the study of
periodic reaction—diffusion equations and the existence and the uniqueness of pulsating front have been proved in
various situations, see for example [5,8,9,38-41,47,61-64]. In particular, Berestycki, Hamel and Roques [8,9] have
showed that when f(x, u) is of KPP type, then the existence of a unique nontrivial stationary solution p(x) to (1.2) is
governed by the sign of the periodic principal eigenvalue of the following spectral problem

V- (AX)VP) + fu(x,00¢ +4,¢ =0.

Furthermore, they have showed that there exists a critical speed ¢* so that a pulsating front with speed ¢ > ¢* in the
direction e connecting the two equilibria O and p(x) exists and no pulsating front with speed ¢ < ¢* exists. They also
gave a precise characterization of ¢* in terms of some periodic principal eigenvalue. Versions of (1.2) with periodicity
in time, or more general media are studied in [5-7,48,50-53,55,66]. It is worth noticing that when the matrix A
and f are homogeneous, then Eq. (1.2) reduces to a classical reaction—diffusion equation with constant coefficients
and the pulsating front (¥, ¢) is indeed a traveling front which have been well studied since the pioneering works of
Kolmogorov, Petrovsky and Piskunov [44].

Here we are concerned with a nonlocal version of (1.2) where the classical local diffusion operator V - (A(x)Vu) is
replaced by the integral operator J *x u — u. The introduction of such type of long range interaction finds its justifica-
tion in many problems ranging from micro-magnetism [26—28], neural network [31] to ecology [16,19,29,45,49,60].
For example, in some population dynamic models, such long range interaction is used to model the dispersal of in-
dividuals through their environment, [32,33,42]. Regarding Eq. (1.1) we quote [1,2,18,20,21,23,25] for the existence
and characterization of traveling fronts for this equation with homogeneous nonlinearity and [3,22,24,36,42] for the
study of the stationary problem.

In what follows, we assume that J : RY — R satisfies

=V (A@)Vi) + f(x,u) inRY xRV, (1.2)

J =0, /J:l, J(0) >0,

RN (1.3)
J is smooth, symmetric with support contained in the unit ball,
and that f ‘RN x [0, 00) = Ris [0, I]N—periodic in x and satisfies
feC* (RN x [0, 00)),
S0 =0. (1.4)

f(x,u)/u is decreasing with respect to u on (0, +00),
there exists M > 0 such that f(x,u) <0 forall u > M and all x.
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The model example is
flx,u)= u(a(x) - u)

where a(x) is a periodic, C3 function.
Before constructing pulsating fronts, we discuss the existence of solutions of the stationary equation

Jxu—u+ f(x,u)=0 xeRV. (1.5)

Under the assumption (1.4), O is a solution of (1.5) and, as shown in [22], the existence of a positive periodic
stationary solution p(x) is characterized by the sign of a generalized principal eigenvalue of the linearization of (1.5)
around 0, defined by

1o =sup{n € R|3p € Cper(RY), ¢ >0, suchthat J ¢ — ¢ + f,(x,0)¢ + g <0} (1.6)

where Cper(RN ) is the space of continuous periodic functions in RN,
More precisely, we have

Theorem 1.1. The stationary equation (1.5) has a positive continuous periodic solution p(x) if and only if puo < 0.
Moreover the positive solution is Lipschitz and unique in the class of positive bounded periodic functions.

This result is analogous to the characterization of stationary positive solutions of the differential equation (1.2)
with f of type KPP in u. The main difference is that (¢ is not always an eigenvalue, that is, the supremum in (1.6) is
not always achieved. Similar results for (1.5), but assuming that 1¢ is an eigenvalue and for the one-dimensional case
(i.e. N = 1), have been obtained in [3,24]. In this particular situation, the uniqueness of the positive solution of (1.5)
in the class of bounded measurable functions has been proved in [24]. For the multidimensional case, the existence
and uniqueness of a stationary solution in the class of periodic functions has been obtained by Shen and Zhang [56]
assuming that p is eigenvalue and by Coville [22] without this assumption. The difference of Theorem 1.1 and [22]
is that we obtain a Lipschitz continuous solution.

The question whether p is really a principal eigenvalue, that is, if there exists ¢ € Cp,, (RY), ¢ > 0 such that

J¢—¢+ fu(x,00¢+puop=0 inRY (1.7)

has been studied in [22,56] where simple criteria on f, (x, 0) have been derived to ensure the existence of a principal
eigenfunction ¢. For instance, the following criterion proposed in [22]

1
————dx =400, where A= max f,(x,0),
| 77w T
[0, 1%
guarantees that p¢ is a principal eigenvalue. Some properties of o and the existence criteria will be discussed in
Section 3.

Our main result on pulsating fronts is the following:
Theorem 1.2. Assume g < 0 and that there exists ¢ € Cpgr(RN ), ¢ > 0 satisfying (1.7). Then, given any unit vector
e € RN there is a number ¢k > 0 such that for ¢ > ¢ (1.1) has a pulsating front solution u(x,t) =y (x - e + ct, x)

with effective speed c, and for ¢ < ¢} there is no such solution.

The minimal speed ¢ is given by

. —Ha
* . inf 1.8
e Algo( A ) (1.8)
where u; is the periodic principal eigenvalue of the following problem
¢ —¢+ fux. 0 +pp=0 inRY (1.9)

with J; (x) 1= J(x)e**¢. We will see in Section 3 that this eigenvalue problem is solvable under the assumptions of
Theorem 1.2.



182 J. Coville et al. / Ann. 1. H. Poincaré — AN 30 (2013) 179-223

Shen and Zhang showed in [56] that ¢} corresponds to the speed of spreading for this equation in the following
sense. For reasonable initial conditions, the solution of (1.1) satisfies

. _ . E3
limsup sup u(x,t)=0 ifc>c,,
t—>+00 x-e+ct<0

while

liminf inf x,1)—px))=0 ifc<ck.
t—+4o00 x~e+ct>0(u( ) p( )) ¢

The nonexistence statement in Theorem 1.2 is a consequence of the these spreading speed results. Along our analysis,
we also obtain some asymptotic behavior of (s, x) as s — oo where v is the pulsating front constructed in
Theorem 1.2. More precisely, let A(c) denote the smallest positive A such that c = 77’“

Theorem 1.3. Assume o < 0 and that there exists ¢ € Cpe,(RN ), ¢ > 0 satisfying (1.7). Then, given any unit vector
ecRY and ¢ > ¢y we have:

a) For any positive )\ so that A < \(c) there exists C > 0 such that

U(s,x) < Ce™ VxeRM, VseR.
b) There are o, C > 0 such that
0< p(x) —Y(s,x) <Ce™® VxeRM, Vs>0.

Eq. (1.1) can be related to a class of problems studied by Weinberger in [61]. However, as observed in [23,56], one
of the main difficulties in dealing with the nonlocal equation (1.1) comes from the lack of regularizing effect of (1.1),
which makes the framework developed by Weinberger not applicable, since the compactness assumption required
in [61] does not hold.

Another difficulty in the construction of pulsating fronts is that the equation satisfied by the function v (see (2.1)
below) involves an integral operator in time and space, which is in some sense degenerate. This difficulty also appears
in the classical reaction—diffusion case, and it becomes delicate to proceed using the standard approaches used in [10,
11,44].

Finally, we comment on some of the hypotheses made in the construction. Regarding smoothness of the data, one
can deal with less regularity of J and f, but some arguments would have to be modified. The hypothesis on the
support of J in (1.3) can be weakened. For example, we believe that the same results are true assuming that J satisfies
the so-called Mollison condition:

VA >0, / J(2)eMdz < +o0.
RN
Finally, the hypothesis that 1o is an eigenvalue seems crucial in our approach. It is an interesting open problem
to understand whether some type of pulsating front exists in the case where g is not an eigenvalue. We believe
that if such solutions exist, they will be qualitatively different from the ones constructed in Theorem 1.2. See also
Remark 3.11 for other observations on this hypothesis.

In the preparation of this work, we were informed of a very recent work of Shen and Zhang [57] done independently
dealing with the existence and properties of pulsating front for a nonlocal equation like (1.1). The construction of
pulsating front proposed by Shen and Zhang relies on a completely different method and another definition of pulsating
front. With their method, they are able to construct bounded measurable pulsating fronts for any speed ¢ > ¢} but fail
to construct pulsating front for the critical speeds ¢} due to the lack of good Lipschitz regularity estimates on the
fronts. Some additional properties, such as exact exponential behavior as ¢+ — —oo, uniqueness of the profile in an
appropriate class and some kind of stability of the front are also studied in this work. The main differences between the
results obtained by Shen and Zhang and ours concern essentially the regularity of the fronts. Whereas they obtained
bounded measurable front, we obtained uniform Lipschitz front which is a significant part of our work. We also have
the feeling that our approach is more robust, in the sense that it does not strongly rely on the KPP structure and can be
adapted to other situations such as a monostable or ignition nonlinearity which seems not be the case for the method
used in [57]. We have in mind a problem like
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ou / ( xX—y ) N
— = J|l—— u(y) —ux)|dy+ f(u) teR, xeR",
dt g(x)g(y) [ ]

RN
where f is monostable nonlinearity, J a smooth probability density and g a continuous positive periodic function. It
is worth noticing that in [57], the existence of a principal eigenvalue for (1.7) is also a crucial hypothesis.

2. Scheme of the construction

The proof of Theorem 1.1 is contained in Section 5, and follows by now standard arguments.
To construct a pulsating front solution u# of (1.1) in the direction —e with effective speed ¢ connecting 0 and
a positive periodic stationary solution p, we let ¥ (s, x) = u(*=-%, x). Then we need to find ¥ satisfying

cYs=M[Y]—v+ f(x,¥) VseR, xeRY,
Vs, x+k)=v(s,x) VseR, xeRN, keZV,

lim ¥(s,x)=0 uniformly in x, 2.1)
§—>—00
lim ¥ (s,x) = p(x) uniformly in x,
§—>00
where M is the integral operator
M{yrl(s, x) = / Jx =Y (s+—x)-ey)dy.
RN
To analyze (2.1) we introduce a regularized problem, namely, we consider for & > 0
Yy =MW1=V + f(x,¥)+eAy VseR, xeRY (2.2)

where A is the Laplacian with respect to the x variables. The stationary version of this equation is a perturbation
of (1.5):
O=Jxu—u+ f(x,u) +eAu, xRN, (2.3)

We will see in Section 5 that under the assumption that (1.5) has a positive periodic continuous solution p, for small
¢ > 0 Eq. (2.3) also has a stationary positive solution p, and p; — p uniformly as ¢ — 0.
As a step to prove Theorem 1.2, for small ¢ > 0 we will find ¢} (¢) such that for ¢ > ¢} (¢) there exists a solution v,
to (2.2) satisfying
lim ¥ (s,x)=0,
§—>—00
lim ‘(p(sv-x):pf(-x)v (2'4)
§—+00

¥ (s, x) is increasing in s and periodic in x.

This is done in Section 6, following in part the methods developed in [9].

A substantial part of this article is devoted to obtain estimates for 1, that will allow us to prove that ¥ = limg_,o ¥,
exists and solves (2.1). These estimates are based on the expected exponential decay of y» as s — —oo, which we
discuss next. Suppose ¥ is a solution of (2.1). One may expect that for some A > 0

Vs, x)=ePwx) + o(e)‘s) as s — —oo, x € RN

where w is a positive periodic function, at least when ¢ > ¢}. Then at main order the equation in (2.1) yields
cAw = / J(x =)0y dy —w+ fu(x,0)w inRY. (2.5)

RN
Define

Ji(x) = J(x)e e,

then (2.5) can be written as the periodic eigenvalue problem
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{J,\*w—w+f,,(x,0)w+/mw:0 in RV, 2.6)
w > 0 is continuous and periodic, '

which will be studied in Section 3. In particular, under the assumptions of Theorem 1.2, we will see that it has a
principal eigenvalue u; in the space of continuous periodic functions. Then the speed of the traveling front should be
given by ¢ = — %, and this leads to the formula for the minimal speed (1.8).

For the solutions of (2.2) and (2.4) one can guess a similar asymptotic behavior as s — —oo and a formula for the
minimal speed

) = min(— He. ) @2.7)

A>0 A

where ji¢ 5 is the principal eigenvalue of — L. ; where
Lejw=eAw+ Lw—w+ f,(x,0)w

in the space of C? periodic functions.
Based on the estimates developed in Section 7 for the operator L, ;u, we prove in Section 8 exponential bounds of
the form: for 0 < A < A.(c)

Ve(s,x) < Ce* VxeRY, VseR (2.8)

where A (c) is the smallest positive A such that ¢ = —£ % _and C does not depend on ¢ > 0. This exponential bound

is obtained by studying the two sided Laplace transform of ., an idea present in [17].

The exponential estimate (2.8) allows us in Section 9 to obtain uniform control of local Sobolev norms || ¥ ||y 1,p
with p > N, which in turn implies that we obtain a locally uniform limit ¢ = lim,_, ¢ ¥, for some subsequence. The
final step is to verify that ¢ satisfies all the requirements in (2.1).

3. Principal eigenvalue for nonlocal operators

Let us recall the notation
Cper(RY) ={¢p € C(R") | ¢ is [0, 11" -periodic}.

For the rest of the article it is crucial to understand the eigenvalue problem (2.6), and the purpose of this section is to
study its properties. We will write (2.6) in the form

Lip+pup=0 inRV, 3.1)
¢ € Cper(RY), ¢>0 ’

where
Lyw=Jy*w+alx)w

and a(x) = fu(x,0) — 1 € Cper(RV).

We say that L has a principal eigenfunction if for some ¢ € R there is a solution in Cper(RN ) of (3.1).

As we will see later, it is not true in general that L) has a principal eigenfunction, but it is convenient to define in
all cases

1. = sup{p € R| 3¢ € Cper(R"), ¢ > 0, such that Ly¢ + n¢ <0} (3.2)

and call it the generalized principal eigenvalue of —L;. The name is motivated by the following result.

Proposition 3.1. Let A € R. If there is p € R, ¢ € Cpe,(RN), ¢ > 0 and nontrivial satisfying Ly¢ + u¢ =0, then
is given by (3.2) and it is simple eigenvalue of L.

The proof of this is a direct adaptation of Lemma 3.2 in [22].
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The next proposition characterizes the existence of a principal eigenfunction.

Proposition 3.2. Ifa € Cper(RN), then maxa(x) + uy < 0. Moreover, maxa(x) + u; < 0 if and only if L) admits a
principal eigenfunction.

For the proof of the above result and the following two (Proposition 3.3 and Corollary 3.4) see later in this sec-
tion.

Proposition 3.3. The function —u, is convex in R and even. In particular, —u, is nondecreasing in [0, 00) and
nonincreasing in (—oo, 0].

Corollary 3.4. If Lo has a principal eigenfunction then for all .. € R, L, has a principal eigenfunction.

In general it is difficult to describe precisely in terms of J and a whether L, has a principal eigenfunction, but we
have sufficient and necessary conditions.

Proposition 3.5. Assume a € Cpe,(RN ) and let A := maxpn a(x). There are constants C1, C2, m > 0 that depend
on Jy, such that:

a) if

1
/ mdx > C1||a||anoo, (3.3)
[0,11¥

then L, admits a principal eigenfunction,

b) if

1
A—a(x)
[0.11¥

then L, has no principal eigenfunction.

We give the proof of this proposition later on inside this section.
Finally, we need the next proposition to show that the formula (1.8) is well defined and gives a positive number.

Proposition 3.6. The function . — ), is continuous and for all ¢ > 0 there exists o > 0 such that

—wp = —po—e+oe”M VieR.
The above proposition is proved later on inside this section.

Remark 3.7. Many of the previous results have appeared in similar contexts, or have been proved under slightly dif-
ferent conditions. Existence of a principal eigenfunction was obtained for symmetric nonlocal operators in [42], and
later also in [3,22,24,56]. A condition like (3.3) is always explicitly or implicitly assumed in these works. The motiva-
tion for definition (3.2) is taken from [12]. It has been adapted to many elliptic operators, and was first introduced for
nonlocal operators in [22]. In this work the author obtained many of the results described here for an integral operator
on a domain in RV . A characterization like Proposition 3.2 for u; was first obtained in [22]. The convexity of —u;,
Proposition 3.3, is proved in [56] under the assumption that a principal eigenfunction exists. Examples of nonlocal
operators with no principal eigenvalue are also presented in [22,56].

The rest of this section is devoted to prove Propositions 3.2, 3.3, Corollary 3.4, and Propositions 3.5 and 3.6. We
start with some basic facts about the definition (3.2). The following results are simple adaptations from results found
in [22].
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Proposition 3.8. (Proposition 1.1 [22].) Given a € Cper(RN), and J : RN — R, J > 0in L'(RY) define
wp(J,a)= sup{u eR | d¢ € Cper(RN), ¢ >0, suchthat J x¢ +ap + up < 0}.
Then the following hold:

() If a1 > ay, then

up(J,a2) = pp(J,ar).
@Gi) If J1 = Jo then

wp(J2,a) 2 up(Ji,a).

(iii) up(J,a) is Lipschitz in a, more precisely

lp(J,ar) — pup(J, a2)| < llar — azlloo-

To prove Proposition 3.5 we will need a generalization of the Krein—Rutman theorem [46] for positive not neces-
sarily compact operators due to Edmunds, Potter and Stuart [30]. For this we recall some definitions. A cone in a real
Banach space X is a nonempty closed set K such thatforall x, y € K andall > Oonehasx +ay € K,andifx € K,
—x € K then x =0. A cone K is called reproducing if X = K — K. A cone K induces a partial ordering in X by the
relation x < y if and only if x — y € K. A linear map or operator T : X — X is called positive if T(K) C K.

If T: X — X is a bounded linear map on a complex Banach space X, its essential spectrum (according to Brow-
der [15]) consists of those X in the spectrum of 7" such that at least one of the following conditions holds: (1) the range
of LI — T is not closed, (2) X is a limit point of the spectrum of T', (3) UZO: 1 ker(AI — T)" is infinite dimensional.
The radius of the essential spectrum of 7', denoted by 7. (T), is the largest value of |A| with X in the essential spectrum
of T. For more properties of r.(T) see [54].

Theorem 3.9. (See Edmunds, Potter, Stuart [30].) Let K be a reproducing cone in a real Banach space X, and let
T € L(X) be a positive operator such that T™ (u) > cu for some u € K with ||u|| = 1, some positive integer m and
some positive number c. If ¢'/™ > r,(T), then T has an eigenvector v € K with associated eigenvalue p > c'/™ and
T* has an eigenvector v* € K* corresponding to the eigenvalue p.

If the cone K has nonempty interior and T is strongly positive, i.e. u > 0, u # 0 implies Tu € int(K), then p is the
unique X € R for which there exists nontrivial v € K such that Tv = Av and p is simple, see [65].
Proof of Proposition 3.5. a) Write the eigenvalue problem (3.1) in the form
Jyxu+b(x)u=vu
where
b(x) =a(x) +k, v=—u+k

and k > 0 is a constant such that inf b > 0. Sometimes we will use the operator notation J; [¢] = J), * ¢. We study this
eigenvalue problem in the space Cper(RN ) with uniform norm, where the operator Jj is compact. Let u € Cpe, RN),
u >0 and m € N. Since u and b are nonnegative and Jj, is a positive operator, we see that

(JA + b(x))m[u] > S ul +b(x)"u. (3.4)
We observe that there are m and d > 0 depending on J such that for u € C per(]RN ), u >0,
JMul>d / u.
[0,1]¥
Indeed,

Il = I su,
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where J)fm) denotes the m-fold convolution J * - -- * J,. Let Br(xo) with R > 0 be such that J, (x) > 0 for points
X € Br(xp). Then Jy x J, (x) > 0 for x € Byr(2xp). Iterating this argument we get J)Em)(x) > 0 for x € B, r(mxgp). We

choose now m large so that B,, g (mxg) contains some closed cube Q with vertices in Z" . Letd = infyep J)fm)(x) > 0.
Then, for u € Cpe,(RN), u >0,

Tl (x) = f I @ = yyu(y)dy > / I @u(x - z)dz

R~ o

Zd/u(x—z)dzz / u,

Q [0,11¥
since u is [0, 1]V -periodic.
Let ¢ > 0 and define the continuous periodic positive function
1
maxb™ —b(x)" + ¢’
We claim that choosing ¢ and Cj in (3.3) appropriately there is § > O such that

ug(x) =

Mg 4 b(x)"ue > (maxb +8)"u, inRY. (3.5)
Indeed, taking C large in (3.3) and then ¢ > 0 small, we have

1

max b™ — b(x)" + ¢
[0.11¥

dx > 1.

Then to prove (3.5) it is sufficient to have
(maxb + 8)™ — b(x)™

~ maxb™ — b(x)" + ¢

This last condition holds provided we take § sufficiently small. Therefore, by (3.4) and (3.5) we have

(Jr +b(x))"[ue] > (maxb + 8)"u,.

in RV,

Using the compactness of the operator J;, we have r.(J, + b(x)) = max, g~y b(x), and by Theorem 3.9 we obtain the
desired conclusion. We observe that the principal eigenvalue is simple since the cone of positive periodic functions
has nonempty interior and, for a sufficiently large p, the operator (J;, 4 b)? is strongly positive. Any point v in the
spectrum of (J, + b) with |v| > r.(J) + b) is isolated, see [15]. In particular the principal eigenvalue is an isolated
point in the spectrum.

b) As before, without loss of generality we can assume a > 0. Suppose there exists a principal periodic eigenfunc-
tion ¢ with eigenvalue . Then maxa(x) + u < 0. Let C = [0, 17V and note that

Dox¢(x) = f J(x = ) g (y)dy = / Y T —z =k TG 2y dz

RN C keZN
< (/qb) sup Z J(x — 7 — k)erx—zhre,
o x,zeCkeZ,V
But then
1
$(x) < —(/ ¢> sup ) J(x =z — keI
—(a(x) + w) ; x,26C ‘o

Integrating the above inequality we obtain

J —k )L(x—z—k)-e’
/"’ /—(a(x>+u) /¢’ o, 2, I b
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and hence

1
1</7dx~ sup J(x — 7 — k)er—ihre,
] —(a(x) +n) Z

x,zeckezN
Since u < —maxa(-)

1
1< / — dx- sup Z J(x —z —k)ettmahe,
] maxa(:) —a(x) x.2€C /v

Let
M = sup Z J(x — z — k)et—mhre,

X,ZEC kEZN

If

M/ ;dx <1
maxa(-) —a(x)
C

there cannot exist a principal eigenfunction. O

Proof of Proposition 3.2. From the definition we obtain directly maxa(x) + u; < 0 for all A € R. If there exists a
principal eigenfunction ¢ € C ,,e,(RN ), then clearly maxa(x) + u; <O.

Now suppose that maxa(x) + u; < 0. We approximate a by functions a, € Cper(RN ) such that maxa = max ae,
la —aglloo = 0 as € — 0, and

1
/ —— dx =+o0. (3.6)
maxa, — ag(x)
[0, 1%
Then, by Proposition 3.5 there exists a positive, periodic ¢, with ||¢¢|lcc = 1, such that
T % e + (e (x) + p5)pe =0 inRY.

Since by Proposition 3.8, ,ui — W, there exists § > 0 such that a.(x) + Mi < —§ for all x and ¢. Therefore, by
a simple compactness argument, we have that ¢, — ¢ uniformly as ¢ — 0, with ¢ positive satisfying (4.1), which
concludes the proof. O

Remark 3.10. If L, has a principal eigenfunction ¢ € Cper(RN ), and additionally a € C k k>1and J is C*, then ¢
is also C¥, which follows from

N = (= —a)g
and —u) —a > 6 for some 6 > 0.
Proof of Proposition 3.3. To prove this result, we will first suppose that a satisfies (3.6), and then we proceed by
an approximation argument. We will prove the convexity using an idea from [56]. Let A1, A, e R,and 7 € (0, 1). If a

satisfies (3.6) then by Proposition 3.5 there exist ¢1, ¢ positive solutions of (3.1), with corresponding eigenvalues
U1, o, for Ay, Ay respectively. Consider ¢ = ¢i¢;7t. Then by Holder’s inequality we have that

ok < (S % 01) (Jy % d2)' .

Using the inequality above and that ¢; and ¢, are solutions of (3.1) we obtain that

B¢ < ((—ato) — w)d1) (—a@) — pa) ) ™ = (—a(x) — 1) (—a(x) — pa)’

and then using Young’s inequality we obtain that

B < (t(=at) — ) + (1 = 0)(=a(x) — )b = (=a@) + 11 + (1 = o) b,

—t

¢
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from where

Mer+(1—nny = Tl + (1 =)o,

which gives the convexity.

To conclude when (3.6) does not hold, we just approximate a by a, satisfying (3.6) and a, — a uniformly in RV
Then the result follows by Proposition 3.8 (iii).

Finally, we claim that the function w, is even. Indeed, suppose first u, is the principal eigenvalue of L;, so
U +maxa(x) < 0. Considering L; in the space of leo C(RN ) periodic functions, we have that L_, is its adjoint, and
therefore p, is in the spectrum of L_;. Using u; + maxa(x) < 0 it is easy to see that u, is the principal eigenvalue
of L_,. In the case L, has no principal eigenfunction, we directly deduce u) = pu_;.

Since —pu; is even and convex, we obtain, that ¢ is nondecreasing in (0, oo0) and nonincreasing in (—o0,0). O

Proof of Proposition 3.6. For the continuity of A > u; we argue as follows. Suppose first that a satisfies (3.6) and
Aj = Aoo. Itis easy to see that 1, ; is bounded, so up to a subsequence uy; — pu.Let¢; € Cper(RN ) be the principal
elgenfunctlon associated with p;; (j =1,2,...) normalized so that |¢;]/z~ = 1. Since p + maxa < 0, we have
My; +maxa < —8 <0 for some 6 > 0 and all j large. Then from

Dy x@j= (=, —a)p;

we obtain compactness to say that for a subsequence ¢; converges uniformly to a nontrivial, nonnegative function
¢ e Cper(RN ) satisfying the eigenvalue problem

Jino ¥ = (=1t — ).

Because of the uniqueness of the principal eigenvalue, Proposition 3.1, u = ..

If a does not satisfy (3.6) we argue approximating a by a, that satisfy (3.6). Let u$ denote the principal eigenvalue
of —Jj — a,. We note that the convergence 115 — (1, as € — 0 is uniform by Proposition 3.8 (iii), so continuity of u]
with respect to A for all ¢ yields continuity of A > u;.

Next we show the exponential growth of —pu;. Observe that if ¢ € Cpe, (RN) then

x= / ko (v, V)04 () dy,
[0, 117

where

ko(x.y)= Y e I(x—y—k).

kezZN

The function ky, (-, y) is [0, 1]Y -periodic. We consider the following eigenvalue problem
Lig+u+ep=0 withpe ([0, 11V),

where ¢ > 0 and
Lig= / kr(x, e MG () dy + a () + Hod.

[0,1]¥
We will assume first that the support of J is large, so that for some constants b, d > 0:

k.(x,y) =de? vx,yelo, 11V

Let w(y) = e ™. Then
L,\w (de +a(x)+ pno + 8)w > §eb*

where § > 0 and where we take 2 large. If A > 0 is large enough, by Theorem 3.9 we obtain a principal eigenfunction
¢ e C([0, 1Y) of LA, with principal eigenvalue —f; > Seb*. Since ky(x, y)e“x_") ¢ is periodic in x, we see that
b is periodic. Therefore, extending it periodically to RY, we find that it is the principal eigenfunction of L and
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—un + o + & = —f1y, > 8eP*. Now since —pu;, is nondecreasing in A we have —uy + o + € > ¢ and by taking &
smaller if necessary we achieve for all A

—p3 = —po — & + 8P

Without the assumption that the support of J is large, we can assume that a(x) > 0 and work with m large so that
the support of J™ is large. Then

(S +a@)” = I +a(x)™.
Notice that
JM(x) = M I (x)
so the previous argument applies and we deduce that the principal eigenvalue of J;* 4 a(x)™ grows exponentially as

A — 400. Then the same holds for (J; + a(x))™ and therefore for J, +a(x). O

Remark 3.11. We would like to comment here on the hypothesis in Theorem 1.2 that there is a principal eigenvalue for
problem (1.7). In fact, the proof of Theorem 1.2 reveals that we actually need only that (2.6) has a principal eigenvalue
for all A > 0, which holds under the stated hypotheses that (1.7) has a principal eigenvalue (this is a consequence of
Propositions 3.2 and 3.3). Then it is natural to ask whether it is always true that (2.6) has a principal eigenfunction,
even if (1.7) does not. Thanks to Proposition 3.5 one can construct examples where (2.6) has no principal eigenvalue
for A in some interval around 0.

4. Convergence of the principal eigenvalue and eigenfunction

Given ¢ > 0 we study here the eigenvalue problem:

sAw+ Lxw—w+ f(x,0w+puw=0 inRY,
o (4.1)
w > 0 periodic and C2.
We will write
Lejyw=cAw+ Jyxw—w+ f,(x,0)w 4.2)

and Ly = Lo .

In this section we will assume that 1 is a principal eigenvalue for — L. Observe that by Corollary 3.4 u; is a prin-
cipal eigenvalue of —L . By the Krein—Rutman theorem, we know that for ¢ > 0, L, ; has a principal eigenvalue p,
and there are principal C? periodic eigenfunctions ¢, 5 > 0 of L, ; and ¢;‘, 5 >0of L:, ,» that s,

Lgj.@ep + e pPen = 0 and L:,)\(ﬁ;)\ + Ms,k(b:,x =0.
Lemma 4.1. Assume that (1o is a principal eigenvalue for — L. For ¢ >0

pep =sup{u € R: 3¢ > 0 L n¢p + ng <0} (4.3)
=influ €eR: 3¢ > 0 L1 + ue > 0}, (4.4)

where the sup and inf are taken over C? periodic functions if ¢ > 0 and over continuous periodic functions if ¢ = 0.

Proof. Let us write
p, =sup{u: 3¢ >0 L 3¢ + e <0},
Mo, =nf{p: 3¢ >0 Le 1 + ne > 0}.
Using ¢; in the definitions we see that

- +
I’LS,A < Mg, < I'LS,)»'
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Let us prove e = i, ;. Let u € IR be such that there exists ¥ > 0 C? periodic such that Le ¥ + pyr > 0. Then
pealV 855) =~ L L) = ~{Lesb 0%,) < v 07 )

where (, ) denotes L2 inner product on [0, 11V. Since (1, ¢*) > 0 we deduce that Me, . < . Hence e < g -
The proof of ,ujk < Mgy i similar. O
Lemma 4.2. Assume that i is a principal eigenvalue for —Lg. Let [i¢ ). be the principal eigenvalue of (4.1) in the
space of C 2 periodic functions. Then
Mey —> py  ase— 0,

and the convergence is uniform for X in bounded intervals.
Let ¢ 5 be the principal periodic eigenfunction of L. ; normalized so that

||¢8,A||L2([0,1]N) =1
Then
Der — O inC(RN) ase— 0

where ¢;, is the principal periodic eigenfunction of L.

Proof. Under the stated hypotheses (1.3), (1.4) on J and f, ¢; is C? by Proposition 3.5. Let i > ;. Then
Lyt + pngp =eAgy + (1 — wa)dr =0

if ¢ is small. Using formula (4.4) we see that for small ¢, p¢ ; < . Thus

limsup pe 5 < M.

e—0

Using (4.3) we can prove
liminfu&x 2 M.
e—0

Next we prove the uniform convergence of ¢, , and for this we derive a priori estimates. Since ¢, satisfies (4.1)
and f,(x,0) is C? we see that @) 1s in C3¥(RN) for any o € (0, 1). Fix i € {1, ..., N} and differentiate (4.1) with
respect to x;. Let us write w; = 9y, ¢, 5. Then

eAw; 4 gi — wi + fu(x,0w; + e w; =0 inRY, (4.5)
where
gi(x)= / (35, T (x — ) — hei) "™ 5 (v) dy + 35, f (x, 0)pe. .
RN

Let p > 1. Multiplying (4.5) by |w;|?~>w; and integrating on the period [0, 1]V we get

e / Aw;|w;|P~w; dx + / gilwil? i dx + / (=14 fux, 0) + pte2) lwil” dx = 0.

[0, 1% [0, 1% [0,11¥
Integrating by parts
eo-1 [ Vel [ (-0 - gl ar= [ gl ud
[o,1¥ [0,11¥ [0,11¥

and therefore

[o,11% [0,11¥
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By Holder’s inequality
1-1/p 1/p
/ (l—fu(x,O)—ug,x)Iwilpdx<( / Iwil”) < / Igil”> . (4.6)
[0,11¥ [0,11¥ [0,11¥

Since the operator L, has a principal eigenfunction ¢, > 0 from the relation

ok gn= (1= fu(x,0) — ;)

we see that

inf (1= fu(x, 0) = p2) > 0.

X

Since e ) — i as € — 0, for sufficiently small ¢ > 0 we have
(1= fu(x,0) — pen) >c>0 forallx eRV.
We deduce from this and (4.6) that
llw; ||LI)([(),1]N) < Cllgi ||Lp([o,]]N)
with C independent of €. But
llgi ||Lp([o,1]N) < C||¢8,A||LI)([0,1]N)
and therefore, recalling the definition of w;, we obtain
||V¢e,k ||Lp([(),1]N) < C||¢5,A||Lp([(),1]N) 4.7)

with C independent of ¢. Since we have normalized ||z ;|| 2(p0,1j5) = 1, using (4.7) repeatedly and Sobolev’s in-
equality we deduce that for any p > 1

IV@erllLrqo, vy < C

for some constant C. By Morrey’s inequality we deduce that ¢, ; is bounded in C*([0, 1]V) for any 0 < o < 1.
Therefore, for a subsequence we have that ¢,y — ¢ uniformly on [0, 11V to some continuous function ¢. Then,
multiplying (4.1) by a periodic smooth function and integrating by parts twice we deduce that ¢ > 0 is a periodic
eigenfunction of L, with eigenvalue p;. Then ¢ is a multiple of ¢; and since both have L? norm equal to 1, we
conclude that ¢ = ¢,. We also deduce that the whole family ¢, ; convergesto ¢, ase — 0. O

5. The stationary problem

In this section we give the proof of Theorem 1.1. The same result for Dirichlet boundary condition appears in [22].
First we state a result analogous to Theorem 1.1 for the perturbed problem.

Proposition 5.1. Assume (1.4). Let i denote the principal periodic eigenvalue of — L. where for ¢ > 0
Lep=eAdp+Jx¢p—¢+ fulx,0)9.

The perturbed stationary equation (2.3) has a positive periodic solution if and only if u. < 0 and this solution is
unique.

We will omit the proof, since it is very similar to [8,24].

Lemma 5.2. Assume o < 0, so for ¢ > 0 small u. <0 and there exists a positive solution pg of (2.3). Then there is
a constant C > 0 such that for ¢ > 0 small

1
Egpg(x)gc vx e RV,

Also, pe is uniformly Lipschitz for ¢ > 0 small, i.e., there is C such that
|pe(x) = pe(X)| < Clx = x| forallx,x' eRY

and for all ¢ > 0 small.
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Proof. For the proof of upper and lower bounds, it suffices to exhibit super and subsolutions which are bounded and
bounded away from zero, uniformly for ¢ > 0 small. As a supersolution we just take a large fixed constant.

Let us proceed with the construction of a subsolution. We follow an argument developed in [22]. Let a(x) :=
Su(x,0) — 1 and o := supgw a(x). Since a(x) is smooth and periodic there exists a point xo such that o = a(xp). By
continuity of a(x), for each n there exists 7, such that for all x € B, (xo) we have |0 —a(x)| < %

Now let us consider a sequence of real numbers (¢;,),eny Which converges to zero such that ¢, < ’77" Next, let
(Xn)nen be the following sequence of cut-off functions: y,(x) := x (”x;—m”) where x is a smooth function such that
0< x <1, x(x)=0for |x| >2and x(x) =1 for |x| < 1. Next, we let !

Kn(¥) =Y Funlx —k)
keZN

so that for n large, x, is well defined, smooth, and [0, I]N -periodic.
Let us consider the following sequence of continuous periodic functions (a,),eN, defined by

an(x) ;== max{a(x), o x»}.

Then ||a, — a|loo — 0 as n — 0o. Now consider a C* regularization b, (x) := p, * a,(x) where p, is an adequate
sequence of mollifiers with support in B% (0), such that ||b, — ay|lec < |lan — allco- Let ¢¢, > 0 be the principal
eigenfunction of the following eigenvalue problem

EAGen + J % Do+ bp(X)Pen + enden =0 inRY.

Since b, is constant in a small neighborhood of xg, which is a point where it attains its maximum, by Proposition 3.5,
there is a principal eigenvalue u, and eigenfunction ¢, > 0 for the problem

J % Gy + by (X)n + tnpy =0 in RV,

We normalize ||¢n ||Loc([0’1]N) =1.
Using that ||b, (x) — a(x)|lco — 0 as n — oo, from the Lipschitz continuity with respect to a(x) (Proposition 3.8)
it follows that for n big enough, say n > ng, we have

Mn<%<0-

We fix ng large so that
Iiol
g
Having fixed ng, we work with &y > 0 small so that

”bno —alleo <

ug’n0<%<0 forall 0 < ¢ < g9,

which is possible since g, = fn, as € — 0 by Lemma 4.2.
Now for o > 0 we have

50A¢s,n0 +J x 0¢8,n0 - U¢5,no + f(x, U¢£,n0) = _(”a(x) - bno(x)Hoo + Ms,no)o'd’s,no + 0(G¢s,n0)

1<)
P _§U¢s,no + 0(U¢s,n0) > 0.

Therefore, for o > 0 sufficiently small, o @, ,, is a subsolution of (1.5). By Lemma 4.2, ¢ », — ¢y, uniformly in RN
as ¢ — 0. Since ¢,,, > 0 we find the lower bound p, > 1/C for some C > 0 and all &£ > 0 small.

Let us prove now that p, is uniformly Lipschitz. Let v = g—f{’; for some j € {1, ..., N}. Then v satisfies

Jxv—v+eAv+ fulx, p)v+ fi; (x. pe) =0 x eRY.

We use that f(x,u)/u is a decreasing function for # > 0. This implies that f(x,u) — f,(x,u)u > 0 for all x RN
and all u > 0. Since there is a fixed lower bound for p, > é (¢ > 0 small) we find a fixed lower bound for the quantity

Fx, pe) — fu(x, p)pe =80>0 VxeRN
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and all ¢ > 0 small. Then p, satisfies

eApe +J % pe — pe + fu(x, pe)pe = fu(x, pe)pe — f(x, pe) < —p.

By the maximum principle we conclude that
vl < Mpg <C inRV.
3o
Thus p, is uniformly Lipschitz. 0O

Proof of Theorem 1.1. Uniqueness is proved as in [24,22]. Also the proof that g < 0 is necessary for existence is
very similar to [24,22], so we omit the details.

Assume now po < 0 and let us prove that there exists a continuous solution. Let p. be the positive solution
of (2.3), which exists since u, < 0 for ¢ > 0 small. By Lemma 5.2, p. is uniformly Lipschitz and therefore, up
to subsequence p,, converges uniformly in [0, 1]V as ¢ — 0 to a continuous function p > 0 which is periodic and
solves (1.5). By the uniqueness of the positive periodic solution of (1.5), we have convergence of the whole fam-

ily p.. 0O
Directly from the previous proof we get the following result.

Corollary 5.3. Assume 11y < 0, so e <0 for e > 0 small. Let p be the positive continuous periodic solution of (1.5)
and p. be the positive periodic solution of (2.3) for ¢ > 0 small. Then

pe — p uniformly as ¢ — 0.
6. Construction of approximate pulsating fronts

Let ¢ > 0 be small enough so that
0=Jxp—p+eAp+ f(x.p), xeRY
has a positive periodic solution p,, which is unique.

Here the main result is the following.

Proposition 6.1. Let ¢} (¢) be defined by (2.7). For ¢ > c}(¢) there is a solution to

O =My —y +eAy + f(x,¥) inRxRY (6.1)
such that
liIEl Y(s,x)=0,
,Ligloow(s,x) = pe(x), (6.2)

W (s, x) is increasing in s and periodic in x.

To prove this result, we first work with an elliptic regularization £, of the operator M — Id + ¢ Ay — cd; as it
is done in [5,21,25] and introduce a truncated problem as follows. Given «, 7, R > 0, 0 > 0 and c € R consider the
problem

Lo+ fx,¥)+H(s,x)=0 in(—r, R) xRY,
V(s,)=o0¢ fors<-—r,

¥(s,.)=p, fors>R,

¥ (s, -) is [0, 11V -periodic for all s

(6.3)

where

Loy = / JE = (s + 0 =0 e y)dy =y +eAst + 155t — By,
[-r<s+(y—x)-e<R]
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¢, is the principal periodic eigenfunction associated with the principal eigenvalue u. of the following problem

eEAQ+JxPp—d+ fu(x,0)09 + puep =0,

and

H(s,x)=o0 / J(x = y)pe(y)dy + / J(x = y)pe(y)dy.
[s+(y—x)-e<—r] [s+(y—x)-e=R]
Proposition 6.2. There exists og such that for all 0 < o < o¢ and for any c € R there exists a unique solution

of (6.3). Moreover, the corresponding solution is increasing in s, and continuous with respect to ¢ with values in
C%([—r, R] x RM).

Proof. Note that by construction, since J is smooth then H (s, x) is also smooth and the problem (6.3) can be solved
by super and subsolutions techniques. We call a function ¢ € C2(RY x [—r, R]) a supersolution of (6.3) if

L+ fx, ) +H(s,x) <0 —r<s<R,

V(-rx) >0,  Y(Rx)=p:(x) VxeRY,

Y is periodic in x.
Subsolutions are defined similarly reversing the inequalities. If there exist a subsolution ¥, € C%([—r, R] x RM)
and a supersolution ¥, € Cz([—r, R] x RY) such that ¥, < ¥, then using monotone iterations one can construct a

minimal solution g and a maximal solution xD of (6.3) such that ¥ < g < 1} < ¥,. The monotone iterations can be
taken for instance of the form

Vo=
and v, defined recursively as
—&AxVUnt+1 — KOssYn+1 + cOs¥nt1 + (A + D¥nti
=My + f(x, ¥) + AYy + H(x,s) in (-1, R) x RY,
Y1 (=1, x) =0¢s,  Yus1(R,x) = pe(x) VxeRY,
Yp41 is periodic in x,

(6.4)

where M denotes the operator

B (5. x) = / TG = (s + (0 —x)-e.y)dy.
[—r<s+(y—x)-e<R]

Here A > 0 is a large constant such that u — f(x, u) + Au is increasing for all u € [0, max p.] and all x. Then the
right hand side of (6.4) is a monotone operator.
Now since, p, and w are bounded and strictly positive functions, the following quantity o * is well defined

o* :=sup{o > 0] 6. < pe).

Take now 0 < o < o*. Then from the definition of H (s, x) we see that p, is a supersolution of (6.3). Indeed, a short
computation shows that

Lelpel + fx, pe) + H(x,s) <(J % pe— pe) + f(x, pe) + €A pe =0.

Working with ¢ > 0 sufficiently small we have that . < 0. Let us now observe that when 0 < o < o* and o is
small enough the function o ¢, is a subsolution of (6.3). Indeed, as above using that 0 ¢, < p, a short computation
shows that

Lilogel+ f(x,0¢:) + H(x,5) Z0(J % ¢ — ) + [(x,00) + €0 Axe

> o (—ug PPACILL N 0)).
0P
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Since ¢ is uniformly bounded, using the regularity of f(x, s) we have for o > 0 small enough say o < o1

<_Me + M —fu(X,O)) > K = 0.
o2

2

Thus for o < 0 :=inf{o, 0*}, 0 ¢, is a subsolution to (6.3) with o ¢, < pe.

We prove now that for all o < o the corresponding problem (6.3) has a unique positive solution denoted ¥, . To
this end we use a standard sliding method. First observe that for any 0 < o < o0y, then any bounded solution i of the
corresponding problem (6.3) satisfies

OPe <Y < Pe.
Indeed, let us start with the proof of the inequality ¢ < p,. Since p, is bounded away from 0 the following quantity
is well defined

y*i=inf{y > 0] <ype}.

To prove the inequality, we are reduced to show that y* < 1. Assume by contradiction that y* > 1. From the definition
of y*, using the periodicity of the functions ¥, p. and a standard argument we see that there exists a point (so, xg) €
(—r, R) x RN such that y* p. (s0, x0) = ¥ (50, X0)-

Observe that since @ is a decreasing function of s, the function y* p, is a supersolution of (6.3). Moreover, for

some positive constant A big enough, the function y* p, — i satisfies

Le(y*pe—¥) = A(y*pe —¥) <O in(=r, B) xR",
(Y pe—¥)(=r.x) 20, (y'pe—¥)(R.x)>0 VxeRY.
Since L, is elliptic in (—r, R) x RN and y* p, (50, x0) = ¥ (50, X0), from the strong maximum principle it follows that
v pe=v in(-r,R) xR",
which is impossible since y* pe (x) > pe(x) = 0 ¢ (x) = ¥ (—r, x). Therefore we have y* < 1 and ¥ < p,. The strict
inequality comes from the strong maximum principle. Now observe that to obtain the other inequality o ¢, < ¢ we
can just reproduce the above argumentation with o ¢, in the role of ¢ and ¥ in the role of p,.

We are now in position to prove the uniqueness of the solution of (6.3). Suppose 1, 1, are 2 solutions of (6.3).
Define the following continuous functions

o¢e(x) ifs<—randxeRV,
U1(s,x) :={ ¥i(s,x) if —r <s<Randx e RV,
pe(x) ifs> Randx e RV
and
ops(x) ifs<—randxeRV,
Ya(s,x) if —r<s<Randx eRV,
pe(x) ifs>Randx e RV.
Note that with this notation Eq. (6.3) satisfied by /1 and > can be rewritten

eAV; + kdss Wi — cdsWi — Yi + f(x, i) = —My; in(—r, R) x RY (6.5)

with i € {1, 2}.
Let us define

Yi (s, x) :=1(s +7,%)
with 7 € R. Obviously, we have
1/_/1t(s,x) =Yi(s+7,x) in(—r,R—1) xRY.
We claim that for all T € [0, R + r]

Ya(s,x)

Ul(s,x) > Ya(s,x) for (s, x) € R x RV, (6.6)
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By construction we easily see that 1/_/1R+r > v in R x RY since we know that

ope <Y < pe for (s, x) eR xRV
Moreover, using that we have a strict inequality in (—r, R), that is to say
ope <Yi < pe for(s,x) € (—r, R) X RV,
we can find a positive ¢ such that for any t € [R +r — &, R +r] we have
Jff(s,x) > Un(s,x) for (s,x) e R xRV,
Note also that by construction for all T > 0 we have
lﬂlf >y, in ((—oo, —r]U[R — T, +oo)) x RV, (6.7)
Now let us define
t* =inf{r € [0, R]: 1}17/ >y fort’ €[, R+rl]}
then 0 < t* < R + r. Assume that 7* > 0. In this case
v >4, inRxRY
and since J > 0 we have
M(J] =) 0.
Now, fix A > 0 large so that f(x,u) 4+ Au is monotone increasing in [0, max p.]. Let us denote 7 := 1}1’* — 1/72.
Then using the definition of ¥/} and ¥ in (—r, R — t*) x R", we have
eAZ+ Kkdyyz — cdsz — (A+ Dz < —M(UT — ) <0,
z(=r,x) >0 forall x e RV,
zZ(R—1*,x)>0 forallx e RV,

By the strong maximum principle, it follows that z > 0 in (—r, R — t*) x RV Therefore, we have 1}1’* — Y >0in
[—r, R — t*] x RY and by continuity for § small we have for any 7 in (t* — 8, T*)

Yf =92 >0 in[-r,R—1] xRV, (6.8)
Combining the later with (6.7) it follows that for any positive t in (7* — §, 7*) we have

Ui —¥,>0 inRxRY,

which contradicts the definition of 7*. Therefore, 7* = 0 and | > . By interchanging the role of v/ and v/, in the
above argument we end up with 11 > Y, > 1, which prove the uniqueness of the solution of (6.3).

Taking ¥» = ¥ in (6.6) shows that ¥ is increasing in s. Finally, denoting ¥, the unique solution of the correspond-
ing problem (6.3) one can see that the map o — v, is continuous, thanks to the uniqueness of the solution to (6.3)
and standard elliptic estimates. O

Proposition 6.3. Suppose ¢ > c} (). Then there exists ro > 0, k(c) > 0 and k > 0 such that for r > ro, R > ro,
k < k(c) there is o € (0, 09) for which the unique increasing solution \r of (6.3) satisfies

1
max ¥ (0, x) = — min p;.
xe0, 1]V k®N

Proof. Let v, denote the unique solution of (6.3) constructed in Proposition 6.2.
Choose k > 0, so that

opmax ¢, > — min pg,
ORN e K BN Pe
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where ¢, denotes the positive periodic principal eigenfunction associated with the eigenvalue problem

Jxp—¢+eAd+ fu(x,0)¢ + uep =0.

Observe that since v/, is increasing in s, we have maxgny ¥4, (0, x) > %minRN pe. Next we prove that for o =0,
we have max gy ¥0(0, x) < %minRN Ds.
Recall that

o pa(-52),

where . is the principal periodic eigenvalue of the problem

Sxp—dp+eAd+ fulx,000 + pesrd =0.

Since ¢ > c}(¢) there is % > 0 such that cA + He 7 > 0. Let us denote ¢, 5 the principal periodic eigenfunction
associated with ., 5 and consider the function

w = eX(S*SO)qu’;»,
where sg € R is chosen so that
¢ max ¢35 < lmin Pes
RN O% kRN
and take R > 0 large so that
em‘m)rﬁgnqbs,; > pe(x).
Since w is monotone increasing in s we have
w(s, x) = pe(x) forany (s,x) € [R, +00) X RV,
Finally, observe that
M0 - (x) 20 forany (s,x) € R x RV,

We claim that the function w is a supersolution of (6.3) with & = 0 for k¥ small enough. Indeed, in (—r, R) we have

Low+ fO,w)+ H(s,x) < (J 45— b+ 0G5 + fux, 0, 5 — Ao, 1 + KA, ;)"

—(/JLS’;L +ch— K)_\.z)w.

NN

< c+uy

Therefore, for x < = k(c) we have

Low~+ f(x,w)+ H(s,x) <0 forall (s, x) € (—r, R) x R",
w(—r,x) >0 forallxe RN,
w(R, x) > pe for all x e RV.

Since 0 is a subsolution of (6.3) with 0 =0 and w > 0 using the uniqueness of the solution of (6.3) we must have
Yo(s, x) < w(s, x). Therefore

. De
max 0, x) <maxw(0, x) < min —.
nax (0, x) < maxw(0, x) < min =

With R > 0 fixed, we see that the map o € [0, o9] — ¥, is continuous, and at o satisfies max ¥4, (0, x) > min %
and max ¥ (0, x) < min ££. By continuity there is o € [0, og] such that max 1, (0,x) =min 2. O

Proposition 6.4. For ¢ > c}(¢) and « < k(c) there is a solution to

o =My — ¥ +eAY +kd ¥ + f(x,¥) inRxRY (6.9)
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such that
lim ¥(s,x)=0,
§—>—00
lim (s, x) = pe(x),
§—>+00

Y (s, x) is increasing in s and periodic in x.

Proof. Forr > 0 large, let 1, be the solution of (6.3) with R = r obtained in Proposition 6.3 where o = o (r) € (0, 0p)
is such that

X
max v, (0, x) = min Pe_()
xeRN xeRN

(6.10)

We let r — oo. Since ¥, is locally bounded in C!:%, there is a subsequence such that v, converges locally in C1¢ to
a function ¥ : R x RY which satisfies (6.9) with the speed c, is increasing in s and periodic in x.

The limit w(x) = lims_, _ ¥ (s, x) exists and is a solution of the stationary problem. By Proposition 5.1 this
solution is either 0 or the unique positive stationary solution p.. By (6.10) we conclude that w = 0. Similarly
limg sy oo ¥ (s, x) = pe(x). O

In the next proposition we establish some a priori estimates satisfied by the solutions of (6.9). Namely, we have
Proposition 6.5. Let ¢ > ¢} (¢) and «k < k(c) then the solution (Y ¢, ¢) of (6.9) satisfies:

1 -
(i) ¢ / |aa/fk,s|2=—§f|vxpa|2 — ij(x,w(ps(x) —pg<y))2+/F(x,ps>
RxC C C2 C

where C = [0, 11N and J = Y kegn J(x —y — k) is a symmetric positive kernel.
(ii) For all compact set K C R x RY, there exists R > 0, a constant y (R) and n € N so that

/ IViteel* <y (R)Y2n)N.
K

(iii) Given R > 0, let
Or={(s,x) eRxR": |x| <R, Is| <R}.

Then there exist positive constants M, M’ independent of ¢ such that

1
sup [ Vi el < M(|C| + R + R(qup|p8(x)| + Sup|fu(x»0)|)> sup |V el
Or Or Or

ORr/a

1,x) — 1, X
sup [Yic.e (21, X) IpKI-,E(z )| gM’sup|Vxl//K,g|.
OR/a |ty — 12|28 Or

We give the proof of this proposition in Appendix A. We are now in a position to prove Proposition 6.1.

Proof of Proposition 6.1. Let us first assume that ¢ > ¢} (¢). Then from the above construction, for any « < k(c),
there exists a function ¥, (s, x) increasing in s and periodic in x € R¥ that is solution of (6.9). Without loss of
generality, we can assume that V. . is normalized as follows

max ¥ (0, x) = min &.
RN RN k

We let « — 0 along a sequence. Thanks to the a priori estimates of Proposition 6.5, we can extract a subsequence
of (Y,.e)neNn Which converges locally uniformly in R x R¥ to a function ¥, € Hll) C(RN YN CYR x RN) for some
a € (0, 1), that satisfies (6.1) in the sense of distributions. Since V¥, . is periodic in x, monotone increasing in s, and
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0 < ¥y,.e < pe, we also have that . is periodic in x, monotone nondecreasing in s, and 0 < ¥ < p,. Note also that
from the normalization condition, since vy, . — ¥ locally uniformly, we also deduce that

i P
I%E]}]Xlﬁg(o,x) _IIE}VH . (6.11)
Furthermore, using standard parabolic estimate, one can show that 1, is a classical solution of (6.1). Thus v, satisfies

eAYe — cdsPe + M[Ye]l — Yo + f(x,¥) =0 inRxRY,
0< Y <pe. ¥ >0 inRxRY,
Ve (s, -) is [0, 1]N-periodic for all s.

By standard estimates the limit w(x) = limy_, _ ¥ (s, x) exists and is a solution of the stationary problem. By
Proposition 5.1 this solution is either 0 or the unique positive stationary solution p.. By (6.11) we conclude that
w = 0. Similarly limg—, 450 ¥ (s, Xx) = pe(x). O

7. Estimates for L, )

Recall the notation from (4.2):
Leju=¢eAu+ Jyxu—u+ f,(x,0)u.
Lemma 7.1. Let A be such that 0 < Ac < —[i ), where [i¢ ), is the principal periodic eigenvalue of the operator — L ),
defined in Section 4. If u € C>(RN), u > 0 is a periodic solution to
Leju—Acu=h in RN
then

||M||L00([o,1]N) < Cs,A”h”Lw([o,l]Ny

Note that for any ¢ > 0and 0 < A9 < A] < —pte,5/c we have

sup Cg ) < 00,
ASALKA

but the constant depends on €.

Proof of Lemma 7.1. Let ¢, be the principal eigenfunction of the adjoint operator L7 ;. Then multiplying the
equation by ¢ ; and integrating we find

(—ten — Ae) / upy , = / hoy ;.
[0,11¥ [0,11¥
Since Ac < —g p, u 2> 0 and ¢: ,, 1s strictly positive and bounded, we obtain
Nl L1 o, 1%y < CenllhllLiqo, vy -

The uniform norm follows because of standard elliptic estimates for the operator L, 3. O

Proposition 7.2. There is p > 0, such that for any 0 < p’ < p there is &g > 0 and C such that for any 0 < & < &g,
any M that satisfies (—pe ). — p)/c <A< (—per — p')/c and any u > 0 that is a periodic solution to

Leju—icu=h inRY (7.1)
for some h € L* we have

el oo o, 177y < €||h||Loc([o,1]N)-

The constant p > 0 does not depend on ¢ or A.
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Proof. Let u; be the principal eigenvalue of —L;. Recall that inf, (o v (1 — fu(x, 0) — o) > 0, so we can fix p > 0
such that inf, (1 — f;,(x,0) — uo — p > 0). Since u) < wo, see Proposition 3.3, also infy (1 — f;,(x,0) — u) — p > 0).
Let 0 < p’ < p and let us proceed by contradiction. Assume that there exist sequences ¢, — 0, A, € R, periodic
functions (h,) in L*°, (u,) in CZ, such that: A, satisfies (—ptn — p)/c < hy < (—pn — p')/c, where wn = e, 2,5
u, solves (7.1) and

lAnllLee =0 and  |luy|lze = 1.
We write Eq. (7.1) as

en Aty — an(X)uy = —gn (7.2)
where

ap(x)=1—f,(x,0)+x,c and g, =J),u, —hy.

After extracting a subsequence we may assume that A, — A, u, — u weakly-*in L°([0, vy ) and then Jy, u, — Jru
uniformly. Hence g, — g = J,u uniformly, and g is continuous. By Lemma 4.2 we have u, = pg,.2, — Mx as
n — o0. Since

an(x)=1—=f,(x,0) +2c 21— fu(x,0) —pp —p
and 1 — f;,(x,0) — ux — p > 0, by working with n large we may assume that

infa,(x) > ap >0 foralln.
X

Note that a, - a =1 — f,(x,0) + Ac, which is a continuous positive function, and the convergence is uniform.
We claim that u,, — g/a uniformly. For the next argument we will assume that g, > 0, which we can achieve by
replacing u,, by u, + M and g, by g, + a,M where M > 0 is large. Note that (7.2) and g,, — g uniformly still hold.
Let 0 < o < 1/2 and xo € RY. By uniform convergence g, — g, a, — a and the continuity of g and a, we have
0 gn(x) > _U)g(xo)
xeB,(x0) B+ au(x) a(xp)
provided we choose r > 0, § > 0 small and n > n¢ with ng large, and this is uniform in xo. Let z be the principal eigen-
function for —A in B, (xp) such that maxp, (y,) z =1 and let v, = C/ r2 be the corresponding principal eigenvalue,
that is,

Az+v,2=0, z>0in By(xp),
z=0 on dB,(xp).

in B, (xo)

Define

X
Uy =u, —zd, whered, = inf gni()
By (x0) Vré&p +an(x)

Then
EnAvy — vy = —gn + dp(envr +a,)z <0
by the choice of d,, and z < 1. Since v, = u,, > 0 on 9 B, (x¢) by the maximum principle we deduce that
Uy = ( inf gni(x))z in By (xp).
By (x0) Vr&p + an(x)
In particular, if n > ng is large enough so that v,&, < 8 we obtain

n (x0) > (1 —o)iggi.

This proves that

liminfinf(u, — g/a) > 0.
n—-oo x
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A similar argument shows that

limsup sup(u, — g/a) <0

n—oo X

which proves the uniform convergence u, — g/a. We deduce that u = g/a, and therefore u solves the equation
Jouu—u—+ f,(x,0)u —Acu =0.

But since ||u,||L = 1 and u, converges uniformly we also deduce that |[u||z~ = 1. Moreover u > 0. Then nec-
essarily Ac is the principal eigenvalue —pu; of L;. This not possible because we assumed A,c < —u, — 0/, $0
Ac < —uy — o', acontradiction. O

8. Exponential bounds

Suppose we have a solution of

Yy =AY +M[Yl—y + f(x,¥) VseR, xeRY,

¥ (-, x) is nondecreasing for all x,

¥ (s, -) is [0, 11V periodic for all s, (8.1)
Y(s,x) >0 ass— —o0,

Y(s,x) —> pe(x) ass— oo.

Let § > 0 be fixed. We assume the following normalization on :

max ¥ (0,x)=34. (8.2)
xe[0,11V
Let A¢(c) be the smallest positive A such that c = — M;{A . The main result in this section is the following.

Proposition 8.1. For any 0 < A < A¢(c) there are § > 0, C > 0 such that if  satisfies (8.1) and (8.2), then
Vs, x)<Ce™ VxeRM, Vs<O, (8.3)

where C does not depend on ¢ > 0.
As a corollary we have:

Proposition 8.2. For all ¢ > 0 small and any fixed ) such that 0 < A < As(c) there exists C,, independent of € such
that if  satisfies (8.1) and (8.2), then

[Ws(s,%)| < Cre™ Vs <0, ¥x e RY, (8.4)
eV (s, 0)| < Cre® Vs <0, ¥x eRY, (8.5)
e| V2 (s, x)| < Cre™ Vs <0, Vx e RV, (8.6)

The proof of this proposition is based on scaling in the x variable and applying Schauder estimates for parabolic
equations. We omit the proof.
The proof has several steps.

Lemma 8.3. There exists Ag > 0 and C > 0 such that if § > 0 is sufficiently small and  satisfies (8.1) and (8.2),
then

o0
[ / VU(s,x)e ™ dsdx <C VY0 <i<ho (8.7)
[O,I]N —0Q

where the constants do not depend on € > 0. Moreover,
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o0
/ Y(s,x)e ™ ds<C, VO<Ai<ho
—0Q

where C, depends on ¢.

Proof. Let 1, : R — R be a smooth function such that 7, (s) =1 for all s > —n, n,(s) =0 for all s < —2n, 5, > 0.
Let A > 0 and define

oo
Up(x, 1) = / ¥ (s, x)e " n,(s)ds.
—0o0
We multiply (8.1) by 7, (s)e™** and integrate on (—oo, o0). The term involving My yields

/ My (s, x)nu(s)e ™ ds = / / Jx =Y (s+ O —x)-e,y)n(s)e  dyds

—0ORN
o0
= [st=ne e [yl =0 e OO dsay
RN —0Q
o
= / J(x — y)e Mx)e f Y (T, y)e Tt — (y —x) - e)dr dy
RN —00

and we write this term as

JuUn (- 0) + / J(x — y)e Hemo)e / YT, e [t — (v —x) - ) — na(v)]dr dy.

RN —0o0

Hence

eANU, + WU, = U, + fu(x,00U, —cAU, =D, + E, + F, (8.8)

where

D, = / J(x — y)e e / ¥ (T, )e M [1,(1) — (T — (v —x) - €) ] dr dy,

]RN —00
E,= /(f(xw/f(s,x)) — fux, 0¥ (s, x))e * nu(s) ds,

F,=—c / W (s, ), (s)e ™ ds.

Observe that in D,,, we can assume that the integral in y ranges on |y — x| < 1 (because we assume that J has support
contained in the unit ball). Then |(y — x) - e¢| < 1 and since 7 is nondecreasing

/ J(x = y)e e / P (e e (t = (v — x) - ¢)dr dy

RN

o0
> / J(x — y)eHee f (T, e (r — 1 dedy

RN —00
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o0
_ / J(x — y)eHre f W@+ 1, ey (o) dr dy

RN —0o0

00
>e / J(x = y)eHee / ¥(z, y)e T (e)drdy
RN —00

because (-, x) is nondecreasing. It follows that

D, < (1 =€) LU, (0.
Thus, from (8.8) and since F;, <0

eAU, + LU, — U, + fu(x,0)U, — cAU, < (l — e*A)JAUn(-, A) 4+ Ey.
Write

0 00
E,,:/...ds—l—/...ds
—00 0

and note that
f [(f (x, ¥ (s, %)) = fulx, 0P (s, x))e 5 m,(s)| ds < C
0

with C; ~ 1/ as A — 07, We estimate the other integral as follows:

0 0
/ (f (. ¥ (5, %)) = fulx, )¢ (s, x))e ** ds < Cy f Y(s,x)%e M (s) ds

0
<C;8 / U (s, )¢ n(s) ds < C8Un (x. 1)
)

where C is a constant that depends only on f.
In this way we obtain

eAU, + J.Uy — Uy + fu(x, 00Uy — AUy < (1 = e ) LU (-, 2) + C8U, + Ci. (8.9)

Let ¢ 5 be the principal eigenvalue of the operator —(¢ A¢ + J,¢ — ¢ + f,(x, 0)@), ¢¢ 1, the principal eigenfunction
and q); ,, be the principal eigenfunction for the adjoint operator. Since e ) — fa as € — 0 and ) < 0, we can assume
]N

that u » < 0. Multiplying (8.9) by ¢>:’ ,, and integrating over the period [0, 1]™ we find

(—tter — A / Un (o, 97, (v dx < (1— e / FUn (e, G, () dx

[0,11¥ [0,11¥
+Cy8 f Un(x, My 5 (x)dx + Cy / ¢y 5 (x) dx.
[0,1]¥ [0, 1]

But
/JxUn(x,k)@,,\(X)dx: / (J1) ¢z 5 ()Un(x, 1) dx

[0,11¥ [0,11¥

- / [ ttead®s + 67 5 — fulr 067, — eAGY, |Un(x. 1) dx.
[0,11¥
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Note that 4);‘, 5, is uniformly bounded in C2([0,1]1V) as € — 0, see Remark 3.10, a property where use that f is C>.
Using the uniform smoothness of ¢ ; and the fact that it is uniformly bounded below ¢, (x) > ¢ > 0 as ¢ — 0 with
A > 0 fixed, we see that

/JAUn(x,A)qb:,A(x)dng / Un(x,)h)qﬁ;k(x)dx.
[0,11¥ [0,11¥

Therefore
(—Hes —Ch) / Un(x, Mo} 5 (x)dx < ((1—e*)C + Cy8) / Un(x, M55 (x) dx
[0,13¥ [0.11¥

+C / ¢y 5 (x) dx.
[0,1]¥

Choosing § > 0 and A > O sufficiently small we deduce that

| vntwemar<c
[0,11¥

and again using that qb; ,, is uniformly bounded below, we find

/ U,(x,\)dx < C (8.10)
o,1¥

where C is independent of € and n. Now letting n — 0o, we obtain the conclusion (8.7).
To prove the last part we observe that

lim U,(x,A)=U(x,A)
n—o0

by monotone convergence where
o0
U(x,A) = / W (s, x)e * ds.
—0oQ

By (8.10), U(-, A) isin L'([0, 1]V) and is a weak solution of
eAU+ /LU —U —ciU=E inRY

where
E= / f(x, lﬂ(s,x))e_)‘s ds.

Note that
IENLrqo,%) < ClUCD oo.rm)

for all p > 1. Then, using standard elliptic L? estimates we deduce that U(-,A) € L* for 0 <A < 9. O

Lemma 8.4. Suppose v : (—oo, 0] — [0, 00) is nondecreasing and let . € R. Then

0
X
w(s)gx% f V(e dr Vs <0. (8.11)
—e S
—00
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Proof. Let 7 < 0. Then

0 0
w(t)/e*“ ds </¢f(s)e*“ ds. O
t t

We prove first the exponential decay of ¢ for some constant that depends on ¢.

Lemma 8.5. For any A < Ag¢(c) there is Ce > 0 such that if  is a solution of (8.1) then

Vs, x) < Cee™ VxeRM, VseR. (8.12)

Proof. In this proof ¢ > 0 is fixed and we find 8, > O such that if i satisfies

max (0, x) <& (8.13)
xel0, 11V

then the conclusion (8.12) holds. Given any solution of (8.1) we know already by Lemma 8.3 that (s, x) — 0 as
to —oo uniformly in x, even at an exponential rate, so that (8.13) holds provided we replace ¥ (x, s) by ¥ (x,s — 1)
with 7 sufficiently large.

Let n € C*°(R) be such that n(1) =1 forz <1and n(t) =0forz > 2. For A € R, x € [0, 11V, let U be defined
by

Ux,\) = / w(s,x)e_)‘sn(s)ds (8.14)

with values in [0, co]. At this moment we know from Lemma 8.3 that U(x, X) < o0 if we take 0 < A < Ao where
Ao > 0 is a small fixed number. The objective is to prove that for any A such that 0 < Ac < —pe

UG 2 ||L<><>([0,1JN) < +o0.

Then from (8.11) we obtain the desired conclusion.
Assume that A is such that [[U (-, 2) || oo 0,177y < +00. We multiply (8.1) by n(s)e™* and integrate on (—o0, 00).
We obtain

eAU 4+ J,U —U + f,(x,0)U — cAU = Dy (x) + E; (x) + Fy.(x)

where

Dy(x) = f J(x — y)e Mame / Y (t,y)e M [n(r) —n(t — (v —x) - e)]dr dy,

RN
(0.¢]

E;(x) = /(f(x,w(s,X)) — fulx, 0 (s, x))e * n(s) ds,

F(x) =—c/ Vs, x)n' (s)e ™ ds.

Thus
(Le,p — Ac)U = Dy + Ej + F.
Since U is nonnegative, we may apply Lemma 7.1 and deduce

NUC W) o < Cen(IDx + Es + Fall<).
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Write U = Uy + U, where

0 00
U, = / (s, x)e Mn(s)ds, Uzzfx/f(s,x)e—“n(s)ds. (8.15)
—00 0

Since U, > 0, we also have
101 oo 0,113y < Ceall D+ Ex + Fill oo (o, 178y
In D; (x) one can restrict T to [—1, 4]. Hence
||D)L||L00([o‘1]N) § C

and the constant remains bounded as A varies in a bounded interval of R. Similarly the integral in F) (x) is restricted
to 1 <t <2 and hence

1 Foll oo 0,17y < €

with C as before. We estimate

|Ex(0)| = / (f(x, (5, 0)) = fulx, ¥ (s, x))e " n(s)ds
) -1
<C/|1,b(s,x)|2e*“ds+c.
By (8.11)

¥ (5, %)| < Coe™ U1 M) o VX €[0, 117, Vs < —1.

Hence, using (8.13),

—1
|E;(x)| < C81/? / (s, 0)[Pe ™ ds +C
—00

-1

<cs!P|uie, w3 / M ds +C = o8| Ui W |32 + ¢,
—0o0
where Cj, ~ 1/Ag. Therefore
106, Lo° vy X 9% roLed 104, Loo+ 1. .
[01G I oo,y <82 CroCes|UrC IR + € (8.16)

If we choose §, > 0 small this implies that there is a gap for | U; (-, A) ||Loc([0, 1V For example we can achieve

either |U1 (-, 2) | oo 01wy S2C1 01 [UIG D) 1o >3C.

0,11%)

Indeed, first fix 0 < Ag < A1 < As(c). Then we know from Lemma 7.1 that

sup Cg ) < o0.
ASALA

Choose 5, > 0 such that
1
881/2(3C1)1/2CAO( sup Ce) <3
ho<A<Al 3

Suppose that || U (-, 1) || o 0,177y < 3C1. Then by (8.16)
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|01 oy < 8 2Ca0Con UL W32 + €1
([0,11%)

<812ChCen BCD2| UL W) | o + €
1

< §||Ul(-,x)||Loo +C; <2C).
Using Lemma 8.3 and increasing C and decreasing §, if necessary, we can assume that
Since A — ||U; (-, A)|| L is continuous we see that

[UIC )] e <2C1 VAo<A<H. O

Proof of Proposition 8.1. We argue as in Lemma 8.5. In this proof we take p > 0 as in Proposition 7.2 and let
0 < p’ < p. We restrict A so that it satisfies (—ug ) — p)/c < A < (—er — p')/c and take 0 < & < &9.

Let U be defined by (8.14), and Uj, U, defined in (8.15). Following the proof of Lemma 8.5, if ¢ satisfies (8.1)
and (8.2) then, using Proposition 7.2,

”Ul('v)‘)HLoo 0.1V <81/26HU1(’)\-)H1/£+C15
([0,11%)

where C now remains bounded for any 0 < & < g if A satisfies (e —p)/c <A< (—en—p')/c. Again, choosing
6 > 0 small such that

81/2(3C1)1/26 < %

we obtain
either [U1¢, )| oo o1y 2C1 01 [UIC D fo o177y = 3C1-

Let Y- (s, x) =¥ (s — 7, x) where T > 0 and U ; denote the corresponding Laplace transform as in (8.14), (8.15). By
Lemma 8.5

[U1:C )] 0 =0 asT— +oo0.

Since T = ||Uj,¢ (-, 1) ||z is continuous we see that
|U1LoC M) o <2€1.

Then by Lemma 8.4 we obtain (8.3). O

9. Proof of the main theorem

In this section we prove Theorem 1.2, by establishing a uniform estimate in Wli’cp of ¢, the convergence of ¥, to
a function ¥ satisfying the equation, and finally establishing that y» solves the full problem.

Proposition 9.1. There is § > 0 such that if V. is a solution of (8.1) satisfying the normalization condition (8.2),
then for any 1 < p < 0o and bounded open set D in R x RY there is a constant C independent of € as € — 0 such
that:

||1/fe||wl,p(D) <C. 9.1)

Proof. For simplicity we write » = 1, and we use the notation v, = %. We differentiate the equation in (8.1) with
respect to x; and get

Wx; =AYy, + My (V] — e M Y] — Yoy + fu(x, Y)W + fo (x, ¥) 9.2)

where

My, Y105, x) = / Lo = (s+ (0 —x)-e.y)dy

RN
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e=(eq,...,en). We write this as

Wsx + (1= fulx, 0)) ¥y, = €AYy, + My, [Y] — e MY + (fulx, ) — fulx, 0) vy, + fr, (x, ¥).

Let 1 < p <400 and 0 > 0 to be fixed later on. Then
9 - - P sp(i- - _
g(eSP(l fu(x,0) 9)/C|1//x,- |P) — ;esl’(l fu(x,0) 0)/6(01//”; + (1 — fulx,0) — 9)1//)6[_)|in |7 21//)51"

Using (9.3) we obtain

i(esp(lffu(x,o)*e)/qwxi |P) — BeSP(lffu(x,O)*e)/C(Ewai + M, [V] — e M[5]
c

as
+ (fule, ¥) = fux, 0)) v, + fr, (x, %) — Oy, ) |9y, LoV

We integrate now with respect to x over the period [0, 1]V and estimate the terms on the right hand side.

%;_s / ePU—fux0=0/e\y \Pdx =1 + h+ I+ Iy + 15 + I
[o,11¥
where
Li=¢ / SPU— =0/ Ay 1P, dx,
[o,11¥
L= / e PU SO0 pr [y 1y, 1P, dix,
[0,1]¥
L=—¢ f P SOOI My, |72y, dx,
[0,11¥
Iy = / SPU=REO=D/e( f e ) — fu(x, 0)) Y|P dx,
[0,1]¥
Is= / e PUFuCO=0/C £ )y |72, i,
[0,11¥
P / P Fue 0=/ 1 g
[0, 11¥

Integrating by parts we can estimate

L= —e(p—1) / PU=Tu0=0e |y =27y, 2 dx

[0,11¥
_e / V(eSP(lffu(x,o)fG)/C)vwxi|wxi|P*2¢xidx
[0, 1%
< Ebslp / PO=FEO/e|G, (. 0)] |V, |9, 17~ dix.
‘ [0,11¥
By Young’s inequality
nsg / PSS O=0 €y (P dx + CePls|P / PO =0/e gy P dx

[o,11¥ [0,11¥

209

(9.3)
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where C depends on 6 and || f|| 2. In a similar way

0

12 < g / esp(lffu(xyo)*e)/ch/f)q'p dx 4 C / esp(lffu(X,O)*e)/C|MXi [w]|P dx,
[0,11¥ [0,11¥

h<g / P O=0/e|y 1P gy 4+ / U000 M1y d,
[0,11¥ [0,11¥

<l [ ety rax e [ et f |
[0,13¥ [0,13¥

To estimate 14 we write

Iy <sup| fu(y, ¥ (5, 7)) = fu(y, 0)] / P00y P dx.
y
[0, 1]¥
We work with § > 0 small so that from the normalization condition (8.2) we get

0

sup| fu(y. ¥ (5. 9)) = fuy. O] < 5 forall s <0.
y

Then
0 0
n<g / e PU=Fle0=0)/c |y 1P gy
0.1V

Combining the previous estimates we obtain

%% / e PU= e O=0/cy (P dx < CePls|P / P SO0/ |gy 1P dx
[0,11¥ [0, 11¥
k[ et )P
[0,11¥
tc / PU=Fu 0=/ p11y 1P
[0,11¥
ke [ RO f | .
[0,11¥

Let 7o <t < 0. We integrate with respect to s over [#y, ¢] and then let 7g — —oo. By (8.5), given any 0 < A < X.(¢)

there is C such that

C
/ esp(l—fu(x,O)—e)/cwxl_ (s, 0)|" dx < 7 / exp(sp(1 — fu(x,0) — 6 + Ac)/c)dx.
[0, 117 [o,11¥

We choose now X and 6 as follows. We fix a large A¢ > 0. We note that since there is a principal periodic eigenfunction

¢)» € Cper(RN), ¢A > 0 for
% gy — dp + fulx, 0 + urgy =0 in RN

we must have

. } ) . Iaoxdu(x)
= inf inf (1 -— x,0) — = inf inf —————
4 xelo,Ao]xeRN( fule, 0) = i) re[0,Ag] xeRN ¢y (x)

> 0.
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Since e ) — 1y as € = 0, for € > 0 sufficiently small

inf (1— fu(x,0) — pes) >y/2>0
eRN

X
and since for A = A.(c) we have Ac = — ¢ ) we get
,00—1
re(c) > s + sup M
€ xeRN ¢
Take A > O such that
Su(x,0)—1
sup ————

xeRN ¢

v

4
<A< (o) — —. 9.6
+4c e(0) 1c 9.6)

Then choose 6 = y/8 > 0 and get
1— ,00—6
o= inf (L +)\> > 0. 9.7)
xeRN c

Then from (9.5) we obtain

' . C .
e PU—=fu(x,00=0)/c |wx (s, x)|P dx < ——eP? Vs<0,
! ep/2
[0,1]¥

and therefore

lim PU= I 0=0/ely (5, x)|” dx =0. (9.8)
§—>—00
[0,1]¥
Integrating (9.4) in [fo, t] with 79 < ¢ < 0 and using (9.8) we obtain
c

/ eSp(l—fb(x,O)—9)/C|l/,xi|P dx <K+ K2+ Kz + K4 9.9)
p

[0,11¥

where

t
K1=Cgf’/|s|f’ / e P UL 0=0)/e gy, P dx ds,

—00 [O,I]N

1
K2=C/ feSp(l_f“(x’O)_e)/C|Mxi[w]‘pdxds,

—0o0 [0’1]N

t
K3=C/ /eSP(l’f“(x’O)’(’)/c|M[¢S]|pdxds,

—00 [O,IJN

1
Ks=C / / e PU— T 0=00/¢| r o (x y)|P dix ds.
—[0,1]¥
Next we claim that K1, K, K3, K4 remain bounded as ¢ — 0. Indeed, by (8.6) and (9.7),
esp(l—fu(x,o)—G)/cWI/,Xi |? < esp(l—ﬁ«(x,O)—G)/C|vfl/,|l7

C _ 5. o C
< _esp(l fu(x,00—60+xc)/c <=

ep epb

&P
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for s <0, x € RN with C independent of ¢ (note that Vry, is a second order derivative of ). Therefore K is bounded
as ¢ — 0. The other ones can be bounded similarly, using (8.3), (8.4) and the hypotheses f(x,0) =0, f € C3 which
imply

|fx,.(x,u)|<Cu f0r0<u<8

for some C. Thus from (9.9) we deduce that there exists C independent of ¢ for ¢ small such that for all s <0

/ e PU—fuO=0/c|y (5, x0)|P dx < C. (9.10)
0,11V

This together with (8.4) proves the estimate (9.1) for any bounded open set D C (—00,0) x RY. To obtain (9.1) for
any bounded open set D C R x R we proceed similarly as before. We multiply (9.2) by [y, |” —%pxl. and integrate
over [0, 17V, Using that v has a uniform upper bound we obtain

d
s / [Y; 1P dx < C / [y, |7 dx.
[0,11¥

[o.1¥

Then, using Gronwall’s inequality we deduce for s > 0

f [ ¥y, (s, )| 7 dx < e / |y, (0, )| dx + C.
[0, 1% [0, 1%
Since by (9.10) we have a uniform control of the form f[O‘l] v ¥y, (0, x)]? dx < C, we obtain that for all R > 0 there
exists C > 0 independent of ¢ such that
/ |y, (s, x)|"dx < C forall |s] <R.
[0,11¥

Using this and (8.4) we obtain the estimate (9.1) for any bounded openset D C R x RN, 0O

Lemma 9.2. If ¢ > ¢ there exists a function  : R x RN which is C' in s and Lipschitz continuous and satisfies
s =M[Y]—v+ f(x,¥) VseR, xeRY 9.11)
and
lim ¥(s,x)=0.
§——00

Furthermore > 0 is periodic in x and nondecreasing in s.

Proof. Let ¢ > ¢}. If ¢ > ¢} then ¢ > c}(¢) for ¢ > 0 small and we let, for small ¢ > 0, v, be the solution con-
structed in Proposition 6.1 with speed c. If ¢ = ¢} we let ¥, be the solution constructed in Proposition 6.1 with speed
ce = ¢} (¢). In any case we have a solution of (6.1) with speed ¢, — c, satisfying also (6.2).
Let § > 0 be from Proposition 9.1 and shift in s so that v, satisfies
max ¥.(0,x)=4.

xe[0,1]V

Then, choosing p > N in Proposition 9.1 we can find a sequence ¢, — 0 such that ., — v uniformly on compact
sets. Using this local uniform convergence we see that the function v satisfies (9.11) in the following weak form

—c/ f 1//(psdxds=/ f(M[lﬂ]—l//+f(x,1//))<pdxds

—0o0 [O,I]N —0o0 [O,I]N

for all ¢ : R x R¥ — R smooth periodic function with compact support. This implies that v is C! in s and satis-
fies (9.11) classically. Since v, is nondecreasing in s and periodic in x we deduce that ¢ is also nondecreasing in s
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and periodic in x. Moreover, by Proposition 8.1, if we take 0 < A < A, we have ¥ (s, x) < Ce* with C independent
of . Letting ¢ — 0 we find the same inequality for ¥ and hence lim;_, _ ¥ (s, x) = 0.

Finally, we prove that v is Lipschitz continuous, which follows the same lines of Proposition 6.1, so we point out
the main steps. Let b;, i = 1,..., N, denote the canonical basis in RY. Given h € R we define

(s, x +bih) — P (s, %)
= - )
We choose A, 6,0 > 0 as in (9.6), (9.7) so that

DIy (s, x)

e2s(l—fu(x,0)—9)/c < eZs(a—A) Vx € RN, 5 <0. (9.12)
Then we compute

i(eZs(l—fu(x,O)—H)/c(Dihw)z) _ %ezs(l—ﬁ,(x,O)—o)/c(Ml_ ["] = e;M[D ] + (fulx. F) — fulx, 0)) DLy

as
+ DI f (- ¥ (s.x +bih)) —9D!y) Dy
where e = (eq, ..., en),
J bih —y)—J(x —
Mi[g]<s,x>=f = Z) C D5+ =0 enn)ay,

]RN
(s, x) =¥ (s — eih, x),

o, e

and 1/~/(s, x) lies between v (s, x) and ¥ (s, x + b;h). From here we deduce

d )
55 (TR0 (Dl )?) < PUSCO (g, [y TP - MDY 4 (DI F (s, + bil))).

Using the exponential decay ¥ (s, x) < Ce* for all s <0 and all x € RV, and a similar one for v (cf. (8.4)), we
deduce from this and (9.12) that

a .
g(ezs(wa 0-0)/¢(phy)?) < .

Integrating from —oo to s < 0, we conclude that there exists C independent of / such that
DI (s, )| < €™ ¥x e RN, Vs <0,

This proves that v (s, -) is Lipschitz continuous for all s < 0. An argument similar to the one at the end of Proposi-
tion 6.1 shows that it is also Lipschitz continuous for all s e R. O

We now prove the exponential convergence (s, x) — p(x) as s — 400, uniformly in x, by constructing appro-
priate subsolutions.

Lemma 9.3. Let Y be the function constructed in Lemma 9.2. Then there exist C, o > 0 such that
0< px) —Y(s,x)<Ce % foralls>0.
In particular

lim ¥ (s,x) = p(x) uniformly for x € RV,
§—>—+00

Proof. First we note that

(s, x) < plx) forallseR, xe RV,
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Next we show that 1/ (s, x) — p(x) as s — +oo uniformly for x € R¥. For this we will prove that there exists
&0 > 0 such that for any 0 < mq < 1 there is 5o € R such that

Ye(s,x) >mope(x) forallx € RN, s =50, 0<e<egp. (9.13)

The value so depends on m( but not on €.
Recall that we have normalized 1 by

max Y.(0,x)=§
xe[0, 1]V

where § > 0 is from Proposition 9.1. By Lemma 9.2
Ye—> Y ase—>0

uniformly on compact sets of R x R¥ . Since ¢ > 0in R x R and is continuous we see that there is g > 0 and a > 0
such that for 0 < e < g9

Ve (0, x) = 2ap.(x) Vx eRVN.

Note that a < 1. Then we also have

Ye (s, x) = 2ap:(x) VxeRM, 5>0,

because ¢ (-, x) is nondecreasing.
Givena <m < 1, R > 1, we construct a family of functions

U (8, X) =Apm(S)pe(x) s€ER, xe RN

where

hon(s) =a + %(1 — (s = R)) + (m —ayn(s — R)

and n € C*°(R) is a cut-off function such that n(s) =0 fors <0, n(s)=1fors > 1,0<n < 1and 0 <75’ <2. Note
that a < A, (s) <m for all s > 0.

Fix 0 <mg < 1 and let a < m < my. It can be shown that we can choose R > 0 large enough, independently of ¢,
so that v,, satisfies

EAVy + M[vy] — vy + f(x, Up) — c(Upm)s 20

fors >1and x e RV.
Using a sliding argument we obtain that a < m < mo

Ve > vy foralls >1, x €[0,1]V.
Using this inequality with m = mq we establish (9.13). Letting ¢ — 0 we deduce that
Jim g (s,x) = p(x)  uniformly for x € RV,
Finally, let us show that there is exponential convergence. For this we construct a subsolution w,, with this property.
Indeed, let o > 0 to be fixed shortly and 0 < m < 1. We set
Wy (s, x) = m(l — e_“)p(x).
Choosing Sy large and o > 0 small we obtain that
M{wp] — wm + f(x, wm) — c(wm)s =0 in[Sy, +00) x RY.
Let S; be such that
Y(s,x) = (1—e ) px) Vs> 8, xeRV.

This can be done because we know that ¥ (s, x) — p(x) as s — 400 uniformly for x € RY,
Using again a sliding argument we can prove that

(s, x) = wp(s + So— S1,x) Vs>=8p, xeRY
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and all 0 <m < 1. Letting m — 1 we find
Y(s,x) = (1—e 76T90750) p(x)  foralls > s, x e RY,

which finishes the proof of the lemma. O

Remark 9.4. The limit p(x) = limy_, o0 ¥ (s, X) exists by monotonicity, but we cannot assert that it defines a continu-
ous function (we have not proved uniform continuity of ¥ (s, x) as s — 00). One could then argue that p is a bounded
measurable solution of the stationary problem and that Theorem 1.1 also asserts the uniqueness of this solution. This
would yield pointwise convergence limgs_, 400 ¥ (s, x) = p(x) forall x € RN,

Lastly, to finish the proof of Theorem 1.2 we prove the nonexistence of front for speed ¢ < c.

Lemma 9.5. Let J and f satisfy (1.3) and (1.4) and let e € RN be a unit vector. Assume no < 0 and that there
exists ¢ € Cpe,(RN ), ¢ > 0 satisfying (1.7). Then there exists no pulsating front (¥, ¢) connecting 0 and p(x) in the
direction e so that ¢ < c}.

Proof. Assume by contradiction that there exists a pulsating front i with speed ¢ < ¢}. Then up to a shift ¢ is a
supersolution of the parabolic problem (1.1) for any initial data ug > 0 so that

supug < min p(x), liminf inf ug >0, up=0 forx-ek—1.
RN RN r—>+00 x-e<r

Let u be the solution of the parabolic problem (1.1) with initial data u satisfying the above condition then by the
maximum principle, we have for all (¢, x) € RT x RY,

ut,x) <yY(x-e+ct+ty,x)
for some fixed #. From Shen and Zhang results, Theorem C in [56], since ¢ < ¢} we have
liminf inf (u(x, t) — p(x)) =0.

t—>+400 x-e4ct >0

Thus we get the following contradiction

0=Iliminf inf (u(x,t)—p(x))gyminf inf_ (Y (x-e+ct+1p,x) — p(x))

t—+00 x-e+ct 20 —+00 x-e+ct >0

< (W, 0) — p) <0. O
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Appendix A. Uniform estimates for solutions some regularized problems

In this section we prove Proposition 6.5. The estimates in this proposition divide naturally in 2 parts, one consisting
in energy type estimates, and the other one are Schauder type estimates.

Proof of Proposition 6.5 (i). We proceed as in Lemma 2.5 in [9]. Let us denote ¢, . the solution of (6.9). Then
multiply Eq. (6.9) by 9,¥ ¢ and integrate over [—R, R] x C where C := [0, 11V, Then it follows that

C / | Os "ﬁx,a |2 =K [ 0y I/IK,S Oss wk,a +¢€ f 05 '1”/(,5 Ay 1//K,8
[—R.RIxC [—R,RIxC [—R.RIxC

+ / By ves (Mirge — ee) + / By e f (5, V).

[—R,R]xC [—R,R]xC
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Excepted the term 7 := flf R.RIxC OsYc.e (M. e — Wi ), all the term can be estimated as in the proof of Lemma 2.5
in [9], so we only deal with Z.
A simple computation shows that

1 1 R
/ 8S1!/K,€‘¢,K,8 = E / BS(I/IK,S)Q = E ‘/‘[(wk,s)z],]r
[—R,RIxC [—R,R]IxC c

So it remains to compute

I:= / as‘/ff(,aMwK,a-

[-R,R]xC

Let us denote C; := k +C where k € Z" . With this notation, using the periodicity in x of the function ¥, . we have

Mo = 3 [ 16 =34 0 =) e2)dy

keZN i
=Y /J(x—k—y)l//x,s(er(y—X)-e+k~e,y)dy-
keZNC

Now using integration by parts it follows that

I= | Y J6—y =[Pl Vel + =0 et ke )],
CxC keZN

R
- f S Ja-y-k / Viee (5. 003 Vs (5 + (v = x) e + k- e, y).
cxc keZN “R
Let us make the change of variable t =s 4 (y — x) - e + k - e in the last term of the right hand side. Then we have
R
/ 3T =y = Ve (5. 00 Ve (s + (v —x) e+ ke, )
CxC —R keZN
R+(y—x)-e+k-e
= / Z J(x—y—k) / Viee(T+(x—y) e —k-e,x)dPie(T, y).
cxC keZN —R+(y—x)-e+k-e
Let R — oo. Using that v, . — p, respectively 0 as s — £00, ¥ . > 0, d;¥ . = 0 we obtain

1 2
/ dbiecte =5 / P2 (A1)

RxC C
and

[ aveemtvei= [ 3 56 -y 0pcope)

RxC cxc kezV
+00
~ [ ey =0 [deslr ek ety
cxc kezN —00

Going back to the definition of M, . and using the symmetry of J we can rewrite the above equality the following
way

f Oyt Mie = / J % pe(r) pe(x) dx — / Mo (T, Y)0cWree (v, y) d dy.

RxC C RxC
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Thus we have

/ 3s¢l{,sM¢K,£ = /J *pg(x)pg(x)dx.
RxC C

| =

Set J (x, ¥) = ez J (x — y + k), the above equality rewrites as follows

1 -

f e M = / / T, ¥)pe(y)pe (¥) dy dx. (A2)
RxC C C

Finally, combining (A.1) and (A.2), we obtain

1 ~
f e M = V) == / TGy () — pe(y))>dx dy.

RxC CxC
Hence,
& 1 ~ 2
cf |am,e|2=—§/|vxpg|2—Z/ﬂx,y)(ps(x)—pg(y)) +/F<x,p5>
RxC C c2 C

which proves (). O

Proof of Proposition 6.5 (ii). Let K be a compact set of R x R¥ . Then since K is bounded, there exists n € N and
R > 0 so that K C (—Ry, Rg) x nQ where Q :=[—1, 1]V.
Let us denote £(u) the following energy on the set of periodic function

1 -
fwy =3 / Voul? - Z/J(x, W) — () +/F<x,u).
C C2 C

From (i), there exists R € [Rg, Ro + 1] so that

¢ / 195 Wi.e |2 (R) < E(pe). (A3)
C

Let us now multiply (6.9) by v . and integrate over (—R, R) x Q Then we have

%/[1/’38]613 ZKf[llfK,Easl/fK,é‘]fR —K / |as¢/(,e|2 — & / |Vx1p)<,s|2
0

0 (-R.R)x 0 (-R.R)x0

+ / (M'(l/lc,s - I/IK,S)wK,S + f f(x7 1//;<,s)1ﬂ;<,g-
(=R.R)xQ (—R.R)xQ

Therefore since v . is uniformly bounded and periodic in x we have

: / Vet =2y (R)
(-R,R)x0

where

y(R):z—g / (w2, )% —« / 105 We.e | + & / (V.05 .o 1% g

¢ (=R,R)xC C

+ / (MYrc.e — Vie,e) Yo + / SO e )W e-

(—=R,R)xC (—=R,R)xC
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Since 0 < Y e < pe, 0sYi,e == 0 and f is uniformly bounded, using Cauchy—Schwartz inequality it follows that

y(R) < |c|/p§+x/p3/|aswk,g|2(R,x>+2R/<J*pg)ps+2R||f||oo/ps.
C C C C C
Thus, since ¢ > 0 by (A.3) we have

kE(pe)
y(R) < |c|fp§+T|f p§+2Rf(J*p8)ps+2R||f||oo/p£.
C C

C

Hence the estimate (ii) follows by periodicity. O

The proof of Proposition 6.5 (iii) is based on the next 2 lemmas. The first one is a version of a result of [4], on
gradient estimates for elliptic regularizations of semilinear parabolic equations. The result in [4] is based on Bernstein
type estimates and is nonlinear in nature, while the estimates below have a linear character, and are based on a
technique of Brandt [13] (see also [14,43] and [37, Chap. 3]).

Given R > 0 let

Or={(t,x)eRxR": |t| <R, |x;)] <RVi=1,...,N}.

Lemma A.1. Suppose u € C*(QRr) satisfies
Ayu+euy +ur= f(x,t) inQpr
where 0 <e <1, f € L*°(QRr). Then

2(N +1 R
|8xiu(0,0)}<(¥+2> sup lu| + — sup | f| (A4)
R Or 2 Or
foralli =1,..., N, where C is independent of R, ¢.

Proof. Let us write x = (x1,x’) € RY with x; € R, x’ € RV L. Define
O={(t.x1,x) eRxRxRV "1 0<x; <R, x| <1Vi=2,...,N, |t] <1}

and

v(t,xl,x/) = %(u(t,xl,x/) — u(t, —x1,x/))

for (t, x1,x") € Q. Let us write
Lv= AXU + vy + vy

Then L is an elliptic operator and satisfies the maximum principle. We have

Lo v x) = 5 (F (0, x) = £ —0x)for (1, x) € 0

and
vl <suplu| in Q.
Or
Let
5(t.x1.x') = Axi(R —x1) + B(x} + ¢ +12)
where

1
B = — sup|u|
R? Or
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and

1
A= —(SUp|f|+B(2N+2s+2R)>.
2 ORr

With these choices we see that
lv|<v ondQ
and

Lo < —sup|f| in Q.
Or

By the maximum principle  — v >0 in Q. Similarly ¥ + v > 0 in Q and therefore
lv|<v in Q.
This implies
|3, v(0,0)| < AR
and gives (A.4) for i = 1. The same proof replacing x| by any of the other variables xs, ..., x, yields (A.4). O

Lemma A.2. Suppose u € C*(Q») satisfies
Uy — Ayu —euy = f(x,t) in Qo
where ¢ > 0 and f € L*(Q2). Then for some 0 < a < 1 there is a constant C independent of € such that
lux, 1) —u(x, n)|

sup m <C(sup|f|+sup|u|).
Ix|<1, 1,00 €[—1,1] [t — 1] 0> 0>

Proof. Let us write

M =sup|f|+ sup |u].
(0} (0}

By Lemma A.1

sup |Viu| < CM. (A.S5)
01

Let ¢ € C'(RY) have support in the closed ball B; of RV . Multiplying the equation by u¢ and integrating in B> we
find

1d d
- u2¢dx—gE/uu,godx+£/u,2(pdx+/|Vu|2(pdx+/VuV(pudx=/fu(pdx.

2dt
B, By 01 B, By By

Integrating this from 7y to #; with —1 <9 < #; < | and using (A.5) gives

3]
ed
+§E/u2<pdx +€//ut2g0dx=0(M2)
t=t t=ty
By By o Q1

ed 5
_te d
2ar ] 4P

where O(Mz) is uniform in ¢. Integrate now with respect to #p € [1/2,2/3] and #; € [5/6, 1]. We obtain

1
8//g(t)uf(pdxdt:O(M2)
1/2 B,

where g(¢) is a continuous function which is positive in [1/2, 1]. Therefore one can always select 1y € [1/2, 1],
possibly depending on ¢, such that

e / u (t0)*¢ dx = O(M?). (A.6)
By
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Now multiply the equation by u;¢ and integrate in B;, to obtain

d
/ (pdx—%d— (pdx+——/|Vu| (pdx—i—/VuV(putdx——/fugo

B> B> B> B> B>

Integrating with respect to r € [—1/2, #p] with ¢y as above yields

/ / ,gz)dxdt——/ tgodx fqu| odx —I—/Vquou,dx—/fmp
—-1/2 —-1/2

—1/2 By B B>

Using (A.5) and (A.6) we find

1o fo

—1/2

fo
/ /utztpdxdt—i—/VuV(putdx: O(Mz). (A.7)

—1/2 B B>

1 Vol|? 1
2

B By By

But

One can select a function ¢ > 0 with support the ball |x| < 1 and positive in |x| < 1 such that % is bounded. So
by (A.5)

1
‘/Vquou,dx < 0(M2)+§/¢ut2dx
B>

and integrating on [—1/2, #p] we have

10
/ fVuV(pu,dxdt <

—1/2 By

1

0
0(M2)+% / /(putzdxdt.

—1/2 B,

This combined with (A.7) gives

o
/ /(putzdxdt < cM?.

~1/2 B,

We may further restrict ¢ such that ¢ > 1 in the ball |x| < 1/2 and deduce

/ u?dxdt <CM>. (A.8)
Q12
Lett1,1p e [—1/4,1/4], witht; < 1. Letx € RY with |x| < 1. Then

19}
M()C, tz) - M(-xv tl) = / ut(-x7 t)dt
4]
Now integrate this with respect to x in the ball of center xg, |xo| < 1/4 and radius r = (t, — mY @N).

n
(u(x,tz)—u(x,tl))dx=/ / u;(x,t)dxdr.

B(xo,r) 1 B(xo,r)
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By the mean value theorem there is some x € B(xg, r) such that

C
u(x, ) —u(x,n)= N / (u(x, ) —u(x, 1)) dx
B(xo.r)

and therefore, using (A.8)

n
ulx,n)—ulx, )| < £ u;(x,t)|dxdt
rN

11 B(xo.r)
1/2
< C(tzr;i/g)l/z us(x, t)2 dx dt
It B(xg,r)
<CM(@n —m)'*,
Since (A.5) holds we deduce
|u(xo, 22) = u(xo, )| S CM (@ — )@V
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