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Abstract

In this paper we are interested in propagation phenomena for nonlocal reaction–diffusion equations of the type:

∂u

∂t
= J ∗ u − u + f (x,u) t ∈R, x ∈R

N,

where J is a probability density and f is a KPP nonlinearity periodic in the x variables. Under suitable assumptions we estab-
lish the existence of pulsating fronts describing the invasion of the 0 state by a heterogeneous state. We also give a variational
characterization of the minimal speed of such pulsating fronts and exponential bounds on the asymptotic behavior of the solution.
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1. Introduction

In this paper we are interested in propagation phenomena for nonlocal reaction–diffusion equations of the type:

∂u

∂t
= J ∗ u − u + f (x,u) t ∈ R, x ∈R

N, (1.1)

where J is a probability density and f is a nonlinearity which is KPP in u and periodic in the x variables, that is,

f (x,u) = f (x + k,u) ∀x ∈ R
N, k ∈ Z

N, u ∈R.

More precisely, we are interested in the existence/nonexistence and the characterization of front type solutions called
pulsating fronts. A pulsating front connecting 2 stationary periodic solutions p0, p1 of (1.1) is an entire solution that
has the form u(x, t) := ψ(x · e + ct, x) where e is a unit vector in R

N , c ∈ R, and ψ(s, x) is periodic in the x variable,
and such that
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lim
s→−∞ψ(s, x) = p0(x) uniformly in x,

lim
s→+∞ψ(s, x) = p1(x) uniformly in x.

The real number c is called the effective speed of the pulsating front.
Using an equivalent definition, pulsating fronts were first defined and used by Shigesada, Kawasaki and Ter-

amoto [58,59] in their study of biological invasions in a heterogeneous environment modeled by the following
reaction–diffusion equation

∂u

∂t
= ∇ · (A(x)∇u

) + f (x,u) in R
+ ×R

N, (1.2)

where A(x) and f (x,u) are respectively a periodic smooth elliptic matrix and a smooth periodic function. Using
heuristics and numerical simulations, in a one-dimensional situation and for the particular nonlinearity f (x,u) :=
u(η(x)−μu), Shigesada, Kawasaki and Teramoto were able to recover earlier results on the minimal speed of spread-
ing obtained by probabilistic methods by Gärtner and Freidlin [34,35].

The above definition of pulsating front has been introduced by Xin [62,63] in his study of flame propagation. This
definition is a natural extension of the definition of the sheared traveling fronts studied for example in [10,11]. Within
this framework, Xin [62,63] has proved existence and uniqueness up to translation of pulsating fronts for Eq. (1.2)
with a homogeneous bistable or ignition nonlinearity. Since then, much attention has been drawn to the study of
periodic reaction–diffusion equations and the existence and the uniqueness of pulsating front have been proved in
various situations, see for example [5,8,9,38–41,47,61–64]. In particular, Berestycki, Hamel and Roques [8,9] have
showed that when f (x,u) is of KPP type, then the existence of a unique nontrivial stationary solution p(x) to (1.2) is
governed by the sign of the periodic principal eigenvalue of the following spectral problem

∇ · (A(x)∇φ
) + fu(x,0)φ + λpφ = 0.

Furthermore, they have showed that there exists a critical speed c∗ so that a pulsating front with speed c � c∗ in the
direction e connecting the two equilibria 0 and p(x) exists and no pulsating front with speed c < c∗ exists. They also
gave a precise characterization of c∗ in terms of some periodic principal eigenvalue. Versions of (1.2) with periodicity
in time, or more general media are studied in [5–7,48,50–53,55,66]. It is worth noticing that when the matrix A

and f are homogeneous, then Eq. (1.2) reduces to a classical reaction–diffusion equation with constant coefficients
and the pulsating front (ψ, c) is indeed a traveling front which have been well studied since the pioneering works of
Kolmogorov, Petrovsky and Piskunov [44].

Here we are concerned with a nonlocal version of (1.2) where the classical local diffusion operator ∇ · (A(x)∇u) is
replaced by the integral operator J ∗ u − u. The introduction of such type of long range interaction finds its justifica-
tion in many problems ranging from micro-magnetism [26–28], neural network [31] to ecology [16,19,29,45,49,60].
For example, in some population dynamic models, such long range interaction is used to model the dispersal of in-
dividuals through their environment, [32,33,42]. Regarding Eq. (1.1) we quote [1,2,18,20,21,23,25] for the existence
and characterization of traveling fronts for this equation with homogeneous nonlinearity and [3,22,24,36,42] for the
study of the stationary problem.

In what follows, we assume that J :RN → R satisfies⎧⎪⎨
⎪⎩

J � 0,

∫
RN

J = 1, J (0) > 0,

J is smooth, symmetric with support contained in the unit ball,

(1.3)

and that f : RN × [0,∞) → R is [0,1]N -periodic in x and satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ∈ C3(
R

N × [0,∞)
)
,

f (·,0) ≡ 0,

f (x,u)/u is decreasing with respect to u on (0,+∞),

there exists M > 0 such that f (x,u) � 0 for all u � M and all x.

(1.4)
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The model example is

f (x,u) = u
(
a(x) − u

)
where a(x) is a periodic, C3 function.

Before constructing pulsating fronts, we discuss the existence of solutions of the stationary equation

J ∗ u − u + f (x,u) = 0 x ∈ R
N. (1.5)

Under the assumption (1.4), 0 is a solution of (1.5) and, as shown in [22], the existence of a positive periodic
stationary solution p(x) is characterized by the sign of a generalized principal eigenvalue of the linearization of (1.5)
around 0, defined by

μ0 = sup
{
μ ∈ R

∣∣ ∃φ ∈ Cper
(
R

N
)
, φ > 0, such that J ∗ φ − φ + fu(x,0)φ + μφ � 0

}
(1.6)

where Cper(R
N) is the space of continuous periodic functions in R

N .
More precisely, we have

Theorem 1.1. The stationary equation (1.5) has a positive continuous periodic solution p(x) if and only if μ0 < 0.
Moreover the positive solution is Lipschitz and unique in the class of positive bounded periodic functions.

This result is analogous to the characterization of stationary positive solutions of the differential equation (1.2)
with f of type KPP in u. The main difference is that μ0 is not always an eigenvalue, that is, the supremum in (1.6) is
not always achieved. Similar results for (1.5), but assuming that μ0 is an eigenvalue and for the one-dimensional case
(i.e. N = 1), have been obtained in [3,24]. In this particular situation, the uniqueness of the positive solution of (1.5)
in the class of bounded measurable functions has been proved in [24]. For the multidimensional case, the existence
and uniqueness of a stationary solution in the class of periodic functions has been obtained by Shen and Zhang [56]
assuming that μ0 is eigenvalue and by Coville [22] without this assumption. The difference of Theorem 1.1 and [22]
is that we obtain a Lipschitz continuous solution.

The question whether μ0 is really a principal eigenvalue, that is, if there exists φ ∈ Cper(R
N), φ > 0 such that

J ∗ φ − φ + fu(x,0)φ + μ0φ = 0 in R
N (1.7)

has been studied in [22,56] where simple criteria on fu(x,0) have been derived to ensure the existence of a principal
eigenfunction φ. For instance, the following criterion proposed in [22]∫

[0,1]N

1

A − fu(x,0)
dx = +∞, where A = max

x∈RN
fu(x,0),

guarantees that μ0 is a principal eigenvalue. Some properties of μ0 and the existence criteria will be discussed in
Section 3.

Our main result on pulsating fronts is the following:

Theorem 1.2. Assume μ0 < 0 and that there exists φ ∈ Cper(R
N), φ > 0 satisfying (1.7). Then, given any unit vector

e ∈ R
N there is a number c∗

e > 0 such that for c � c∗
e (1.1) has a pulsating front solution u(x, t) = ψ(x · e + ct, x)

with effective speed c, and for c < c∗
e there is no such solution.

The minimal speed c∗
e is given by

c∗
e := inf

λ>0

(−μλ

λ

)
(1.8)

where μλ is the periodic principal eigenvalue of the following problem

Jλ ∗ φ − φ + fu(x,0)φ + μφ = 0 in R
N (1.9)

with Jλ(x) := J (x)eλx·e . We will see in Section 3 that this eigenvalue problem is solvable under the assumptions of
Theorem 1.2.
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Shen and Zhang showed in [56] that c∗
e corresponds to the speed of spreading for this equation in the following

sense. For reasonable initial conditions, the solution of (1.1) satisfies

lim sup
t→+∞

sup
x·e+ct�0

u(x, t) = 0 if c > c∗
e ,

while

lim inf
t→+∞ inf

x·e+ct�0

(
u(x, t) − p(x)

) = 0 if c < c∗
e .

The nonexistence statement in Theorem 1.2 is a consequence of the these spreading speed results. Along our analysis,
we also obtain some asymptotic behavior of ψ(s, x) as s → ±∞ where ψ is the pulsating front constructed in
Theorem 1.2. More precisely, let λ(c) denote the smallest positive λ such that c = −μλ

λ
.

Theorem 1.3. Assume μ0 < 0 and that there exists φ ∈ Cper(R
N), φ > 0 satisfying (1.7). Then, given any unit vector

e ∈R
N and c � c∗

e we have:

a) For any positive λ so that λ < λ(c) there exists C > 0 such that

ψ(s, x) � Ceλs ∀x ∈R
N, ∀s ∈R.

b) There are σ,C > 0 such that

0 � p(x) − ψ(s, x) � Ce−σs ∀x ∈ R
N, ∀s � 0.

Eq. (1.1) can be related to a class of problems studied by Weinberger in [61]. However, as observed in [23,56], one
of the main difficulties in dealing with the nonlocal equation (1.1) comes from the lack of regularizing effect of (1.1),
which makes the framework developed by Weinberger not applicable, since the compactness assumption required
in [61] does not hold.

Another difficulty in the construction of pulsating fronts is that the equation satisfied by the function ψ (see (2.1)
below) involves an integral operator in time and space, which is in some sense degenerate. This difficulty also appears
in the classical reaction–diffusion case, and it becomes delicate to proceed using the standard approaches used in [10,
11,44].

Finally, we comment on some of the hypotheses made in the construction. Regarding smoothness of the data, one
can deal with less regularity of J and f , but some arguments would have to be modified. The hypothesis on the
support of J in (1.3) can be weakened. For example, we believe that the same results are true assuming that J satisfies
the so-called Mollison condition:

∀λ > 0,

∫
RN

J (z)eλ|z| dz < +∞.

Finally, the hypothesis that μ0 is an eigenvalue seems crucial in our approach. It is an interesting open problem
to understand whether some type of pulsating front exists in the case where μ0 is not an eigenvalue. We believe
that if such solutions exist, they will be qualitatively different from the ones constructed in Theorem 1.2. See also
Remark 3.11 for other observations on this hypothesis.

In the preparation of this work, we were informed of a very recent work of Shen and Zhang [57] done independently
dealing with the existence and properties of pulsating front for a nonlocal equation like (1.1). The construction of
pulsating front proposed by Shen and Zhang relies on a completely different method and another definition of pulsating
front. With their method, they are able to construct bounded measurable pulsating fronts for any speed c > c∗

e but fail
to construct pulsating front for the critical speeds c∗

e due to the lack of good Lipschitz regularity estimates on the
fronts. Some additional properties, such as exact exponential behavior as t → −∞, uniqueness of the profile in an
appropriate class and some kind of stability of the front are also studied in this work. The main differences between the
results obtained by Shen and Zhang and ours concern essentially the regularity of the fronts. Whereas they obtained
bounded measurable front, we obtained uniform Lipschitz front which is a significant part of our work. We also have
the feeling that our approach is more robust, in the sense that it does not strongly rely on the KPP structure and can be
adapted to other situations such as a monostable or ignition nonlinearity which seems not be the case for the method
used in [57]. We have in mind a problem like
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∂u

∂t
=

∫
RN

J

(
x − y

g(x)g(y)

)[
u(y) − u(x)

]
dy + f (u) t ∈R, x ∈R

N,

where f is monostable nonlinearity, J a smooth probability density and g a continuous positive periodic function. It
is worth noticing that in [57], the existence of a principal eigenvalue for (1.7) is also a crucial hypothesis.

2. Scheme of the construction

The proof of Theorem 1.1 is contained in Section 5, and follows by now standard arguments.
To construct a pulsating front solution u of (1.1) in the direction −e with effective speed c connecting 0 and

a positive periodic stationary solution p, we let ψ(s, x) = u( s−x·e
c

, x). Then we need to find ψ satisfying⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cψs = M[ψ] − ψ + f (x,ψ) ∀s ∈ R, x ∈ R
N,

ψ(s, x + k) = ψ(s, x) ∀s ∈ R, x ∈R
N, k ∈ Z

N,

lim
s→−∞ψ(s, x) = 0 uniformly in x,

lim
s→∞ψ(s, x) = p(x) uniformly in x,

(2.1)

where M is the integral operator

M[ψ](s, x) =
∫
RN

J (x − y)ψ
(
s + (y − x) · e, y)

dy.

To analyze (2.1) we introduce a regularized problem, namely, we consider for ε > 0

cψs = M[ψ] − ψ + f (x,ψ) + ε	ψ ∀s ∈ R, x ∈ R
N (2.2)

where 	 is the Laplacian with respect to the x variables. The stationary version of this equation is a perturbation
of (1.5):

0 = J ∗ u − u + f (x,u) + ε	u, x ∈ R
N. (2.3)

We will see in Section 5 that under the assumption that (1.5) has a positive periodic continuous solution p, for small
ε > 0 Eq. (2.3) also has a stationary positive solution pε and pε → p uniformly as ε → 0.

As a step to prove Theorem 1.2, for small ε > 0 we will find c∗
e (ε) such that for c � c∗

e (ε) there exists a solution ψε

to (2.2) satisfying⎧⎪⎪⎨
⎪⎪⎩

lim
s→−∞ψ(s, x) = 0,

lim
s→+∞ψ(s, x) = pε(x),

ψ(s, x) is increasing in s and periodic in x.

(2.4)

This is done in Section 6, following in part the methods developed in [9].
A substantial part of this article is devoted to obtain estimates for ψε that will allow us to prove that ψ = limε→0 ψε

exists and solves (2.1). These estimates are based on the expected exponential decay of ψ as s → −∞, which we
discuss next. Suppose ψ is a solution of (2.1). One may expect that for some λ > 0

ψ(s, x) = eλsw(x) + o
(
eλs

)
as s → −∞, x ∈ R

N

where w is a positive periodic function, at least when c > c∗
e . Then at main order the equation in (2.1) yields

cλw =
∫
RN

J (x − y)eλ(y−x)·ew(y)dy − w + fu(x,0)w in R
N. (2.5)

Define

Jλ(x) = J (x)e−λx·e,
then (2.5) can be written as the periodic eigenvalue problem
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{
Jλ ∗ w − w + fu(x,0)w + μλw = 0 in R

N,

w > 0 is continuous and periodic,
(2.6)

which will be studied in Section 3. In particular, under the assumptions of Theorem 1.2, we will see that it has a
principal eigenvalue μλ in the space of continuous periodic functions. Then the speed of the traveling front should be
given by c = −μλ

λ
, and this leads to the formula for the minimal speed (1.8).

For the solutions of (2.2) and (2.4) one can guess a similar asymptotic behavior as s → −∞ and a formula for the
minimal speed

c∗
e (ε) = min

λ>0

(
−με,λ

λ

)
(2.7)

where με,λ is the principal eigenvalue of −Lε,λ where

Lε,λw = ε	w + Jλw − w + fu(x,0)w

in the space of C2 periodic functions.
Based on the estimates developed in Section 7 for the operator Lε,λu, we prove in Section 8 exponential bounds of

the form: for 0 < λ < λε(c)

ψε(s, x) � Ceλs ∀x ∈ R
N, ∀s ∈ R (2.8)

where λε(c) is the smallest positive λ such that c = −με,λ

λ
, and C does not depend on ε > 0. This exponential bound

is obtained by studying the two sided Laplace transform of ψε , an idea present in [17].
The exponential estimate (2.8) allows us in Section 9 to obtain uniform control of local Sobolev norms ‖ψε‖W 1,p

with p > N , which in turn implies that we obtain a locally uniform limit ψ = limε→0 ψε for some subsequence. The
final step is to verify that ψ satisfies all the requirements in (2.1).

3. Principal eigenvalue for nonlocal operators

Let us recall the notation

Cper
(
R

N
) = {

φ ∈ C
(
R

N
) ∣∣ φ is [0,1]N -periodic

}
.

For the rest of the article it is crucial to understand the eigenvalue problem (2.6), and the purpose of this section is to
study its properties. We will write (2.6) in the form{

Lλφ + μφ = 0 in R
N,

φ ∈ Cper
(
R

N
)
, φ > 0

(3.1)

where

Lλw = Jλ ∗ w + a(x)w

and a(x) = fu(x,0) − 1 ∈ Cper(R
N).

We say that Lλ has a principal eigenfunction if for some μ ∈R there is a solution in Cper(R
N) of (3.1).

As we will see later, it is not true in general that Lλ has a principal eigenfunction, but it is convenient to define in
all cases

μλ = sup
{
μ ∈R

∣∣ ∃φ ∈ Cper
(
R

N
)
, φ > 0, such that Lλφ + μφ � 0

}
(3.2)

and call it the generalized principal eigenvalue of −Lλ. The name is motivated by the following result.

Proposition 3.1. Let λ ∈ R. If there is μ ∈ R, φ ∈ Cper(R
N), φ � 0 and nontrivial satisfying Lλφ + μφ = 0, then μ

is given by (3.2) and it is simple eigenvalue of Lλ.

The proof of this is a direct adaptation of Lemma 3.2 in [22].
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The next proposition characterizes the existence of a principal eigenfunction.

Proposition 3.2. If a ∈ Cper(R
N), then maxa(x) + μλ � 0. Moreover, maxa(x) + μλ < 0 if and only if Lλ admits a

principal eigenfunction.

For the proof of the above result and the following two (Proposition 3.3 and Corollary 3.4) see later in this sec-
tion.

Proposition 3.3. The function −μλ is convex in R and even. In particular, −μλ is nondecreasing in [0,∞) and
nonincreasing in (−∞,0].

Corollary 3.4. If L0 has a principal eigenfunction then for all λ ∈R, Lλ has a principal eigenfunction.

In general it is difficult to describe precisely in terms of J and a whether Lλ has a principal eigenfunction, but we
have sufficient and necessary conditions.

Proposition 3.5. Assume a ∈ Cper(R
N) and let A := maxRN a(x). There are constants C1,C2,m > 0 that depend

on Jλ such that:

a) if ∫
[0,1]N

1

A − a(x)
dx � C1‖a‖m

L∞, (3.3)

then Lλ admits a principal eigenfunction,
b) if ∫

[0,1]N

1

A − a(x)
dx � C2,

then Lλ has no principal eigenfunction.

We give the proof of this proposition later on inside this section.
Finally, we need the next proposition to show that the formula (1.8) is well defined and gives a positive number.

Proposition 3.6. The function λ �→ μλ is continuous and for all ε > 0 there exists σ > 0 such that

−μλ �−μ0 − ε + σeσ |λ| ∀λ ∈R.

The above proposition is proved later on inside this section.

Remark 3.7. Many of the previous results have appeared in similar contexts, or have been proved under slightly dif-
ferent conditions. Existence of a principal eigenfunction was obtained for symmetric nonlocal operators in [42], and
later also in [3,22,24,56]. A condition like (3.3) is always explicitly or implicitly assumed in these works. The motiva-
tion for definition (3.2) is taken from [12]. It has been adapted to many elliptic operators, and was first introduced for
nonlocal operators in [22]. In this work the author obtained many of the results described here for an integral operator
on a domain in R

N . A characterization like Proposition 3.2 for μλ was first obtained in [22]. The convexity of −μλ,
Proposition 3.3, is proved in [56] under the assumption that a principal eigenfunction exists. Examples of nonlocal
operators with no principal eigenvalue are also presented in [22,56].

The rest of this section is devoted to prove Propositions 3.2, 3.3, Corollary 3.4, and Propositions 3.5 and 3.6. We
start with some basic facts about the definition (3.2). The following results are simple adaptations from results found
in [22].
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Proposition 3.8. (Proposition 1.1 [22].) Given a ∈ Cper(R
N), and J :RN → R, J � 0 in L1(RN) define

μp(J, a) = sup
{
μ ∈R

∣∣ ∃φ ∈ Cper
(
R

N
)
, φ > 0, such that J ∗ φ + aφ + μφ � 0

}
.

Then the following hold:

(i) If a1 � a2, then

μp(J, a2) � μp(J, a1).

(ii) If J1 � J2 then

μp(J2, a) � μp(J1, a).

(iii) μp(J, a) is Lipschitz in a, more precisely∣∣μp(J, a1) − μp(J, a2)
∣∣ � ‖a1 − a2‖∞.

To prove Proposition 3.5 we will need a generalization of the Krein–Rutman theorem [46] for positive not neces-
sarily compact operators due to Edmunds, Potter and Stuart [30]. For this we recall some definitions. A cone in a real
Banach space X is a nonempty closed set K such that for all x, y ∈ K and all α � 0 one has x +αy ∈ K , and if x ∈ K ,
−x ∈ K then x = 0. A cone K is called reproducing if X = K − K . A cone K induces a partial ordering in X by the
relation x � y if and only if x − y ∈ K . A linear map or operator T : X → X is called positive if T (K) ⊆ K .

If T : X → X is a bounded linear map on a complex Banach space X, its essential spectrum (according to Brow-
der [15]) consists of those λ in the spectrum of T such that at least one of the following conditions holds: (1) the range
of λI − T is not closed, (2) λ is a limit point of the spectrum of T , (3)

⋃∞
n=1 ker(λI − T )n is infinite dimensional.

The radius of the essential spectrum of T , denoted by re(T ), is the largest value of |λ| with λ in the essential spectrum
of T . For more properties of re(T ) see [54].

Theorem 3.9. (See Edmunds, Potter, Stuart [30].) Let K be a reproducing cone in a real Banach space X, and let
T ∈ L(X) be a positive operator such that T m(u) � cu for some u ∈ K with ‖u‖ = 1, some positive integer m and
some positive number c. If c1/m > re(T ), then T has an eigenvector v ∈ K with associated eigenvalue ρ � c1/m and
T ∗ has an eigenvector v∗ ∈ K∗ corresponding to the eigenvalue ρ.

If the cone K has nonempty interior and T is strongly positive, i.e. u � 0, u = 0 implies T u ∈ int(K), then ρ is the
unique λ ∈ R for which there exists nontrivial v ∈ K such that T v = λv and ρ is simple, see [65].

Proof of Proposition 3.5. a) Write the eigenvalue problem (3.1) in the form

Jλ ∗ u + b(x)u = νu

where

b(x) = a(x) + k, ν = −μ + k

and k > 0 is a constant such that inf b > 0. Sometimes we will use the operator notation Jλ[φ] = Jλ ∗φ. We study this
eigenvalue problem in the space Cper(R

N) with uniform norm, where the operator Jλ is compact. Let u ∈ Cper(R
N),

u� 0 and m ∈ N. Since u and b are nonnegative and Jλ is a positive operator, we see that(
Jλ + b(x)

)m[u] � Jm
λ [u] + b(x)mu. (3.4)

We observe that there are m and d > 0 depending on J such that for u ∈ Cper(R
N), u� 0,

Jm
λ [u] � d

∫
[0,1]N

u.

Indeed,

Jm
λ [u] = J

(m)
λ ∗ u,
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where J
(m)
λ denotes the m-fold convolution Jλ ∗ · · · ∗ Jλ. Let BR(x0) with R > 0 be such that Jλ(x) > 0 for points

x ∈ BR(x0). Then Jλ ∗Jλ(x) > 0 for x ∈ B2R(2x0). Iterating this argument we get J
(m)
λ (x) > 0 for x ∈ BmR(mx0). We

choose now m large so that BmR(mx0) contains some closed cube Q with vertices in Z
N . Let d = infx∈Q J

(m)
λ (x) > 0.

Then, for u ∈ Cper(R
N), u� 0,

Jm
λ [u](x) =

∫
Rn

J
(m)
λ (x − y)u(y) dy �

∫
Q

J
(m)
λ (z)u(x − z) dz

� d

∫
Q

u(x − z) dz =
∫

[0,1]N
u,

since u is [0,1]N -periodic.
Let ε > 0 and define the continuous periodic positive function

uε(x) = 1

maxbm − b(x)m + ε
.

We claim that choosing ε and C1 in (3.3) appropriately there is δ > 0 such that

Jm
λ uε + b(x)muε � (maxb + δ)muε in R

N. (3.5)

Indeed, taking C1 large in (3.3) and then ε > 0 small, we have

d

∫
[0,1]N

1

maxbm − b(x)m + ε
dx > 1.

Then to prove (3.5) it is sufficient to have

1 >
(maxb + δ)m − b(x)m

maxbm − b(x)m + ε
in R

N.

This last condition holds provided we take δ sufficiently small. Therefore, by (3.4) and (3.5) we have(
Jλ + b(x)

)m[uε] � (maxb + δ)muε.

Using the compactness of the operator Jλ, we have re(Jλ +b(x)) = maxx∈RN b(x), and by Theorem 3.9 we obtain the
desired conclusion. We observe that the principal eigenvalue is simple since the cone of positive periodic functions
has nonempty interior and, for a sufficiently large p, the operator (Jλ + b)p is strongly positive. Any point ν in the
spectrum of (Jλ + b) with |ν| > re(Jλ + b) is isolated, see [15]. In particular the principal eigenvalue is an isolated
point in the spectrum.

b) As before, without loss of generality we can assume a > 0. Suppose there exists a principal periodic eigenfunc-
tion φ with eigenvalue μ. Then maxa(x) + μ < 0. Let C = [0,1]N and note that

Jλ ∗ φ(x) =
∫
RN

J (x − y)eλ(x−y)·eφ(y) dy =
∫
C

∑
k∈ZN

J (x − z − k)eλ(x−z−k)·eφ(z) dz

�
(∫

C

φ

)
sup

x,z∈C

∑
k∈ZN

J (x − z − k)eλ(x−z−k)·e.

But then

φ(x) � 1

−(a(x) + μ)

(∫
C

φ

)
sup

x,z∈C

∑
k∈ZN

J (x − z − k)eλ(x−z−k)·e.

Integrating the above inequality we obtain∫
φ �

∫
1

−(a(x) + μ)
dx ·

∫
φ · sup

x,z∈C

∑
k∈ZN

J (x − z − k)eλ(x−z−k)·e,

C C C



188 J. Coville et al. / Ann. I. H. Poincaré – AN 30 (2013) 179–223
and hence

1 �
∫
C

1

−(a(x) + μ)
dx · sup

x,z∈C

∑
k∈ZN

J (x − z − k)eλ(x−z−k)·e.

Since μ� −maxa(·)
1 �

∫
C

1

maxa(·) − a(x)
dx · sup

x,z∈C

∑
k∈ZN

J (x − z − k)eλ(x−z−k)·e.

Let

M = sup
x,z∈C

∑
k∈ZN

J (x − z − k)eλ(x−z−k)·e.

If

M

∫
C

1

maxa(·) − a(x)
dx < 1

there cannot exist a principal eigenfunction. �
Proof of Proposition 3.2. From the definition we obtain directly maxa(x) + μλ � 0 for all λ ∈ R. If there exists a
principal eigenfunction φ ∈ Cper(R

N), then clearly maxa(x) + μλ < 0.
Now suppose that maxa(x) + μλ < 0. We approximate a by functions aε ∈ Cper(R

N) such that maxa = maxaε ,
‖a − aε‖∞ → 0 as ε → 0, and∫

[0,1]N

1

maxaε − aε(x)
dx = +∞. (3.6)

Then, by Proposition 3.5 there exists a positive, periodic φε , with ‖φε‖∞ = 1, such that

Jλ ∗ φε + (
aε(x) + με

λ

)
φε = 0 in R

N.

Since by Proposition 3.8, με
λ → μλ, there exists δ > 0 such that aε(x) + με

λ < −δ for all x and ε. Therefore, by
a simple compactness argument, we have that φε → φ uniformly as ε → 0, with φ positive satisfying (4.1), which
concludes the proof. �
Remark 3.10. If Lλ has a principal eigenfunction φ ∈ Cper(R

N), and additionally a ∈ Ck , k � 1 and J is Ck , then φ

is also Ck , which follows from

Jλφ = (−μλ − a)φ

and −μλ − a � δ for some δ > 0.

Proof of Proposition 3.3. To prove this result, we will first suppose that a satisfies (3.6), and then we proceed by
an approximation argument. We will prove the convexity using an idea from [56]. Let λ1, λ2 ∈ R, and t ∈ (0,1). If a

satisfies (3.6) then by Proposition 3.5 there exist φ1, φ2 positive solutions of (3.1), with corresponding eigenvalues
μ1, μ2, for λ1, λ2 respectively. Consider φ = φt

1φ
1−t
2 . Then by Hölder’s inequality we have that

Jλ ∗ φ � (Jλ1 ∗ φ1)
t (Jλ2 ∗ φ2)

1−t .

Using the inequality above and that φ1 and φ2 are solutions of (3.1) we obtain that

Jλ ∗ φ �
((−a(x) − μ1

)
φ1

)t((−a(x) − μ2
)
φ2

)1−t = (−a(x) − μ1
)t(−a(x) − μ2

)1−t
φ

and then using Young’s inequality we obtain that

Jλ ∗ φ �
(
t
(−a(x) − μ1

) + (1 − t)
(−a(x) − μ2

))
φ = (−a(x) + tμ1 + (1 − t)μ2

)
φ,
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from where

μtλ1+(1−t)λ2 � tμ1 + (1 − t)μ2,

which gives the convexity.
To conclude when (3.6) does not hold, we just approximate a by aε satisfying (3.6) and aε → a uniformly in R

N .
Then the result follows by Proposition 3.8 (iii).

Finally, we claim that the function μλ is even. Indeed, suppose first μλ is the principal eigenvalue of Lλ, so
μλ + maxa(x) < 0. Considering Lλ in the space of L2

loc(R
N) periodic functions, we have that L−λ is its adjoint, and

therefore μλ is in the spectrum of L−λ. Using μλ + maxa(x) < 0 it is easy to see that μλ is the principal eigenvalue
of L−λ. In the case Lλ has no principal eigenfunction, we directly deduce μλ = μ−λ.

Since −μλ is even and convex, we obtain, that μ is nondecreasing in (0,∞) and nonincreasing in (−∞,0). �
Proof of Proposition 3.6. For the continuity of λ �→ μλ we argue as follows. Suppose first that a satisfies (3.6) and
λj → λ∞. It is easy to see that μλj

is bounded, so up to a subsequence μλj
→ μ. Let φj ∈ Cper(R

N) be the principal
eigenfunction associated with μλj

(j = 1,2, . . .) normalized so that ‖φj‖L∞ = 1. Since μ + maxa < 0, we have
μλj

+ maxa � −δ < 0 for some δ > 0 and all j large. Then from

Jλj
∗ φj = (−μλj

− a)φj

we obtain compactness to say that for a subsequence φj converges uniformly to a nontrivial, nonnegative function
φ ∈ Cper(R

N) satisfying the eigenvalue problem

Jλ∞ ∗ φ = (−μ − a)φ.

Because of the uniqueness of the principal eigenvalue, Proposition 3.1, μ = μλ∞ .
If a does not satisfy (3.6) we argue approximating a by aε that satisfy (3.6). Let με

λ denote the principal eigenvalue
of −Jλ − aε . We note that the convergence με

λ → μλ as ε → 0 is uniform by Proposition 3.8 (iii), so continuity of με
λ

with respect to λ for all ε yields continuity of λ �→ uλ.
Next we show the exponential growth of −μλ. Observe that if φ ∈ Cper(R

N) then

Jλ ∗ φ =
∫

[0,1]N
kλ(x, y)e−λ(x−y)·eφ(y) dy,

where

kλ(x, y) =
∑

k∈ZN

eλk·eJ (x − y − k).

The function kλ(·, y) is [0,1]N -periodic. We consider the following eigenvalue problem

L̂λφ + (μ + ε)φ = 0 with φ ∈ C
([0,1]N )

,

where ε > 0 and

L̂λφ =
∫

[0,1]N
kλ(x, y)e−λ(x−y)·eφ(y) dy + a(x)φ + μ0φ.

We will assume first that the support of J is large, so that for some constants b, d > 0:

kλ(x, y)� debλ ∀x, y ∈ [0,1]N.

Let w(y) = e−λy·e . Then

L̂λw �
(
debλ + a(x) + μ0 + ε

)
w � δebλw

where δ > 0 and where we take λ large. If λ > 0 is large enough, by Theorem 3.9 we obtain a principal eigenfunction
φ̂ ∈ C([0,1]N) of L̂λ, with principal eigenvalue −μ̂λ � δebλ. Since kλ(x, y)eλ(x−y)·e is periodic in x, we see that
φ̂ is periodic. Therefore, extending it periodically to R

N , we find that it is the principal eigenfunction of Lλ and
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−μλ + μ0 + ε = −μ̂λ � δebλ. Now since −μλ is nondecreasing in λ we have −μλ + μ0 + ε � ε and by taking δ

smaller if necessary we achieve for all λ

−μλ � −μ0 − ε + δebλ.

Without the assumption that the support of J is large, we can assume that a(x) � 0 and work with m large so that
the support of Jm is large. Then(

Jλ + a(x)
)m � Jm

λ + a(x)m.

Notice that

Jm
λ (x) = eλx·eJm(x)

so the previous argument applies and we deduce that the principal eigenvalue of Jm
λ + a(x)m grows exponentially as

λ → +∞. Then the same holds for (Jλ + a(x))m and therefore for Jλ + a(x). �
Remark 3.11. We would like to comment here on the hypothesis in Theorem 1.2 that there is a principal eigenvalue for
problem (1.7). In fact, the proof of Theorem 1.2 reveals that we actually need only that (2.6) has a principal eigenvalue
for all λ > 0, which holds under the stated hypotheses that (1.7) has a principal eigenvalue (this is a consequence of
Propositions 3.2 and 3.3). Then it is natural to ask whether it is always true that (2.6) has a principal eigenfunction,
even if (1.7) does not. Thanks to Proposition 3.5 one can construct examples where (2.6) has no principal eigenvalue
for λ in some interval around 0.

4. Convergence of the principal eigenvalue and eigenfunction

Given ε � 0 we study here the eigenvalue problem:{
ε	w + Jλ ∗ w − w + fu(x,0)w + μw = 0 in R

N,

w > 0 periodic and C2.
(4.1)

We will write

Lε,λw = ε	w + Jλ ∗ w − w + fu(x,0)w (4.2)

and Lλ = L0,λ.
In this section we will assume that μ0 is a principal eigenvalue for −L0. Observe that by Corollary 3.4 μλ is a prin-

cipal eigenvalue of −Lλ. By the Krein–Rutman theorem, we know that for ε > 0, Lε,λ has a principal eigenvalue με,λ

and there are principal C2 periodic eigenfunctions φε,λ > 0 of Lε,λ and φ∗
ε,λ > 0 of L∗

ε,λ, that is,

Lε,λφε,λ + με,λφε,λ = 0 and L∗
ε,λφ

∗
ε,λ + με,λφ

∗
ε,λ = 0.

Lemma 4.1. Assume that μ0 is a principal eigenvalue for −L0. For ε � 0

με,λ = sup{μ ∈R: ∃φ > 0 Lε,λφ + μφ � 0} (4.3)

= inf{μ ∈R: ∃φ > 0 Lε,λφ + μφ � 0}, (4.4)

where the sup and inf are taken over C2 periodic functions if ε > 0 and over continuous periodic functions if ε = 0.

Proof. Let us write

μ+
ε,λ = sup{μ: ∃φ > 0 Lε,λφ + μφ � 0},

μ−
ε,λ = inf{μ: ∃φ > 0 Lε,λφ + μφ � 0}.

Using φε in the definitions we see that

μ−
ε,λ � με,λ � μ+

ε,λ.
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Let us prove με,λ = μ−
ε,λ. Let μ ∈ R be such that there exists ψ > 0 C2 periodic such that Lε,λψ + μψ � 0. Then

με,λ

〈
ψ,φ∗

ε,λ

〉 = −〈
ψ,L∗

ε,λφ
∗
ε,λ

〉 = −〈
Lε,λψ,φ∗

ε,λ

〉
� μ

〈
ψ,φ∗

ε,λ

〉
where 〈 , 〉 denotes L2 inner product on [0,1]N . Since 〈ψ,φ∗〉 > 0 we deduce that με,λ � μ. Hence με,λ � μ−

ε,λ.

The proof of μ+
ε,λ � με,λ is similar. �

Lemma 4.2. Assume that μ0 is a principal eigenvalue for −L0. Let με,λ be the principal eigenvalue of (4.1) in the
space of C2 periodic functions. Then

με,λ → μλ as ε → 0,

and the convergence is uniform for λ in bounded intervals.
Let φε,λ be the principal periodic eigenfunction of Lε,λ normalized so that

‖φε,λ‖L2([0,1]N ) = 1.

Then

φε,λ → φλ in C
(
R

N
)

as ε → 0

where φλ is the principal periodic eigenfunction of Lλ.

Proof. Under the stated hypotheses (1.3), (1.4) on J and f , φλ is C2 by Proposition 3.5. Let μ > μλ. Then

Lε,λφλ + μφλ = ε	φλ + (μ − μλ)φλ � 0

if ε is small. Using formula (4.4) we see that for small ε, με,λ � μ. Thus

lim sup
ε→0

με,λ � μλ.

Using (4.3) we can prove

lim inf
ε→0

με,λ � μλ.

Next we prove the uniform convergence of φε,λ and for this we derive a priori estimates. Since φε,λ satisfies (4.1)
and fu(x,0) is C2 we see that φε,λ is in C3,α(RN) for any α ∈ (0,1). Fix i ∈ {1, . . . ,N} and differentiate (4.1) with
respect to xi . Let us write wi = ∂xi

φε,λ. Then

ε	wi + gi − wi + fu(x,0)wi + με,λwi = 0 in R
N, (4.5)

where

gi(x) =
∫
RN

(
∂xi

J (x − y) − λei

)
eλ(y−x)·eφε,λ(y) dy + ∂2

xiu
f (x,0)φε,λ.

Let p � 1. Multiplying (4.5) by |wi |p−2wi and integrating on the period [0,1]N we get

ε

∫
[0,1]N

	wi |wi |p−2wi dx +
∫

[0,1]N
gi |wi |p−2wi dx +

∫
[0,1]N

(−1 + fu(x,0) + με,λ

)|wi |p dx = 0.

Integrating by parts

ε(p − 1)

∫
[0,1]N

|wi |p−2|∇wi |2 +
∫

[0,1]N

(
1 − fu(x,0) − με,λ

)|wi |p dx =
∫

[0,1]N
gi |wi |p−2wi dx

and therefore∫
N

(
1 − fu(x,0) − με,λ

)|wi |p dx �
∫

N

gi |wi |p−1 dx.
[0,1] [0,1]
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By Hölder’s inequality∫
[0,1]N

(
1 − fu(x,0) − με,λ

)|wi |p dx �
( ∫

[0,1]N
|wi |p

)1−1/p( ∫
[0,1]N

|gi |p
)1/p

. (4.6)

Since the operator Lλ has a principal eigenfunction φλ > 0 from the relation

Jλ ∗ φλ = (
1 − fu(x,0) − μλ

)
φλ

we see that

inf
x∈RN

(
1 − fu(x,0) − μλ

)
> 0.

Since με,λ → μλ as ε → 0, for sufficiently small ε > 0 we have(
1 − fu(x,0) − με,λ

)
� c > 0 for all x ∈R

N.

We deduce from this and (4.6) that

‖wi‖Lp([0,1]N ) � C‖gi‖Lp([0,1]N )

with C independent of ε. But

‖gi‖Lp([0,1]N ) � C‖φε,λ‖Lp([0,1]N )

and therefore, recalling the definition of wi , we obtain

‖∇φε,λ‖Lp([0,1]N ) � C‖φε,λ‖Lp([0,1]N ) (4.7)

with C independent of ε. Since we have normalized ‖φε,λ‖L2([0,1]N ) = 1, using (4.7) repeatedly and Sobolev’s in-
equality we deduce that for any p > 1

‖∇φε,λ‖Lp([0,1]N ) � C

for some constant C. By Morrey’s inequality we deduce that φε,λ is bounded in Cα([0,1]N) for any 0 < α < 1.
Therefore, for a subsequence we have that φε,λ → φ uniformly on [0,1]N to some continuous function φ. Then,
multiplying (4.1) by a periodic smooth function and integrating by parts twice we deduce that φ � 0 is a periodic
eigenfunction of Lλ with eigenvalue μλ. Then φ is a multiple of φλ and since both have L2 norm equal to 1, we
conclude that φ = φλ. We also deduce that the whole family φε,λ converges to φλ as ε → 0. �
5. The stationary problem

In this section we give the proof of Theorem 1.1. The same result for Dirichlet boundary condition appears in [22].
First we state a result analogous to Theorem 1.1 for the perturbed problem.

Proposition 5.1. Assume (1.4). Let με denote the principal periodic eigenvalue of −Lε where for ε > 0

Lεφ = ε	φ + J ∗ φ − φ + fu(x,0)φ.

The perturbed stationary equation (2.3) has a positive periodic solution if and only if με < 0 and this solution is
unique.

We will omit the proof, since it is very similar to [8,24].

Lemma 5.2. Assume μ0 < 0, so for ε > 0 small με < 0 and there exists a positive solution pε of (2.3). Then there is
a constant C > 0 such that for ε > 0 small

1

C
� pε(x) � C ∀x ∈R

N.

Also, pε is uniformly Lipschitz for ε > 0 small, i.e., there is C such that∣∣pε(x) − pε

(
x′)∣∣� C

∣∣x − x′∣∣ for all x, x′ ∈R
N

and for all ε > 0 small.
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Proof. For the proof of upper and lower bounds, it suffices to exhibit super and subsolutions which are bounded and
bounded away from zero, uniformly for ε > 0 small. As a supersolution we just take a large fixed constant.

Let us proceed with the construction of a subsolution. We follow an argument developed in [22]. Let a(x) :=
fu(x,0) − 1 and σ := supRN a(x). Since a(x) is smooth and periodic there exists a point x0 such that σ = a(x0). By
continuity of a(x), for each n there exists ηn such that for all x ∈ Bηn(x0) we have |σ − a(x)| � 2

n
.

Now let us consider a sequence of real numbers (εn)n∈N which converges to zero such that εn � ηn

2 . Next, let

(χn)n∈N be the following sequence of cut-off functions: χ̃n(x) := χ(
‖x−x0‖

εn
) where χ is a smooth function such that

0 � χ � 1, χ(x) = 0 for |x| � 2 and χ(x) = 1 for |x| � 1. Next, we let

χn(x) =
∑

k∈ZN

χ̃n(x − k)

so that for n large, χn is well defined, smooth, and [0,1]N -periodic.
Let us consider the following sequence of continuous periodic functions (an)n∈N, defined by

an(x) := max
{
a(x), σχn

}
.

Then ‖an − a‖∞ → 0 as n → ∞. Now consider a C∞ regularization bn(x) := ρn ∗ an(x) where ρn is an adequate
sequence of mollifiers with support in Bεn

4
(0), such that ‖bn − an‖∞ � ‖an − a‖∞. Let φε,n > 0 be the principal

eigenfunction of the following eigenvalue problem

ε	φε,n + J ∗ φε,n + bn(x)φε,n + με,nφε,n = 0 in R
N.

Since bn is constant in a small neighborhood of x0, which is a point where it attains its maximum, by Proposition 3.5,
there is a principal eigenvalue μn and eigenfunction φn > 0 for the problem

J ∗ φn + bn(x)φn + μnφn = 0 in R
N.

We normalize ‖φn‖L∞([0,1]N ) = 1.
Using that ‖bn(x) − a(x)‖∞ → 0 as n → ∞, from the Lipschitz continuity with respect to a(x) (Proposition 3.8)

it follows that for n big enough, say n� n0, we have

μn �
μ0

2
< 0.

We fix n0 large so that

‖bn0 − a‖∞ � |μ0|
8

.

Having fixed n0, we work with ε0 > 0 small so that

με,n0 �
μ0

4
< 0 for all 0 < ε � ε0,

which is possible since με,n0 → μn0 as ε → 0 by Lemma 4.2.
Now for σ > 0 we have

εσ	φε,n0 + J ∗ σφε,n0 − σφε,n0 + f (x,σφε,n0) � −(∥∥a(x) − bn0(x)
∥∥∞ + με,n0

)
σφε,n0 + o(σφε,n0)

� −μ0

8
σφε,n0 + o(σφε,n0) > 0.

Therefore, for σ > 0 sufficiently small, σφε,n0 is a subsolution of (1.5). By Lemma 4.2, φε,n0 → φn0 uniformly in R
N

as ε → 0. Since φn0 > 0 we find the lower bound pε � 1/C for some C > 0 and all ε > 0 small.
Let us prove now that pε is uniformly Lipschitz. Let v = ∂pε

∂xj
for some j ∈ {1, . . . ,N}. Then v satisfies

J ∗ v − v + ε	v + fu(x,pε)v + fxj
(x,pε) = 0 x ∈ R

N.

We use that f (x,u)/u is a decreasing function for u > 0. This implies that f (x,u) − fu(x,u)u > 0 for all x ∈ R
N

and all u > 0. Since there is a fixed lower bound for pε � 1
C

(ε > 0 small) we find a fixed lower bound for the quantity

f (x,pε) − fu(x,pε)pε � δ0 > 0 ∀x ∈ R
N
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and all ε > 0 small. Then pε satisfies

ε	pε + J ∗ pε − pε + fu(x,pε)pε = fu(x,pε)pε − f (x,pε)� −δ0.

By the maximum principle we conclude that

|v|� ‖fxj
‖∞

δ0
pε � C in R

N.

Thus pε is uniformly Lipschitz. �
Proof of Theorem 1.1. Uniqueness is proved as in [24,22]. Also the proof that μ0 < 0 is necessary for existence is
very similar to [24,22], so we omit the details.

Assume now μ0 < 0 and let us prove that there exists a continuous solution. Let pε be the positive solution
of (2.3), which exists since με < 0 for ε > 0 small. By Lemma 5.2, pε is uniformly Lipschitz and therefore, up
to subsequence pε , converges uniformly in [0,1]N as ε → 0 to a continuous function p > 0 which is periodic and
solves (1.5). By the uniqueness of the positive periodic solution of (1.5), we have convergence of the whole fam-
ily pε . �

Directly from the previous proof we get the following result.

Corollary 5.3. Assume μ0 < 0, so με < 0 for ε > 0 small. Let p be the positive continuous periodic solution of (1.5)
and pε be the positive periodic solution of (2.3) for ε > 0 small. Then

pε → p uniformly as ε → 0.

6. Construction of approximate pulsating fronts

Let ε > 0 be small enough so that

0 = J ∗ p − p + ε	p + f (x,p), x ∈ R
N

has a positive periodic solution pε , which is unique.
Here the main result is the following.

Proposition 6.1. Let c∗
e (ε) be defined by (2.7). For c � c∗

e (ε) there is a solution to

c∂sψ = Mψ − ψ + ε	ψ + f (x,ψ) in R×R
N (6.1)

such that⎧⎪⎨
⎪⎩

lim
s→−∞ψ(s, x) = 0,

lim
s→+∞ψ(s, x) = pε(x),

ψ(s, x) is increasing in s and periodic in x.

(6.2)

To prove this result, we first work with an elliptic regularization Lκ of the operator M − Id + ε	x − c∂s as it
is done in [5,21,25] and introduce a truncated problem as follows. Given κ, r,R > 0, σ � 0 and c ∈ R consider the
problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Lκψ + f (x,ψ) + H(s, x) = 0 in (−r,R) ×R

N,

ψ(s, ·) = σφ for s � −r,

ψ(s, ·) = pε for s �R,

ψ(s, ·) is [0,1]N -periodic for all s

(6.3)

where

Lκψ :=
∫

J (x − y)ψ
(
s + (y − x) · e, y)

dy − ψ + ε	xψ + κ∂ssψ − c∂sψ,
[−r�s+(y−x)·e�R]
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φε is the principal periodic eigenfunction associated with the principal eigenvalue με of the following problem

ε	φ + J ∗ φ − φ + fu(x,0)φ + μεφ = 0,

and

H(s, x) = σ

∫
[s+(y−x)·e�−r]

J (x − y)φε(y) dy +
∫

[s+(y−x)·e�R]
J (x − y)pε(y) dy.

Proposition 6.2. There exists σ0 such that for all 0 � σ � σ0 and for any c ∈ R there exists a unique solution
of (6.3). Moreover, the corresponding solution is increasing in s, and continuous with respect to σ with values in
C2([−r,R] ×R

N).

Proof. Note that by construction, since J is smooth then H(s, x) is also smooth and the problem (6.3) can be solved
by super and subsolutions techniques. We call a function ψ ∈ C2(RN × [−r,R]) a supersolution of (6.3) if

Lκψ + f (x,ψ) + H(s, x) � 0 − r < s < R,

ψ(−r, x) � σφε, ψ(R,x) � pε(x) ∀x ∈ R
N,

ψ is periodic in x.

Subsolutions are defined similarly reversing the inequalities. If there exist a subsolution Ψ1 ∈ C2([−r,R] × R
N)

and a supersolution Ψ2 ∈ C2([−r,R] × R
N) such that Ψ1 � Ψ2, then using monotone iterations one can construct a

minimal solution ψ and a maximal solution ψ̄ of (6.3) such that Ψ1 � ψ � ψ̄ � Ψ2. The monotone iterations can be
taken for instance of the form

ψ0 = Ψ1

and ψn defined recursively as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ε	xψn+1 − κ∂ssψn+1 + c∂sψn+1 + (A + 1)ψn+1

= M̃ψn + f (x,ψn) + Aψn + H(x, s) in (−r,R) ×R
N,

ψn+1(−r, x) = σφε, ψn+1(R,x) = pε(x) ∀x ∈ R
N,

ψn+1 is periodic in x,

(6.4)

where M̃ denotes the operator

M̃ψ(s, x) =
∫

[−r�s+(y−x)·e�R]
J (x − y)ψ

(
s + (y − x) · e, y)

dy.

Here A > 0 is a large constant such that u �→ f (x,u) + Au is increasing for all u ∈ [0,maxpε] and all x. Then the
right hand side of (6.4) is a monotone operator.

Now since, pε and w are bounded and strictly positive functions, the following quantity σ ∗ is well defined

σ ∗ := sup{σ > 0 | σφε � pε}.
Take now 0 � σ � σ ∗. Then from the definition of H(s, x) we see that pε is a supersolution of (6.3). Indeed, a short
computation shows that

Lκ [pε] + f (x,pε) + H(x, s) � (J ∗ pε − pε) + f (x,pε) + ε	xpε = 0.

Working with ε > 0 sufficiently small we have that με < 0. Let us now observe that when 0 � σ � σ ∗ and σ is
small enough the function σφε is a subsolution of (6.3). Indeed, as above using that σφε � pε a short computation
shows that

Lκ [σφε] + f (x,σφε) + H(x, s) � σ(J ∗ φε − φε) + f (x,σφε) + εσ	xφε

� σφε

(
−με + f (x,σφε) − fu(x,0)

)
.

σφε
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Since φε is uniformly bounded, using the regularity of f (x, s) we have for σ � 0 small enough say σ � σ1(
−με + f (x,σφε)

σφε

− fu(x,0)

)
�−με

2
� 0.

Thus for σ � σ0 := inf{σ1, σ
∗}, σφε is a subsolution to (6.3) with σφε � pε .

We prove now that for all σ � σ0 the corresponding problem (6.3) has a unique positive solution denoted ψσ . To
this end we use a standard sliding method. First observe that for any 0 � σ � σ0, then any bounded solution ψ of the
corresponding problem (6.3) satisfies

σφε < ψ < pε.

Indeed, let us start with the proof of the inequality ψ � pε . Since pε is bounded away from 0 the following quantity
is well defined

γ ∗ := inf{γ > 0 | ψ � γpε}.
To prove the inequality, we are reduced to show that γ ∗ � 1. Assume by contradiction that γ ∗ > 1. From the definition
of γ ∗, using the periodicity of the functions ψ , pε and a standard argument we see that there exists a point (s0, x0) ∈
(−r,R) ×R

N such that γ ∗pε(s0, x0) = ψ(s0, x0).
Observe that since f (x,s)

s
is a decreasing function of s, the function γ ∗pε is a supersolution of (6.3). Moreover, for

some positive constant A big enough, the function γ ∗pε − ψ satisfies

Lκ

(
γ ∗pε − ψ

) − A
(
γ ∗pε − ψ

)
� 0 in (−r,R) ×R

N,(
γ ∗pε − ψ

)
(−r, x) � 0,

(
γ ∗pε − ψ

)
(R,x) � 0 ∀x ∈ R

N.

Since Lκ is elliptic in (−r,R)×R
N and γ ∗pε(s0, x0) = ψ(s0, x0), from the strong maximum principle it follows that

γ ∗pε ≡ ψ in (−r,R) ×R
N,

which is impossible since γ ∗pε(x) > pε(x) � σφε(x) = ψ(−r, x). Therefore we have γ ∗ � 1 and ψ � pε . The strict
inequality comes from the strong maximum principle. Now observe that to obtain the other inequality σφε < ψ we
can just reproduce the above argumentation with σφε in the role of ψ and ψ in the role of pε .

We are now in position to prove the uniqueness of the solution of (6.3). Suppose ψ1, ψ2 are 2 solutions of (6.3).
Define the following continuous functions

ψ̄1(s, x) :=
⎧⎨
⎩

σφε(x) if s < −r and x ∈R
N,

ψ1(s, x) if − r � s � R and x ∈ R
N,

pε(x) if s > R and x ∈R
N

and

ψ̄2(s, x) :=
⎧⎨
⎩

σφε(x) if s < −r and x ∈R
N,

ψ2(s, x) if − r � s � R and x ∈ R
N,

pε(x) if s > R and x ∈R
N.

Note that with this notation Eq. (6.3) satisfied by ψ1 and ψ2 can be rewritten

ε	ψi + κ∂ssψi − c∂sψi − ψi + f (x,ψi) = −Mψ̄i in (−r,R) ×R
N (6.5)

with i ∈ {1,2}.
Let us define

ψ̄τ
1 (s, x) := ψ̄1(s + τ, x)

with τ ∈R. Obviously, we have

ψ̄τ
1 (s, x) := ψ1(s + τ, x) in (−r,R − τ) ×R

N.

We claim that for all τ ∈ [0,R + r]
ψ̄τ

1 (s, x) > ψ̄2(s, x) for (s, x) ∈ R×R
N. (6.6)
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By construction we easily see that ψ̄R+r
1 � ψ̄2 in R×R

N since we know that

σφε �ψi � pε for (s, x) ∈R×R
N.

Moreover, using that we have a strict inequality in (−r,R), that is to say

σφε < ψi < pε for (s, x) ∈ (−r,R) ×R
N,

we can find a positive ε such that for any τ ∈ [R + r − ε,R + r] we have

ψ̄τ
1 (s, x) > ψ̄2(s, x) for (s, x) ∈ R×R

N.

Note also that by construction for all τ � 0 we have

ψ̄τ
1 � ψ̄2 in

(
(−∞,−r] ∪ [R − τ,+∞)

) ×R
N. (6.7)

Now let us define

τ ∗ = inf
{
τ ∈ [0,R]: ψ̄τ ′

1 � ψ̄2 for τ ′ ∈ [τ,R + r]}
then 0 � τ ∗ < R + r . Assume that τ ∗ > 0. In this case

ψ̄τ∗
1 � ψ̄2 in R×R

N

and since J � 0 we have

M
(
ψ̄τ∗

1 − ψ̄2
)
� 0.

Now, fix A > 0 large so that f (x,u) + Au is monotone increasing in [0,maxpε]. Let us denote z := ψ̄τ∗
1 − ψ̄2.

Then using the definition of ψ̄τ
1 and ψ̄2 in (−r,R − τ ∗) ×R

N , we have

ε	z + κ∂ssz − c∂sz − (A + 1)z � −M
(
ψ̄τ∗

1 − ψ̄2
)
� 0,

z(−r, x) > 0 for all x ∈R
N,

z
(
R − τ ∗, x

)
> 0 for all x ∈ R

N.

By the strong maximum principle, it follows that z > 0 in (−r,R − τ ∗) × R
N . Therefore, we have ψ̄τ∗

1 − ψ̄2 > 0 in
[−r,R − τ ∗] ×R

N and by continuity for δ small we have for any τ in (τ ∗ − δ, τ ∗)

ψ̄τ
1 − ψ̄2 � 0 in [−r,R − τ ] ×R

N. (6.8)

Combining the later with (6.7) it follows that for any positive τ in (τ ∗ − δ, τ ∗) we have

ψ̄τ
1 − ψ̄2 � 0 in R×R

N,

which contradicts the definition of τ ∗. Therefore, τ ∗ = 0 and ψ̄1 � ψ̄2. By interchanging the role of ψ1 and ψ2 in the
above argument we end up with ψ̄1 � ψ̄2 � ψ̄1, which prove the uniqueness of the solution of (6.3).

Taking ψ2 = ψ in (6.6) shows that ψ is increasing in s. Finally, denoting ψσ the unique solution of the correspond-
ing problem (6.3) one can see that the map σ �→ ψσ is continuous, thanks to the uniqueness of the solution to (6.3)
and standard elliptic estimates. �
Proposition 6.3. Suppose c > c∗

e (ε). Then there exists r0 > 0, κ(c) > 0 and k > 0 such that for r � r0, R � r0,
κ � κ(c) there is σ ∈ (0, σ0) for which the unique increasing solution ψ of (6.3) satisfies

max
x∈[0,1]N

ψ(0, x) = 1

k
min
RN

pε.

Proof. Let ψσ denote the unique solution of (6.3) constructed in Proposition 6.2.
Choose k > 0, so that

σ0 max
N

φε >
1

min
N

pε,

R k R
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where φε denotes the positive periodic principal eigenfunction associated with the eigenvalue problem

J ∗ φ − φ + ε	φ + fu(x,0)φ + μεφ = 0.

Observe that since ψσ is increasing in s, we have maxRN ψσ0(0, x) > 1
k

minRN pε . Next we prove that for σ = 0,
we have maxx∈RN ψ0(0, x) < 1

k
minRN pε .

Recall that

c∗
e (ε) := inf

λ>0

(
−με,λ

λ

)
,

where με,λ is the principal periodic eigenvalue of the problem

Jλ ∗ φ − φ + ε	φ + fu(x,0)φ + με,λφ = 0.

Since c > c∗
e (ε) there is λ̄ > 0 such that cλ̄ + με,λ̄ > 0. Let us denote φε,λ̄ the principal periodic eigenfunction

associated with με,λ̄ and consider the function

w := eλ̄(s−s0)φε,λ̄,

where s0 ∈ R is chosen so that

e−λ̄s0 max
RN

φε,λ̄ <
1

k
min
RN

pε,

and take R > 0 large so that

eλ̄(R−s0)min
RN

φε,λ̄ � pε(x).

Since w is monotone increasing in s we have

w(s, x) � pε(x) for any (s, x) ∈ [R,+∞) ×R
N.

Finally, observe that

eλ̄(−r−s0)φε,λ̄(x) � 0 for any (s, x) ∈R×R
N.

We claim that the function w is a supersolution of (6.3) with σ = 0 for κ small enough. Indeed, in (−r,R) we have

Lεw + f (x,w) + H(s, x) �
(
Jλ̄ ∗ φε,λ̄ − φε,λ̄ + ε	φε,λ̄ + fu(x,0)φε,λ̄ − cλ̄φε,λ̄ + κλ̄2φε,λ̄

)
eλ̄s

� −(
με,λ̄ + cλ̄ − κλ̄2)w.

Therefore, for κ � c+μλ̄

λ̄2 =: κ(c) we have

Lεw + f (x,w) + H(s, x) � 0 for all (s, x) ∈ (−r,R) ×R
N,

w(−r, x) > 0 for all x ∈R
N,

w(R,x) > pε for all x ∈R
N.

Since 0 is a subsolution of (6.3) with σ = 0 and w � 0 using the uniqueness of the solution of (6.3) we must have
ψ0(s, x) � w(s, x). Therefore

max
RN

ψ0(0, x)� max
RN

w(0, x) < min
RN

pε

k
.

With R > 0 fixed, we see that the map σ ∈ [0, σ0] �→ ψσ is continuous, and at σ0 satisfies maxψσ0(0, x) > min pε

k
and maxψ0(0, x) < min pε

k
. By continuity there is σ ∈ [0, σ0] such that maxψσ (0, x) = min pε

k
. �

Proposition 6.4. For c > c∗
e (ε) and κ � κ(c) there is a solution to

c∂sψ = Mψ − ψ + ε	ψ + κ∂ssψ + f (x,ψ) in R×R
N (6.9)
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such that

lim
s→−∞ψ(s, x) = 0,

lim
s→+∞ψ(s, x) = pε(x),

ψ(s, x) is increasing in s and periodic in x.

Proof. For r > 0 large, let ψr be the solution of (6.3) with R = r obtained in Proposition 6.3 where σ = σ(r) ∈ (0, σ0)

is such that

max
x∈RN

ψr(0, x) = min
x∈RN

pε(x)

k
. (6.10)

We let r → ∞. Since ψr is locally bounded in C1,α , there is a subsequence such that ψr converges locally in C1,α to
a function ψ : R×R

N which satisfies (6.9) with the speed c, is increasing in s and periodic in x.
The limit w(x) = lims→−∞ ψ(s, x) exists and is a solution of the stationary problem. By Proposition 5.1 this

solution is either 0 or the unique positive stationary solution pε . By (6.10) we conclude that w ≡ 0. Similarly
lims→+∞ ψ(s, x) = pε(x). �

In the next proposition we establish some a priori estimates satisfied by the solutions of (6.9). Namely, we have

Proposition 6.5. Let c > c∗
e (ε) and κ � κ(c) then the solution (ψκ,ε, c) of (6.9) satisfies:

(i) c

∫
R×C

|∂sψκ,ε|2 = −ε

2

∫
C

|∇xpε|2 − 1

4

∫
C2

J̃ (x, y)
(
pε(x) − pε(y)

)2 +
∫
C

F(x,pε)

where C = [0,1]N and J̃ = ∑
k∈ZN J (x − y − k) is a symmetric positive kernel.

(ii) For all compact set K ⊂R×R
N , there exists R > 0, a constant γ (R) and n ∈ N so that∫

K

|∇xψκ,ε|2 � γ (R)(2n)N .

(iii) Given R > 0, let

QR = {
(s, x) ∈R×R

N : |x| < R, |s| < R
}
.

Then there exist positive constants M , M ′ independent of ε such that

sup
QR/4

|∇xψκ,ε|� M

(
|c| + 1

R
+ R

(
2 sup

QR

∣∣pε(x)
∣∣ + sup

QR

∣∣fu(x,0)
∣∣))

sup
QR

|ψκ,ε|,

sup
QR/4

|ψκ,ε(t1, x) − ψκ,ε(t2, x)|
|t1 − t2| 1

2N

� M ′ sup
QR

|∇xψκ,ε|.

We give the proof of this proposition in Appendix A. We are now in a position to prove Proposition 6.1.

Proof of Proposition 6.1. Let us first assume that c > c∗
e (ε). Then from the above construction, for any κ � κ(c),

there exists a function ψκ,ε(s, x) increasing in s and periodic in x ∈ R
N that is solution of (6.9). Without loss of

generality, we can assume that ψκ,ε is normalized as follows

max
RN

ψκ,ε(0, x) = min
RN

pε

k
.

We let κ → 0 along a sequence. Thanks to the a priori estimates of Proposition 6.5, we can extract a subsequence
of (ψκn,ε)n∈N which converges locally uniformly in R × R

N to a function ψε ∈ H 1
loc(R

N) ∩ Cα(R × R
N) for some

α ∈ (0,1), that satisfies (6.1) in the sense of distributions. Since ψκn,ε is periodic in x, monotone increasing in s, and
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0 � ψκn,ε � pε , we also have that ψε is periodic in x, monotone nondecreasing in s, and 0 � ψε � pε . Note also that
from the normalization condition, since ψκn,ε → ψε locally uniformly, we also deduce that

max
RN

ψε(0, x) = min
RN

pε

k
. (6.11)

Furthermore, using standard parabolic estimate, one can show that ψε is a classical solution of (6.1). Thus ψε satisfies⎧⎪⎨
⎪⎩

ε	ψε − c∂sψε + M[ψε] − ψε + f (x,ψε) = 0 in R×R
N,

0 � ψ � pε, ∂sψ � 0 in R×R
N,

ψε(s, ·) is [0,1]N -periodic for all s.

By standard estimates the limit w(x) = lims→−∞ ψε(s, x) exists and is a solution of the stationary problem. By
Proposition 5.1 this solution is either 0 or the unique positive stationary solution pε . By (6.11) we conclude that
w ≡ 0. Similarly lims→+∞ ψε(s, x) = pε(x). �
7. Estimates for Lε,λ

Recall the notation from (4.2):

Lε,λu = ε	u + Jλ ∗ u − u + fu(x,0)u.

Lemma 7.1. Let λ be such that 0 < λc < −με,λ, where με,λ is the principal periodic eigenvalue of the operator −Lε,λ

defined in Section 4. If u ∈ C2(RN), u� 0 is a periodic solution to

Lε,λu − λcu = h in R
N

then

‖u‖L∞([0,1]N ) � Cε,λ‖h‖L∞([0,1]N ).

Note that for any ε > 0 and 0 < λ0 < λ1 < −με,λ/c we have

sup
λ0�λ�λ1

Cε,λ < ∞,

but the constant depends on ε.

Proof of Lemma 7.1. Let φ∗
ε,λ be the principal eigenfunction of the adjoint operator L∗

ε,λ. Then multiplying the
equation by φ∗

ε,λ and integrating we find

(−με,λ − λc)

∫
[0,1]N

uφ∗
ε,λ =

∫
[0,1]N

hφ∗
ε,λ.

Since λc < −με,λ, u� 0 and φ∗
ε,λ is strictly positive and bounded, we obtain

‖u‖L1([0,1]N ) � Cε,λ‖h‖L1([0,1]N ).

The uniform norm follows because of standard elliptic estimates for the operator Lε,λ. �
Proposition 7.2. There is ρ > 0, such that for any 0 < ρ′ < ρ there is ε0 > 0 and C such that for any 0 < ε � ε0,
any λ that satisfies (−με,λ − ρ)/c � λ� (−με,λ − ρ′)/c and any u � 0 that is a periodic solution to

Lε,λu − λcu = h in R
N (7.1)

for some h ∈ L∞ we have

‖u‖L∞([0,1]N ) � C‖h‖L∞([0,1]N ).

The constant ρ > 0 does not depend on ε or λ.
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Proof. Let μλ be the principal eigenvalue of −Lλ. Recall that infx∈[0,1]N (1 −fu(x,0)−μ0) > 0, so we can fix ρ > 0
such that infx(1 − fu(x,0) − μ0 − ρ > 0). Since μλ � μ0, see Proposition 3.3, also infx(1 − fu(x,0) − μλ − ρ > 0).
Let 0 < ρ′ < ρ and let us proceed by contradiction. Assume that there exist sequences εn → 0, λn ∈ R, periodic
functions (hn) in L∞, (un) in C2, such that: λn satisfies (−μn − ρ)/c � λn � (−μn − ρ′)/c, where μn = μεn,λn ,
un solves (7.1) and

‖hn‖L∞ → 0 and ‖un‖L∞ = 1.

We write Eq. (7.1) as

εn	un − an(x)un = −gn (7.2)

where

an(x) = 1 − fu(x,0) + λnc and gn = Jλnun − hn.

After extracting a subsequence we may assume that λn → λ, un → u weakly-* in L∞([0,1]N) and then Jλnun → Jλu

uniformly. Hence gn → g = Jλu uniformly, and g is continuous. By Lemma 4.2 we have μn = μεn,λn → μλ as
n → ∞. Since

an(x) = 1 − fu(x,0) + λnc � 1 − fu(x,0) − μn − ρ

and 1 − fu(x,0) − μλ − ρ > 0, by working with n large we may assume that

inf
x

an(x) � a0 > 0 for all n.

Note that an → a = 1 − fu(x,0) + λc, which is a continuous positive function, and the convergence is uniform.
We claim that un → g/a uniformly. For the next argument we will assume that gn > 0, which we can achieve by
replacing un by un + M and gn by gn + anM where M > 0 is large. Note that (7.2) and gn → g uniformly still hold.
Let 0 < σ < 1/2 and x0 ∈R

N . By uniform convergence gn → g, an → a and the continuity of g and a, we have

inf
x∈Br (x0)

gn(x)

β + an(x)
� (1 − σ)

g(x0)

a(x0)
in Br(x0)

provided we choose r > 0, β > 0 small and n� n0 with n0 large, and this is uniform in x0. Let z be the principal eigen-
function for −	 in Br(x0) such that maxBr(x0) z = 1 and let νr = C/r2 be the corresponding principal eigenvalue,
that is,{

	z + νrz = 0, z > 0 in Br(x0),

z = 0 on ∂Br(x0).

Define

vn = un − zdn where dn = inf
Br (x0)

gn(x)

νrεn + an(x)
.

Then

εn	vn − anvn = −gn + dn(εnνr + an)z � 0

by the choice of dn and z � 1. Since vn = un � 0 on ∂Br(x0) by the maximum principle we deduce that

un �
(

inf
Br(x0)

gn(x)

νrεn + an(x)

)
z in Br(x0).

In particular, if n� n0 is large enough so that νrεn � β we obtain

un(x0) � (1 − σ)
g(x0)

a(x0)
.

This proves that

lim inf inf(un − g/a) � 0.

n→∞ x
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A similar argument shows that

lim sup
n→∞

sup
x

(un − g/a)� 0

which proves the uniform convergence un → g/a. We deduce that u = g/a, and therefore u solves the equation

Jλu − u + fu(x,0)u − λcu = 0.

But since ‖un‖L∞ = 1 and un converges uniformly we also deduce that ‖u‖L∞ = 1. Moreover u � 0. Then nec-
essarily λc is the principal eigenvalue −μλ of Lλ. This not possible because we assumed λnc � −μn − ρ′, so
λc � −μλ − ρ′, a contradiction. �
8. Exponential bounds

Suppose we have a solution of⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cψs = ε	ψ + M[ψ] − ψ + f (x,ψ) ∀s ∈ R, x ∈ R
N,

ψ(·, x) is nondecreasing for all x,

ψ(s, ·) is [0,1]N periodic for all s,

ψ(s, x) → 0 as s → −∞,

ψ(s, x) → pε(x) as s → ∞.

(8.1)

Let δ > 0 be fixed. We assume the following normalization on ψ :

max
x∈[0,1]N

ψ(0, x) = δ. (8.2)

Let λε(c) be the smallest positive λ such that c = −με,λ

λ
. The main result in this section is the following.

Proposition 8.1. For any 0 < λ < λε(c) there are δ > 0, C > 0 such that if ψ satisfies (8.1) and (8.2), then

ψ(s, x) � Ceλs ∀x ∈R
N, ∀s � 0, (8.3)

where C does not depend on ε > 0.

As a corollary we have:

Proposition 8.2. For all ε > 0 small and any fixed λ such that 0 < λ < λε(c) there exists Cλ independent of ε such
that if ψ satisfies (8.1) and (8.2), then∣∣ψs(s, x)

∣∣ � Cλe
λs ∀s � 0, ∀x ∈ R

N, (8.4)

ε1/2
∣∣∇xψ(s, x)

∣∣ � Cλe
λs ∀s � 0, ∀x ∈R

N, (8.5)

ε
∣∣∇2

xψ(s, x)
∣∣ � Cλe

λs ∀s � 0, ∀x ∈ R
N. (8.6)

The proof of this proposition is based on scaling in the x variable and applying Schauder estimates for parabolic
equations. We omit the proof.

The proof has several steps.

Lemma 8.3. There exists λ0 > 0 and C > 0 such that if δ > 0 is sufficiently small and ψ satisfies (8.1) and (8.2),
then ∫

[0,1]N

∞∫
−∞

ψ(s, x)e−λs ds dx � C ∀0 < λ � λ0 (8.7)

where the constants do not depend on ε > 0. Moreover,
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∞∫
−∞

ψ(s, x)e−λs ds � Cε ∀0 < λ � λ0

where Cε depends on ε.

Proof. Let ηn : R → R be a smooth function such that ηn(s) = 1 for all s � −n, ηn(s) = 0 for all s � −2n, η′
n � 0.

Let λ > 0 and define

Un(x,λ) =
∞∫

−∞
ψ(s, x)e−λsηn(s) ds.

We multiply (8.1) by ηn(s)e
−λs and integrate on (−∞,∞). The term involving Mψ yields

∞∫
−∞

Mψ(s, x)ηn(s)e
−λs ds =

∞∫
−∞

∫
RN

J (x − y)ψ
(
s + (y − x) · e, y)

ηn(s)e
−λs dy ds

=
∫
RN

J (x − y)e−λ(x−y)·e
∞∫

−∞
ψ

(
s + (y − x) · e, y)

ηn(s)e
−λ(s+(y−x)·e) ds dy

=
∫
RN

J (x − y)e−λ(x−y)·e
∞∫

−∞
ψ(τ, y)e−λτ ηn

(
τ − (y − x) · e)dτ dy

and we write this term as

JλUn(·, λ) +
∫
RN

J (x − y)e−λ(x−y)·e
∞∫

−∞
ψ(τ, y)e−λτ

[
ηn

(
τ − (y − x) · e) − ηn(τ )

]
dτ dy.

Hence

ε	Un + JλUn − Un + fu(x,0)Un − cλUn = Dn + En + Fn (8.8)

where

Dn =
∫
RN

J (x − y)e−λ(x−y)·e
∞∫

−∞
ψ(τ, y)e−λτ

[
ηn(τ ) − ηn

(
τ − (y − x) · e)]dτ dy,

En =
∞∫

−∞

(
f

(
x,ψ(s, x)

) − fu(x,0)ψ(s, x)
)
e−λsηn(s) ds,

Fn = −c

∞∫
−∞

ψ(s, x)η′
n(s)e

−λs ds.

Observe that in Dn, we can assume that the integral in y ranges on |y − x|� 1 (because we assume that J has support
contained in the unit ball). Then |(y − x) · e|� 1 and since η is nondecreasing

∫
RN

J (x − y)e−λ(x−y)·e
∞∫

−∞
ψ(τ, y)e−λτ ηn

(
τ − (y − x) · e)dτ dy

�
∫
N

J (x − y)e−λ(x−y)·e
∞∫

−∞
ψ(τ, y)e−λτ ηn(τ − 1) dτ dy
R
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=
∫
RN

J (x − y)e−λ(x−y)·e
∞∫

−∞
ψ(τ + 1, y)e−λ(τ+1)ηn(τ ) dτ dy

� e−λ

∫
RN

J (x − y)e−λ(x−y)·e
∞∫

−∞
ψ(τ, y)e−λτ ηn(τ ) dτ dy

because ψ(·, x) is nondecreasing. It follows that

Dn �
(
1 − e−λ

)
JλUn(·, λ).

Thus, from (8.8) and since Fn � 0

ε	Un + JλUn − Un + fu(x,0)Un − cλUn �
(
1 − e−λ

)
JλUn(·, λ) + En.

Write

En =
0∫

−∞
. . . ds +

∞∫
0

. . . ds

and note that
∞∫

0

∣∣(f (
x,ψ(s, x)

) − fu(x,0)ψ(s, x)
)
e−λsηn(s)

∣∣ds � C1

with C1 ∼ 1/λ as λ → 0+. We estimate the other integral as follows:

0∫
−∞

(
f

(
x,ψ(s, x)

) − fu(x,0)ψ(s, x)
)
e−λs ds � Cf

0∫
−∞

ψ(s, x)2e−λsηn(s) ds

� Cf δ

0∫
−∞

ψ(s, x)e−λsηn(s) ds � Cf δUn(x,λ)

where Cf is a constant that depends only on f .
In this way we obtain

ε	Un + JλUn − Un + fu(x,0)Un − cλUn �
(
1 − e−λ

)
JλUn(·, λ) + Cf δUn + C1. (8.9)

Let με,λ be the principal eigenvalue of the operator −(ε	φ + Jλφ −φ +fu(x,0)φ), φε,λ, the principal eigenfunction
and φ∗

ε,λ be the principal eigenfunction for the adjoint operator. Since με,λ → μλ as ε → 0 and μλ < 0, we can assume

that με,λ < 0. Multiplying (8.9) by φ∗
ε,λ and integrating over the period [0,1]N we find

(−με,λ − cλ)

∫
[0,1]N

Un(x,λ)φ∗
ε,λ(x) dx �

(
1 − e−λ

) ∫
[0,1]N

JλUn(x,λ)φ∗
ε,λ(x) dx

+ Cf δ

∫
[0,1]N

Un(x,λ)φ∗
ε,λ(x) dx + C1

∫
[0,1]N

φ∗
ε,λ(x) dx.

But ∫
[0,1]N

JλUn(x,λ)φ∗
ε,λ(x) dx =

∫
[0,1]N

(Jλ)
∗φ∗

ε,λ(x)Un(x,λ)dx

=
∫

N

[−με,λφ
∗
ε,λ + φ∗

ε,λ − fu(x,0)φ∗
ε,λ − ε	φ∗

ε,λ

]
Un(x,λ)dx.
[0,1]
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Note that φ∗
ε,λ is uniformly bounded in C2([0,1]N) as ε → 0, see Remark 3.10, a property where use that f is C3.

Using the uniform smoothness of φ∗
ε,λ and the fact that it is uniformly bounded below φ∗

ε,λ(x) � c > 0 as ε → 0 with
λ > 0 fixed, we see that∫

[0,1]N
JλUn(x,λ)φ∗

ε,λ(x) dx � C

∫
[0,1]N

Un(x,λ)φ∗
ε,λ(x) dx.

Therefore

(−με,λ − cλ)

∫
[0,1]N

Un(x,λ)φ∗
ε,λ(x) dx �

((
1 − e−λ

)
C + Cf δ

) ∫
[0,1]N

Un(x,λ)φ∗
ε,λ(x) dx

+ C1

∫
[0,1]N

φ∗
ε,λ(x) dx.

Choosing δ > 0 and λ > 0 sufficiently small we deduce that∫
[0,1]N

Un(x,λ)φ∗
ε,λ(x) dx � C

and again using that φ∗
ε,λ is uniformly bounded below, we find∫

[0,1]N
Un(x,λ)dx � C (8.10)

where C is independent of ε and n. Now letting n → ∞, we obtain the conclusion (8.7).
To prove the last part we observe that

lim
n→∞Un(x,λ) = U(x,λ)

by monotone convergence where

U(x,λ) =
∞∫

−∞
ψ(s, x)e−λs ds.

By (8.10), U(·, λ) is in L1([0,1]N) and is a weak solution of

ε	U + JλU − U − cλU = Ẽ in R
N

where

Ẽ =
∞∫

−∞
f

(
x,ψ(s, x)

)
e−λs ds.

Note that

‖Ẽ‖Lp([0,1]N ) � C
∥∥U(·, λ)

∥∥
Lp([0,1]N )

for all p � 1. Then, using standard elliptic Lp estimates we deduce that U(·, λ) ∈ L∞ for 0 < λ � λ0. �
Lemma 8.4. Suppose ψ : (−∞,0] → [0,∞) is nondecreasing and let λ ∈ R. Then

ψ(s) � λ
eλs

1 − eλs

0∫
−∞

ψ(τ)e−λτ dτ ∀s � 0. (8.11)
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Proof. Let t � 0. Then

ψ(t)

0∫
t

e−λs ds �
0∫

t

ψ(s)e−λs ds. �

We prove first the exponential decay of ψ for some constant that depends on ε.

Lemma 8.5. For any λ < λε(c) there is Cε > 0 such that if ψ is a solution of (8.1) then

ψ(s, x) � Cεe
λs ∀x ∈ R

N, ∀s ∈R. (8.12)

Proof. In this proof ε > 0 is fixed and we find δε > 0 such that if ψ satisfies

max
x∈[0,1]N

ψ(0, x) � δε (8.13)

then the conclusion (8.12) holds. Given any solution of (8.1) we know already by Lemma 8.3 that ψ(s, x) → 0 as
to −∞ uniformly in x, even at an exponential rate, so that (8.13) holds provided we replace ψ(x, s) by ψ(x, s − τ)

with τ sufficiently large.
Let η ∈ C∞(R) be such that η(t) = 1 for t � 1 and η(t) = 0 for t � 2. For λ ∈ R, x ∈ [0,1]N , let U be defined

by

U(x,λ) =
∞∫

−∞
ψ(s, x)e−λsη(s) ds (8.14)

with values in [0,∞]. At this moment we know from Lemma 8.3 that U(x,λ) < +∞ if we take 0 < λ � λ0 where
λ0 > 0 is a small fixed number. The objective is to prove that for any λ such that 0 < λc < −με,λ∥∥U(·, λ)

∥∥
L∞([0,1]N )

< +∞.

Then from (8.11) we obtain the desired conclusion.
Assume that λ is such that ‖U(·, λ)‖L∞([0,1]N ) < +∞. We multiply (8.1) by η(s)e−λs and integrate on (−∞,∞).

We obtain

ε	U + JλU − U + fu(x,0)U − cλU = Dλ(x) + Eλ(x) + Fλ(x)

where

Dλ(x) =
∫
RN

J (x − y)e−λ(x−y)·e
∞∫

−∞
ψ(τ, y)e−λτ

[
η(τ) − η

(
τ − (y − x) · e)]dτ dy,

Eλ(x) =
∞∫

−∞

(
f

(
x,ψ(s, x)

) − fu(x,0)ψ(s, x)
)
e−λsη(s) ds,

Fλ(x) = −c

∞∫
−∞

ψ(s, x)η′(s)e−λs ds.

Thus

(Lε,λ − λc)U = Dλ + Eλ + Fλ.

Since U is nonnegative, we may apply Lemma 7.1 and deduce∥∥U(·, λ)
∥∥ ∞ � Cε,λ

(‖Dλ + Eλ + Fλ‖L∞
)
.

L
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Write U = U1 + U2 where

U1 =
0∫

−∞
ψ(s, x)e−λsη(s) ds, U2 =

∞∫
0

ψ(s, x)e−λsη(s) ds. (8.15)

Since U2 � 0, we also have

‖U1‖L∞([0,1]N ) � Cε,λ‖Dλ + Eλ + Fλ‖L∞([0,1]N ).

In Dλ(x) one can restrict τ to [−1,4]. Hence

‖Dλ‖L∞([0,1]N ) � C

and the constant remains bounded as λ varies in a bounded interval of R. Similarly the integral in Fλ(x) is restricted
to 1 � τ � 2 and hence

‖Fλ‖L∞([0,1]N ) � C

with C as before. We estimate

∣∣Eλ(x)
∣∣ =

∣∣∣∣∣
∞∫

−∞

(
f

(
x,ψ(s, x)

) − fu(x,0)ψ(s, x)
)
e−λsη(s) ds

∣∣∣∣∣
� C

−1∫
−∞

∣∣ψ(s, x)
∣∣2

e−λs ds + C.

By (8.11)∣∣ψ(s, x)
∣∣ � C0e

λs
∥∥U1(·, λ)

∥∥
L∞ ∀x ∈ [0,1]N, ∀s � −1.

Hence, using (8.13),

∣∣Eλ(x)
∣∣ � Cδ1/2

ε

−1∫
−∞

∣∣ψ(s, x)
∣∣3/2

e−λs ds + C

� Cδ1/2
ε

∥∥U1(·, λ)
∥∥3/2

L∞

−1∫
−∞

eλs/2 ds + C = Cλ0δ
1/2
ε

∥∥U1(·, λ)
∥∥3/2

L∞ + C,

where Cλ0 ∼ 1/λ0. Therefore∥∥U1(·, λ)
∥∥

L∞([0,1]N )
� δ1/2

ε Cλ0Cε,λ

∥∥U1(·, λ)
∥∥3/2

L∞ + C1. (8.16)

If we choose δε > 0 small this implies that there is a gap for ‖U1(·, λ)‖L∞([0,1]N ). For example we can achieve

either
∥∥U1(·, λ)

∥∥
L∞([0,1]N )

� 2C1 or
∥∥U1(·, λ)

∥∥
L∞([0,1]N )

� 3C1.

Indeed, first fix 0 < λ0 < λ1 < λε(c). Then we know from Lemma 7.1 that

sup
λ0�λ�λ1

Cε,λ < ∞.

Choose δε > 0 such that

δ1/2
ε (3C1)

1/2Cλ0

(
sup

λ0�λ�λ1

Cε,λ

)
� 1

3
.

Suppose that ‖U1(·, λ)‖L∞([0,1]N ) � 3C1. Then by (8.16)
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∥∥U1(·, λ)
∥∥

L∞([0,1]N )
� δ1/2

ε Cλ0Cε,λ

∥∥U1(·, λ)
∥∥3/2

L∞ + C1

� δ1/2
ε Cλ0Cε,λ(3C1)

1/2
∥∥U1(·, λ)

∥∥
L∞ + C1

� 1

3

∥∥U1(·, λ)
∥∥

L∞ + C1 � 2C1.

Using Lemma 8.3 and increasing C1 and decreasing δε if necessary, we can assume that∥∥U1(·, λ0)
∥∥

L∞ � 2C1.

Since λ �→ ‖U1(·, λ)‖L∞ is continuous we see that∥∥U1(·, λ)
∥∥

L∞ � 2C1 ∀λ0 � λ� λ1. �
Proof of Proposition 8.1. We argue as in Lemma 8.5. In this proof we take ρ > 0 as in Proposition 7.2 and let
0 < ρ′ < ρ. We restrict λ so that it satisfies (−με,λ − ρ)/c � λ� (−με,λ − ρ′)/c and take 0 < ε � ε0.

Let U be defined by (8.14), and U1, U2 defined in (8.15). Following the proof of Lemma 8.5, if ψ satisfies (8.1)
and (8.2) then, using Proposition 7.2,∥∥U1(·, λ)

∥∥
L∞([0,1]N )

� δ1/2C
∥∥U1(·, λ)

∥∥3/2
L∞ + C1,

where C now remains bounded for any 0 < ε � ε0 if λ satisfies (−με,λ −ρ)/c � λ� (−με,λ −ρ′)/c. Again, choosing
δ > 0 small such that

δ1/2(3C1)
1/2C � 1

3
we obtain

either
∥∥U1(·, λ)

∥∥
L∞([0,1]N )

� 2C1 or
∥∥U1(·, λ)

∥∥
L∞([0,1]N )

� 3C1.

Let ψτ (s, x) = ψ(s − τ, x) where τ > 0 and U1,τ denote the corresponding Laplace transform as in (8.14), (8.15). By
Lemma 8.5∥∥U1,τ (·, λ)

∥∥
L∞ → 0 as τ → +∞.

Since τ �→ ‖U1,τ (·, λ)‖L∞ is continuous we see that∥∥U1,0(·, λ)
∥∥

L∞ � 2C1.

Then by Lemma 8.4 we obtain (8.3). �
9. Proof of the main theorem

In this section we prove Theorem 1.2, by establishing a uniform estimate in W
1,p

loc of ψε , the convergence of ψε to
a function ψ satisfying the equation, and finally establishing that ψ solves the full problem.

Proposition 9.1. There is δ > 0 such that if ψε is a solution of (8.1) satisfying the normalization condition (8.2),
then for any 1 � p < ∞ and bounded open set D in R × R

N there is a constant C independent of ε as ε → 0 such
that:

‖ψε‖W 1,p(D) � C. (9.1)

Proof. For simplicity we write ψ = ψε and we use the notation ψxi
= ∂ψ

∂xi
. We differentiate the equation in (8.1) with

respect to xi and get

cψsxi
= ε	ψxi

+ Mxi
[ψ] − eiM[ψs] − ψxi

+ fu(x,ψ)ψxi
+ fxi

(x,ψ) (9.2)

where

Mxi
[ψ](s, x) =

∫
N

Jxi
(x − y)ψ

(
s + (y − x) · e, y)

dy
R
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e = (e1, . . . , eN). We write this as

cψsxi
+ (

1 − fu(x,0)
)
ψxi

= ε	ψxi
+ Mxi

[ψ] − eiM[ψs] + (
fu(x,ψ) − fu(x,0)

)
ψxi

+ fxi
(x,ψ). (9.3)

Let 1 � p < +∞ and θ > 0 to be fixed later on. Then

∂

∂s

(
esp(1−fu(x,0)−θ)/c|ψxi

|p) = p

c
esp(1−fu(x,0)−θ)/c

(
cψsxi

+ (
1 − fu(x,0) − θ

)
ψxi

)|ψxi
|p−2ψxi

.

Using (9.3) we obtain

∂

∂s

(
esp(1−fu(x,0)−θ)/c|ψxi

|p) = p

c
esp(1−fu(x,0)−θ)/c

(
ε	ψxi

+ Mxi
[ψ] − eiM[ψs]

+ (
fu(x,ψ) − fu(x,0)

)
ψxi

+ fxi
(x,ψ) − θψxi

)|ψxi
|p−2ψxi

.

We integrate now with respect to x over the period [0,1]N and estimate the terms on the right hand side.

c

p

∂

∂s

∫
[0,1]N

esp(1−fu(x,0)−θ)/c|ψxi
|p dx = I1 + I2 + I3 + I4 + I5 + I6

where

I1 = ε

∫
[0,1]N

esp(1−fu(x,0)−θ)/c	ψxi
|ψxi

|p−2ψxi
dx,

I2 =
∫

[0,1]N
esp(1−fu(x,0)−θ)/cMxi

[ψ]|ψxi
|p−2ψxi

dx,

I3 = −ei

∫
[0,1]N

esp(1−fu(x,0)−θ)/cM[ψs]|ψxi
|p−2ψxi

dx,

I4 =
∫

[0,1]N
esp(1−fu(x,0)−θ)/c

(
fu(x,ψ) − fu(x,0)

)|ψxi
|p dx,

I5 =
∫

[0,1]N
esp(1−fu(x,0)−θ)/cfxi

(x,ψ)|ψxi
|p−2ψxi

dx,

I6 = −θ

∫
[0,1]N

esp(1−fu(x,0)−θ)/c|ψxi
|p dx.

Integrating by parts we can estimate

I1 = −ε(p − 1)

∫
[0,1]N

esp(1−fu(x,0)−θ)/c|ψxi
|p−2|∇ψxi

|2 dx

− ε

∫
[0,1]N

∇(
esp(1−fu(x,0)−θ)/c

)∇ψxi
|ψxi

|p−2ψxi
dx

� ε|s|p
c

∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣∇xfu(x,0)

∣∣|∇ψxi
||ψxi

|p−1 dx.

By Young’s inequality

I1 �
θ

5

∫
N

esp(1−fu(x,0)−θ)/c|ψxi
|p dx + Cεp|s|p

∫
N

esp(1−fu(x,0)−θ)/c|∇ψxi
|p dx
[0,1] [0,1]
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where C depends on θ and ‖f ‖C2 . In a similar way

I2 �
θ

5

∫
[0,1]N

esp(1−fu(x,0)−θ)/c|ψxi
|p dx + C

∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣Mxi

[ψ]∣∣p dx,

I3 �
θ

5

∫
[0,1]N

esp(1−fu(x,0)−θ)/c|ψxi
|p dx + C

∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣M[ψs]

∣∣p dx,

I5 �
θ

5

∫
[0,1]N

esp(1−fu(x,0)−θ)/c|ψxi
|p dx + C

∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣fxi

(x,ψ)
∣∣p dx.

To estimate I4 we write

I4 � sup
y

∣∣fu

(
y,ψ(s, y)

) − fu(y,0)
∣∣ ∫
[0,1]N

esp(1−fu(x,0)−θ)/c|ψxi
|p dx.

We work with δ > 0 small so that from the normalization condition (8.2) we get

sup
y

∣∣fu

(
y,ψ(s, y)

) − fu(y,0)
∣∣ � θ

5
for all s � 0.

Then

I4 �
θ

5

∫
[0,1]N

esp(1−fu(x,0)−θ)/c|ψxi
|p dx.

Combining the previous estimates we obtain

c

p

∂

∂s

∫
[0,1]N

esp(1−fu(x,0)−θ)/c|ψxi
|p dx � Cεp|s|p

∫
[0,1]N

esp(1−fu(x,0)−θ)/c|∇ψxi
|p dx

+ C

∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣Mxi

[ψ]∣∣p dx

+ C

∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣M[ψs]

∣∣p dx

+ C

∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣fxi

(x,ψ)
∣∣p dx. (9.4)

Let t0 � t � 0. We integrate with respect to s over [t0, t] and then let t0 → −∞. By (8.5), given any 0 < λ < λε(c)

there is C such that∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣ψxi

(s, x)
∣∣p dx � C

εp/2

∫
[0,1]N

exp
(
sp

(
1 − fu(x,0) − θ + λc

)
/c

)
dx. (9.5)

We choose now λ and θ as follows. We fix a large Λ0 > 0. We note that since there is a principal periodic eigenfunction
φλ ∈ Cper(R

N), φλ > 0 for

Jλ ∗ φλ − φλ + fu(x,0)φλ + μλφλ = 0 in R
N

we must have

γ ≡ inf inf
N

(
1 − fu(x,0) − μλ

) = inf inf
N

Jλ ∗ φλ(x)
> 0.
λ∈[0,Λ0] x∈R λ∈[0,Λ0] x∈R φλ(x)
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Since με,λ → μλ as ε → 0, for ε > 0 sufficiently small

inf
x∈RN

(
1 − fu(x,0) − με,λ

)
� γ /2 > 0

and since for λ = λε(c) we have λc = −με,λ we get

λε(c) �
γ

2c
+ sup

x∈RN

fu(x,0) − 1

c
.

Take λ > 0 such that

sup
x∈RN

fu(x,0) − 1

c
+ γ

4c
� λ� λε(c) − γ

4c
. (9.6)

Then choose θ = γ /8 > 0 and get

σ ≡ inf
x∈RN

(
1 − fu(x,0) − θ

c
+ λ

)
> 0. (9.7)

Then from (9.5) we obtain∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣ψxi

(s, x)
∣∣p dx � C

εp/2
epσs ∀s � 0,

and therefore

lim
s→−∞

∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣ψxi

(s, x)
∣∣p dx = 0. (9.8)

Integrating (9.4) in [t0, t] with t0 � t � 0 and using (9.8) we obtain

c

p

∫
[0,1]N

esp(1−fu(x,0)−θ)/c|ψxi
|p dx �K1 + K2 + K3 + K4 (9.9)

where

K1 = Cεp

t∫
−∞

|s|p
∫

[0,1]N
esp(1−fu(x,0)−θ)/c|∇ψxi

|p dx ds,

K2 = C

t∫
−∞

∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣Mxi

[ψ]∣∣p dx ds,

K3 = C

t∫
−∞

∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣M[ψs]

∣∣p dx ds,

K4 = C

t∫
−∞

∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣fxi

(x,ψ)
∣∣p dx ds.

Next we claim that K1, K2, K3, K4 remain bounded as ε → 0. Indeed, by (8.6) and (9.7),

esp(1−fu(x,0)−θ)/c|∇ψxi
|p � esp(1−fu(x,0)−θ)/c

∣∣∇2
xψ

∣∣p
� C

p
esp(1−fu(x,0)−θ+λc)/c � C

p
espσ ,
ε ε
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for s � 0, x ∈ R
N with C independent of ε (note that ∇ψxi

is a second order derivative of ψ ). Therefore K1 is bounded
as ε → 0. The other ones can be bounded similarly, using (8.3), (8.4) and the hypotheses f (x,0) = 0, f ∈ C3 which
imply∣∣fxi

(x,u)
∣∣ � Cu for 0 � u� δ

for some C. Thus from (9.9) we deduce that there exists C independent of ε for ε small such that for all s � 0∫
[0,1]N

esp(1−fu(x,0)−θ)/c
∣∣ψxi

(s, x)
∣∣p dx � C. (9.10)

This together with (8.4) proves the estimate (9.1) for any bounded open set D ⊂ (−∞,0) × R
N . To obtain (9.1) for

any bounded open set D ⊂ R × R
N we proceed similarly as before. We multiply (9.2) by |ψxi

|p−2ψxi
and integrate

over [0,1]N . Using that ψ has a uniform upper bound we obtain

d

ds

∫
[0,1]N

|ψxi
|p dx � C

∫
[0,1]N

|ψxi
|p dx.

Then, using Gronwall’s inequality we deduce for s � 0∫
[0,1]N

∣∣ψxi
(s, x)

∣∣p dx � eCs

∫
[0,1]N

∣∣ψxi
(0, x)

∣∣p dx + C.

Since by (9.10) we have a uniform control of the form
∫
[0,1]N |ψxi

(0, x)|p dx � C, we obtain that for all R > 0 there
exists C > 0 independent of ε such that∫

[0,1]N

∣∣ψxi
(s, x)

∣∣p dx � C for all |s| � R.

Using this and (8.4) we obtain the estimate (9.1) for any bounded open set D ⊂R×R
N . �

Lemma 9.2. If c � c∗
e there exists a function ψ : R×R

N which is C1 in s and Lipschitz continuous and satisfies

cψs = M[ψ] − ψ + f (x,ψ) ∀s ∈R, x ∈R
N (9.11)

and

lim
s→−∞ψ(s, x) = 0.

Furthermore ψ > 0 is periodic in x and nondecreasing in s.

Proof. Let c � c∗
e . If c > c∗

e then c > c∗
e (ε) for ε > 0 small and we let, for small ε > 0, ψε be the solution con-

structed in Proposition 6.1 with speed c. If c = c∗
e we let ψε be the solution constructed in Proposition 6.1 with speed

cε = c∗
e (ε). In any case we have a solution of (6.1) with speed cε → c, satisfying also (6.2).

Let δ > 0 be from Proposition 9.1 and shift in s so that ψε satisfies

max
x∈[0,1]N

ψε(0, x) = δ.

Then, choosing p > N in Proposition 9.1 we can find a sequence εn → 0 such that ψεn → ψ uniformly on compact
sets. Using this local uniform convergence we see that the function ψ satisfies (9.11) in the following weak form

−c

∞∫
−∞

∫
[0,1]N

ψϕs dx ds =
∞∫

−∞

∫
[0,1]N

(
M[ψ] − ψ + f (x,ψ)

)
ϕ dx ds

for all ϕ : R × R
N → R smooth periodic function with compact support. This implies that ψ is C1 in s and satis-

fies (9.11) classically. Since ψε is nondecreasing in s and periodic in x we deduce that ψ is also nondecreasing in s
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and periodic in x. Moreover, by Proposition 8.1, if we take 0 < λ < λc we have ψε(s, x) � Ceλs with C independent
of ε. Letting ε → 0 we find the same inequality for ψ and hence lims→−∞ ψ(s, x) = 0.

Finally, we prove that ψ is Lipschitz continuous, which follows the same lines of Proposition 6.1, so we point out
the main steps. Let bi , i = 1, . . . ,N , denote the canonical basis in R

N . Given h ∈R we define

Dh
i ψ(s, x) = ψ(s, x + bih) − ψ(s, x)

h
.

We choose λ, θ, σ > 0 as in (9.6), (9.7) so that

e2s(1−fu(x,0)−θ)/c � e2s(σ−λ) ∀x ∈ R
N, s � 0. (9.12)

Then we compute

∂

∂s

(
e2s(1−fu(x,0)−θ)/c

(
Dh

i ψ
)2) = 2

c
e2s(1−fu(x,0)−θ)/c

(
Mi

[
ψh

] − eiM
[
D−hei

s ψ
] + (

fu(x, ψ̃) − fu(x,0)
)
Dh

i ψ

+ Dh
i f

(·,ψ(s, x + bih)
) − θDh

i ψ
)
Dh

i ψ

where e = (e1, . . . , eN),

Mi[g](s, x) =
∫
RN

J (x + bih − y) − J (x − y)

h
g
(
s + (y − x) · e, y)

dy,

ψh(s, x) = ψ(s − eih, x),

Dτ
s ψ(s, x) = ψ(s + τ, x) − ψ(s, x)

τ
,

and ψ̃(s, x) lies between ψ(s, x) and ψ(s, x + bih). From here we deduce

∂

∂s

(
e2s(1−fu(x,0)−θ)/c

(
Dh

i ψ
)2) � e2s(1−fu(x,0)−θ)/c

(
Mi

[
ψh

]2 + M
[
D−eih

s ψ
]2 + (

Dh
i f

(·,ψ(s, x + bih)
))2)

.

Using the exponential decay ψ(s, x) � Ceλs for all s � 0 and all x ∈ R
N , and a similar one for ψs (cf. (8.4)), we

deduce from this and (9.12) that

∂

∂s

(
e2s(1−fu(x,0)−θ)/c

(
Dh

i ψ
)2) � Ce2σs .

Integrating from −∞ to s � 0, we conclude that there exists C independent of h such that∣∣Dh
i ψ(s, x)

∣∣ � Ceλs ∀x ∈R
N, ∀s � 0.

This proves that ψ(s, ·) is Lipschitz continuous for all s � 0. An argument similar to the one at the end of Proposi-
tion 6.1 shows that it is also Lipschitz continuous for all s ∈R. �

We now prove the exponential convergence ψ(s, x) → p(x) as s → +∞, uniformly in x, by constructing appro-
priate subsolutions.

Lemma 9.3. Let ψ be the function constructed in Lemma 9.2. Then there exist C, σ > 0 such that

0 � p(x) − ψ(s, x) � Ce−σs for all s � 0.

In particular

lim
s→+∞ψ(s, x) = p(x) uniformly for x ∈R

N.

Proof. First we note that

ψ(s, x) � p(x) for all s ∈ R, x ∈ R
N.
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Next we show that ψ(s, x) → p(x) as s → +∞ uniformly for x ∈ R
N . For this we will prove that there exists

ε0 > 0 such that for any 0 < m0 < 1 there is s0 ∈ R such that

ψε(s, x) �m0pε(x) for all x ∈ R
N, s � s0, 0 < ε � ε0. (9.13)

The value s0 depends on m0 but not on ε.
Recall that we have normalized ψε by

max
x∈[0,1]N

ψε(0, x) = δ

where δ > 0 is from Proposition 9.1. By Lemma 9.2

ψε → ψ as ε → 0

uniformly on compact sets of R×R
N . Since ψ > 0 in R

N ×R and is continuous we see that there is ε0 > 0 and a > 0
such that for 0 < ε � ε0

ψε(0, x) � 2apε(x) ∀x ∈R
N.

Note that a < 1. Then we also have

ψε(s, x) � 2apε(x) ∀x ∈R
N, s � 0,

because ψε(·, x) is nondecreasing.
Given a � m � 1, R � 1, we construct a family of functions

vm(s, x) = λm(s)pε(x) s ∈ R, x ∈ R
N

where

λm(s) = a + (m − a)s

R + 1

(
1 − η(s − R)

) + (m − a)η(s − R)

and η ∈ C∞(R) is a cut-off function such that η(s) = 0 for s � 0, η(s) = 1 for s � 1, 0 � η � 1 and 0 � η′ � 2. Note
that a � λm(s) � m for all s � 0.

Fix 0 < m0 < 1 and let a � m � m0. It can be shown that we can choose R > 0 large enough, independently of ε,
so that vm satisfies

ε	vm + M[vm] − vm + f (x, vm) − c(vm)s � 0

for s � 1 and x ∈ R
N .

Using a sliding argument we obtain that a �m � m0

ψε � vm for all s � 1, x ∈ [0,1]N.

Using this inequality with m = m0 we establish (9.13). Letting ε → 0 we deduce that

lim
s→+∞ψ(s, x) = p(x) uniformly for x ∈R

N.

Finally, let us show that there is exponential convergence. For this we construct a subsolution wm with this property.
Indeed, let σ > 0 to be fixed shortly and 0 � m� 1. We set

wm(s, x) = m
(
1 − e−σs

)
p(x).

Choosing S0 large and σ > 0 small we obtain that

M[wm] − wm + f (x,wm) − c(wm)s � 0 in [S0,+∞) ×R
N.

Let S1 be such that

ψ(s, x) �
(
1 − e−σ(S0+1)

)
p(x) ∀s � S1, x ∈ R

N.

This can be done because we know that ψ(s, x) → p(x) as s → +∞ uniformly for x ∈R
N .

Using again a sliding argument we can prove that

ψ(s, x) � wm(s + S0 − S1, x) ∀s � S1, x ∈R
N
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and all 0 �m < 1. Letting m → 1 we find

ψ(s, x) �
(
1 − e−σ(s+S0−S1)

)
p(x) for all s � s0, x ∈R

N,

which finishes the proof of the lemma. �
Remark 9.4. The limit p̃(x) = lims→∞ ψ(s, x) exists by monotonicity, but we cannot assert that it defines a continu-
ous function (we have not proved uniform continuity of ψ(s, x) as s → ∞). One could then argue that p̃ is a bounded
measurable solution of the stationary problem and that Theorem 1.1 also asserts the uniqueness of this solution. This
would yield pointwise convergence lims→+∞ ψ(s, x) = p(x) for all x ∈R

N .

Lastly, to finish the proof of Theorem 1.2 we prove the nonexistence of front for speed c < c∗
e .

Lemma 9.5. Let J and f satisfy (1.3) and (1.4) and let e ∈ R
N be a unit vector. Assume μ0 < 0 and that there

exists φ ∈ Cper(R
N), φ > 0 satisfying (1.7). Then there exists no pulsating front (ψ, c) connecting 0 and p(x) in the

direction e so that c < c∗
e .

Proof. Assume by contradiction that there exists a pulsating front ψ with speed c < c∗
e . Then up to a shift ψ is a

supersolution of the parabolic problem (1.1) for any initial data u0 � 0 so that

sup
RN

u0 < min
RN

p(x), lim inf
r→+∞ inf

x·e�r
u0 > 0, u0 = 0 for x · e � −1.

Let u be the solution of the parabolic problem (1.1) with initial data u0 satisfying the above condition then by the
maximum principle, we have for all (t, x) ∈ R

+ ×R
N ,

u(t, x) � ψ(x · e + ct + t0, x)

for some fixed t0. From Shen and Zhang results, Theorem C in [56], since c < c∗
e we have

lim inf
t→+∞ inf

x·e+ct�0

(
u(x, t) − p(x)

) = 0.

Thus we get the following contradiction

0 = lim inf
t→+∞ inf

x·e+ct�0

(
u(x, t) − p(x)

)
� lim inf

t→+∞ inf
x·e+ct�0

(
ψ(x · e + ct + t0, x) − p(x)

)
�

(
ψ(t0, x) − p(x)

)
< 0. �
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Appendix A. Uniform estimates for solutions some regularized problems

In this section we prove Proposition 6.5. The estimates in this proposition divide naturally in 2 parts, one consisting
in energy type estimates, and the other one are Schauder type estimates.

Proof of Proposition 6.5 (i). We proceed as in Lemma 2.5 in [9]. Let us denote φκ,ε the solution of (6.9). Then
multiply Eq. (6.9) by ∂sψκ,ε and integrate over [−R,R] × C where C := [0,1]N . Then it follows that

c

∫
[−R,R]×C

|∂sψκ,ε|2 = κ

∫
[−R,R]×C

∂sψκ,ε∂ssψκ,ε + ε

∫
[−R,R]×C

∂sψκ,ε	xψκ,ε

+
∫

∂sψκ,ε(Mψκ,ε − ψκ,ε) +
∫

∂sψκ,εf (s,ψκ,ε).
[−R,R]×C [−R,R]×C
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Excepted the term I := ∫
[−R,R]×C ∂sψκ,ε(Mψκ,ε −ψκ,ε), all the term can be estimated as in the proof of Lemma 2.5

in [9], so we only deal with I .
A simple computation shows that∫

[−R,R]×C

∂sψκ,εψκ,ε = 1

2

∫
[−R,R]×C

∂s(ψκ,ε)
2 = 1

2

∫
C

[
(ψκ,ε)

2]R
−R

.

So it remains to compute

I :=
∫

[−R,R]×C

∂sψκ,εMψκ,ε.

Let us denote Ck := k +C where k ∈ Z
N . With this notation, using the periodicity in x of the function ψκ,ε we have

Mψκ,ε =
∑

k∈ZN

∫
k+C

J (x − y)ψκ,ε

(
s + (y − x) · e, y)

dy

=
∑

k∈ZN

∫
C

J (x − k − y)ψκ,ε

(
s + (y − x) · e + k · e, y)

dy.

Now using integration by parts it follows that

I =
∫

C×C

∑
k∈ZN

J (x − y − k)
[
ψκ,ε(s, x)ψκ,ε

(
s + (y − x) · e + k · e, y)]R

−R

−
∫

C×C

∑
k∈ZN

J (x − y − k)

R∫
−R

ψκ,ε(s, x)∂sψκ,ε

(
s + (y − x) · e + k · e, y)

.

Let us make the change of variable τ = s + (y − x) · e + k · e in the last term of the right hand side. Then we have

∫
C×C

R∫
−R

∑
k∈ZN

J (x − y − k)ψκ,ε(s, x)∂sψκ,ε

(
s + (y − x) · e + k · e, y)

=
∫

C×C

∑
k∈ZN

J (x − y − k)

R+(y−x)·e+k·e∫
−R+(y−x)·e+k·e

ψκ,ε

(
τ + (x − y) · e − k · e, x)

∂sψκ,ε(τ, y).

Let R → ∞. Using that ψκ,ε → pε respectively 0 as s → ±∞, ψκ,ε � 0, ∂sψκ,ε � 0 we obtain∫
R×C

∂sψκ,εψκ,ε = 1

2

∫
C

p2
ε (A.1)

and ∫
R×C

∂sψκ,εMψκ,ε =
∫

C×C

∑
k∈ZN

J (x − y − k)pε(x)pε(y)

−
∫

C×C

∑
k∈ZN

J (x − y − k)

+∞∫
−∞

ψκ,ε

(
τ + (x − y) · e − k · e, x)

∂sψκ,ε(τ, y).

Going back to the definition of Mψκ,ε and using the symmetry of J we can rewrite the above equality the following
way ∫

∂sψκ,εMψκ,ε =
∫

J ∗ pε(x)pε(x) dx −
∫

Mψκ,ε(τ, y)∂τψκ,ε(τ, y) dτ dy.
R×C C R×C
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Thus we have∫
R×C

∂sψκ,εMψκ,ε = 1

2

∫
C

J ∗ pε(x)pε(x) dx.

Set J̃ (x, y) := ∑
k∈ZN J (x − y + k), the above equality rewrites as follows∫

R×C

∂sψκ,εMψκ,ε = 1

2

∫
C

∫
C

J̃ (x, y)pε(y)pε(x) dy dx. (A.2)

Finally, combining (A.1) and (A.2), we obtain∫
R×C

∂sψκ,ε(Mψκ,ε − ψκ,ε) = −1

4

∫
C×C

J̃ (x, y)
(
pε(x) − pε(y)

)2
dx dy.

Hence,

c

∫
R×C

|∂sψκ,ε|2 = −ε

2

∫
C

|∇xpε|2 − 1

4

∫
C2

J̃ (x, y)
(
pε(x) − pε(y)

)2 +
∫
C

F(x,pε)

which proves (i). �
Proof of Proposition 6.5 (ii). Let K be a compact set of R × R

N . Then since K is bounded, there exists n ∈ N and
R > 0 so that K ⊂ (−R0,R0) × nQ̃ where Q̃ := [−1,1]N .

Let us denote E(u) the following energy on the set of periodic function

E(u) := −ε

2

∫
C

|∇xu|2 − 1

4

∫
C2

J̃ (x, y)
(
u(x) − u(y)

)2 +
∫
C

F(x,u).

From (i), there exists R ∈ [R0,R0 + 1] so that

c

∫
C

|∂sψκ,ε|2(R) � E(pε). (A.3)

Let us now multiply (6.9) by ψκ,ε and integrate over (−R,R) × Q̃. Then we have

c

2

∫
Q̃

[
ψ2

κ,ε

]R
−R

= κ

∫
Q̃

[ψκ,ε∂sψκ,ε]R−R − κ

∫
(−R,R)×Q̃

|∂sψκ,ε|2 − ε

∫
(−R,R)×Q̃

|∇xψκ,ε|2

+
∫

(−R,R)×Q̃

(Mψκ,ε − ψκ,ε)ψκ,ε +
∫

(−R,R)×Q̃

f (x,ψκ,ε)ψκ,ε.

Therefore since ψκ,ε is uniformly bounded and periodic in x we have

ε

∫
(−R,R)×Q̃

|∇xψκ,ε|2 = 2γ (R)

where

γ (R) := − c

2

∫
C

[
ψ2

κ,ε

]R
−R

− κ

∫
(−R,R)×C

|∂sψκ,ε|2 + κ

∫
C

[ψκ,ε∂sψκ,ε]R−R

+
∫

(Mψκ,ε − ψκ,ε)ψκ,ε +
∫

f (x,ψκ,ε)ψκ,ε.
(−R,R)×C (−R,R)×C
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Since 0 � ψκ,ε � pε , ∂sψκ,ε � 0 and f is uniformly bounded, using Cauchy–Schwartz inequality it follows that

γ (R) � |c|
∫
C

p2
ε + κ

∫
C

p2
ε

∫
C

|∂sψκ,ε|2(R,x) + 2R

∫
C

(J ∗ pε)pε + 2R‖f ‖∞
∫
C

pε.

Thus, since c > 0 by (A.3) we have

γ (R) � |c|
∫
C

p2
ε + κE(pε)

|c|
∫
C

p2
ε + 2R

∫
C

(J ∗ pε)pε + 2R‖f ‖∞
∫
C

pε.

Hence the estimate (ii) follows by periodicity. �
The proof of Proposition 6.5 (iii) is based on the next 2 lemmas. The first one is a version of a result of [4], on

gradient estimates for elliptic regularizations of semilinear parabolic equations. The result in [4] is based on Bernstein
type estimates and is nonlinear in nature, while the estimates below have a linear character, and are based on a
technique of Brandt [13] (see also [14,43] and [37, Chap. 3]).

Given R > 0 let

QR = {
(t, x) ∈R×R

N : |t | < R, |xi | < R ∀i = 1, . . . ,N
}
.

Lemma A.1. Suppose u ∈ C2(QR) satisfies

	xu + εutt + ut = f (x, t) in QR

where 0 < ε � 1, f ∈ L∞(QR). Then

∣∣∂xi
u(0,0)

∣∣ � (
2(N + 1)

R
+ 2

)
sup
QR

|u| + R

2
sup
QR

|f | (A.4)

for all i = 1, . . . ,N , where C is independent of R, ε.

Proof. Let us write x = (x1, x
′) ∈ R

N with x1 ∈ R, x′ ∈R
N−1. Define

Q̃ = {(
t, x1, x

′) ∈R×R×R
N−1: 0 < x1 < R, |xi | < 1 ∀i = 2, . . . ,N, |t | < 1

}
and

v
(
t, x1, x

′) = 1

2

(
u
(
t, x1, x

′) − u
(
t,−x1, x

′))
for (t, x1, x

′) ∈ Q̃. Let us write

Lv = 	xv + εvtt + vt .

Then L is an elliptic operator and satisfies the maximum principle. We have

Lv
(
t, x1, x

′) = 1

2

(
f

(
t, x1, x

′) − f
(
t,−x1, x

′)) for
(
t, x1, x

′) ∈ Q̃

and

|v|� sup
QR

|u| in Q̃.

Let

v̄
(
t, x1, x

′) = Ax1(R − x1) + B
(
x2

1 + ∣∣x′∣∣2 + t2)
where

B = 1

R2
sup |u|

QR
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and

A = 1

2

(
sup
QR

|f | + B(2N + 2ε + 2R)
)
.

With these choices we see that

|v| � v̄ on ∂Q̃

and

Lv̄ � − sup
QR

|f | in Q̃.

By the maximum principle v̄ − v � 0 in Q̃. Similarly v̄ + v � 0 in Q̃ and therefore

|v| � v̄ in Q̃.

This implies∣∣∂x1v(0,0)
∣∣� AR

and gives (A.4) for i = 1. The same proof replacing x1 by any of the other variables x2, . . . , xn yields (A.4). �
Lemma A.2. Suppose u ∈ C2(Q2) satisfies

ut − 	xu − εutt = f (x, t) in Q2

where ε > 0 and f ∈ L∞(Q2). Then for some 0 < α < 1 there is a constant C independent of ε such that

sup
|x|�1, t1,t2∈[−1,1]

|u(x, t1) − u(x, t2)|
|t1 − t2|α � C

(
sup
Q2

|f | + sup
Q2

|u|
)
.

Proof. Let us write

M = sup
Q2

|f | + sup
Q2

|u|.

By Lemma A.1

sup
Q1

|∇xu| � CM. (A.5)

Let ϕ ∈ C1(RN) have support in the closed ball B1 of RN . Multiplying the equation by uϕ and integrating in B2 we
find

1

2

d

dt

∫
B2

u2ϕ dx − ε
d

dt

∫
B2

uutϕ dx + ε

∫
Q1

u2
t ϕ dx +

∫
B2

|∇u|2ϕ dx +
∫
B2

∇u∇ϕudx =
∫
B2

f uϕ dx.

Integrating this from t0 to t1 with −1 � t0 < t1 � 1 and using (A.5) gives

−ε

2

d

dt

∫
B2

u2ϕ dx

∣∣∣∣
t=t1

+ ε

2

d

dt

∫
B2

u2ϕ dx

∣∣∣∣
t=t0

+ ε

t1∫
t0

∫
Q1

u2
t ϕ dx = O

(
M2)

where O(M2) is uniform in ε. Integrate now with respect to t0 ∈ [1/2,2/3] and t1 ∈ [5/6,1]. We obtain

ε

1∫
1/2

∫
B2

g(t)u2
t ϕ dx dt = O

(
M2)

where g(t) is a continuous function which is positive in [1/2,1]. Therefore one can always select t0 ∈ [1/2,1],
possibly depending on ε, such that

ε

∫
ut (t0)

2ϕ dx = O
(
M2). (A.6)
B2
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Now multiply the equation by utϕ and integrate in B2, to obtain∫
B2

u2
t ϕ dx − ε

2

d

dt

∫
B2

u2
t ϕ dx + 1

2

d

dt

∫
B2

|∇u|2ϕ dx +
∫
B2

∇u∇ϕut dx = d

dt

∫
B2

f uϕ.

Integrating with respect to t ∈ [−1/2, t0] with t0 as above yields

t0∫
−1/2

∫
B2

u2
t ϕ dx dt − ε

2

∫
B2

u2
t ϕ dx

∣∣∣∣
t0

−1/2
+ 1

2

∫
B2

|∇u|2ϕ dx

∣∣∣∣
t0

−1/2
+

∫
B2

∇u∇ϕut dx =
∫
B2

f uϕ

∣∣∣∣
t0

−1/2
.

Using (A.5) and (A.6) we find

t0∫
−1/2

∫
B2

u2
t ϕ dx dt +

∫
B2

∇u∇ϕut dx = O
(
M2). (A.7)

But ∣∣∣∣
∫
B2

∇u∇ϕut dx

∣∣∣∣� 1

2

∫
B2

|∇u|2 |∇ϕ|2
ϕ

dx + 1

2

∫
B2

ϕu2
t dx.

One can select a function ϕ � 0 with support the ball |x| � 1 and positive in |x| < 1 such that |∇ϕ|2
ϕ

is bounded. So
by (A.5)∣∣∣∣

∫
B2

∇u∇ϕut dx

∣∣∣∣� O
(
M2) + 1

2

∫
B2

ϕu2
t dx

and integrating on [−1/2, t0] we have∣∣∣∣∣
t0∫

−1/2

∫
B2

∇u∇ϕut dx dt

∣∣∣∣∣� O
(
M2) + 1

2

t0∫
−1/2

∫
B2

ϕu2
t dx dt.

This combined with (A.7) gives

t0∫
−1/2

∫
B2

ϕu2
t dx dt � CM2.

We may further restrict ϕ such that ϕ � 1 in the ball |x| � 1/2 and deduce∫
Q1/2

u2
t dx dt � CM2. (A.8)

Let t1, t2 ∈ [−1/4,1/4], with t1 � t2. Let x ∈R
N with |x| � 1. Then

u(x, t2) − u(x, t1) =
t2∫

t1

ut (x, t) dt.

Now integrate this with respect to x in the ball of center x0, |x0|� 1/4 and radius r = (t2 − t1)
1/(2N):

∫ (
u(x, t2) − u(x, t1)

)
dx =

t2∫
t

∫
ut (x, t) dx dt.
B(x0,r) 1 B(x0,r)
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By the mean value theorem there is some x̄ ∈ B(x0, r) such that

u(x̄, t2) − u(x̄, t1) = C

rN

∫
B(x0,r)

(
u(x, t2) − u(x, t1)

)
dx

and therefore, using (A.8)

∣∣u(x̄, t2) − u(x̄, t1)
∣∣ � C

rN

t2∫
t1

∫
B(x0,r)

∣∣ut (x, t)
∣∣dx dt

� C(t2 − t1)
1/2

rN/2

( t2∫
t1

∫
B(x0,r)

ut (x, t)2 dx dt

)1/2

� CM(t2 − t1)
1/4.

Since (A.5) holds we deduce∣∣u(x0, t2) − u(x0, t1)
∣∣� CM(t2 − t1)

1/(2N). �
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